1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains routines that help analyze properties that chains of
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
15 #define LLVM_ANALYSIS_VALUETRACKING_H
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Intrinsics.h"
30 class AssumptionCache
;
39 class OptimizationRemarkEmitter
;
41 class TargetLibraryInfo
;
44 /// Determine which bits of V are known to be either zero or one and return
45 /// them in the KnownZero/KnownOne bit sets.
47 /// This function is defined on values with integer type, values with pointer
48 /// type, and vectors of integers. In the case
49 /// where V is a vector, the known zero and known one values are the
50 /// same width as the vector element, and the bit is set only if it is true
51 /// for all of the elements in the vector.
52 void computeKnownBits(const Value
*V
, KnownBits
&Known
,
53 const DataLayout
&DL
, unsigned Depth
= 0,
54 AssumptionCache
*AC
= nullptr,
55 const Instruction
*CxtI
= nullptr,
56 const DominatorTree
*DT
= nullptr,
57 OptimizationRemarkEmitter
*ORE
= nullptr,
58 bool UseInstrInfo
= true);
60 /// Returns the known bits rather than passing by reference.
61 KnownBits
computeKnownBits(const Value
*V
, const DataLayout
&DL
,
62 unsigned Depth
= 0, AssumptionCache
*AC
= nullptr,
63 const Instruction
*CxtI
= nullptr,
64 const DominatorTree
*DT
= nullptr,
65 OptimizationRemarkEmitter
*ORE
= nullptr,
66 bool UseInstrInfo
= true);
68 /// Compute known bits from the range metadata.
69 /// \p KnownZero the set of bits that are known to be zero
70 /// \p KnownOne the set of bits that are known to be one
71 void computeKnownBitsFromRangeMetadata(const MDNode
&Ranges
,
74 /// Return true if LHS and RHS have no common bits set.
75 bool haveNoCommonBitsSet(const Value
*LHS
, const Value
*RHS
,
77 AssumptionCache
*AC
= nullptr,
78 const Instruction
*CxtI
= nullptr,
79 const DominatorTree
*DT
= nullptr,
80 bool UseInstrInfo
= true);
82 /// Return true if the given value is known to have exactly one bit set when
83 /// defined. For vectors return true if every element is known to be a power
84 /// of two when defined. Supports values with integer or pointer type and
85 /// vectors of integers. If 'OrZero' is set, then return true if the given
86 /// value is either a power of two or zero.
87 bool isKnownToBeAPowerOfTwo(const Value
*V
, const DataLayout
&DL
,
88 bool OrZero
= false, unsigned Depth
= 0,
89 AssumptionCache
*AC
= nullptr,
90 const Instruction
*CxtI
= nullptr,
91 const DominatorTree
*DT
= nullptr,
92 bool UseInstrInfo
= true);
94 bool isOnlyUsedInZeroEqualityComparison(const Instruction
*CxtI
);
96 /// Return true if the given value is known to be non-zero when defined. For
97 /// vectors, return true if every element is known to be non-zero when
98 /// defined. For pointers, if the context instruction and dominator tree are
99 /// specified, perform context-sensitive analysis and return true if the
100 /// pointer couldn't possibly be null at the specified instruction.
101 /// Supports values with integer or pointer type and vectors of integers.
102 bool isKnownNonZero(const Value
*V
, const DataLayout
&DL
, unsigned Depth
= 0,
103 AssumptionCache
*AC
= nullptr,
104 const Instruction
*CxtI
= nullptr,
105 const DominatorTree
*DT
= nullptr,
106 bool UseInstrInfo
= true);
108 /// Return true if the two given values are negation.
109 /// Currently can recoginze Value pair:
110 /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
111 /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
112 bool isKnownNegation(const Value
*X
, const Value
*Y
, bool NeedNSW
= false);
114 /// Returns true if the give value is known to be non-negative.
115 bool isKnownNonNegative(const Value
*V
, const DataLayout
&DL
,
117 AssumptionCache
*AC
= nullptr,
118 const Instruction
*CxtI
= nullptr,
119 const DominatorTree
*DT
= nullptr,
120 bool UseInstrInfo
= true);
122 /// Returns true if the given value is known be positive (i.e. non-negative
124 bool isKnownPositive(const Value
*V
, const DataLayout
&DL
, unsigned Depth
= 0,
125 AssumptionCache
*AC
= nullptr,
126 const Instruction
*CxtI
= nullptr,
127 const DominatorTree
*DT
= nullptr,
128 bool UseInstrInfo
= true);
130 /// Returns true if the given value is known be negative (i.e. non-positive
132 bool isKnownNegative(const Value
*V
, const DataLayout
&DL
, unsigned Depth
= 0,
133 AssumptionCache
*AC
= nullptr,
134 const Instruction
*CxtI
= nullptr,
135 const DominatorTree
*DT
= nullptr,
136 bool UseInstrInfo
= true);
138 /// Return true if the given values are known to be non-equal when defined.
139 /// Supports scalar integer types only.
140 bool isKnownNonEqual(const Value
*V1
, const Value
*V2
, const DataLayout
&DL
,
141 AssumptionCache
*AC
= nullptr,
142 const Instruction
*CxtI
= nullptr,
143 const DominatorTree
*DT
= nullptr,
144 bool UseInstrInfo
= true);
146 /// Return true if 'V & Mask' is known to be zero. We use this predicate to
147 /// simplify operations downstream. Mask is known to be zero for bits that V
150 /// This function is defined on values with integer type, values with pointer
151 /// type, and vectors of integers. In the case
152 /// where V is a vector, the mask, known zero, and known one values are the
153 /// same width as the vector element, and the bit is set only if it is true
154 /// for all of the elements in the vector.
155 bool MaskedValueIsZero(const Value
*V
, const APInt
&Mask
,
156 const DataLayout
&DL
,
157 unsigned Depth
= 0, AssumptionCache
*AC
= nullptr,
158 const Instruction
*CxtI
= nullptr,
159 const DominatorTree
*DT
= nullptr,
160 bool UseInstrInfo
= true);
162 /// Return the number of times the sign bit of the register is replicated into
163 /// the other bits. We know that at least 1 bit is always equal to the sign
164 /// bit (itself), but other cases can give us information. For example,
165 /// immediately after an "ashr X, 2", we know that the top 3 bits are all
166 /// equal to each other, so we return 3. For vectors, return the number of
167 /// sign bits for the vector element with the mininum number of known sign
169 unsigned ComputeNumSignBits(const Value
*Op
, const DataLayout
&DL
,
170 unsigned Depth
= 0, AssumptionCache
*AC
= nullptr,
171 const Instruction
*CxtI
= nullptr,
172 const DominatorTree
*DT
= nullptr,
173 bool UseInstrInfo
= true);
175 /// This function computes the integer multiple of Base that equals V. If
176 /// successful, it returns true and returns the multiple in Multiple. If
177 /// unsuccessful, it returns false. Also, if V can be simplified to an
178 /// integer, then the simplified V is returned in Val. Look through sext only
179 /// if LookThroughSExt=true.
180 bool ComputeMultiple(Value
*V
, unsigned Base
, Value
*&Multiple
,
181 bool LookThroughSExt
= false,
184 /// Map a call instruction to an intrinsic ID. Libcalls which have equivalent
185 /// intrinsics are treated as-if they were intrinsics.
186 Intrinsic::ID
getIntrinsicForCallSite(ImmutableCallSite ICS
,
187 const TargetLibraryInfo
*TLI
);
189 /// Return true if we can prove that the specified FP value is never equal to
191 bool CannotBeNegativeZero(const Value
*V
, const TargetLibraryInfo
*TLI
,
194 /// Return true if we can prove that the specified FP value is either NaN or
195 /// never less than -0.0.
202 bool CannotBeOrderedLessThanZero(const Value
*V
, const TargetLibraryInfo
*TLI
);
204 /// Return true if the floating-point scalar value is not a NaN or if the
205 /// floating-point vector value has no NaN elements. Return false if a value
206 /// could ever be NaN.
207 bool isKnownNeverNaN(const Value
*V
, const TargetLibraryInfo
*TLI
,
210 /// Return true if we can prove that the specified FP value's sign bit is 0.
212 /// NaN --> true/false (depending on the NaN's sign bit)
217 bool SignBitMustBeZero(const Value
*V
, const TargetLibraryInfo
*TLI
);
219 /// If the specified value can be set by repeating the same byte in memory,
220 /// return the i8 value that it is represented with. This is true for all i8
221 /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
222 /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
223 /// i16 0x1234), return null. If the value is entirely undef and padding,
225 Value
*isBytewiseValue(Value
*V
);
227 /// Given an aggregrate and an sequence of indices, see if the scalar value
228 /// indexed is already around as a register, for example if it were inserted
229 /// directly into the aggregrate.
231 /// If InsertBefore is not null, this function will duplicate (modified)
232 /// insertvalues when a part of a nested struct is extracted.
233 Value
*FindInsertedValue(Value
*V
,
234 ArrayRef
<unsigned> idx_range
,
235 Instruction
*InsertBefore
= nullptr);
237 /// Analyze the specified pointer to see if it can be expressed as a base
238 /// pointer plus a constant offset. Return the base and offset to the caller.
239 Value
*GetPointerBaseWithConstantOffset(Value
*Ptr
, int64_t &Offset
,
240 const DataLayout
&DL
);
241 inline const Value
*GetPointerBaseWithConstantOffset(const Value
*Ptr
,
243 const DataLayout
&DL
) {
244 return GetPointerBaseWithConstantOffset(const_cast<Value
*>(Ptr
), Offset
,
248 /// Returns true if the GEP is based on a pointer to a string (array of
249 // \p CharSize integers) and is indexing into this string.
250 bool isGEPBasedOnPointerToString(const GEPOperator
*GEP
,
251 unsigned CharSize
= 8);
253 /// Represents offset+length into a ConstantDataArray.
254 struct ConstantDataArraySlice
{
255 /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
256 /// initializer, it just doesn't fit the ConstantDataArray interface).
257 const ConstantDataArray
*Array
;
259 /// Slice starts at this Offset.
262 /// Length of the slice.
265 /// Moves the Offset and adjusts Length accordingly.
266 void move(uint64_t Delta
) {
267 assert(Delta
< Length
);
272 /// Convenience accessor for elements in the slice.
273 uint64_t operator[](unsigned I
) const {
274 return Array
==nullptr ? 0 : Array
->getElementAsInteger(I
+ Offset
);
278 /// Returns true if the value \p V is a pointer into a ConstantDataArray.
279 /// If successful \p Slice will point to a ConstantDataArray info object
280 /// with an appropriate offset.
281 bool getConstantDataArrayInfo(const Value
*V
, ConstantDataArraySlice
&Slice
,
282 unsigned ElementSize
, uint64_t Offset
= 0);
284 /// This function computes the length of a null-terminated C string pointed to
285 /// by V. If successful, it returns true and returns the string in Str. If
286 /// unsuccessful, it returns false. This does not include the trailing null
287 /// character by default. If TrimAtNul is set to false, then this returns any
288 /// trailing null characters as well as any other characters that come after
290 bool getConstantStringInfo(const Value
*V
, StringRef
&Str
,
291 uint64_t Offset
= 0, bool TrimAtNul
= true);
293 /// If we can compute the length of the string pointed to by the specified
294 /// pointer, return 'len+1'. If we can't, return 0.
295 uint64_t GetStringLength(const Value
*V
, unsigned CharSize
= 8);
297 /// This function returns call pointer argument that is considered the same by
298 /// aliasing rules. You CAN'T use it to replace one value with another.
299 const Value
*getArgumentAliasingToReturnedPointer(const CallBase
*Call
);
300 inline Value
*getArgumentAliasingToReturnedPointer(CallBase
*Call
) {
301 return const_cast<Value
*>(getArgumentAliasingToReturnedPointer(
302 const_cast<const CallBase
*>(Call
)));
305 // {launder,strip}.invariant.group returns pointer that aliases its argument,
306 // and it only captures pointer by returning it.
307 // These intrinsics are not marked as nocapture, because returning is
308 // considered as capture. The arguments are not marked as returned neither,
309 // because it would make it useless.
310 bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
311 const CallBase
*Call
);
313 /// This method strips off any GEP address adjustments and pointer casts from
314 /// the specified value, returning the original object being addressed. Note
315 /// that the returned value has pointer type if the specified value does. If
316 /// the MaxLookup value is non-zero, it limits the number of instructions to
318 Value
*GetUnderlyingObject(Value
*V
, const DataLayout
&DL
,
319 unsigned MaxLookup
= 6);
320 inline const Value
*GetUnderlyingObject(const Value
*V
, const DataLayout
&DL
,
321 unsigned MaxLookup
= 6) {
322 return GetUnderlyingObject(const_cast<Value
*>(V
), DL
, MaxLookup
);
325 /// This method is similar to GetUnderlyingObject except that it can
326 /// look through phi and select instructions and return multiple objects.
328 /// If LoopInfo is passed, loop phis are further analyzed. If a pointer
329 /// accesses different objects in each iteration, we don't look through the
330 /// phi node. E.g. consider this loop nest:
335 /// A[i][j] = A[i-1][j] * B[j]
338 /// This is transformed by Load-PRE to stash away A[i] for the next iteration
339 /// of the outer loop:
341 /// Curr = A[0]; // Prev_0
343 /// Prev = Curr; // Prev = PHI (Prev_0, Curr)
346 /// Curr[j] = Prev[j] * B[j]
350 /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
351 /// should not assume that Curr and Prev share the same underlying object thus
352 /// it shouldn't look through the phi above.
353 void GetUnderlyingObjects(Value
*V
, SmallVectorImpl
<Value
*> &Objects
,
354 const DataLayout
&DL
, LoopInfo
*LI
= nullptr,
355 unsigned MaxLookup
= 6);
357 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
358 /// ptrtoint+arithmetic+inttoptr sequences.
359 bool getUnderlyingObjectsForCodeGen(const Value
*V
,
360 SmallVectorImpl
<Value
*> &Objects
,
361 const DataLayout
&DL
);
363 /// Return true if the only users of this pointer are lifetime markers.
364 bool onlyUsedByLifetimeMarkers(const Value
*V
);
366 /// Return true if the instruction does not have any effects besides
367 /// calculating the result and does not have undefined behavior.
369 /// This method never returns true for an instruction that returns true for
370 /// mayHaveSideEffects; however, this method also does some other checks in
371 /// addition. It checks for undefined behavior, like dividing by zero or
372 /// loading from an invalid pointer (but not for undefined results, like a
373 /// shift with a shift amount larger than the width of the result). It checks
374 /// for malloc and alloca because speculatively executing them might cause a
375 /// memory leak. It also returns false for instructions related to control
376 /// flow, specifically terminators and PHI nodes.
378 /// If the CtxI is specified this method performs context-sensitive analysis
379 /// and returns true if it is safe to execute the instruction immediately
382 /// If the CtxI is NOT specified this method only looks at the instruction
383 /// itself and its operands, so if this method returns true, it is safe to
384 /// move the instruction as long as the correct dominance relationships for
385 /// the operands and users hold.
387 /// This method can return true for instructions that read memory;
388 /// for such instructions, moving them may change the resulting value.
389 bool isSafeToSpeculativelyExecute(const Value
*V
,
390 const Instruction
*CtxI
= nullptr,
391 const DominatorTree
*DT
= nullptr);
393 /// Returns true if the result or effects of the given instructions \p I
394 /// depend on or influence global memory.
395 /// Memory dependence arises for example if the instruction reads from
396 /// memory or may produce effects or undefined behaviour. Memory dependent
397 /// instructions generally cannot be reorderd with respect to other memory
398 /// dependent instructions or moved into non-dominated basic blocks.
399 /// Instructions which just compute a value based on the values of their
400 /// operands are not memory dependent.
401 bool mayBeMemoryDependent(const Instruction
&I
);
403 /// Return true if it is an intrinsic that cannot be speculated but also
405 bool isAssumeLikeIntrinsic(const Instruction
*I
);
407 /// Return true if it is valid to use the assumptions provided by an
408 /// assume intrinsic, I, at the point in the control-flow identified by the
409 /// context instruction, CxtI.
410 bool isValidAssumeForContext(const Instruction
*I
, const Instruction
*CxtI
,
411 const DominatorTree
*DT
= nullptr);
413 enum class OverflowResult
{ AlwaysOverflows
, MayOverflow
, NeverOverflows
};
415 OverflowResult
computeOverflowForUnsignedMul(const Value
*LHS
,
417 const DataLayout
&DL
,
419 const Instruction
*CxtI
,
420 const DominatorTree
*DT
,
421 bool UseInstrInfo
= true);
422 OverflowResult
computeOverflowForSignedMul(const Value
*LHS
, const Value
*RHS
,
423 const DataLayout
&DL
,
425 const Instruction
*CxtI
,
426 const DominatorTree
*DT
,
427 bool UseInstrInfo
= true);
428 OverflowResult
computeOverflowForUnsignedAdd(const Value
*LHS
,
430 const DataLayout
&DL
,
432 const Instruction
*CxtI
,
433 const DominatorTree
*DT
,
434 bool UseInstrInfo
= true);
435 OverflowResult
computeOverflowForSignedAdd(const Value
*LHS
, const Value
*RHS
,
436 const DataLayout
&DL
,
437 AssumptionCache
*AC
= nullptr,
438 const Instruction
*CxtI
= nullptr,
439 const DominatorTree
*DT
= nullptr);
440 /// This version also leverages the sign bit of Add if known.
441 OverflowResult
computeOverflowForSignedAdd(const AddOperator
*Add
,
442 const DataLayout
&DL
,
443 AssumptionCache
*AC
= nullptr,
444 const Instruction
*CxtI
= nullptr,
445 const DominatorTree
*DT
= nullptr);
446 OverflowResult
computeOverflowForUnsignedSub(const Value
*LHS
, const Value
*RHS
,
447 const DataLayout
&DL
,
449 const Instruction
*CxtI
,
450 const DominatorTree
*DT
);
451 OverflowResult
computeOverflowForSignedSub(const Value
*LHS
, const Value
*RHS
,
452 const DataLayout
&DL
,
454 const Instruction
*CxtI
,
455 const DominatorTree
*DT
);
457 /// Returns true if the arithmetic part of the \p II 's result is
458 /// used only along the paths control dependent on the computation
459 /// not overflowing, \p II being an <op>.with.overflow intrinsic.
460 bool isOverflowIntrinsicNoWrap(const IntrinsicInst
*II
,
461 const DominatorTree
&DT
);
463 /// Return true if this function can prove that the instruction I will
464 /// always transfer execution to one of its successors (including the next
465 /// instruction that follows within a basic block). E.g. this is not
466 /// guaranteed for function calls that could loop infinitely.
468 /// In other words, this function returns false for instructions that may
469 /// transfer execution or fail to transfer execution in a way that is not
470 /// captured in the CFG nor in the sequence of instructions within a basic
473 /// Undefined behavior is assumed not to happen, so e.g. division is
474 /// guaranteed to transfer execution to the following instruction even
475 /// though division by zero might cause undefined behavior.
476 bool isGuaranteedToTransferExecutionToSuccessor(const Instruction
*I
);
478 /// Returns true if this block does not contain a potential implicit exit.
479 /// This is equivelent to saying that all instructions within the basic block
480 /// are guaranteed to transfer execution to their successor within the basic
481 /// block. This has the same assumptions w.r.t. undefined behavior as the
482 /// instruction variant of this function.
483 bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock
*BB
);
485 /// Return true if this function can prove that the instruction I
486 /// is executed for every iteration of the loop L.
488 /// Note that this currently only considers the loop header.
489 bool isGuaranteedToExecuteForEveryIteration(const Instruction
*I
,
492 /// Return true if this function can prove that I is guaranteed to yield
493 /// full-poison (all bits poison) if at least one of its operands are
494 /// full-poison (all bits poison).
496 /// The exact rules for how poison propagates through instructions have
497 /// not been settled as of 2015-07-10, so this function is conservative
498 /// and only considers poison to be propagated in uncontroversial
499 /// cases. There is no attempt to track values that may be only partially
501 bool propagatesFullPoison(const Instruction
*I
);
503 /// Return either nullptr or an operand of I such that I will trigger
504 /// undefined behavior if I is executed and that operand has a full-poison
505 /// value (all bits poison).
506 const Value
*getGuaranteedNonFullPoisonOp(const Instruction
*I
);
508 /// Return true if this function can prove that if PoisonI is executed
509 /// and yields a full-poison value (all bits poison), then that will
510 /// trigger undefined behavior.
512 /// Note that this currently only considers the basic block that is
514 bool programUndefinedIfFullPoison(const Instruction
*PoisonI
);
516 /// Specific patterns of select instructions we can match.
517 enum SelectPatternFlavor
{
519 SPF_SMIN
, /// Signed minimum
520 SPF_UMIN
, /// Unsigned minimum
521 SPF_SMAX
, /// Signed maximum
522 SPF_UMAX
, /// Unsigned maximum
523 SPF_FMINNUM
, /// Floating point minnum
524 SPF_FMAXNUM
, /// Floating point maxnum
525 SPF_ABS
, /// Absolute value
526 SPF_NABS
/// Negated absolute value
529 /// Behavior when a floating point min/max is given one NaN and one
530 /// non-NaN as input.
531 enum SelectPatternNaNBehavior
{
532 SPNB_NA
= 0, /// NaN behavior not applicable.
533 SPNB_RETURNS_NAN
, /// Given one NaN input, returns the NaN.
534 SPNB_RETURNS_OTHER
, /// Given one NaN input, returns the non-NaN.
535 SPNB_RETURNS_ANY
/// Given one NaN input, can return either (or
536 /// it has been determined that no operands can
540 struct SelectPatternResult
{
541 SelectPatternFlavor Flavor
;
542 SelectPatternNaNBehavior NaNBehavior
; /// Only applicable if Flavor is
543 /// SPF_FMINNUM or SPF_FMAXNUM.
544 bool Ordered
; /// When implementing this min/max pattern as
545 /// fcmp; select, does the fcmp have to be
548 /// Return true if \p SPF is a min or a max pattern.
549 static bool isMinOrMax(SelectPatternFlavor SPF
) {
550 return SPF
!= SPF_UNKNOWN
&& SPF
!= SPF_ABS
&& SPF
!= SPF_NABS
;
554 /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
555 /// and providing the out parameter results if we successfully match.
557 /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
558 /// the negation instruction from the idiom.
560 /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
561 /// not match that of the original select. If this is the case, the cast
562 /// operation (one of Trunc,SExt,Zext) that must be done to transform the
563 /// type of LHS and RHS into the type of V is returned in CastOp.
566 /// %1 = icmp slt i32 %a, i32 4
567 /// %2 = sext i32 %a to i64
568 /// %3 = select i1 %1, i64 %2, i64 4
570 /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
572 SelectPatternResult
matchSelectPattern(Value
*V
, Value
*&LHS
, Value
*&RHS
,
573 Instruction::CastOps
*CastOp
= nullptr,
575 inline SelectPatternResult
576 matchSelectPattern(const Value
*V
, const Value
*&LHS
, const Value
*&RHS
,
577 Instruction::CastOps
*CastOp
= nullptr) {
578 Value
*L
= const_cast<Value
*>(LHS
);
579 Value
*R
= const_cast<Value
*>(RHS
);
580 auto Result
= matchSelectPattern(const_cast<Value
*>(V
), L
, R
);
586 /// Return the canonical comparison predicate for the specified
587 /// minimum/maximum flavor.
588 CmpInst::Predicate
getMinMaxPred(SelectPatternFlavor SPF
,
589 bool Ordered
= false);
591 /// Return the inverse minimum/maximum flavor of the specified flavor.
592 /// For example, signed minimum is the inverse of signed maximum.
593 SelectPatternFlavor
getInverseMinMaxFlavor(SelectPatternFlavor SPF
);
595 /// Return the canonical inverse comparison predicate for the specified
596 /// minimum/maximum flavor.
597 CmpInst::Predicate
getInverseMinMaxPred(SelectPatternFlavor SPF
);
599 /// Return true if RHS is known to be implied true by LHS. Return false if
600 /// RHS is known to be implied false by LHS. Otherwise, return None if no
601 /// implication can be made.
602 /// A & B must be i1 (boolean) values or a vector of such values. Note that
603 /// the truth table for implication is the same as <=u on i1 values (but not
604 /// <=s!). The truth table for both is:
609 Optional
<bool> isImpliedCondition(const Value
*LHS
, const Value
*RHS
,
610 const DataLayout
&DL
, bool LHSIsTrue
= true,
613 /// Return the boolean condition value in the context of the given instruction
614 /// if it is known based on dominating conditions.
615 Optional
<bool> isImpliedByDomCondition(const Value
*Cond
,
616 const Instruction
*ContextI
,
617 const DataLayout
&DL
);
618 } // end namespace llvm
620 #endif // LLVM_ANALYSIS_VALUETRACKING_H