1 //===- llvm/Analysis/LoopAccessAnalysis.h -----------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the interface for the loop memory dependence framework that
10 // was originally developed for the Loop Vectorizer.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
15 #define LLVM_ANALYSIS_LOOPACCESSANALYSIS_H
17 #include "llvm/ADT/EquivalenceClasses.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/AliasSetTracker.h"
22 #include "llvm/Analysis/LoopAnalysisManager.h"
23 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
24 #include "llvm/IR/DiagnosticInfo.h"
25 #include "llvm/IR/ValueHandle.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/raw_ostream.h"
33 class ScalarEvolution
;
36 class SCEVUnionPredicate
;
38 class OptimizationRemarkEmitter
;
40 /// Collection of parameters shared beetween the Loop Vectorizer and the
41 /// Loop Access Analysis.
42 struct VectorizerParams
{
43 /// Maximum SIMD width.
44 static const unsigned MaxVectorWidth
;
46 /// VF as overridden by the user.
47 static unsigned VectorizationFactor
;
48 /// Interleave factor as overridden by the user.
49 static unsigned VectorizationInterleave
;
50 /// True if force-vector-interleave was specified by the user.
51 static bool isInterleaveForced();
53 /// \When performing memory disambiguation checks at runtime do not
54 /// make more than this number of comparisons.
55 static unsigned RuntimeMemoryCheckThreshold
;
58 /// Checks memory dependences among accesses to the same underlying
59 /// object to determine whether there vectorization is legal or not (and at
60 /// which vectorization factor).
62 /// Note: This class will compute a conservative dependence for access to
63 /// different underlying pointers. Clients, such as the loop vectorizer, will
64 /// sometimes deal these potential dependencies by emitting runtime checks.
66 /// We use the ScalarEvolution framework to symbolically evalutate access
67 /// functions pairs. Since we currently don't restructure the loop we can rely
68 /// on the program order of memory accesses to determine their safety.
69 /// At the moment we will only deem accesses as safe for:
70 /// * A negative constant distance assuming program order.
72 /// Safe: tmp = a[i + 1]; OR a[i + 1] = x;
73 /// a[i] = tmp; y = a[i];
75 /// The latter case is safe because later checks guarantuee that there can't
76 /// be a cycle through a phi node (that is, we check that "x" and "y" is not
77 /// the same variable: a header phi can only be an induction or a reduction, a
78 /// reduction can't have a memory sink, an induction can't have a memory
79 /// source). This is important and must not be violated (or we have to
80 /// resort to checking for cycles through memory).
82 /// * A positive constant distance assuming program order that is bigger
83 /// than the biggest memory access.
85 /// tmp = a[i] OR b[i] = x
86 /// a[i+2] = tmp y = b[i+2];
88 /// Safe distance: 2 x sizeof(a[0]), and 2 x sizeof(b[0]), respectively.
90 /// * Zero distances and all accesses have the same size.
92 class MemoryDepChecker
{
94 typedef PointerIntPair
<Value
*, 1, bool> MemAccessInfo
;
95 typedef SmallVector
<MemAccessInfo
, 8> MemAccessInfoList
;
96 /// Set of potential dependent memory accesses.
97 typedef EquivalenceClasses
<MemAccessInfo
> DepCandidates
;
99 /// Type to keep track of the status of the dependence check. The order of
100 /// the elements is important and has to be from most permissive to least
102 enum class VectorizationSafetyStatus
{
103 // Can vectorize safely without RT checks. All dependences are known to be
106 // Can possibly vectorize with RT checks to overcome unknown dependencies.
107 PossiblySafeWithRtChecks
,
108 // Cannot vectorize due to known unsafe dependencies.
112 /// Dependece between memory access instructions.
114 /// The type of the dependence.
118 // We couldn't determine the direction or the distance.
120 // Lexically forward.
122 // FIXME: If we only have loop-independent forward dependences (e.g. a
123 // read and write of A[i]), LAA will locally deem the dependence "safe"
124 // without querying the MemoryDepChecker. Therefore we can miss
125 // enumerating loop-independent forward dependences in
126 // getDependences. Note that as soon as there are different
127 // indices used to access the same array, the MemoryDepChecker *is*
128 // queried and the dependence list is complete.
130 // Forward, but if vectorized, is likely to prevent store-to-load
132 ForwardButPreventsForwarding
,
133 // Lexically backward.
135 // Backward, but the distance allows a vectorization factor of
136 // MaxSafeDepDistBytes.
137 BackwardVectorizable
,
138 // Same, but may prevent store-to-load forwarding.
139 BackwardVectorizableButPreventsForwarding
142 /// String version of the types.
143 static const char *DepName
[];
145 /// Index of the source of the dependence in the InstMap vector.
147 /// Index of the destination of the dependence in the InstMap vector.
148 unsigned Destination
;
149 /// The type of the dependence.
152 Dependence(unsigned Source
, unsigned Destination
, DepType Type
)
153 : Source(Source
), Destination(Destination
), Type(Type
) {}
155 /// Return the source instruction of the dependence.
156 Instruction
*getSource(const LoopAccessInfo
&LAI
) const;
157 /// Return the destination instruction of the dependence.
158 Instruction
*getDestination(const LoopAccessInfo
&LAI
) const;
160 /// Dependence types that don't prevent vectorization.
161 static VectorizationSafetyStatus
isSafeForVectorization(DepType Type
);
163 /// Lexically forward dependence.
164 bool isForward() const;
165 /// Lexically backward dependence.
166 bool isBackward() const;
168 /// May be a lexically backward dependence type (includes Unknown).
169 bool isPossiblyBackward() const;
171 /// Print the dependence. \p Instr is used to map the instruction
172 /// indices to instructions.
173 void print(raw_ostream
&OS
, unsigned Depth
,
174 const SmallVectorImpl
<Instruction
*> &Instrs
) const;
177 MemoryDepChecker(PredicatedScalarEvolution
&PSE
, const Loop
*L
)
178 : PSE(PSE
), InnermostLoop(L
), AccessIdx(0), MaxSafeRegisterWidth(-1U),
179 FoundNonConstantDistanceDependence(false),
180 Status(VectorizationSafetyStatus::Safe
), RecordDependences(true) {}
182 /// Register the location (instructions are given increasing numbers)
183 /// of a write access.
184 void addAccess(StoreInst
*SI
) {
185 Value
*Ptr
= SI
->getPointerOperand();
186 Accesses
[MemAccessInfo(Ptr
, true)].push_back(AccessIdx
);
187 InstMap
.push_back(SI
);
191 /// Register the location (instructions are given increasing numbers)
192 /// of a write access.
193 void addAccess(LoadInst
*LI
) {
194 Value
*Ptr
= LI
->getPointerOperand();
195 Accesses
[MemAccessInfo(Ptr
, false)].push_back(AccessIdx
);
196 InstMap
.push_back(LI
);
200 /// Check whether the dependencies between the accesses are safe.
202 /// Only checks sets with elements in \p CheckDeps.
203 bool areDepsSafe(DepCandidates
&AccessSets
, MemAccessInfoList
&CheckDeps
,
204 const ValueToValueMap
&Strides
);
206 /// No memory dependence was encountered that would inhibit
208 bool isSafeForVectorization() const {
209 return Status
== VectorizationSafetyStatus::Safe
;
212 /// The maximum number of bytes of a vector register we can vectorize
213 /// the accesses safely with.
214 uint64_t getMaxSafeDepDistBytes() { return MaxSafeDepDistBytes
; }
216 /// Return the number of elements that are safe to operate on
217 /// simultaneously, multiplied by the size of the element in bits.
218 uint64_t getMaxSafeRegisterWidth() const { return MaxSafeRegisterWidth
; }
220 /// In same cases when the dependency check fails we can still
221 /// vectorize the loop with a dynamic array access check.
222 bool shouldRetryWithRuntimeCheck() const {
223 return FoundNonConstantDistanceDependence
&&
224 Status
== VectorizationSafetyStatus::PossiblySafeWithRtChecks
;
227 /// Returns the memory dependences. If null is returned we exceeded
228 /// the MaxDependences threshold and this information is not
230 const SmallVectorImpl
<Dependence
> *getDependences() const {
231 return RecordDependences
? &Dependences
: nullptr;
234 void clearDependences() { Dependences
.clear(); }
236 /// The vector of memory access instructions. The indices are used as
237 /// instruction identifiers in the Dependence class.
238 const SmallVectorImpl
<Instruction
*> &getMemoryInstructions() const {
242 /// Generate a mapping between the memory instructions and their
243 /// indices according to program order.
244 DenseMap
<Instruction
*, unsigned> generateInstructionOrderMap() const {
245 DenseMap
<Instruction
*, unsigned> OrderMap
;
247 for (unsigned I
= 0; I
< InstMap
.size(); ++I
)
248 OrderMap
[InstMap
[I
]] = I
;
253 /// Find the set of instructions that read or write via \p Ptr.
254 SmallVector
<Instruction
*, 4> getInstructionsForAccess(Value
*Ptr
,
258 /// A wrapper around ScalarEvolution, used to add runtime SCEV checks, and
259 /// applies dynamic knowledge to simplify SCEV expressions and convert them
260 /// to a more usable form. We need this in case assumptions about SCEV
261 /// expressions need to be made in order to avoid unknown dependences. For
262 /// example we might assume a unit stride for a pointer in order to prove
263 /// that a memory access is strided and doesn't wrap.
264 PredicatedScalarEvolution
&PSE
;
265 const Loop
*InnermostLoop
;
267 /// Maps access locations (ptr, read/write) to program order.
268 DenseMap
<MemAccessInfo
, std::vector
<unsigned> > Accesses
;
270 /// Memory access instructions in program order.
271 SmallVector
<Instruction
*, 16> InstMap
;
273 /// The program order index to be used for the next instruction.
276 // We can access this many bytes in parallel safely.
277 uint64_t MaxSafeDepDistBytes
;
279 /// Number of elements (from consecutive iterations) that are safe to
280 /// operate on simultaneously, multiplied by the size of the element in bits.
281 /// The size of the element is taken from the memory access that is most
283 uint64_t MaxSafeRegisterWidth
;
285 /// If we see a non-constant dependence distance we can still try to
286 /// vectorize this loop with runtime checks.
287 bool FoundNonConstantDistanceDependence
;
289 /// Result of the dependence checks, indicating whether the checked
290 /// dependences are safe for vectorization, require RT checks or are known to
292 VectorizationSafetyStatus Status
;
294 //// True if Dependences reflects the dependences in the
295 //// loop. If false we exceeded MaxDependences and
296 //// Dependences is invalid.
297 bool RecordDependences
;
299 /// Memory dependences collected during the analysis. Only valid if
300 /// RecordDependences is true.
301 SmallVector
<Dependence
, 8> Dependences
;
303 /// Check whether there is a plausible dependence between the two
306 /// Access \p A must happen before \p B in program order. The two indices
307 /// identify the index into the program order map.
309 /// This function checks whether there is a plausible dependence (or the
310 /// absence of such can't be proved) between the two accesses. If there is a
311 /// plausible dependence but the dependence distance is bigger than one
312 /// element access it records this distance in \p MaxSafeDepDistBytes (if this
313 /// distance is smaller than any other distance encountered so far).
314 /// Otherwise, this function returns true signaling a possible dependence.
315 Dependence::DepType
isDependent(const MemAccessInfo
&A
, unsigned AIdx
,
316 const MemAccessInfo
&B
, unsigned BIdx
,
317 const ValueToValueMap
&Strides
);
319 /// Check whether the data dependence could prevent store-load
322 /// \return false if we shouldn't vectorize at all or avoid larger
323 /// vectorization factors by limiting MaxSafeDepDistBytes.
324 bool couldPreventStoreLoadForward(uint64_t Distance
, uint64_t TypeByteSize
);
326 /// Updates the current safety status with \p S. We can go from Safe to
327 /// either PossiblySafeWithRtChecks or Unsafe and from
328 /// PossiblySafeWithRtChecks to Unsafe.
329 void mergeInStatus(VectorizationSafetyStatus S
);
332 /// Holds information about the memory runtime legality checks to verify
333 /// that a group of pointers do not overlap.
334 class RuntimePointerChecking
{
337 /// Holds the pointer value that we need to check.
338 TrackingVH
<Value
> PointerValue
;
339 /// Holds the smallest byte address accessed by the pointer throughout all
340 /// iterations of the loop.
342 /// Holds the largest byte address accessed by the pointer throughout all
343 /// iterations of the loop, plus 1.
345 /// Holds the information if this pointer is used for writing to memory.
347 /// Holds the id of the set of pointers that could be dependent because of a
348 /// shared underlying object.
349 unsigned DependencySetId
;
350 /// Holds the id of the disjoint alias set to which this pointer belongs.
352 /// SCEV for the access.
355 PointerInfo(Value
*PointerValue
, const SCEV
*Start
, const SCEV
*End
,
356 bool IsWritePtr
, unsigned DependencySetId
, unsigned AliasSetId
,
358 : PointerValue(PointerValue
), Start(Start
), End(End
),
359 IsWritePtr(IsWritePtr
), DependencySetId(DependencySetId
),
360 AliasSetId(AliasSetId
), Expr(Expr
) {}
363 RuntimePointerChecking(ScalarEvolution
*SE
) : Need(false), SE(SE
) {}
365 /// Reset the state of the pointer runtime information.
372 /// Insert a pointer and calculate the start and end SCEVs.
373 /// We need \p PSE in order to compute the SCEV expression of the pointer
374 /// according to the assumptions that we've made during the analysis.
375 /// The method might also version the pointer stride according to \p Strides,
376 /// and add new predicates to \p PSE.
377 void insert(Loop
*Lp
, Value
*Ptr
, bool WritePtr
, unsigned DepSetId
,
378 unsigned ASId
, const ValueToValueMap
&Strides
,
379 PredicatedScalarEvolution
&PSE
);
381 /// No run-time memory checking is necessary.
382 bool empty() const { return Pointers
.empty(); }
384 /// A grouping of pointers. A single memcheck is required between
386 struct CheckingPtrGroup
{
387 /// Create a new pointer checking group containing a single
388 /// pointer, with index \p Index in RtCheck.
389 CheckingPtrGroup(unsigned Index
, RuntimePointerChecking
&RtCheck
)
390 : RtCheck(RtCheck
), High(RtCheck
.Pointers
[Index
].End
),
391 Low(RtCheck
.Pointers
[Index
].Start
) {
392 Members
.push_back(Index
);
395 /// Tries to add the pointer recorded in RtCheck at index
396 /// \p Index to this pointer checking group. We can only add a pointer
397 /// to a checking group if we will still be able to get
398 /// the upper and lower bounds of the check. Returns true in case
399 /// of success, false otherwise.
400 bool addPointer(unsigned Index
);
402 /// Constitutes the context of this pointer checking group. For each
403 /// pointer that is a member of this group we will retain the index
404 /// at which it appears in RtCheck.
405 RuntimePointerChecking
&RtCheck
;
406 /// The SCEV expression which represents the upper bound of all the
407 /// pointers in this group.
409 /// The SCEV expression which represents the lower bound of all the
410 /// pointers in this group.
412 /// Indices of all the pointers that constitute this grouping.
413 SmallVector
<unsigned, 2> Members
;
416 /// A memcheck which made up of a pair of grouped pointers.
418 /// These *have* to be const for now, since checks are generated from
419 /// CheckingPtrGroups in LAI::addRuntimeChecks which is a const member
420 /// function. FIXME: once check-generation is moved inside this class (after
421 /// the PtrPartition hack is removed), we could drop const.
422 typedef std::pair
<const CheckingPtrGroup
*, const CheckingPtrGroup
*>
425 /// Generate the checks and store it. This also performs the grouping
426 /// of pointers to reduce the number of memchecks necessary.
427 void generateChecks(MemoryDepChecker::DepCandidates
&DepCands
,
428 bool UseDependencies
);
430 /// Returns the checks that generateChecks created.
431 const SmallVector
<PointerCheck
, 4> &getChecks() const { return Checks
; }
433 /// Decide if we need to add a check between two groups of pointers,
434 /// according to needsChecking.
435 bool needsChecking(const CheckingPtrGroup
&M
,
436 const CheckingPtrGroup
&N
) const;
438 /// Returns the number of run-time checks required according to
440 unsigned getNumberOfChecks() const { return Checks
.size(); }
442 /// Print the list run-time memory checks necessary.
443 void print(raw_ostream
&OS
, unsigned Depth
= 0) const;
446 void printChecks(raw_ostream
&OS
, const SmallVectorImpl
<PointerCheck
> &Checks
,
447 unsigned Depth
= 0) const;
449 /// This flag indicates if we need to add the runtime check.
452 /// Information about the pointers that may require checking.
453 SmallVector
<PointerInfo
, 2> Pointers
;
455 /// Holds a partitioning of pointers into "check groups".
456 SmallVector
<CheckingPtrGroup
, 2> CheckingGroups
;
458 /// Check if pointers are in the same partition
460 /// \p PtrToPartition contains the partition number for pointers (-1 if the
461 /// pointer belongs to multiple partitions).
463 arePointersInSamePartition(const SmallVectorImpl
<int> &PtrToPartition
,
464 unsigned PtrIdx1
, unsigned PtrIdx2
);
466 /// Decide whether we need to issue a run-time check for pointer at
467 /// index \p I and \p J to prove their independence.
468 bool needsChecking(unsigned I
, unsigned J
) const;
470 /// Return PointerInfo for pointer at index \p PtrIdx.
471 const PointerInfo
&getPointerInfo(unsigned PtrIdx
) const {
472 return Pointers
[PtrIdx
];
476 /// Groups pointers such that a single memcheck is required
477 /// between two different groups. This will clear the CheckingGroups vector
478 /// and re-compute it. We will only group dependecies if \p UseDependencies
479 /// is true, otherwise we will create a separate group for each pointer.
480 void groupChecks(MemoryDepChecker::DepCandidates
&DepCands
,
481 bool UseDependencies
);
483 /// Generate the checks and return them.
484 SmallVector
<PointerCheck
, 4>
485 generateChecks() const;
487 /// Holds a pointer to the ScalarEvolution analysis.
490 /// Set of run-time checks required to establish independence of
491 /// otherwise may-aliasing pointers in the loop.
492 SmallVector
<PointerCheck
, 4> Checks
;
495 /// Drive the analysis of memory accesses in the loop
497 /// This class is responsible for analyzing the memory accesses of a loop. It
498 /// collects the accesses and then its main helper the AccessAnalysis class
499 /// finds and categorizes the dependences in buildDependenceSets.
501 /// For memory dependences that can be analyzed at compile time, it determines
502 /// whether the dependence is part of cycle inhibiting vectorization. This work
503 /// is delegated to the MemoryDepChecker class.
505 /// For memory dependences that cannot be determined at compile time, it
506 /// generates run-time checks to prove independence. This is done by
507 /// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
508 /// RuntimePointerCheck class.
510 /// If pointers can wrap or can't be expressed as affine AddRec expressions by
511 /// ScalarEvolution, we will generate run-time checks by emitting a
512 /// SCEVUnionPredicate.
514 /// Checks for both memory dependences and the SCEV predicates contained in the
515 /// PSE must be emitted in order for the results of this analysis to be valid.
516 class LoopAccessInfo
{
518 LoopAccessInfo(Loop
*L
, ScalarEvolution
*SE
, const TargetLibraryInfo
*TLI
,
519 AliasAnalysis
*AA
, DominatorTree
*DT
, LoopInfo
*LI
);
521 /// Return true we can analyze the memory accesses in the loop and there are
522 /// no memory dependence cycles.
523 bool canVectorizeMemory() const { return CanVecMem
; }
525 const RuntimePointerChecking
*getRuntimePointerChecking() const {
526 return PtrRtChecking
.get();
529 /// Number of memchecks required to prove independence of otherwise
530 /// may-alias pointers.
531 unsigned getNumRuntimePointerChecks() const {
532 return PtrRtChecking
->getNumberOfChecks();
535 /// Return true if the block BB needs to be predicated in order for the loop
536 /// to be vectorized.
537 static bool blockNeedsPredication(BasicBlock
*BB
, Loop
*TheLoop
,
540 /// Returns true if the value V is uniform within the loop.
541 bool isUniform(Value
*V
) const;
543 uint64_t getMaxSafeDepDistBytes() const { return MaxSafeDepDistBytes
; }
544 unsigned getNumStores() const { return NumStores
; }
545 unsigned getNumLoads() const { return NumLoads
;}
547 /// Add code that checks at runtime if the accessed arrays overlap.
549 /// Returns a pair of instructions where the first element is the first
550 /// instruction generated in possibly a sequence of instructions and the
551 /// second value is the final comparator value or NULL if no check is needed.
552 std::pair
<Instruction
*, Instruction
*>
553 addRuntimeChecks(Instruction
*Loc
) const;
555 /// Generete the instructions for the checks in \p PointerChecks.
557 /// Returns a pair of instructions where the first element is the first
558 /// instruction generated in possibly a sequence of instructions and the
559 /// second value is the final comparator value or NULL if no check is needed.
560 std::pair
<Instruction
*, Instruction
*>
561 addRuntimeChecks(Instruction
*Loc
,
562 const SmallVectorImpl
<RuntimePointerChecking::PointerCheck
>
563 &PointerChecks
) const;
565 /// The diagnostics report generated for the analysis. E.g. why we
566 /// couldn't analyze the loop.
567 const OptimizationRemarkAnalysis
*getReport() const { return Report
.get(); }
569 /// the Memory Dependence Checker which can determine the
570 /// loop-independent and loop-carried dependences between memory accesses.
571 const MemoryDepChecker
&getDepChecker() const { return *DepChecker
; }
573 /// Return the list of instructions that use \p Ptr to read or write
575 SmallVector
<Instruction
*, 4> getInstructionsForAccess(Value
*Ptr
,
576 bool isWrite
) const {
577 return DepChecker
->getInstructionsForAccess(Ptr
, isWrite
);
580 /// If an access has a symbolic strides, this maps the pointer value to
581 /// the stride symbol.
582 const ValueToValueMap
&getSymbolicStrides() const { return SymbolicStrides
; }
584 /// Pointer has a symbolic stride.
585 bool hasStride(Value
*V
) const { return StrideSet
.count(V
); }
587 /// Print the information about the memory accesses in the loop.
588 void print(raw_ostream
&OS
, unsigned Depth
= 0) const;
590 /// If the loop has memory dependence involving an invariant address, i.e. two
591 /// stores or a store and a load, then return true, else return false.
592 bool hasDependenceInvolvingLoopInvariantAddress() const {
593 return HasDependenceInvolvingLoopInvariantAddress
;
596 /// Used to add runtime SCEV checks. Simplifies SCEV expressions and converts
597 /// them to a more usable form. All SCEV expressions during the analysis
598 /// should be re-written (and therefore simplified) according to PSE.
599 /// A user of LoopAccessAnalysis will need to emit the runtime checks
600 /// associated with this predicate.
601 const PredicatedScalarEvolution
&getPSE() const { return *PSE
; }
604 /// Analyze the loop.
605 void analyzeLoop(AliasAnalysis
*AA
, LoopInfo
*LI
,
606 const TargetLibraryInfo
*TLI
, DominatorTree
*DT
);
608 /// Check if the structure of the loop allows it to be analyzed by this
610 bool canAnalyzeLoop();
612 /// Save the analysis remark.
614 /// LAA does not directly emits the remarks. Instead it stores it which the
615 /// client can retrieve and presents as its own analysis
616 /// (e.g. -Rpass-analysis=loop-vectorize).
617 OptimizationRemarkAnalysis
&recordAnalysis(StringRef RemarkName
,
618 Instruction
*Instr
= nullptr);
620 /// Collect memory access with loop invariant strides.
622 /// Looks for accesses like "a[i * StrideA]" where "StrideA" is loop
624 void collectStridedAccess(Value
*LoadOrStoreInst
);
626 std::unique_ptr
<PredicatedScalarEvolution
> PSE
;
628 /// We need to check that all of the pointers in this list are disjoint
629 /// at runtime. Using std::unique_ptr to make using move ctor simpler.
630 std::unique_ptr
<RuntimePointerChecking
> PtrRtChecking
;
632 /// the Memory Dependence Checker which can determine the
633 /// loop-independent and loop-carried dependences between memory accesses.
634 std::unique_ptr
<MemoryDepChecker
> DepChecker
;
641 uint64_t MaxSafeDepDistBytes
;
643 /// Cache the result of analyzeLoop.
646 /// Indicator that there are non vectorizable stores to a uniform address.
647 bool HasDependenceInvolvingLoopInvariantAddress
;
649 /// The diagnostics report generated for the analysis. E.g. why we
650 /// couldn't analyze the loop.
651 std::unique_ptr
<OptimizationRemarkAnalysis
> Report
;
653 /// If an access has a symbolic strides, this maps the pointer value to
654 /// the stride symbol.
655 ValueToValueMap SymbolicStrides
;
657 /// Set of symbolic strides values.
658 SmallPtrSet
<Value
*, 8> StrideSet
;
661 Value
*stripIntegerCast(Value
*V
);
663 /// Return the SCEV corresponding to a pointer with the symbolic stride
664 /// replaced with constant one, assuming the SCEV predicate associated with
667 /// If necessary this method will version the stride of the pointer according
668 /// to \p PtrToStride and therefore add further predicates to \p PSE.
670 /// If \p OrigPtr is not null, use it to look up the stride value instead of \p
671 /// Ptr. \p PtrToStride provides the mapping between the pointer value and its
672 /// stride as collected by LoopVectorizationLegality::collectStridedAccess.
673 const SCEV
*replaceSymbolicStrideSCEV(PredicatedScalarEvolution
&PSE
,
674 const ValueToValueMap
&PtrToStride
,
675 Value
*Ptr
, Value
*OrigPtr
= nullptr);
677 /// If the pointer has a constant stride return it in units of its
678 /// element size. Otherwise return zero.
680 /// Ensure that it does not wrap in the address space, assuming the predicate
681 /// associated with \p PSE is true.
683 /// If necessary this method will version the stride of the pointer according
684 /// to \p PtrToStride and therefore add further predicates to \p PSE.
685 /// The \p Assume parameter indicates if we are allowed to make additional
686 /// run-time assumptions.
687 int64_t getPtrStride(PredicatedScalarEvolution
&PSE
, Value
*Ptr
, const Loop
*Lp
,
688 const ValueToValueMap
&StridesMap
= ValueToValueMap(),
689 bool Assume
= false, bool ShouldCheckWrap
= true);
691 /// Attempt to sort the pointers in \p VL and return the sorted indices
692 /// in \p SortedIndices, if reordering is required.
694 /// Returns 'true' if sorting is legal, otherwise returns 'false'.
696 /// For example, for a given \p VL of memory accesses in program order, a[i+4],
697 /// a[i+0], a[i+1] and a[i+7], this function will sort the \p VL and save the
698 /// sorted indices in \p SortedIndices as a[i+0], a[i+1], a[i+4], a[i+7] and
699 /// saves the mask for actual memory accesses in program order in
700 /// \p SortedIndices as <1,2,0,3>
701 bool sortPtrAccesses(ArrayRef
<Value
*> VL
, const DataLayout
&DL
,
703 SmallVectorImpl
<unsigned> &SortedIndices
);
705 /// Returns true if the memory operations \p A and \p B are consecutive.
706 /// This is a simple API that does not depend on the analysis pass.
707 bool isConsecutiveAccess(Value
*A
, Value
*B
, const DataLayout
&DL
,
708 ScalarEvolution
&SE
, bool CheckType
= true);
710 /// This analysis provides dependence information for the memory accesses
713 /// It runs the analysis for a loop on demand. This can be initiated by
714 /// querying the loop access info via LAA::getInfo. getInfo return a
715 /// LoopAccessInfo object. See this class for the specifics of what information
717 class LoopAccessLegacyAnalysis
: public FunctionPass
{
721 LoopAccessLegacyAnalysis() : FunctionPass(ID
) {
722 initializeLoopAccessLegacyAnalysisPass(*PassRegistry::getPassRegistry());
725 bool runOnFunction(Function
&F
) override
;
727 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
729 /// Query the result of the loop access information for the loop \p L.
731 /// If there is no cached result available run the analysis.
732 const LoopAccessInfo
&getInfo(Loop
*L
);
734 void releaseMemory() override
{
735 // Invalidate the cache when the pass is freed.
736 LoopAccessInfoMap
.clear();
739 /// Print the result of the analysis when invoked with -analyze.
740 void print(raw_ostream
&OS
, const Module
*M
= nullptr) const override
;
744 DenseMap
<Loop
*, std::unique_ptr
<LoopAccessInfo
>> LoopAccessInfoMap
;
746 // The used analysis passes.
748 const TargetLibraryInfo
*TLI
;
754 /// This analysis provides dependence information for the memory
755 /// accesses of a loop.
757 /// It runs the analysis for a loop on demand. This can be initiated by
758 /// querying the loop access info via AM.getResult<LoopAccessAnalysis>.
759 /// getResult return a LoopAccessInfo object. See this class for the
760 /// specifics of what information is provided.
761 class LoopAccessAnalysis
762 : public AnalysisInfoMixin
<LoopAccessAnalysis
> {
763 friend AnalysisInfoMixin
<LoopAccessAnalysis
>;
764 static AnalysisKey Key
;
767 typedef LoopAccessInfo Result
;
769 Result
run(Loop
&L
, LoopAnalysisManager
&AM
, LoopStandardAnalysisResults
&AR
);
772 inline Instruction
*MemoryDepChecker::Dependence::getSource(
773 const LoopAccessInfo
&LAI
) const {
774 return LAI
.getDepChecker().getMemoryInstructions()[Source
];
777 inline Instruction
*MemoryDepChecker::Dependence::getDestination(
778 const LoopAccessInfo
&LAI
) const {
779 return LAI
.getDepChecker().getMemoryInstructions()[Destination
];
782 } // End llvm namespace