1 //===- BasicTTIImpl.h -------------------------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
10 /// This file provides a helper that implements much of the TTI interface in
11 /// terms of the target-independent code generator and TargetLowering
14 //===----------------------------------------------------------------------===//
16 #ifndef LLVM_CODEGEN_BASICTTIIMPL_H
17 #define LLVM_CODEGEN_BASICTTIIMPL_H
19 #include "llvm/ADT/APInt.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/BitVector.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallVector.h"
24 #include "llvm/Analysis/LoopInfo.h"
25 #include "llvm/Analysis/TargetTransformInfo.h"
26 #include "llvm/Analysis/TargetTransformInfoImpl.h"
27 #include "llvm/CodeGen/ISDOpcodes.h"
28 #include "llvm/CodeGen/TargetLowering.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/ValueTypes.h"
31 #include "llvm/IR/BasicBlock.h"
32 #include "llvm/IR/CallSite.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/InstrTypes.h"
38 #include "llvm/IR/Instruction.h"
39 #include "llvm/IR/Instructions.h"
40 #include "llvm/IR/Intrinsics.h"
41 #include "llvm/IR/Operator.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/MC/MCSchedule.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/MachineValueType.h"
49 #include "llvm/Support/MathExtras.h"
61 class ScalarEvolution
;
65 extern cl::opt
<unsigned> PartialUnrollingThreshold
;
67 /// Base class which can be used to help build a TTI implementation.
69 /// This class provides as much implementation of the TTI interface as is
70 /// possible using the target independent parts of the code generator.
72 /// In order to subclass it, your class must implement a getST() method to
73 /// return the subtarget, and a getTLI() method to return the target lowering.
74 /// We need these methods implemented in the derived class so that this class
75 /// doesn't have to duplicate storage for them.
77 class BasicTTIImplBase
: public TargetTransformInfoImplCRTPBase
<T
> {
79 using BaseT
= TargetTransformInfoImplCRTPBase
<T
>;
80 using TTI
= TargetTransformInfo
;
82 /// Estimate a cost of Broadcast as an extract and sequence of insert
84 unsigned getBroadcastShuffleOverhead(Type
*Ty
) {
85 assert(Ty
->isVectorTy() && "Can only shuffle vectors");
87 // Broadcast cost is equal to the cost of extracting the zero'th element
88 // plus the cost of inserting it into every element of the result vector.
89 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
90 Instruction::ExtractElement
, Ty
, 0);
92 for (int i
= 0, e
= Ty
->getVectorNumElements(); i
< e
; ++i
) {
93 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
94 Instruction::InsertElement
, Ty
, i
);
99 /// Estimate a cost of shuffle as a sequence of extract and insert
101 unsigned getPermuteShuffleOverhead(Type
*Ty
) {
102 assert(Ty
->isVectorTy() && "Can only shuffle vectors");
104 // Shuffle cost is equal to the cost of extracting element from its argument
105 // plus the cost of inserting them onto the result vector.
107 // e.g. <4 x float> has a mask of <0,5,2,7> i.e we need to extract from
108 // index 0 of first vector, index 1 of second vector,index 2 of first
109 // vector and finally index 3 of second vector and insert them at index
110 // <0,1,2,3> of result vector.
111 for (int i
= 0, e
= Ty
->getVectorNumElements(); i
< e
; ++i
) {
112 Cost
+= static_cast<T
*>(this)
113 ->getVectorInstrCost(Instruction::InsertElement
, Ty
, i
);
114 Cost
+= static_cast<T
*>(this)
115 ->getVectorInstrCost(Instruction::ExtractElement
, Ty
, i
);
120 /// Estimate a cost of subvector extraction as a sequence of extract and
121 /// insert operations.
122 unsigned getExtractSubvectorOverhead(Type
*Ty
, int Index
, Type
*SubTy
) {
123 assert(Ty
&& Ty
->isVectorTy() && SubTy
&& SubTy
->isVectorTy() &&
124 "Can only extract subvectors from vectors");
125 int NumSubElts
= SubTy
->getVectorNumElements();
126 assert((Index
+ NumSubElts
) <= (int)Ty
->getVectorNumElements() &&
127 "SK_ExtractSubvector index out of range");
130 // Subvector extraction cost is equal to the cost of extracting element from
131 // the source type plus the cost of inserting them into the result vector
133 for (int i
= 0; i
!= NumSubElts
; ++i
) {
134 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
135 Instruction::ExtractElement
, Ty
, i
+ Index
);
136 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
137 Instruction::InsertElement
, SubTy
, i
);
142 /// Estimate a cost of subvector insertion as a sequence of extract and
143 /// insert operations.
144 unsigned getInsertSubvectorOverhead(Type
*Ty
, int Index
, Type
*SubTy
) {
145 assert(Ty
&& Ty
->isVectorTy() && SubTy
&& SubTy
->isVectorTy() &&
146 "Can only insert subvectors into vectors");
147 int NumSubElts
= SubTy
->getVectorNumElements();
148 assert((Index
+ NumSubElts
) <= (int)Ty
->getVectorNumElements() &&
149 "SK_InsertSubvector index out of range");
152 // Subvector insertion cost is equal to the cost of extracting element from
153 // the source type plus the cost of inserting them into the result vector
155 for (int i
= 0; i
!= NumSubElts
; ++i
) {
156 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
157 Instruction::ExtractElement
, SubTy
, i
);
158 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
159 Instruction::InsertElement
, Ty
, i
+ Index
);
164 /// Local query method delegates up to T which *must* implement this!
165 const TargetSubtargetInfo
*getST() const {
166 return static_cast<const T
*>(this)->getST();
169 /// Local query method delegates up to T which *must* implement this!
170 const TargetLoweringBase
*getTLI() const {
171 return static_cast<const T
*>(this)->getTLI();
174 static ISD::MemIndexedMode
getISDIndexedMode(TTI::MemIndexedMode M
) {
176 case TTI::MIM_Unindexed
:
177 return ISD::UNINDEXED
;
178 case TTI::MIM_PreInc
:
180 case TTI::MIM_PreDec
:
182 case TTI::MIM_PostInc
:
183 return ISD::POST_INC
;
184 case TTI::MIM_PostDec
:
185 return ISD::POST_DEC
;
187 llvm_unreachable("Unexpected MemIndexedMode");
191 explicit BasicTTIImplBase(const TargetMachine
*TM
, const DataLayout
&DL
)
194 using TargetTransformInfoImplBase::DL
;
197 /// \name Scalar TTI Implementations
199 bool allowsMisalignedMemoryAccesses(LLVMContext
&Context
,
200 unsigned BitWidth
, unsigned AddressSpace
,
201 unsigned Alignment
, bool *Fast
) const {
202 EVT E
= EVT::getIntegerVT(Context
, BitWidth
);
203 return getTLI()->allowsMisalignedMemoryAccesses(E
, AddressSpace
, Alignment
, Fast
);
206 bool hasBranchDivergence() { return false; }
208 bool isSourceOfDivergence(const Value
*V
) { return false; }
210 bool isAlwaysUniform(const Value
*V
) { return false; }
212 unsigned getFlatAddressSpace() {
213 // Return an invalid address space.
217 bool isLegalAddImmediate(int64_t imm
) {
218 return getTLI()->isLegalAddImmediate(imm
);
221 bool isLegalICmpImmediate(int64_t imm
) {
222 return getTLI()->isLegalICmpImmediate(imm
);
225 bool isLegalAddressingMode(Type
*Ty
, GlobalValue
*BaseGV
, int64_t BaseOffset
,
226 bool HasBaseReg
, int64_t Scale
,
227 unsigned AddrSpace
, Instruction
*I
= nullptr) {
228 TargetLoweringBase::AddrMode AM
;
230 AM
.BaseOffs
= BaseOffset
;
231 AM
.HasBaseReg
= HasBaseReg
;
233 return getTLI()->isLegalAddressingMode(DL
, AM
, Ty
, AddrSpace
, I
);
236 bool isIndexedLoadLegal(TTI::MemIndexedMode M
, Type
*Ty
,
237 const DataLayout
&DL
) const {
238 EVT VT
= getTLI()->getValueType(DL
, Ty
);
239 return getTLI()->isIndexedLoadLegal(getISDIndexedMode(M
), VT
);
242 bool isIndexedStoreLegal(TTI::MemIndexedMode M
, Type
*Ty
,
243 const DataLayout
&DL
) const {
244 EVT VT
= getTLI()->getValueType(DL
, Ty
);
245 return getTLI()->isIndexedStoreLegal(getISDIndexedMode(M
), VT
);
248 bool isLSRCostLess(TTI::LSRCost C1
, TTI::LSRCost C2
) {
249 return TargetTransformInfoImplBase::isLSRCostLess(C1
, C2
);
252 int getScalingFactorCost(Type
*Ty
, GlobalValue
*BaseGV
, int64_t BaseOffset
,
253 bool HasBaseReg
, int64_t Scale
, unsigned AddrSpace
) {
254 TargetLoweringBase::AddrMode AM
;
256 AM
.BaseOffs
= BaseOffset
;
257 AM
.HasBaseReg
= HasBaseReg
;
259 return getTLI()->getScalingFactorCost(DL
, AM
, Ty
, AddrSpace
);
262 bool isTruncateFree(Type
*Ty1
, Type
*Ty2
) {
263 return getTLI()->isTruncateFree(Ty1
, Ty2
);
266 bool isProfitableToHoist(Instruction
*I
) {
267 return getTLI()->isProfitableToHoist(I
);
270 bool useAA() const { return getST()->useAA(); }
272 bool isTypeLegal(Type
*Ty
) {
273 EVT VT
= getTLI()->getValueType(DL
, Ty
);
274 return getTLI()->isTypeLegal(VT
);
277 int getGEPCost(Type
*PointeeType
, const Value
*Ptr
,
278 ArrayRef
<const Value
*> Operands
) {
279 return BaseT::getGEPCost(PointeeType
, Ptr
, Operands
);
282 int getExtCost(const Instruction
*I
, const Value
*Src
) {
283 if (getTLI()->isExtFree(I
))
284 return TargetTransformInfo::TCC_Free
;
286 if (isa
<ZExtInst
>(I
) || isa
<SExtInst
>(I
))
287 if (const LoadInst
*LI
= dyn_cast
<LoadInst
>(Src
))
288 if (getTLI()->isExtLoad(LI
, I
, DL
))
289 return TargetTransformInfo::TCC_Free
;
291 return TargetTransformInfo::TCC_Basic
;
294 unsigned getIntrinsicCost(Intrinsic::ID IID
, Type
*RetTy
,
295 ArrayRef
<const Value
*> Arguments
) {
296 return BaseT::getIntrinsicCost(IID
, RetTy
, Arguments
);
299 unsigned getIntrinsicCost(Intrinsic::ID IID
, Type
*RetTy
,
300 ArrayRef
<Type
*> ParamTys
) {
301 if (IID
== Intrinsic::cttz
) {
302 if (getTLI()->isCheapToSpeculateCttz())
303 return TargetTransformInfo::TCC_Basic
;
304 return TargetTransformInfo::TCC_Expensive
;
307 if (IID
== Intrinsic::ctlz
) {
308 if (getTLI()->isCheapToSpeculateCtlz())
309 return TargetTransformInfo::TCC_Basic
;
310 return TargetTransformInfo::TCC_Expensive
;
313 return BaseT::getIntrinsicCost(IID
, RetTy
, ParamTys
);
316 unsigned getEstimatedNumberOfCaseClusters(const SwitchInst
&SI
,
317 unsigned &JumpTableSize
) {
318 /// Try to find the estimated number of clusters. Note that the number of
319 /// clusters identified in this function could be different from the actural
320 /// numbers found in lowering. This function ignore switches that are
321 /// lowered with a mix of jump table / bit test / BTree. This function was
322 /// initially intended to be used when estimating the cost of switch in
323 /// inline cost heuristic, but it's a generic cost model to be used in other
324 /// places (e.g., in loop unrolling).
325 unsigned N
= SI
.getNumCases();
326 const TargetLoweringBase
*TLI
= getTLI();
327 const DataLayout
&DL
= this->getDataLayout();
330 bool IsJTAllowed
= TLI
->areJTsAllowed(SI
.getParent()->getParent());
332 // Early exit if both a jump table and bit test are not allowed.
333 if (N
< 1 || (!IsJTAllowed
&& DL
.getIndexSizeInBits(0u) < N
))
336 APInt MaxCaseVal
= SI
.case_begin()->getCaseValue()->getValue();
337 APInt MinCaseVal
= MaxCaseVal
;
338 for (auto CI
: SI
.cases()) {
339 const APInt
&CaseVal
= CI
.getCaseValue()->getValue();
340 if (CaseVal
.sgt(MaxCaseVal
))
341 MaxCaseVal
= CaseVal
;
342 if (CaseVal
.slt(MinCaseVal
))
343 MinCaseVal
= CaseVal
;
346 // Check if suitable for a bit test
347 if (N
<= DL
.getIndexSizeInBits(0u)) {
348 SmallPtrSet
<const BasicBlock
*, 4> Dests
;
349 for (auto I
: SI
.cases())
350 Dests
.insert(I
.getCaseSuccessor());
352 if (TLI
->isSuitableForBitTests(Dests
.size(), N
, MinCaseVal
, MaxCaseVal
,
357 // Check if suitable for a jump table.
359 if (N
< 2 || N
< TLI
->getMinimumJumpTableEntries())
362 (MaxCaseVal
- MinCaseVal
)
363 .getLimitedValue(std::numeric_limits
<uint64_t>::max() - 1) + 1;
364 // Check whether a range of clusters is dense enough for a jump table
365 if (TLI
->isSuitableForJumpTable(&SI
, N
, Range
)) {
366 JumpTableSize
= Range
;
373 unsigned getJumpBufAlignment() { return getTLI()->getJumpBufAlignment(); }
375 unsigned getJumpBufSize() { return getTLI()->getJumpBufSize(); }
377 bool shouldBuildLookupTables() {
378 const TargetLoweringBase
*TLI
= getTLI();
379 return TLI
->isOperationLegalOrCustom(ISD::BR_JT
, MVT::Other
) ||
380 TLI
->isOperationLegalOrCustom(ISD::BRIND
, MVT::Other
);
383 bool haveFastSqrt(Type
*Ty
) {
384 const TargetLoweringBase
*TLI
= getTLI();
385 EVT VT
= TLI
->getValueType(DL
, Ty
);
386 return TLI
->isTypeLegal(VT
) &&
387 TLI
->isOperationLegalOrCustom(ISD::FSQRT
, VT
);
390 bool isFCmpOrdCheaperThanFCmpZero(Type
*Ty
) {
394 unsigned getFPOpCost(Type
*Ty
) {
395 // Check whether FADD is available, as a proxy for floating-point in
397 const TargetLoweringBase
*TLI
= getTLI();
398 EVT VT
= TLI
->getValueType(DL
, Ty
);
399 if (TLI
->isOperationLegalOrCustomOrPromote(ISD::FADD
, VT
))
400 return TargetTransformInfo::TCC_Basic
;
401 return TargetTransformInfo::TCC_Expensive
;
404 unsigned getOperationCost(unsigned Opcode
, Type
*Ty
, Type
*OpTy
) {
405 const TargetLoweringBase
*TLI
= getTLI();
408 case Instruction::Trunc
:
409 if (TLI
->isTruncateFree(OpTy
, Ty
))
410 return TargetTransformInfo::TCC_Free
;
411 return TargetTransformInfo::TCC_Basic
;
412 case Instruction::ZExt
:
413 if (TLI
->isZExtFree(OpTy
, Ty
))
414 return TargetTransformInfo::TCC_Free
;
415 return TargetTransformInfo::TCC_Basic
;
418 return BaseT::getOperationCost(Opcode
, Ty
, OpTy
);
421 unsigned getInliningThresholdMultiplier() { return 1; }
423 void getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
424 TTI::UnrollingPreferences
&UP
) {
425 // This unrolling functionality is target independent, but to provide some
426 // motivation for its intended use, for x86:
428 // According to the Intel 64 and IA-32 Architectures Optimization Reference
429 // Manual, Intel Core models and later have a loop stream detector (and
430 // associated uop queue) that can benefit from partial unrolling.
431 // The relevant requirements are:
432 // - The loop must have no more than 4 (8 for Nehalem and later) branches
433 // taken, and none of them may be calls.
434 // - The loop can have no more than 18 (28 for Nehalem and later) uops.
436 // According to the Software Optimization Guide for AMD Family 15h
437 // Processors, models 30h-4fh (Steamroller and later) have a loop predictor
438 // and loop buffer which can benefit from partial unrolling.
439 // The relevant requirements are:
440 // - The loop must have fewer than 16 branches
441 // - The loop must have less than 40 uops in all executed loop branches
443 // The number of taken branches in a loop is hard to estimate here, and
444 // benchmarking has revealed that it is better not to be conservative when
445 // estimating the branch count. As a result, we'll ignore the branch limits
446 // until someone finds a case where it matters in practice.
449 const TargetSubtargetInfo
*ST
= getST();
450 if (PartialUnrollingThreshold
.getNumOccurrences() > 0)
451 MaxOps
= PartialUnrollingThreshold
;
452 else if (ST
->getSchedModel().LoopMicroOpBufferSize
> 0)
453 MaxOps
= ST
->getSchedModel().LoopMicroOpBufferSize
;
457 // Scan the loop: don't unroll loops with calls.
458 for (Loop::block_iterator I
= L
->block_begin(), E
= L
->block_end(); I
!= E
;
462 for (BasicBlock::iterator J
= BB
->begin(), JE
= BB
->end(); J
!= JE
; ++J
)
463 if (isa
<CallInst
>(J
) || isa
<InvokeInst
>(J
)) {
464 ImmutableCallSite
CS(&*J
);
465 if (const Function
*F
= CS
.getCalledFunction()) {
466 if (!static_cast<T
*>(this)->isLoweredToCall(F
))
474 // Enable runtime and partial unrolling up to the specified size.
475 // Enable using trip count upper bound to unroll loops.
476 UP
.Partial
= UP
.Runtime
= UP
.UpperBound
= true;
477 UP
.PartialThreshold
= MaxOps
;
479 // Avoid unrolling when optimizing for size.
480 UP
.OptSizeThreshold
= 0;
481 UP
.PartialOptSizeThreshold
= 0;
483 // Set number of instructions optimized when "back edge"
484 // becomes "fall through" to default value of 2.
488 int getInstructionLatency(const Instruction
*I
) {
489 if (isa
<LoadInst
>(I
))
490 return getST()->getSchedModel().DefaultLoadLatency
;
492 return BaseT::getInstructionLatency(I
);
497 /// \name Vector TTI Implementations
500 unsigned getNumberOfRegisters(bool Vector
) { return Vector
? 0 : 1; }
502 unsigned getRegisterBitWidth(bool Vector
) const { return 32; }
504 /// Estimate the overhead of scalarizing an instruction. Insert and Extract
505 /// are set if the result needs to be inserted and/or extracted from vectors.
506 unsigned getScalarizationOverhead(Type
*Ty
, bool Insert
, bool Extract
) {
507 assert(Ty
->isVectorTy() && "Can only scalarize vectors");
510 for (int i
= 0, e
= Ty
->getVectorNumElements(); i
< e
; ++i
) {
512 Cost
+= static_cast<T
*>(this)
513 ->getVectorInstrCost(Instruction::InsertElement
, Ty
, i
);
515 Cost
+= static_cast<T
*>(this)
516 ->getVectorInstrCost(Instruction::ExtractElement
, Ty
, i
);
522 /// Estimate the overhead of scalarizing an instructions unique
523 /// non-constant operands. The types of the arguments are ordinarily
524 /// scalar, in which case the costs are multiplied with VF.
525 unsigned getOperandsScalarizationOverhead(ArrayRef
<const Value
*> Args
,
528 SmallPtrSet
<const Value
*, 4> UniqueOperands
;
529 for (const Value
*A
: Args
) {
530 if (!isa
<Constant
>(A
) && UniqueOperands
.insert(A
).second
) {
531 Type
*VecTy
= nullptr;
532 if (A
->getType()->isVectorTy()) {
533 VecTy
= A
->getType();
534 // If A is a vector operand, VF should be 1 or correspond to A.
535 assert((VF
== 1 || VF
== VecTy
->getVectorNumElements()) &&
536 "Vector argument does not match VF");
539 VecTy
= VectorType::get(A
->getType(), VF
);
541 Cost
+= getScalarizationOverhead(VecTy
, false, true);
548 unsigned getScalarizationOverhead(Type
*VecTy
, ArrayRef
<const Value
*> Args
) {
549 assert(VecTy
->isVectorTy());
553 Cost
+= getScalarizationOverhead(VecTy
, true, false);
555 Cost
+= getOperandsScalarizationOverhead(Args
,
556 VecTy
->getVectorNumElements());
558 // When no information on arguments is provided, we add the cost
559 // associated with one argument as a heuristic.
560 Cost
+= getScalarizationOverhead(VecTy
, false, true);
565 unsigned getMaxInterleaveFactor(unsigned VF
) { return 1; }
567 unsigned getArithmeticInstrCost(
568 unsigned Opcode
, Type
*Ty
,
569 TTI::OperandValueKind Opd1Info
= TTI::OK_AnyValue
,
570 TTI::OperandValueKind Opd2Info
= TTI::OK_AnyValue
,
571 TTI::OperandValueProperties Opd1PropInfo
= TTI::OP_None
,
572 TTI::OperandValueProperties Opd2PropInfo
= TTI::OP_None
,
573 ArrayRef
<const Value
*> Args
= ArrayRef
<const Value
*>()) {
574 // Check if any of the operands are vector operands.
575 const TargetLoweringBase
*TLI
= getTLI();
576 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
577 assert(ISD
&& "Invalid opcode");
579 std::pair
<unsigned, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
581 bool IsFloat
= Ty
->isFPOrFPVectorTy();
582 // Assume that floating point arithmetic operations cost twice as much as
583 // integer operations.
584 unsigned OpCost
= (IsFloat
? 2 : 1);
586 if (TLI
->isOperationLegalOrPromote(ISD
, LT
.second
)) {
587 // The operation is legal. Assume it costs 1.
588 // TODO: Once we have extract/insert subvector cost we need to use them.
589 return LT
.first
* OpCost
;
592 if (!TLI
->isOperationExpand(ISD
, LT
.second
)) {
593 // If the operation is custom lowered, then assume that the code is twice
595 return LT
.first
* 2 * OpCost
;
598 // Else, assume that we need to scalarize this op.
599 // TODO: If one of the types get legalized by splitting, handle this
600 // similarly to what getCastInstrCost() does.
601 if (Ty
->isVectorTy()) {
602 unsigned Num
= Ty
->getVectorNumElements();
603 unsigned Cost
= static_cast<T
*>(this)
604 ->getArithmeticInstrCost(Opcode
, Ty
->getScalarType());
605 // Return the cost of multiple scalar invocation plus the cost of
606 // inserting and extracting the values.
607 return getScalarizationOverhead(Ty
, Args
) + Num
* Cost
;
610 // We don't know anything about this scalar instruction.
614 unsigned getShuffleCost(TTI::ShuffleKind Kind
, Type
*Tp
, int Index
,
617 case TTI::SK_Broadcast
:
618 return getBroadcastShuffleOverhead(Tp
);
620 case TTI::SK_Reverse
:
621 case TTI::SK_Transpose
:
622 case TTI::SK_PermuteSingleSrc
:
623 case TTI::SK_PermuteTwoSrc
:
624 return getPermuteShuffleOverhead(Tp
);
625 case TTI::SK_ExtractSubvector
:
626 return getExtractSubvectorOverhead(Tp
, Index
, SubTp
);
627 case TTI::SK_InsertSubvector
:
628 return getInsertSubvectorOverhead(Tp
, Index
, SubTp
);
630 llvm_unreachable("Unknown TTI::ShuffleKind");
633 unsigned getCastInstrCost(unsigned Opcode
, Type
*Dst
, Type
*Src
,
634 const Instruction
*I
= nullptr) {
635 const TargetLoweringBase
*TLI
= getTLI();
636 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
637 assert(ISD
&& "Invalid opcode");
638 std::pair
<unsigned, MVT
> SrcLT
= TLI
->getTypeLegalizationCost(DL
, Src
);
639 std::pair
<unsigned, MVT
> DstLT
= TLI
->getTypeLegalizationCost(DL
, Dst
);
641 // Check for NOOP conversions.
642 if (SrcLT
.first
== DstLT
.first
&&
643 SrcLT
.second
.getSizeInBits() == DstLT
.second
.getSizeInBits()) {
645 // Bitcast between types that are legalized to the same type are free.
646 if (Opcode
== Instruction::BitCast
|| Opcode
== Instruction::Trunc
)
650 if (Opcode
== Instruction::Trunc
&&
651 TLI
->isTruncateFree(SrcLT
.second
, DstLT
.second
))
654 if (Opcode
== Instruction::ZExt
&&
655 TLI
->isZExtFree(SrcLT
.second
, DstLT
.second
))
658 if (Opcode
== Instruction::AddrSpaceCast
&&
659 TLI
->isNoopAddrSpaceCast(Src
->getPointerAddressSpace(),
660 Dst
->getPointerAddressSpace()))
663 // If this is a zext/sext of a load, return 0 if the corresponding
664 // extending load exists on target.
665 if ((Opcode
== Instruction::ZExt
|| Opcode
== Instruction::SExt
) &&
666 I
&& isa
<LoadInst
>(I
->getOperand(0))) {
667 EVT ExtVT
= EVT::getEVT(Dst
);
668 EVT LoadVT
= EVT::getEVT(Src
);
670 ((Opcode
== Instruction::ZExt
) ? ISD::ZEXTLOAD
: ISD::SEXTLOAD
);
671 if (TLI
->isLoadExtLegal(LType
, ExtVT
, LoadVT
))
675 // If the cast is marked as legal (or promote) then assume low cost.
676 if (SrcLT
.first
== DstLT
.first
&&
677 TLI
->isOperationLegalOrPromote(ISD
, DstLT
.second
))
680 // Handle scalar conversions.
681 if (!Src
->isVectorTy() && !Dst
->isVectorTy()) {
682 // Scalar bitcasts are usually free.
683 if (Opcode
== Instruction::BitCast
)
686 // Just check the op cost. If the operation is legal then assume it costs
688 if (!TLI
->isOperationExpand(ISD
, DstLT
.second
))
691 // Assume that illegal scalar instruction are expensive.
695 // Check vector-to-vector casts.
696 if (Dst
->isVectorTy() && Src
->isVectorTy()) {
697 // If the cast is between same-sized registers, then the check is simple.
698 if (SrcLT
.first
== DstLT
.first
&&
699 SrcLT
.second
.getSizeInBits() == DstLT
.second
.getSizeInBits()) {
701 // Assume that Zext is done using AND.
702 if (Opcode
== Instruction::ZExt
)
705 // Assume that sext is done using SHL and SRA.
706 if (Opcode
== Instruction::SExt
)
709 // Just check the op cost. If the operation is legal then assume it
711 // 1 and multiply by the type-legalization overhead.
712 if (!TLI
->isOperationExpand(ISD
, DstLT
.second
))
713 return SrcLT
.first
* 1;
716 // If we are legalizing by splitting, query the concrete TTI for the cost
717 // of casting the original vector twice. We also need to factor in the
718 // cost of the split itself. Count that as 1, to be consistent with
719 // TLI->getTypeLegalizationCost().
720 if ((TLI
->getTypeAction(Src
->getContext(), TLI
->getValueType(DL
, Src
)) ==
721 TargetLowering::TypeSplitVector
) ||
722 (TLI
->getTypeAction(Dst
->getContext(), TLI
->getValueType(DL
, Dst
)) ==
723 TargetLowering::TypeSplitVector
)) {
724 Type
*SplitDst
= VectorType::get(Dst
->getVectorElementType(),
725 Dst
->getVectorNumElements() / 2);
726 Type
*SplitSrc
= VectorType::get(Src
->getVectorElementType(),
727 Src
->getVectorNumElements() / 2);
728 T
*TTI
= static_cast<T
*>(this);
729 return TTI
->getVectorSplitCost() +
730 (2 * TTI
->getCastInstrCost(Opcode
, SplitDst
, SplitSrc
, I
));
733 // In other cases where the source or destination are illegal, assume
734 // the operation will get scalarized.
735 unsigned Num
= Dst
->getVectorNumElements();
736 unsigned Cost
= static_cast<T
*>(this)->getCastInstrCost(
737 Opcode
, Dst
->getScalarType(), Src
->getScalarType(), I
);
739 // Return the cost of multiple scalar invocation plus the cost of
740 // inserting and extracting the values.
741 return getScalarizationOverhead(Dst
, true, true) + Num
* Cost
;
744 // We already handled vector-to-vector and scalar-to-scalar conversions.
746 // is where we handle bitcast between vectors and scalars. We need to assume
747 // that the conversion is scalarized in one way or another.
748 if (Opcode
== Instruction::BitCast
)
749 // Illegal bitcasts are done by storing and loading from a stack slot.
750 return (Src
->isVectorTy() ? getScalarizationOverhead(Src
, false, true)
752 (Dst
->isVectorTy() ? getScalarizationOverhead(Dst
, true, false)
755 llvm_unreachable("Unhandled cast");
758 unsigned getExtractWithExtendCost(unsigned Opcode
, Type
*Dst
,
759 VectorType
*VecTy
, unsigned Index
) {
760 return static_cast<T
*>(this)->getVectorInstrCost(
761 Instruction::ExtractElement
, VecTy
, Index
) +
762 static_cast<T
*>(this)->getCastInstrCost(Opcode
, Dst
,
763 VecTy
->getElementType());
766 unsigned getCFInstrCost(unsigned Opcode
) {
767 // Branches are assumed to be predicted.
771 unsigned getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
, Type
*CondTy
,
772 const Instruction
*I
) {
773 const TargetLoweringBase
*TLI
= getTLI();
774 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
775 assert(ISD
&& "Invalid opcode");
777 // Selects on vectors are actually vector selects.
778 if (ISD
== ISD::SELECT
) {
779 assert(CondTy
&& "CondTy must exist");
780 if (CondTy
->isVectorTy())
783 std::pair
<unsigned, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, ValTy
);
785 if (!(ValTy
->isVectorTy() && !LT
.second
.isVector()) &&
786 !TLI
->isOperationExpand(ISD
, LT
.second
)) {
787 // The operation is legal. Assume it costs 1. Multiply
788 // by the type-legalization overhead.
792 // Otherwise, assume that the cast is scalarized.
793 // TODO: If one of the types get legalized by splitting, handle this
794 // similarly to what getCastInstrCost() does.
795 if (ValTy
->isVectorTy()) {
796 unsigned Num
= ValTy
->getVectorNumElements();
798 CondTy
= CondTy
->getScalarType();
799 unsigned Cost
= static_cast<T
*>(this)->getCmpSelInstrCost(
800 Opcode
, ValTy
->getScalarType(), CondTy
, I
);
802 // Return the cost of multiple scalar invocation plus the cost of
803 // inserting and extracting the values.
804 return getScalarizationOverhead(ValTy
, true, false) + Num
* Cost
;
807 // Unknown scalar opcode.
811 unsigned getVectorInstrCost(unsigned Opcode
, Type
*Val
, unsigned Index
) {
812 std::pair
<unsigned, MVT
> LT
=
813 getTLI()->getTypeLegalizationCost(DL
, Val
->getScalarType());
818 unsigned getMemoryOpCost(unsigned Opcode
, Type
*Src
, unsigned Alignment
,
819 unsigned AddressSpace
, const Instruction
*I
= nullptr) {
820 assert(!Src
->isVoidTy() && "Invalid type");
821 std::pair
<unsigned, MVT
> LT
= getTLI()->getTypeLegalizationCost(DL
, Src
);
823 // Assuming that all loads of legal types cost 1.
824 unsigned Cost
= LT
.first
;
826 if (Src
->isVectorTy() &&
827 Src
->getPrimitiveSizeInBits() < LT
.second
.getSizeInBits()) {
828 // This is a vector load that legalizes to a larger type than the vector
829 // itself. Unless the corresponding extending load or truncating store is
830 // legal, then this will scalarize.
831 TargetLowering::LegalizeAction LA
= TargetLowering::Expand
;
832 EVT MemVT
= getTLI()->getValueType(DL
, Src
);
833 if (Opcode
== Instruction::Store
)
834 LA
= getTLI()->getTruncStoreAction(LT
.second
, MemVT
);
836 LA
= getTLI()->getLoadExtAction(ISD::EXTLOAD
, LT
.second
, MemVT
);
838 if (LA
!= TargetLowering::Legal
&& LA
!= TargetLowering::Custom
) {
839 // This is a vector load/store for some illegal type that is scalarized.
840 // We must account for the cost of building or decomposing the vector.
841 Cost
+= getScalarizationOverhead(Src
, Opcode
!= Instruction::Store
,
842 Opcode
== Instruction::Store
);
849 unsigned getInterleavedMemoryOpCost(unsigned Opcode
, Type
*VecTy
,
851 ArrayRef
<unsigned> Indices
,
852 unsigned Alignment
, unsigned AddressSpace
,
853 bool UseMaskForCond
= false,
854 bool UseMaskForGaps
= false) {
855 VectorType
*VT
= dyn_cast
<VectorType
>(VecTy
);
856 assert(VT
&& "Expect a vector type for interleaved memory op");
858 unsigned NumElts
= VT
->getNumElements();
859 assert(Factor
> 1 && NumElts
% Factor
== 0 && "Invalid interleave factor");
861 unsigned NumSubElts
= NumElts
/ Factor
;
862 VectorType
*SubVT
= VectorType::get(VT
->getElementType(), NumSubElts
);
864 // Firstly, the cost of load/store operation.
866 if (UseMaskForCond
|| UseMaskForGaps
)
867 Cost
= static_cast<T
*>(this)->getMaskedMemoryOpCost(
868 Opcode
, VecTy
, Alignment
, AddressSpace
);
870 Cost
= static_cast<T
*>(this)->getMemoryOpCost(Opcode
, VecTy
, Alignment
,
873 // Legalize the vector type, and get the legalized and unlegalized type
875 MVT VecTyLT
= getTLI()->getTypeLegalizationCost(DL
, VecTy
).second
;
877 static_cast<T
*>(this)->getDataLayout().getTypeStoreSize(VecTy
);
878 unsigned VecTyLTSize
= VecTyLT
.getStoreSize();
880 // Return the ceiling of dividing A by B.
881 auto ceil
= [](unsigned A
, unsigned B
) { return (A
+ B
- 1) / B
; };
883 // Scale the cost of the memory operation by the fraction of legalized
884 // instructions that will actually be used. We shouldn't account for the
885 // cost of dead instructions since they will be removed.
887 // E.g., An interleaved load of factor 8:
888 // %vec = load <16 x i64>, <16 x i64>* %ptr
889 // %v0 = shufflevector %vec, undef, <0, 8>
891 // If <16 x i64> is legalized to 8 v2i64 loads, only 2 of the loads will be
892 // used (those corresponding to elements [0:1] and [8:9] of the unlegalized
893 // type). The other loads are unused.
895 // We only scale the cost of loads since interleaved store groups aren't
896 // allowed to have gaps.
897 if (Opcode
== Instruction::Load
&& VecTySize
> VecTyLTSize
) {
898 // The number of loads of a legal type it will take to represent a load
899 // of the unlegalized vector type.
900 unsigned NumLegalInsts
= ceil(VecTySize
, VecTyLTSize
);
902 // The number of elements of the unlegalized type that correspond to a
903 // single legal instruction.
904 unsigned NumEltsPerLegalInst
= ceil(NumElts
, NumLegalInsts
);
906 // Determine which legal instructions will be used.
907 BitVector
UsedInsts(NumLegalInsts
, false);
908 for (unsigned Index
: Indices
)
909 for (unsigned Elt
= 0; Elt
< NumSubElts
; ++Elt
)
910 UsedInsts
.set((Index
+ Elt
* Factor
) / NumEltsPerLegalInst
);
912 // Scale the cost of the load by the fraction of legal instructions that
914 Cost
*= UsedInsts
.count() / NumLegalInsts
;
917 // Then plus the cost of interleave operation.
918 if (Opcode
== Instruction::Load
) {
919 // The interleave cost is similar to extract sub vectors' elements
920 // from the wide vector, and insert them into sub vectors.
922 // E.g. An interleaved load of factor 2 (with one member of index 0):
923 // %vec = load <8 x i32>, <8 x i32>* %ptr
924 // %v0 = shuffle %vec, undef, <0, 2, 4, 6> ; Index 0
925 // The cost is estimated as extract elements at 0, 2, 4, 6 from the
926 // <8 x i32> vector and insert them into a <4 x i32> vector.
928 assert(Indices
.size() <= Factor
&&
929 "Interleaved memory op has too many members");
931 for (unsigned Index
: Indices
) {
932 assert(Index
< Factor
&& "Invalid index for interleaved memory op");
934 // Extract elements from loaded vector for each sub vector.
935 for (unsigned i
= 0; i
< NumSubElts
; i
++)
936 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
937 Instruction::ExtractElement
, VT
, Index
+ i
* Factor
);
940 unsigned InsSubCost
= 0;
941 for (unsigned i
= 0; i
< NumSubElts
; i
++)
942 InsSubCost
+= static_cast<T
*>(this)->getVectorInstrCost(
943 Instruction::InsertElement
, SubVT
, i
);
945 Cost
+= Indices
.size() * InsSubCost
;
947 // The interleave cost is extract all elements from sub vectors, and
948 // insert them into the wide vector.
950 // E.g. An interleaved store of factor 2:
951 // %v0_v1 = shuffle %v0, %v1, <0, 4, 1, 5, 2, 6, 3, 7>
952 // store <8 x i32> %interleaved.vec, <8 x i32>* %ptr
953 // The cost is estimated as extract all elements from both <4 x i32>
954 // vectors and insert into the <8 x i32> vector.
956 unsigned ExtSubCost
= 0;
957 for (unsigned i
= 0; i
< NumSubElts
; i
++)
958 ExtSubCost
+= static_cast<T
*>(this)->getVectorInstrCost(
959 Instruction::ExtractElement
, SubVT
, i
);
960 Cost
+= ExtSubCost
* Factor
;
962 for (unsigned i
= 0; i
< NumElts
; i
++)
963 Cost
+= static_cast<T
*>(this)
964 ->getVectorInstrCost(Instruction::InsertElement
, VT
, i
);
970 Type
*I8Type
= Type::getInt8Ty(VT
->getContext());
971 VectorType
*MaskVT
= VectorType::get(I8Type
, NumElts
);
972 SubVT
= VectorType::get(I8Type
, NumSubElts
);
974 // The Mask shuffling cost is extract all the elements of the Mask
975 // and insert each of them Factor times into the wide vector:
977 // E.g. an interleaved group with factor 3:
978 // %mask = icmp ult <8 x i32> %vec1, %vec2
979 // %interleaved.mask = shufflevector <8 x i1> %mask, <8 x i1> undef,
980 // <24 x i32> <0,0,0,1,1,1,2,2,2,3,3,3,4,4,4,5,5,5,6,6,6,7,7,7>
981 // The cost is estimated as extract all mask elements from the <8xi1> mask
982 // vector and insert them factor times into the <24xi1> shuffled mask
984 for (unsigned i
= 0; i
< NumSubElts
; i
++)
985 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
986 Instruction::ExtractElement
, SubVT
, i
);
988 for (unsigned i
= 0; i
< NumElts
; i
++)
989 Cost
+= static_cast<T
*>(this)->getVectorInstrCost(
990 Instruction::InsertElement
, MaskVT
, i
);
992 // The Gaps mask is invariant and created outside the loop, therefore the
993 // cost of creating it is not accounted for here. However if we have both
994 // a MaskForGaps and some other mask that guards the execution of the
995 // memory access, we need to account for the cost of And-ing the two masks
998 Cost
+= static_cast<T
*>(this)->getArithmeticInstrCost(
999 BinaryOperator::And
, MaskVT
);
1004 /// Get intrinsic cost based on arguments.
1005 unsigned getIntrinsicInstrCost(Intrinsic::ID IID
, Type
*RetTy
,
1006 ArrayRef
<Value
*> Args
, FastMathFlags FMF
,
1008 unsigned RetVF
= (RetTy
->isVectorTy() ? RetTy
->getVectorNumElements() : 1);
1009 assert((RetVF
== 1 || VF
== 1) && "VF > 1 and RetVF is a vector type");
1010 auto *ConcreteTTI
= static_cast<T
*>(this);
1014 // Assume that we need to scalarize this intrinsic.
1015 SmallVector
<Type
*, 4> Types
;
1016 for (Value
*Op
: Args
) {
1017 Type
*OpTy
= Op
->getType();
1018 assert(VF
== 1 || !OpTy
->isVectorTy());
1019 Types
.push_back(VF
== 1 ? OpTy
: VectorType::get(OpTy
, VF
));
1022 if (VF
> 1 && !RetTy
->isVoidTy())
1023 RetTy
= VectorType::get(RetTy
, VF
);
1025 // Compute the scalarization overhead based on Args for a vector
1026 // intrinsic. A vectorizer will pass a scalar RetTy and VF > 1, while
1027 // CostModel will pass a vector RetTy and VF is 1.
1028 unsigned ScalarizationCost
= std::numeric_limits
<unsigned>::max();
1029 if (RetVF
> 1 || VF
> 1) {
1030 ScalarizationCost
= 0;
1031 if (!RetTy
->isVoidTy())
1032 ScalarizationCost
+= getScalarizationOverhead(RetTy
, true, false);
1033 ScalarizationCost
+= getOperandsScalarizationOverhead(Args
, VF
);
1036 return ConcreteTTI
->getIntrinsicInstrCost(IID
, RetTy
, Types
, FMF
,
1039 case Intrinsic::masked_scatter
: {
1040 assert(VF
== 1 && "Can't vectorize types here.");
1041 Value
*Mask
= Args
[3];
1042 bool VarMask
= !isa
<Constant
>(Mask
);
1043 unsigned Alignment
= cast
<ConstantInt
>(Args
[2])->getZExtValue();
1044 return ConcreteTTI
->getGatherScatterOpCost(
1045 Instruction::Store
, Args
[0]->getType(), Args
[1], VarMask
, Alignment
);
1047 case Intrinsic::masked_gather
: {
1048 assert(VF
== 1 && "Can't vectorize types here.");
1049 Value
*Mask
= Args
[2];
1050 bool VarMask
= !isa
<Constant
>(Mask
);
1051 unsigned Alignment
= cast
<ConstantInt
>(Args
[1])->getZExtValue();
1052 return ConcreteTTI
->getGatherScatterOpCost(Instruction::Load
, RetTy
,
1053 Args
[0], VarMask
, Alignment
);
1055 case Intrinsic::experimental_vector_reduce_add
:
1056 case Intrinsic::experimental_vector_reduce_mul
:
1057 case Intrinsic::experimental_vector_reduce_and
:
1058 case Intrinsic::experimental_vector_reduce_or
:
1059 case Intrinsic::experimental_vector_reduce_xor
:
1060 case Intrinsic::experimental_vector_reduce_fadd
:
1061 case Intrinsic::experimental_vector_reduce_fmul
:
1062 case Intrinsic::experimental_vector_reduce_smax
:
1063 case Intrinsic::experimental_vector_reduce_smin
:
1064 case Intrinsic::experimental_vector_reduce_fmax
:
1065 case Intrinsic::experimental_vector_reduce_fmin
:
1066 case Intrinsic::experimental_vector_reduce_umax
:
1067 case Intrinsic::experimental_vector_reduce_umin
:
1068 return getIntrinsicInstrCost(IID
, RetTy
, Args
[0]->getType(), FMF
);
1069 case Intrinsic::fshl
:
1070 case Intrinsic::fshr
: {
1074 TTI::OperandValueProperties OpPropsX
, OpPropsY
, OpPropsZ
, OpPropsBW
;
1075 TTI::OperandValueKind OpKindX
= TTI::getOperandInfo(X
, OpPropsX
);
1076 TTI::OperandValueKind OpKindY
= TTI::getOperandInfo(Y
, OpPropsY
);
1077 TTI::OperandValueKind OpKindZ
= TTI::getOperandInfo(Z
, OpPropsZ
);
1078 TTI::OperandValueKind OpKindBW
= TTI::OK_UniformConstantValue
;
1079 OpPropsBW
= isPowerOf2_32(RetTy
->getScalarSizeInBits()) ? TTI::OP_PowerOf2
1081 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
1082 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
1084 Cost
+= ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::Or
, RetTy
);
1085 Cost
+= ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::Sub
, RetTy
);
1086 Cost
+= ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::Shl
, RetTy
,
1087 OpKindX
, OpKindZ
, OpPropsX
);
1088 Cost
+= ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::LShr
, RetTy
,
1089 OpKindY
, OpKindZ
, OpPropsY
);
1090 // Non-constant shift amounts requires a modulo.
1091 if (OpKindZ
!= TTI::OK_UniformConstantValue
&&
1092 OpKindZ
!= TTI::OK_NonUniformConstantValue
)
1093 Cost
+= ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::URem
, RetTy
,
1094 OpKindZ
, OpKindBW
, OpPropsZ
,
1096 // For non-rotates (X != Y) we must add shift-by-zero handling costs.
1098 Type
*CondTy
= Type::getInt1Ty(RetTy
->getContext());
1100 CondTy
= VectorType::get(CondTy
, RetVF
);
1101 Cost
+= ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::ICmp
, RetTy
,
1103 Cost
+= ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::Select
, RetTy
,
1111 /// Get intrinsic cost based on argument types.
1112 /// If ScalarizationCostPassed is std::numeric_limits<unsigned>::max(), the
1113 /// cost of scalarizing the arguments and the return value will be computed
1115 unsigned getIntrinsicInstrCost(
1116 Intrinsic::ID IID
, Type
*RetTy
, ArrayRef
<Type
*> Tys
, FastMathFlags FMF
,
1117 unsigned ScalarizationCostPassed
= std::numeric_limits
<unsigned>::max()) {
1118 unsigned RetVF
= (RetTy
->isVectorTy() ? RetTy
->getVectorNumElements() : 1);
1119 auto *ConcreteTTI
= static_cast<T
*>(this);
1121 SmallVector
<unsigned, 2> ISDs
;
1122 unsigned SingleCallCost
= 10; // Library call cost. Make it expensive.
1125 // Assume that we need to scalarize this intrinsic.
1126 unsigned ScalarizationCost
= ScalarizationCostPassed
;
1127 unsigned ScalarCalls
= 1;
1128 Type
*ScalarRetTy
= RetTy
;
1129 if (RetTy
->isVectorTy()) {
1130 if (ScalarizationCostPassed
== std::numeric_limits
<unsigned>::max())
1131 ScalarizationCost
= getScalarizationOverhead(RetTy
, true, false);
1132 ScalarCalls
= std::max(ScalarCalls
, RetTy
->getVectorNumElements());
1133 ScalarRetTy
= RetTy
->getScalarType();
1135 SmallVector
<Type
*, 4> ScalarTys
;
1136 for (unsigned i
= 0, ie
= Tys
.size(); i
!= ie
; ++i
) {
1138 if (Ty
->isVectorTy()) {
1139 if (ScalarizationCostPassed
== std::numeric_limits
<unsigned>::max())
1140 ScalarizationCost
+= getScalarizationOverhead(Ty
, false, true);
1141 ScalarCalls
= std::max(ScalarCalls
, Ty
->getVectorNumElements());
1142 Ty
= Ty
->getScalarType();
1144 ScalarTys
.push_back(Ty
);
1146 if (ScalarCalls
== 1)
1147 return 1; // Return cost of a scalar intrinsic. Assume it to be cheap.
1149 unsigned ScalarCost
=
1150 ConcreteTTI
->getIntrinsicInstrCost(IID
, ScalarRetTy
, ScalarTys
, FMF
);
1152 return ScalarCalls
* ScalarCost
+ ScalarizationCost
;
1154 // Look for intrinsics that can be lowered directly or turned into a scalar
1156 case Intrinsic::sqrt
:
1157 ISDs
.push_back(ISD::FSQRT
);
1159 case Intrinsic::sin
:
1160 ISDs
.push_back(ISD::FSIN
);
1162 case Intrinsic::cos
:
1163 ISDs
.push_back(ISD::FCOS
);
1165 case Intrinsic::exp
:
1166 ISDs
.push_back(ISD::FEXP
);
1168 case Intrinsic::exp2
:
1169 ISDs
.push_back(ISD::FEXP2
);
1171 case Intrinsic::log
:
1172 ISDs
.push_back(ISD::FLOG
);
1174 case Intrinsic::log10
:
1175 ISDs
.push_back(ISD::FLOG10
);
1177 case Intrinsic::log2
:
1178 ISDs
.push_back(ISD::FLOG2
);
1180 case Intrinsic::fabs
:
1181 ISDs
.push_back(ISD::FABS
);
1183 case Intrinsic::canonicalize
:
1184 ISDs
.push_back(ISD::FCANONICALIZE
);
1186 case Intrinsic::minnum
:
1187 ISDs
.push_back(ISD::FMINNUM
);
1189 ISDs
.push_back(ISD::FMINIMUM
);
1191 case Intrinsic::maxnum
:
1192 ISDs
.push_back(ISD::FMAXNUM
);
1194 ISDs
.push_back(ISD::FMAXIMUM
);
1196 case Intrinsic::copysign
:
1197 ISDs
.push_back(ISD::FCOPYSIGN
);
1199 case Intrinsic::floor
:
1200 ISDs
.push_back(ISD::FFLOOR
);
1202 case Intrinsic::ceil
:
1203 ISDs
.push_back(ISD::FCEIL
);
1205 case Intrinsic::trunc
:
1206 ISDs
.push_back(ISD::FTRUNC
);
1208 case Intrinsic::nearbyint
:
1209 ISDs
.push_back(ISD::FNEARBYINT
);
1211 case Intrinsic::rint
:
1212 ISDs
.push_back(ISD::FRINT
);
1214 case Intrinsic::round
:
1215 ISDs
.push_back(ISD::FROUND
);
1217 case Intrinsic::pow
:
1218 ISDs
.push_back(ISD::FPOW
);
1220 case Intrinsic::fma
:
1221 ISDs
.push_back(ISD::FMA
);
1223 case Intrinsic::fmuladd
:
1224 ISDs
.push_back(ISD::FMA
);
1226 // FIXME: We should return 0 whenever getIntrinsicCost == TCC_Free.
1227 case Intrinsic::lifetime_start
:
1228 case Intrinsic::lifetime_end
:
1229 case Intrinsic::sideeffect
:
1231 case Intrinsic::masked_store
:
1232 return ConcreteTTI
->getMaskedMemoryOpCost(Instruction::Store
, Tys
[0], 0,
1234 case Intrinsic::masked_load
:
1235 return ConcreteTTI
->getMaskedMemoryOpCost(Instruction::Load
, RetTy
, 0, 0);
1236 case Intrinsic::experimental_vector_reduce_add
:
1237 return ConcreteTTI
->getArithmeticReductionCost(Instruction::Add
, Tys
[0],
1238 /*IsPairwiseForm=*/false);
1239 case Intrinsic::experimental_vector_reduce_mul
:
1240 return ConcreteTTI
->getArithmeticReductionCost(Instruction::Mul
, Tys
[0],
1241 /*IsPairwiseForm=*/false);
1242 case Intrinsic::experimental_vector_reduce_and
:
1243 return ConcreteTTI
->getArithmeticReductionCost(Instruction::And
, Tys
[0],
1244 /*IsPairwiseForm=*/false);
1245 case Intrinsic::experimental_vector_reduce_or
:
1246 return ConcreteTTI
->getArithmeticReductionCost(Instruction::Or
, Tys
[0],
1247 /*IsPairwiseForm=*/false);
1248 case Intrinsic::experimental_vector_reduce_xor
:
1249 return ConcreteTTI
->getArithmeticReductionCost(Instruction::Xor
, Tys
[0],
1250 /*IsPairwiseForm=*/false);
1251 case Intrinsic::experimental_vector_reduce_fadd
:
1252 return ConcreteTTI
->getArithmeticReductionCost(Instruction::FAdd
, Tys
[0],
1253 /*IsPairwiseForm=*/false);
1254 case Intrinsic::experimental_vector_reduce_fmul
:
1255 return ConcreteTTI
->getArithmeticReductionCost(Instruction::FMul
, Tys
[0],
1256 /*IsPairwiseForm=*/false);
1257 case Intrinsic::experimental_vector_reduce_smax
:
1258 case Intrinsic::experimental_vector_reduce_smin
:
1259 case Intrinsic::experimental_vector_reduce_fmax
:
1260 case Intrinsic::experimental_vector_reduce_fmin
:
1261 return ConcreteTTI
->getMinMaxReductionCost(
1262 Tys
[0], CmpInst::makeCmpResultType(Tys
[0]), /*IsPairwiseForm=*/false,
1264 case Intrinsic::experimental_vector_reduce_umax
:
1265 case Intrinsic::experimental_vector_reduce_umin
:
1266 return ConcreteTTI
->getMinMaxReductionCost(
1267 Tys
[0], CmpInst::makeCmpResultType(Tys
[0]), /*IsPairwiseForm=*/false,
1268 /*IsSigned=*/false);
1269 case Intrinsic::sadd_sat
:
1270 case Intrinsic::ssub_sat
: {
1271 Type
*CondTy
= Type::getInt1Ty(RetTy
->getContext());
1273 CondTy
= VectorType::get(CondTy
, RetVF
);
1275 Type
*OpTy
= StructType::create({RetTy
, CondTy
});
1276 Intrinsic::ID OverflowOp
= IID
== Intrinsic::sadd_sat
1277 ? Intrinsic::sadd_with_overflow
1278 : Intrinsic::ssub_with_overflow
;
1280 // SatMax -> Overflow && SumDiff < 0
1281 // SatMin -> Overflow && SumDiff >= 0
1283 Cost
+= ConcreteTTI
->getIntrinsicInstrCost(
1284 OverflowOp
, OpTy
, {RetTy
, RetTy
}, FMF
, ScalarizationCostPassed
);
1285 Cost
+= ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::ICmp
, RetTy
,
1287 Cost
+= 2 * ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::Select
, RetTy
,
1291 case Intrinsic::uadd_sat
:
1292 case Intrinsic::usub_sat
: {
1293 Type
*CondTy
= Type::getInt1Ty(RetTy
->getContext());
1295 CondTy
= VectorType::get(CondTy
, RetVF
);
1297 Type
*OpTy
= StructType::create({RetTy
, CondTy
});
1298 Intrinsic::ID OverflowOp
= IID
== Intrinsic::uadd_sat
1299 ? Intrinsic::uadd_with_overflow
1300 : Intrinsic::usub_with_overflow
;
1303 Cost
+= ConcreteTTI
->getIntrinsicInstrCost(
1304 OverflowOp
, OpTy
, {RetTy
, RetTy
}, FMF
, ScalarizationCostPassed
);
1305 Cost
+= ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::Select
, RetTy
,
1309 case Intrinsic::sadd_with_overflow
:
1310 case Intrinsic::ssub_with_overflow
: {
1311 Type
*SumTy
= RetTy
->getContainedType(0);
1312 Type
*OverflowTy
= RetTy
->getContainedType(1);
1313 unsigned Opcode
= IID
== Intrinsic::sadd_with_overflow
1314 ? BinaryOperator::Add
1315 : BinaryOperator::Sub
;
1317 // LHSSign -> LHS >= 0
1318 // RHSSign -> RHS >= 0
1319 // SumSign -> Sum >= 0
1322 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
1324 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
1326 Cost
+= ConcreteTTI
->getArithmeticInstrCost(Opcode
, SumTy
);
1327 Cost
+= 3 * ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::ICmp
, SumTy
,
1328 OverflowTy
, nullptr);
1329 Cost
+= 2 * ConcreteTTI
->getCmpSelInstrCost(
1330 BinaryOperator::ICmp
, OverflowTy
, OverflowTy
, nullptr);
1332 ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::And
, OverflowTy
);
1335 case Intrinsic::uadd_with_overflow
:
1336 case Intrinsic::usub_with_overflow
: {
1337 Type
*SumTy
= RetTy
->getContainedType(0);
1338 Type
*OverflowTy
= RetTy
->getContainedType(1);
1339 unsigned Opcode
= IID
== Intrinsic::uadd_with_overflow
1340 ? BinaryOperator::Add
1341 : BinaryOperator::Sub
;
1344 Cost
+= ConcreteTTI
->getArithmeticInstrCost(Opcode
, SumTy
);
1345 Cost
+= ConcreteTTI
->getCmpSelInstrCost(BinaryOperator::ICmp
, SumTy
,
1346 OverflowTy
, nullptr);
1349 case Intrinsic::ctpop
:
1350 ISDs
.push_back(ISD::CTPOP
);
1351 // In case of legalization use TCC_Expensive. This is cheaper than a
1352 // library call but still not a cheap instruction.
1353 SingleCallCost
= TargetTransformInfo::TCC_Expensive
;
1355 // FIXME: ctlz, cttz, ...
1358 const TargetLoweringBase
*TLI
= getTLI();
1359 std::pair
<unsigned, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, RetTy
);
1361 SmallVector
<unsigned, 2> LegalCost
;
1362 SmallVector
<unsigned, 2> CustomCost
;
1363 for (unsigned ISD
: ISDs
) {
1364 if (TLI
->isOperationLegalOrPromote(ISD
, LT
.second
)) {
1365 if (IID
== Intrinsic::fabs
&& LT
.second
.isFloatingPoint() &&
1366 TLI
->isFAbsFree(LT
.second
)) {
1370 // The operation is legal. Assume it costs 1.
1371 // If the type is split to multiple registers, assume that there is some
1372 // overhead to this.
1373 // TODO: Once we have extract/insert subvector cost we need to use them.
1375 LegalCost
.push_back(LT
.first
* 2);
1377 LegalCost
.push_back(LT
.first
* 1);
1378 } else if (!TLI
->isOperationExpand(ISD
, LT
.second
)) {
1379 // If the operation is custom lowered then assume
1380 // that the code is twice as expensive.
1381 CustomCost
.push_back(LT
.first
* 2);
1385 auto MinLegalCostI
= std::min_element(LegalCost
.begin(), LegalCost
.end());
1386 if (MinLegalCostI
!= LegalCost
.end())
1387 return *MinLegalCostI
;
1389 auto MinCustomCostI
=
1390 std::min_element(CustomCost
.begin(), CustomCost
.end());
1391 if (MinCustomCostI
!= CustomCost
.end())
1392 return *MinCustomCostI
;
1394 // If we can't lower fmuladd into an FMA estimate the cost as a floating
1395 // point mul followed by an add.
1396 if (IID
== Intrinsic::fmuladd
)
1397 return ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::FMul
, RetTy
) +
1398 ConcreteTTI
->getArithmeticInstrCost(BinaryOperator::FAdd
, RetTy
);
1400 // Else, assume that we need to scalarize this intrinsic. For math builtins
1401 // this will emit a costly libcall, adding call overhead and spills. Make it
1403 if (RetTy
->isVectorTy()) {
1404 unsigned ScalarizationCost
=
1405 ((ScalarizationCostPassed
!= std::numeric_limits
<unsigned>::max())
1406 ? ScalarizationCostPassed
1407 : getScalarizationOverhead(RetTy
, true, false));
1408 unsigned ScalarCalls
= RetTy
->getVectorNumElements();
1409 SmallVector
<Type
*, 4> ScalarTys
;
1410 for (unsigned i
= 0, ie
= Tys
.size(); i
!= ie
; ++i
) {
1412 if (Ty
->isVectorTy())
1413 Ty
= Ty
->getScalarType();
1414 ScalarTys
.push_back(Ty
);
1416 unsigned ScalarCost
= ConcreteTTI
->getIntrinsicInstrCost(
1417 IID
, RetTy
->getScalarType(), ScalarTys
, FMF
);
1418 for (unsigned i
= 0, ie
= Tys
.size(); i
!= ie
; ++i
) {
1419 if (Tys
[i
]->isVectorTy()) {
1420 if (ScalarizationCostPassed
== std::numeric_limits
<unsigned>::max())
1421 ScalarizationCost
+= getScalarizationOverhead(Tys
[i
], false, true);
1422 ScalarCalls
= std::max(ScalarCalls
, Tys
[i
]->getVectorNumElements());
1426 return ScalarCalls
* ScalarCost
+ ScalarizationCost
;
1429 // This is going to be turned into a library call, make it expensive.
1430 return SingleCallCost
;
1433 /// Compute a cost of the given call instruction.
1435 /// Compute the cost of calling function F with return type RetTy and
1436 /// argument types Tys. F might be nullptr, in this case the cost of an
1437 /// arbitrary call with the specified signature will be returned.
1438 /// This is used, for instance, when we estimate call of a vector
1439 /// counterpart of the given function.
1440 /// \param F Called function, might be nullptr.
1441 /// \param RetTy Return value types.
1442 /// \param Tys Argument types.
1443 /// \returns The cost of Call instruction.
1444 unsigned getCallInstrCost(Function
*F
, Type
*RetTy
, ArrayRef
<Type
*> Tys
) {
1448 unsigned getNumberOfParts(Type
*Tp
) {
1449 std::pair
<unsigned, MVT
> LT
= getTLI()->getTypeLegalizationCost(DL
, Tp
);
1453 unsigned getAddressComputationCost(Type
*Ty
, ScalarEvolution
*,
1458 /// Try to calculate arithmetic and shuffle op costs for reduction operations.
1459 /// We're assuming that reduction operation are performing the following way:
1460 /// 1. Non-pairwise reduction
1461 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1462 /// <n x i32> <i32 n/2, i32 n/2 + 1, ..., i32 n, i32 undef, ..., i32 undef>
1463 /// \----------------v-------------/ \----------v------------/
1464 /// n/2 elements n/2 elements
1465 /// %red1 = op <n x t> %val, <n x t> val1
1466 /// After this operation we have a vector %red1 where only the first n/2
1467 /// elements are meaningful, the second n/2 elements are undefined and can be
1468 /// dropped. All other operations are actually working with the vector of
1469 /// length n/2, not n, though the real vector length is still n.
1470 /// %val2 = shufflevector<n x t> %red1, <n x t> %undef,
1471 /// <n x i32> <i32 n/4, i32 n/4 + 1, ..., i32 n/2, i32 undef, ..., i32 undef>
1472 /// \----------------v-------------/ \----------v------------/
1473 /// n/4 elements 3*n/4 elements
1474 /// %red2 = op <n x t> %red1, <n x t> val2 - working with the vector of
1475 /// length n/2, the resulting vector has length n/4 etc.
1476 /// 2. Pairwise reduction:
1477 /// Everything is the same except for an additional shuffle operation which
1478 /// is used to produce operands for pairwise kind of reductions.
1479 /// %val1 = shufflevector<n x t> %val, <n x t> %undef,
1480 /// <n x i32> <i32 0, i32 2, ..., i32 n-2, i32 undef, ..., i32 undef>
1481 /// \-------------v----------/ \----------v------------/
1482 /// n/2 elements n/2 elements
1483 /// %val2 = shufflevector<n x t> %val, <n x t> %undef,
1484 /// <n x i32> <i32 1, i32 3, ..., i32 n-1, i32 undef, ..., i32 undef>
1485 /// \-------------v----------/ \----------v------------/
1486 /// n/2 elements n/2 elements
1487 /// %red1 = op <n x t> %val1, <n x t> val2
1488 /// Again, the operation is performed on <n x t> vector, but the resulting
1489 /// vector %red1 is <n/2 x t> vector.
1491 /// The cost model should take into account that the actual length of the
1492 /// vector is reduced on each iteration.
1493 unsigned getArithmeticReductionCost(unsigned Opcode
, Type
*Ty
,
1495 assert(Ty
->isVectorTy() && "Expect a vector type");
1496 Type
*ScalarTy
= Ty
->getVectorElementType();
1497 unsigned NumVecElts
= Ty
->getVectorNumElements();
1498 unsigned NumReduxLevels
= Log2_32(NumVecElts
);
1499 unsigned ArithCost
= 0;
1500 unsigned ShuffleCost
= 0;
1501 auto *ConcreteTTI
= static_cast<T
*>(this);
1502 std::pair
<unsigned, MVT
> LT
=
1503 ConcreteTTI
->getTLI()->getTypeLegalizationCost(DL
, Ty
);
1504 unsigned LongVectorCount
= 0;
1506 LT
.second
.isVector() ? LT
.second
.getVectorNumElements() : 1;
1507 while (NumVecElts
> MVTLen
) {
1509 Type
*SubTy
= VectorType::get(ScalarTy
, NumVecElts
);
1510 // Assume the pairwise shuffles add a cost.
1511 ShuffleCost
+= (IsPairwise
+ 1) *
1512 ConcreteTTI
->getShuffleCost(TTI::SK_ExtractSubvector
, Ty
,
1514 ArithCost
+= ConcreteTTI
->getArithmeticInstrCost(Opcode
, SubTy
);
1519 NumReduxLevels
-= LongVectorCount
;
1521 // The minimal length of the vector is limited by the real length of vector
1522 // operations performed on the current platform. That's why several final
1523 // reduction operations are performed on the vectors with the same
1524 // architecture-dependent length.
1526 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1527 // reductions need two shuffles on every level, but the last one. On that
1528 // level one of the shuffles is <0, u, u, ...> which is identity.
1529 unsigned NumShuffles
= NumReduxLevels
;
1530 if (IsPairwise
&& NumReduxLevels
>= 1)
1531 NumShuffles
+= NumReduxLevels
- 1;
1532 ShuffleCost
+= NumShuffles
*
1533 ConcreteTTI
->getShuffleCost(TTI::SK_PermuteSingleSrc
, Ty
,
1535 ArithCost
+= NumReduxLevels
*
1536 ConcreteTTI
->getArithmeticInstrCost(Opcode
, Ty
);
1537 return ShuffleCost
+ ArithCost
+
1538 ConcreteTTI
->getVectorInstrCost(Instruction::ExtractElement
, Ty
, 0);
1541 /// Try to calculate op costs for min/max reduction operations.
1542 /// \param CondTy Conditional type for the Select instruction.
1543 unsigned getMinMaxReductionCost(Type
*Ty
, Type
*CondTy
, bool IsPairwise
,
1545 assert(Ty
->isVectorTy() && "Expect a vector type");
1546 Type
*ScalarTy
= Ty
->getVectorElementType();
1547 Type
*ScalarCondTy
= CondTy
->getVectorElementType();
1548 unsigned NumVecElts
= Ty
->getVectorNumElements();
1549 unsigned NumReduxLevels
= Log2_32(NumVecElts
);
1551 if (Ty
->isFPOrFPVectorTy()) {
1552 CmpOpcode
= Instruction::FCmp
;
1554 assert(Ty
->isIntOrIntVectorTy() &&
1555 "expecting floating point or integer type for min/max reduction");
1556 CmpOpcode
= Instruction::ICmp
;
1558 unsigned MinMaxCost
= 0;
1559 unsigned ShuffleCost
= 0;
1560 auto *ConcreteTTI
= static_cast<T
*>(this);
1561 std::pair
<unsigned, MVT
> LT
=
1562 ConcreteTTI
->getTLI()->getTypeLegalizationCost(DL
, Ty
);
1563 unsigned LongVectorCount
= 0;
1565 LT
.second
.isVector() ? LT
.second
.getVectorNumElements() : 1;
1566 while (NumVecElts
> MVTLen
) {
1568 Type
*SubTy
= VectorType::get(ScalarTy
, NumVecElts
);
1569 CondTy
= VectorType::get(ScalarCondTy
, NumVecElts
);
1571 // Assume the pairwise shuffles add a cost.
1572 ShuffleCost
+= (IsPairwise
+ 1) *
1573 ConcreteTTI
->getShuffleCost(TTI::SK_ExtractSubvector
, Ty
,
1576 ConcreteTTI
->getCmpSelInstrCost(CmpOpcode
, SubTy
, CondTy
, nullptr) +
1577 ConcreteTTI
->getCmpSelInstrCost(Instruction::Select
, SubTy
, CondTy
,
1583 NumReduxLevels
-= LongVectorCount
;
1585 // The minimal length of the vector is limited by the real length of vector
1586 // operations performed on the current platform. That's why several final
1587 // reduction opertions are perfomed on the vectors with the same
1588 // architecture-dependent length.
1590 // Non pairwise reductions need one shuffle per reduction level. Pairwise
1591 // reductions need two shuffles on every level, but the last one. On that
1592 // level one of the shuffles is <0, u, u, ...> which is identity.
1593 unsigned NumShuffles
= NumReduxLevels
;
1594 if (IsPairwise
&& NumReduxLevels
>= 1)
1595 NumShuffles
+= NumReduxLevels
- 1;
1596 ShuffleCost
+= NumShuffles
*
1597 ConcreteTTI
->getShuffleCost(TTI::SK_PermuteSingleSrc
, Ty
,
1601 (ConcreteTTI
->getCmpSelInstrCost(CmpOpcode
, Ty
, CondTy
, nullptr) +
1602 ConcreteTTI
->getCmpSelInstrCost(Instruction::Select
, Ty
, CondTy
,
1604 // The last min/max should be in vector registers and we counted it above.
1605 // So just need a single extractelement.
1606 return ShuffleCost
+ MinMaxCost
+
1607 ConcreteTTI
->getVectorInstrCost(Instruction::ExtractElement
, Ty
, 0);
1610 unsigned getVectorSplitCost() { return 1; }
1615 /// Concrete BasicTTIImpl that can be used if no further customization
1617 class BasicTTIImpl
: public BasicTTIImplBase
<BasicTTIImpl
> {
1618 using BaseT
= BasicTTIImplBase
<BasicTTIImpl
>;
1620 friend class BasicTTIImplBase
<BasicTTIImpl
>;
1622 const TargetSubtargetInfo
*ST
;
1623 const TargetLoweringBase
*TLI
;
1625 const TargetSubtargetInfo
*getST() const { return ST
; }
1626 const TargetLoweringBase
*getTLI() const { return TLI
; }
1629 explicit BasicTTIImpl(const TargetMachine
*TM
, const Function
&F
);
1632 } // end namespace llvm
1634 #endif // LLVM_CODEGEN_BASICTTIIMPL_H