Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / Analysis / IVDescriptors.h
blob254cabfc85ba743cac0a955d88777257672f3891
1 //===- llvm/Analysis/IVDescriptors.h - IndVar Descriptors -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file "describes" induction and recurrence variables.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_ANALYSIS_IVDESCRIPTORS_H
14 #define LLVM_ANALYSIS_IVDESCRIPTORS_H
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/DemandedBits.h"
24 #include "llvm/Analysis/EHPersonalities.h"
25 #include "llvm/Analysis/MustExecute.h"
26 #include "llvm/Analysis/TargetTransformInfo.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstrTypes.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/Casting.h"
34 namespace llvm {
36 class AliasSet;
37 class AliasSetTracker;
38 class BasicBlock;
39 class DataLayout;
40 class Loop;
41 class LoopInfo;
42 class OptimizationRemarkEmitter;
43 class PredicatedScalarEvolution;
44 class PredIteratorCache;
45 class ScalarEvolution;
46 class SCEV;
47 class TargetLibraryInfo;
48 class TargetTransformInfo;
50 /// The RecurrenceDescriptor is used to identify recurrences variables in a
51 /// loop. Reduction is a special case of recurrence that has uses of the
52 /// recurrence variable outside the loop. The method isReductionPHI identifies
53 /// reductions that are basic recurrences.
54 ///
55 /// Basic recurrences are defined as the summation, product, OR, AND, XOR, min,
56 /// or max of a set of terms. For example: for(i=0; i<n; i++) { total +=
57 /// array[i]; } is a summation of array elements. Basic recurrences are a
58 /// special case of chains of recurrences (CR). See ScalarEvolution for CR
59 /// references.
61 /// This struct holds information about recurrence variables.
62 class RecurrenceDescriptor {
63 public:
64 /// This enum represents the kinds of recurrences that we support.
65 enum RecurrenceKind {
66 RK_NoRecurrence, ///< Not a recurrence.
67 RK_IntegerAdd, ///< Sum of integers.
68 RK_IntegerMult, ///< Product of integers.
69 RK_IntegerOr, ///< Bitwise or logical OR of numbers.
70 RK_IntegerAnd, ///< Bitwise or logical AND of numbers.
71 RK_IntegerXor, ///< Bitwise or logical XOR of numbers.
72 RK_IntegerMinMax, ///< Min/max implemented in terms of select(cmp()).
73 RK_FloatAdd, ///< Sum of floats.
74 RK_FloatMult, ///< Product of floats.
75 RK_FloatMinMax ///< Min/max implemented in terms of select(cmp()).
78 // This enum represents the kind of minmax recurrence.
79 enum MinMaxRecurrenceKind {
80 MRK_Invalid,
81 MRK_UIntMin,
82 MRK_UIntMax,
83 MRK_SIntMin,
84 MRK_SIntMax,
85 MRK_FloatMin,
86 MRK_FloatMax
89 RecurrenceDescriptor() = default;
91 RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
92 MinMaxRecurrenceKind MK, Instruction *UAI, Type *RT,
93 bool Signed, SmallPtrSetImpl<Instruction *> &CI)
94 : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK),
95 UnsafeAlgebraInst(UAI), RecurrenceType(RT), IsSigned(Signed) {
96 CastInsts.insert(CI.begin(), CI.end());
99 /// This POD struct holds information about a potential recurrence operation.
100 class InstDesc {
101 public:
102 InstDesc(bool IsRecur, Instruction *I, Instruction *UAI = nullptr)
103 : IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid),
104 UnsafeAlgebraInst(UAI) {}
106 InstDesc(Instruction *I, MinMaxRecurrenceKind K, Instruction *UAI = nullptr)
107 : IsRecurrence(true), PatternLastInst(I), MinMaxKind(K),
108 UnsafeAlgebraInst(UAI) {}
110 bool isRecurrence() { return IsRecurrence; }
112 bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
114 Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
116 MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
118 Instruction *getPatternInst() { return PatternLastInst; }
120 private:
121 // Is this instruction a recurrence candidate.
122 bool IsRecurrence;
123 // The last instruction in a min/max pattern (select of the select(icmp())
124 // pattern), or the current recurrence instruction otherwise.
125 Instruction *PatternLastInst;
126 // If this is a min/max pattern the comparison predicate.
127 MinMaxRecurrenceKind MinMaxKind;
128 // Recurrence has unsafe algebra.
129 Instruction *UnsafeAlgebraInst;
132 /// Returns a struct describing if the instruction 'I' can be a recurrence
133 /// variable of type 'Kind'. If the recurrence is a min/max pattern of
134 /// select(icmp()) this function advances the instruction pointer 'I' from the
135 /// compare instruction to the select instruction and stores this pointer in
136 /// 'PatternLastInst' member of the returned struct.
137 static InstDesc isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
138 InstDesc &Prev, bool HasFunNoNaNAttr);
140 /// Returns true if instruction I has multiple uses in Insts
141 static bool hasMultipleUsesOf(Instruction *I,
142 SmallPtrSetImpl<Instruction *> &Insts,
143 unsigned MaxNumUses);
145 /// Returns true if all uses of the instruction I is within the Set.
146 static bool areAllUsesIn(Instruction *I, SmallPtrSetImpl<Instruction *> &Set);
148 /// Returns a struct describing if the instruction if the instruction is a
149 /// Select(ICmp(X, Y), X, Y) instruction pattern corresponding to a min(X, Y)
150 /// or max(X, Y).
151 static InstDesc isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev);
153 /// Returns a struct describing if the instruction is a
154 /// Select(FCmp(X, Y), (Z = X op PHINode), PHINode) instruction pattern.
155 static InstDesc isConditionalRdxPattern(RecurrenceKind Kind, Instruction *I);
157 /// Returns identity corresponding to the RecurrenceKind.
158 static Constant *getRecurrenceIdentity(RecurrenceKind K, Type *Tp);
160 /// Returns the opcode of binary operation corresponding to the
161 /// RecurrenceKind.
162 static unsigned getRecurrenceBinOp(RecurrenceKind Kind);
164 /// Returns true if Phi is a reduction of type Kind and adds it to the
165 /// RecurrenceDescriptor. If either \p DB is non-null or \p AC and \p DT are
166 /// non-null, the minimal bit width needed to compute the reduction will be
167 /// computed.
168 static bool AddReductionVar(PHINode *Phi, RecurrenceKind Kind, Loop *TheLoop,
169 bool HasFunNoNaNAttr,
170 RecurrenceDescriptor &RedDes,
171 DemandedBits *DB = nullptr,
172 AssumptionCache *AC = nullptr,
173 DominatorTree *DT = nullptr);
175 /// Returns true if Phi is a reduction in TheLoop. The RecurrenceDescriptor
176 /// is returned in RedDes. If either \p DB is non-null or \p AC and \p DT are
177 /// non-null, the minimal bit width needed to compute the reduction will be
178 /// computed.
179 static bool isReductionPHI(PHINode *Phi, Loop *TheLoop,
180 RecurrenceDescriptor &RedDes,
181 DemandedBits *DB = nullptr,
182 AssumptionCache *AC = nullptr,
183 DominatorTree *DT = nullptr);
185 /// Returns true if Phi is a first-order recurrence. A first-order recurrence
186 /// is a non-reduction recurrence relation in which the value of the
187 /// recurrence in the current loop iteration equals a value defined in the
188 /// previous iteration. \p SinkAfter includes pairs of instructions where the
189 /// first will be rescheduled to appear after the second if/when the loop is
190 /// vectorized. It may be augmented with additional pairs if needed in order
191 /// to handle Phi as a first-order recurrence.
192 static bool
193 isFirstOrderRecurrence(PHINode *Phi, Loop *TheLoop,
194 DenseMap<Instruction *, Instruction *> &SinkAfter,
195 DominatorTree *DT);
197 RecurrenceKind getRecurrenceKind() { return Kind; }
199 MinMaxRecurrenceKind getMinMaxRecurrenceKind() { return MinMaxKind; }
201 TrackingVH<Value> getRecurrenceStartValue() { return StartValue; }
203 Instruction *getLoopExitInstr() { return LoopExitInstr; }
205 /// Returns true if the recurrence has unsafe algebra which requires a relaxed
206 /// floating-point model.
207 bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
209 /// Returns first unsafe algebra instruction in the PHI node's use-chain.
210 Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
212 /// Returns true if the recurrence kind is an integer kind.
213 static bool isIntegerRecurrenceKind(RecurrenceKind Kind);
215 /// Returns true if the recurrence kind is a floating point kind.
216 static bool isFloatingPointRecurrenceKind(RecurrenceKind Kind);
218 /// Returns true if the recurrence kind is an arithmetic kind.
219 static bool isArithmeticRecurrenceKind(RecurrenceKind Kind);
221 /// Returns the type of the recurrence. This type can be narrower than the
222 /// actual type of the Phi if the recurrence has been type-promoted.
223 Type *getRecurrenceType() { return RecurrenceType; }
225 /// Returns a reference to the instructions used for type-promoting the
226 /// recurrence.
227 SmallPtrSet<Instruction *, 8> &getCastInsts() { return CastInsts; }
229 /// Returns true if all source operands of the recurrence are SExtInsts.
230 bool isSigned() { return IsSigned; }
232 private:
233 // The starting value of the recurrence.
234 // It does not have to be zero!
235 TrackingVH<Value> StartValue;
236 // The instruction who's value is used outside the loop.
237 Instruction *LoopExitInstr = nullptr;
238 // The kind of the recurrence.
239 RecurrenceKind Kind = RK_NoRecurrence;
240 // If this a min/max recurrence the kind of recurrence.
241 MinMaxRecurrenceKind MinMaxKind = MRK_Invalid;
242 // First occurrence of unasfe algebra in the PHI's use-chain.
243 Instruction *UnsafeAlgebraInst = nullptr;
244 // The type of the recurrence.
245 Type *RecurrenceType = nullptr;
246 // True if all source operands of the recurrence are SExtInsts.
247 bool IsSigned = false;
248 // Instructions used for type-promoting the recurrence.
249 SmallPtrSet<Instruction *, 8> CastInsts;
252 /// A struct for saving information about induction variables.
253 class InductionDescriptor {
254 public:
255 /// This enum represents the kinds of inductions that we support.
256 enum InductionKind {
257 IK_NoInduction, ///< Not an induction variable.
258 IK_IntInduction, ///< Integer induction variable. Step = C.
259 IK_PtrInduction, ///< Pointer induction var. Step = C / sizeof(elem).
260 IK_FpInduction ///< Floating point induction variable.
263 public:
264 /// Default constructor - creates an invalid induction.
265 InductionDescriptor() = default;
267 /// Get the consecutive direction. Returns:
268 /// 0 - unknown or non-consecutive.
269 /// 1 - consecutive and increasing.
270 /// -1 - consecutive and decreasing.
271 int getConsecutiveDirection() const;
273 Value *getStartValue() const { return StartValue; }
274 InductionKind getKind() const { return IK; }
275 const SCEV *getStep() const { return Step; }
276 BinaryOperator *getInductionBinOp() const { return InductionBinOp; }
277 ConstantInt *getConstIntStepValue() const;
279 /// Returns true if \p Phi is an induction in the loop \p L. If \p Phi is an
280 /// induction, the induction descriptor \p D will contain the data describing
281 /// this induction. If by some other means the caller has a better SCEV
282 /// expression for \p Phi than the one returned by the ScalarEvolution
283 /// analysis, it can be passed through \p Expr. If the def-use chain
284 /// associated with the phi includes casts (that we know we can ignore
285 /// under proper runtime checks), they are passed through \p CastsToIgnore.
286 static bool
287 isInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
288 InductionDescriptor &D, const SCEV *Expr = nullptr,
289 SmallVectorImpl<Instruction *> *CastsToIgnore = nullptr);
291 /// Returns true if \p Phi is a floating point induction in the loop \p L.
292 /// If \p Phi is an induction, the induction descriptor \p D will contain
293 /// the data describing this induction.
294 static bool isFPInductionPHI(PHINode *Phi, const Loop *L, ScalarEvolution *SE,
295 InductionDescriptor &D);
297 /// Returns true if \p Phi is a loop \p L induction, in the context associated
298 /// with the run-time predicate of PSE. If \p Assume is true, this can add
299 /// further SCEV predicates to \p PSE in order to prove that \p Phi is an
300 /// induction.
301 /// If \p Phi is an induction, \p D will contain the data describing this
302 /// induction.
303 static bool isInductionPHI(PHINode *Phi, const Loop *L,
304 PredicatedScalarEvolution &PSE,
305 InductionDescriptor &D, bool Assume = false);
307 /// Returns true if the induction type is FP and the binary operator does
308 /// not have the "fast-math" property. Such operation requires a relaxed FP
309 /// mode.
310 bool hasUnsafeAlgebra() {
311 return InductionBinOp && !cast<FPMathOperator>(InductionBinOp)->isFast();
314 /// Returns induction operator that does not have "fast-math" property
315 /// and requires FP unsafe mode.
316 Instruction *getUnsafeAlgebraInst() {
317 if (!InductionBinOp || cast<FPMathOperator>(InductionBinOp)->isFast())
318 return nullptr;
319 return InductionBinOp;
322 /// Returns binary opcode of the induction operator.
323 Instruction::BinaryOps getInductionOpcode() const {
324 return InductionBinOp ? InductionBinOp->getOpcode()
325 : Instruction::BinaryOpsEnd;
328 /// Returns a reference to the type cast instructions in the induction
329 /// update chain, that are redundant when guarded with a runtime
330 /// SCEV overflow check.
331 const SmallVectorImpl<Instruction *> &getCastInsts() const {
332 return RedundantCasts;
335 private:
336 /// Private constructor - used by \c isInductionPHI.
337 InductionDescriptor(Value *Start, InductionKind K, const SCEV *Step,
338 BinaryOperator *InductionBinOp = nullptr,
339 SmallVectorImpl<Instruction *> *Casts = nullptr);
341 /// Start value.
342 TrackingVH<Value> StartValue;
343 /// Induction kind.
344 InductionKind IK = IK_NoInduction;
345 /// Step value.
346 const SCEV *Step = nullptr;
347 // Instruction that advances induction variable.
348 BinaryOperator *InductionBinOp = nullptr;
349 // Instructions used for type-casts of the induction variable,
350 // that are redundant when guarded with a runtime SCEV overflow check.
351 SmallVector<Instruction *, 2> RedundantCasts;
354 } // end namespace llvm
356 #endif // LLVM_ANALYSIS_IVDESCRIPTORS_H