Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / Analysis / RegionInfo.h
blob8bcc3e8512003467beed17e9307520e91bdb929f
1 //===- RegionInfo.h - SESE region analysis ----------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Calculate a program structure tree built out of single entry single exit
10 // regions.
11 // The basic ideas are taken from "The Program Structure Tree - Richard Johnson,
12 // David Pearson, Keshav Pingali - 1994", however enriched with ideas from "The
13 // Refined Process Structure Tree - Jussi Vanhatalo, Hagen Voelyer, Jana
14 // Koehler - 2009".
15 // The algorithm to calculate these data structures however is completely
16 // different, as it takes advantage of existing information already available
17 // in (Post)dominace tree and dominance frontier passes. This leads to a simpler
18 // and in practice hopefully better performing algorithm. The runtime of the
19 // algorithms described in the papers above are both linear in graph size,
20 // O(V+E), whereas this algorithm is not, as the dominance frontier information
21 // itself is not, but in practice runtime seems to be in the order of magnitude
22 // of dominance tree calculation.
24 // WARNING: LLVM is generally very concerned about compile time such that
25 // the use of additional analysis passes in the default
26 // optimization sequence is avoided as much as possible.
27 // Specifically, if you do not need the RegionInfo, but dominance
28 // information could be sufficient please base your work only on
29 // the dominator tree. Most passes maintain it, such that using
30 // it has often near zero cost. In contrast RegionInfo is by
31 // default not available, is not maintained by existing
32 // transformations and there is no intention to do so.
34 //===----------------------------------------------------------------------===//
36 #ifndef LLVM_ANALYSIS_REGIONINFO_H
37 #define LLVM_ANALYSIS_REGIONINFO_H
39 #include "llvm/ADT/DenseMap.h"
40 #include "llvm/ADT/DepthFirstIterator.h"
41 #include "llvm/ADT/GraphTraits.h"
42 #include "llvm/ADT/PointerIntPair.h"
43 #include "llvm/ADT/iterator_range.h"
44 #include "llvm/Config/llvm-config.h"
45 #include "llvm/IR/BasicBlock.h"
46 #include "llvm/IR/Dominators.h"
47 #include "llvm/IR/PassManager.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <map>
53 #include <memory>
54 #include <set>
55 #include <string>
56 #include <type_traits>
57 #include <vector>
59 namespace llvm {
61 class DominanceFrontier;
62 class DominatorTree;
63 class Loop;
64 class LoopInfo;
65 class PostDominatorTree;
66 class Region;
67 template <class RegionTr> class RegionBase;
68 class RegionInfo;
69 template <class RegionTr> class RegionInfoBase;
70 class RegionNode;
72 // Class to be specialized for different users of RegionInfo
73 // (i.e. BasicBlocks or MachineBasicBlocks). This is only to avoid needing to
74 // pass around an unreasonable number of template parameters.
75 template <class FuncT_>
76 struct RegionTraits {
77 // FuncT
78 // BlockT
79 // RegionT
80 // RegionNodeT
81 // RegionInfoT
82 using BrokenT = typename FuncT_::UnknownRegionTypeError;
85 template <>
86 struct RegionTraits<Function> {
87 using FuncT = Function;
88 using BlockT = BasicBlock;
89 using RegionT = Region;
90 using RegionNodeT = RegionNode;
91 using RegionInfoT = RegionInfo;
92 using DomTreeT = DominatorTree;
93 using DomTreeNodeT = DomTreeNode;
94 using DomFrontierT = DominanceFrontier;
95 using PostDomTreeT = PostDominatorTree;
96 using InstT = Instruction;
97 using LoopT = Loop;
98 using LoopInfoT = LoopInfo;
100 static unsigned getNumSuccessors(BasicBlock *BB) {
101 return BB->getTerminator()->getNumSuccessors();
105 /// Marker class to iterate over the elements of a Region in flat mode.
107 /// The class is used to either iterate in Flat mode or by not using it to not
108 /// iterate in Flat mode. During a Flat mode iteration all Regions are entered
109 /// and the iteration returns every BasicBlock. If the Flat mode is not
110 /// selected for SubRegions just one RegionNode containing the subregion is
111 /// returned.
112 template <class GraphType>
113 class FlatIt {};
115 /// A RegionNode represents a subregion or a BasicBlock that is part of a
116 /// Region.
117 template <class Tr>
118 class RegionNodeBase {
119 friend class RegionBase<Tr>;
121 public:
122 using BlockT = typename Tr::BlockT;
123 using RegionT = typename Tr::RegionT;
125 private:
126 /// This is the entry basic block that starts this region node. If this is a
127 /// BasicBlock RegionNode, then entry is just the basic block, that this
128 /// RegionNode represents. Otherwise it is the entry of this (Sub)RegionNode.
130 /// In the BBtoRegionNode map of the parent of this node, BB will always map
131 /// to this node no matter which kind of node this one is.
133 /// The node can hold either a Region or a BasicBlock.
134 /// Use one bit to save, if this RegionNode is a subregion or BasicBlock
135 /// RegionNode.
136 PointerIntPair<BlockT *, 1, bool> entry;
138 /// The parent Region of this RegionNode.
139 /// @see getParent()
140 RegionT *parent;
142 protected:
143 /// Create a RegionNode.
145 /// @param Parent The parent of this RegionNode.
146 /// @param Entry The entry BasicBlock of the RegionNode. If this
147 /// RegionNode represents a BasicBlock, this is the
148 /// BasicBlock itself. If it represents a subregion, this
149 /// is the entry BasicBlock of the subregion.
150 /// @param isSubRegion If this RegionNode represents a SubRegion.
151 inline RegionNodeBase(RegionT *Parent, BlockT *Entry,
152 bool isSubRegion = false)
153 : entry(Entry, isSubRegion), parent(Parent) {}
155 public:
156 RegionNodeBase(const RegionNodeBase &) = delete;
157 RegionNodeBase &operator=(const RegionNodeBase &) = delete;
159 /// Get the parent Region of this RegionNode.
161 /// The parent Region is the Region this RegionNode belongs to. If for
162 /// example a BasicBlock is element of two Regions, there exist two
163 /// RegionNodes for this BasicBlock. Each with the getParent() function
164 /// pointing to the Region this RegionNode belongs to.
166 /// @return Get the parent Region of this RegionNode.
167 inline RegionT *getParent() const { return parent; }
169 /// Get the entry BasicBlock of this RegionNode.
171 /// If this RegionNode represents a BasicBlock this is just the BasicBlock
172 /// itself, otherwise we return the entry BasicBlock of the Subregion
174 /// @return The entry BasicBlock of this RegionNode.
175 inline BlockT *getEntry() const { return entry.getPointer(); }
177 /// Get the content of this RegionNode.
179 /// This can be either a BasicBlock or a subregion. Before calling getNodeAs()
180 /// check the type of the content with the isSubRegion() function call.
182 /// @return The content of this RegionNode.
183 template <class T> inline T *getNodeAs() const;
185 /// Is this RegionNode a subregion?
187 /// @return True if it contains a subregion. False if it contains a
188 /// BasicBlock.
189 inline bool isSubRegion() const { return entry.getInt(); }
192 //===----------------------------------------------------------------------===//
193 /// A single entry single exit Region.
195 /// A Region is a connected subgraph of a control flow graph that has exactly
196 /// two connections to the remaining graph. It can be used to analyze or
197 /// optimize parts of the control flow graph.
199 /// A <em> simple Region </em> is connected to the remaining graph by just two
200 /// edges. One edge entering the Region and another one leaving the Region.
202 /// An <em> extended Region </em> (or just Region) is a subgraph that can be
203 /// transform into a simple Region. The transformation is done by adding
204 /// BasicBlocks that merge several entry or exit edges so that after the merge
205 /// just one entry and one exit edge exists.
207 /// The \e Entry of a Region is the first BasicBlock that is passed after
208 /// entering the Region. It is an element of the Region. The entry BasicBlock
209 /// dominates all BasicBlocks in the Region.
211 /// The \e Exit of a Region is the first BasicBlock that is passed after
212 /// leaving the Region. It is not an element of the Region. The exit BasicBlock,
213 /// postdominates all BasicBlocks in the Region.
215 /// A <em> canonical Region </em> cannot be constructed by combining smaller
216 /// Regions.
218 /// Region A is the \e parent of Region B, if B is completely contained in A.
220 /// Two canonical Regions either do not intersect at all or one is
221 /// the parent of the other.
223 /// The <em> Program Structure Tree</em> is a graph (V, E) where V is the set of
224 /// Regions in the control flow graph and E is the \e parent relation of these
225 /// Regions.
227 /// Example:
229 /// \verbatim
230 /// A simple control flow graph, that contains two regions.
232 /// 1
233 /// / |
234 /// 2 |
235 /// / \ 3
236 /// 4 5 |
237 /// | | |
238 /// 6 7 8
239 /// \ | /
240 /// \ |/ Region A: 1 -> 9 {1,2,3,4,5,6,7,8}
241 /// 9 Region B: 2 -> 9 {2,4,5,6,7}
242 /// \endverbatim
244 /// You can obtain more examples by either calling
246 /// <tt> "opt -regions -analyze anyprogram.ll" </tt>
247 /// or
248 /// <tt> "opt -view-regions-only anyprogram.ll" </tt>
250 /// on any LLVM file you are interested in.
252 /// The first call returns a textual representation of the program structure
253 /// tree, the second one creates a graphical representation using graphviz.
254 template <class Tr>
255 class RegionBase : public RegionNodeBase<Tr> {
256 friend class RegionInfoBase<Tr>;
258 using FuncT = typename Tr::FuncT;
259 using BlockT = typename Tr::BlockT;
260 using RegionInfoT = typename Tr::RegionInfoT;
261 using RegionT = typename Tr::RegionT;
262 using RegionNodeT = typename Tr::RegionNodeT;
263 using DomTreeT = typename Tr::DomTreeT;
264 using LoopT = typename Tr::LoopT;
265 using LoopInfoT = typename Tr::LoopInfoT;
266 using InstT = typename Tr::InstT;
268 using BlockTraits = GraphTraits<BlockT *>;
269 using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
270 using SuccIterTy = typename BlockTraits::ChildIteratorType;
271 using PredIterTy = typename InvBlockTraits::ChildIteratorType;
273 // Information necessary to manage this Region.
274 RegionInfoT *RI;
275 DomTreeT *DT;
277 // The exit BasicBlock of this region.
278 // (The entry BasicBlock is part of RegionNode)
279 BlockT *exit;
281 using RegionSet = std::vector<std::unique_ptr<RegionT>>;
283 // The subregions of this region.
284 RegionSet children;
286 using BBNodeMapT = std::map<BlockT *, std::unique_ptr<RegionNodeT>>;
288 // Save the BasicBlock RegionNodes that are element of this Region.
289 mutable BBNodeMapT BBNodeMap;
291 /// Check if a BB is in this Region. This check also works
292 /// if the region is incorrectly built. (EXPENSIVE!)
293 void verifyBBInRegion(BlockT *BB) const;
295 /// Walk over all the BBs of the region starting from BB and
296 /// verify that all reachable basic blocks are elements of the region.
297 /// (EXPENSIVE!)
298 void verifyWalk(BlockT *BB, std::set<BlockT *> *visitedBB) const;
300 /// Verify if the region and its children are valid regions (EXPENSIVE!)
301 void verifyRegionNest() const;
303 public:
304 /// Create a new region.
306 /// @param Entry The entry basic block of the region.
307 /// @param Exit The exit basic block of the region.
308 /// @param RI The region info object that is managing this region.
309 /// @param DT The dominator tree of the current function.
310 /// @param Parent The surrounding region or NULL if this is a top level
311 /// region.
312 RegionBase(BlockT *Entry, BlockT *Exit, RegionInfoT *RI, DomTreeT *DT,
313 RegionT *Parent = nullptr);
315 RegionBase(const RegionBase &) = delete;
316 RegionBase &operator=(const RegionBase &) = delete;
318 /// Delete the Region and all its subregions.
319 ~RegionBase();
321 /// Get the entry BasicBlock of the Region.
322 /// @return The entry BasicBlock of the region.
323 BlockT *getEntry() const {
324 return RegionNodeBase<Tr>::getEntry();
327 /// Replace the entry basic block of the region with the new basic
328 /// block.
330 /// @param BB The new entry basic block of the region.
331 void replaceEntry(BlockT *BB);
333 /// Replace the exit basic block of the region with the new basic
334 /// block.
336 /// @param BB The new exit basic block of the region.
337 void replaceExit(BlockT *BB);
339 /// Recursively replace the entry basic block of the region.
341 /// This function replaces the entry basic block with a new basic block. It
342 /// also updates all child regions that have the same entry basic block as
343 /// this region.
345 /// @param NewEntry The new entry basic block.
346 void replaceEntryRecursive(BlockT *NewEntry);
348 /// Recursively replace the exit basic block of the region.
350 /// This function replaces the exit basic block with a new basic block. It
351 /// also updates all child regions that have the same exit basic block as
352 /// this region.
354 /// @param NewExit The new exit basic block.
355 void replaceExitRecursive(BlockT *NewExit);
357 /// Get the exit BasicBlock of the Region.
358 /// @return The exit BasicBlock of the Region, NULL if this is the TopLevel
359 /// Region.
360 BlockT *getExit() const { return exit; }
362 /// Get the parent of the Region.
363 /// @return The parent of the Region or NULL if this is a top level
364 /// Region.
365 RegionT *getParent() const {
366 return RegionNodeBase<Tr>::getParent();
369 /// Get the RegionNode representing the current Region.
370 /// @return The RegionNode representing the current Region.
371 RegionNodeT *getNode() const {
372 return const_cast<RegionNodeT *>(
373 reinterpret_cast<const RegionNodeT *>(this));
376 /// Get the nesting level of this Region.
378 /// An toplevel Region has depth 0.
380 /// @return The depth of the region.
381 unsigned getDepth() const;
383 /// Check if a Region is the TopLevel region.
385 /// The toplevel region represents the whole function.
386 bool isTopLevelRegion() const { return exit == nullptr; }
388 /// Return a new (non-canonical) region, that is obtained by joining
389 /// this region with its predecessors.
391 /// @return A region also starting at getEntry(), but reaching to the next
392 /// basic block that forms with getEntry() a (non-canonical) region.
393 /// NULL if such a basic block does not exist.
394 RegionT *getExpandedRegion() const;
396 /// Return the first block of this region's single entry edge,
397 /// if existing.
399 /// @return The BasicBlock starting this region's single entry edge,
400 /// else NULL.
401 BlockT *getEnteringBlock() const;
403 /// Return the first block of this region's single exit edge,
404 /// if existing.
406 /// @return The BasicBlock starting this region's single exit edge,
407 /// else NULL.
408 BlockT *getExitingBlock() const;
410 /// Collect all blocks of this region's single exit edge, if existing.
412 /// @return True if this region contains all the predecessors of the exit.
413 bool getExitingBlocks(SmallVectorImpl<BlockT *> &Exitings) const;
415 /// Is this a simple region?
417 /// A region is simple if it has exactly one exit and one entry edge.
419 /// @return True if the Region is simple.
420 bool isSimple() const;
422 /// Returns the name of the Region.
423 /// @return The Name of the Region.
424 std::string getNameStr() const;
426 /// Return the RegionInfo object, that belongs to this Region.
427 RegionInfoT *getRegionInfo() const { return RI; }
429 /// PrintStyle - Print region in difference ways.
430 enum PrintStyle { PrintNone, PrintBB, PrintRN };
432 /// Print the region.
434 /// @param OS The output stream the Region is printed to.
435 /// @param printTree Print also the tree of subregions.
436 /// @param level The indentation level used for printing.
437 void print(raw_ostream &OS, bool printTree = true, unsigned level = 0,
438 PrintStyle Style = PrintNone) const;
440 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
441 /// Print the region to stderr.
442 void dump() const;
443 #endif
445 /// Check if the region contains a BasicBlock.
447 /// @param BB The BasicBlock that might be contained in this Region.
448 /// @return True if the block is contained in the region otherwise false.
449 bool contains(const BlockT *BB) const;
451 /// Check if the region contains another region.
453 /// @param SubRegion The region that might be contained in this Region.
454 /// @return True if SubRegion is contained in the region otherwise false.
455 bool contains(const RegionT *SubRegion) const {
456 // Toplevel Region.
457 if (!getExit())
458 return true;
460 return contains(SubRegion->getEntry()) &&
461 (contains(SubRegion->getExit()) ||
462 SubRegion->getExit() == getExit());
465 /// Check if the region contains an Instruction.
467 /// @param Inst The Instruction that might be contained in this region.
468 /// @return True if the Instruction is contained in the region otherwise
469 /// false.
470 bool contains(const InstT *Inst) const { return contains(Inst->getParent()); }
472 /// Check if the region contains a loop.
474 /// @param L The loop that might be contained in this region.
475 /// @return True if the loop is contained in the region otherwise false.
476 /// In case a NULL pointer is passed to this function the result
477 /// is false, except for the region that describes the whole function.
478 /// In that case true is returned.
479 bool contains(const LoopT *L) const;
481 /// Get the outermost loop in the region that contains a loop.
483 /// Find for a Loop L the outermost loop OuterL that is a parent loop of L
484 /// and is itself contained in the region.
486 /// @param L The loop the lookup is started.
487 /// @return The outermost loop in the region, NULL if such a loop does not
488 /// exist or if the region describes the whole function.
489 LoopT *outermostLoopInRegion(LoopT *L) const;
491 /// Get the outermost loop in the region that contains a basic block.
493 /// Find for a basic block BB the outermost loop L that contains BB and is
494 /// itself contained in the region.
496 /// @param LI A pointer to a LoopInfo analysis.
497 /// @param BB The basic block surrounded by the loop.
498 /// @return The outermost loop in the region, NULL if such a loop does not
499 /// exist or if the region describes the whole function.
500 LoopT *outermostLoopInRegion(LoopInfoT *LI, BlockT *BB) const;
502 /// Get the subregion that starts at a BasicBlock
504 /// @param BB The BasicBlock the subregion should start.
505 /// @return The Subregion if available, otherwise NULL.
506 RegionT *getSubRegionNode(BlockT *BB) const;
508 /// Get the RegionNode for a BasicBlock
510 /// @param BB The BasicBlock at which the RegionNode should start.
511 /// @return If available, the RegionNode that represents the subregion
512 /// starting at BB. If no subregion starts at BB, the RegionNode
513 /// representing BB.
514 RegionNodeT *getNode(BlockT *BB) const;
516 /// Get the BasicBlock RegionNode for a BasicBlock
518 /// @param BB The BasicBlock for which the RegionNode is requested.
519 /// @return The RegionNode representing the BB.
520 RegionNodeT *getBBNode(BlockT *BB) const;
522 /// Add a new subregion to this Region.
524 /// @param SubRegion The new subregion that will be added.
525 /// @param moveChildren Move the children of this region, that are also
526 /// contained in SubRegion into SubRegion.
527 void addSubRegion(RegionT *SubRegion, bool moveChildren = false);
529 /// Remove a subregion from this Region.
531 /// The subregion is not deleted, as it will probably be inserted into another
532 /// region.
533 /// @param SubRegion The SubRegion that will be removed.
534 RegionT *removeSubRegion(RegionT *SubRegion);
536 /// Move all direct child nodes of this Region to another Region.
538 /// @param To The Region the child nodes will be transferred to.
539 void transferChildrenTo(RegionT *To);
541 /// Verify if the region is a correct region.
543 /// Check if this is a correctly build Region. This is an expensive check, as
544 /// the complete CFG of the Region will be walked.
545 void verifyRegion() const;
547 /// Clear the cache for BB RegionNodes.
549 /// After calling this function the BasicBlock RegionNodes will be stored at
550 /// different memory locations. RegionNodes obtained before this function is
551 /// called are therefore not comparable to RegionNodes abtained afterwords.
552 void clearNodeCache();
554 /// @name Subregion Iterators
556 /// These iterators iterator over all subregions of this Region.
557 //@{
558 using iterator = typename RegionSet::iterator;
559 using const_iterator = typename RegionSet::const_iterator;
561 iterator begin() { return children.begin(); }
562 iterator end() { return children.end(); }
564 const_iterator begin() const { return children.begin(); }
565 const_iterator end() const { return children.end(); }
566 //@}
568 /// @name BasicBlock Iterators
570 /// These iterators iterate over all BasicBlocks that are contained in this
571 /// Region. The iterator also iterates over BasicBlocks that are elements of
572 /// a subregion of this Region. It is therefore called a flat iterator.
573 //@{
574 template <bool IsConst>
575 class block_iterator_wrapper
576 : public df_iterator<
577 typename std::conditional<IsConst, const BlockT, BlockT>::type *> {
578 using super =
579 df_iterator<
580 typename std::conditional<IsConst, const BlockT, BlockT>::type *>;
582 public:
583 using Self = block_iterator_wrapper<IsConst>;
584 using value_type = typename super::value_type;
586 // Construct the begin iterator.
587 block_iterator_wrapper(value_type Entry, value_type Exit)
588 : super(df_begin(Entry)) {
589 // Mark the exit of the region as visited, so that the children of the
590 // exit and the exit itself, i.e. the block outside the region will never
591 // be visited.
592 super::Visited.insert(Exit);
595 // Construct the end iterator.
596 block_iterator_wrapper() : super(df_end<value_type>((BlockT *)nullptr)) {}
598 /*implicit*/ block_iterator_wrapper(super I) : super(I) {}
600 // FIXME: Even a const_iterator returns a non-const BasicBlock pointer.
601 // This was introduced for backwards compatibility, but should
602 // be removed as soon as all users are fixed.
603 BlockT *operator*() const {
604 return const_cast<BlockT *>(super::operator*());
608 using block_iterator = block_iterator_wrapper<false>;
609 using const_block_iterator = block_iterator_wrapper<true>;
611 block_iterator block_begin() { return block_iterator(getEntry(), getExit()); }
613 block_iterator block_end() { return block_iterator(); }
615 const_block_iterator block_begin() const {
616 return const_block_iterator(getEntry(), getExit());
618 const_block_iterator block_end() const { return const_block_iterator(); }
620 using block_range = iterator_range<block_iterator>;
621 using const_block_range = iterator_range<const_block_iterator>;
623 /// Returns a range view of the basic blocks in the region.
624 inline block_range blocks() {
625 return block_range(block_begin(), block_end());
628 /// Returns a range view of the basic blocks in the region.
630 /// This is the 'const' version of the range view.
631 inline const_block_range blocks() const {
632 return const_block_range(block_begin(), block_end());
634 //@}
636 /// @name Element Iterators
638 /// These iterators iterate over all BasicBlock and subregion RegionNodes that
639 /// are direct children of this Region. It does not iterate over any
640 /// RegionNodes that are also element of a subregion of this Region.
641 //@{
642 using element_iterator =
643 df_iterator<RegionNodeT *, df_iterator_default_set<RegionNodeT *>, false,
644 GraphTraits<RegionNodeT *>>;
646 using const_element_iterator =
647 df_iterator<const RegionNodeT *,
648 df_iterator_default_set<const RegionNodeT *>, false,
649 GraphTraits<const RegionNodeT *>>;
651 element_iterator element_begin();
652 element_iterator element_end();
653 iterator_range<element_iterator> elements() {
654 return make_range(element_begin(), element_end());
657 const_element_iterator element_begin() const;
658 const_element_iterator element_end() const;
659 iterator_range<const_element_iterator> elements() const {
660 return make_range(element_begin(), element_end());
662 //@}
665 /// Print a RegionNode.
666 template <class Tr>
667 inline raw_ostream &operator<<(raw_ostream &OS, const RegionNodeBase<Tr> &Node);
669 //===----------------------------------------------------------------------===//
670 /// Analysis that detects all canonical Regions.
672 /// The RegionInfo pass detects all canonical regions in a function. The Regions
673 /// are connected using the parent relation. This builds a Program Structure
674 /// Tree.
675 template <class Tr>
676 class RegionInfoBase {
677 friend class RegionInfo;
678 friend class MachineRegionInfo;
680 using BlockT = typename Tr::BlockT;
681 using FuncT = typename Tr::FuncT;
682 using RegionT = typename Tr::RegionT;
683 using RegionInfoT = typename Tr::RegionInfoT;
684 using DomTreeT = typename Tr::DomTreeT;
685 using DomTreeNodeT = typename Tr::DomTreeNodeT;
686 using PostDomTreeT = typename Tr::PostDomTreeT;
687 using DomFrontierT = typename Tr::DomFrontierT;
688 using BlockTraits = GraphTraits<BlockT *>;
689 using InvBlockTraits = GraphTraits<Inverse<BlockT *>>;
690 using SuccIterTy = typename BlockTraits::ChildIteratorType;
691 using PredIterTy = typename InvBlockTraits::ChildIteratorType;
693 using BBtoBBMap = DenseMap<BlockT *, BlockT *>;
694 using BBtoRegionMap = DenseMap<BlockT *, RegionT *>;
696 RegionInfoBase();
698 RegionInfoBase(RegionInfoBase &&Arg)
699 : DT(std::move(Arg.DT)), PDT(std::move(Arg.PDT)), DF(std::move(Arg.DF)),
700 TopLevelRegion(std::move(Arg.TopLevelRegion)),
701 BBtoRegion(std::move(Arg.BBtoRegion)) {
702 Arg.wipe();
705 RegionInfoBase &operator=(RegionInfoBase &&RHS) {
706 DT = std::move(RHS.DT);
707 PDT = std::move(RHS.PDT);
708 DF = std::move(RHS.DF);
709 TopLevelRegion = std::move(RHS.TopLevelRegion);
710 BBtoRegion = std::move(RHS.BBtoRegion);
711 RHS.wipe();
712 return *this;
715 virtual ~RegionInfoBase();
717 DomTreeT *DT;
718 PostDomTreeT *PDT;
719 DomFrontierT *DF;
721 /// The top level region.
722 RegionT *TopLevelRegion = nullptr;
724 /// Map every BB to the smallest region, that contains BB.
725 BBtoRegionMap BBtoRegion;
727 protected:
728 /// Update refences to a RegionInfoT held by the RegionT managed here
730 /// This is a post-move helper. Regions hold references to the owning
731 /// RegionInfo object. After a move these need to be fixed.
732 template<typename TheRegionT>
733 void updateRegionTree(RegionInfoT &RI, TheRegionT *R) {
734 if (!R)
735 return;
736 R->RI = &RI;
737 for (auto &SubR : *R)
738 updateRegionTree(RI, SubR.get());
741 private:
742 /// Wipe this region tree's state without releasing any resources.
744 /// This is essentially a post-move helper only. It leaves the object in an
745 /// assignable and destroyable state, but otherwise invalid.
746 void wipe() {
747 DT = nullptr;
748 PDT = nullptr;
749 DF = nullptr;
750 TopLevelRegion = nullptr;
751 BBtoRegion.clear();
754 // Check whether the entries of BBtoRegion for the BBs of region
755 // SR are correct. Triggers an assertion if not. Calls itself recursively for
756 // subregions.
757 void verifyBBMap(const RegionT *SR) const;
759 // Returns true if BB is in the dominance frontier of
760 // entry, because it was inherited from exit. In the other case there is an
761 // edge going from entry to BB without passing exit.
762 bool isCommonDomFrontier(BlockT *BB, BlockT *entry, BlockT *exit) const;
764 // Check if entry and exit surround a valid region, based on
765 // dominance tree and dominance frontier.
766 bool isRegion(BlockT *entry, BlockT *exit) const;
768 // Saves a shortcut pointing from entry to exit.
769 // This function may extend this shortcut if possible.
770 void insertShortCut(BlockT *entry, BlockT *exit, BBtoBBMap *ShortCut) const;
772 // Returns the next BB that postdominates N, while skipping
773 // all post dominators that cannot finish a canonical region.
774 DomTreeNodeT *getNextPostDom(DomTreeNodeT *N, BBtoBBMap *ShortCut) const;
776 // A region is trivial, if it contains only one BB.
777 bool isTrivialRegion(BlockT *entry, BlockT *exit) const;
779 // Creates a single entry single exit region.
780 RegionT *createRegion(BlockT *entry, BlockT *exit);
782 // Detect all regions starting with bb 'entry'.
783 void findRegionsWithEntry(BlockT *entry, BBtoBBMap *ShortCut);
785 // Detects regions in F.
786 void scanForRegions(FuncT &F, BBtoBBMap *ShortCut);
788 // Get the top most parent with the same entry block.
789 RegionT *getTopMostParent(RegionT *region);
791 // Build the region hierarchy after all region detected.
792 void buildRegionsTree(DomTreeNodeT *N, RegionT *region);
794 // Update statistic about created regions.
795 virtual void updateStatistics(RegionT *R) = 0;
797 // Detect all regions in function and build the region tree.
798 void calculate(FuncT &F);
800 public:
801 RegionInfoBase(const RegionInfoBase &) = delete;
802 RegionInfoBase &operator=(const RegionInfoBase &) = delete;
804 static bool VerifyRegionInfo;
805 static typename RegionT::PrintStyle printStyle;
807 void print(raw_ostream &OS) const;
808 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
809 void dump() const;
810 #endif
812 void releaseMemory();
814 /// Get the smallest region that contains a BasicBlock.
816 /// @param BB The basic block.
817 /// @return The smallest region, that contains BB or NULL, if there is no
818 /// region containing BB.
819 RegionT *getRegionFor(BlockT *BB) const;
821 /// Set the smallest region that surrounds a basic block.
823 /// @param BB The basic block surrounded by a region.
824 /// @param R The smallest region that surrounds BB.
825 void setRegionFor(BlockT *BB, RegionT *R);
827 /// A shortcut for getRegionFor().
829 /// @param BB The basic block.
830 /// @return The smallest region, that contains BB or NULL, if there is no
831 /// region containing BB.
832 RegionT *operator[](BlockT *BB) const;
834 /// Return the exit of the maximal refined region, that starts at a
835 /// BasicBlock.
837 /// @param BB The BasicBlock the refined region starts.
838 BlockT *getMaxRegionExit(BlockT *BB) const;
840 /// Find the smallest region that contains two regions.
842 /// @param A The first region.
843 /// @param B The second region.
844 /// @return The smallest region containing A and B.
845 RegionT *getCommonRegion(RegionT *A, RegionT *B) const;
847 /// Find the smallest region that contains two basic blocks.
849 /// @param A The first basic block.
850 /// @param B The second basic block.
851 /// @return The smallest region that contains A and B.
852 RegionT *getCommonRegion(BlockT *A, BlockT *B) const {
853 return getCommonRegion(getRegionFor(A), getRegionFor(B));
856 /// Find the smallest region that contains a set of regions.
858 /// @param Regions A vector of regions.
859 /// @return The smallest region that contains all regions in Regions.
860 RegionT *getCommonRegion(SmallVectorImpl<RegionT *> &Regions) const;
862 /// Find the smallest region that contains a set of basic blocks.
864 /// @param BBs A vector of basic blocks.
865 /// @return The smallest region that contains all basic blocks in BBS.
866 RegionT *getCommonRegion(SmallVectorImpl<BlockT *> &BBs) const;
868 RegionT *getTopLevelRegion() const { return TopLevelRegion; }
870 /// Clear the Node Cache for all Regions.
872 /// @see Region::clearNodeCache()
873 void clearNodeCache() {
874 if (TopLevelRegion)
875 TopLevelRegion->clearNodeCache();
878 void verifyAnalysis() const;
881 class Region;
883 class RegionNode : public RegionNodeBase<RegionTraits<Function>> {
884 public:
885 inline RegionNode(Region *Parent, BasicBlock *Entry, bool isSubRegion = false)
886 : RegionNodeBase<RegionTraits<Function>>(Parent, Entry, isSubRegion) {}
888 bool operator==(const Region &RN) const {
889 return this == reinterpret_cast<const RegionNode *>(&RN);
893 class Region : public RegionBase<RegionTraits<Function>> {
894 public:
895 Region(BasicBlock *Entry, BasicBlock *Exit, RegionInfo *RI, DominatorTree *DT,
896 Region *Parent = nullptr);
897 ~Region();
899 bool operator==(const RegionNode &RN) const {
900 return &RN == reinterpret_cast<const RegionNode *>(this);
904 class RegionInfo : public RegionInfoBase<RegionTraits<Function>> {
905 public:
906 using Base = RegionInfoBase<RegionTraits<Function>>;
908 explicit RegionInfo();
910 RegionInfo(RegionInfo &&Arg) : Base(std::move(static_cast<Base &>(Arg))) {
911 updateRegionTree(*this, TopLevelRegion);
914 RegionInfo &operator=(RegionInfo &&RHS) {
915 Base::operator=(std::move(static_cast<Base &>(RHS)));
916 updateRegionTree(*this, TopLevelRegion);
917 return *this;
920 ~RegionInfo() override;
922 /// Handle invalidation explicitly.
923 bool invalidate(Function &F, const PreservedAnalyses &PA,
924 FunctionAnalysisManager::Invalidator &);
926 // updateStatistics - Update statistic about created regions.
927 void updateStatistics(Region *R) final;
929 void recalculate(Function &F, DominatorTree *DT, PostDominatorTree *PDT,
930 DominanceFrontier *DF);
932 #ifndef NDEBUG
933 /// Opens a viewer to show the GraphViz visualization of the regions.
935 /// Useful during debugging as an alternative to dump().
936 void view();
938 /// Opens a viewer to show the GraphViz visualization of this region
939 /// without instructions in the BasicBlocks.
941 /// Useful during debugging as an alternative to dump().
942 void viewOnly();
943 #endif
946 class RegionInfoPass : public FunctionPass {
947 RegionInfo RI;
949 public:
950 static char ID;
952 explicit RegionInfoPass();
953 ~RegionInfoPass() override;
955 RegionInfo &getRegionInfo() { return RI; }
957 const RegionInfo &getRegionInfo() const { return RI; }
959 /// @name FunctionPass interface
960 //@{
961 bool runOnFunction(Function &F) override;
962 void releaseMemory() override;
963 void verifyAnalysis() const override;
964 void getAnalysisUsage(AnalysisUsage &AU) const override;
965 void print(raw_ostream &OS, const Module *) const override;
966 void dump() const;
967 //@}
970 /// Analysis pass that exposes the \c RegionInfo for a function.
971 class RegionInfoAnalysis : public AnalysisInfoMixin<RegionInfoAnalysis> {
972 friend AnalysisInfoMixin<RegionInfoAnalysis>;
974 static AnalysisKey Key;
976 public:
977 using Result = RegionInfo;
979 RegionInfo run(Function &F, FunctionAnalysisManager &AM);
982 /// Printer pass for the \c RegionInfo.
983 class RegionInfoPrinterPass : public PassInfoMixin<RegionInfoPrinterPass> {
984 raw_ostream &OS;
986 public:
987 explicit RegionInfoPrinterPass(raw_ostream &OS);
989 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
992 /// Verifier pass for the \c RegionInfo.
993 struct RegionInfoVerifierPass : PassInfoMixin<RegionInfoVerifierPass> {
994 PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
997 template <>
998 template <>
999 inline BasicBlock *
1000 RegionNodeBase<RegionTraits<Function>>::getNodeAs<BasicBlock>() const {
1001 assert(!isSubRegion() && "This is not a BasicBlock RegionNode!");
1002 return getEntry();
1005 template <>
1006 template <>
1007 inline Region *
1008 RegionNodeBase<RegionTraits<Function>>::getNodeAs<Region>() const {
1009 assert(isSubRegion() && "This is not a subregion RegionNode!");
1010 auto Unconst = const_cast<RegionNodeBase<RegionTraits<Function>> *>(this);
1011 return reinterpret_cast<Region *>(Unconst);
1014 template <class Tr>
1015 inline raw_ostream &operator<<(raw_ostream &OS,
1016 const RegionNodeBase<Tr> &Node) {
1017 using BlockT = typename Tr::BlockT;
1018 using RegionT = typename Tr::RegionT;
1020 if (Node.isSubRegion())
1021 return OS << Node.template getNodeAs<RegionT>()->getNameStr();
1022 else
1023 return OS << Node.template getNodeAs<BlockT>()->getName();
1026 extern template class RegionBase<RegionTraits<Function>>;
1027 extern template class RegionNodeBase<RegionTraits<Function>>;
1028 extern template class RegionInfoBase<RegionTraits<Function>>;
1030 } // end namespace llvm
1032 #endif // LLVM_ANALYSIS_REGIONINFO_H