Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / CodeGen / LiveVariables.h
blob71de306e29420325880e459bd98f3906038d5510
1 //===-- llvm/CodeGen/LiveVariables.h - Live Variable Analysis ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the LiveVariables analysis pass. For each machine
10 // instruction in the function, this pass calculates the set of registers that
11 // are immediately dead after the instruction (i.e., the instruction calculates
12 // the value, but it is never used) and the set of registers that are used by
13 // the instruction, but are never used after the instruction (i.e., they are
14 // killed).
16 // This class computes live variables using a sparse implementation based on
17 // the machine code SSA form. This class computes live variable information for
18 // each virtual and _register allocatable_ physical register in a function. It
19 // uses the dominance properties of SSA form to efficiently compute live
20 // variables for virtual registers, and assumes that physical registers are only
21 // live within a single basic block (allowing it to do a single local analysis
22 // to resolve physical register lifetimes in each basic block). If a physical
23 // register is not register allocatable, it is not tracked. This is useful for
24 // things like the stack pointer and condition codes.
26 //===----------------------------------------------------------------------===//
28 #ifndef LLVM_CODEGEN_LIVEVARIABLES_H
29 #define LLVM_CODEGEN_LIVEVARIABLES_H
31 #include "llvm/ADT/DenseMap.h"
32 #include "llvm/ADT/IndexedMap.h"
33 #include "llvm/ADT/SmallSet.h"
34 #include "llvm/ADT/SmallVector.h"
35 #include "llvm/ADT/SparseBitVector.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 namespace llvm {
42 class MachineBasicBlock;
43 class MachineRegisterInfo;
45 class LiveVariables : public MachineFunctionPass {
46 public:
47 static char ID; // Pass identification, replacement for typeid
48 LiveVariables() : MachineFunctionPass(ID) {
49 initializeLiveVariablesPass(*PassRegistry::getPassRegistry());
52 /// VarInfo - This represents the regions where a virtual register is live in
53 /// the program. We represent this with three different pieces of
54 /// information: the set of blocks in which the instruction is live
55 /// throughout, the set of blocks in which the instruction is actually used,
56 /// and the set of non-phi instructions that are the last users of the value.
57 ///
58 /// In the common case where a value is defined and killed in the same block,
59 /// There is one killing instruction, and AliveBlocks is empty.
60 ///
61 /// Otherwise, the value is live out of the block. If the value is live
62 /// throughout any blocks, these blocks are listed in AliveBlocks. Blocks
63 /// where the liveness range ends are not included in AliveBlocks, instead
64 /// being captured by the Kills set. In these blocks, the value is live into
65 /// the block (unless the value is defined and killed in the same block) and
66 /// lives until the specified instruction. Note that there cannot ever be a
67 /// value whose Kills set contains two instructions from the same basic block.
68 ///
69 /// PHI nodes complicate things a bit. If a PHI node is the last user of a
70 /// value in one of its predecessor blocks, it is not listed in the kills set,
71 /// but does include the predecessor block in the AliveBlocks set (unless that
72 /// block also defines the value). This leads to the (perfectly sensical)
73 /// situation where a value is defined in a block, and the last use is a phi
74 /// node in the successor. In this case, AliveBlocks is empty (the value is
75 /// not live across any blocks) and Kills is empty (phi nodes are not
76 /// included). This is sensical because the value must be live to the end of
77 /// the block, but is not live in any successor blocks.
78 struct VarInfo {
79 /// AliveBlocks - Set of blocks in which this value is alive completely
80 /// through. This is a bit set which uses the basic block number as an
81 /// index.
82 ///
83 SparseBitVector<> AliveBlocks;
85 /// Kills - List of MachineInstruction's which are the last use of this
86 /// virtual register (kill it) in their basic block.
87 ///
88 std::vector<MachineInstr*> Kills;
90 /// removeKill - Delete a kill corresponding to the specified
91 /// machine instruction. Returns true if there was a kill
92 /// corresponding to this instruction, false otherwise.
93 bool removeKill(MachineInstr &MI) {
94 std::vector<MachineInstr *>::iterator I = find(Kills, &MI);
95 if (I == Kills.end())
96 return false;
97 Kills.erase(I);
98 return true;
101 /// findKill - Find a kill instruction in MBB. Return NULL if none is found.
102 MachineInstr *findKill(const MachineBasicBlock *MBB) const;
104 /// isLiveIn - Is Reg live in to MBB? This means that Reg is live through
105 /// MBB, or it is killed in MBB. If Reg is only used by PHI instructions in
106 /// MBB, it is not considered live in.
107 bool isLiveIn(const MachineBasicBlock &MBB,
108 unsigned Reg,
109 MachineRegisterInfo &MRI);
111 void dump() const;
114 private:
115 /// VirtRegInfo - This list is a mapping from virtual register number to
116 /// variable information.
118 IndexedMap<VarInfo, VirtReg2IndexFunctor> VirtRegInfo;
120 /// PHIJoins - list of virtual registers that are PHI joins. These registers
121 /// may have multiple definitions, and they require special handling when
122 /// building live intervals.
123 SparseBitVector<> PHIJoins;
125 private: // Intermediate data structures
126 MachineFunction *MF;
128 MachineRegisterInfo* MRI;
130 const TargetRegisterInfo *TRI;
132 // PhysRegInfo - Keep track of which instruction was the last def of a
133 // physical register. This is a purely local property, because all physical
134 // register references are presumed dead across basic blocks.
135 std::vector<MachineInstr *> PhysRegDef;
137 // PhysRegInfo - Keep track of which instruction was the last use of a
138 // physical register. This is a purely local property, because all physical
139 // register references are presumed dead across basic blocks.
140 std::vector<MachineInstr *> PhysRegUse;
142 std::vector<SmallVector<unsigned, 4>> PHIVarInfo;
144 // DistanceMap - Keep track the distance of a MI from the start of the
145 // current basic block.
146 DenseMap<MachineInstr*, unsigned> DistanceMap;
148 /// HandlePhysRegKill - Add kills of Reg and its sub-registers to the
149 /// uses. Pay special attention to the sub-register uses which may come below
150 /// the last use of the whole register.
151 bool HandlePhysRegKill(unsigned Reg, MachineInstr *MI);
153 /// HandleRegMask - Call HandlePhysRegKill for all registers clobbered by Mask.
154 void HandleRegMask(const MachineOperand&);
156 void HandlePhysRegUse(unsigned Reg, MachineInstr &MI);
157 void HandlePhysRegDef(unsigned Reg, MachineInstr *MI,
158 SmallVectorImpl<unsigned> &Defs);
159 void UpdatePhysRegDefs(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
161 /// FindLastRefOrPartRef - Return the last reference or partial reference of
162 /// the specified register.
163 MachineInstr *FindLastRefOrPartRef(unsigned Reg);
165 /// FindLastPartialDef - Return the last partial def of the specified
166 /// register. Also returns the sub-registers that're defined by the
167 /// instruction.
168 MachineInstr *FindLastPartialDef(unsigned Reg,
169 SmallSet<unsigned,4> &PartDefRegs);
171 /// analyzePHINodes - Gather information about the PHI nodes in here. In
172 /// particular, we want to map the variable information of a virtual
173 /// register which is used in a PHI node. We map that to the BB the vreg
174 /// is coming from.
175 void analyzePHINodes(const MachineFunction& Fn);
177 void runOnInstr(MachineInstr &MI, SmallVectorImpl<unsigned> &Defs);
179 void runOnBlock(MachineBasicBlock *MBB, unsigned NumRegs);
180 public:
182 bool runOnMachineFunction(MachineFunction &MF) override;
184 /// RegisterDefIsDead - Return true if the specified instruction defines the
185 /// specified register, but that definition is dead.
186 bool RegisterDefIsDead(MachineInstr &MI, unsigned Reg) const;
188 //===--------------------------------------------------------------------===//
189 // API to update live variable information
191 /// replaceKillInstruction - Update register kill info by replacing a kill
192 /// instruction with a new one.
193 void replaceKillInstruction(unsigned Reg, MachineInstr &OldMI,
194 MachineInstr &NewMI);
196 /// addVirtualRegisterKilled - Add information about the fact that the
197 /// specified register is killed after being used by the specified
198 /// instruction. If AddIfNotFound is true, add a implicit operand if it's
199 /// not found.
200 void addVirtualRegisterKilled(unsigned IncomingReg, MachineInstr &MI,
201 bool AddIfNotFound = false) {
202 if (MI.addRegisterKilled(IncomingReg, TRI, AddIfNotFound))
203 getVarInfo(IncomingReg).Kills.push_back(&MI);
206 /// removeVirtualRegisterKilled - Remove the specified kill of the virtual
207 /// register from the live variable information. Returns true if the
208 /// variable was marked as killed by the specified instruction,
209 /// false otherwise.
210 bool removeVirtualRegisterKilled(unsigned reg, MachineInstr &MI) {
211 if (!getVarInfo(reg).removeKill(MI))
212 return false;
214 bool Removed = false;
215 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
216 MachineOperand &MO = MI.getOperand(i);
217 if (MO.isReg() && MO.isKill() && MO.getReg() == reg) {
218 MO.setIsKill(false);
219 Removed = true;
220 break;
224 assert(Removed && "Register is not used by this instruction!");
225 (void)Removed;
226 return true;
229 /// removeVirtualRegistersKilled - Remove all killed info for the specified
230 /// instruction.
231 void removeVirtualRegistersKilled(MachineInstr &MI);
233 /// addVirtualRegisterDead - Add information about the fact that the specified
234 /// register is dead after being used by the specified instruction. If
235 /// AddIfNotFound is true, add a implicit operand if it's not found.
236 void addVirtualRegisterDead(unsigned IncomingReg, MachineInstr &MI,
237 bool AddIfNotFound = false) {
238 if (MI.addRegisterDead(IncomingReg, TRI, AddIfNotFound))
239 getVarInfo(IncomingReg).Kills.push_back(&MI);
242 /// removeVirtualRegisterDead - Remove the specified kill of the virtual
243 /// register from the live variable information. Returns true if the
244 /// variable was marked dead at the specified instruction, false
245 /// otherwise.
246 bool removeVirtualRegisterDead(unsigned reg, MachineInstr &MI) {
247 if (!getVarInfo(reg).removeKill(MI))
248 return false;
250 bool Removed = false;
251 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
252 MachineOperand &MO = MI.getOperand(i);
253 if (MO.isReg() && MO.isDef() && MO.getReg() == reg) {
254 MO.setIsDead(false);
255 Removed = true;
256 break;
259 assert(Removed && "Register is not defined by this instruction!");
260 (void)Removed;
261 return true;
264 void getAnalysisUsage(AnalysisUsage &AU) const override;
266 void releaseMemory() override {
267 VirtRegInfo.clear();
270 /// getVarInfo - Return the VarInfo structure for the specified VIRTUAL
271 /// register.
272 VarInfo &getVarInfo(unsigned RegIdx);
274 void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
275 MachineBasicBlock *BB);
276 void MarkVirtRegAliveInBlock(VarInfo& VRInfo, MachineBasicBlock* DefBlock,
277 MachineBasicBlock *BB,
278 std::vector<MachineBasicBlock*> &WorkList);
279 void HandleVirtRegDef(unsigned reg, MachineInstr &MI);
280 void HandleVirtRegUse(unsigned reg, MachineBasicBlock *MBB, MachineInstr &MI);
282 bool isLiveIn(unsigned Reg, const MachineBasicBlock &MBB) {
283 return getVarInfo(Reg).isLiveIn(MBB, Reg, *MRI);
286 /// isLiveOut - Determine if Reg is live out from MBB, when not considering
287 /// PHI nodes. This means that Reg is either killed by a successor block or
288 /// passed through one.
289 bool isLiveOut(unsigned Reg, const MachineBasicBlock &MBB);
291 /// addNewBlock - Add a new basic block BB between DomBB and SuccBB. All
292 /// variables that are live out of DomBB and live into SuccBB will be marked
293 /// as passing live through BB. This method assumes that the machine code is
294 /// still in SSA form.
295 void addNewBlock(MachineBasicBlock *BB,
296 MachineBasicBlock *DomBB,
297 MachineBasicBlock *SuccBB);
299 /// isPHIJoin - Return true if Reg is a phi join register.
300 bool isPHIJoin(unsigned Reg) { return PHIJoins.test(Reg); }
302 /// setPHIJoin - Mark Reg as a phi join register.
303 void setPHIJoin(unsigned Reg) { PHIJoins.set(Reg); }
306 } // End llvm namespace
308 #endif