Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / CodeGen / MachineInstr.h
blob4cb39c5f0a6ad67b8f1a138ca4019c2402136b6d
1 //===- llvm/CodeGen/MachineInstr.h - MachineInstr class ---------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the declaration of the MachineInstr class, which is the
10 // basic representation for all target dependent machine instructions used by
11 // the back end.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CODEGEN_MACHINEINSTR_H
16 #define LLVM_CODEGEN_MACHINEINSTR_H
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/PointerSumType.h"
20 #include "llvm/ADT/ilist.h"
21 #include "llvm/ADT/ilist_node.h"
22 #include "llvm/ADT/iterator_range.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/MachineMemOperand.h"
25 #include "llvm/CodeGen/MachineOperand.h"
26 #include "llvm/CodeGen/TargetOpcodes.h"
27 #include "llvm/IR/DebugLoc.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/MC/MCSymbol.h"
31 #include "llvm/Support/ArrayRecycler.h"
32 #include "llvm/Support/TrailingObjects.h"
33 #include <algorithm>
34 #include <cassert>
35 #include <cstdint>
36 #include <utility>
38 namespace llvm {
40 template <typename T> class ArrayRef;
41 class DIExpression;
42 class DILocalVariable;
43 class MachineBasicBlock;
44 class MachineFunction;
45 class MachineMemOperand;
46 class MachineRegisterInfo;
47 class ModuleSlotTracker;
48 class raw_ostream;
49 template <typename T> class SmallVectorImpl;
50 class SmallBitVector;
51 class StringRef;
52 class TargetInstrInfo;
53 class TargetRegisterClass;
54 class TargetRegisterInfo;
56 //===----------------------------------------------------------------------===//
57 /// Representation of each machine instruction.
58 ///
59 /// This class isn't a POD type, but it must have a trivial destructor. When a
60 /// MachineFunction is deleted, all the contained MachineInstrs are deallocated
61 /// without having their destructor called.
62 ///
63 class MachineInstr
64 : public ilist_node_with_parent<MachineInstr, MachineBasicBlock,
65 ilist_sentinel_tracking<true>> {
66 public:
67 using mmo_iterator = ArrayRef<MachineMemOperand *>::iterator;
69 /// Flags to specify different kinds of comments to output in
70 /// assembly code. These flags carry semantic information not
71 /// otherwise easily derivable from the IR text.
72 ///
73 enum CommentFlag {
74 ReloadReuse = 0x1, // higher bits are reserved for target dep comments.
75 NoSchedComment = 0x2,
76 TAsmComments = 0x4 // Target Asm comments should start from this value.
79 enum MIFlag {
80 NoFlags = 0,
81 FrameSetup = 1 << 0, // Instruction is used as a part of
82 // function frame setup code.
83 FrameDestroy = 1 << 1, // Instruction is used as a part of
84 // function frame destruction code.
85 BundledPred = 1 << 2, // Instruction has bundled predecessors.
86 BundledSucc = 1 << 3, // Instruction has bundled successors.
87 FmNoNans = 1 << 4, // Instruction does not support Fast
88 // math nan values.
89 FmNoInfs = 1 << 5, // Instruction does not support Fast
90 // math infinity values.
91 FmNsz = 1 << 6, // Instruction is not required to retain
92 // signed zero values.
93 FmArcp = 1 << 7, // Instruction supports Fast math
94 // reciprocal approximations.
95 FmContract = 1 << 8, // Instruction supports Fast math
96 // contraction operations like fma.
97 FmAfn = 1 << 9, // Instruction may map to Fast math
98 // instrinsic approximation.
99 FmReassoc = 1 << 10, // Instruction supports Fast math
100 // reassociation of operand order.
101 NoUWrap = 1 << 11, // Instruction supports binary operator
102 // no unsigned wrap.
103 NoSWrap = 1 << 12, // Instruction supports binary operator
104 // no signed wrap.
105 IsExact = 1 << 13 // Instruction supports division is
106 // known to be exact.
109 private:
110 const MCInstrDesc *MCID; // Instruction descriptor.
111 MachineBasicBlock *Parent = nullptr; // Pointer to the owning basic block.
113 // Operands are allocated by an ArrayRecycler.
114 MachineOperand *Operands = nullptr; // Pointer to the first operand.
115 unsigned NumOperands = 0; // Number of operands on instruction.
116 using OperandCapacity = ArrayRecycler<MachineOperand>::Capacity;
117 OperandCapacity CapOperands; // Capacity of the Operands array.
119 uint16_t Flags = 0; // Various bits of additional
120 // information about machine
121 // instruction.
123 uint8_t AsmPrinterFlags = 0; // Various bits of information used by
124 // the AsmPrinter to emit helpful
125 // comments. This is *not* semantic
126 // information. Do not use this for
127 // anything other than to convey comment
128 // information to AsmPrinter.
130 /// Internal implementation detail class that provides out-of-line storage for
131 /// extra info used by the machine instruction when this info cannot be stored
132 /// in-line within the instruction itself.
134 /// This has to be defined eagerly due to the implementation constraints of
135 /// `PointerSumType` where it is used.
136 class ExtraInfo final
137 : TrailingObjects<ExtraInfo, MachineMemOperand *, MCSymbol *> {
138 public:
139 static ExtraInfo *create(BumpPtrAllocator &Allocator,
140 ArrayRef<MachineMemOperand *> MMOs,
141 MCSymbol *PreInstrSymbol = nullptr,
142 MCSymbol *PostInstrSymbol = nullptr) {
143 bool HasPreInstrSymbol = PreInstrSymbol != nullptr;
144 bool HasPostInstrSymbol = PostInstrSymbol != nullptr;
145 auto *Result = new (Allocator.Allocate(
146 totalSizeToAlloc<MachineMemOperand *, MCSymbol *>(
147 MMOs.size(), HasPreInstrSymbol + HasPostInstrSymbol),
148 alignof(ExtraInfo)))
149 ExtraInfo(MMOs.size(), HasPreInstrSymbol, HasPostInstrSymbol);
151 // Copy the actual data into the trailing objects.
152 std::copy(MMOs.begin(), MMOs.end(),
153 Result->getTrailingObjects<MachineMemOperand *>());
155 if (HasPreInstrSymbol)
156 Result->getTrailingObjects<MCSymbol *>()[0] = PreInstrSymbol;
157 if (HasPostInstrSymbol)
158 Result->getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol] =
159 PostInstrSymbol;
161 return Result;
164 ArrayRef<MachineMemOperand *> getMMOs() const {
165 return makeArrayRef(getTrailingObjects<MachineMemOperand *>(), NumMMOs);
168 MCSymbol *getPreInstrSymbol() const {
169 return HasPreInstrSymbol ? getTrailingObjects<MCSymbol *>()[0] : nullptr;
172 MCSymbol *getPostInstrSymbol() const {
173 return HasPostInstrSymbol
174 ? getTrailingObjects<MCSymbol *>()[HasPreInstrSymbol]
175 : nullptr;
178 private:
179 friend TrailingObjects;
181 // Description of the extra info, used to interpret the actual optional
182 // data appended.
184 // Note that this is not terribly space optimized. This leaves a great deal
185 // of flexibility to fit more in here later.
186 const int NumMMOs;
187 const bool HasPreInstrSymbol;
188 const bool HasPostInstrSymbol;
190 // Implement the `TrailingObjects` internal API.
191 size_t numTrailingObjects(OverloadToken<MachineMemOperand *>) const {
192 return NumMMOs;
194 size_t numTrailingObjects(OverloadToken<MCSymbol *>) const {
195 return HasPreInstrSymbol + HasPostInstrSymbol;
198 // Just a boring constructor to allow us to initialize the sizes. Always use
199 // the `create` routine above.
200 ExtraInfo(int NumMMOs, bool HasPreInstrSymbol, bool HasPostInstrSymbol)
201 : NumMMOs(NumMMOs), HasPreInstrSymbol(HasPreInstrSymbol),
202 HasPostInstrSymbol(HasPostInstrSymbol) {}
205 /// Enumeration of the kinds of inline extra info available. It is important
206 /// that the `MachineMemOperand` inline kind has a tag value of zero to make
207 /// it accessible as an `ArrayRef`.
208 enum ExtraInfoInlineKinds {
209 EIIK_MMO = 0,
210 EIIK_PreInstrSymbol,
211 EIIK_PostInstrSymbol,
212 EIIK_OutOfLine
215 // We store extra information about the instruction here. The common case is
216 // expected to be nothing or a single pointer (typically a MMO or a symbol).
217 // We work to optimize this common case by storing it inline here rather than
218 // requiring a separate allocation, but we fall back to an allocation when
219 // multiple pointers are needed.
220 PointerSumType<ExtraInfoInlineKinds,
221 PointerSumTypeMember<EIIK_MMO, MachineMemOperand *>,
222 PointerSumTypeMember<EIIK_PreInstrSymbol, MCSymbol *>,
223 PointerSumTypeMember<EIIK_PostInstrSymbol, MCSymbol *>,
224 PointerSumTypeMember<EIIK_OutOfLine, ExtraInfo *>>
225 Info;
227 DebugLoc debugLoc; // Source line information.
229 // Intrusive list support
230 friend struct ilist_traits<MachineInstr>;
231 friend struct ilist_callback_traits<MachineBasicBlock>;
232 void setParent(MachineBasicBlock *P) { Parent = P; }
234 /// This constructor creates a copy of the given
235 /// MachineInstr in the given MachineFunction.
236 MachineInstr(MachineFunction &, const MachineInstr &);
238 /// This constructor create a MachineInstr and add the implicit operands.
239 /// It reserves space for number of operands specified by
240 /// MCInstrDesc. An explicit DebugLoc is supplied.
241 MachineInstr(MachineFunction &, const MCInstrDesc &tid, DebugLoc dl,
242 bool NoImp = false);
244 // MachineInstrs are pool-allocated and owned by MachineFunction.
245 friend class MachineFunction;
247 public:
248 MachineInstr(const MachineInstr &) = delete;
249 MachineInstr &operator=(const MachineInstr &) = delete;
250 // Use MachineFunction::DeleteMachineInstr() instead.
251 ~MachineInstr() = delete;
253 const MachineBasicBlock* getParent() const { return Parent; }
254 MachineBasicBlock* getParent() { return Parent; }
256 /// Return the function that contains the basic block that this instruction
257 /// belongs to.
259 /// Note: this is undefined behaviour if the instruction does not have a
260 /// parent.
261 const MachineFunction *getMF() const;
262 MachineFunction *getMF() {
263 return const_cast<MachineFunction *>(
264 static_cast<const MachineInstr *>(this)->getMF());
267 /// Return the asm printer flags bitvector.
268 uint8_t getAsmPrinterFlags() const { return AsmPrinterFlags; }
270 /// Clear the AsmPrinter bitvector.
271 void clearAsmPrinterFlags() { AsmPrinterFlags = 0; }
273 /// Return whether an AsmPrinter flag is set.
274 bool getAsmPrinterFlag(CommentFlag Flag) const {
275 return AsmPrinterFlags & Flag;
278 /// Set a flag for the AsmPrinter.
279 void setAsmPrinterFlag(uint8_t Flag) {
280 AsmPrinterFlags |= Flag;
283 /// Clear specific AsmPrinter flags.
284 void clearAsmPrinterFlag(CommentFlag Flag) {
285 AsmPrinterFlags &= ~Flag;
288 /// Return the MI flags bitvector.
289 uint16_t getFlags() const {
290 return Flags;
293 /// Return whether an MI flag is set.
294 bool getFlag(MIFlag Flag) const {
295 return Flags & Flag;
298 /// Set a MI flag.
299 void setFlag(MIFlag Flag) {
300 Flags |= (uint16_t)Flag;
303 void setFlags(unsigned flags) {
304 // Filter out the automatically maintained flags.
305 unsigned Mask = BundledPred | BundledSucc;
306 Flags = (Flags & Mask) | (flags & ~Mask);
309 /// clearFlag - Clear a MI flag.
310 void clearFlag(MIFlag Flag) {
311 Flags &= ~((uint16_t)Flag);
314 /// Return true if MI is in a bundle (but not the first MI in a bundle).
316 /// A bundle looks like this before it's finalized:
317 /// ----------------
318 /// | MI |
319 /// ----------------
320 /// |
321 /// ----------------
322 /// | MI * |
323 /// ----------------
324 /// |
325 /// ----------------
326 /// | MI * |
327 /// ----------------
328 /// In this case, the first MI starts a bundle but is not inside a bundle, the
329 /// next 2 MIs are considered "inside" the bundle.
331 /// After a bundle is finalized, it looks like this:
332 /// ----------------
333 /// | Bundle |
334 /// ----------------
335 /// |
336 /// ----------------
337 /// | MI * |
338 /// ----------------
339 /// |
340 /// ----------------
341 /// | MI * |
342 /// ----------------
343 /// |
344 /// ----------------
345 /// | MI * |
346 /// ----------------
347 /// The first instruction has the special opcode "BUNDLE". It's not "inside"
348 /// a bundle, but the next three MIs are.
349 bool isInsideBundle() const {
350 return getFlag(BundledPred);
353 /// Return true if this instruction part of a bundle. This is true
354 /// if either itself or its following instruction is marked "InsideBundle".
355 bool isBundled() const {
356 return isBundledWithPred() || isBundledWithSucc();
359 /// Return true if this instruction is part of a bundle, and it is not the
360 /// first instruction in the bundle.
361 bool isBundledWithPred() const { return getFlag(BundledPred); }
363 /// Return true if this instruction is part of a bundle, and it is not the
364 /// last instruction in the bundle.
365 bool isBundledWithSucc() const { return getFlag(BundledSucc); }
367 /// Bundle this instruction with its predecessor. This can be an unbundled
368 /// instruction, or it can be the first instruction in a bundle.
369 void bundleWithPred();
371 /// Bundle this instruction with its successor. This can be an unbundled
372 /// instruction, or it can be the last instruction in a bundle.
373 void bundleWithSucc();
375 /// Break bundle above this instruction.
376 void unbundleFromPred();
378 /// Break bundle below this instruction.
379 void unbundleFromSucc();
381 /// Returns the debug location id of this MachineInstr.
382 const DebugLoc &getDebugLoc() const { return debugLoc; }
384 /// Return the debug variable referenced by
385 /// this DBG_VALUE instruction.
386 const DILocalVariable *getDebugVariable() const;
388 /// Return the complex address expression referenced by
389 /// this DBG_VALUE instruction.
390 const DIExpression *getDebugExpression() const;
392 /// Return the debug label referenced by
393 /// this DBG_LABEL instruction.
394 const DILabel *getDebugLabel() const;
396 /// Emit an error referring to the source location of this instruction.
397 /// This should only be used for inline assembly that is somehow
398 /// impossible to compile. Other errors should have been handled much
399 /// earlier.
401 /// If this method returns, the caller should try to recover from the error.
402 void emitError(StringRef Msg) const;
404 /// Returns the target instruction descriptor of this MachineInstr.
405 const MCInstrDesc &getDesc() const { return *MCID; }
407 /// Returns the opcode of this MachineInstr.
408 unsigned getOpcode() const { return MCID->Opcode; }
410 /// Retuns the total number of operands.
411 unsigned getNumOperands() const { return NumOperands; }
413 const MachineOperand& getOperand(unsigned i) const {
414 assert(i < getNumOperands() && "getOperand() out of range!");
415 return Operands[i];
417 MachineOperand& getOperand(unsigned i) {
418 assert(i < getNumOperands() && "getOperand() out of range!");
419 return Operands[i];
422 /// Returns the total number of definitions.
423 unsigned getNumDefs() const {
424 return getNumExplicitDefs() + MCID->getNumImplicitDefs();
427 /// Return true if operand \p OpIdx is a subregister index.
428 bool isOperandSubregIdx(unsigned OpIdx) const {
429 assert(getOperand(OpIdx).getType() == MachineOperand::MO_Immediate &&
430 "Expected MO_Immediate operand type.");
431 if (isExtractSubreg() && OpIdx == 2)
432 return true;
433 if (isInsertSubreg() && OpIdx == 3)
434 return true;
435 if (isRegSequence() && OpIdx > 1 && (OpIdx % 2) == 0)
436 return true;
437 if (isSubregToReg() && OpIdx == 3)
438 return true;
439 return false;
442 /// Returns the number of non-implicit operands.
443 unsigned getNumExplicitOperands() const;
445 /// Returns the number of non-implicit definitions.
446 unsigned getNumExplicitDefs() const;
448 /// iterator/begin/end - Iterate over all operands of a machine instruction.
449 using mop_iterator = MachineOperand *;
450 using const_mop_iterator = const MachineOperand *;
452 mop_iterator operands_begin() { return Operands; }
453 mop_iterator operands_end() { return Operands + NumOperands; }
455 const_mop_iterator operands_begin() const { return Operands; }
456 const_mop_iterator operands_end() const { return Operands + NumOperands; }
458 iterator_range<mop_iterator> operands() {
459 return make_range(operands_begin(), operands_end());
461 iterator_range<const_mop_iterator> operands() const {
462 return make_range(operands_begin(), operands_end());
464 iterator_range<mop_iterator> explicit_operands() {
465 return make_range(operands_begin(),
466 operands_begin() + getNumExplicitOperands());
468 iterator_range<const_mop_iterator> explicit_operands() const {
469 return make_range(operands_begin(),
470 operands_begin() + getNumExplicitOperands());
472 iterator_range<mop_iterator> implicit_operands() {
473 return make_range(explicit_operands().end(), operands_end());
475 iterator_range<const_mop_iterator> implicit_operands() const {
476 return make_range(explicit_operands().end(), operands_end());
478 /// Returns a range over all explicit operands that are register definitions.
479 /// Implicit definition are not included!
480 iterator_range<mop_iterator> defs() {
481 return make_range(operands_begin(),
482 operands_begin() + getNumExplicitDefs());
484 /// \copydoc defs()
485 iterator_range<const_mop_iterator> defs() const {
486 return make_range(operands_begin(),
487 operands_begin() + getNumExplicitDefs());
489 /// Returns a range that includes all operands that are register uses.
490 /// This may include unrelated operands which are not register uses.
491 iterator_range<mop_iterator> uses() {
492 return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
494 /// \copydoc uses()
495 iterator_range<const_mop_iterator> uses() const {
496 return make_range(operands_begin() + getNumExplicitDefs(), operands_end());
498 iterator_range<mop_iterator> explicit_uses() {
499 return make_range(operands_begin() + getNumExplicitDefs(),
500 operands_begin() + getNumExplicitOperands());
502 iterator_range<const_mop_iterator> explicit_uses() const {
503 return make_range(operands_begin() + getNumExplicitDefs(),
504 operands_begin() + getNumExplicitOperands());
507 /// Returns the number of the operand iterator \p I points to.
508 unsigned getOperandNo(const_mop_iterator I) const {
509 return I - operands_begin();
512 /// Access to memory operands of the instruction. If there are none, that does
513 /// not imply anything about whether the function accesses memory. Instead,
514 /// the caller must behave conservatively.
515 ArrayRef<MachineMemOperand *> memoperands() const {
516 if (!Info)
517 return {};
519 if (Info.is<EIIK_MMO>())
520 return makeArrayRef(Info.getAddrOfZeroTagPointer(), 1);
522 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
523 return EI->getMMOs();
525 return {};
528 /// Access to memory operands of the instruction.
530 /// If `memoperands_begin() == memoperands_end()`, that does not imply
531 /// anything about whether the function accesses memory. Instead, the caller
532 /// must behave conservatively.
533 mmo_iterator memoperands_begin() const { return memoperands().begin(); }
535 /// Access to memory operands of the instruction.
537 /// If `memoperands_begin() == memoperands_end()`, that does not imply
538 /// anything about whether the function accesses memory. Instead, the caller
539 /// must behave conservatively.
540 mmo_iterator memoperands_end() const { return memoperands().end(); }
542 /// Return true if we don't have any memory operands which described the
543 /// memory access done by this instruction. If this is true, calling code
544 /// must be conservative.
545 bool memoperands_empty() const { return memoperands().empty(); }
547 /// Return true if this instruction has exactly one MachineMemOperand.
548 bool hasOneMemOperand() const { return memoperands().size() == 1; }
550 /// Return the number of memory operands.
551 unsigned getNumMemOperands() const { return memoperands().size(); }
553 /// Helper to extract a pre-instruction symbol if one has been added.
554 MCSymbol *getPreInstrSymbol() const {
555 if (!Info)
556 return nullptr;
557 if (MCSymbol *S = Info.get<EIIK_PreInstrSymbol>())
558 return S;
559 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
560 return EI->getPreInstrSymbol();
562 return nullptr;
565 /// Helper to extract a post-instruction symbol if one has been added.
566 MCSymbol *getPostInstrSymbol() const {
567 if (!Info)
568 return nullptr;
569 if (MCSymbol *S = Info.get<EIIK_PostInstrSymbol>())
570 return S;
571 if (ExtraInfo *EI = Info.get<EIIK_OutOfLine>())
572 return EI->getPostInstrSymbol();
574 return nullptr;
577 /// API for querying MachineInstr properties. They are the same as MCInstrDesc
578 /// queries but they are bundle aware.
580 enum QueryType {
581 IgnoreBundle, // Ignore bundles
582 AnyInBundle, // Return true if any instruction in bundle has property
583 AllInBundle // Return true if all instructions in bundle have property
586 /// Return true if the instruction (or in the case of a bundle,
587 /// the instructions inside the bundle) has the specified property.
588 /// The first argument is the property being queried.
589 /// The second argument indicates whether the query should look inside
590 /// instruction bundles.
591 bool hasProperty(unsigned MCFlag, QueryType Type = AnyInBundle) const {
592 assert(MCFlag < 64 &&
593 "MCFlag out of range for bit mask in getFlags/hasPropertyInBundle.");
594 // Inline the fast path for unbundled or bundle-internal instructions.
595 if (Type == IgnoreBundle || !isBundled() || isBundledWithPred())
596 return getDesc().getFlags() & (1ULL << MCFlag);
598 // If this is the first instruction in a bundle, take the slow path.
599 return hasPropertyInBundle(1ULL << MCFlag, Type);
602 /// Return true if this instruction can have a variable number of operands.
603 /// In this case, the variable operands will be after the normal
604 /// operands but before the implicit definitions and uses (if any are
605 /// present).
606 bool isVariadic(QueryType Type = IgnoreBundle) const {
607 return hasProperty(MCID::Variadic, Type);
610 /// Set if this instruction has an optional definition, e.g.
611 /// ARM instructions which can set condition code if 's' bit is set.
612 bool hasOptionalDef(QueryType Type = IgnoreBundle) const {
613 return hasProperty(MCID::HasOptionalDef, Type);
616 /// Return true if this is a pseudo instruction that doesn't
617 /// correspond to a real machine instruction.
618 bool isPseudo(QueryType Type = IgnoreBundle) const {
619 return hasProperty(MCID::Pseudo, Type);
622 bool isReturn(QueryType Type = AnyInBundle) const {
623 return hasProperty(MCID::Return, Type);
626 /// Return true if this is an instruction that marks the end of an EH scope,
627 /// i.e., a catchpad or a cleanuppad instruction.
628 bool isEHScopeReturn(QueryType Type = AnyInBundle) const {
629 return hasProperty(MCID::EHScopeReturn, Type);
632 bool isCall(QueryType Type = AnyInBundle) const {
633 return hasProperty(MCID::Call, Type);
636 /// Returns true if the specified instruction stops control flow
637 /// from executing the instruction immediately following it. Examples include
638 /// unconditional branches and return instructions.
639 bool isBarrier(QueryType Type = AnyInBundle) const {
640 return hasProperty(MCID::Barrier, Type);
643 /// Returns true if this instruction part of the terminator for a basic block.
644 /// Typically this is things like return and branch instructions.
646 /// Various passes use this to insert code into the bottom of a basic block,
647 /// but before control flow occurs.
648 bool isTerminator(QueryType Type = AnyInBundle) const {
649 return hasProperty(MCID::Terminator, Type);
652 /// Returns true if this is a conditional, unconditional, or indirect branch.
653 /// Predicates below can be used to discriminate between
654 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to
655 /// get more information.
656 bool isBranch(QueryType Type = AnyInBundle) const {
657 return hasProperty(MCID::Branch, Type);
660 /// Return true if this is an indirect branch, such as a
661 /// branch through a register.
662 bool isIndirectBranch(QueryType Type = AnyInBundle) const {
663 return hasProperty(MCID::IndirectBranch, Type);
666 /// Return true if this is a branch which may fall
667 /// through to the next instruction or may transfer control flow to some other
668 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more
669 /// information about this branch.
670 bool isConditionalBranch(QueryType Type = AnyInBundle) const {
671 return isBranch(Type) & !isBarrier(Type) & !isIndirectBranch(Type);
674 /// Return true if this is a branch which always
675 /// transfers control flow to some other block. The
676 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information
677 /// about this branch.
678 bool isUnconditionalBranch(QueryType Type = AnyInBundle) const {
679 return isBranch(Type) & isBarrier(Type) & !isIndirectBranch(Type);
682 /// Return true if this instruction has a predicate operand that
683 /// controls execution. It may be set to 'always', or may be set to other
684 /// values. There are various methods in TargetInstrInfo that can be used to
685 /// control and modify the predicate in this instruction.
686 bool isPredicable(QueryType Type = AllInBundle) const {
687 // If it's a bundle than all bundled instructions must be predicable for this
688 // to return true.
689 return hasProperty(MCID::Predicable, Type);
692 /// Return true if this instruction is a comparison.
693 bool isCompare(QueryType Type = IgnoreBundle) const {
694 return hasProperty(MCID::Compare, Type);
697 /// Return true if this instruction is a move immediate
698 /// (including conditional moves) instruction.
699 bool isMoveImmediate(QueryType Type = IgnoreBundle) const {
700 return hasProperty(MCID::MoveImm, Type);
703 /// Return true if this instruction is a register move.
704 /// (including moving values from subreg to reg)
705 bool isMoveReg(QueryType Type = IgnoreBundle) const {
706 return hasProperty(MCID::MoveReg, Type);
709 /// Return true if this instruction is a bitcast instruction.
710 bool isBitcast(QueryType Type = IgnoreBundle) const {
711 return hasProperty(MCID::Bitcast, Type);
714 /// Return true if this instruction is a select instruction.
715 bool isSelect(QueryType Type = IgnoreBundle) const {
716 return hasProperty(MCID::Select, Type);
719 /// Return true if this instruction cannot be safely duplicated.
720 /// For example, if the instruction has a unique labels attached
721 /// to it, duplicating it would cause multiple definition errors.
722 bool isNotDuplicable(QueryType Type = AnyInBundle) const {
723 return hasProperty(MCID::NotDuplicable, Type);
726 /// Return true if this instruction is convergent.
727 /// Convergent instructions can not be made control-dependent on any
728 /// additional values.
729 bool isConvergent(QueryType Type = AnyInBundle) const {
730 if (isInlineAsm()) {
731 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
732 if (ExtraInfo & InlineAsm::Extra_IsConvergent)
733 return true;
735 return hasProperty(MCID::Convergent, Type);
738 /// Returns true if the specified instruction has a delay slot
739 /// which must be filled by the code generator.
740 bool hasDelaySlot(QueryType Type = AnyInBundle) const {
741 return hasProperty(MCID::DelaySlot, Type);
744 /// Return true for instructions that can be folded as
745 /// memory operands in other instructions. The most common use for this
746 /// is instructions that are simple loads from memory that don't modify
747 /// the loaded value in any way, but it can also be used for instructions
748 /// that can be expressed as constant-pool loads, such as V_SETALLONES
749 /// on x86, to allow them to be folded when it is beneficial.
750 /// This should only be set on instructions that return a value in their
751 /// only virtual register definition.
752 bool canFoldAsLoad(QueryType Type = IgnoreBundle) const {
753 return hasProperty(MCID::FoldableAsLoad, Type);
756 /// Return true if this instruction behaves
757 /// the same way as the generic REG_SEQUENCE instructions.
758 /// E.g., on ARM,
759 /// dX VMOVDRR rY, rZ
760 /// is equivalent to
761 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1.
763 /// Note that for the optimizers to be able to take advantage of
764 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be
765 /// override accordingly.
766 bool isRegSequenceLike(QueryType Type = IgnoreBundle) const {
767 return hasProperty(MCID::RegSequence, Type);
770 /// Return true if this instruction behaves
771 /// the same way as the generic EXTRACT_SUBREG instructions.
772 /// E.g., on ARM,
773 /// rX, rY VMOVRRD dZ
774 /// is equivalent to two EXTRACT_SUBREG:
775 /// rX = EXTRACT_SUBREG dZ, ssub_0
776 /// rY = EXTRACT_SUBREG dZ, ssub_1
778 /// Note that for the optimizers to be able to take advantage of
779 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be
780 /// override accordingly.
781 bool isExtractSubregLike(QueryType Type = IgnoreBundle) const {
782 return hasProperty(MCID::ExtractSubreg, Type);
785 /// Return true if this instruction behaves
786 /// the same way as the generic INSERT_SUBREG instructions.
787 /// E.g., on ARM,
788 /// dX = VSETLNi32 dY, rZ, Imm
789 /// is equivalent to a INSERT_SUBREG:
790 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm)
792 /// Note that for the optimizers to be able to take advantage of
793 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be
794 /// override accordingly.
795 bool isInsertSubregLike(QueryType Type = IgnoreBundle) const {
796 return hasProperty(MCID::InsertSubreg, Type);
799 //===--------------------------------------------------------------------===//
800 // Side Effect Analysis
801 //===--------------------------------------------------------------------===//
803 /// Return true if this instruction could possibly read memory.
804 /// Instructions with this flag set are not necessarily simple load
805 /// instructions, they may load a value and modify it, for example.
806 bool mayLoad(QueryType Type = AnyInBundle) const {
807 if (isInlineAsm()) {
808 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
809 if (ExtraInfo & InlineAsm::Extra_MayLoad)
810 return true;
812 return hasProperty(MCID::MayLoad, Type);
815 /// Return true if this instruction could possibly modify memory.
816 /// Instructions with this flag set are not necessarily simple store
817 /// instructions, they may store a modified value based on their operands, or
818 /// may not actually modify anything, for example.
819 bool mayStore(QueryType Type = AnyInBundle) const {
820 if (isInlineAsm()) {
821 unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
822 if (ExtraInfo & InlineAsm::Extra_MayStore)
823 return true;
825 return hasProperty(MCID::MayStore, Type);
828 /// Return true if this instruction could possibly read or modify memory.
829 bool mayLoadOrStore(QueryType Type = AnyInBundle) const {
830 return mayLoad(Type) || mayStore(Type);
833 //===--------------------------------------------------------------------===//
834 // Flags that indicate whether an instruction can be modified by a method.
835 //===--------------------------------------------------------------------===//
837 /// Return true if this may be a 2- or 3-address
838 /// instruction (of the form "X = op Y, Z, ..."), which produces the same
839 /// result if Y and Z are exchanged. If this flag is set, then the
840 /// TargetInstrInfo::commuteInstruction method may be used to hack on the
841 /// instruction.
843 /// Note that this flag may be set on instructions that are only commutable
844 /// sometimes. In these cases, the call to commuteInstruction will fail.
845 /// Also note that some instructions require non-trivial modification to
846 /// commute them.
847 bool isCommutable(QueryType Type = IgnoreBundle) const {
848 return hasProperty(MCID::Commutable, Type);
851 /// Return true if this is a 2-address instruction
852 /// which can be changed into a 3-address instruction if needed. Doing this
853 /// transformation can be profitable in the register allocator, because it
854 /// means that the instruction can use a 2-address form if possible, but
855 /// degrade into a less efficient form if the source and dest register cannot
856 /// be assigned to the same register. For example, this allows the x86
857 /// backend to turn a "shl reg, 3" instruction into an LEA instruction, which
858 /// is the same speed as the shift but has bigger code size.
860 /// If this returns true, then the target must implement the
861 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which
862 /// is allowed to fail if the transformation isn't valid for this specific
863 /// instruction (e.g. shl reg, 4 on x86).
865 bool isConvertibleTo3Addr(QueryType Type = IgnoreBundle) const {
866 return hasProperty(MCID::ConvertibleTo3Addr, Type);
869 /// Return true if this instruction requires
870 /// custom insertion support when the DAG scheduler is inserting it into a
871 /// machine basic block. If this is true for the instruction, it basically
872 /// means that it is a pseudo instruction used at SelectionDAG time that is
873 /// expanded out into magic code by the target when MachineInstrs are formed.
875 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method
876 /// is used to insert this into the MachineBasicBlock.
877 bool usesCustomInsertionHook(QueryType Type = IgnoreBundle) const {
878 return hasProperty(MCID::UsesCustomInserter, Type);
881 /// Return true if this instruction requires *adjustment*
882 /// after instruction selection by calling a target hook. For example, this
883 /// can be used to fill in ARM 's' optional operand depending on whether
884 /// the conditional flag register is used.
885 bool hasPostISelHook(QueryType Type = IgnoreBundle) const {
886 return hasProperty(MCID::HasPostISelHook, Type);
889 /// Returns true if this instruction is a candidate for remat.
890 /// This flag is deprecated, please don't use it anymore. If this
891 /// flag is set, the isReallyTriviallyReMaterializable() method is called to
892 /// verify the instruction is really rematable.
893 bool isRematerializable(QueryType Type = AllInBundle) const {
894 // It's only possible to re-mat a bundle if all bundled instructions are
895 // re-materializable.
896 return hasProperty(MCID::Rematerializable, Type);
899 /// Returns true if this instruction has the same cost (or less) than a move
900 /// instruction. This is useful during certain types of optimizations
901 /// (e.g., remat during two-address conversion or machine licm)
902 /// where we would like to remat or hoist the instruction, but not if it costs
903 /// more than moving the instruction into the appropriate register. Note, we
904 /// are not marking copies from and to the same register class with this flag.
905 bool isAsCheapAsAMove(QueryType Type = AllInBundle) const {
906 // Only returns true for a bundle if all bundled instructions are cheap.
907 return hasProperty(MCID::CheapAsAMove, Type);
910 /// Returns true if this instruction source operands
911 /// have special register allocation requirements that are not captured by the
912 /// operand register classes. e.g. ARM::STRD's two source registers must be an
913 /// even / odd pair, ARM::STM registers have to be in ascending order.
914 /// Post-register allocation passes should not attempt to change allocations
915 /// for sources of instructions with this flag.
916 bool hasExtraSrcRegAllocReq(QueryType Type = AnyInBundle) const {
917 return hasProperty(MCID::ExtraSrcRegAllocReq, Type);
920 /// Returns true if this instruction def operands
921 /// have special register allocation requirements that are not captured by the
922 /// operand register classes. e.g. ARM::LDRD's two def registers must be an
923 /// even / odd pair, ARM::LDM registers have to be in ascending order.
924 /// Post-register allocation passes should not attempt to change allocations
925 /// for definitions of instructions with this flag.
926 bool hasExtraDefRegAllocReq(QueryType Type = AnyInBundle) const {
927 return hasProperty(MCID::ExtraDefRegAllocReq, Type);
930 enum MICheckType {
931 CheckDefs, // Check all operands for equality
932 CheckKillDead, // Check all operands including kill / dead markers
933 IgnoreDefs, // Ignore all definitions
934 IgnoreVRegDefs // Ignore virtual register definitions
937 /// Return true if this instruction is identical to \p Other.
938 /// Two instructions are identical if they have the same opcode and all their
939 /// operands are identical (with respect to MachineOperand::isIdenticalTo()).
940 /// Note that this means liveness related flags (dead, undef, kill) do not
941 /// affect the notion of identical.
942 bool isIdenticalTo(const MachineInstr &Other,
943 MICheckType Check = CheckDefs) const;
945 /// Unlink 'this' from the containing basic block, and return it without
946 /// deleting it.
948 /// This function can not be used on bundled instructions, use
949 /// removeFromBundle() to remove individual instructions from a bundle.
950 MachineInstr *removeFromParent();
952 /// Unlink this instruction from its basic block and return it without
953 /// deleting it.
955 /// If the instruction is part of a bundle, the other instructions in the
956 /// bundle remain bundled.
957 MachineInstr *removeFromBundle();
959 /// Unlink 'this' from the containing basic block and delete it.
961 /// If this instruction is the header of a bundle, the whole bundle is erased.
962 /// This function can not be used for instructions inside a bundle, use
963 /// eraseFromBundle() to erase individual bundled instructions.
964 void eraseFromParent();
966 /// Unlink 'this' from the containing basic block and delete it.
968 /// For all definitions mark their uses in DBG_VALUE nodes
969 /// as undefined. Otherwise like eraseFromParent().
970 void eraseFromParentAndMarkDBGValuesForRemoval();
972 /// Unlink 'this' form its basic block and delete it.
974 /// If the instruction is part of a bundle, the other instructions in the
975 /// bundle remain bundled.
976 void eraseFromBundle();
978 bool isEHLabel() const { return getOpcode() == TargetOpcode::EH_LABEL; }
979 bool isGCLabel() const { return getOpcode() == TargetOpcode::GC_LABEL; }
980 bool isAnnotationLabel() const {
981 return getOpcode() == TargetOpcode::ANNOTATION_LABEL;
984 /// Returns true if the MachineInstr represents a label.
985 bool isLabel() const {
986 return isEHLabel() || isGCLabel() || isAnnotationLabel();
989 bool isCFIInstruction() const {
990 return getOpcode() == TargetOpcode::CFI_INSTRUCTION;
993 // True if the instruction represents a position in the function.
994 bool isPosition() const { return isLabel() || isCFIInstruction(); }
996 bool isDebugValue() const { return getOpcode() == TargetOpcode::DBG_VALUE; }
997 bool isDebugLabel() const { return getOpcode() == TargetOpcode::DBG_LABEL; }
998 bool isDebugInstr() const { return isDebugValue() || isDebugLabel(); }
1000 /// A DBG_VALUE is indirect iff the first operand is a register and
1001 /// the second operand is an immediate.
1002 bool isIndirectDebugValue() const {
1003 return isDebugValue()
1004 && getOperand(0).isReg()
1005 && getOperand(1).isImm();
1008 bool isPHI() const {
1009 return getOpcode() == TargetOpcode::PHI ||
1010 getOpcode() == TargetOpcode::G_PHI;
1012 bool isKill() const { return getOpcode() == TargetOpcode::KILL; }
1013 bool isImplicitDef() const { return getOpcode()==TargetOpcode::IMPLICIT_DEF; }
1014 bool isInlineAsm() const {
1015 return getOpcode() == TargetOpcode::INLINEASM ||
1016 getOpcode() == TargetOpcode::INLINEASM_BR;
1019 bool isMSInlineAsm() const {
1020 return isInlineAsm() && getInlineAsmDialect() == InlineAsm::AD_Intel;
1023 bool isStackAligningInlineAsm() const;
1024 InlineAsm::AsmDialect getInlineAsmDialect() const;
1026 bool isInsertSubreg() const {
1027 return getOpcode() == TargetOpcode::INSERT_SUBREG;
1030 bool isSubregToReg() const {
1031 return getOpcode() == TargetOpcode::SUBREG_TO_REG;
1034 bool isRegSequence() const {
1035 return getOpcode() == TargetOpcode::REG_SEQUENCE;
1038 bool isBundle() const {
1039 return getOpcode() == TargetOpcode::BUNDLE;
1042 bool isCopy() const {
1043 return getOpcode() == TargetOpcode::COPY;
1046 bool isFullCopy() const {
1047 return isCopy() && !getOperand(0).getSubReg() && !getOperand(1).getSubReg();
1050 bool isExtractSubreg() const {
1051 return getOpcode() == TargetOpcode::EXTRACT_SUBREG;
1054 /// Return true if the instruction behaves like a copy.
1055 /// This does not include native copy instructions.
1056 bool isCopyLike() const {
1057 return isCopy() || isSubregToReg();
1060 /// Return true is the instruction is an identity copy.
1061 bool isIdentityCopy() const {
1062 return isCopy() && getOperand(0).getReg() == getOperand(1).getReg() &&
1063 getOperand(0).getSubReg() == getOperand(1).getSubReg();
1066 /// Return true if this instruction doesn't produce any output in the form of
1067 /// executable instructions.
1068 bool isMetaInstruction() const {
1069 switch (getOpcode()) {
1070 default:
1071 return false;
1072 case TargetOpcode::IMPLICIT_DEF:
1073 case TargetOpcode::KILL:
1074 case TargetOpcode::CFI_INSTRUCTION:
1075 case TargetOpcode::EH_LABEL:
1076 case TargetOpcode::GC_LABEL:
1077 case TargetOpcode::DBG_VALUE:
1078 case TargetOpcode::DBG_LABEL:
1079 case TargetOpcode::LIFETIME_START:
1080 case TargetOpcode::LIFETIME_END:
1081 return true;
1085 /// Return true if this is a transient instruction that is either very likely
1086 /// to be eliminated during register allocation (such as copy-like
1087 /// instructions), or if this instruction doesn't have an execution-time cost.
1088 bool isTransient() const {
1089 switch (getOpcode()) {
1090 default:
1091 return isMetaInstruction();
1092 // Copy-like instructions are usually eliminated during register allocation.
1093 case TargetOpcode::PHI:
1094 case TargetOpcode::G_PHI:
1095 case TargetOpcode::COPY:
1096 case TargetOpcode::INSERT_SUBREG:
1097 case TargetOpcode::SUBREG_TO_REG:
1098 case TargetOpcode::REG_SEQUENCE:
1099 return true;
1103 /// Return the number of instructions inside the MI bundle, excluding the
1104 /// bundle header.
1106 /// This is the number of instructions that MachineBasicBlock::iterator
1107 /// skips, 0 for unbundled instructions.
1108 unsigned getBundleSize() const;
1110 /// Return true if the MachineInstr reads the specified register.
1111 /// If TargetRegisterInfo is passed, then it also checks if there
1112 /// is a read of a super-register.
1113 /// This does not count partial redefines of virtual registers as reads:
1114 /// %reg1024:6 = OP.
1115 bool readsRegister(unsigned Reg,
1116 const TargetRegisterInfo *TRI = nullptr) const {
1117 return findRegisterUseOperandIdx(Reg, false, TRI) != -1;
1120 /// Return true if the MachineInstr reads the specified virtual register.
1121 /// Take into account that a partial define is a
1122 /// read-modify-write operation.
1123 bool readsVirtualRegister(unsigned Reg) const {
1124 return readsWritesVirtualRegister(Reg).first;
1127 /// Return a pair of bools (reads, writes) indicating if this instruction
1128 /// reads or writes Reg. This also considers partial defines.
1129 /// If Ops is not null, all operand indices for Reg are added.
1130 std::pair<bool,bool> readsWritesVirtualRegister(unsigned Reg,
1131 SmallVectorImpl<unsigned> *Ops = nullptr) const;
1133 /// Return true if the MachineInstr kills the specified register.
1134 /// If TargetRegisterInfo is passed, then it also checks if there is
1135 /// a kill of a super-register.
1136 bool killsRegister(unsigned Reg,
1137 const TargetRegisterInfo *TRI = nullptr) const {
1138 return findRegisterUseOperandIdx(Reg, true, TRI) != -1;
1141 /// Return true if the MachineInstr fully defines the specified register.
1142 /// If TargetRegisterInfo is passed, then it also checks
1143 /// if there is a def of a super-register.
1144 /// NOTE: It's ignoring subreg indices on virtual registers.
1145 bool definesRegister(unsigned Reg,
1146 const TargetRegisterInfo *TRI = nullptr) const {
1147 return findRegisterDefOperandIdx(Reg, false, false, TRI) != -1;
1150 /// Return true if the MachineInstr modifies (fully define or partially
1151 /// define) the specified register.
1152 /// NOTE: It's ignoring subreg indices on virtual registers.
1153 bool modifiesRegister(unsigned Reg, const TargetRegisterInfo *TRI) const {
1154 return findRegisterDefOperandIdx(Reg, false, true, TRI) != -1;
1157 /// Returns true if the register is dead in this machine instruction.
1158 /// If TargetRegisterInfo is passed, then it also checks
1159 /// if there is a dead def of a super-register.
1160 bool registerDefIsDead(unsigned Reg,
1161 const TargetRegisterInfo *TRI = nullptr) const {
1162 return findRegisterDefOperandIdx(Reg, true, false, TRI) != -1;
1165 /// Returns true if the MachineInstr has an implicit-use operand of exactly
1166 /// the given register (not considering sub/super-registers).
1167 bool hasRegisterImplicitUseOperand(unsigned Reg) const;
1169 /// Returns the operand index that is a use of the specific register or -1
1170 /// if it is not found. It further tightens the search criteria to a use
1171 /// that kills the register if isKill is true.
1172 int findRegisterUseOperandIdx(unsigned Reg, bool isKill = false,
1173 const TargetRegisterInfo *TRI = nullptr) const;
1175 /// Wrapper for findRegisterUseOperandIdx, it returns
1176 /// a pointer to the MachineOperand rather than an index.
1177 MachineOperand *findRegisterUseOperand(unsigned Reg, bool isKill = false,
1178 const TargetRegisterInfo *TRI = nullptr) {
1179 int Idx = findRegisterUseOperandIdx(Reg, isKill, TRI);
1180 return (Idx == -1) ? nullptr : &getOperand(Idx);
1183 const MachineOperand *findRegisterUseOperand(
1184 unsigned Reg, bool isKill = false,
1185 const TargetRegisterInfo *TRI = nullptr) const {
1186 return const_cast<MachineInstr *>(this)->
1187 findRegisterUseOperand(Reg, isKill, TRI);
1190 /// Returns the operand index that is a def of the specified register or
1191 /// -1 if it is not found. If isDead is true, defs that are not dead are
1192 /// skipped. If Overlap is true, then it also looks for defs that merely
1193 /// overlap the specified register. If TargetRegisterInfo is non-null,
1194 /// then it also checks if there is a def of a super-register.
1195 /// This may also return a register mask operand when Overlap is true.
1196 int findRegisterDefOperandIdx(unsigned Reg,
1197 bool isDead = false, bool Overlap = false,
1198 const TargetRegisterInfo *TRI = nullptr) const;
1200 /// Wrapper for findRegisterDefOperandIdx, it returns
1201 /// a pointer to the MachineOperand rather than an index.
1202 MachineOperand *findRegisterDefOperand(unsigned Reg, bool isDead = false,
1203 const TargetRegisterInfo *TRI = nullptr) {
1204 int Idx = findRegisterDefOperandIdx(Reg, isDead, false, TRI);
1205 return (Idx == -1) ? nullptr : &getOperand(Idx);
1208 /// Find the index of the first operand in the
1209 /// operand list that is used to represent the predicate. It returns -1 if
1210 /// none is found.
1211 int findFirstPredOperandIdx() const;
1213 /// Find the index of the flag word operand that
1214 /// corresponds to operand OpIdx on an inline asm instruction. Returns -1 if
1215 /// getOperand(OpIdx) does not belong to an inline asm operand group.
1217 /// If GroupNo is not NULL, it will receive the number of the operand group
1218 /// containing OpIdx.
1220 /// The flag operand is an immediate that can be decoded with methods like
1221 /// InlineAsm::hasRegClassConstraint().
1222 int findInlineAsmFlagIdx(unsigned OpIdx, unsigned *GroupNo = nullptr) const;
1224 /// Compute the static register class constraint for operand OpIdx.
1225 /// For normal instructions, this is derived from the MCInstrDesc.
1226 /// For inline assembly it is derived from the flag words.
1228 /// Returns NULL if the static register class constraint cannot be
1229 /// determined.
1230 const TargetRegisterClass*
1231 getRegClassConstraint(unsigned OpIdx,
1232 const TargetInstrInfo *TII,
1233 const TargetRegisterInfo *TRI) const;
1235 /// Applies the constraints (def/use) implied by this MI on \p Reg to
1236 /// the given \p CurRC.
1237 /// If \p ExploreBundle is set and MI is part of a bundle, all the
1238 /// instructions inside the bundle will be taken into account. In other words,
1239 /// this method accumulates all the constraints of the operand of this MI and
1240 /// the related bundle if MI is a bundle or inside a bundle.
1242 /// Returns the register class that satisfies both \p CurRC and the
1243 /// constraints set by MI. Returns NULL if such a register class does not
1244 /// exist.
1246 /// \pre CurRC must not be NULL.
1247 const TargetRegisterClass *getRegClassConstraintEffectForVReg(
1248 unsigned Reg, const TargetRegisterClass *CurRC,
1249 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI,
1250 bool ExploreBundle = false) const;
1252 /// Applies the constraints (def/use) implied by the \p OpIdx operand
1253 /// to the given \p CurRC.
1255 /// Returns the register class that satisfies both \p CurRC and the
1256 /// constraints set by \p OpIdx MI. Returns NULL if such a register class
1257 /// does not exist.
1259 /// \pre CurRC must not be NULL.
1260 /// \pre The operand at \p OpIdx must be a register.
1261 const TargetRegisterClass *
1262 getRegClassConstraintEffect(unsigned OpIdx, const TargetRegisterClass *CurRC,
1263 const TargetInstrInfo *TII,
1264 const TargetRegisterInfo *TRI) const;
1266 /// Add a tie between the register operands at DefIdx and UseIdx.
1267 /// The tie will cause the register allocator to ensure that the two
1268 /// operands are assigned the same physical register.
1270 /// Tied operands are managed automatically for explicit operands in the
1271 /// MCInstrDesc. This method is for exceptional cases like inline asm.
1272 void tieOperands(unsigned DefIdx, unsigned UseIdx);
1274 /// Given the index of a tied register operand, find the
1275 /// operand it is tied to. Defs are tied to uses and vice versa. Returns the
1276 /// index of the tied operand which must exist.
1277 unsigned findTiedOperandIdx(unsigned OpIdx) const;
1279 /// Given the index of a register def operand,
1280 /// check if the register def is tied to a source operand, due to either
1281 /// two-address elimination or inline assembly constraints. Returns the
1282 /// first tied use operand index by reference if UseOpIdx is not null.
1283 bool isRegTiedToUseOperand(unsigned DefOpIdx,
1284 unsigned *UseOpIdx = nullptr) const {
1285 const MachineOperand &MO = getOperand(DefOpIdx);
1286 if (!MO.isReg() || !MO.isDef() || !MO.isTied())
1287 return false;
1288 if (UseOpIdx)
1289 *UseOpIdx = findTiedOperandIdx(DefOpIdx);
1290 return true;
1293 /// Return true if the use operand of the specified index is tied to a def
1294 /// operand. It also returns the def operand index by reference if DefOpIdx
1295 /// is not null.
1296 bool isRegTiedToDefOperand(unsigned UseOpIdx,
1297 unsigned *DefOpIdx = nullptr) const {
1298 const MachineOperand &MO = getOperand(UseOpIdx);
1299 if (!MO.isReg() || !MO.isUse() || !MO.isTied())
1300 return false;
1301 if (DefOpIdx)
1302 *DefOpIdx = findTiedOperandIdx(UseOpIdx);
1303 return true;
1306 /// Clears kill flags on all operands.
1307 void clearKillInfo();
1309 /// Replace all occurrences of FromReg with ToReg:SubIdx,
1310 /// properly composing subreg indices where necessary.
1311 void substituteRegister(unsigned FromReg, unsigned ToReg, unsigned SubIdx,
1312 const TargetRegisterInfo &RegInfo);
1314 /// We have determined MI kills a register. Look for the
1315 /// operand that uses it and mark it as IsKill. If AddIfNotFound is true,
1316 /// add a implicit operand if it's not found. Returns true if the operand
1317 /// exists / is added.
1318 bool addRegisterKilled(unsigned IncomingReg,
1319 const TargetRegisterInfo *RegInfo,
1320 bool AddIfNotFound = false);
1322 /// Clear all kill flags affecting Reg. If RegInfo is provided, this includes
1323 /// all aliasing registers.
1324 void clearRegisterKills(unsigned Reg, const TargetRegisterInfo *RegInfo);
1326 /// We have determined MI defined a register without a use.
1327 /// Look for the operand that defines it and mark it as IsDead. If
1328 /// AddIfNotFound is true, add a implicit operand if it's not found. Returns
1329 /// true if the operand exists / is added.
1330 bool addRegisterDead(unsigned Reg, const TargetRegisterInfo *RegInfo,
1331 bool AddIfNotFound = false);
1333 /// Clear all dead flags on operands defining register @p Reg.
1334 void clearRegisterDeads(unsigned Reg);
1336 /// Mark all subregister defs of register @p Reg with the undef flag.
1337 /// This function is used when we determined to have a subregister def in an
1338 /// otherwise undefined super register.
1339 void setRegisterDefReadUndef(unsigned Reg, bool IsUndef = true);
1341 /// We have determined MI defines a register. Make sure there is an operand
1342 /// defining Reg.
1343 void addRegisterDefined(unsigned Reg,
1344 const TargetRegisterInfo *RegInfo = nullptr);
1346 /// Mark every physreg used by this instruction as
1347 /// dead except those in the UsedRegs list.
1349 /// On instructions with register mask operands, also add implicit-def
1350 /// operands for all registers in UsedRegs.
1351 void setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1352 const TargetRegisterInfo &TRI);
1354 /// Return true if it is safe to move this instruction. If
1355 /// SawStore is set to true, it means that there is a store (or call) between
1356 /// the instruction's location and its intended destination.
1357 bool isSafeToMove(AliasAnalysis *AA, bool &SawStore) const;
1359 /// Returns true if this instruction's memory access aliases the memory
1360 /// access of Other.
1362 /// Assumes any physical registers used to compute addresses
1363 /// have the same value for both instructions. Returns false if neither
1364 /// instruction writes to memory.
1366 /// @param AA Optional alias analysis, used to compare memory operands.
1367 /// @param Other MachineInstr to check aliasing against.
1368 /// @param UseTBAA Whether to pass TBAA information to alias analysis.
1369 bool mayAlias(AliasAnalysis *AA, MachineInstr &Other, bool UseTBAA);
1371 /// Return true if this instruction may have an ordered
1372 /// or volatile memory reference, or if the information describing the memory
1373 /// reference is not available. Return false if it is known to have no
1374 /// ordered or volatile memory references.
1375 bool hasOrderedMemoryRef() const;
1377 /// Return true if this load instruction never traps and points to a memory
1378 /// location whose value doesn't change during the execution of this function.
1380 /// Examples include loading a value from the constant pool or from the
1381 /// argument area of a function (if it does not change). If the instruction
1382 /// does multiple loads, this returns true only if all of the loads are
1383 /// dereferenceable and invariant.
1384 bool isDereferenceableInvariantLoad(AliasAnalysis *AA) const;
1386 /// If the specified instruction is a PHI that always merges together the
1387 /// same virtual register, return the register, otherwise return 0.
1388 unsigned isConstantValuePHI() const;
1390 /// Return true if this instruction has side effects that are not modeled
1391 /// by mayLoad / mayStore, etc.
1392 /// For all instructions, the property is encoded in MCInstrDesc::Flags
1393 /// (see MCInstrDesc::hasUnmodeledSideEffects(). The only exception is
1394 /// INLINEASM instruction, in which case the side effect property is encoded
1395 /// in one of its operands (see InlineAsm::Extra_HasSideEffect).
1397 bool hasUnmodeledSideEffects() const;
1399 /// Returns true if it is illegal to fold a load across this instruction.
1400 bool isLoadFoldBarrier() const;
1402 /// Return true if all the defs of this instruction are dead.
1403 bool allDefsAreDead() const;
1405 /// Return a valid size if the instruction is a spill instruction.
1406 Optional<unsigned> getSpillSize(const TargetInstrInfo *TII) const;
1408 /// Return a valid size if the instruction is a folded spill instruction.
1409 Optional<unsigned> getFoldedSpillSize(const TargetInstrInfo *TII) const;
1411 /// Return a valid size if the instruction is a restore instruction.
1412 Optional<unsigned> getRestoreSize(const TargetInstrInfo *TII) const;
1414 /// Return a valid size if the instruction is a folded restore instruction.
1415 Optional<unsigned>
1416 getFoldedRestoreSize(const TargetInstrInfo *TII) const;
1418 /// Copy implicit register operands from specified
1419 /// instruction to this instruction.
1420 void copyImplicitOps(MachineFunction &MF, const MachineInstr &MI);
1422 /// Debugging support
1423 /// @{
1424 /// Determine the generic type to be printed (if needed) on uses and defs.
1425 LLT getTypeToPrint(unsigned OpIdx, SmallBitVector &PrintedTypes,
1426 const MachineRegisterInfo &MRI) const;
1428 /// Return true when an instruction has tied register that can't be determined
1429 /// by the instruction's descriptor. This is useful for MIR printing, to
1430 /// determine whether we need to print the ties or not.
1431 bool hasComplexRegisterTies() const;
1433 /// Print this MI to \p OS.
1434 /// Don't print information that can be inferred from other instructions if
1435 /// \p IsStandalone is false. It is usually true when only a fragment of the
1436 /// function is printed.
1437 /// Only print the defs and the opcode if \p SkipOpers is true.
1438 /// Otherwise, also print operands if \p SkipDebugLoc is true.
1439 /// Otherwise, also print the debug loc, with a terminating newline.
1440 /// \p TII is used to print the opcode name. If it's not present, but the
1441 /// MI is in a function, the opcode will be printed using the function's TII.
1442 void print(raw_ostream &OS, bool IsStandalone = true, bool SkipOpers = false,
1443 bool SkipDebugLoc = false, bool AddNewLine = true,
1444 const TargetInstrInfo *TII = nullptr) const;
1445 void print(raw_ostream &OS, ModuleSlotTracker &MST, bool IsStandalone = true,
1446 bool SkipOpers = false, bool SkipDebugLoc = false,
1447 bool AddNewLine = true,
1448 const TargetInstrInfo *TII = nullptr) const;
1449 void dump() const;
1450 /// @}
1452 //===--------------------------------------------------------------------===//
1453 // Accessors used to build up machine instructions.
1455 /// Add the specified operand to the instruction. If it is an implicit
1456 /// operand, it is added to the end of the operand list. If it is an
1457 /// explicit operand it is added at the end of the explicit operand list
1458 /// (before the first implicit operand).
1460 /// MF must be the machine function that was used to allocate this
1461 /// instruction.
1463 /// MachineInstrBuilder provides a more convenient interface for creating
1464 /// instructions and adding operands.
1465 void addOperand(MachineFunction &MF, const MachineOperand &Op);
1467 /// Add an operand without providing an MF reference. This only works for
1468 /// instructions that are inserted in a basic block.
1470 /// MachineInstrBuilder and the two-argument addOperand(MF, MO) should be
1471 /// preferred.
1472 void addOperand(const MachineOperand &Op);
1474 /// Replace the instruction descriptor (thus opcode) of
1475 /// the current instruction with a new one.
1476 void setDesc(const MCInstrDesc &tid) { MCID = &tid; }
1478 /// Replace current source information with new such.
1479 /// Avoid using this, the constructor argument is preferable.
1480 void setDebugLoc(DebugLoc dl) {
1481 debugLoc = std::move(dl);
1482 assert(debugLoc.hasTrivialDestructor() && "Expected trivial destructor");
1485 /// Erase an operand from an instruction, leaving it with one
1486 /// fewer operand than it started with.
1487 void RemoveOperand(unsigned OpNo);
1489 /// Clear this MachineInstr's memory reference descriptor list. This resets
1490 /// the memrefs to their most conservative state. This should be used only
1491 /// as a last resort since it greatly pessimizes our knowledge of the memory
1492 /// access performed by the instruction.
1493 void dropMemRefs(MachineFunction &MF);
1495 /// Assign this MachineInstr's memory reference descriptor list.
1497 /// Unlike other methods, this *will* allocate them into a new array
1498 /// associated with the provided `MachineFunction`.
1499 void setMemRefs(MachineFunction &MF, ArrayRef<MachineMemOperand *> MemRefs);
1501 /// Add a MachineMemOperand to the machine instruction.
1502 /// This function should be used only occasionally. The setMemRefs function
1503 /// is the primary method for setting up a MachineInstr's MemRefs list.
1504 void addMemOperand(MachineFunction &MF, MachineMemOperand *MO);
1506 /// Clone another MachineInstr's memory reference descriptor list and replace
1507 /// ours with it.
1509 /// Note that `*this` may be the incoming MI!
1511 /// Prefer this API whenever possible as it can avoid allocations in common
1512 /// cases.
1513 void cloneMemRefs(MachineFunction &MF, const MachineInstr &MI);
1515 /// Clone the merge of multiple MachineInstrs' memory reference descriptors
1516 /// list and replace ours with it.
1518 /// Note that `*this` may be one of the incoming MIs!
1520 /// Prefer this API whenever possible as it can avoid allocations in common
1521 /// cases.
1522 void cloneMergedMemRefs(MachineFunction &MF,
1523 ArrayRef<const MachineInstr *> MIs);
1525 /// Set a symbol that will be emitted just prior to the instruction itself.
1527 /// Setting this to a null pointer will remove any such symbol.
1529 /// FIXME: This is not fully implemented yet.
1530 void setPreInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1532 /// Set a symbol that will be emitted just after the instruction itself.
1534 /// Setting this to a null pointer will remove any such symbol.
1536 /// FIXME: This is not fully implemented yet.
1537 void setPostInstrSymbol(MachineFunction &MF, MCSymbol *Symbol);
1539 /// Return the MIFlags which represent both MachineInstrs. This
1540 /// should be used when merging two MachineInstrs into one. This routine does
1541 /// not modify the MIFlags of this MachineInstr.
1542 uint16_t mergeFlagsWith(const MachineInstr& Other) const;
1544 static uint16_t copyFlagsFromInstruction(const Instruction &I);
1546 /// Copy all flags to MachineInst MIFlags
1547 void copyIRFlags(const Instruction &I);
1549 /// Break any tie involving OpIdx.
1550 void untieRegOperand(unsigned OpIdx) {
1551 MachineOperand &MO = getOperand(OpIdx);
1552 if (MO.isReg() && MO.isTied()) {
1553 getOperand(findTiedOperandIdx(OpIdx)).TiedTo = 0;
1554 MO.TiedTo = 0;
1558 /// Add all implicit def and use operands to this instruction.
1559 void addImplicitDefUseOperands(MachineFunction &MF);
1561 /// Scan instructions following MI and collect any matching DBG_VALUEs.
1562 void collectDebugValues(SmallVectorImpl<MachineInstr *> &DbgValues);
1564 /// Find all DBG_VALUEs immediately following this instruction that point
1565 /// to a register def in this instruction and point them to \p Reg instead.
1566 void changeDebugValuesDefReg(unsigned Reg);
1568 private:
1569 /// If this instruction is embedded into a MachineFunction, return the
1570 /// MachineRegisterInfo object for the current function, otherwise
1571 /// return null.
1572 MachineRegisterInfo *getRegInfo();
1574 /// Unlink all of the register operands in this instruction from their
1575 /// respective use lists. This requires that the operands already be on their
1576 /// use lists.
1577 void RemoveRegOperandsFromUseLists(MachineRegisterInfo&);
1579 /// Add all of the register operands in this instruction from their
1580 /// respective use lists. This requires that the operands not be on their
1581 /// use lists yet.
1582 void AddRegOperandsToUseLists(MachineRegisterInfo&);
1584 /// Slow path for hasProperty when we're dealing with a bundle.
1585 bool hasPropertyInBundle(uint64_t Mask, QueryType Type) const;
1587 /// Implements the logic of getRegClassConstraintEffectForVReg for the
1588 /// this MI and the given operand index \p OpIdx.
1589 /// If the related operand does not constrained Reg, this returns CurRC.
1590 const TargetRegisterClass *getRegClassConstraintEffectForVRegImpl(
1591 unsigned OpIdx, unsigned Reg, const TargetRegisterClass *CurRC,
1592 const TargetInstrInfo *TII, const TargetRegisterInfo *TRI) const;
1595 /// Special DenseMapInfo traits to compare MachineInstr* by *value* of the
1596 /// instruction rather than by pointer value.
1597 /// The hashing and equality testing functions ignore definitions so this is
1598 /// useful for CSE, etc.
1599 struct MachineInstrExpressionTrait : DenseMapInfo<MachineInstr*> {
1600 static inline MachineInstr *getEmptyKey() {
1601 return nullptr;
1604 static inline MachineInstr *getTombstoneKey() {
1605 return reinterpret_cast<MachineInstr*>(-1);
1608 static unsigned getHashValue(const MachineInstr* const &MI);
1610 static bool isEqual(const MachineInstr* const &LHS,
1611 const MachineInstr* const &RHS) {
1612 if (RHS == getEmptyKey() || RHS == getTombstoneKey() ||
1613 LHS == getEmptyKey() || LHS == getTombstoneKey())
1614 return LHS == RHS;
1615 return LHS->isIdenticalTo(*RHS, MachineInstr::IgnoreVRegDefs);
1619 //===----------------------------------------------------------------------===//
1620 // Debugging Support
1622 inline raw_ostream& operator<<(raw_ostream &OS, const MachineInstr &MI) {
1623 MI.print(OS);
1624 return OS;
1627 } // end namespace llvm
1629 #endif // LLVM_CODEGEN_MACHINEINSTR_H