Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / CodeGen / MachineFrameInfo.h
blob402a2dc606ad20cfdf311bffa5c0f69d61df90ec
1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The file defines the MachineFrameInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
14 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Support/DataTypes.h"
18 #include <cassert>
19 #include <vector>
21 namespace llvm {
22 class raw_ostream;
23 class MachineFunction;
24 class MachineBasicBlock;
25 class BitVector;
26 class AllocaInst;
28 /// The CalleeSavedInfo class tracks the information need to locate where a
29 /// callee saved register is in the current frame.
30 /// Callee saved reg can also be saved to a different register rather than
31 /// on the stack by setting DstReg instead of FrameIdx.
32 class CalleeSavedInfo {
33 unsigned Reg;
34 union {
35 int FrameIdx;
36 unsigned DstReg;
38 /// Flag indicating whether the register is actually restored in the epilog.
39 /// In most cases, if a register is saved, it is also restored. There are
40 /// some situations, though, when this is not the case. For example, the
41 /// LR register on ARM is usually saved, but on exit from the function its
42 /// saved value may be loaded directly into PC. Since liveness tracking of
43 /// physical registers treats callee-saved registers are live outside of
44 /// the function, LR would be treated as live-on-exit, even though in these
45 /// scenarios it is not. This flag is added to indicate that the saved
46 /// register described by this object is not restored in the epilog.
47 /// The long-term solution is to model the liveness of callee-saved registers
48 /// by implicit uses on the return instructions, however, the required
49 /// changes in the ARM backend would be quite extensive.
50 bool Restored;
51 /// Flag indicating whether the register is spilled to stack or another
52 /// register.
53 bool SpilledToReg;
55 public:
56 explicit CalleeSavedInfo(unsigned R, int FI = 0)
57 : Reg(R), FrameIdx(FI), Restored(true), SpilledToReg(false) {}
59 // Accessors.
60 unsigned getReg() const { return Reg; }
61 int getFrameIdx() const { return FrameIdx; }
62 unsigned getDstReg() const { return DstReg; }
63 void setFrameIdx(int FI) {
64 FrameIdx = FI;
65 SpilledToReg = false;
67 void setDstReg(unsigned SpillReg) {
68 DstReg = SpillReg;
69 SpilledToReg = true;
71 bool isRestored() const { return Restored; }
72 void setRestored(bool R) { Restored = R; }
73 bool isSpilledToReg() const { return SpilledToReg; }
76 /// The MachineFrameInfo class represents an abstract stack frame until
77 /// prolog/epilog code is inserted. This class is key to allowing stack frame
78 /// representation optimizations, such as frame pointer elimination. It also
79 /// allows more mundane (but still important) optimizations, such as reordering
80 /// of abstract objects on the stack frame.
81 ///
82 /// To support this, the class assigns unique integer identifiers to stack
83 /// objects requested clients. These identifiers are negative integers for
84 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
85 /// for objects that may be reordered. Instructions which refer to stack
86 /// objects use a special MO_FrameIndex operand to represent these frame
87 /// indexes.
88 ///
89 /// Because this class keeps track of all references to the stack frame, it
90 /// knows when a variable sized object is allocated on the stack. This is the
91 /// sole condition which prevents frame pointer elimination, which is an
92 /// important optimization on register-poor architectures. Because original
93 /// variable sized alloca's in the source program are the only source of
94 /// variable sized stack objects, it is safe to decide whether there will be
95 /// any variable sized objects before all stack objects are known (for
96 /// example, register allocator spill code never needs variable sized
97 /// objects).
98 ///
99 /// When prolog/epilog code emission is performed, the final stack frame is
100 /// built and the machine instructions are modified to refer to the actual
101 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
102 /// the program.
104 /// Abstract Stack Frame Information
105 class MachineFrameInfo {
106 public:
107 /// Stack Smashing Protection (SSP) rules require that vulnerable stack
108 /// allocations are located close the stack protector.
109 enum SSPLayoutKind {
110 SSPLK_None, ///< Did not trigger a stack protector. No effect on data
111 ///< layout.
112 SSPLK_LargeArray, ///< Array or nested array >= SSP-buffer-size. Closest
113 ///< to the stack protector.
114 SSPLK_SmallArray, ///< Array or nested array < SSP-buffer-size. 2nd closest
115 ///< to the stack protector.
116 SSPLK_AddrOf ///< The address of this allocation is exposed and
117 ///< triggered protection. 3rd closest to the protector.
120 private:
121 // Represent a single object allocated on the stack.
122 struct StackObject {
123 // The offset of this object from the stack pointer on entry to
124 // the function. This field has no meaning for a variable sized element.
125 int64_t SPOffset;
127 // The size of this object on the stack. 0 means a variable sized object,
128 // ~0ULL means a dead object.
129 uint64_t Size;
131 // The required alignment of this stack slot.
132 unsigned Alignment;
134 // If true, the value of the stack object is set before
135 // entering the function and is not modified inside the function. By
136 // default, fixed objects are immutable unless marked otherwise.
137 bool isImmutable;
139 // If true the stack object is used as spill slot. It
140 // cannot alias any other memory objects.
141 bool isSpillSlot;
143 /// If true, this stack slot is used to spill a value (could be deopt
144 /// and/or GC related) over a statepoint. We know that the address of the
145 /// slot can't alias any LLVM IR value. This is very similar to a Spill
146 /// Slot, but is created by statepoint lowering is SelectionDAG, not the
147 /// register allocator.
148 bool isStatepointSpillSlot = false;
150 /// Identifier for stack memory type analagous to address space. If this is
151 /// non-0, the meaning is target defined. Offsets cannot be directly
152 /// compared between objects with different stack IDs. The object may not
153 /// necessarily reside in the same contiguous memory block as other stack
154 /// objects. Objects with differing stack IDs should not be merged or
155 /// replaced substituted for each other.
157 /// It is assumed a target uses consecutive, increasing stack IDs starting
158 /// from 1.
159 uint8_t StackID;
161 /// If this stack object is originated from an Alloca instruction
162 /// this value saves the original IR allocation. Can be NULL.
163 const AllocaInst *Alloca;
165 // If true, the object was mapped into the local frame
166 // block and doesn't need additional handling for allocation beyond that.
167 bool PreAllocated = false;
169 // If true, an LLVM IR value might point to this object.
170 // Normally, spill slots and fixed-offset objects don't alias IR-accessible
171 // objects, but there are exceptions (on PowerPC, for example, some byval
172 // arguments have ABI-prescribed offsets).
173 bool isAliased;
175 /// If true, the object has been zero-extended.
176 bool isZExt = false;
178 /// If true, the object has been zero-extended.
179 bool isSExt = false;
181 uint8_t SSPLayout;
183 StackObject(uint64_t Size, unsigned Alignment, int64_t SPOffset,
184 bool IsImmutable, bool IsSpillSlot, const AllocaInst *Alloca,
185 bool IsAliased, uint8_t StackID = 0)
186 : SPOffset(SPOffset), Size(Size), Alignment(Alignment),
187 isImmutable(IsImmutable), isSpillSlot(IsSpillSlot),
188 StackID(StackID), Alloca(Alloca), isAliased(IsAliased),
189 SSPLayout(SSPLK_None) {}
192 /// The alignment of the stack.
193 unsigned StackAlignment;
195 /// Can the stack be realigned. This can be false if the target does not
196 /// support stack realignment, or if the user asks us not to realign the
197 /// stack. In this situation, overaligned allocas are all treated as dynamic
198 /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
199 /// lowering. All non-alloca stack objects have their alignment clamped to the
200 /// base ABI stack alignment.
201 /// FIXME: There is room for improvement in this case, in terms of
202 /// grouping overaligned allocas into a "secondary stack frame" and
203 /// then only use a single alloca to allocate this frame and only a
204 /// single virtual register to access it. Currently, without such an
205 /// optimization, each such alloca gets its own dynamic realignment.
206 bool StackRealignable;
208 /// Whether the function has the \c alignstack attribute.
209 bool ForcedRealign;
211 /// The list of stack objects allocated.
212 std::vector<StackObject> Objects;
214 /// This contains the number of fixed objects contained on
215 /// the stack. Because fixed objects are stored at a negative index in the
216 /// Objects list, this is also the index to the 0th object in the list.
217 unsigned NumFixedObjects = 0;
219 /// This boolean keeps track of whether any variable
220 /// sized objects have been allocated yet.
221 bool HasVarSizedObjects = false;
223 /// This boolean keeps track of whether there is a call
224 /// to builtin \@llvm.frameaddress.
225 bool FrameAddressTaken = false;
227 /// This boolean keeps track of whether there is a call
228 /// to builtin \@llvm.returnaddress.
229 bool ReturnAddressTaken = false;
231 /// This boolean keeps track of whether there is a call
232 /// to builtin \@llvm.experimental.stackmap.
233 bool HasStackMap = false;
235 /// This boolean keeps track of whether there is a call
236 /// to builtin \@llvm.experimental.patchpoint.
237 bool HasPatchPoint = false;
239 /// The prolog/epilog code inserter calculates the final stack
240 /// offsets for all of the fixed size objects, updating the Objects list
241 /// above. It then updates StackSize to contain the number of bytes that need
242 /// to be allocated on entry to the function.
243 uint64_t StackSize = 0;
245 /// The amount that a frame offset needs to be adjusted to
246 /// have the actual offset from the stack/frame pointer. The exact usage of
247 /// this is target-dependent, but it is typically used to adjust between
248 /// SP-relative and FP-relative offsets. E.G., if objects are accessed via
249 /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
250 /// to the distance between the initial SP and the value in FP. For many
251 /// targets, this value is only used when generating debug info (via
252 /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
253 /// corresponding adjustments are performed directly.
254 int OffsetAdjustment = 0;
256 /// The prolog/epilog code inserter may process objects that require greater
257 /// alignment than the default alignment the target provides.
258 /// To handle this, MaxAlignment is set to the maximum alignment
259 /// needed by the objects on the current frame. If this is greater than the
260 /// native alignment maintained by the compiler, dynamic alignment code will
261 /// be needed.
263 unsigned MaxAlignment = 0;
265 /// Set to true if this function adjusts the stack -- e.g.,
266 /// when calling another function. This is only valid during and after
267 /// prolog/epilog code insertion.
268 bool AdjustsStack = false;
270 /// Set to true if this function has any function calls.
271 bool HasCalls = false;
273 /// The frame index for the stack protector.
274 int StackProtectorIdx = -1;
276 /// The frame index for the function context. Used for SjLj exceptions.
277 int FunctionContextIdx = -1;
279 /// This contains the size of the largest call frame if the target uses frame
280 /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
281 /// class). This information is important for frame pointer elimination.
282 /// It is only valid during and after prolog/epilog code insertion.
283 unsigned MaxCallFrameSize = ~0u;
285 /// The number of bytes of callee saved registers that the target wants to
286 /// report for the current function in the CodeView S_FRAMEPROC record.
287 unsigned CVBytesOfCalleeSavedRegisters = 0;
289 /// The prolog/epilog code inserter fills in this vector with each
290 /// callee saved register saved in either the frame or a different
291 /// register. Beyond its use by the prolog/ epilog code inserter,
292 /// this data is used for debug info and exception handling.
293 std::vector<CalleeSavedInfo> CSInfo;
295 /// Has CSInfo been set yet?
296 bool CSIValid = false;
298 /// References to frame indices which are mapped
299 /// into the local frame allocation block. <FrameIdx, LocalOffset>
300 SmallVector<std::pair<int, int64_t>, 32> LocalFrameObjects;
302 /// Size of the pre-allocated local frame block.
303 int64_t LocalFrameSize = 0;
305 /// Required alignment of the local object blob, which is the strictest
306 /// alignment of any object in it.
307 unsigned LocalFrameMaxAlign = 0;
309 /// Whether the local object blob needs to be allocated together. If not,
310 /// PEI should ignore the isPreAllocated flags on the stack objects and
311 /// just allocate them normally.
312 bool UseLocalStackAllocationBlock = false;
314 /// True if the function dynamically adjusts the stack pointer through some
315 /// opaque mechanism like inline assembly or Win32 EH.
316 bool HasOpaqueSPAdjustment = false;
318 /// True if the function contains operations which will lower down to
319 /// instructions which manipulate the stack pointer.
320 bool HasCopyImplyingStackAdjustment = false;
322 /// True if the function contains a call to the llvm.vastart intrinsic.
323 bool HasVAStart = false;
325 /// True if this is a varargs function that contains a musttail call.
326 bool HasMustTailInVarArgFunc = false;
328 /// True if this function contains a tail call. If so immutable objects like
329 /// function arguments are no longer so. A tail call *can* override fixed
330 /// stack objects like arguments so we can't treat them as immutable.
331 bool HasTailCall = false;
333 /// Not null, if shrink-wrapping found a better place for the prologue.
334 MachineBasicBlock *Save = nullptr;
335 /// Not null, if shrink-wrapping found a better place for the epilogue.
336 MachineBasicBlock *Restore = nullptr;
338 public:
339 explicit MachineFrameInfo(unsigned StackAlignment, bool StackRealignable,
340 bool ForcedRealign)
341 : StackAlignment(StackAlignment), StackRealignable(StackRealignable),
342 ForcedRealign(ForcedRealign) {}
344 /// Return true if there are any stack objects in this function.
345 bool hasStackObjects() const { return !Objects.empty(); }
347 /// This method may be called any time after instruction
348 /// selection is complete to determine if the stack frame for this function
349 /// contains any variable sized objects.
350 bool hasVarSizedObjects() const { return HasVarSizedObjects; }
352 /// Return the index for the stack protector object.
353 int getStackProtectorIndex() const { return StackProtectorIdx; }
354 void setStackProtectorIndex(int I) { StackProtectorIdx = I; }
355 bool hasStackProtectorIndex() const { return StackProtectorIdx != -1; }
357 /// Return the index for the function context object.
358 /// This object is used for SjLj exceptions.
359 int getFunctionContextIndex() const { return FunctionContextIdx; }
360 void setFunctionContextIndex(int I) { FunctionContextIdx = I; }
362 /// This method may be called any time after instruction
363 /// selection is complete to determine if there is a call to
364 /// \@llvm.frameaddress in this function.
365 bool isFrameAddressTaken() const { return FrameAddressTaken; }
366 void setFrameAddressIsTaken(bool T) { FrameAddressTaken = T; }
368 /// This method may be called any time after
369 /// instruction selection is complete to determine if there is a call to
370 /// \@llvm.returnaddress in this function.
371 bool isReturnAddressTaken() const { return ReturnAddressTaken; }
372 void setReturnAddressIsTaken(bool s) { ReturnAddressTaken = s; }
374 /// This method may be called any time after instruction
375 /// selection is complete to determine if there is a call to builtin
376 /// \@llvm.experimental.stackmap.
377 bool hasStackMap() const { return HasStackMap; }
378 void setHasStackMap(bool s = true) { HasStackMap = s; }
380 /// This method may be called any time after instruction
381 /// selection is complete to determine if there is a call to builtin
382 /// \@llvm.experimental.patchpoint.
383 bool hasPatchPoint() const { return HasPatchPoint; }
384 void setHasPatchPoint(bool s = true) { HasPatchPoint = s; }
386 /// Return the minimum frame object index.
387 int getObjectIndexBegin() const { return -NumFixedObjects; }
389 /// Return one past the maximum frame object index.
390 int getObjectIndexEnd() const { return (int)Objects.size()-NumFixedObjects; }
392 /// Return the number of fixed objects.
393 unsigned getNumFixedObjects() const { return NumFixedObjects; }
395 /// Return the number of objects.
396 unsigned getNumObjects() const { return Objects.size(); }
398 /// Map a frame index into the local object block
399 void mapLocalFrameObject(int ObjectIndex, int64_t Offset) {
400 LocalFrameObjects.push_back(std::pair<int, int64_t>(ObjectIndex, Offset));
401 Objects[ObjectIndex + NumFixedObjects].PreAllocated = true;
404 /// Get the local offset mapping for a for an object.
405 std::pair<int, int64_t> getLocalFrameObjectMap(int i) const {
406 assert (i >= 0 && (unsigned)i < LocalFrameObjects.size() &&
407 "Invalid local object reference!");
408 return LocalFrameObjects[i];
411 /// Return the number of objects allocated into the local object block.
412 int64_t getLocalFrameObjectCount() const { return LocalFrameObjects.size(); }
414 /// Set the size of the local object blob.
415 void setLocalFrameSize(int64_t sz) { LocalFrameSize = sz; }
417 /// Get the size of the local object blob.
418 int64_t getLocalFrameSize() const { return LocalFrameSize; }
420 /// Required alignment of the local object blob,
421 /// which is the strictest alignment of any object in it.
422 void setLocalFrameMaxAlign(unsigned Align) { LocalFrameMaxAlign = Align; }
424 /// Return the required alignment of the local object blob.
425 unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign; }
427 /// Get whether the local allocation blob should be allocated together or
428 /// let PEI allocate the locals in it directly.
429 bool getUseLocalStackAllocationBlock() const {
430 return UseLocalStackAllocationBlock;
433 /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
434 /// should be allocated together or let PEI allocate the locals in it
435 /// directly.
436 void setUseLocalStackAllocationBlock(bool v) {
437 UseLocalStackAllocationBlock = v;
440 /// Return true if the object was pre-allocated into the local block.
441 bool isObjectPreAllocated(int ObjectIdx) const {
442 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
443 "Invalid Object Idx!");
444 return Objects[ObjectIdx+NumFixedObjects].PreAllocated;
447 /// Return the size of the specified object.
448 int64_t getObjectSize(int ObjectIdx) const {
449 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
450 "Invalid Object Idx!");
451 return Objects[ObjectIdx+NumFixedObjects].Size;
454 /// Change the size of the specified stack object.
455 void setObjectSize(int ObjectIdx, int64_t Size) {
456 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
457 "Invalid Object Idx!");
458 Objects[ObjectIdx+NumFixedObjects].Size = Size;
461 /// Return the alignment of the specified stack object.
462 unsigned getObjectAlignment(int ObjectIdx) const {
463 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
464 "Invalid Object Idx!");
465 return Objects[ObjectIdx+NumFixedObjects].Alignment;
468 /// setObjectAlignment - Change the alignment of the specified stack object.
469 void setObjectAlignment(int ObjectIdx, unsigned Align) {
470 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
471 "Invalid Object Idx!");
472 Objects[ObjectIdx+NumFixedObjects].Alignment = Align;
473 ensureMaxAlignment(Align);
476 /// Return the underlying Alloca of the specified
477 /// stack object if it exists. Returns 0 if none exists.
478 const AllocaInst* getObjectAllocation(int ObjectIdx) const {
479 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
480 "Invalid Object Idx!");
481 return Objects[ObjectIdx+NumFixedObjects].Alloca;
484 /// Return the assigned stack offset of the specified object
485 /// from the incoming stack pointer.
486 int64_t getObjectOffset(int ObjectIdx) const {
487 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
488 "Invalid Object Idx!");
489 assert(!isDeadObjectIndex(ObjectIdx) &&
490 "Getting frame offset for a dead object?");
491 return Objects[ObjectIdx+NumFixedObjects].SPOffset;
494 bool isObjectZExt(int ObjectIdx) const {
495 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
496 "Invalid Object Idx!");
497 return Objects[ObjectIdx+NumFixedObjects].isZExt;
500 void setObjectZExt(int ObjectIdx, bool IsZExt) {
501 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
502 "Invalid Object Idx!");
503 Objects[ObjectIdx+NumFixedObjects].isZExt = IsZExt;
506 bool isObjectSExt(int ObjectIdx) const {
507 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
508 "Invalid Object Idx!");
509 return Objects[ObjectIdx+NumFixedObjects].isSExt;
512 void setObjectSExt(int ObjectIdx, bool IsSExt) {
513 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
514 "Invalid Object Idx!");
515 Objects[ObjectIdx+NumFixedObjects].isSExt = IsSExt;
518 /// Set the stack frame offset of the specified object. The
519 /// offset is relative to the stack pointer on entry to the function.
520 void setObjectOffset(int ObjectIdx, int64_t SPOffset) {
521 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
522 "Invalid Object Idx!");
523 assert(!isDeadObjectIndex(ObjectIdx) &&
524 "Setting frame offset for a dead object?");
525 Objects[ObjectIdx+NumFixedObjects].SPOffset = SPOffset;
528 SSPLayoutKind getObjectSSPLayout(int ObjectIdx) const {
529 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
530 "Invalid Object Idx!");
531 return (SSPLayoutKind)Objects[ObjectIdx+NumFixedObjects].SSPLayout;
534 void setObjectSSPLayout(int ObjectIdx, SSPLayoutKind Kind) {
535 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
536 "Invalid Object Idx!");
537 assert(!isDeadObjectIndex(ObjectIdx) &&
538 "Setting SSP layout for a dead object?");
539 Objects[ObjectIdx+NumFixedObjects].SSPLayout = Kind;
542 /// Return the number of bytes that must be allocated to hold
543 /// all of the fixed size frame objects. This is only valid after
544 /// Prolog/Epilog code insertion has finalized the stack frame layout.
545 uint64_t getStackSize() const { return StackSize; }
547 /// Set the size of the stack.
548 void setStackSize(uint64_t Size) { StackSize = Size; }
550 /// Estimate and return the size of the stack frame.
551 unsigned estimateStackSize(const MachineFunction &MF) const;
553 /// Return the correction for frame offsets.
554 int getOffsetAdjustment() const { return OffsetAdjustment; }
556 /// Set the correction for frame offsets.
557 void setOffsetAdjustment(int Adj) { OffsetAdjustment = Adj; }
559 /// Return the alignment in bytes that this function must be aligned to,
560 /// which is greater than the default stack alignment provided by the target.
561 unsigned getMaxAlignment() const { return MaxAlignment; }
563 /// Make sure the function is at least Align bytes aligned.
564 void ensureMaxAlignment(unsigned Align);
566 /// Return true if this function adjusts the stack -- e.g.,
567 /// when calling another function. This is only valid during and after
568 /// prolog/epilog code insertion.
569 bool adjustsStack() const { return AdjustsStack; }
570 void setAdjustsStack(bool V) { AdjustsStack = V; }
572 /// Return true if the current function has any function calls.
573 bool hasCalls() const { return HasCalls; }
574 void setHasCalls(bool V) { HasCalls = V; }
576 /// Returns true if the function contains opaque dynamic stack adjustments.
577 bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment; }
578 void setHasOpaqueSPAdjustment(bool B) { HasOpaqueSPAdjustment = B; }
580 /// Returns true if the function contains operations which will lower down to
581 /// instructions which manipulate the stack pointer.
582 bool hasCopyImplyingStackAdjustment() const {
583 return HasCopyImplyingStackAdjustment;
585 void setHasCopyImplyingStackAdjustment(bool B) {
586 HasCopyImplyingStackAdjustment = B;
589 /// Returns true if the function calls the llvm.va_start intrinsic.
590 bool hasVAStart() const { return HasVAStart; }
591 void setHasVAStart(bool B) { HasVAStart = B; }
593 /// Returns true if the function is variadic and contains a musttail call.
594 bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc; }
595 void setHasMustTailInVarArgFunc(bool B) { HasMustTailInVarArgFunc = B; }
597 /// Returns true if the function contains a tail call.
598 bool hasTailCall() const { return HasTailCall; }
599 void setHasTailCall() { HasTailCall = true; }
601 /// Computes the maximum size of a callframe and the AdjustsStack property.
602 /// This only works for targets defining
603 /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
604 /// and getFrameSize().
605 /// This is usually computed by the prologue epilogue inserter but some
606 /// targets may call this to compute it earlier.
607 void computeMaxCallFrameSize(const MachineFunction &MF);
609 /// Return the maximum size of a call frame that must be
610 /// allocated for an outgoing function call. This is only available if
611 /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
612 /// then only during or after prolog/epilog code insertion.
614 unsigned getMaxCallFrameSize() const {
615 // TODO: Enable this assert when targets are fixed.
616 //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
617 if (!isMaxCallFrameSizeComputed())
618 return 0;
619 return MaxCallFrameSize;
621 bool isMaxCallFrameSizeComputed() const {
622 return MaxCallFrameSize != ~0u;
624 void setMaxCallFrameSize(unsigned S) { MaxCallFrameSize = S; }
626 /// Returns how many bytes of callee-saved registers the target pushed in the
627 /// prologue. Only used for debug info.
628 unsigned getCVBytesOfCalleeSavedRegisters() const {
629 return CVBytesOfCalleeSavedRegisters;
631 void setCVBytesOfCalleeSavedRegisters(unsigned S) {
632 CVBytesOfCalleeSavedRegisters = S;
635 /// Create a new object at a fixed location on the stack.
636 /// All fixed objects should be created before other objects are created for
637 /// efficiency. By default, fixed objects are not pointed to by LLVM IR
638 /// values. This returns an index with a negative value.
639 int CreateFixedObject(uint64_t Size, int64_t SPOffset, bool IsImmutable,
640 bool isAliased = false);
642 /// Create a spill slot at a fixed location on the stack.
643 /// Returns an index with a negative value.
644 int CreateFixedSpillStackObject(uint64_t Size, int64_t SPOffset,
645 bool IsImmutable = false);
647 /// Returns true if the specified index corresponds to a fixed stack object.
648 bool isFixedObjectIndex(int ObjectIdx) const {
649 return ObjectIdx < 0 && (ObjectIdx >= -(int)NumFixedObjects);
652 /// Returns true if the specified index corresponds
653 /// to an object that might be pointed to by an LLVM IR value.
654 bool isAliasedObjectIndex(int ObjectIdx) const {
655 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
656 "Invalid Object Idx!");
657 return Objects[ObjectIdx+NumFixedObjects].isAliased;
660 /// Returns true if the specified index corresponds to an immutable object.
661 bool isImmutableObjectIndex(int ObjectIdx) const {
662 // Tail calling functions can clobber their function arguments.
663 if (HasTailCall)
664 return false;
665 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
666 "Invalid Object Idx!");
667 return Objects[ObjectIdx+NumFixedObjects].isImmutable;
670 /// Marks the immutability of an object.
671 void setIsImmutableObjectIndex(int ObjectIdx, bool IsImmutable) {
672 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
673 "Invalid Object Idx!");
674 Objects[ObjectIdx+NumFixedObjects].isImmutable = IsImmutable;
677 /// Returns true if the specified index corresponds to a spill slot.
678 bool isSpillSlotObjectIndex(int ObjectIdx) const {
679 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
680 "Invalid Object Idx!");
681 return Objects[ObjectIdx+NumFixedObjects].isSpillSlot;
684 bool isStatepointSpillSlotObjectIndex(int ObjectIdx) const {
685 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
686 "Invalid Object Idx!");
687 return Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot;
690 /// \see StackID
691 uint8_t getStackID(int ObjectIdx) const {
692 return Objects[ObjectIdx+NumFixedObjects].StackID;
695 /// \see StackID
696 void setStackID(int ObjectIdx, uint8_t ID) {
697 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
698 "Invalid Object Idx!");
699 Objects[ObjectIdx+NumFixedObjects].StackID = ID;
702 /// Returns true if the specified index corresponds to a dead object.
703 bool isDeadObjectIndex(int ObjectIdx) const {
704 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
705 "Invalid Object Idx!");
706 return Objects[ObjectIdx+NumFixedObjects].Size == ~0ULL;
709 /// Returns true if the specified index corresponds to a variable sized
710 /// object.
711 bool isVariableSizedObjectIndex(int ObjectIdx) const {
712 assert(unsigned(ObjectIdx + NumFixedObjects) < Objects.size() &&
713 "Invalid Object Idx!");
714 return Objects[ObjectIdx + NumFixedObjects].Size == 0;
717 void markAsStatepointSpillSlotObjectIndex(int ObjectIdx) {
718 assert(unsigned(ObjectIdx+NumFixedObjects) < Objects.size() &&
719 "Invalid Object Idx!");
720 Objects[ObjectIdx+NumFixedObjects].isStatepointSpillSlot = true;
721 assert(isStatepointSpillSlotObjectIndex(ObjectIdx) && "inconsistent");
724 /// Create a new statically sized stack object, returning
725 /// a nonnegative identifier to represent it.
726 int CreateStackObject(uint64_t Size, unsigned Alignment, bool isSpillSlot,
727 const AllocaInst *Alloca = nullptr, uint8_t ID = 0);
729 /// Create a new statically sized stack object that represents a spill slot,
730 /// returning a nonnegative identifier to represent it.
731 int CreateSpillStackObject(uint64_t Size, unsigned Alignment);
733 /// Remove or mark dead a statically sized stack object.
734 void RemoveStackObject(int ObjectIdx) {
735 // Mark it dead.
736 Objects[ObjectIdx+NumFixedObjects].Size = ~0ULL;
739 /// Notify the MachineFrameInfo object that a variable sized object has been
740 /// created. This must be created whenever a variable sized object is
741 /// created, whether or not the index returned is actually used.
742 int CreateVariableSizedObject(unsigned Alignment, const AllocaInst *Alloca);
744 /// Returns a reference to call saved info vector for the current function.
745 const std::vector<CalleeSavedInfo> &getCalleeSavedInfo() const {
746 return CSInfo;
748 /// \copydoc getCalleeSavedInfo()
749 std::vector<CalleeSavedInfo> &getCalleeSavedInfo() { return CSInfo; }
751 /// Used by prolog/epilog inserter to set the function's callee saved
752 /// information.
753 void setCalleeSavedInfo(const std::vector<CalleeSavedInfo> &CSI) {
754 CSInfo = CSI;
757 /// Has the callee saved info been calculated yet?
758 bool isCalleeSavedInfoValid() const { return CSIValid; }
760 void setCalleeSavedInfoValid(bool v) { CSIValid = v; }
762 MachineBasicBlock *getSavePoint() const { return Save; }
763 void setSavePoint(MachineBasicBlock *NewSave) { Save = NewSave; }
764 MachineBasicBlock *getRestorePoint() const { return Restore; }
765 void setRestorePoint(MachineBasicBlock *NewRestore) { Restore = NewRestore; }
767 /// Return a set of physical registers that are pristine.
769 /// Pristine registers hold a value that is useless to the current function,
770 /// but that must be preserved - they are callee saved registers that are not
771 /// saved.
773 /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
774 /// method always returns an empty set.
775 BitVector getPristineRegs(const MachineFunction &MF) const;
777 /// Used by the MachineFunction printer to print information about
778 /// stack objects. Implemented in MachineFunction.cpp.
779 void print(const MachineFunction &MF, raw_ostream &OS) const;
781 /// dump - Print the function to stderr.
782 void dump(const MachineFunction &MF) const;
785 } // End llvm namespace
787 #endif