1 //===-- CodeGen/MachineFrameInfo.h - Abstract Stack Frame Rep. --*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // The file defines the MachineFrameInfo class.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_CODEGEN_MACHINEFRAMEINFO_H
14 #define LLVM_CODEGEN_MACHINEFRAMEINFO_H
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/Support/DataTypes.h"
23 class MachineFunction
;
24 class MachineBasicBlock
;
28 /// The CalleeSavedInfo class tracks the information need to locate where a
29 /// callee saved register is in the current frame.
30 /// Callee saved reg can also be saved to a different register rather than
31 /// on the stack by setting DstReg instead of FrameIdx.
32 class CalleeSavedInfo
{
38 /// Flag indicating whether the register is actually restored in the epilog.
39 /// In most cases, if a register is saved, it is also restored. There are
40 /// some situations, though, when this is not the case. For example, the
41 /// LR register on ARM is usually saved, but on exit from the function its
42 /// saved value may be loaded directly into PC. Since liveness tracking of
43 /// physical registers treats callee-saved registers are live outside of
44 /// the function, LR would be treated as live-on-exit, even though in these
45 /// scenarios it is not. This flag is added to indicate that the saved
46 /// register described by this object is not restored in the epilog.
47 /// The long-term solution is to model the liveness of callee-saved registers
48 /// by implicit uses on the return instructions, however, the required
49 /// changes in the ARM backend would be quite extensive.
51 /// Flag indicating whether the register is spilled to stack or another
56 explicit CalleeSavedInfo(unsigned R
, int FI
= 0)
57 : Reg(R
), FrameIdx(FI
), Restored(true), SpilledToReg(false) {}
60 unsigned getReg() const { return Reg
; }
61 int getFrameIdx() const { return FrameIdx
; }
62 unsigned getDstReg() const { return DstReg
; }
63 void setFrameIdx(int FI
) {
67 void setDstReg(unsigned SpillReg
) {
71 bool isRestored() const { return Restored
; }
72 void setRestored(bool R
) { Restored
= R
; }
73 bool isSpilledToReg() const { return SpilledToReg
; }
76 /// The MachineFrameInfo class represents an abstract stack frame until
77 /// prolog/epilog code is inserted. This class is key to allowing stack frame
78 /// representation optimizations, such as frame pointer elimination. It also
79 /// allows more mundane (but still important) optimizations, such as reordering
80 /// of abstract objects on the stack frame.
82 /// To support this, the class assigns unique integer identifiers to stack
83 /// objects requested clients. These identifiers are negative integers for
84 /// fixed stack objects (such as arguments passed on the stack) or nonnegative
85 /// for objects that may be reordered. Instructions which refer to stack
86 /// objects use a special MO_FrameIndex operand to represent these frame
89 /// Because this class keeps track of all references to the stack frame, it
90 /// knows when a variable sized object is allocated on the stack. This is the
91 /// sole condition which prevents frame pointer elimination, which is an
92 /// important optimization on register-poor architectures. Because original
93 /// variable sized alloca's in the source program are the only source of
94 /// variable sized stack objects, it is safe to decide whether there will be
95 /// any variable sized objects before all stack objects are known (for
96 /// example, register allocator spill code never needs variable sized
99 /// When prolog/epilog code emission is performed, the final stack frame is
100 /// built and the machine instructions are modified to refer to the actual
101 /// stack offsets of the object, eliminating all MO_FrameIndex operands from
104 /// Abstract Stack Frame Information
105 class MachineFrameInfo
{
107 /// Stack Smashing Protection (SSP) rules require that vulnerable stack
108 /// allocations are located close the stack protector.
110 SSPLK_None
, ///< Did not trigger a stack protector. No effect on data
112 SSPLK_LargeArray
, ///< Array or nested array >= SSP-buffer-size. Closest
113 ///< to the stack protector.
114 SSPLK_SmallArray
, ///< Array or nested array < SSP-buffer-size. 2nd closest
115 ///< to the stack protector.
116 SSPLK_AddrOf
///< The address of this allocation is exposed and
117 ///< triggered protection. 3rd closest to the protector.
121 // Represent a single object allocated on the stack.
123 // The offset of this object from the stack pointer on entry to
124 // the function. This field has no meaning for a variable sized element.
127 // The size of this object on the stack. 0 means a variable sized object,
128 // ~0ULL means a dead object.
131 // The required alignment of this stack slot.
134 // If true, the value of the stack object is set before
135 // entering the function and is not modified inside the function. By
136 // default, fixed objects are immutable unless marked otherwise.
139 // If true the stack object is used as spill slot. It
140 // cannot alias any other memory objects.
143 /// If true, this stack slot is used to spill a value (could be deopt
144 /// and/or GC related) over a statepoint. We know that the address of the
145 /// slot can't alias any LLVM IR value. This is very similar to a Spill
146 /// Slot, but is created by statepoint lowering is SelectionDAG, not the
147 /// register allocator.
148 bool isStatepointSpillSlot
= false;
150 /// Identifier for stack memory type analagous to address space. If this is
151 /// non-0, the meaning is target defined. Offsets cannot be directly
152 /// compared between objects with different stack IDs. The object may not
153 /// necessarily reside in the same contiguous memory block as other stack
154 /// objects. Objects with differing stack IDs should not be merged or
155 /// replaced substituted for each other.
157 /// It is assumed a target uses consecutive, increasing stack IDs starting
161 /// If this stack object is originated from an Alloca instruction
162 /// this value saves the original IR allocation. Can be NULL.
163 const AllocaInst
*Alloca
;
165 // If true, the object was mapped into the local frame
166 // block and doesn't need additional handling for allocation beyond that.
167 bool PreAllocated
= false;
169 // If true, an LLVM IR value might point to this object.
170 // Normally, spill slots and fixed-offset objects don't alias IR-accessible
171 // objects, but there are exceptions (on PowerPC, for example, some byval
172 // arguments have ABI-prescribed offsets).
175 /// If true, the object has been zero-extended.
178 /// If true, the object has been zero-extended.
183 StackObject(uint64_t Size
, unsigned Alignment
, int64_t SPOffset
,
184 bool IsImmutable
, bool IsSpillSlot
, const AllocaInst
*Alloca
,
185 bool IsAliased
, uint8_t StackID
= 0)
186 : SPOffset(SPOffset
), Size(Size
), Alignment(Alignment
),
187 isImmutable(IsImmutable
), isSpillSlot(IsSpillSlot
),
188 StackID(StackID
), Alloca(Alloca
), isAliased(IsAliased
),
189 SSPLayout(SSPLK_None
) {}
192 /// The alignment of the stack.
193 unsigned StackAlignment
;
195 /// Can the stack be realigned. This can be false if the target does not
196 /// support stack realignment, or if the user asks us not to realign the
197 /// stack. In this situation, overaligned allocas are all treated as dynamic
198 /// allocations and the target must handle them as part of DYNAMIC_STACKALLOC
199 /// lowering. All non-alloca stack objects have their alignment clamped to the
200 /// base ABI stack alignment.
201 /// FIXME: There is room for improvement in this case, in terms of
202 /// grouping overaligned allocas into a "secondary stack frame" and
203 /// then only use a single alloca to allocate this frame and only a
204 /// single virtual register to access it. Currently, without such an
205 /// optimization, each such alloca gets its own dynamic realignment.
206 bool StackRealignable
;
208 /// Whether the function has the \c alignstack attribute.
211 /// The list of stack objects allocated.
212 std::vector
<StackObject
> Objects
;
214 /// This contains the number of fixed objects contained on
215 /// the stack. Because fixed objects are stored at a negative index in the
216 /// Objects list, this is also the index to the 0th object in the list.
217 unsigned NumFixedObjects
= 0;
219 /// This boolean keeps track of whether any variable
220 /// sized objects have been allocated yet.
221 bool HasVarSizedObjects
= false;
223 /// This boolean keeps track of whether there is a call
224 /// to builtin \@llvm.frameaddress.
225 bool FrameAddressTaken
= false;
227 /// This boolean keeps track of whether there is a call
228 /// to builtin \@llvm.returnaddress.
229 bool ReturnAddressTaken
= false;
231 /// This boolean keeps track of whether there is a call
232 /// to builtin \@llvm.experimental.stackmap.
233 bool HasStackMap
= false;
235 /// This boolean keeps track of whether there is a call
236 /// to builtin \@llvm.experimental.patchpoint.
237 bool HasPatchPoint
= false;
239 /// The prolog/epilog code inserter calculates the final stack
240 /// offsets for all of the fixed size objects, updating the Objects list
241 /// above. It then updates StackSize to contain the number of bytes that need
242 /// to be allocated on entry to the function.
243 uint64_t StackSize
= 0;
245 /// The amount that a frame offset needs to be adjusted to
246 /// have the actual offset from the stack/frame pointer. The exact usage of
247 /// this is target-dependent, but it is typically used to adjust between
248 /// SP-relative and FP-relative offsets. E.G., if objects are accessed via
249 /// SP then OffsetAdjustment is zero; if FP is used, OffsetAdjustment is set
250 /// to the distance between the initial SP and the value in FP. For many
251 /// targets, this value is only used when generating debug info (via
252 /// TargetRegisterInfo::getFrameIndexReference); when generating code, the
253 /// corresponding adjustments are performed directly.
254 int OffsetAdjustment
= 0;
256 /// The prolog/epilog code inserter may process objects that require greater
257 /// alignment than the default alignment the target provides.
258 /// To handle this, MaxAlignment is set to the maximum alignment
259 /// needed by the objects on the current frame. If this is greater than the
260 /// native alignment maintained by the compiler, dynamic alignment code will
263 unsigned MaxAlignment
= 0;
265 /// Set to true if this function adjusts the stack -- e.g.,
266 /// when calling another function. This is only valid during and after
267 /// prolog/epilog code insertion.
268 bool AdjustsStack
= false;
270 /// Set to true if this function has any function calls.
271 bool HasCalls
= false;
273 /// The frame index for the stack protector.
274 int StackProtectorIdx
= -1;
276 /// The frame index for the function context. Used for SjLj exceptions.
277 int FunctionContextIdx
= -1;
279 /// This contains the size of the largest call frame if the target uses frame
280 /// setup/destroy pseudo instructions (as defined in the TargetFrameInfo
281 /// class). This information is important for frame pointer elimination.
282 /// It is only valid during and after prolog/epilog code insertion.
283 unsigned MaxCallFrameSize
= ~0u;
285 /// The number of bytes of callee saved registers that the target wants to
286 /// report for the current function in the CodeView S_FRAMEPROC record.
287 unsigned CVBytesOfCalleeSavedRegisters
= 0;
289 /// The prolog/epilog code inserter fills in this vector with each
290 /// callee saved register saved in either the frame or a different
291 /// register. Beyond its use by the prolog/ epilog code inserter,
292 /// this data is used for debug info and exception handling.
293 std::vector
<CalleeSavedInfo
> CSInfo
;
295 /// Has CSInfo been set yet?
296 bool CSIValid
= false;
298 /// References to frame indices which are mapped
299 /// into the local frame allocation block. <FrameIdx, LocalOffset>
300 SmallVector
<std::pair
<int, int64_t>, 32> LocalFrameObjects
;
302 /// Size of the pre-allocated local frame block.
303 int64_t LocalFrameSize
= 0;
305 /// Required alignment of the local object blob, which is the strictest
306 /// alignment of any object in it.
307 unsigned LocalFrameMaxAlign
= 0;
309 /// Whether the local object blob needs to be allocated together. If not,
310 /// PEI should ignore the isPreAllocated flags on the stack objects and
311 /// just allocate them normally.
312 bool UseLocalStackAllocationBlock
= false;
314 /// True if the function dynamically adjusts the stack pointer through some
315 /// opaque mechanism like inline assembly or Win32 EH.
316 bool HasOpaqueSPAdjustment
= false;
318 /// True if the function contains operations which will lower down to
319 /// instructions which manipulate the stack pointer.
320 bool HasCopyImplyingStackAdjustment
= false;
322 /// True if the function contains a call to the llvm.vastart intrinsic.
323 bool HasVAStart
= false;
325 /// True if this is a varargs function that contains a musttail call.
326 bool HasMustTailInVarArgFunc
= false;
328 /// True if this function contains a tail call. If so immutable objects like
329 /// function arguments are no longer so. A tail call *can* override fixed
330 /// stack objects like arguments so we can't treat them as immutable.
331 bool HasTailCall
= false;
333 /// Not null, if shrink-wrapping found a better place for the prologue.
334 MachineBasicBlock
*Save
= nullptr;
335 /// Not null, if shrink-wrapping found a better place for the epilogue.
336 MachineBasicBlock
*Restore
= nullptr;
339 explicit MachineFrameInfo(unsigned StackAlignment
, bool StackRealignable
,
341 : StackAlignment(StackAlignment
), StackRealignable(StackRealignable
),
342 ForcedRealign(ForcedRealign
) {}
344 /// Return true if there are any stack objects in this function.
345 bool hasStackObjects() const { return !Objects
.empty(); }
347 /// This method may be called any time after instruction
348 /// selection is complete to determine if the stack frame for this function
349 /// contains any variable sized objects.
350 bool hasVarSizedObjects() const { return HasVarSizedObjects
; }
352 /// Return the index for the stack protector object.
353 int getStackProtectorIndex() const { return StackProtectorIdx
; }
354 void setStackProtectorIndex(int I
) { StackProtectorIdx
= I
; }
355 bool hasStackProtectorIndex() const { return StackProtectorIdx
!= -1; }
357 /// Return the index for the function context object.
358 /// This object is used for SjLj exceptions.
359 int getFunctionContextIndex() const { return FunctionContextIdx
; }
360 void setFunctionContextIndex(int I
) { FunctionContextIdx
= I
; }
362 /// This method may be called any time after instruction
363 /// selection is complete to determine if there is a call to
364 /// \@llvm.frameaddress in this function.
365 bool isFrameAddressTaken() const { return FrameAddressTaken
; }
366 void setFrameAddressIsTaken(bool T
) { FrameAddressTaken
= T
; }
368 /// This method may be called any time after
369 /// instruction selection is complete to determine if there is a call to
370 /// \@llvm.returnaddress in this function.
371 bool isReturnAddressTaken() const { return ReturnAddressTaken
; }
372 void setReturnAddressIsTaken(bool s
) { ReturnAddressTaken
= s
; }
374 /// This method may be called any time after instruction
375 /// selection is complete to determine if there is a call to builtin
376 /// \@llvm.experimental.stackmap.
377 bool hasStackMap() const { return HasStackMap
; }
378 void setHasStackMap(bool s
= true) { HasStackMap
= s
; }
380 /// This method may be called any time after instruction
381 /// selection is complete to determine if there is a call to builtin
382 /// \@llvm.experimental.patchpoint.
383 bool hasPatchPoint() const { return HasPatchPoint
; }
384 void setHasPatchPoint(bool s
= true) { HasPatchPoint
= s
; }
386 /// Return the minimum frame object index.
387 int getObjectIndexBegin() const { return -NumFixedObjects
; }
389 /// Return one past the maximum frame object index.
390 int getObjectIndexEnd() const { return (int)Objects
.size()-NumFixedObjects
; }
392 /// Return the number of fixed objects.
393 unsigned getNumFixedObjects() const { return NumFixedObjects
; }
395 /// Return the number of objects.
396 unsigned getNumObjects() const { return Objects
.size(); }
398 /// Map a frame index into the local object block
399 void mapLocalFrameObject(int ObjectIndex
, int64_t Offset
) {
400 LocalFrameObjects
.push_back(std::pair
<int, int64_t>(ObjectIndex
, Offset
));
401 Objects
[ObjectIndex
+ NumFixedObjects
].PreAllocated
= true;
404 /// Get the local offset mapping for a for an object.
405 std::pair
<int, int64_t> getLocalFrameObjectMap(int i
) const {
406 assert (i
>= 0 && (unsigned)i
< LocalFrameObjects
.size() &&
407 "Invalid local object reference!");
408 return LocalFrameObjects
[i
];
411 /// Return the number of objects allocated into the local object block.
412 int64_t getLocalFrameObjectCount() const { return LocalFrameObjects
.size(); }
414 /// Set the size of the local object blob.
415 void setLocalFrameSize(int64_t sz
) { LocalFrameSize
= sz
; }
417 /// Get the size of the local object blob.
418 int64_t getLocalFrameSize() const { return LocalFrameSize
; }
420 /// Required alignment of the local object blob,
421 /// which is the strictest alignment of any object in it.
422 void setLocalFrameMaxAlign(unsigned Align
) { LocalFrameMaxAlign
= Align
; }
424 /// Return the required alignment of the local object blob.
425 unsigned getLocalFrameMaxAlign() const { return LocalFrameMaxAlign
; }
427 /// Get whether the local allocation blob should be allocated together or
428 /// let PEI allocate the locals in it directly.
429 bool getUseLocalStackAllocationBlock() const {
430 return UseLocalStackAllocationBlock
;
433 /// setUseLocalStackAllocationBlock - Set whether the local allocation blob
434 /// should be allocated together or let PEI allocate the locals in it
436 void setUseLocalStackAllocationBlock(bool v
) {
437 UseLocalStackAllocationBlock
= v
;
440 /// Return true if the object was pre-allocated into the local block.
441 bool isObjectPreAllocated(int ObjectIdx
) const {
442 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
443 "Invalid Object Idx!");
444 return Objects
[ObjectIdx
+NumFixedObjects
].PreAllocated
;
447 /// Return the size of the specified object.
448 int64_t getObjectSize(int ObjectIdx
) const {
449 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
450 "Invalid Object Idx!");
451 return Objects
[ObjectIdx
+NumFixedObjects
].Size
;
454 /// Change the size of the specified stack object.
455 void setObjectSize(int ObjectIdx
, int64_t Size
) {
456 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
457 "Invalid Object Idx!");
458 Objects
[ObjectIdx
+NumFixedObjects
].Size
= Size
;
461 /// Return the alignment of the specified stack object.
462 unsigned getObjectAlignment(int ObjectIdx
) const {
463 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
464 "Invalid Object Idx!");
465 return Objects
[ObjectIdx
+NumFixedObjects
].Alignment
;
468 /// setObjectAlignment - Change the alignment of the specified stack object.
469 void setObjectAlignment(int ObjectIdx
, unsigned Align
) {
470 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
471 "Invalid Object Idx!");
472 Objects
[ObjectIdx
+NumFixedObjects
].Alignment
= Align
;
473 ensureMaxAlignment(Align
);
476 /// Return the underlying Alloca of the specified
477 /// stack object if it exists. Returns 0 if none exists.
478 const AllocaInst
* getObjectAllocation(int ObjectIdx
) const {
479 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
480 "Invalid Object Idx!");
481 return Objects
[ObjectIdx
+NumFixedObjects
].Alloca
;
484 /// Return the assigned stack offset of the specified object
485 /// from the incoming stack pointer.
486 int64_t getObjectOffset(int ObjectIdx
) const {
487 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
488 "Invalid Object Idx!");
489 assert(!isDeadObjectIndex(ObjectIdx
) &&
490 "Getting frame offset for a dead object?");
491 return Objects
[ObjectIdx
+NumFixedObjects
].SPOffset
;
494 bool isObjectZExt(int ObjectIdx
) const {
495 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
496 "Invalid Object Idx!");
497 return Objects
[ObjectIdx
+NumFixedObjects
].isZExt
;
500 void setObjectZExt(int ObjectIdx
, bool IsZExt
) {
501 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
502 "Invalid Object Idx!");
503 Objects
[ObjectIdx
+NumFixedObjects
].isZExt
= IsZExt
;
506 bool isObjectSExt(int ObjectIdx
) const {
507 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
508 "Invalid Object Idx!");
509 return Objects
[ObjectIdx
+NumFixedObjects
].isSExt
;
512 void setObjectSExt(int ObjectIdx
, bool IsSExt
) {
513 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
514 "Invalid Object Idx!");
515 Objects
[ObjectIdx
+NumFixedObjects
].isSExt
= IsSExt
;
518 /// Set the stack frame offset of the specified object. The
519 /// offset is relative to the stack pointer on entry to the function.
520 void setObjectOffset(int ObjectIdx
, int64_t SPOffset
) {
521 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
522 "Invalid Object Idx!");
523 assert(!isDeadObjectIndex(ObjectIdx
) &&
524 "Setting frame offset for a dead object?");
525 Objects
[ObjectIdx
+NumFixedObjects
].SPOffset
= SPOffset
;
528 SSPLayoutKind
getObjectSSPLayout(int ObjectIdx
) const {
529 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
530 "Invalid Object Idx!");
531 return (SSPLayoutKind
)Objects
[ObjectIdx
+NumFixedObjects
].SSPLayout
;
534 void setObjectSSPLayout(int ObjectIdx
, SSPLayoutKind Kind
) {
535 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
536 "Invalid Object Idx!");
537 assert(!isDeadObjectIndex(ObjectIdx
) &&
538 "Setting SSP layout for a dead object?");
539 Objects
[ObjectIdx
+NumFixedObjects
].SSPLayout
= Kind
;
542 /// Return the number of bytes that must be allocated to hold
543 /// all of the fixed size frame objects. This is only valid after
544 /// Prolog/Epilog code insertion has finalized the stack frame layout.
545 uint64_t getStackSize() const { return StackSize
; }
547 /// Set the size of the stack.
548 void setStackSize(uint64_t Size
) { StackSize
= Size
; }
550 /// Estimate and return the size of the stack frame.
551 unsigned estimateStackSize(const MachineFunction
&MF
) const;
553 /// Return the correction for frame offsets.
554 int getOffsetAdjustment() const { return OffsetAdjustment
; }
556 /// Set the correction for frame offsets.
557 void setOffsetAdjustment(int Adj
) { OffsetAdjustment
= Adj
; }
559 /// Return the alignment in bytes that this function must be aligned to,
560 /// which is greater than the default stack alignment provided by the target.
561 unsigned getMaxAlignment() const { return MaxAlignment
; }
563 /// Make sure the function is at least Align bytes aligned.
564 void ensureMaxAlignment(unsigned Align
);
566 /// Return true if this function adjusts the stack -- e.g.,
567 /// when calling another function. This is only valid during and after
568 /// prolog/epilog code insertion.
569 bool adjustsStack() const { return AdjustsStack
; }
570 void setAdjustsStack(bool V
) { AdjustsStack
= V
; }
572 /// Return true if the current function has any function calls.
573 bool hasCalls() const { return HasCalls
; }
574 void setHasCalls(bool V
) { HasCalls
= V
; }
576 /// Returns true if the function contains opaque dynamic stack adjustments.
577 bool hasOpaqueSPAdjustment() const { return HasOpaqueSPAdjustment
; }
578 void setHasOpaqueSPAdjustment(bool B
) { HasOpaqueSPAdjustment
= B
; }
580 /// Returns true if the function contains operations which will lower down to
581 /// instructions which manipulate the stack pointer.
582 bool hasCopyImplyingStackAdjustment() const {
583 return HasCopyImplyingStackAdjustment
;
585 void setHasCopyImplyingStackAdjustment(bool B
) {
586 HasCopyImplyingStackAdjustment
= B
;
589 /// Returns true if the function calls the llvm.va_start intrinsic.
590 bool hasVAStart() const { return HasVAStart
; }
591 void setHasVAStart(bool B
) { HasVAStart
= B
; }
593 /// Returns true if the function is variadic and contains a musttail call.
594 bool hasMustTailInVarArgFunc() const { return HasMustTailInVarArgFunc
; }
595 void setHasMustTailInVarArgFunc(bool B
) { HasMustTailInVarArgFunc
= B
; }
597 /// Returns true if the function contains a tail call.
598 bool hasTailCall() const { return HasTailCall
; }
599 void setHasTailCall() { HasTailCall
= true; }
601 /// Computes the maximum size of a callframe and the AdjustsStack property.
602 /// This only works for targets defining
603 /// TargetInstrInfo::getCallFrameSetupOpcode(), getCallFrameDestroyOpcode(),
604 /// and getFrameSize().
605 /// This is usually computed by the prologue epilogue inserter but some
606 /// targets may call this to compute it earlier.
607 void computeMaxCallFrameSize(const MachineFunction
&MF
);
609 /// Return the maximum size of a call frame that must be
610 /// allocated for an outgoing function call. This is only available if
611 /// CallFrameSetup/Destroy pseudo instructions are used by the target, and
612 /// then only during or after prolog/epilog code insertion.
614 unsigned getMaxCallFrameSize() const {
615 // TODO: Enable this assert when targets are fixed.
616 //assert(isMaxCallFrameSizeComputed() && "MaxCallFrameSize not computed yet");
617 if (!isMaxCallFrameSizeComputed())
619 return MaxCallFrameSize
;
621 bool isMaxCallFrameSizeComputed() const {
622 return MaxCallFrameSize
!= ~0u;
624 void setMaxCallFrameSize(unsigned S
) { MaxCallFrameSize
= S
; }
626 /// Returns how many bytes of callee-saved registers the target pushed in the
627 /// prologue. Only used for debug info.
628 unsigned getCVBytesOfCalleeSavedRegisters() const {
629 return CVBytesOfCalleeSavedRegisters
;
631 void setCVBytesOfCalleeSavedRegisters(unsigned S
) {
632 CVBytesOfCalleeSavedRegisters
= S
;
635 /// Create a new object at a fixed location on the stack.
636 /// All fixed objects should be created before other objects are created for
637 /// efficiency. By default, fixed objects are not pointed to by LLVM IR
638 /// values. This returns an index with a negative value.
639 int CreateFixedObject(uint64_t Size
, int64_t SPOffset
, bool IsImmutable
,
640 bool isAliased
= false);
642 /// Create a spill slot at a fixed location on the stack.
643 /// Returns an index with a negative value.
644 int CreateFixedSpillStackObject(uint64_t Size
, int64_t SPOffset
,
645 bool IsImmutable
= false);
647 /// Returns true if the specified index corresponds to a fixed stack object.
648 bool isFixedObjectIndex(int ObjectIdx
) const {
649 return ObjectIdx
< 0 && (ObjectIdx
>= -(int)NumFixedObjects
);
652 /// Returns true if the specified index corresponds
653 /// to an object that might be pointed to by an LLVM IR value.
654 bool isAliasedObjectIndex(int ObjectIdx
) const {
655 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
656 "Invalid Object Idx!");
657 return Objects
[ObjectIdx
+NumFixedObjects
].isAliased
;
660 /// Returns true if the specified index corresponds to an immutable object.
661 bool isImmutableObjectIndex(int ObjectIdx
) const {
662 // Tail calling functions can clobber their function arguments.
665 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
666 "Invalid Object Idx!");
667 return Objects
[ObjectIdx
+NumFixedObjects
].isImmutable
;
670 /// Marks the immutability of an object.
671 void setIsImmutableObjectIndex(int ObjectIdx
, bool IsImmutable
) {
672 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
673 "Invalid Object Idx!");
674 Objects
[ObjectIdx
+NumFixedObjects
].isImmutable
= IsImmutable
;
677 /// Returns true if the specified index corresponds to a spill slot.
678 bool isSpillSlotObjectIndex(int ObjectIdx
) const {
679 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
680 "Invalid Object Idx!");
681 return Objects
[ObjectIdx
+NumFixedObjects
].isSpillSlot
;
684 bool isStatepointSpillSlotObjectIndex(int ObjectIdx
) const {
685 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
686 "Invalid Object Idx!");
687 return Objects
[ObjectIdx
+NumFixedObjects
].isStatepointSpillSlot
;
691 uint8_t getStackID(int ObjectIdx
) const {
692 return Objects
[ObjectIdx
+NumFixedObjects
].StackID
;
696 void setStackID(int ObjectIdx
, uint8_t ID
) {
697 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
698 "Invalid Object Idx!");
699 Objects
[ObjectIdx
+NumFixedObjects
].StackID
= ID
;
702 /// Returns true if the specified index corresponds to a dead object.
703 bool isDeadObjectIndex(int ObjectIdx
) const {
704 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
705 "Invalid Object Idx!");
706 return Objects
[ObjectIdx
+NumFixedObjects
].Size
== ~0ULL;
709 /// Returns true if the specified index corresponds to a variable sized
711 bool isVariableSizedObjectIndex(int ObjectIdx
) const {
712 assert(unsigned(ObjectIdx
+ NumFixedObjects
) < Objects
.size() &&
713 "Invalid Object Idx!");
714 return Objects
[ObjectIdx
+ NumFixedObjects
].Size
== 0;
717 void markAsStatepointSpillSlotObjectIndex(int ObjectIdx
) {
718 assert(unsigned(ObjectIdx
+NumFixedObjects
) < Objects
.size() &&
719 "Invalid Object Idx!");
720 Objects
[ObjectIdx
+NumFixedObjects
].isStatepointSpillSlot
= true;
721 assert(isStatepointSpillSlotObjectIndex(ObjectIdx
) && "inconsistent");
724 /// Create a new statically sized stack object, returning
725 /// a nonnegative identifier to represent it.
726 int CreateStackObject(uint64_t Size
, unsigned Alignment
, bool isSpillSlot
,
727 const AllocaInst
*Alloca
= nullptr, uint8_t ID
= 0);
729 /// Create a new statically sized stack object that represents a spill slot,
730 /// returning a nonnegative identifier to represent it.
731 int CreateSpillStackObject(uint64_t Size
, unsigned Alignment
);
733 /// Remove or mark dead a statically sized stack object.
734 void RemoveStackObject(int ObjectIdx
) {
736 Objects
[ObjectIdx
+NumFixedObjects
].Size
= ~0ULL;
739 /// Notify the MachineFrameInfo object that a variable sized object has been
740 /// created. This must be created whenever a variable sized object is
741 /// created, whether or not the index returned is actually used.
742 int CreateVariableSizedObject(unsigned Alignment
, const AllocaInst
*Alloca
);
744 /// Returns a reference to call saved info vector for the current function.
745 const std::vector
<CalleeSavedInfo
> &getCalleeSavedInfo() const {
748 /// \copydoc getCalleeSavedInfo()
749 std::vector
<CalleeSavedInfo
> &getCalleeSavedInfo() { return CSInfo
; }
751 /// Used by prolog/epilog inserter to set the function's callee saved
753 void setCalleeSavedInfo(const std::vector
<CalleeSavedInfo
> &CSI
) {
757 /// Has the callee saved info been calculated yet?
758 bool isCalleeSavedInfoValid() const { return CSIValid
; }
760 void setCalleeSavedInfoValid(bool v
) { CSIValid
= v
; }
762 MachineBasicBlock
*getSavePoint() const { return Save
; }
763 void setSavePoint(MachineBasicBlock
*NewSave
) { Save
= NewSave
; }
764 MachineBasicBlock
*getRestorePoint() const { return Restore
; }
765 void setRestorePoint(MachineBasicBlock
*NewRestore
) { Restore
= NewRestore
; }
767 /// Return a set of physical registers that are pristine.
769 /// Pristine registers hold a value that is useless to the current function,
770 /// but that must be preserved - they are callee saved registers that are not
773 /// Before the PrologueEpilogueInserter has placed the CSR spill code, this
774 /// method always returns an empty set.
775 BitVector
getPristineRegs(const MachineFunction
&MF
) const;
777 /// Used by the MachineFunction printer to print information about
778 /// stack objects. Implemented in MachineFunction.cpp.
779 void print(const MachineFunction
&MF
, raw_ostream
&OS
) const;
781 /// dump - Print the function to stderr.
782 void dump(const MachineFunction
&MF
) const;
785 } // End llvm namespace