Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / Analysis / ScalarEvolutionExpressions.h
blobe187a9621a14232c156a4f575a95d91e8481d281
1 //===- llvm/Analysis/ScalarEvolutionExpressions.h - SCEV Exprs --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines the classes used to represent and build scalar expressions.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
14 #define LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/FoldingSet.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/ScalarEvolution.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/Value.h"
24 #include "llvm/IR/ValueHandle.h"
25 #include "llvm/Support/Casting.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include <cassert>
28 #include <cstddef>
30 namespace llvm {
32 class APInt;
33 class Constant;
34 class ConstantRange;
35 class Loop;
36 class Type;
38 enum SCEVTypes {
39 // These should be ordered in terms of increasing complexity to make the
40 // folders simpler.
41 scConstant, scTruncate, scZeroExtend, scSignExtend, scAddExpr, scMulExpr,
42 scUDivExpr, scAddRecExpr, scUMaxExpr, scSMaxExpr,
43 scUnknown, scCouldNotCompute
46 /// This class represents a constant integer value.
47 class SCEVConstant : public SCEV {
48 friend class ScalarEvolution;
50 ConstantInt *V;
52 SCEVConstant(const FoldingSetNodeIDRef ID, ConstantInt *v) :
53 SCEV(ID, scConstant, 1), V(v) {}
55 public:
56 ConstantInt *getValue() const { return V; }
57 const APInt &getAPInt() const { return getValue()->getValue(); }
59 Type *getType() const { return V->getType(); }
61 /// Methods for support type inquiry through isa, cast, and dyn_cast:
62 static bool classof(const SCEV *S) {
63 return S->getSCEVType() == scConstant;
67 static unsigned short computeExpressionSize(ArrayRef<const SCEV *> Args) {
68 APInt Size(16, 1);
69 for (auto *Arg : Args)
70 Size = Size.uadd_sat(APInt(16, Arg->getExpressionSize()));
71 return (unsigned short)Size.getZExtValue();
74 /// This is the base class for unary cast operator classes.
75 class SCEVCastExpr : public SCEV {
76 protected:
77 const SCEV *Op;
78 Type *Ty;
80 SCEVCastExpr(const FoldingSetNodeIDRef ID,
81 unsigned SCEVTy, const SCEV *op, Type *ty);
83 public:
84 const SCEV *getOperand() const { return Op; }
85 Type *getType() const { return Ty; }
87 /// Methods for support type inquiry through isa, cast, and dyn_cast:
88 static bool classof(const SCEV *S) {
89 return S->getSCEVType() == scTruncate ||
90 S->getSCEVType() == scZeroExtend ||
91 S->getSCEVType() == scSignExtend;
95 /// This class represents a truncation of an integer value to a
96 /// smaller integer value.
97 class SCEVTruncateExpr : public SCEVCastExpr {
98 friend class ScalarEvolution;
100 SCEVTruncateExpr(const FoldingSetNodeIDRef ID,
101 const SCEV *op, Type *ty);
103 public:
104 /// Methods for support type inquiry through isa, cast, and dyn_cast:
105 static bool classof(const SCEV *S) {
106 return S->getSCEVType() == scTruncate;
110 /// This class represents a zero extension of a small integer value
111 /// to a larger integer value.
112 class SCEVZeroExtendExpr : public SCEVCastExpr {
113 friend class ScalarEvolution;
115 SCEVZeroExtendExpr(const FoldingSetNodeIDRef ID,
116 const SCEV *op, Type *ty);
118 public:
119 /// Methods for support type inquiry through isa, cast, and dyn_cast:
120 static bool classof(const SCEV *S) {
121 return S->getSCEVType() == scZeroExtend;
125 /// This class represents a sign extension of a small integer value
126 /// to a larger integer value.
127 class SCEVSignExtendExpr : public SCEVCastExpr {
128 friend class ScalarEvolution;
130 SCEVSignExtendExpr(const FoldingSetNodeIDRef ID,
131 const SCEV *op, Type *ty);
133 public:
134 /// Methods for support type inquiry through isa, cast, and dyn_cast:
135 static bool classof(const SCEV *S) {
136 return S->getSCEVType() == scSignExtend;
140 /// This node is a base class providing common functionality for
141 /// n'ary operators.
142 class SCEVNAryExpr : public SCEV {
143 protected:
144 // Since SCEVs are immutable, ScalarEvolution allocates operand
145 // arrays with its SCEVAllocator, so this class just needs a simple
146 // pointer rather than a more elaborate vector-like data structure.
147 // This also avoids the need for a non-trivial destructor.
148 const SCEV *const *Operands;
149 size_t NumOperands;
151 SCEVNAryExpr(const FoldingSetNodeIDRef ID, enum SCEVTypes T,
152 const SCEV *const *O, size_t N)
153 : SCEV(ID, T, computeExpressionSize(makeArrayRef(O, N))), Operands(O),
154 NumOperands(N) {}
156 public:
157 size_t getNumOperands() const { return NumOperands; }
159 const SCEV *getOperand(unsigned i) const {
160 assert(i < NumOperands && "Operand index out of range!");
161 return Operands[i];
164 using op_iterator = const SCEV *const *;
165 using op_range = iterator_range<op_iterator>;
167 op_iterator op_begin() const { return Operands; }
168 op_iterator op_end() const { return Operands + NumOperands; }
169 op_range operands() const {
170 return make_range(op_begin(), op_end());
173 Type *getType() const { return getOperand(0)->getType(); }
175 NoWrapFlags getNoWrapFlags(NoWrapFlags Mask = NoWrapMask) const {
176 return (NoWrapFlags)(SubclassData & Mask);
179 bool hasNoUnsignedWrap() const {
180 return getNoWrapFlags(FlagNUW) != FlagAnyWrap;
183 bool hasNoSignedWrap() const {
184 return getNoWrapFlags(FlagNSW) != FlagAnyWrap;
187 bool hasNoSelfWrap() const {
188 return getNoWrapFlags(FlagNW) != FlagAnyWrap;
191 /// Methods for support type inquiry through isa, cast, and dyn_cast:
192 static bool classof(const SCEV *S) {
193 return S->getSCEVType() == scAddExpr ||
194 S->getSCEVType() == scMulExpr ||
195 S->getSCEVType() == scSMaxExpr ||
196 S->getSCEVType() == scUMaxExpr ||
197 S->getSCEVType() == scAddRecExpr;
201 /// This node is the base class for n'ary commutative operators.
202 class SCEVCommutativeExpr : public SCEVNAryExpr {
203 protected:
204 SCEVCommutativeExpr(const FoldingSetNodeIDRef ID,
205 enum SCEVTypes T, const SCEV *const *O, size_t N)
206 : SCEVNAryExpr(ID, T, O, N) {}
208 public:
209 /// Methods for support type inquiry through isa, cast, and dyn_cast:
210 static bool classof(const SCEV *S) {
211 return S->getSCEVType() == scAddExpr ||
212 S->getSCEVType() == scMulExpr ||
213 S->getSCEVType() == scSMaxExpr ||
214 S->getSCEVType() == scUMaxExpr;
217 /// Set flags for a non-recurrence without clearing previously set flags.
218 void setNoWrapFlags(NoWrapFlags Flags) {
219 SubclassData |= Flags;
223 /// This node represents an addition of some number of SCEVs.
224 class SCEVAddExpr : public SCEVCommutativeExpr {
225 friend class ScalarEvolution;
227 SCEVAddExpr(const FoldingSetNodeIDRef ID,
228 const SCEV *const *O, size_t N)
229 : SCEVCommutativeExpr(ID, scAddExpr, O, N) {}
231 public:
232 Type *getType() const {
233 // Use the type of the last operand, which is likely to be a pointer
234 // type, if there is one. This doesn't usually matter, but it can help
235 // reduce casts when the expressions are expanded.
236 return getOperand(getNumOperands() - 1)->getType();
239 /// Methods for support type inquiry through isa, cast, and dyn_cast:
240 static bool classof(const SCEV *S) {
241 return S->getSCEVType() == scAddExpr;
245 /// This node represents multiplication of some number of SCEVs.
246 class SCEVMulExpr : public SCEVCommutativeExpr {
247 friend class ScalarEvolution;
249 SCEVMulExpr(const FoldingSetNodeIDRef ID,
250 const SCEV *const *O, size_t N)
251 : SCEVCommutativeExpr(ID, scMulExpr, O, N) {}
253 public:
254 /// Methods for support type inquiry through isa, cast, and dyn_cast:
255 static bool classof(const SCEV *S) {
256 return S->getSCEVType() == scMulExpr;
260 /// This class represents a binary unsigned division operation.
261 class SCEVUDivExpr : public SCEV {
262 friend class ScalarEvolution;
264 const SCEV *LHS;
265 const SCEV *RHS;
267 SCEVUDivExpr(const FoldingSetNodeIDRef ID, const SCEV *lhs, const SCEV *rhs)
268 : SCEV(ID, scUDivExpr, computeExpressionSize({lhs, rhs})), LHS(lhs),
269 RHS(rhs) {}
271 public:
272 const SCEV *getLHS() const { return LHS; }
273 const SCEV *getRHS() const { return RHS; }
275 Type *getType() const {
276 // In most cases the types of LHS and RHS will be the same, but in some
277 // crazy cases one or the other may be a pointer. ScalarEvolution doesn't
278 // depend on the type for correctness, but handling types carefully can
279 // avoid extra casts in the SCEVExpander. The LHS is more likely to be
280 // a pointer type than the RHS, so use the RHS' type here.
281 return getRHS()->getType();
284 /// Methods for support type inquiry through isa, cast, and dyn_cast:
285 static bool classof(const SCEV *S) {
286 return S->getSCEVType() == scUDivExpr;
290 /// This node represents a polynomial recurrence on the trip count
291 /// of the specified loop. This is the primary focus of the
292 /// ScalarEvolution framework; all the other SCEV subclasses are
293 /// mostly just supporting infrastructure to allow SCEVAddRecExpr
294 /// expressions to be created and analyzed.
296 /// All operands of an AddRec are required to be loop invariant.
298 class SCEVAddRecExpr : public SCEVNAryExpr {
299 friend class ScalarEvolution;
301 const Loop *L;
303 SCEVAddRecExpr(const FoldingSetNodeIDRef ID,
304 const SCEV *const *O, size_t N, const Loop *l)
305 : SCEVNAryExpr(ID, scAddRecExpr, O, N), L(l) {}
307 public:
308 const SCEV *getStart() const { return Operands[0]; }
309 const Loop *getLoop() const { return L; }
311 /// Constructs and returns the recurrence indicating how much this
312 /// expression steps by. If this is a polynomial of degree N, it
313 /// returns a chrec of degree N-1. We cannot determine whether
314 /// the step recurrence has self-wraparound.
315 const SCEV *getStepRecurrence(ScalarEvolution &SE) const {
316 if (isAffine()) return getOperand(1);
317 return SE.getAddRecExpr(SmallVector<const SCEV *, 3>(op_begin()+1,
318 op_end()),
319 getLoop(), FlagAnyWrap);
322 /// Return true if this represents an expression A + B*x where A
323 /// and B are loop invariant values.
324 bool isAffine() const {
325 // We know that the start value is invariant. This expression is thus
326 // affine iff the step is also invariant.
327 return getNumOperands() == 2;
330 /// Return true if this represents an expression A + B*x + C*x^2
331 /// where A, B and C are loop invariant values. This corresponds
332 /// to an addrec of the form {L,+,M,+,N}
333 bool isQuadratic() const {
334 return getNumOperands() == 3;
337 /// Set flags for a recurrence without clearing any previously set flags.
338 /// For AddRec, either NUW or NSW implies NW. Keep track of this fact here
339 /// to make it easier to propagate flags.
340 void setNoWrapFlags(NoWrapFlags Flags) {
341 if (Flags & (FlagNUW | FlagNSW))
342 Flags = ScalarEvolution::setFlags(Flags, FlagNW);
343 SubclassData |= Flags;
346 /// Return the value of this chain of recurrences at the specified
347 /// iteration number.
348 const SCEV *evaluateAtIteration(const SCEV *It, ScalarEvolution &SE) const;
350 /// Return the number of iterations of this loop that produce
351 /// values in the specified constant range. Another way of
352 /// looking at this is that it returns the first iteration number
353 /// where the value is not in the condition, thus computing the
354 /// exit count. If the iteration count can't be computed, an
355 /// instance of SCEVCouldNotCompute is returned.
356 const SCEV *getNumIterationsInRange(const ConstantRange &Range,
357 ScalarEvolution &SE) const;
359 /// Return an expression representing the value of this expression
360 /// one iteration of the loop ahead.
361 const SCEVAddRecExpr *getPostIncExpr(ScalarEvolution &SE) const;
363 /// Methods for support type inquiry through isa, cast, and dyn_cast:
364 static bool classof(const SCEV *S) {
365 return S->getSCEVType() == scAddRecExpr;
369 /// This class represents a signed maximum selection.
370 class SCEVSMaxExpr : public SCEVCommutativeExpr {
371 friend class ScalarEvolution;
373 SCEVSMaxExpr(const FoldingSetNodeIDRef ID,
374 const SCEV *const *O, size_t N)
375 : SCEVCommutativeExpr(ID, scSMaxExpr, O, N) {
376 // Max never overflows.
377 setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
380 public:
381 /// Methods for support type inquiry through isa, cast, and dyn_cast:
382 static bool classof(const SCEV *S) {
383 return S->getSCEVType() == scSMaxExpr;
387 /// This class represents an unsigned maximum selection.
388 class SCEVUMaxExpr : public SCEVCommutativeExpr {
389 friend class ScalarEvolution;
391 SCEVUMaxExpr(const FoldingSetNodeIDRef ID,
392 const SCEV *const *O, size_t N)
393 : SCEVCommutativeExpr(ID, scUMaxExpr, O, N) {
394 // Max never overflows.
395 setNoWrapFlags((NoWrapFlags)(FlagNUW | FlagNSW));
398 public:
399 /// Methods for support type inquiry through isa, cast, and dyn_cast:
400 static bool classof(const SCEV *S) {
401 return S->getSCEVType() == scUMaxExpr;
405 /// This means that we are dealing with an entirely unknown SCEV
406 /// value, and only represent it as its LLVM Value. This is the
407 /// "bottom" value for the analysis.
408 class SCEVUnknown final : public SCEV, private CallbackVH {
409 friend class ScalarEvolution;
411 /// The parent ScalarEvolution value. This is used to update the
412 /// parent's maps when the value associated with a SCEVUnknown is
413 /// deleted or RAUW'd.
414 ScalarEvolution *SE;
416 /// The next pointer in the linked list of all SCEVUnknown
417 /// instances owned by a ScalarEvolution.
418 SCEVUnknown *Next;
420 SCEVUnknown(const FoldingSetNodeIDRef ID, Value *V,
421 ScalarEvolution *se, SCEVUnknown *next) :
422 SCEV(ID, scUnknown, 1), CallbackVH(V), SE(se), Next(next) {}
424 // Implement CallbackVH.
425 void deleted() override;
426 void allUsesReplacedWith(Value *New) override;
428 public:
429 Value *getValue() const { return getValPtr(); }
431 /// @{
432 /// Test whether this is a special constant representing a type
433 /// size, alignment, or field offset in a target-independent
434 /// manner, and hasn't happened to have been folded with other
435 /// operations into something unrecognizable. This is mainly only
436 /// useful for pretty-printing and other situations where it isn't
437 /// absolutely required for these to succeed.
438 bool isSizeOf(Type *&AllocTy) const;
439 bool isAlignOf(Type *&AllocTy) const;
440 bool isOffsetOf(Type *&STy, Constant *&FieldNo) const;
441 /// @}
443 Type *getType() const { return getValPtr()->getType(); }
445 /// Methods for support type inquiry through isa, cast, and dyn_cast:
446 static bool classof(const SCEV *S) {
447 return S->getSCEVType() == scUnknown;
451 /// This class defines a simple visitor class that may be used for
452 /// various SCEV analysis purposes.
453 template<typename SC, typename RetVal=void>
454 struct SCEVVisitor {
455 RetVal visit(const SCEV *S) {
456 switch (S->getSCEVType()) {
457 case scConstant:
458 return ((SC*)this)->visitConstant((const SCEVConstant*)S);
459 case scTruncate:
460 return ((SC*)this)->visitTruncateExpr((const SCEVTruncateExpr*)S);
461 case scZeroExtend:
462 return ((SC*)this)->visitZeroExtendExpr((const SCEVZeroExtendExpr*)S);
463 case scSignExtend:
464 return ((SC*)this)->visitSignExtendExpr((const SCEVSignExtendExpr*)S);
465 case scAddExpr:
466 return ((SC*)this)->visitAddExpr((const SCEVAddExpr*)S);
467 case scMulExpr:
468 return ((SC*)this)->visitMulExpr((const SCEVMulExpr*)S);
469 case scUDivExpr:
470 return ((SC*)this)->visitUDivExpr((const SCEVUDivExpr*)S);
471 case scAddRecExpr:
472 return ((SC*)this)->visitAddRecExpr((const SCEVAddRecExpr*)S);
473 case scSMaxExpr:
474 return ((SC*)this)->visitSMaxExpr((const SCEVSMaxExpr*)S);
475 case scUMaxExpr:
476 return ((SC*)this)->visitUMaxExpr((const SCEVUMaxExpr*)S);
477 case scUnknown:
478 return ((SC*)this)->visitUnknown((const SCEVUnknown*)S);
479 case scCouldNotCompute:
480 return ((SC*)this)->visitCouldNotCompute((const SCEVCouldNotCompute*)S);
481 default:
482 llvm_unreachable("Unknown SCEV type!");
486 RetVal visitCouldNotCompute(const SCEVCouldNotCompute *S) {
487 llvm_unreachable("Invalid use of SCEVCouldNotCompute!");
491 /// Visit all nodes in the expression tree using worklist traversal.
493 /// Visitor implements:
494 /// // return true to follow this node.
495 /// bool follow(const SCEV *S);
496 /// // return true to terminate the search.
497 /// bool isDone();
498 template<typename SV>
499 class SCEVTraversal {
500 SV &Visitor;
501 SmallVector<const SCEV *, 8> Worklist;
502 SmallPtrSet<const SCEV *, 8> Visited;
504 void push(const SCEV *S) {
505 if (Visited.insert(S).second && Visitor.follow(S))
506 Worklist.push_back(S);
509 public:
510 SCEVTraversal(SV& V): Visitor(V) {}
512 void visitAll(const SCEV *Root) {
513 push(Root);
514 while (!Worklist.empty() && !Visitor.isDone()) {
515 const SCEV *S = Worklist.pop_back_val();
517 switch (S->getSCEVType()) {
518 case scConstant:
519 case scUnknown:
520 break;
521 case scTruncate:
522 case scZeroExtend:
523 case scSignExtend:
524 push(cast<SCEVCastExpr>(S)->getOperand());
525 break;
526 case scAddExpr:
527 case scMulExpr:
528 case scSMaxExpr:
529 case scUMaxExpr:
530 case scAddRecExpr:
531 for (const auto *Op : cast<SCEVNAryExpr>(S)->operands())
532 push(Op);
533 break;
534 case scUDivExpr: {
535 const SCEVUDivExpr *UDiv = cast<SCEVUDivExpr>(S);
536 push(UDiv->getLHS());
537 push(UDiv->getRHS());
538 break;
540 case scCouldNotCompute:
541 llvm_unreachable("Attempt to use a SCEVCouldNotCompute object!");
542 default:
543 llvm_unreachable("Unknown SCEV kind!");
549 /// Use SCEVTraversal to visit all nodes in the given expression tree.
550 template<typename SV>
551 void visitAll(const SCEV *Root, SV& Visitor) {
552 SCEVTraversal<SV> T(Visitor);
553 T.visitAll(Root);
556 /// Return true if any node in \p Root satisfies the predicate \p Pred.
557 template <typename PredTy>
558 bool SCEVExprContains(const SCEV *Root, PredTy Pred) {
559 struct FindClosure {
560 bool Found = false;
561 PredTy Pred;
563 FindClosure(PredTy Pred) : Pred(Pred) {}
565 bool follow(const SCEV *S) {
566 if (!Pred(S))
567 return true;
569 Found = true;
570 return false;
573 bool isDone() const { return Found; }
576 FindClosure FC(Pred);
577 visitAll(Root, FC);
578 return FC.Found;
581 /// This visitor recursively visits a SCEV expression and re-writes it.
582 /// The result from each visit is cached, so it will return the same
583 /// SCEV for the same input.
584 template<typename SC>
585 class SCEVRewriteVisitor : public SCEVVisitor<SC, const SCEV *> {
586 protected:
587 ScalarEvolution &SE;
588 // Memoize the result of each visit so that we only compute once for
589 // the same input SCEV. This is to avoid redundant computations when
590 // a SCEV is referenced by multiple SCEVs. Without memoization, this
591 // visit algorithm would have exponential time complexity in the worst
592 // case, causing the compiler to hang on certain tests.
593 DenseMap<const SCEV *, const SCEV *> RewriteResults;
595 public:
596 SCEVRewriteVisitor(ScalarEvolution &SE) : SE(SE) {}
598 const SCEV *visit(const SCEV *S) {
599 auto It = RewriteResults.find(S);
600 if (It != RewriteResults.end())
601 return It->second;
602 auto* Visited = SCEVVisitor<SC, const SCEV *>::visit(S);
603 auto Result = RewriteResults.try_emplace(S, Visited);
604 assert(Result.second && "Should insert a new entry");
605 return Result.first->second;
608 const SCEV *visitConstant(const SCEVConstant *Constant) {
609 return Constant;
612 const SCEV *visitTruncateExpr(const SCEVTruncateExpr *Expr) {
613 const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
614 return Operand == Expr->getOperand()
615 ? Expr
616 : SE.getTruncateExpr(Operand, Expr->getType());
619 const SCEV *visitZeroExtendExpr(const SCEVZeroExtendExpr *Expr) {
620 const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
621 return Operand == Expr->getOperand()
622 ? Expr
623 : SE.getZeroExtendExpr(Operand, Expr->getType());
626 const SCEV *visitSignExtendExpr(const SCEVSignExtendExpr *Expr) {
627 const SCEV *Operand = ((SC*)this)->visit(Expr->getOperand());
628 return Operand == Expr->getOperand()
629 ? Expr
630 : SE.getSignExtendExpr(Operand, Expr->getType());
633 const SCEV *visitAddExpr(const SCEVAddExpr *Expr) {
634 SmallVector<const SCEV *, 2> Operands;
635 bool Changed = false;
636 for (auto *Op : Expr->operands()) {
637 Operands.push_back(((SC*)this)->visit(Op));
638 Changed |= Op != Operands.back();
640 return !Changed ? Expr : SE.getAddExpr(Operands);
643 const SCEV *visitMulExpr(const SCEVMulExpr *Expr) {
644 SmallVector<const SCEV *, 2> Operands;
645 bool Changed = false;
646 for (auto *Op : Expr->operands()) {
647 Operands.push_back(((SC*)this)->visit(Op));
648 Changed |= Op != Operands.back();
650 return !Changed ? Expr : SE.getMulExpr(Operands);
653 const SCEV *visitUDivExpr(const SCEVUDivExpr *Expr) {
654 auto *LHS = ((SC *)this)->visit(Expr->getLHS());
655 auto *RHS = ((SC *)this)->visit(Expr->getRHS());
656 bool Changed = LHS != Expr->getLHS() || RHS != Expr->getRHS();
657 return !Changed ? Expr : SE.getUDivExpr(LHS, RHS);
660 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
661 SmallVector<const SCEV *, 2> Operands;
662 bool Changed = false;
663 for (auto *Op : Expr->operands()) {
664 Operands.push_back(((SC*)this)->visit(Op));
665 Changed |= Op != Operands.back();
667 return !Changed ? Expr
668 : SE.getAddRecExpr(Operands, Expr->getLoop(),
669 Expr->getNoWrapFlags());
672 const SCEV *visitSMaxExpr(const SCEVSMaxExpr *Expr) {
673 SmallVector<const SCEV *, 2> Operands;
674 bool Changed = false;
675 for (auto *Op : Expr->operands()) {
676 Operands.push_back(((SC *)this)->visit(Op));
677 Changed |= Op != Operands.back();
679 return !Changed ? Expr : SE.getSMaxExpr(Operands);
682 const SCEV *visitUMaxExpr(const SCEVUMaxExpr *Expr) {
683 SmallVector<const SCEV *, 2> Operands;
684 bool Changed = false;
685 for (auto *Op : Expr->operands()) {
686 Operands.push_back(((SC*)this)->visit(Op));
687 Changed |= Op != Operands.back();
689 return !Changed ? Expr : SE.getUMaxExpr(Operands);
692 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
693 return Expr;
696 const SCEV *visitCouldNotCompute(const SCEVCouldNotCompute *Expr) {
697 return Expr;
701 using ValueToValueMap = DenseMap<const Value *, Value *>;
703 /// The SCEVParameterRewriter takes a scalar evolution expression and updates
704 /// the SCEVUnknown components following the Map (Value -> Value).
705 class SCEVParameterRewriter : public SCEVRewriteVisitor<SCEVParameterRewriter> {
706 public:
707 static const SCEV *rewrite(const SCEV *Scev, ScalarEvolution &SE,
708 ValueToValueMap &Map,
709 bool InterpretConsts = false) {
710 SCEVParameterRewriter Rewriter(SE, Map, InterpretConsts);
711 return Rewriter.visit(Scev);
714 SCEVParameterRewriter(ScalarEvolution &SE, ValueToValueMap &M, bool C)
715 : SCEVRewriteVisitor(SE), Map(M), InterpretConsts(C) {}
717 const SCEV *visitUnknown(const SCEVUnknown *Expr) {
718 Value *V = Expr->getValue();
719 if (Map.count(V)) {
720 Value *NV = Map[V];
721 if (InterpretConsts && isa<ConstantInt>(NV))
722 return SE.getConstant(cast<ConstantInt>(NV));
723 return SE.getUnknown(NV);
725 return Expr;
728 private:
729 ValueToValueMap &Map;
730 bool InterpretConsts;
733 using LoopToScevMapT = DenseMap<const Loop *, const SCEV *>;
735 /// The SCEVLoopAddRecRewriter takes a scalar evolution expression and applies
736 /// the Map (Loop -> SCEV) to all AddRecExprs.
737 class SCEVLoopAddRecRewriter
738 : public SCEVRewriteVisitor<SCEVLoopAddRecRewriter> {
739 public:
740 SCEVLoopAddRecRewriter(ScalarEvolution &SE, LoopToScevMapT &M)
741 : SCEVRewriteVisitor(SE), Map(M) {}
743 static const SCEV *rewrite(const SCEV *Scev, LoopToScevMapT &Map,
744 ScalarEvolution &SE) {
745 SCEVLoopAddRecRewriter Rewriter(SE, Map);
746 return Rewriter.visit(Scev);
749 const SCEV *visitAddRecExpr(const SCEVAddRecExpr *Expr) {
750 SmallVector<const SCEV *, 2> Operands;
751 for (const SCEV *Op : Expr->operands())
752 Operands.push_back(visit(Op));
754 const Loop *L = Expr->getLoop();
755 const SCEV *Res = SE.getAddRecExpr(Operands, L, Expr->getNoWrapFlags());
757 if (0 == Map.count(L))
758 return Res;
760 const SCEVAddRecExpr *Rec = cast<SCEVAddRecExpr>(Res);
761 return Rec->evaluateAtIteration(Map[L], SE);
764 private:
765 LoopToScevMapT &Map;
768 } // end namespace llvm
770 #endif // LLVM_ANALYSIS_SCALAREVOLUTIONEXPRESSIONS_H