1 //===- llvm/CodeGen/MachineBasicBlock.h -------------------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // Collect the sequence of machine instructions for a basic block.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_CODEGEN_MACHINEBASICBLOCK_H
14 #define LLVM_CODEGEN_MACHINEBASICBLOCK_H
16 #include "llvm/ADT/GraphTraits.h"
17 #include "llvm/ADT/ilist.h"
18 #include "llvm/ADT/ilist_node.h"
19 #include "llvm/ADT/iterator_range.h"
20 #include "llvm/ADT/simple_ilist.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBundleIterator.h"
23 #include "llvm/IR/DebugLoc.h"
24 #include "llvm/MC/LaneBitmask.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/Support/BranchProbability.h"
27 #include "llvm/Support/Printable.h"
38 class MachineFunction
;
40 class ModuleSlotTracker
;
45 class TargetRegisterClass
;
46 class TargetRegisterInfo
;
48 template <> struct ilist_traits
<MachineInstr
> {
50 friend class MachineBasicBlock
; // Set by the owning MachineBasicBlock.
52 MachineBasicBlock
*Parent
;
54 using instr_iterator
=
55 simple_ilist
<MachineInstr
, ilist_sentinel_tracking
<true>>::iterator
;
58 void addNodeToList(MachineInstr
*N
);
59 void removeNodeFromList(MachineInstr
*N
);
60 void transferNodesFromList(ilist_traits
&FromList
, instr_iterator First
,
62 void deleteNode(MachineInstr
*MI
);
65 class MachineBasicBlock
66 : public ilist_node_with_parent
<MachineBasicBlock
, MachineFunction
> {
68 /// Pair of physical register and lane mask.
69 /// This is not simply a std::pair typedef because the members should be named
70 /// clearly as they both have an integer type.
71 struct RegisterMaskPair
{
76 RegisterMaskPair(MCPhysReg PhysReg
, LaneBitmask LaneMask
)
77 : PhysReg(PhysReg
), LaneMask(LaneMask
) {}
81 using Instructions
= ilist
<MachineInstr
, ilist_sentinel_tracking
<true>>;
86 MachineFunction
*xParent
;
88 /// Keep track of the predecessor / successor basic blocks.
89 std::vector
<MachineBasicBlock
*> Predecessors
;
90 std::vector
<MachineBasicBlock
*> Successors
;
92 /// Keep track of the probabilities to the successors. This vector has the
93 /// same order as Successors, or it is empty if we don't use it (disable
95 std::vector
<BranchProbability
> Probs
;
96 using probability_iterator
= std::vector
<BranchProbability
>::iterator
;
97 using const_probability_iterator
=
98 std::vector
<BranchProbability
>::const_iterator
;
100 Optional
<uint64_t> IrrLoopHeaderWeight
;
102 /// Keep track of the physical registers that are livein of the basicblock.
103 using LiveInVector
= std::vector
<RegisterMaskPair
>;
104 LiveInVector LiveIns
;
106 /// Alignment of the basic block. Zero if the basic block does not need to be
107 /// aligned. The alignment is specified as log2(bytes).
108 unsigned Alignment
= 0;
110 /// Indicate that this basic block is entered via an exception handler.
111 bool IsEHPad
= false;
113 /// Indicate that this basic block is potentially the target of an indirect
115 bool AddressTaken
= false;
117 /// Indicate that this basic block is the entry block of an EH scope, i.e.,
118 /// the block that used to have a catchpad or cleanuppad instruction in the
120 bool IsEHScopeEntry
= false;
122 /// Indicate that this basic block is the entry block of an EH funclet.
123 bool IsEHFuncletEntry
= false;
125 /// Indicate that this basic block is the entry block of a cleanup funclet.
126 bool IsCleanupFuncletEntry
= false;
128 /// since getSymbol is a relatively heavy-weight operation, the symbol
129 /// is only computed once and is cached.
130 mutable MCSymbol
*CachedMCSymbol
= nullptr;
132 // Intrusive list support
133 MachineBasicBlock() = default;
135 explicit MachineBasicBlock(MachineFunction
&MF
, const BasicBlock
*BB
);
137 ~MachineBasicBlock();
139 // MachineBasicBlocks are allocated and owned by MachineFunction.
140 friend class MachineFunction
;
143 /// Return the LLVM basic block that this instance corresponded to originally.
144 /// Note that this may be NULL if this instance does not correspond directly
145 /// to an LLVM basic block.
146 const BasicBlock
*getBasicBlock() const { return BB
; }
148 /// Return the name of the corresponding LLVM basic block, or an empty string.
149 StringRef
getName() const;
151 /// Return a formatted string to identify this block and its parent function.
152 std::string
getFullName() const;
154 /// Test whether this block is potentially the target of an indirect branch.
155 bool hasAddressTaken() const { return AddressTaken
; }
157 /// Set this block to reflect that it potentially is the target of an indirect
159 void setHasAddressTaken() { AddressTaken
= true; }
161 /// Return the MachineFunction containing this basic block.
162 const MachineFunction
*getParent() const { return xParent
; }
163 MachineFunction
*getParent() { return xParent
; }
165 using instr_iterator
= Instructions::iterator
;
166 using const_instr_iterator
= Instructions::const_iterator
;
167 using reverse_instr_iterator
= Instructions::reverse_iterator
;
168 using const_reverse_instr_iterator
= Instructions::const_reverse_iterator
;
170 using iterator
= MachineInstrBundleIterator
<MachineInstr
>;
171 using const_iterator
= MachineInstrBundleIterator
<const MachineInstr
>;
172 using reverse_iterator
= MachineInstrBundleIterator
<MachineInstr
, true>;
173 using const_reverse_iterator
=
174 MachineInstrBundleIterator
<const MachineInstr
, true>;
176 unsigned size() const { return (unsigned)Insts
.size(); }
177 bool empty() const { return Insts
.empty(); }
179 MachineInstr
&instr_front() { return Insts
.front(); }
180 MachineInstr
&instr_back() { return Insts
.back(); }
181 const MachineInstr
&instr_front() const { return Insts
.front(); }
182 const MachineInstr
&instr_back() const { return Insts
.back(); }
184 MachineInstr
&front() { return Insts
.front(); }
185 MachineInstr
&back() { return *--end(); }
186 const MachineInstr
&front() const { return Insts
.front(); }
187 const MachineInstr
&back() const { return *--end(); }
189 instr_iterator
instr_begin() { return Insts
.begin(); }
190 const_instr_iterator
instr_begin() const { return Insts
.begin(); }
191 instr_iterator
instr_end() { return Insts
.end(); }
192 const_instr_iterator
instr_end() const { return Insts
.end(); }
193 reverse_instr_iterator
instr_rbegin() { return Insts
.rbegin(); }
194 const_reverse_instr_iterator
instr_rbegin() const { return Insts
.rbegin(); }
195 reverse_instr_iterator
instr_rend () { return Insts
.rend(); }
196 const_reverse_instr_iterator
instr_rend () const { return Insts
.rend(); }
198 using instr_range
= iterator_range
<instr_iterator
>;
199 using const_instr_range
= iterator_range
<const_instr_iterator
>;
200 instr_range
instrs() { return instr_range(instr_begin(), instr_end()); }
201 const_instr_range
instrs() const {
202 return const_instr_range(instr_begin(), instr_end());
205 iterator
begin() { return instr_begin(); }
206 const_iterator
begin() const { return instr_begin(); }
207 iterator
end () { return instr_end(); }
208 const_iterator
end () const { return instr_end(); }
209 reverse_iterator
rbegin() {
210 return reverse_iterator::getAtBundleBegin(instr_rbegin());
212 const_reverse_iterator
rbegin() const {
213 return const_reverse_iterator::getAtBundleBegin(instr_rbegin());
215 reverse_iterator
rend() { return reverse_iterator(instr_rend()); }
216 const_reverse_iterator
rend() const {
217 return const_reverse_iterator(instr_rend());
220 /// Support for MachineInstr::getNextNode().
221 static Instructions
MachineBasicBlock::*getSublistAccess(MachineInstr
*) {
222 return &MachineBasicBlock::Insts
;
225 inline iterator_range
<iterator
> terminators() {
226 return make_range(getFirstTerminator(), end());
228 inline iterator_range
<const_iterator
> terminators() const {
229 return make_range(getFirstTerminator(), end());
232 /// Returns a range that iterates over the phis in the basic block.
233 inline iterator_range
<iterator
> phis() {
234 return make_range(begin(), getFirstNonPHI());
236 inline iterator_range
<const_iterator
> phis() const {
237 return const_cast<MachineBasicBlock
*>(this)->phis();
240 // Machine-CFG iterators
241 using pred_iterator
= std::vector
<MachineBasicBlock
*>::iterator
;
242 using const_pred_iterator
= std::vector
<MachineBasicBlock
*>::const_iterator
;
243 using succ_iterator
= std::vector
<MachineBasicBlock
*>::iterator
;
244 using const_succ_iterator
= std::vector
<MachineBasicBlock
*>::const_iterator
;
245 using pred_reverse_iterator
=
246 std::vector
<MachineBasicBlock
*>::reverse_iterator
;
247 using const_pred_reverse_iterator
=
248 std::vector
<MachineBasicBlock
*>::const_reverse_iterator
;
249 using succ_reverse_iterator
=
250 std::vector
<MachineBasicBlock
*>::reverse_iterator
;
251 using const_succ_reverse_iterator
=
252 std::vector
<MachineBasicBlock
*>::const_reverse_iterator
;
253 pred_iterator
pred_begin() { return Predecessors
.begin(); }
254 const_pred_iterator
pred_begin() const { return Predecessors
.begin(); }
255 pred_iterator
pred_end() { return Predecessors
.end(); }
256 const_pred_iterator
pred_end() const { return Predecessors
.end(); }
257 pred_reverse_iterator
pred_rbegin()
258 { return Predecessors
.rbegin();}
259 const_pred_reverse_iterator
pred_rbegin() const
260 { return Predecessors
.rbegin();}
261 pred_reverse_iterator
pred_rend()
262 { return Predecessors
.rend(); }
263 const_pred_reverse_iterator
pred_rend() const
264 { return Predecessors
.rend(); }
265 unsigned pred_size() const {
266 return (unsigned)Predecessors
.size();
268 bool pred_empty() const { return Predecessors
.empty(); }
269 succ_iterator
succ_begin() { return Successors
.begin(); }
270 const_succ_iterator
succ_begin() const { return Successors
.begin(); }
271 succ_iterator
succ_end() { return Successors
.end(); }
272 const_succ_iterator
succ_end() const { return Successors
.end(); }
273 succ_reverse_iterator
succ_rbegin()
274 { return Successors
.rbegin(); }
275 const_succ_reverse_iterator
succ_rbegin() const
276 { return Successors
.rbegin(); }
277 succ_reverse_iterator
succ_rend()
278 { return Successors
.rend(); }
279 const_succ_reverse_iterator
succ_rend() const
280 { return Successors
.rend(); }
281 unsigned succ_size() const {
282 return (unsigned)Successors
.size();
284 bool succ_empty() const { return Successors
.empty(); }
286 inline iterator_range
<pred_iterator
> predecessors() {
287 return make_range(pred_begin(), pred_end());
289 inline iterator_range
<const_pred_iterator
> predecessors() const {
290 return make_range(pred_begin(), pred_end());
292 inline iterator_range
<succ_iterator
> successors() {
293 return make_range(succ_begin(), succ_end());
295 inline iterator_range
<const_succ_iterator
> successors() const {
296 return make_range(succ_begin(), succ_end());
299 // LiveIn management methods.
301 /// Adds the specified register as a live in. Note that it is an error to add
302 /// the same register to the same set more than once unless the intention is
303 /// to call sortUniqueLiveIns after all registers are added.
304 void addLiveIn(MCPhysReg PhysReg
,
305 LaneBitmask LaneMask
= LaneBitmask::getAll()) {
306 LiveIns
.push_back(RegisterMaskPair(PhysReg
, LaneMask
));
308 void addLiveIn(const RegisterMaskPair
&RegMaskPair
) {
309 LiveIns
.push_back(RegMaskPair
);
312 /// Sorts and uniques the LiveIns vector. It can be significantly faster to do
313 /// this than repeatedly calling isLiveIn before calling addLiveIn for every
314 /// LiveIn insertion.
315 void sortUniqueLiveIns();
317 /// Clear live in list.
320 /// Add PhysReg as live in to this block, and ensure that there is a copy of
321 /// PhysReg to a virtual register of class RC. Return the virtual register
322 /// that is a copy of the live in PhysReg.
323 unsigned addLiveIn(MCPhysReg PhysReg
, const TargetRegisterClass
*RC
);
325 /// Remove the specified register from the live in set.
326 void removeLiveIn(MCPhysReg Reg
,
327 LaneBitmask LaneMask
= LaneBitmask::getAll());
329 /// Return true if the specified register is in the live in set.
330 bool isLiveIn(MCPhysReg Reg
,
331 LaneBitmask LaneMask
= LaneBitmask::getAll()) const;
333 // Iteration support for live in sets. These sets are kept in sorted
334 // order by their register number.
335 using livein_iterator
= LiveInVector::const_iterator
;
337 /// Unlike livein_begin, this method does not check that the liveness
338 /// information is accurate. Still for debug purposes it may be useful
339 /// to have iterators that won't assert if the liveness information
341 livein_iterator
livein_begin_dbg() const { return LiveIns
.begin(); }
342 iterator_range
<livein_iterator
> liveins_dbg() const {
343 return make_range(livein_begin_dbg(), livein_end());
346 livein_iterator
livein_begin() const;
347 livein_iterator
livein_end() const { return LiveIns
.end(); }
348 bool livein_empty() const { return LiveIns
.empty(); }
349 iterator_range
<livein_iterator
> liveins() const {
350 return make_range(livein_begin(), livein_end());
353 /// Remove entry from the livein set and return iterator to the next.
354 livein_iterator
removeLiveIn(livein_iterator I
);
356 /// Get the clobber mask for the start of this basic block. Funclets use this
357 /// to prevent register allocation across funclet transitions.
358 const uint32_t *getBeginClobberMask(const TargetRegisterInfo
*TRI
) const;
360 /// Get the clobber mask for the end of the basic block.
361 /// \see getBeginClobberMask()
362 const uint32_t *getEndClobberMask(const TargetRegisterInfo
*TRI
) const;
364 /// Return alignment of the basic block. The alignment is specified as
366 unsigned getAlignment() const { return Alignment
; }
368 /// Set alignment of the basic block. The alignment is specified as
370 void setAlignment(unsigned Align
) { Alignment
= Align
; }
372 /// Returns true if the block is a landing pad. That is this basic block is
373 /// entered via an exception handler.
374 bool isEHPad() const { return IsEHPad
; }
376 /// Indicates the block is a landing pad. That is this basic block is entered
377 /// via an exception handler.
378 void setIsEHPad(bool V
= true) { IsEHPad
= V
; }
380 bool hasEHPadSuccessor() const;
382 /// Returns true if this is the entry block of an EH scope, i.e., the block
383 /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
384 bool isEHScopeEntry() const { return IsEHScopeEntry
; }
386 /// Indicates if this is the entry block of an EH scope, i.e., the block that
387 /// that used to have a catchpad or cleanuppad instruction in the LLVM IR.
388 void setIsEHScopeEntry(bool V
= true) { IsEHScopeEntry
= V
; }
390 /// Returns true if this is the entry block of an EH funclet.
391 bool isEHFuncletEntry() const { return IsEHFuncletEntry
; }
393 /// Indicates if this is the entry block of an EH funclet.
394 void setIsEHFuncletEntry(bool V
= true) { IsEHFuncletEntry
= V
; }
396 /// Returns true if this is the entry block of a cleanup funclet.
397 bool isCleanupFuncletEntry() const { return IsCleanupFuncletEntry
; }
399 /// Indicates if this is the entry block of a cleanup funclet.
400 void setIsCleanupFuncletEntry(bool V
= true) { IsCleanupFuncletEntry
= V
; }
402 /// Returns true if it is legal to hoist instructions into this block.
403 bool isLegalToHoistInto() const;
405 // Code Layout methods.
407 /// Move 'this' block before or after the specified block. This only moves
408 /// the block, it does not modify the CFG or adjust potential fall-throughs at
409 /// the end of the block.
410 void moveBefore(MachineBasicBlock
*NewAfter
);
411 void moveAfter(MachineBasicBlock
*NewBefore
);
413 /// Update the terminator instructions in block to account for changes to the
414 /// layout. If the block previously used a fallthrough, it may now need a
415 /// branch, and if it previously used branching it may now be able to use a
417 void updateTerminator();
419 // Machine-CFG mutators
421 /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list
422 /// of Succ is automatically updated. PROB parameter is stored in
423 /// Probabilities list. The default probability is set as unknown. Mixing
424 /// known and unknown probabilities in successor list is not allowed. When all
425 /// successors have unknown probabilities, 1 / N is returned as the
426 /// probability for each successor, where N is the number of successors.
428 /// Note that duplicate Machine CFG edges are not allowed.
429 void addSuccessor(MachineBasicBlock
*Succ
,
430 BranchProbability Prob
= BranchProbability::getUnknown());
432 /// Add Succ as a successor of this MachineBasicBlock. The Predecessors list
433 /// of Succ is automatically updated. The probability is not provided because
434 /// BPI is not available (e.g. -O0 is used), in which case edge probabilities
435 /// won't be used. Using this interface can save some space.
436 void addSuccessorWithoutProb(MachineBasicBlock
*Succ
);
438 /// Set successor probability of a given iterator.
439 void setSuccProbability(succ_iterator I
, BranchProbability Prob
);
441 /// Normalize probabilities of all successors so that the sum of them becomes
442 /// one. This is usually done when the current update on this MBB is done, and
443 /// the sum of its successors' probabilities is not guaranteed to be one. The
444 /// user is responsible for the correct use of this function.
445 /// MBB::removeSuccessor() has an option to do this automatically.
446 void normalizeSuccProbs() {
447 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
450 /// Validate successors' probabilities and check if the sum of them is
451 /// approximate one. This only works in DEBUG mode.
452 void validateSuccProbs() const;
454 /// Remove successor from the successors list of this MachineBasicBlock. The
455 /// Predecessors list of Succ is automatically updated.
456 /// If NormalizeSuccProbs is true, then normalize successors' probabilities
457 /// after the successor is removed.
458 void removeSuccessor(MachineBasicBlock
*Succ
,
459 bool NormalizeSuccProbs
= false);
461 /// Remove specified successor from the successors list of this
462 /// MachineBasicBlock. The Predecessors list of Succ is automatically updated.
463 /// If NormalizeSuccProbs is true, then normalize successors' probabilities
464 /// after the successor is removed.
465 /// Return the iterator to the element after the one removed.
466 succ_iterator
removeSuccessor(succ_iterator I
,
467 bool NormalizeSuccProbs
= false);
469 /// Replace successor OLD with NEW and update probability info.
470 void replaceSuccessor(MachineBasicBlock
*Old
, MachineBasicBlock
*New
);
472 /// Copy a successor (and any probability info) from original block to this
473 /// block's. Uses an iterator into the original blocks successors.
475 /// This is useful when doing a partial clone of successors. Afterward, the
476 /// probabilities may need to be normalized.
477 void copySuccessor(MachineBasicBlock
*Orig
, succ_iterator I
);
479 /// Split the old successor into old plus new and updates the probability
481 void splitSuccessor(MachineBasicBlock
*Old
, MachineBasicBlock
*New
,
482 bool NormalizeSuccProbs
= false);
484 /// Transfers all the successors from MBB to this machine basic block (i.e.,
485 /// copies all the successors FromMBB and remove all the successors from
487 void transferSuccessors(MachineBasicBlock
*FromMBB
);
489 /// Transfers all the successors, as in transferSuccessors, and update PHI
490 /// operands in the successor blocks which refer to FromMBB to refer to this.
491 void transferSuccessorsAndUpdatePHIs(MachineBasicBlock
*FromMBB
);
493 /// Return true if any of the successors have probabilities attached to them.
494 bool hasSuccessorProbabilities() const { return !Probs
.empty(); }
496 /// Return true if the specified MBB is a predecessor of this block.
497 bool isPredecessor(const MachineBasicBlock
*MBB
) const;
499 /// Return true if the specified MBB is a successor of this block.
500 bool isSuccessor(const MachineBasicBlock
*MBB
) const;
502 /// Return true if the specified MBB will be emitted immediately after this
503 /// block, such that if this block exits by falling through, control will
504 /// transfer to the specified MBB. Note that MBB need not be a successor at
505 /// all, for example if this block ends with an unconditional branch to some
507 bool isLayoutSuccessor(const MachineBasicBlock
*MBB
) const;
509 /// Return the fallthrough block if the block can implicitly
510 /// transfer control to the block after it by falling off the end of
511 /// it. This should return null if it can reach the block after
512 /// it, but it uses an explicit branch to do so (e.g., a table
513 /// jump). Non-null return is a conservative answer.
514 MachineBasicBlock
*getFallThrough();
516 /// Return true if the block can implicitly transfer control to the
517 /// block after it by falling off the end of it. This should return
518 /// false if it can reach the block after it, but it uses an
519 /// explicit branch to do so (e.g., a table jump). True is a
520 /// conservative answer.
521 bool canFallThrough();
523 /// Returns a pointer to the first instruction in this block that is not a
524 /// PHINode instruction. When adding instructions to the beginning of the
525 /// basic block, they should be added before the returned value, not before
526 /// the first instruction, which might be PHI.
527 /// Returns end() is there's no non-PHI instruction.
528 iterator
getFirstNonPHI();
530 /// Return the first instruction in MBB after I that is not a PHI or a label.
531 /// This is the correct point to insert lowered copies at the beginning of a
532 /// basic block that must be before any debugging information.
533 iterator
SkipPHIsAndLabels(iterator I
);
535 /// Return the first instruction in MBB after I that is not a PHI, label or
536 /// debug. This is the correct point to insert copies at the beginning of a
538 iterator
SkipPHIsLabelsAndDebug(iterator I
);
540 /// Returns an iterator to the first terminator instruction of this basic
541 /// block. If a terminator does not exist, it returns end().
542 iterator
getFirstTerminator();
543 const_iterator
getFirstTerminator() const {
544 return const_cast<MachineBasicBlock
*>(this)->getFirstTerminator();
547 /// Same getFirstTerminator but it ignores bundles and return an
548 /// instr_iterator instead.
549 instr_iterator
getFirstInstrTerminator();
551 /// Returns an iterator to the first non-debug instruction in the basic block,
553 iterator
getFirstNonDebugInstr();
554 const_iterator
getFirstNonDebugInstr() const {
555 return const_cast<MachineBasicBlock
*>(this)->getFirstNonDebugInstr();
558 /// Returns an iterator to the last non-debug instruction in the basic block,
560 iterator
getLastNonDebugInstr();
561 const_iterator
getLastNonDebugInstr() const {
562 return const_cast<MachineBasicBlock
*>(this)->getLastNonDebugInstr();
565 /// Convenience function that returns true if the block ends in a return
567 bool isReturnBlock() const {
568 return !empty() && back().isReturn();
571 /// Convenience function that returns true if the bock ends in a EH scope
572 /// return instruction.
573 bool isEHScopeReturnBlock() const {
574 return !empty() && back().isEHScopeReturn();
577 /// Split the critical edge from this block to the given successor block, and
578 /// return the newly created block, or null if splitting is not possible.
580 /// This function updates LiveVariables, MachineDominatorTree, and
581 /// MachineLoopInfo, as applicable.
582 MachineBasicBlock
*SplitCriticalEdge(MachineBasicBlock
*Succ
, Pass
&P
);
584 /// Check if the edge between this block and the given successor \p
585 /// Succ, can be split. If this returns true a subsequent call to
586 /// SplitCriticalEdge is guaranteed to return a valid basic block if
587 /// no changes occurred in the meantime.
588 bool canSplitCriticalEdge(const MachineBasicBlock
*Succ
) const;
590 void pop_front() { Insts
.pop_front(); }
591 void pop_back() { Insts
.pop_back(); }
592 void push_back(MachineInstr
*MI
) { Insts
.push_back(MI
); }
594 /// Insert MI into the instruction list before I, possibly inside a bundle.
596 /// If the insertion point is inside a bundle, MI will be added to the bundle,
597 /// otherwise MI will not be added to any bundle. That means this function
598 /// alone can't be used to prepend or append instructions to bundles. See
599 /// MIBundleBuilder::insert() for a more reliable way of doing that.
600 instr_iterator
insert(instr_iterator I
, MachineInstr
*M
);
602 /// Insert a range of instructions into the instruction list before I.
603 template<typename IT
>
604 void insert(iterator I
, IT S
, IT E
) {
605 assert((I
== end() || I
->getParent() == this) &&
606 "iterator points outside of basic block");
607 Insts
.insert(I
.getInstrIterator(), S
, E
);
610 /// Insert MI into the instruction list before I.
611 iterator
insert(iterator I
, MachineInstr
*MI
) {
612 assert((I
== end() || I
->getParent() == this) &&
613 "iterator points outside of basic block");
614 assert(!MI
->isBundledWithPred() && !MI
->isBundledWithSucc() &&
615 "Cannot insert instruction with bundle flags");
616 return Insts
.insert(I
.getInstrIterator(), MI
);
619 /// Insert MI into the instruction list after I.
620 iterator
insertAfter(iterator I
, MachineInstr
*MI
) {
621 assert((I
== end() || I
->getParent() == this) &&
622 "iterator points outside of basic block");
623 assert(!MI
->isBundledWithPred() && !MI
->isBundledWithSucc() &&
624 "Cannot insert instruction with bundle flags");
625 return Insts
.insertAfter(I
.getInstrIterator(), MI
);
628 /// Remove an instruction from the instruction list and delete it.
630 /// If the instruction is part of a bundle, the other instructions in the
631 /// bundle will still be bundled after removing the single instruction.
632 instr_iterator
erase(instr_iterator I
);
634 /// Remove an instruction from the instruction list and delete it.
636 /// If the instruction is part of a bundle, the other instructions in the
637 /// bundle will still be bundled after removing the single instruction.
638 instr_iterator
erase_instr(MachineInstr
*I
) {
639 return erase(instr_iterator(I
));
642 /// Remove a range of instructions from the instruction list and delete them.
643 iterator
erase(iterator I
, iterator E
) {
644 return Insts
.erase(I
.getInstrIterator(), E
.getInstrIterator());
647 /// Remove an instruction or bundle from the instruction list and delete it.
649 /// If I points to a bundle of instructions, they are all erased.
650 iterator
erase(iterator I
) {
651 return erase(I
, std::next(I
));
654 /// Remove an instruction from the instruction list and delete it.
656 /// If I is the head of a bundle of instructions, the whole bundle will be
658 iterator
erase(MachineInstr
*I
) {
659 return erase(iterator(I
));
662 /// Remove the unbundled instruction from the instruction list without
665 /// This function can not be used to remove bundled instructions, use
666 /// remove_instr to remove individual instructions from a bundle.
667 MachineInstr
*remove(MachineInstr
*I
) {
668 assert(!I
->isBundled() && "Cannot remove bundled instructions");
669 return Insts
.remove(instr_iterator(I
));
672 /// Remove the possibly bundled instruction from the instruction list
673 /// without deleting it.
675 /// If the instruction is part of a bundle, the other instructions in the
676 /// bundle will still be bundled after removing the single instruction.
677 MachineInstr
*remove_instr(MachineInstr
*I
);
683 /// Take an instruction from MBB 'Other' at the position From, and insert it
684 /// into this MBB right before 'Where'.
686 /// If From points to a bundle of instructions, the whole bundle is moved.
687 void splice(iterator Where
, MachineBasicBlock
*Other
, iterator From
) {
688 // The range splice() doesn't allow noop moves, but this one does.
690 splice(Where
, Other
, From
, std::next(From
));
693 /// Take a block of instructions from MBB 'Other' in the range [From, To),
694 /// and insert them into this MBB right before 'Where'.
696 /// The instruction at 'Where' must not be included in the range of
697 /// instructions to move.
698 void splice(iterator Where
, MachineBasicBlock
*Other
,
699 iterator From
, iterator To
) {
700 Insts
.splice(Where
.getInstrIterator(), Other
->Insts
,
701 From
.getInstrIterator(), To
.getInstrIterator());
704 /// This method unlinks 'this' from the containing function, and returns it,
705 /// but does not delete it.
706 MachineBasicBlock
*removeFromParent();
708 /// This method unlinks 'this' from the containing function and deletes it.
709 void eraseFromParent();
711 /// Given a machine basic block that branched to 'Old', change the code and
712 /// CFG so that it branches to 'New' instead.
713 void ReplaceUsesOfBlockWith(MachineBasicBlock
*Old
, MachineBasicBlock
*New
);
715 /// Various pieces of code can cause excess edges in the CFG to be inserted.
716 /// If we have proven that MBB can only branch to DestA and DestB, remove any
717 /// other MBB successors from the CFG. DestA and DestB can be null. Besides
718 /// DestA and DestB, retain other edges leading to LandingPads (currently
719 /// there can be only one; we don't check or require that here). Note it is
720 /// possible that DestA and/or DestB are LandingPads.
721 bool CorrectExtraCFGEdges(MachineBasicBlock
*DestA
,
722 MachineBasicBlock
*DestB
,
725 /// Find the next valid DebugLoc starting at MBBI, skipping any DBG_VALUE
726 /// and DBG_LABEL instructions. Return UnknownLoc if there is none.
727 DebugLoc
findDebugLoc(instr_iterator MBBI
);
728 DebugLoc
findDebugLoc(iterator MBBI
) {
729 return findDebugLoc(MBBI
.getInstrIterator());
732 /// Find the previous valid DebugLoc preceding MBBI, skipping and DBG_VALUE
733 /// instructions. Return UnknownLoc if there is none.
734 DebugLoc
findPrevDebugLoc(instr_iterator MBBI
);
735 DebugLoc
findPrevDebugLoc(iterator MBBI
) {
736 return findPrevDebugLoc(MBBI
.getInstrIterator());
739 /// Find and return the merged DebugLoc of the branch instructions of the
740 /// block. Return UnknownLoc if there is none.
741 DebugLoc
findBranchDebugLoc();
743 /// Possible outcome of a register liveness query to computeRegisterLiveness()
744 enum LivenessQueryResult
{
745 LQR_Live
, ///< Register is known to be (at least partially) live.
746 LQR_Dead
, ///< Register is known to be fully dead.
747 LQR_Unknown
///< Register liveness not decidable from local neighborhood.
750 /// Return whether (physical) register \p Reg has been defined and not
751 /// killed as of just before \p Before.
753 /// Search is localised to a neighborhood of \p Neighborhood instructions
754 /// before (searching for defs or kills) and \p Neighborhood instructions
755 /// after (searching just for defs) \p Before.
757 /// \p Reg must be a physical register.
758 LivenessQueryResult
computeRegisterLiveness(const TargetRegisterInfo
*TRI
,
760 const_iterator Before
,
761 unsigned Neighborhood
= 10) const;
763 // Debugging methods.
765 void print(raw_ostream
&OS
, const SlotIndexes
* = nullptr,
766 bool IsStandalone
= true) const;
767 void print(raw_ostream
&OS
, ModuleSlotTracker
&MST
,
768 const SlotIndexes
* = nullptr, bool IsStandalone
= true) const;
770 // Printing method used by LoopInfo.
771 void printAsOperand(raw_ostream
&OS
, bool PrintType
= true) const;
773 /// MachineBasicBlocks are uniquely numbered at the function level, unless
774 /// they're not in a MachineFunction yet, in which case this will return -1.
775 int getNumber() const { return Number
; }
776 void setNumber(int N
) { Number
= N
; }
778 /// Return the MCSymbol for this basic block.
779 MCSymbol
*getSymbol() const;
781 Optional
<uint64_t> getIrrLoopHeaderWeight() const {
782 return IrrLoopHeaderWeight
;
785 void setIrrLoopHeaderWeight(uint64_t Weight
) {
786 IrrLoopHeaderWeight
= Weight
;
790 /// Return probability iterator corresponding to the I successor iterator.
791 probability_iterator
getProbabilityIterator(succ_iterator I
);
792 const_probability_iterator
793 getProbabilityIterator(const_succ_iterator I
) const;
795 friend class MachineBranchProbabilityInfo
;
796 friend class MIPrinter
;
798 /// Return probability of the edge from this block to MBB. This method should
799 /// NOT be called directly, but by using getEdgeProbability method from
800 /// MachineBranchProbabilityInfo class.
801 BranchProbability
getSuccProbability(const_succ_iterator Succ
) const;
803 // Methods used to maintain doubly linked list of blocks...
804 friend struct ilist_callback_traits
<MachineBasicBlock
>;
806 // Machine-CFG mutators
808 /// Add Pred as a predecessor of this MachineBasicBlock. Don't do this
809 /// unless you know what you're doing, because it doesn't update Pred's
810 /// successors list. Use Pred->addSuccessor instead.
811 void addPredecessor(MachineBasicBlock
*Pred
);
813 /// Remove Pred as a predecessor of this MachineBasicBlock. Don't do this
814 /// unless you know what you're doing, because it doesn't update Pred's
815 /// successors list. Use Pred->removeSuccessor instead.
816 void removePredecessor(MachineBasicBlock
*Pred
);
819 raw_ostream
& operator<<(raw_ostream
&OS
, const MachineBasicBlock
&MBB
);
821 /// Prints a machine basic block reference.
824 /// %bb.5 - a machine basic block with MBB.getNumber() == 5.
826 /// Usage: OS << printMBBReference(MBB) << '\n';
827 Printable
printMBBReference(const MachineBasicBlock
&MBB
);
829 // This is useful when building IndexedMaps keyed on basic block pointers.
830 struct MBB2NumberFunctor
{
831 using argument_type
= const MachineBasicBlock
*;
832 unsigned operator()(const MachineBasicBlock
*MBB
) const {
833 return MBB
->getNumber();
837 //===--------------------------------------------------------------------===//
838 // GraphTraits specializations for machine basic block graphs (machine-CFGs)
839 //===--------------------------------------------------------------------===//
841 // Provide specializations of GraphTraits to be able to treat a
842 // MachineFunction as a graph of MachineBasicBlocks.
845 template <> struct GraphTraits
<MachineBasicBlock
*> {
846 using NodeRef
= MachineBasicBlock
*;
847 using ChildIteratorType
= MachineBasicBlock::succ_iterator
;
849 static NodeRef
getEntryNode(MachineBasicBlock
*BB
) { return BB
; }
850 static ChildIteratorType
child_begin(NodeRef N
) { return N
->succ_begin(); }
851 static ChildIteratorType
child_end(NodeRef N
) { return N
->succ_end(); }
854 template <> struct GraphTraits
<const MachineBasicBlock
*> {
855 using NodeRef
= const MachineBasicBlock
*;
856 using ChildIteratorType
= MachineBasicBlock::const_succ_iterator
;
858 static NodeRef
getEntryNode(const MachineBasicBlock
*BB
) { return BB
; }
859 static ChildIteratorType
child_begin(NodeRef N
) { return N
->succ_begin(); }
860 static ChildIteratorType
child_end(NodeRef N
) { return N
->succ_end(); }
863 // Provide specializations of GraphTraits to be able to treat a
864 // MachineFunction as a graph of MachineBasicBlocks and to walk it
865 // in inverse order. Inverse order for a function is considered
866 // to be when traversing the predecessor edges of a MBB
867 // instead of the successor edges.
869 template <> struct GraphTraits
<Inverse
<MachineBasicBlock
*>> {
870 using NodeRef
= MachineBasicBlock
*;
871 using ChildIteratorType
= MachineBasicBlock::pred_iterator
;
873 static NodeRef
getEntryNode(Inverse
<MachineBasicBlock
*> G
) {
877 static ChildIteratorType
child_begin(NodeRef N
) { return N
->pred_begin(); }
878 static ChildIteratorType
child_end(NodeRef N
) { return N
->pred_end(); }
881 template <> struct GraphTraits
<Inverse
<const MachineBasicBlock
*>> {
882 using NodeRef
= const MachineBasicBlock
*;
883 using ChildIteratorType
= MachineBasicBlock::const_pred_iterator
;
885 static NodeRef
getEntryNode(Inverse
<const MachineBasicBlock
*> G
) {
889 static ChildIteratorType
child_begin(NodeRef N
) { return N
->pred_begin(); }
890 static ChildIteratorType
child_end(NodeRef N
) { return N
->pred_end(); }
893 /// MachineInstrSpan provides an interface to get an iteration range
894 /// containing the instruction it was initialized with, along with all
895 /// those instructions inserted prior to or following that instruction
896 /// at some point after the MachineInstrSpan is constructed.
897 class MachineInstrSpan
{
898 MachineBasicBlock
&MBB
;
899 MachineBasicBlock::iterator I
, B
, E
;
902 MachineInstrSpan(MachineBasicBlock::iterator I
)
903 : MBB(*I
->getParent()),
905 B(I
== MBB
.begin() ? MBB
.end() : std::prev(I
)),
908 MachineBasicBlock::iterator
begin() {
909 return B
== MBB
.end() ? MBB
.begin() : std::next(B
);
911 MachineBasicBlock::iterator
end() { return E
; }
912 bool empty() { return begin() == end(); }
914 MachineBasicBlock::iterator
getInitial() { return I
; }
917 /// Increment \p It until it points to a non-debug instruction or to \p End
918 /// and return the resulting iterator. This function should only be used
919 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
920 /// const_instr_iterator} and the respective reverse iterators.
921 template<typename IterT
>
922 inline IterT
skipDebugInstructionsForward(IterT It
, IterT End
) {
923 while (It
!= End
&& It
->isDebugInstr())
928 /// Decrement \p It until it points to a non-debug instruction or to \p Begin
929 /// and return the resulting iterator. This function should only be used
930 /// MachineBasicBlock::{iterator, const_iterator, instr_iterator,
931 /// const_instr_iterator} and the respective reverse iterators.
932 template<class IterT
>
933 inline IterT
skipDebugInstructionsBackward(IterT It
, IterT Begin
) {
934 while (It
!= Begin
&& It
->isDebugInstr())
939 } // end namespace llvm
941 #endif // LLVM_CODEGEN_MACHINEBASICBLOCK_H