Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / Analysis / LoopInfoImpl.h
blobad4250831479c7b610302948ce7d65a76c3a137e
1 //===- llvm/Analysis/LoopInfoImpl.h - Natural Loop Calculator ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This is the generic implementation of LoopInfo used for both Loops and
10 // MachineLoops.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ANALYSIS_LOOPINFOIMPL_H
15 #define LLVM_ANALYSIS_LOOPINFOIMPL_H
17 #include "llvm/ADT/DepthFirstIterator.h"
18 #include "llvm/ADT/PostOrderIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/IR/Dominators.h"
24 namespace llvm {
26 //===----------------------------------------------------------------------===//
27 // APIs for simple analysis of the loop. See header notes.
29 /// getExitingBlocks - Return all blocks inside the loop that have successors
30 /// outside of the loop. These are the blocks _inside of the current loop_
31 /// which branch out. The returned list is always unique.
32 ///
33 template <class BlockT, class LoopT>
34 void LoopBase<BlockT, LoopT>::getExitingBlocks(
35 SmallVectorImpl<BlockT *> &ExitingBlocks) const {
36 assert(!isInvalid() && "Loop not in a valid state!");
37 for (const auto BB : blocks())
38 for (const auto &Succ : children<BlockT *>(BB))
39 if (!contains(Succ)) {
40 // Not in current loop? It must be an exit block.
41 ExitingBlocks.push_back(BB);
42 break;
46 /// getExitingBlock - If getExitingBlocks would return exactly one block,
47 /// return that block. Otherwise return null.
48 template <class BlockT, class LoopT>
49 BlockT *LoopBase<BlockT, LoopT>::getExitingBlock() const {
50 assert(!isInvalid() && "Loop not in a valid state!");
51 SmallVector<BlockT *, 8> ExitingBlocks;
52 getExitingBlocks(ExitingBlocks);
53 if (ExitingBlocks.size() == 1)
54 return ExitingBlocks[0];
55 return nullptr;
58 /// getExitBlocks - Return all of the successor blocks of this loop. These
59 /// are the blocks _outside of the current loop_ which are branched to.
60 ///
61 template <class BlockT, class LoopT>
62 void LoopBase<BlockT, LoopT>::getExitBlocks(
63 SmallVectorImpl<BlockT *> &ExitBlocks) const {
64 assert(!isInvalid() && "Loop not in a valid state!");
65 for (const auto BB : blocks())
66 for (const auto &Succ : children<BlockT *>(BB))
67 if (!contains(Succ))
68 // Not in current loop? It must be an exit block.
69 ExitBlocks.push_back(Succ);
72 /// getExitBlock - If getExitBlocks would return exactly one block,
73 /// return that block. Otherwise return null.
74 template <class BlockT, class LoopT>
75 BlockT *LoopBase<BlockT, LoopT>::getExitBlock() const {
76 assert(!isInvalid() && "Loop not in a valid state!");
77 SmallVector<BlockT *, 8> ExitBlocks;
78 getExitBlocks(ExitBlocks);
79 if (ExitBlocks.size() == 1)
80 return ExitBlocks[0];
81 return nullptr;
84 template <class BlockT, class LoopT>
85 bool LoopBase<BlockT, LoopT>::hasDedicatedExits() const {
86 // Each predecessor of each exit block of a normal loop is contained
87 // within the loop.
88 SmallVector<BlockT *, 4> ExitBlocks;
89 getExitBlocks(ExitBlocks);
90 for (BlockT *EB : ExitBlocks)
91 for (BlockT *Predecessor : children<Inverse<BlockT *>>(EB))
92 if (!contains(Predecessor))
93 return false;
94 // All the requirements are met.
95 return true;
98 template <class BlockT, class LoopT>
99 void LoopBase<BlockT, LoopT>::getUniqueExitBlocks(
100 SmallVectorImpl<BlockT *> &ExitBlocks) const {
101 typedef GraphTraits<BlockT *> BlockTraits;
102 typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
104 assert(hasDedicatedExits() &&
105 "getUniqueExitBlocks assumes the loop has canonical form exits!");
107 SmallVector<BlockT *, 32> SwitchExitBlocks;
108 for (BlockT *Block : this->blocks()) {
109 SwitchExitBlocks.clear();
110 for (BlockT *Successor : children<BlockT *>(Block)) {
111 // If block is inside the loop then it is not an exit block.
112 if (contains(Successor))
113 continue;
115 BlockT *FirstPred = *InvBlockTraits::child_begin(Successor);
117 // If current basic block is this exit block's first predecessor then only
118 // insert exit block in to the output ExitBlocks vector. This ensures that
119 // same exit block is not inserted twice into ExitBlocks vector.
120 if (Block != FirstPred)
121 continue;
123 // If a terminator has more then two successors, for example SwitchInst,
124 // then it is possible that there are multiple edges from current block to
125 // one exit block.
126 if (std::distance(BlockTraits::child_begin(Block),
127 BlockTraits::child_end(Block)) <= 2) {
128 ExitBlocks.push_back(Successor);
129 continue;
132 // In case of multiple edges from current block to exit block, collect
133 // only one edge in ExitBlocks. Use switchExitBlocks to keep track of
134 // duplicate edges.
135 if (!is_contained(SwitchExitBlocks, Successor)) {
136 SwitchExitBlocks.push_back(Successor);
137 ExitBlocks.push_back(Successor);
143 template <class BlockT, class LoopT>
144 BlockT *LoopBase<BlockT, LoopT>::getUniqueExitBlock() const {
145 SmallVector<BlockT *, 8> UniqueExitBlocks;
146 getUniqueExitBlocks(UniqueExitBlocks);
147 if (UniqueExitBlocks.size() == 1)
148 return UniqueExitBlocks[0];
149 return nullptr;
152 /// getExitEdges - Return all pairs of (_inside_block_,_outside_block_).
153 template <class BlockT, class LoopT>
154 void LoopBase<BlockT, LoopT>::getExitEdges(
155 SmallVectorImpl<Edge> &ExitEdges) const {
156 assert(!isInvalid() && "Loop not in a valid state!");
157 for (const auto BB : blocks())
158 for (const auto &Succ : children<BlockT *>(BB))
159 if (!contains(Succ))
160 // Not in current loop? It must be an exit block.
161 ExitEdges.emplace_back(BB, Succ);
164 /// getLoopPreheader - If there is a preheader for this loop, return it. A
165 /// loop has a preheader if there is only one edge to the header of the loop
166 /// from outside of the loop and it is legal to hoist instructions into the
167 /// predecessor. If this is the case, the block branching to the header of the
168 /// loop is the preheader node.
170 /// This method returns null if there is no preheader for the loop.
172 template <class BlockT, class LoopT>
173 BlockT *LoopBase<BlockT, LoopT>::getLoopPreheader() const {
174 assert(!isInvalid() && "Loop not in a valid state!");
175 // Keep track of nodes outside the loop branching to the header...
176 BlockT *Out = getLoopPredecessor();
177 if (!Out)
178 return nullptr;
180 // Make sure we are allowed to hoist instructions into the predecessor.
181 if (!Out->isLegalToHoistInto())
182 return nullptr;
184 // Make sure there is only one exit out of the preheader.
185 typedef GraphTraits<BlockT *> BlockTraits;
186 typename BlockTraits::ChildIteratorType SI = BlockTraits::child_begin(Out);
187 ++SI;
188 if (SI != BlockTraits::child_end(Out))
189 return nullptr; // Multiple exits from the block, must not be a preheader.
191 // The predecessor has exactly one successor, so it is a preheader.
192 return Out;
195 /// getLoopPredecessor - If the given loop's header has exactly one unique
196 /// predecessor outside the loop, return it. Otherwise return null.
197 /// This is less strict that the loop "preheader" concept, which requires
198 /// the predecessor to have exactly one successor.
200 template <class BlockT, class LoopT>
201 BlockT *LoopBase<BlockT, LoopT>::getLoopPredecessor() const {
202 assert(!isInvalid() && "Loop not in a valid state!");
203 // Keep track of nodes outside the loop branching to the header...
204 BlockT *Out = nullptr;
206 // Loop over the predecessors of the header node...
207 BlockT *Header = getHeader();
208 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
209 if (!contains(Pred)) { // If the block is not in the loop...
210 if (Out && Out != Pred)
211 return nullptr; // Multiple predecessors outside the loop
212 Out = Pred;
216 // Make sure there is only one exit out of the preheader.
217 assert(Out && "Header of loop has no predecessors from outside loop?");
218 return Out;
221 /// getLoopLatch - If there is a single latch block for this loop, return it.
222 /// A latch block is a block that contains a branch back to the header.
223 template <class BlockT, class LoopT>
224 BlockT *LoopBase<BlockT, LoopT>::getLoopLatch() const {
225 assert(!isInvalid() && "Loop not in a valid state!");
226 BlockT *Header = getHeader();
227 BlockT *Latch = nullptr;
228 for (const auto Pred : children<Inverse<BlockT *>>(Header)) {
229 if (contains(Pred)) {
230 if (Latch)
231 return nullptr;
232 Latch = Pred;
236 return Latch;
239 //===----------------------------------------------------------------------===//
240 // APIs for updating loop information after changing the CFG
243 /// addBasicBlockToLoop - This method is used by other analyses to update loop
244 /// information. NewBB is set to be a new member of the current loop.
245 /// Because of this, it is added as a member of all parent loops, and is added
246 /// to the specified LoopInfo object as being in the current basic block. It
247 /// is not valid to replace the loop header with this method.
249 template <class BlockT, class LoopT>
250 void LoopBase<BlockT, LoopT>::addBasicBlockToLoop(
251 BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LIB) {
252 assert(!isInvalid() && "Loop not in a valid state!");
253 #ifndef NDEBUG
254 if (!Blocks.empty()) {
255 auto SameHeader = LIB[getHeader()];
256 assert(contains(SameHeader) && getHeader() == SameHeader->getHeader() &&
257 "Incorrect LI specified for this loop!");
259 #endif
260 assert(NewBB && "Cannot add a null basic block to the loop!");
261 assert(!LIB[NewBB] && "BasicBlock already in the loop!");
263 LoopT *L = static_cast<LoopT *>(this);
265 // Add the loop mapping to the LoopInfo object...
266 LIB.BBMap[NewBB] = L;
268 // Add the basic block to this loop and all parent loops...
269 while (L) {
270 L->addBlockEntry(NewBB);
271 L = L->getParentLoop();
275 /// replaceChildLoopWith - This is used when splitting loops up. It replaces
276 /// the OldChild entry in our children list with NewChild, and updates the
277 /// parent pointer of OldChild to be null and the NewChild to be this loop.
278 /// This updates the loop depth of the new child.
279 template <class BlockT, class LoopT>
280 void LoopBase<BlockT, LoopT>::replaceChildLoopWith(LoopT *OldChild,
281 LoopT *NewChild) {
282 assert(!isInvalid() && "Loop not in a valid state!");
283 assert(OldChild->ParentLoop == this && "This loop is already broken!");
284 assert(!NewChild->ParentLoop && "NewChild already has a parent!");
285 typename std::vector<LoopT *>::iterator I = find(SubLoops, OldChild);
286 assert(I != SubLoops.end() && "OldChild not in loop!");
287 *I = NewChild;
288 OldChild->ParentLoop = nullptr;
289 NewChild->ParentLoop = static_cast<LoopT *>(this);
292 /// verifyLoop - Verify loop structure
293 template <class BlockT, class LoopT>
294 void LoopBase<BlockT, LoopT>::verifyLoop() const {
295 assert(!isInvalid() && "Loop not in a valid state!");
296 #ifndef NDEBUG
297 assert(!Blocks.empty() && "Loop header is missing");
299 // Setup for using a depth-first iterator to visit every block in the loop.
300 SmallVector<BlockT *, 8> ExitBBs;
301 getExitBlocks(ExitBBs);
302 df_iterator_default_set<BlockT *> VisitSet;
303 VisitSet.insert(ExitBBs.begin(), ExitBBs.end());
304 df_ext_iterator<BlockT *, df_iterator_default_set<BlockT *>>
305 BI = df_ext_begin(getHeader(), VisitSet),
306 BE = df_ext_end(getHeader(), VisitSet);
308 // Keep track of the BBs visited.
309 SmallPtrSet<BlockT *, 8> VisitedBBs;
311 // Check the individual blocks.
312 for (; BI != BE; ++BI) {
313 BlockT *BB = *BI;
315 assert(std::any_of(GraphTraits<BlockT *>::child_begin(BB),
316 GraphTraits<BlockT *>::child_end(BB),
317 [&](BlockT *B) { return contains(B); }) &&
318 "Loop block has no in-loop successors!");
320 assert(std::any_of(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
321 GraphTraits<Inverse<BlockT *>>::child_end(BB),
322 [&](BlockT *B) { return contains(B); }) &&
323 "Loop block has no in-loop predecessors!");
325 SmallVector<BlockT *, 2> OutsideLoopPreds;
326 std::for_each(GraphTraits<Inverse<BlockT *>>::child_begin(BB),
327 GraphTraits<Inverse<BlockT *>>::child_end(BB),
328 [&](BlockT *B) {
329 if (!contains(B))
330 OutsideLoopPreds.push_back(B);
333 if (BB == getHeader()) {
334 assert(!OutsideLoopPreds.empty() && "Loop is unreachable!");
335 } else if (!OutsideLoopPreds.empty()) {
336 // A non-header loop shouldn't be reachable from outside the loop,
337 // though it is permitted if the predecessor is not itself actually
338 // reachable.
339 BlockT *EntryBB = &BB->getParent()->front();
340 for (BlockT *CB : depth_first(EntryBB))
341 for (unsigned i = 0, e = OutsideLoopPreds.size(); i != e; ++i)
342 assert(CB != OutsideLoopPreds[i] &&
343 "Loop has multiple entry points!");
345 assert(BB != &getHeader()->getParent()->front() &&
346 "Loop contains function entry block!");
348 VisitedBBs.insert(BB);
351 if (VisitedBBs.size() != getNumBlocks()) {
352 dbgs() << "The following blocks are unreachable in the loop: ";
353 for (auto BB : Blocks) {
354 if (!VisitedBBs.count(BB)) {
355 dbgs() << *BB << "\n";
358 assert(false && "Unreachable block in loop");
361 // Check the subloops.
362 for (iterator I = begin(), E = end(); I != E; ++I)
363 // Each block in each subloop should be contained within this loop.
364 for (block_iterator BI = (*I)->block_begin(), BE = (*I)->block_end();
365 BI != BE; ++BI) {
366 assert(contains(*BI) &&
367 "Loop does not contain all the blocks of a subloop!");
370 // Check the parent loop pointer.
371 if (ParentLoop) {
372 assert(is_contained(*ParentLoop, this) &&
373 "Loop is not a subloop of its parent!");
375 #endif
378 /// verifyLoop - Verify loop structure of this loop and all nested loops.
379 template <class BlockT, class LoopT>
380 void LoopBase<BlockT, LoopT>::verifyLoopNest(
381 DenseSet<const LoopT *> *Loops) const {
382 assert(!isInvalid() && "Loop not in a valid state!");
383 Loops->insert(static_cast<const LoopT *>(this));
384 // Verify this loop.
385 verifyLoop();
386 // Verify the subloops.
387 for (iterator I = begin(), E = end(); I != E; ++I)
388 (*I)->verifyLoopNest(Loops);
391 template <class BlockT, class LoopT>
392 void LoopBase<BlockT, LoopT>::print(raw_ostream &OS, unsigned Depth,
393 bool Verbose) const {
394 OS.indent(Depth * 2);
395 if (static_cast<const LoopT *>(this)->isAnnotatedParallel())
396 OS << "Parallel ";
397 OS << "Loop at depth " << getLoopDepth() << " containing: ";
399 BlockT *H = getHeader();
400 for (unsigned i = 0; i < getBlocks().size(); ++i) {
401 BlockT *BB = getBlocks()[i];
402 if (!Verbose) {
403 if (i)
404 OS << ",";
405 BB->printAsOperand(OS, false);
406 } else
407 OS << "\n";
409 if (BB == H)
410 OS << "<header>";
411 if (isLoopLatch(BB))
412 OS << "<latch>";
413 if (isLoopExiting(BB))
414 OS << "<exiting>";
415 if (Verbose)
416 BB->print(OS);
418 OS << "\n";
420 for (iterator I = begin(), E = end(); I != E; ++I)
421 (*I)->print(OS, Depth + 2);
424 //===----------------------------------------------------------------------===//
425 /// Stable LoopInfo Analysis - Build a loop tree using stable iterators so the
426 /// result does / not depend on use list (block predecessor) order.
429 /// Discover a subloop with the specified backedges such that: All blocks within
430 /// this loop are mapped to this loop or a subloop. And all subloops within this
431 /// loop have their parent loop set to this loop or a subloop.
432 template <class BlockT, class LoopT>
433 static void discoverAndMapSubloop(LoopT *L, ArrayRef<BlockT *> Backedges,
434 LoopInfoBase<BlockT, LoopT> *LI,
435 const DomTreeBase<BlockT> &DomTree) {
436 typedef GraphTraits<Inverse<BlockT *>> InvBlockTraits;
438 unsigned NumBlocks = 0;
439 unsigned NumSubloops = 0;
441 // Perform a backward CFG traversal using a worklist.
442 std::vector<BlockT *> ReverseCFGWorklist(Backedges.begin(), Backedges.end());
443 while (!ReverseCFGWorklist.empty()) {
444 BlockT *PredBB = ReverseCFGWorklist.back();
445 ReverseCFGWorklist.pop_back();
447 LoopT *Subloop = LI->getLoopFor(PredBB);
448 if (!Subloop) {
449 if (!DomTree.isReachableFromEntry(PredBB))
450 continue;
452 // This is an undiscovered block. Map it to the current loop.
453 LI->changeLoopFor(PredBB, L);
454 ++NumBlocks;
455 if (PredBB == L->getHeader())
456 continue;
457 // Push all block predecessors on the worklist.
458 ReverseCFGWorklist.insert(ReverseCFGWorklist.end(),
459 InvBlockTraits::child_begin(PredBB),
460 InvBlockTraits::child_end(PredBB));
461 } else {
462 // This is a discovered block. Find its outermost discovered loop.
463 while (LoopT *Parent = Subloop->getParentLoop())
464 Subloop = Parent;
466 // If it is already discovered to be a subloop of this loop, continue.
467 if (Subloop == L)
468 continue;
470 // Discover a subloop of this loop.
471 Subloop->setParentLoop(L);
472 ++NumSubloops;
473 NumBlocks += Subloop->getBlocksVector().capacity();
474 PredBB = Subloop->getHeader();
475 // Continue traversal along predecessors that are not loop-back edges from
476 // within this subloop tree itself. Note that a predecessor may directly
477 // reach another subloop that is not yet discovered to be a subloop of
478 // this loop, which we must traverse.
479 for (const auto Pred : children<Inverse<BlockT *>>(PredBB)) {
480 if (LI->getLoopFor(Pred) != Subloop)
481 ReverseCFGWorklist.push_back(Pred);
485 L->getSubLoopsVector().reserve(NumSubloops);
486 L->reserveBlocks(NumBlocks);
489 /// Populate all loop data in a stable order during a single forward DFS.
490 template <class BlockT, class LoopT> class PopulateLoopsDFS {
491 typedef GraphTraits<BlockT *> BlockTraits;
492 typedef typename BlockTraits::ChildIteratorType SuccIterTy;
494 LoopInfoBase<BlockT, LoopT> *LI;
496 public:
497 PopulateLoopsDFS(LoopInfoBase<BlockT, LoopT> *li) : LI(li) {}
499 void traverse(BlockT *EntryBlock);
501 protected:
502 void insertIntoLoop(BlockT *Block);
505 /// Top-level driver for the forward DFS within the loop.
506 template <class BlockT, class LoopT>
507 void PopulateLoopsDFS<BlockT, LoopT>::traverse(BlockT *EntryBlock) {
508 for (BlockT *BB : post_order(EntryBlock))
509 insertIntoLoop(BB);
512 /// Add a single Block to its ancestor loops in PostOrder. If the block is a
513 /// subloop header, add the subloop to its parent in PostOrder, then reverse the
514 /// Block and Subloop vectors of the now complete subloop to achieve RPO.
515 template <class BlockT, class LoopT>
516 void PopulateLoopsDFS<BlockT, LoopT>::insertIntoLoop(BlockT *Block) {
517 LoopT *Subloop = LI->getLoopFor(Block);
518 if (Subloop && Block == Subloop->getHeader()) {
519 // We reach this point once per subloop after processing all the blocks in
520 // the subloop.
521 if (Subloop->getParentLoop())
522 Subloop->getParentLoop()->getSubLoopsVector().push_back(Subloop);
523 else
524 LI->addTopLevelLoop(Subloop);
526 // For convenience, Blocks and Subloops are inserted in postorder. Reverse
527 // the lists, except for the loop header, which is always at the beginning.
528 Subloop->reverseBlock(1);
529 std::reverse(Subloop->getSubLoopsVector().begin(),
530 Subloop->getSubLoopsVector().end());
532 Subloop = Subloop->getParentLoop();
534 for (; Subloop; Subloop = Subloop->getParentLoop())
535 Subloop->addBlockEntry(Block);
538 /// Analyze LoopInfo discovers loops during a postorder DominatorTree traversal
539 /// interleaved with backward CFG traversals within each subloop
540 /// (discoverAndMapSubloop). The backward traversal skips inner subloops, so
541 /// this part of the algorithm is linear in the number of CFG edges. Subloop and
542 /// Block vectors are then populated during a single forward CFG traversal
543 /// (PopulateLoopDFS).
545 /// During the two CFG traversals each block is seen three times:
546 /// 1) Discovered and mapped by a reverse CFG traversal.
547 /// 2) Visited during a forward DFS CFG traversal.
548 /// 3) Reverse-inserted in the loop in postorder following forward DFS.
550 /// The Block vectors are inclusive, so step 3 requires loop-depth number of
551 /// insertions per block.
552 template <class BlockT, class LoopT>
553 void LoopInfoBase<BlockT, LoopT>::analyze(const DomTreeBase<BlockT> &DomTree) {
554 // Postorder traversal of the dominator tree.
555 const DomTreeNodeBase<BlockT> *DomRoot = DomTree.getRootNode();
556 for (auto DomNode : post_order(DomRoot)) {
558 BlockT *Header = DomNode->getBlock();
559 SmallVector<BlockT *, 4> Backedges;
561 // Check each predecessor of the potential loop header.
562 for (const auto Backedge : children<Inverse<BlockT *>>(Header)) {
563 // If Header dominates predBB, this is a new loop. Collect the backedges.
564 if (DomTree.dominates(Header, Backedge) &&
565 DomTree.isReachableFromEntry(Backedge)) {
566 Backedges.push_back(Backedge);
569 // Perform a backward CFG traversal to discover and map blocks in this loop.
570 if (!Backedges.empty()) {
571 LoopT *L = AllocateLoop(Header);
572 discoverAndMapSubloop(L, ArrayRef<BlockT *>(Backedges), this, DomTree);
575 // Perform a single forward CFG traversal to populate block and subloop
576 // vectors for all loops.
577 PopulateLoopsDFS<BlockT, LoopT> DFS(this);
578 DFS.traverse(DomRoot->getBlock());
581 template <class BlockT, class LoopT>
582 SmallVector<LoopT *, 4> LoopInfoBase<BlockT, LoopT>::getLoopsInPreorder() {
583 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
584 // The outer-most loop actually goes into the result in the same relative
585 // order as we walk it. But LoopInfo stores the top level loops in reverse
586 // program order so for here we reverse it to get forward program order.
587 // FIXME: If we change the order of LoopInfo we will want to remove the
588 // reverse here.
589 for (LoopT *RootL : reverse(*this)) {
590 assert(PreOrderWorklist.empty() &&
591 "Must start with an empty preorder walk worklist.");
592 PreOrderWorklist.push_back(RootL);
593 do {
594 LoopT *L = PreOrderWorklist.pop_back_val();
595 // Sub-loops are stored in forward program order, but will process the
596 // worklist backwards so append them in reverse order.
597 PreOrderWorklist.append(L->rbegin(), L->rend());
598 PreOrderLoops.push_back(L);
599 } while (!PreOrderWorklist.empty());
602 return PreOrderLoops;
605 template <class BlockT, class LoopT>
606 SmallVector<LoopT *, 4>
607 LoopInfoBase<BlockT, LoopT>::getLoopsInReverseSiblingPreorder() {
608 SmallVector<LoopT *, 4> PreOrderLoops, PreOrderWorklist;
609 // The outer-most loop actually goes into the result in the same relative
610 // order as we walk it. LoopInfo stores the top level loops in reverse
611 // program order so we walk in order here.
612 // FIXME: If we change the order of LoopInfo we will want to add a reverse
613 // here.
614 for (LoopT *RootL : *this) {
615 assert(PreOrderWorklist.empty() &&
616 "Must start with an empty preorder walk worklist.");
617 PreOrderWorklist.push_back(RootL);
618 do {
619 LoopT *L = PreOrderWorklist.pop_back_val();
620 // Sub-loops are stored in forward program order, but will process the
621 // worklist backwards so we can just append them in order.
622 PreOrderWorklist.append(L->begin(), L->end());
623 PreOrderLoops.push_back(L);
624 } while (!PreOrderWorklist.empty());
627 return PreOrderLoops;
630 // Debugging
631 template <class BlockT, class LoopT>
632 void LoopInfoBase<BlockT, LoopT>::print(raw_ostream &OS) const {
633 for (unsigned i = 0; i < TopLevelLoops.size(); ++i)
634 TopLevelLoops[i]->print(OS);
635 #if 0
636 for (DenseMap<BasicBlock*, LoopT*>::const_iterator I = BBMap.begin(),
637 E = BBMap.end(); I != E; ++I)
638 OS << "BB '" << I->first->getName() << "' level = "
639 << I->second->getLoopDepth() << "\n";
640 #endif
643 template <typename T>
644 bool compareVectors(std::vector<T> &BB1, std::vector<T> &BB2) {
645 llvm::sort(BB1);
646 llvm::sort(BB2);
647 return BB1 == BB2;
650 template <class BlockT, class LoopT>
651 void addInnerLoopsToHeadersMap(DenseMap<BlockT *, const LoopT *> &LoopHeaders,
652 const LoopInfoBase<BlockT, LoopT> &LI,
653 const LoopT &L) {
654 LoopHeaders[L.getHeader()] = &L;
655 for (LoopT *SL : L)
656 addInnerLoopsToHeadersMap(LoopHeaders, LI, *SL);
659 #ifndef NDEBUG
660 template <class BlockT, class LoopT>
661 static void compareLoops(const LoopT *L, const LoopT *OtherL,
662 DenseMap<BlockT *, const LoopT *> &OtherLoopHeaders) {
663 BlockT *H = L->getHeader();
664 BlockT *OtherH = OtherL->getHeader();
665 assert(H == OtherH &&
666 "Mismatched headers even though found in the same map entry!");
668 assert(L->getLoopDepth() == OtherL->getLoopDepth() &&
669 "Mismatched loop depth!");
670 const LoopT *ParentL = L, *OtherParentL = OtherL;
671 do {
672 assert(ParentL->getHeader() == OtherParentL->getHeader() &&
673 "Mismatched parent loop headers!");
674 ParentL = ParentL->getParentLoop();
675 OtherParentL = OtherParentL->getParentLoop();
676 } while (ParentL);
678 for (const LoopT *SubL : *L) {
679 BlockT *SubH = SubL->getHeader();
680 const LoopT *OtherSubL = OtherLoopHeaders.lookup(SubH);
681 assert(OtherSubL && "Inner loop is missing in computed loop info!");
682 OtherLoopHeaders.erase(SubH);
683 compareLoops(SubL, OtherSubL, OtherLoopHeaders);
686 std::vector<BlockT *> BBs = L->getBlocks();
687 std::vector<BlockT *> OtherBBs = OtherL->getBlocks();
688 assert(compareVectors(BBs, OtherBBs) &&
689 "Mismatched basic blocks in the loops!");
691 const SmallPtrSetImpl<const BlockT *> &BlocksSet = L->getBlocksSet();
692 const SmallPtrSetImpl<const BlockT *> &OtherBlocksSet = L->getBlocksSet();
693 assert(BlocksSet.size() == OtherBlocksSet.size() &&
694 std::all_of(BlocksSet.begin(), BlocksSet.end(),
695 [&OtherBlocksSet](const BlockT *BB) {
696 return OtherBlocksSet.count(BB);
697 }) &&
698 "Mismatched basic blocks in BlocksSets!");
700 #endif
702 template <class BlockT, class LoopT>
703 void LoopInfoBase<BlockT, LoopT>::verify(
704 const DomTreeBase<BlockT> &DomTree) const {
705 DenseSet<const LoopT *> Loops;
706 for (iterator I = begin(), E = end(); I != E; ++I) {
707 assert(!(*I)->getParentLoop() && "Top-level loop has a parent!");
708 (*I)->verifyLoopNest(&Loops);
711 // Verify that blocks are mapped to valid loops.
712 #ifndef NDEBUG
713 for (auto &Entry : BBMap) {
714 const BlockT *BB = Entry.first;
715 LoopT *L = Entry.second;
716 assert(Loops.count(L) && "orphaned loop");
717 assert(L->contains(BB) && "orphaned block");
718 for (LoopT *ChildLoop : *L)
719 assert(!ChildLoop->contains(BB) &&
720 "BBMap should point to the innermost loop containing BB");
723 // Recompute LoopInfo to verify loops structure.
724 LoopInfoBase<BlockT, LoopT> OtherLI;
725 OtherLI.analyze(DomTree);
727 // Build a map we can use to move from our LI to the computed one. This
728 // allows us to ignore the particular order in any layer of the loop forest
729 // while still comparing the structure.
730 DenseMap<BlockT *, const LoopT *> OtherLoopHeaders;
731 for (LoopT *L : OtherLI)
732 addInnerLoopsToHeadersMap(OtherLoopHeaders, OtherLI, *L);
734 // Walk the top level loops and ensure there is a corresponding top-level
735 // loop in the computed version and then recursively compare those loop
736 // nests.
737 for (LoopT *L : *this) {
738 BlockT *Header = L->getHeader();
739 const LoopT *OtherL = OtherLoopHeaders.lookup(Header);
740 assert(OtherL && "Top level loop is missing in computed loop info!");
741 // Now that we've matched this loop, erase its header from the map.
742 OtherLoopHeaders.erase(Header);
743 // And recursively compare these loops.
744 compareLoops(L, OtherL, OtherLoopHeaders);
747 // Any remaining entries in the map are loops which were found when computing
748 // a fresh LoopInfo but not present in the current one.
749 if (!OtherLoopHeaders.empty()) {
750 for (const auto &HeaderAndLoop : OtherLoopHeaders)
751 dbgs() << "Found new loop: " << *HeaderAndLoop.second << "\n";
752 llvm_unreachable("Found new loops when recomputing LoopInfo!");
754 #endif
757 } // End llvm namespace
759 #endif