1 //===- ScheduleDAGInstrs.h - MachineInstr Scheduling ------------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 /// \file Implements the ScheduleDAGInstrs class, which implements scheduling
10 /// for a MachineInstr-based dependency graph.
12 //===----------------------------------------------------------------------===//
14 #ifndef LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
15 #define LLVM_CODEGEN_SCHEDULEDAGINSTRS_H
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/PointerIntPair.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseMultiSet.h"
22 #include "llvm/ADT/SparseSet.h"
23 #include "llvm/CodeGen/LivePhysRegs.h"
24 #include "llvm/CodeGen/MachineBasicBlock.h"
25 #include "llvm/CodeGen/ScheduleDAG.h"
26 #include "llvm/CodeGen/TargetRegisterInfo.h"
27 #include "llvm/CodeGen/TargetSchedule.h"
28 #include "llvm/MC/LaneBitmask.h"
38 class MachineFrameInfo
;
39 class MachineFunction
;
41 class MachineLoopInfo
;
43 struct MCSchedClassDesc
;
45 class PseudoSourceValue
;
46 class RegPressureTracker
;
50 /// An individual mapping from virtual register number to SUnit.
56 VReg2SUnit(unsigned VReg
, LaneBitmask LaneMask
, SUnit
*SU
)
57 : VirtReg(VReg
), LaneMask(LaneMask
), SU(SU
) {}
59 unsigned getSparseSetIndex() const {
60 return TargetRegisterInfo::virtReg2Index(VirtReg
);
64 /// Mapping from virtual register to SUnit including an operand index.
65 struct VReg2SUnitOperIdx
: public VReg2SUnit
{
66 unsigned OperandIndex
;
68 VReg2SUnitOperIdx(unsigned VReg
, LaneBitmask LaneMask
,
69 unsigned OperandIndex
, SUnit
*SU
)
70 : VReg2SUnit(VReg
, LaneMask
, SU
), OperandIndex(OperandIndex
) {}
73 /// Record a physical register access.
74 /// For non-data-dependent uses, OpIdx == -1.
75 struct PhysRegSUOper
{
80 PhysRegSUOper(SUnit
*su
, int op
, unsigned R
): SU(su
), OpIdx(op
), Reg(R
) {}
82 unsigned getSparseSetIndex() const { return Reg
; }
85 /// Use a SparseMultiSet to track physical registers. Storage is only
86 /// allocated once for the pass. It can be cleared in constant time and reused
87 /// without any frees.
89 SparseMultiSet
<PhysRegSUOper
, identity
<unsigned>, uint16_t>;
91 /// Use SparseSet as a SparseMap by relying on the fact that it never
92 /// compares ValueT's, only unsigned keys. This allows the set to be cleared
93 /// between scheduling regions in constant time as long as ValueT does not
94 /// require a destructor.
95 using VReg2SUnitMap
= SparseSet
<VReg2SUnit
, VirtReg2IndexFunctor
>;
97 /// Track local uses of virtual registers. These uses are gathered by the DAG
98 /// builder and may be consulted by the scheduler to avoid iterating an entire
100 using VReg2SUnitMultiMap
= SparseMultiSet
<VReg2SUnit
, VirtReg2IndexFunctor
>;
102 using VReg2SUnitOperIdxMultiMap
=
103 SparseMultiSet
<VReg2SUnitOperIdx
, VirtReg2IndexFunctor
>;
105 using ValueType
= PointerUnion
<const Value
*, const PseudoSourceValue
*>;
107 struct UnderlyingObject
: PointerIntPair
<ValueType
, 1, bool> {
108 UnderlyingObject(ValueType V
, bool MayAlias
)
109 : PointerIntPair
<ValueType
, 1, bool>(V
, MayAlias
) {}
111 ValueType
getValue() const { return getPointer(); }
112 bool mayAlias() const { return getInt(); }
115 using UnderlyingObjectsVector
= SmallVector
<UnderlyingObject
, 4>;
117 /// A ScheduleDAG for scheduling lists of MachineInstr.
118 class ScheduleDAGInstrs
: public ScheduleDAG
{
120 const MachineLoopInfo
*MLI
;
121 const MachineFrameInfo
&MFI
;
123 /// TargetSchedModel provides an interface to the machine model.
124 TargetSchedModel SchedModel
;
126 /// True if the DAG builder should remove kill flags (in preparation for
128 bool RemoveKillFlags
;
130 /// The standard DAG builder does not normally include terminators as DAG
131 /// nodes because it does not create the necessary dependencies to prevent
132 /// reordering. A specialized scheduler can override
133 /// TargetInstrInfo::isSchedulingBoundary then enable this flag to indicate
134 /// it has taken responsibility for scheduling the terminator correctly.
135 bool CanHandleTerminators
= false;
137 /// Whether lane masks should get tracked.
138 bool TrackLaneMasks
= false;
140 // State specific to the current scheduling region.
141 // ------------------------------------------------
143 /// The block in which to insert instructions
144 MachineBasicBlock
*BB
;
146 /// The beginning of the range to be scheduled.
147 MachineBasicBlock::iterator RegionBegin
;
149 /// The end of the range to be scheduled.
150 MachineBasicBlock::iterator RegionEnd
;
152 /// Instructions in this region (distance(RegionBegin, RegionEnd)).
153 unsigned NumRegionInstrs
;
155 /// After calling BuildSchedGraph, each machine instruction in the current
156 /// scheduling region is mapped to an SUnit.
157 DenseMap
<MachineInstr
*, SUnit
*> MISUnitMap
;
159 // State internal to DAG building.
160 // -------------------------------
162 /// Defs, Uses - Remember where defs and uses of each register are as we
163 /// iterate upward through the instructions. This is allocated here instead
164 /// of inside BuildSchedGraph to avoid the need for it to be initialized and
165 /// destructed for each block.
169 /// Tracks the last instruction(s) in this region defining each virtual
170 /// register. There may be multiple current definitions for a register with
171 /// disjunct lanemasks.
172 VReg2SUnitMultiMap CurrentVRegDefs
;
173 /// Tracks the last instructions in this region using each virtual register.
174 VReg2SUnitOperIdxMultiMap CurrentVRegUses
;
176 AliasAnalysis
*AAForDep
= nullptr;
178 /// Remember a generic side-effecting instruction as we proceed.
179 /// No other SU ever gets scheduled around it (except in the special
180 /// case of a huge region that gets reduced).
181 SUnit
*BarrierChain
= nullptr;
184 /// A list of SUnits, used in Value2SUsMap, during DAG construction.
185 /// Note: to gain speed it might be worth investigating an optimized
186 /// implementation of this data structure, such as a singly linked list
187 /// with a memory pool (SmallVector was tried but slow and SparseSet is not
189 using SUList
= std::list
<SUnit
*>;
192 /// A map from ValueType to SUList, used during DAG construction, as
193 /// a means of remembering which SUs depend on which memory locations.
196 /// Reduces maps in FIFO order, by N SUs. This is better than turning
197 /// every Nth memory SU into BarrierChain in buildSchedGraph(), since
198 /// it avoids unnecessary edges between seen SUs above the new BarrierChain,
199 /// and those below it.
200 void reduceHugeMemNodeMaps(Value2SUsMap
&stores
,
201 Value2SUsMap
&loads
, unsigned N
);
203 /// Adds a chain edge between SUa and SUb, but only if both
204 /// AliasAnalysis and Target fail to deny the dependency.
205 void addChainDependency(SUnit
*SUa
, SUnit
*SUb
,
206 unsigned Latency
= 0);
208 /// Adds dependencies as needed from all SUs in list to SU.
209 void addChainDependencies(SUnit
*SU
, SUList
&SUs
, unsigned Latency
) {
210 for (SUnit
*Entry
: SUs
)
211 addChainDependency(SU
, Entry
, Latency
);
214 /// Adds dependencies as needed from all SUs in map, to SU.
215 void addChainDependencies(SUnit
*SU
, Value2SUsMap
&Val2SUsMap
);
217 /// Adds dependencies as needed to SU, from all SUs mapped to V.
218 void addChainDependencies(SUnit
*SU
, Value2SUsMap
&Val2SUsMap
,
221 /// Adds barrier chain edges from all SUs in map, and then clear the map.
222 /// This is equivalent to insertBarrierChain(), but optimized for the common
223 /// case where the new BarrierChain (a global memory object) has a higher
224 /// NodeNum than all SUs in map. It is assumed BarrierChain has been set
225 /// before calling this.
226 void addBarrierChain(Value2SUsMap
&map
);
228 /// Inserts a barrier chain in a huge region, far below current SU.
229 /// Adds barrier chain edges from all SUs in map with higher NodeNums than
230 /// this new BarrierChain, and remove them from map. It is assumed
231 /// BarrierChain has been set before calling this.
232 void insertBarrierChain(Value2SUsMap
&map
);
234 /// For an unanalyzable memory access, this Value is used in maps.
235 UndefValue
*UnknownValue
;
237 using DbgValueVector
=
238 std::vector
<std::pair
<MachineInstr
*, MachineInstr
*>>;
239 /// Remember instruction that precedes DBG_VALUE.
240 /// These are generated by buildSchedGraph but persist so they can be
241 /// referenced when emitting the final schedule.
242 DbgValueVector DbgValues
;
243 MachineInstr
*FirstDbgValue
= nullptr;
245 /// Set of live physical registers for updating kill flags.
246 LivePhysRegs LiveRegs
;
249 explicit ScheduleDAGInstrs(MachineFunction
&mf
,
250 const MachineLoopInfo
*mli
,
251 bool RemoveKillFlags
= false);
253 ~ScheduleDAGInstrs() override
= default;
255 /// Gets the machine model for instruction scheduling.
256 const TargetSchedModel
*getSchedModel() const { return &SchedModel
; }
258 /// Resolves and cache a resolved scheduling class for an SUnit.
259 const MCSchedClassDesc
*getSchedClass(SUnit
*SU
) const {
260 if (!SU
->SchedClass
&& SchedModel
.hasInstrSchedModel())
261 SU
->SchedClass
= SchedModel
.resolveSchedClass(SU
->getInstr());
262 return SU
->SchedClass
;
265 /// Returns an iterator to the top of the current scheduling region.
266 MachineBasicBlock::iterator
begin() const { return RegionBegin
; }
268 /// Returns an iterator to the bottom of the current scheduling region.
269 MachineBasicBlock::iterator
end() const { return RegionEnd
; }
271 /// Creates a new SUnit and return a ptr to it.
272 SUnit
*newSUnit(MachineInstr
*MI
);
274 /// Returns an existing SUnit for this MI, or nullptr.
275 SUnit
*getSUnit(MachineInstr
*MI
) const;
277 /// If this method returns true, handling of the scheduling regions
278 /// themselves (in case of a scheduling boundary in MBB) will be done
279 /// beginning with the topmost region of MBB.
280 virtual bool doMBBSchedRegionsTopDown() const { return false; }
282 /// Prepares to perform scheduling in the given block.
283 virtual void startBlock(MachineBasicBlock
*BB
);
285 /// Cleans up after scheduling in the given block.
286 virtual void finishBlock();
288 /// Initialize the DAG and common scheduler state for a new
289 /// scheduling region. This does not actually create the DAG, only clears
290 /// it. The scheduling driver may call BuildSchedGraph multiple times per
291 /// scheduling region.
292 virtual void enterRegion(MachineBasicBlock
*bb
,
293 MachineBasicBlock::iterator begin
,
294 MachineBasicBlock::iterator end
,
295 unsigned regioninstrs
);
297 /// Called when the scheduler has finished scheduling the current region.
298 virtual void exitRegion();
300 /// Builds SUnits for the current region.
301 /// If \p RPTracker is non-null, compute register pressure as a side effect.
302 /// The DAG builder is an efficient place to do it because it already visits
304 void buildSchedGraph(AliasAnalysis
*AA
,
305 RegPressureTracker
*RPTracker
= nullptr,
306 PressureDiffs
*PDiffs
= nullptr,
307 LiveIntervals
*LIS
= nullptr,
308 bool TrackLaneMasks
= false);
310 /// Adds dependencies from instructions in the current list of
311 /// instructions being scheduled to scheduling barrier. We want to make sure
312 /// instructions which define registers that are either used by the
313 /// terminator or are live-out are properly scheduled. This is especially
314 /// important when the definition latency of the return value(s) are too
315 /// high to be hidden by the branch or when the liveout registers used by
316 /// instructions in the fallthrough block.
317 void addSchedBarrierDeps();
319 /// Orders nodes according to selected style.
321 /// Typically, a scheduling algorithm will implement schedule() without
322 /// overriding enterRegion() or exitRegion().
323 virtual void schedule() = 0;
325 /// Allow targets to perform final scheduling actions at the level of the
326 /// whole MachineFunction. By default does nothing.
327 virtual void finalizeSchedule() {}
329 void dumpNode(const SUnit
&SU
) const override
;
330 void dump() const override
;
332 /// Returns a label for a DAG node that points to an instruction.
333 std::string
getGraphNodeLabel(const SUnit
*SU
) const override
;
335 /// Returns a label for the region of code covered by the DAG.
336 std::string
getDAGName() const override
;
338 /// Fixes register kill flags that scheduling has made invalid.
339 void fixupKills(MachineBasicBlock
&MBB
);
343 void addPhysRegDataDeps(SUnit
*SU
, unsigned OperIdx
);
344 void addPhysRegDeps(SUnit
*SU
, unsigned OperIdx
);
345 void addVRegDefDeps(SUnit
*SU
, unsigned OperIdx
);
346 void addVRegUseDeps(SUnit
*SU
, unsigned OperIdx
);
348 /// Initializes register live-range state for updating kills.
349 /// PostRA helper for rewriting kill flags.
350 void startBlockForKills(MachineBasicBlock
*BB
);
352 /// Toggles a register operand kill flag.
354 /// Other adjustments may be made to the instruction if necessary. Return
355 /// true if the operand has been deleted, false if not.
356 void toggleKillFlag(MachineInstr
&MI
, MachineOperand
&MO
);
358 /// Returns a mask for which lanes get read/written by the given (register)
360 LaneBitmask
getLaneMaskForMO(const MachineOperand
&MO
) const;
363 /// Creates a new SUnit and return a ptr to it.
364 inline SUnit
*ScheduleDAGInstrs::newSUnit(MachineInstr
*MI
) {
366 const SUnit
*Addr
= SUnits
.empty() ? nullptr : &SUnits
[0];
368 SUnits
.emplace_back(MI
, (unsigned)SUnits
.size());
369 assert((Addr
== nullptr || Addr
== &SUnits
[0]) &&
370 "SUnits std::vector reallocated on the fly!");
371 return &SUnits
.back();
374 /// Returns an existing SUnit for this MI, or nullptr.
375 inline SUnit
*ScheduleDAGInstrs::getSUnit(MachineInstr
*MI
) const {
376 DenseMap
<MachineInstr
*, SUnit
*>::const_iterator I
= MISUnitMap
.find(MI
);
377 if (I
== MISUnitMap
.end())
382 } // end namespace llvm
384 #endif // LLVM_CODEGEN_SCHEDULEDAGINSTRS_H