Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / Analysis / ValueTracking.h
blobb3c07b1e246a8657a8ec6c87969a124c3994ef50
1 //===- llvm/Analysis/ValueTracking.h - Walk computations --------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains routines that help analyze properties that chains of
10 // computations have.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_ANALYSIS_VALUETRACKING_H
15 #define LLVM_ANALYSIS_VALUETRACKING_H
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/Optional.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/Constants.h"
21 #include "llvm/IR/Instruction.h"
22 #include "llvm/IR/Intrinsics.h"
23 #include <cassert>
24 #include <cstdint>
26 namespace llvm {
28 class AddOperator;
29 class APInt;
30 class AssumptionCache;
31 class DataLayout;
32 class DominatorTree;
33 class GEPOperator;
34 class IntrinsicInst;
35 struct KnownBits;
36 class Loop;
37 class LoopInfo;
38 class MDNode;
39 class OptimizationRemarkEmitter;
40 class StringRef;
41 class TargetLibraryInfo;
42 class Value;
44 /// Determine which bits of V are known to be either zero or one and return
45 /// them in the KnownZero/KnownOne bit sets.
46 ///
47 /// This function is defined on values with integer type, values with pointer
48 /// type, and vectors of integers. In the case
49 /// where V is a vector, the known zero and known one values are the
50 /// same width as the vector element, and the bit is set only if it is true
51 /// for all of the elements in the vector.
52 void computeKnownBits(const Value *V, KnownBits &Known,
53 const DataLayout &DL, unsigned Depth = 0,
54 AssumptionCache *AC = nullptr,
55 const Instruction *CxtI = nullptr,
56 const DominatorTree *DT = nullptr,
57 OptimizationRemarkEmitter *ORE = nullptr,
58 bool UseInstrInfo = true);
60 /// Returns the known bits rather than passing by reference.
61 KnownBits computeKnownBits(const Value *V, const DataLayout &DL,
62 unsigned Depth = 0, AssumptionCache *AC = nullptr,
63 const Instruction *CxtI = nullptr,
64 const DominatorTree *DT = nullptr,
65 OptimizationRemarkEmitter *ORE = nullptr,
66 bool UseInstrInfo = true);
68 /// Compute known bits from the range metadata.
69 /// \p KnownZero the set of bits that are known to be zero
70 /// \p KnownOne the set of bits that are known to be one
71 void computeKnownBitsFromRangeMetadata(const MDNode &Ranges,
72 KnownBits &Known);
74 /// Return true if LHS and RHS have no common bits set.
75 bool haveNoCommonBitsSet(const Value *LHS, const Value *RHS,
76 const DataLayout &DL,
77 AssumptionCache *AC = nullptr,
78 const Instruction *CxtI = nullptr,
79 const DominatorTree *DT = nullptr,
80 bool UseInstrInfo = true);
82 /// Return true if the given value is known to have exactly one bit set when
83 /// defined. For vectors return true if every element is known to be a power
84 /// of two when defined. Supports values with integer or pointer type and
85 /// vectors of integers. If 'OrZero' is set, then return true if the given
86 /// value is either a power of two or zero.
87 bool isKnownToBeAPowerOfTwo(const Value *V, const DataLayout &DL,
88 bool OrZero = false, unsigned Depth = 0,
89 AssumptionCache *AC = nullptr,
90 const Instruction *CxtI = nullptr,
91 const DominatorTree *DT = nullptr,
92 bool UseInstrInfo = true);
94 bool isOnlyUsedInZeroEqualityComparison(const Instruction *CxtI);
96 /// Return true if the given value is known to be non-zero when defined. For
97 /// vectors, return true if every element is known to be non-zero when
98 /// defined. For pointers, if the context instruction and dominator tree are
99 /// specified, perform context-sensitive analysis and return true if the
100 /// pointer couldn't possibly be null at the specified instruction.
101 /// Supports values with integer or pointer type and vectors of integers.
102 bool isKnownNonZero(const Value *V, const DataLayout &DL, unsigned Depth = 0,
103 AssumptionCache *AC = nullptr,
104 const Instruction *CxtI = nullptr,
105 const DominatorTree *DT = nullptr,
106 bool UseInstrInfo = true);
108 /// Return true if the two given values are negation.
109 /// Currently can recoginze Value pair:
110 /// 1: <X, Y> if X = sub (0, Y) or Y = sub (0, X)
111 /// 2: <X, Y> if X = sub (A, B) and Y = sub (B, A)
112 bool isKnownNegation(const Value *X, const Value *Y, bool NeedNSW = false);
114 /// Returns true if the give value is known to be non-negative.
115 bool isKnownNonNegative(const Value *V, const DataLayout &DL,
116 unsigned Depth = 0,
117 AssumptionCache *AC = nullptr,
118 const Instruction *CxtI = nullptr,
119 const DominatorTree *DT = nullptr,
120 bool UseInstrInfo = true);
122 /// Returns true if the given value is known be positive (i.e. non-negative
123 /// and non-zero).
124 bool isKnownPositive(const Value *V, const DataLayout &DL, unsigned Depth = 0,
125 AssumptionCache *AC = nullptr,
126 const Instruction *CxtI = nullptr,
127 const DominatorTree *DT = nullptr,
128 bool UseInstrInfo = true);
130 /// Returns true if the given value is known be negative (i.e. non-positive
131 /// and non-zero).
132 bool isKnownNegative(const Value *V, const DataLayout &DL, unsigned Depth = 0,
133 AssumptionCache *AC = nullptr,
134 const Instruction *CxtI = nullptr,
135 const DominatorTree *DT = nullptr,
136 bool UseInstrInfo = true);
138 /// Return true if the given values are known to be non-equal when defined.
139 /// Supports scalar integer types only.
140 bool isKnownNonEqual(const Value *V1, const Value *V2, const DataLayout &DL,
141 AssumptionCache *AC = nullptr,
142 const Instruction *CxtI = nullptr,
143 const DominatorTree *DT = nullptr,
144 bool UseInstrInfo = true);
146 /// Return true if 'V & Mask' is known to be zero. We use this predicate to
147 /// simplify operations downstream. Mask is known to be zero for bits that V
148 /// cannot have.
150 /// This function is defined on values with integer type, values with pointer
151 /// type, and vectors of integers. In the case
152 /// where V is a vector, the mask, known zero, and known one values are the
153 /// same width as the vector element, and the bit is set only if it is true
154 /// for all of the elements in the vector.
155 bool MaskedValueIsZero(const Value *V, const APInt &Mask,
156 const DataLayout &DL,
157 unsigned Depth = 0, AssumptionCache *AC = nullptr,
158 const Instruction *CxtI = nullptr,
159 const DominatorTree *DT = nullptr,
160 bool UseInstrInfo = true);
162 /// Return the number of times the sign bit of the register is replicated into
163 /// the other bits. We know that at least 1 bit is always equal to the sign
164 /// bit (itself), but other cases can give us information. For example,
165 /// immediately after an "ashr X, 2", we know that the top 3 bits are all
166 /// equal to each other, so we return 3. For vectors, return the number of
167 /// sign bits for the vector element with the mininum number of known sign
168 /// bits.
169 unsigned ComputeNumSignBits(const Value *Op, const DataLayout &DL,
170 unsigned Depth = 0, AssumptionCache *AC = nullptr,
171 const Instruction *CxtI = nullptr,
172 const DominatorTree *DT = nullptr,
173 bool UseInstrInfo = true);
175 /// This function computes the integer multiple of Base that equals V. If
176 /// successful, it returns true and returns the multiple in Multiple. If
177 /// unsuccessful, it returns false. Also, if V can be simplified to an
178 /// integer, then the simplified V is returned in Val. Look through sext only
179 /// if LookThroughSExt=true.
180 bool ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
181 bool LookThroughSExt = false,
182 unsigned Depth = 0);
184 /// Map a call instruction to an intrinsic ID. Libcalls which have equivalent
185 /// intrinsics are treated as-if they were intrinsics.
186 Intrinsic::ID getIntrinsicForCallSite(ImmutableCallSite ICS,
187 const TargetLibraryInfo *TLI);
189 /// Return true if we can prove that the specified FP value is never equal to
190 /// -0.0.
191 bool CannotBeNegativeZero(const Value *V, const TargetLibraryInfo *TLI,
192 unsigned Depth = 0);
194 /// Return true if we can prove that the specified FP value is either NaN or
195 /// never less than -0.0.
197 /// NaN --> true
198 /// +0 --> true
199 /// -0 --> true
200 /// x > +0 --> true
201 /// x < -0 --> false
202 bool CannotBeOrderedLessThanZero(const Value *V, const TargetLibraryInfo *TLI);
204 /// Return true if the floating-point scalar value is not a NaN or if the
205 /// floating-point vector value has no NaN elements. Return false if a value
206 /// could ever be NaN.
207 bool isKnownNeverNaN(const Value *V, const TargetLibraryInfo *TLI,
208 unsigned Depth = 0);
210 /// Return true if we can prove that the specified FP value's sign bit is 0.
212 /// NaN --> true/false (depending on the NaN's sign bit)
213 /// +0 --> true
214 /// -0 --> false
215 /// x > +0 --> true
216 /// x < -0 --> false
217 bool SignBitMustBeZero(const Value *V, const TargetLibraryInfo *TLI);
219 /// If the specified value can be set by repeating the same byte in memory,
220 /// return the i8 value that it is represented with. This is true for all i8
221 /// values obviously, but is also true for i32 0, i32 -1, i16 0xF0F0, double
222 /// 0.0 etc. If the value can't be handled with a repeated byte store (e.g.
223 /// i16 0x1234), return null. If the value is entirely undef and padding,
224 /// return undef.
225 Value *isBytewiseValue(Value *V);
227 /// Given an aggregrate and an sequence of indices, see if the scalar value
228 /// indexed is already around as a register, for example if it were inserted
229 /// directly into the aggregrate.
231 /// If InsertBefore is not null, this function will duplicate (modified)
232 /// insertvalues when a part of a nested struct is extracted.
233 Value *FindInsertedValue(Value *V,
234 ArrayRef<unsigned> idx_range,
235 Instruction *InsertBefore = nullptr);
237 /// Analyze the specified pointer to see if it can be expressed as a base
238 /// pointer plus a constant offset. Return the base and offset to the caller.
239 Value *GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
240 const DataLayout &DL);
241 inline const Value *GetPointerBaseWithConstantOffset(const Value *Ptr,
242 int64_t &Offset,
243 const DataLayout &DL) {
244 return GetPointerBaseWithConstantOffset(const_cast<Value *>(Ptr), Offset,
245 DL);
248 /// Returns true if the GEP is based on a pointer to a string (array of
249 // \p CharSize integers) and is indexing into this string.
250 bool isGEPBasedOnPointerToString(const GEPOperator *GEP,
251 unsigned CharSize = 8);
253 /// Represents offset+length into a ConstantDataArray.
254 struct ConstantDataArraySlice {
255 /// ConstantDataArray pointer. nullptr indicates a zeroinitializer (a valid
256 /// initializer, it just doesn't fit the ConstantDataArray interface).
257 const ConstantDataArray *Array;
259 /// Slice starts at this Offset.
260 uint64_t Offset;
262 /// Length of the slice.
263 uint64_t Length;
265 /// Moves the Offset and adjusts Length accordingly.
266 void move(uint64_t Delta) {
267 assert(Delta < Length);
268 Offset += Delta;
269 Length -= Delta;
272 /// Convenience accessor for elements in the slice.
273 uint64_t operator[](unsigned I) const {
274 return Array==nullptr ? 0 : Array->getElementAsInteger(I + Offset);
278 /// Returns true if the value \p V is a pointer into a ConstantDataArray.
279 /// If successful \p Slice will point to a ConstantDataArray info object
280 /// with an appropriate offset.
281 bool getConstantDataArrayInfo(const Value *V, ConstantDataArraySlice &Slice,
282 unsigned ElementSize, uint64_t Offset = 0);
284 /// This function computes the length of a null-terminated C string pointed to
285 /// by V. If successful, it returns true and returns the string in Str. If
286 /// unsuccessful, it returns false. This does not include the trailing null
287 /// character by default. If TrimAtNul is set to false, then this returns any
288 /// trailing null characters as well as any other characters that come after
289 /// it.
290 bool getConstantStringInfo(const Value *V, StringRef &Str,
291 uint64_t Offset = 0, bool TrimAtNul = true);
293 /// If we can compute the length of the string pointed to by the specified
294 /// pointer, return 'len+1'. If we can't, return 0.
295 uint64_t GetStringLength(const Value *V, unsigned CharSize = 8);
297 /// This function returns call pointer argument that is considered the same by
298 /// aliasing rules. You CAN'T use it to replace one value with another.
299 const Value *getArgumentAliasingToReturnedPointer(const CallBase *Call);
300 inline Value *getArgumentAliasingToReturnedPointer(CallBase *Call) {
301 return const_cast<Value *>(getArgumentAliasingToReturnedPointer(
302 const_cast<const CallBase *>(Call)));
305 // {launder,strip}.invariant.group returns pointer that aliases its argument,
306 // and it only captures pointer by returning it.
307 // These intrinsics are not marked as nocapture, because returning is
308 // considered as capture. The arguments are not marked as returned neither,
309 // because it would make it useless.
310 bool isIntrinsicReturningPointerAliasingArgumentWithoutCapturing(
311 const CallBase *Call);
313 /// This method strips off any GEP address adjustments and pointer casts from
314 /// the specified value, returning the original object being addressed. Note
315 /// that the returned value has pointer type if the specified value does. If
316 /// the MaxLookup value is non-zero, it limits the number of instructions to
317 /// be stripped off.
318 Value *GetUnderlyingObject(Value *V, const DataLayout &DL,
319 unsigned MaxLookup = 6);
320 inline const Value *GetUnderlyingObject(const Value *V, const DataLayout &DL,
321 unsigned MaxLookup = 6) {
322 return GetUnderlyingObject(const_cast<Value *>(V), DL, MaxLookup);
325 /// This method is similar to GetUnderlyingObject except that it can
326 /// look through phi and select instructions and return multiple objects.
328 /// If LoopInfo is passed, loop phis are further analyzed. If a pointer
329 /// accesses different objects in each iteration, we don't look through the
330 /// phi node. E.g. consider this loop nest:
332 /// int **A;
333 /// for (i)
334 /// for (j) {
335 /// A[i][j] = A[i-1][j] * B[j]
336 /// }
338 /// This is transformed by Load-PRE to stash away A[i] for the next iteration
339 /// of the outer loop:
341 /// Curr = A[0]; // Prev_0
342 /// for (i: 1..N) {
343 /// Prev = Curr; // Prev = PHI (Prev_0, Curr)
344 /// Curr = A[i];
345 /// for (j: 0..N) {
346 /// Curr[j] = Prev[j] * B[j]
347 /// }
348 /// }
350 /// Since A[i] and A[i-1] are independent pointers, getUnderlyingObjects
351 /// should not assume that Curr and Prev share the same underlying object thus
352 /// it shouldn't look through the phi above.
353 void GetUnderlyingObjects(Value *V, SmallVectorImpl<Value *> &Objects,
354 const DataLayout &DL, LoopInfo *LI = nullptr,
355 unsigned MaxLookup = 6);
357 /// This is a wrapper around GetUnderlyingObjects and adds support for basic
358 /// ptrtoint+arithmetic+inttoptr sequences.
359 bool getUnderlyingObjectsForCodeGen(const Value *V,
360 SmallVectorImpl<Value *> &Objects,
361 const DataLayout &DL);
363 /// Return true if the only users of this pointer are lifetime markers.
364 bool onlyUsedByLifetimeMarkers(const Value *V);
366 /// Return true if the instruction does not have any effects besides
367 /// calculating the result and does not have undefined behavior.
369 /// This method never returns true for an instruction that returns true for
370 /// mayHaveSideEffects; however, this method also does some other checks in
371 /// addition. It checks for undefined behavior, like dividing by zero or
372 /// loading from an invalid pointer (but not for undefined results, like a
373 /// shift with a shift amount larger than the width of the result). It checks
374 /// for malloc and alloca because speculatively executing them might cause a
375 /// memory leak. It also returns false for instructions related to control
376 /// flow, specifically terminators and PHI nodes.
378 /// If the CtxI is specified this method performs context-sensitive analysis
379 /// and returns true if it is safe to execute the instruction immediately
380 /// before the CtxI.
382 /// If the CtxI is NOT specified this method only looks at the instruction
383 /// itself and its operands, so if this method returns true, it is safe to
384 /// move the instruction as long as the correct dominance relationships for
385 /// the operands and users hold.
387 /// This method can return true for instructions that read memory;
388 /// for such instructions, moving them may change the resulting value.
389 bool isSafeToSpeculativelyExecute(const Value *V,
390 const Instruction *CtxI = nullptr,
391 const DominatorTree *DT = nullptr);
393 /// Returns true if the result or effects of the given instructions \p I
394 /// depend on or influence global memory.
395 /// Memory dependence arises for example if the instruction reads from
396 /// memory or may produce effects or undefined behaviour. Memory dependent
397 /// instructions generally cannot be reorderd with respect to other memory
398 /// dependent instructions or moved into non-dominated basic blocks.
399 /// Instructions which just compute a value based on the values of their
400 /// operands are not memory dependent.
401 bool mayBeMemoryDependent(const Instruction &I);
403 /// Return true if it is an intrinsic that cannot be speculated but also
404 /// cannot trap.
405 bool isAssumeLikeIntrinsic(const Instruction *I);
407 /// Return true if it is valid to use the assumptions provided by an
408 /// assume intrinsic, I, at the point in the control-flow identified by the
409 /// context instruction, CxtI.
410 bool isValidAssumeForContext(const Instruction *I, const Instruction *CxtI,
411 const DominatorTree *DT = nullptr);
413 enum class OverflowResult { AlwaysOverflows, MayOverflow, NeverOverflows };
415 OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
416 const Value *RHS,
417 const DataLayout &DL,
418 AssumptionCache *AC,
419 const Instruction *CxtI,
420 const DominatorTree *DT,
421 bool UseInstrInfo = true);
422 OverflowResult computeOverflowForSignedMul(const Value *LHS, const Value *RHS,
423 const DataLayout &DL,
424 AssumptionCache *AC,
425 const Instruction *CxtI,
426 const DominatorTree *DT,
427 bool UseInstrInfo = true);
428 OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
429 const Value *RHS,
430 const DataLayout &DL,
431 AssumptionCache *AC,
432 const Instruction *CxtI,
433 const DominatorTree *DT,
434 bool UseInstrInfo = true);
435 OverflowResult computeOverflowForSignedAdd(const Value *LHS, const Value *RHS,
436 const DataLayout &DL,
437 AssumptionCache *AC = nullptr,
438 const Instruction *CxtI = nullptr,
439 const DominatorTree *DT = nullptr);
440 /// This version also leverages the sign bit of Add if known.
441 OverflowResult computeOverflowForSignedAdd(const AddOperator *Add,
442 const DataLayout &DL,
443 AssumptionCache *AC = nullptr,
444 const Instruction *CxtI = nullptr,
445 const DominatorTree *DT = nullptr);
446 OverflowResult computeOverflowForUnsignedSub(const Value *LHS, const Value *RHS,
447 const DataLayout &DL,
448 AssumptionCache *AC,
449 const Instruction *CxtI,
450 const DominatorTree *DT);
451 OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
452 const DataLayout &DL,
453 AssumptionCache *AC,
454 const Instruction *CxtI,
455 const DominatorTree *DT);
457 /// Returns true if the arithmetic part of the \p II 's result is
458 /// used only along the paths control dependent on the computation
459 /// not overflowing, \p II being an <op>.with.overflow intrinsic.
460 bool isOverflowIntrinsicNoWrap(const IntrinsicInst *II,
461 const DominatorTree &DT);
463 /// Return true if this function can prove that the instruction I will
464 /// always transfer execution to one of its successors (including the next
465 /// instruction that follows within a basic block). E.g. this is not
466 /// guaranteed for function calls that could loop infinitely.
468 /// In other words, this function returns false for instructions that may
469 /// transfer execution or fail to transfer execution in a way that is not
470 /// captured in the CFG nor in the sequence of instructions within a basic
471 /// block.
473 /// Undefined behavior is assumed not to happen, so e.g. division is
474 /// guaranteed to transfer execution to the following instruction even
475 /// though division by zero might cause undefined behavior.
476 bool isGuaranteedToTransferExecutionToSuccessor(const Instruction *I);
478 /// Returns true if this block does not contain a potential implicit exit.
479 /// This is equivelent to saying that all instructions within the basic block
480 /// are guaranteed to transfer execution to their successor within the basic
481 /// block. This has the same assumptions w.r.t. undefined behavior as the
482 /// instruction variant of this function.
483 bool isGuaranteedToTransferExecutionToSuccessor(const BasicBlock *BB);
485 /// Return true if this function can prove that the instruction I
486 /// is executed for every iteration of the loop L.
488 /// Note that this currently only considers the loop header.
489 bool isGuaranteedToExecuteForEveryIteration(const Instruction *I,
490 const Loop *L);
492 /// Return true if this function can prove that I is guaranteed to yield
493 /// full-poison (all bits poison) if at least one of its operands are
494 /// full-poison (all bits poison).
496 /// The exact rules for how poison propagates through instructions have
497 /// not been settled as of 2015-07-10, so this function is conservative
498 /// and only considers poison to be propagated in uncontroversial
499 /// cases. There is no attempt to track values that may be only partially
500 /// poison.
501 bool propagatesFullPoison(const Instruction *I);
503 /// Return either nullptr or an operand of I such that I will trigger
504 /// undefined behavior if I is executed and that operand has a full-poison
505 /// value (all bits poison).
506 const Value *getGuaranteedNonFullPoisonOp(const Instruction *I);
508 /// Return true if this function can prove that if PoisonI is executed
509 /// and yields a full-poison value (all bits poison), then that will
510 /// trigger undefined behavior.
512 /// Note that this currently only considers the basic block that is
513 /// the parent of I.
514 bool programUndefinedIfFullPoison(const Instruction *PoisonI);
516 /// Specific patterns of select instructions we can match.
517 enum SelectPatternFlavor {
518 SPF_UNKNOWN = 0,
519 SPF_SMIN, /// Signed minimum
520 SPF_UMIN, /// Unsigned minimum
521 SPF_SMAX, /// Signed maximum
522 SPF_UMAX, /// Unsigned maximum
523 SPF_FMINNUM, /// Floating point minnum
524 SPF_FMAXNUM, /// Floating point maxnum
525 SPF_ABS, /// Absolute value
526 SPF_NABS /// Negated absolute value
529 /// Behavior when a floating point min/max is given one NaN and one
530 /// non-NaN as input.
531 enum SelectPatternNaNBehavior {
532 SPNB_NA = 0, /// NaN behavior not applicable.
533 SPNB_RETURNS_NAN, /// Given one NaN input, returns the NaN.
534 SPNB_RETURNS_OTHER, /// Given one NaN input, returns the non-NaN.
535 SPNB_RETURNS_ANY /// Given one NaN input, can return either (or
536 /// it has been determined that no operands can
537 /// be NaN).
540 struct SelectPatternResult {
541 SelectPatternFlavor Flavor;
542 SelectPatternNaNBehavior NaNBehavior; /// Only applicable if Flavor is
543 /// SPF_FMINNUM or SPF_FMAXNUM.
544 bool Ordered; /// When implementing this min/max pattern as
545 /// fcmp; select, does the fcmp have to be
546 /// ordered?
548 /// Return true if \p SPF is a min or a max pattern.
549 static bool isMinOrMax(SelectPatternFlavor SPF) {
550 return SPF != SPF_UNKNOWN && SPF != SPF_ABS && SPF != SPF_NABS;
554 /// Pattern match integer [SU]MIN, [SU]MAX and ABS idioms, returning the kind
555 /// and providing the out parameter results if we successfully match.
557 /// For ABS/NABS, LHS will be set to the input to the abs idiom. RHS will be
558 /// the negation instruction from the idiom.
560 /// If CastOp is not nullptr, also match MIN/MAX idioms where the type does
561 /// not match that of the original select. If this is the case, the cast
562 /// operation (one of Trunc,SExt,Zext) that must be done to transform the
563 /// type of LHS and RHS into the type of V is returned in CastOp.
565 /// For example:
566 /// %1 = icmp slt i32 %a, i32 4
567 /// %2 = sext i32 %a to i64
568 /// %3 = select i1 %1, i64 %2, i64 4
570 /// -> LHS = %a, RHS = i32 4, *CastOp = Instruction::SExt
572 SelectPatternResult matchSelectPattern(Value *V, Value *&LHS, Value *&RHS,
573 Instruction::CastOps *CastOp = nullptr,
574 unsigned Depth = 0);
575 inline SelectPatternResult
576 matchSelectPattern(const Value *V, const Value *&LHS, const Value *&RHS,
577 Instruction::CastOps *CastOp = nullptr) {
578 Value *L = const_cast<Value*>(LHS);
579 Value *R = const_cast<Value*>(RHS);
580 auto Result = matchSelectPattern(const_cast<Value*>(V), L, R);
581 LHS = L;
582 RHS = R;
583 return Result;
586 /// Return the canonical comparison predicate for the specified
587 /// minimum/maximum flavor.
588 CmpInst::Predicate getMinMaxPred(SelectPatternFlavor SPF,
589 bool Ordered = false);
591 /// Return the inverse minimum/maximum flavor of the specified flavor.
592 /// For example, signed minimum is the inverse of signed maximum.
593 SelectPatternFlavor getInverseMinMaxFlavor(SelectPatternFlavor SPF);
595 /// Return the canonical inverse comparison predicate for the specified
596 /// minimum/maximum flavor.
597 CmpInst::Predicate getInverseMinMaxPred(SelectPatternFlavor SPF);
599 /// Return true if RHS is known to be implied true by LHS. Return false if
600 /// RHS is known to be implied false by LHS. Otherwise, return None if no
601 /// implication can be made.
602 /// A & B must be i1 (boolean) values or a vector of such values. Note that
603 /// the truth table for implication is the same as <=u on i1 values (but not
604 /// <=s!). The truth table for both is:
605 /// | T | F (B)
606 /// T | T | F
607 /// F | T | T
608 /// (A)
609 Optional<bool> isImpliedCondition(const Value *LHS, const Value *RHS,
610 const DataLayout &DL, bool LHSIsTrue = true,
611 unsigned Depth = 0);
613 /// Return the boolean condition value in the context of the given instruction
614 /// if it is known based on dominating conditions.
615 Optional<bool> isImpliedByDomCondition(const Value *Cond,
616 const Instruction *ContextI,
617 const DataLayout &DL);
618 } // end namespace llvm
620 #endif // LLVM_ANALYSIS_VALUETRACKING_H