1 //===- llvm/CodeGen/TargetInstrInfo.h - Instruction Info --------*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file describes the target machine instruction set to the code generator.
11 //===----------------------------------------------------------------------===//
13 #ifndef LLVM_TARGET_TARGETINSTRINFO_H
14 #define LLVM_TARGET_TARGETINSTRINFO_H
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseMapInfo.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/CodeGen/LiveRegUnits.h"
21 #include "llvm/CodeGen/MachineBasicBlock.h"
22 #include "llvm/CodeGen/MachineCombinerPattern.h"
23 #include "llvm/CodeGen/MachineFunction.h"
24 #include "llvm/CodeGen/MachineInstr.h"
25 #include "llvm/CodeGen/MachineLoopInfo.h"
26 #include "llvm/CodeGen/MachineOperand.h"
27 #include "llvm/CodeGen/MachineOutliner.h"
28 #include "llvm/CodeGen/PseudoSourceValue.h"
29 #include "llvm/MC/MCInstrInfo.h"
30 #include "llvm/Support/BranchProbability.h"
31 #include "llvm/Support/ErrorHandling.h"
41 class InstrItineraryData
;
44 class MachineMemOperand
;
45 class MachineRegisterInfo
;
51 class ScheduleHazardRecognizer
;
55 class TargetRegisterClass
;
56 class TargetRegisterInfo
;
57 class TargetSchedModel
;
58 class TargetSubtargetInfo
;
60 template <class T
> class SmallVectorImpl
;
62 //---------------------------------------------------------------------------
64 /// TargetInstrInfo - Interface to description of machine instruction set
66 class TargetInstrInfo
: public MCInstrInfo
{
68 TargetInstrInfo(unsigned CFSetupOpcode
= ~0u, unsigned CFDestroyOpcode
= ~0u,
69 unsigned CatchRetOpcode
= ~0u, unsigned ReturnOpcode
= ~0u)
70 : CallFrameSetupOpcode(CFSetupOpcode
),
71 CallFrameDestroyOpcode(CFDestroyOpcode
), CatchRetOpcode(CatchRetOpcode
),
72 ReturnOpcode(ReturnOpcode
) {}
73 TargetInstrInfo(const TargetInstrInfo
&) = delete;
74 TargetInstrInfo
&operator=(const TargetInstrInfo
&) = delete;
75 virtual ~TargetInstrInfo();
77 static bool isGenericOpcode(unsigned Opc
) {
78 return Opc
<= TargetOpcode::GENERIC_OP_END
;
81 /// Given a machine instruction descriptor, returns the register
82 /// class constraint for OpNum, or NULL.
83 const TargetRegisterClass
*getRegClass(const MCInstrDesc
&MCID
, unsigned OpNum
,
84 const TargetRegisterInfo
*TRI
,
85 const MachineFunction
&MF
) const;
87 /// Return true if the instruction is trivially rematerializable, meaning it
88 /// has no side effects and requires no operands that aren't always available.
89 /// This means the only allowed uses are constants and unallocatable physical
90 /// registers so that the instructions result is independent of the place
92 bool isTriviallyReMaterializable(const MachineInstr
&MI
,
93 AliasAnalysis
*AA
= nullptr) const {
94 return MI
.getOpcode() == TargetOpcode::IMPLICIT_DEF
||
95 (MI
.getDesc().isRematerializable() &&
96 (isReallyTriviallyReMaterializable(MI
, AA
) ||
97 isReallyTriviallyReMaterializableGeneric(MI
, AA
)));
101 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
102 /// set, this hook lets the target specify whether the instruction is actually
103 /// trivially rematerializable, taking into consideration its operands. This
104 /// predicate must return false if the instruction has any side effects other
105 /// than producing a value, or if it requres any address registers that are
106 /// not always available.
107 /// Requirements must be check as stated in isTriviallyReMaterializable() .
108 virtual bool isReallyTriviallyReMaterializable(const MachineInstr
&MI
,
109 AliasAnalysis
*AA
) const {
113 /// This method commutes the operands of the given machine instruction MI.
114 /// The operands to be commuted are specified by their indices OpIdx1 and
117 /// If a target has any instructions that are commutable but require
118 /// converting to different instructions or making non-trivial changes
119 /// to commute them, this method can be overloaded to do that.
120 /// The default implementation simply swaps the commutable operands.
122 /// If NewMI is false, MI is modified in place and returned; otherwise, a
123 /// new machine instruction is created and returned.
125 /// Do not call this method for a non-commutable instruction.
126 /// Even though the instruction is commutable, the method may still
127 /// fail to commute the operands, null pointer is returned in such cases.
128 virtual MachineInstr
*commuteInstructionImpl(MachineInstr
&MI
, bool NewMI
,
130 unsigned OpIdx2
) const;
132 /// Assigns the (CommutableOpIdx1, CommutableOpIdx2) pair of commutable
133 /// operand indices to (ResultIdx1, ResultIdx2).
134 /// One or both input values of the pair: (ResultIdx1, ResultIdx2) may be
135 /// predefined to some indices or be undefined (designated by the special
136 /// value 'CommuteAnyOperandIndex').
137 /// The predefined result indices cannot be re-defined.
138 /// The function returns true iff after the result pair redefinition
139 /// the fixed result pair is equal to or equivalent to the source pair of
140 /// indices: (CommutableOpIdx1, CommutableOpIdx2). It is assumed here that
141 /// the pairs (x,y) and (y,x) are equivalent.
142 static bool fixCommutedOpIndices(unsigned &ResultIdx1
, unsigned &ResultIdx2
,
143 unsigned CommutableOpIdx1
,
144 unsigned CommutableOpIdx2
);
147 /// For instructions with opcodes for which the M_REMATERIALIZABLE flag is
148 /// set and the target hook isReallyTriviallyReMaterializable returns false,
149 /// this function does target-independent tests to determine if the
150 /// instruction is really trivially rematerializable.
151 bool isReallyTriviallyReMaterializableGeneric(const MachineInstr
&MI
,
152 AliasAnalysis
*AA
) const;
155 /// These methods return the opcode of the frame setup/destroy instructions
156 /// if they exist (-1 otherwise). Some targets use pseudo instructions in
157 /// order to abstract away the difference between operating with a frame
158 /// pointer and operating without, through the use of these two instructions.
160 unsigned getCallFrameSetupOpcode() const { return CallFrameSetupOpcode
; }
161 unsigned getCallFrameDestroyOpcode() const { return CallFrameDestroyOpcode
; }
163 /// Returns true if the argument is a frame pseudo instruction.
164 bool isFrameInstr(const MachineInstr
&I
) const {
165 return I
.getOpcode() == getCallFrameSetupOpcode() ||
166 I
.getOpcode() == getCallFrameDestroyOpcode();
169 /// Returns true if the argument is a frame setup pseudo instruction.
170 bool isFrameSetup(const MachineInstr
&I
) const {
171 return I
.getOpcode() == getCallFrameSetupOpcode();
174 /// Returns size of the frame associated with the given frame instruction.
175 /// For frame setup instruction this is frame that is set up space set up
176 /// after the instruction. For frame destroy instruction this is the frame
177 /// freed by the caller.
178 /// Note, in some cases a call frame (or a part of it) may be prepared prior
179 /// to the frame setup instruction. It occurs in the calls that involve
180 /// inalloca arguments. This function reports only the size of the frame part
181 /// that is set up between the frame setup and destroy pseudo instructions.
182 int64_t getFrameSize(const MachineInstr
&I
) const {
183 assert(isFrameInstr(I
) && "Not a frame instruction");
184 assert(I
.getOperand(0).getImm() >= 0);
185 return I
.getOperand(0).getImm();
188 /// Returns the total frame size, which is made up of the space set up inside
189 /// the pair of frame start-stop instructions and the space that is set up
190 /// prior to the pair.
191 int64_t getFrameTotalSize(const MachineInstr
&I
) const {
192 if (isFrameSetup(I
)) {
193 assert(I
.getOperand(1).getImm() >= 0 &&
194 "Frame size must not be negative");
195 return getFrameSize(I
) + I
.getOperand(1).getImm();
197 return getFrameSize(I
);
200 unsigned getCatchReturnOpcode() const { return CatchRetOpcode
; }
201 unsigned getReturnOpcode() const { return ReturnOpcode
; }
203 /// Returns the actual stack pointer adjustment made by an instruction
204 /// as part of a call sequence. By default, only call frame setup/destroy
205 /// instructions adjust the stack, but targets may want to override this
206 /// to enable more fine-grained adjustment, or adjust by a different value.
207 virtual int getSPAdjust(const MachineInstr
&MI
) const;
209 /// Return true if the instruction is a "coalescable" extension instruction.
210 /// That is, it's like a copy where it's legal for the source to overlap the
211 /// destination. e.g. X86::MOVSX64rr32. If this returns true, then it's
212 /// expected the pre-extension value is available as a subreg of the result
213 /// register. This also returns the sub-register index in SubIdx.
214 virtual bool isCoalescableExtInstr(const MachineInstr
&MI
, unsigned &SrcReg
,
215 unsigned &DstReg
, unsigned &SubIdx
) const {
219 /// If the specified machine instruction is a direct
220 /// load from a stack slot, return the virtual or physical register number of
221 /// the destination along with the FrameIndex of the loaded stack slot. If
222 /// not, return 0. This predicate must return 0 if the instruction has
223 /// any side effects other than loading from the stack slot.
224 virtual unsigned isLoadFromStackSlot(const MachineInstr
&MI
,
225 int &FrameIndex
) const {
229 /// Optional extension of isLoadFromStackSlot that returns the number of
230 /// bytes loaded from the stack. This must be implemented if a backend
231 /// supports partial stack slot spills/loads to further disambiguate
232 /// what the load does.
233 virtual unsigned isLoadFromStackSlot(const MachineInstr
&MI
,
235 unsigned &MemBytes
) const {
237 return isLoadFromStackSlot(MI
, FrameIndex
);
240 /// Check for post-frame ptr elimination stack locations as well.
241 /// This uses a heuristic so it isn't reliable for correctness.
242 virtual unsigned isLoadFromStackSlotPostFE(const MachineInstr
&MI
,
243 int &FrameIndex
) const {
247 /// If the specified machine instruction has a load from a stack slot,
248 /// return true along with the FrameIndices of the loaded stack slot and the
249 /// machine mem operands containing the reference.
250 /// If not, return false. Unlike isLoadFromStackSlot, this returns true for
251 /// any instructions that loads from the stack. This is just a hint, as some
252 /// cases may be missed.
253 virtual bool hasLoadFromStackSlot(
254 const MachineInstr
&MI
,
255 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const;
257 /// If the specified machine instruction is a direct
258 /// store to a stack slot, return the virtual or physical register number of
259 /// the source reg along with the FrameIndex of the loaded stack slot. If
260 /// not, return 0. This predicate must return 0 if the instruction has
261 /// any side effects other than storing to the stack slot.
262 virtual unsigned isStoreToStackSlot(const MachineInstr
&MI
,
263 int &FrameIndex
) const {
267 /// Optional extension of isStoreToStackSlot that returns the number of
268 /// bytes stored to the stack. This must be implemented if a backend
269 /// supports partial stack slot spills/loads to further disambiguate
270 /// what the store does.
271 virtual unsigned isStoreToStackSlot(const MachineInstr
&MI
,
273 unsigned &MemBytes
) const {
275 return isStoreToStackSlot(MI
, FrameIndex
);
278 /// Check for post-frame ptr elimination stack locations as well.
279 /// This uses a heuristic, so it isn't reliable for correctness.
280 virtual unsigned isStoreToStackSlotPostFE(const MachineInstr
&MI
,
281 int &FrameIndex
) const {
285 /// If the specified machine instruction has a store to a stack slot,
286 /// return true along with the FrameIndices of the loaded stack slot and the
287 /// machine mem operands containing the reference.
288 /// If not, return false. Unlike isStoreToStackSlot,
289 /// this returns true for any instructions that stores to the
290 /// stack. This is just a hint, as some cases may be missed.
291 virtual bool hasStoreToStackSlot(
292 const MachineInstr
&MI
,
293 SmallVectorImpl
<const MachineMemOperand
*> &Accesses
) const;
295 /// Return true if the specified machine instruction
296 /// is a copy of one stack slot to another and has no other effect.
297 /// Provide the identity of the two frame indices.
298 virtual bool isStackSlotCopy(const MachineInstr
&MI
, int &DestFrameIndex
,
299 int &SrcFrameIndex
) const {
303 /// Compute the size in bytes and offset within a stack slot of a spilled
304 /// register or subregister.
306 /// \param [out] Size in bytes of the spilled value.
307 /// \param [out] Offset in bytes within the stack slot.
308 /// \returns true if both Size and Offset are successfully computed.
310 /// Not all subregisters have computable spill slots. For example,
311 /// subregisters registers may not be byte-sized, and a pair of discontiguous
312 /// subregisters has no single offset.
314 /// Targets with nontrivial bigendian implementations may need to override
315 /// this, particularly to support spilled vector registers.
316 virtual bool getStackSlotRange(const TargetRegisterClass
*RC
, unsigned SubIdx
,
317 unsigned &Size
, unsigned &Offset
,
318 const MachineFunction
&MF
) const;
320 /// Returns the size in bytes of the specified MachineInstr, or ~0U
321 /// when this function is not implemented by a target.
322 virtual unsigned getInstSizeInBytes(const MachineInstr
&MI
) const {
326 /// Return true if the instruction is as cheap as a move instruction.
328 /// Targets for different archs need to override this, and different
329 /// micro-architectures can also be finely tuned inside.
330 virtual bool isAsCheapAsAMove(const MachineInstr
&MI
) const {
331 return MI
.isAsCheapAsAMove();
334 /// Return true if the instruction should be sunk by MachineSink.
336 /// MachineSink determines on its own whether the instruction is safe to sink;
337 /// this gives the target a hook to override the default behavior with regards
338 /// to which instructions should be sunk.
339 virtual bool shouldSink(const MachineInstr
&MI
) const { return true; }
341 /// Re-issue the specified 'original' instruction at the
342 /// specific location targeting a new destination register.
343 /// The register in Orig->getOperand(0).getReg() will be substituted by
344 /// DestReg:SubIdx. Any existing subreg index is preserved or composed with
346 virtual void reMaterialize(MachineBasicBlock
&MBB
,
347 MachineBasicBlock::iterator MI
, unsigned DestReg
,
348 unsigned SubIdx
, const MachineInstr
&Orig
,
349 const TargetRegisterInfo
&TRI
) const;
351 /// Clones instruction or the whole instruction bundle \p Orig and
352 /// insert into \p MBB before \p InsertBefore. The target may update operands
353 /// that are required to be unique.
355 /// \p Orig must not return true for MachineInstr::isNotDuplicable().
356 virtual MachineInstr
&duplicate(MachineBasicBlock
&MBB
,
357 MachineBasicBlock::iterator InsertBefore
,
358 const MachineInstr
&Orig
) const;
360 /// This method must be implemented by targets that
361 /// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
362 /// may be able to convert a two-address instruction into one or more true
363 /// three-address instructions on demand. This allows the X86 target (for
364 /// example) to convert ADD and SHL instructions into LEA instructions if they
365 /// would require register copies due to two-addressness.
367 /// This method returns a null pointer if the transformation cannot be
368 /// performed, otherwise it returns the last new instruction.
370 virtual MachineInstr
*convertToThreeAddress(MachineFunction::iterator
&MFI
,
372 LiveVariables
*LV
) const {
376 // This constant can be used as an input value of operand index passed to
377 // the method findCommutedOpIndices() to tell the method that the
378 // corresponding operand index is not pre-defined and that the method
379 // can pick any commutable operand.
380 static const unsigned CommuteAnyOperandIndex
= ~0U;
382 /// This method commutes the operands of the given machine instruction MI.
384 /// The operands to be commuted are specified by their indices OpIdx1 and
385 /// OpIdx2. OpIdx1 and OpIdx2 arguments may be set to a special value
386 /// 'CommuteAnyOperandIndex', which means that the method is free to choose
387 /// any arbitrarily chosen commutable operand. If both arguments are set to
388 /// 'CommuteAnyOperandIndex' then the method looks for 2 different commutable
389 /// operands; then commutes them if such operands could be found.
391 /// If NewMI is false, MI is modified in place and returned; otherwise, a
392 /// new machine instruction is created and returned.
394 /// Do not call this method for a non-commutable instruction or
395 /// for non-commuable operands.
396 /// Even though the instruction is commutable, the method may still
397 /// fail to commute the operands, null pointer is returned in such cases.
399 commuteInstruction(MachineInstr
&MI
, bool NewMI
= false,
400 unsigned OpIdx1
= CommuteAnyOperandIndex
,
401 unsigned OpIdx2
= CommuteAnyOperandIndex
) const;
403 /// Returns true iff the routine could find two commutable operands in the
404 /// given machine instruction.
405 /// The 'SrcOpIdx1' and 'SrcOpIdx2' are INPUT and OUTPUT arguments.
406 /// If any of the INPUT values is set to the special value
407 /// 'CommuteAnyOperandIndex' then the method arbitrarily picks a commutable
408 /// operand, then returns its index in the corresponding argument.
409 /// If both of INPUT values are set to 'CommuteAnyOperandIndex' then method
410 /// looks for 2 commutable operands.
411 /// If INPUT values refer to some operands of MI, then the method simply
412 /// returns true if the corresponding operands are commutable and returns
415 /// For example, calling this method this way:
416 /// unsigned Op1 = 1, Op2 = CommuteAnyOperandIndex;
417 /// findCommutedOpIndices(MI, Op1, Op2);
418 /// can be interpreted as a query asking to find an operand that would be
419 /// commutable with the operand#1.
420 virtual bool findCommutedOpIndices(MachineInstr
&MI
, unsigned &SrcOpIdx1
,
421 unsigned &SrcOpIdx2
) const;
423 /// A pair composed of a register and a sub-register index.
424 /// Used to give some type checking when modeling Reg:SubReg.
425 struct RegSubRegPair
{
429 RegSubRegPair(unsigned Reg
= 0, unsigned SubReg
= 0)
430 : Reg(Reg
), SubReg(SubReg
) {}
432 bool operator==(const RegSubRegPair
& P
) const {
433 return Reg
== P
.Reg
&& SubReg
== P
.SubReg
;
435 bool operator!=(const RegSubRegPair
& P
) const {
436 return !(*this == P
);
440 /// A pair composed of a pair of a register and a sub-register index,
441 /// and another sub-register index.
442 /// Used to give some type checking when modeling Reg:SubReg1, SubReg2.
443 struct RegSubRegPairAndIdx
: RegSubRegPair
{
446 RegSubRegPairAndIdx(unsigned Reg
= 0, unsigned SubReg
= 0,
448 : RegSubRegPair(Reg
, SubReg
), SubIdx(SubIdx
) {}
451 /// Build the equivalent inputs of a REG_SEQUENCE for the given \p MI
453 /// \p [out] InputRegs of the equivalent REG_SEQUENCE. Each element of
454 /// the list is modeled as <Reg:SubReg, SubIdx>. Operands with the undef
455 /// flag are not added to this list.
456 /// E.g., REG_SEQUENCE %1:sub1, sub0, %2, sub1 would produce
461 /// \returns true if it is possible to build such an input sequence
462 /// with the pair \p MI, \p DefIdx. False otherwise.
464 /// \pre MI.isRegSequence() or MI.isRegSequenceLike().
466 /// \note The generic implementation does not provide any support for
467 /// MI.isRegSequenceLike(). In other words, one has to override
468 /// getRegSequenceLikeInputs for target specific instructions.
470 getRegSequenceInputs(const MachineInstr
&MI
, unsigned DefIdx
,
471 SmallVectorImpl
<RegSubRegPairAndIdx
> &InputRegs
) const;
473 /// Build the equivalent inputs of a EXTRACT_SUBREG for the given \p MI
475 /// \p [out] InputReg of the equivalent EXTRACT_SUBREG.
476 /// E.g., EXTRACT_SUBREG %1:sub1, sub0, sub1 would produce:
479 /// \returns true if it is possible to build such an input sequence
480 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
483 /// \pre MI.isExtractSubreg() or MI.isExtractSubregLike().
485 /// \note The generic implementation does not provide any support for
486 /// MI.isExtractSubregLike(). In other words, one has to override
487 /// getExtractSubregLikeInputs for target specific instructions.
488 bool getExtractSubregInputs(const MachineInstr
&MI
, unsigned DefIdx
,
489 RegSubRegPairAndIdx
&InputReg
) const;
491 /// Build the equivalent inputs of a INSERT_SUBREG for the given \p MI
493 /// \p [out] BaseReg and \p [out] InsertedReg contain
494 /// the equivalent inputs of INSERT_SUBREG.
495 /// E.g., INSERT_SUBREG %0:sub0, %1:sub1, sub3 would produce:
496 /// - BaseReg: %0:sub0
497 /// - InsertedReg: %1:sub1, sub3
499 /// \returns true if it is possible to build such an input sequence
500 /// with the pair \p MI, \p DefIdx and the operand has no undef flag set.
503 /// \pre MI.isInsertSubreg() or MI.isInsertSubregLike().
505 /// \note The generic implementation does not provide any support for
506 /// MI.isInsertSubregLike(). In other words, one has to override
507 /// getInsertSubregLikeInputs for target specific instructions.
508 bool getInsertSubregInputs(const MachineInstr
&MI
, unsigned DefIdx
,
509 RegSubRegPair
&BaseReg
,
510 RegSubRegPairAndIdx
&InsertedReg
) const;
512 /// Return true if two machine instructions would produce identical values.
513 /// By default, this is only true when the two instructions
514 /// are deemed identical except for defs. If this function is called when the
515 /// IR is still in SSA form, the caller can pass the MachineRegisterInfo for
516 /// aggressive checks.
517 virtual bool produceSameValue(const MachineInstr
&MI0
,
518 const MachineInstr
&MI1
,
519 const MachineRegisterInfo
*MRI
= nullptr) const;
521 /// \returns true if a branch from an instruction with opcode \p BranchOpc
522 /// bytes is capable of jumping to a position \p BrOffset bytes away.
523 virtual bool isBranchOffsetInRange(unsigned BranchOpc
,
524 int64_t BrOffset
) const {
525 llvm_unreachable("target did not implement");
528 /// \returns The block that branch instruction \p MI jumps to.
529 virtual MachineBasicBlock
*getBranchDestBlock(const MachineInstr
&MI
) const {
530 llvm_unreachable("target did not implement");
533 /// Insert an unconditional indirect branch at the end of \p MBB to \p
534 /// NewDestBB. \p BrOffset indicates the offset of \p NewDestBB relative to
535 /// the offset of the position to insert the new branch.
537 /// \returns The number of bytes added to the block.
538 virtual unsigned insertIndirectBranch(MachineBasicBlock
&MBB
,
539 MachineBasicBlock
&NewDestBB
,
541 int64_t BrOffset
= 0,
542 RegScavenger
*RS
= nullptr) const {
543 llvm_unreachable("target did not implement");
546 /// Analyze the branching code at the end of MBB, returning
547 /// true if it cannot be understood (e.g. it's a switch dispatch or isn't
548 /// implemented for a target). Upon success, this returns false and returns
549 /// with the following information in various cases:
551 /// 1. If this block ends with no branches (it just falls through to its succ)
552 /// just return false, leaving TBB/FBB null.
553 /// 2. If this block ends with only an unconditional branch, it sets TBB to be
554 /// the destination block.
555 /// 3. If this block ends with a conditional branch and it falls through to a
556 /// successor block, it sets TBB to be the branch destination block and a
557 /// list of operands that evaluate the condition. These operands can be
558 /// passed to other TargetInstrInfo methods to create new branches.
559 /// 4. If this block ends with a conditional branch followed by an
560 /// unconditional branch, it returns the 'true' destination in TBB, the
561 /// 'false' destination in FBB, and a list of operands that evaluate the
562 /// condition. These operands can be passed to other TargetInstrInfo
563 /// methods to create new branches.
565 /// Note that removeBranch and insertBranch must be implemented to support
566 /// cases where this method returns success.
568 /// If AllowModify is true, then this routine is allowed to modify the basic
569 /// block (e.g. delete instructions after the unconditional branch).
571 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
572 /// before calling this function.
573 virtual bool analyzeBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*&TBB
,
574 MachineBasicBlock
*&FBB
,
575 SmallVectorImpl
<MachineOperand
> &Cond
,
576 bool AllowModify
= false) const {
580 /// Represents a predicate at the MachineFunction level. The control flow a
581 /// MachineBranchPredicate represents is:
583 /// Reg = LHS `Predicate` RHS == ConditionDef
584 /// if Reg then goto TrueDest else goto FalseDest
586 struct MachineBranchPredicate
{
587 enum ComparePredicate
{
588 PRED_EQ
, // True if two values are equal
589 PRED_NE
, // True if two values are not equal
590 PRED_INVALID
// Sentinel value
593 ComparePredicate Predicate
= PRED_INVALID
;
594 MachineOperand LHS
= MachineOperand::CreateImm(0);
595 MachineOperand RHS
= MachineOperand::CreateImm(0);
596 MachineBasicBlock
*TrueDest
= nullptr;
597 MachineBasicBlock
*FalseDest
= nullptr;
598 MachineInstr
*ConditionDef
= nullptr;
600 /// SingleUseCondition is true if ConditionDef is dead except for the
601 /// branch(es) at the end of the basic block.
603 bool SingleUseCondition
= false;
605 explicit MachineBranchPredicate() = default;
608 /// Analyze the branching code at the end of MBB and parse it into the
609 /// MachineBranchPredicate structure if possible. Returns false on success
610 /// and true on failure.
612 /// If AllowModify is true, then this routine is allowed to modify the basic
613 /// block (e.g. delete instructions after the unconditional branch).
615 virtual bool analyzeBranchPredicate(MachineBasicBlock
&MBB
,
616 MachineBranchPredicate
&MBP
,
617 bool AllowModify
= false) const {
621 /// Remove the branching code at the end of the specific MBB.
622 /// This is only invoked in cases where AnalyzeBranch returns success. It
623 /// returns the number of instructions that were removed.
624 /// If \p BytesRemoved is non-null, report the change in code size from the
625 /// removed instructions.
626 virtual unsigned removeBranch(MachineBasicBlock
&MBB
,
627 int *BytesRemoved
= nullptr) const {
628 llvm_unreachable("Target didn't implement TargetInstrInfo::removeBranch!");
631 /// Insert branch code into the end of the specified MachineBasicBlock. The
632 /// operands to this method are the same as those returned by AnalyzeBranch.
633 /// This is only invoked in cases where AnalyzeBranch returns success. It
634 /// returns the number of instructions inserted. If \p BytesAdded is non-null,
635 /// report the change in code size from the added instructions.
637 /// It is also invoked by tail merging to add unconditional branches in
638 /// cases where AnalyzeBranch doesn't apply because there was no original
639 /// branch to analyze. At least this much must be implemented, else tail
640 /// merging needs to be disabled.
642 /// The CFG information in MBB.Predecessors and MBB.Successors must be valid
643 /// before calling this function.
644 virtual unsigned insertBranch(MachineBasicBlock
&MBB
, MachineBasicBlock
*TBB
,
645 MachineBasicBlock
*FBB
,
646 ArrayRef
<MachineOperand
> Cond
,
648 int *BytesAdded
= nullptr) const {
649 llvm_unreachable("Target didn't implement TargetInstrInfo::insertBranch!");
652 unsigned insertUnconditionalBranch(MachineBasicBlock
&MBB
,
653 MachineBasicBlock
*DestBB
,
655 int *BytesAdded
= nullptr) const {
656 return insertBranch(MBB
, DestBB
, nullptr, ArrayRef
<MachineOperand
>(), DL
,
660 /// Analyze the loop code, return true if it cannot be understoo. Upon
661 /// success, this function returns false and returns information about the
662 /// induction variable and compare instruction used at the end.
663 virtual bool analyzeLoop(MachineLoop
&L
, MachineInstr
*&IndVarInst
,
664 MachineInstr
*&CmpInst
) const {
668 /// Generate code to reduce the loop iteration by one and check if the loop
669 /// is finished. Return the value/register of the new loop count. We need
670 /// this function when peeling off one or more iterations of a loop. This
671 /// function assumes the nth iteration is peeled first.
672 virtual unsigned reduceLoopCount(MachineBasicBlock
&MBB
, MachineInstr
*IndVar
,
674 SmallVectorImpl
<MachineOperand
> &Cond
,
675 SmallVectorImpl
<MachineInstr
*> &PrevInsts
,
676 unsigned Iter
, unsigned MaxIter
) const {
677 llvm_unreachable("Target didn't implement ReduceLoopCount");
680 /// Delete the instruction OldInst and everything after it, replacing it with
681 /// an unconditional branch to NewDest. This is used by the tail merging pass.
682 virtual void ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail
,
683 MachineBasicBlock
*NewDest
) const;
685 /// Return true if it's legal to split the given basic
686 /// block at the specified instruction (i.e. instruction would be the start
687 /// of a new basic block).
688 virtual bool isLegalToSplitMBBAt(MachineBasicBlock
&MBB
,
689 MachineBasicBlock::iterator MBBI
) const {
693 /// Return true if it's profitable to predicate
694 /// instructions with accumulated instruction latency of "NumCycles"
695 /// of the specified basic block, where the probability of the instructions
696 /// being executed is given by Probability, and Confidence is a measure
697 /// of our confidence that it will be properly predicted.
698 virtual bool isProfitableToIfCvt(MachineBasicBlock
&MBB
, unsigned NumCycles
,
699 unsigned ExtraPredCycles
,
700 BranchProbability Probability
) const {
704 /// Second variant of isProfitableToIfCvt. This one
705 /// checks for the case where two basic blocks from true and false path
706 /// of a if-then-else (diamond) are predicated on mutally exclusive
707 /// predicates, where the probability of the true path being taken is given
708 /// by Probability, and Confidence is a measure of our confidence that it
709 /// will be properly predicted.
710 virtual bool isProfitableToIfCvt(MachineBasicBlock
&TMBB
, unsigned NumTCycles
,
711 unsigned ExtraTCycles
,
712 MachineBasicBlock
&FMBB
, unsigned NumFCycles
,
713 unsigned ExtraFCycles
,
714 BranchProbability Probability
) const {
718 /// Return true if it's profitable for if-converter to duplicate instructions
719 /// of specified accumulated instruction latencies in the specified MBB to
720 /// enable if-conversion.
721 /// The probability of the instructions being executed is given by
722 /// Probability, and Confidence is a measure of our confidence that it
723 /// will be properly predicted.
724 virtual bool isProfitableToDupForIfCvt(MachineBasicBlock
&MBB
,
726 BranchProbability Probability
) const {
730 /// Return true if it's profitable to unpredicate
731 /// one side of a 'diamond', i.e. two sides of if-else predicated on mutually
732 /// exclusive predicates.
740 /// This may be profitable is conditional instructions are always executed.
741 virtual bool isProfitableToUnpredicate(MachineBasicBlock
&TMBB
,
742 MachineBasicBlock
&FMBB
) const {
746 /// Return true if it is possible to insert a select
747 /// instruction that chooses between TrueReg and FalseReg based on the
748 /// condition code in Cond.
750 /// When successful, also return the latency in cycles from TrueReg,
751 /// FalseReg, and Cond to the destination register. In most cases, a select
752 /// instruction will be 1 cycle, so CondCycles = TrueCycles = FalseCycles = 1
754 /// Some x86 implementations have 2-cycle cmov instructions.
756 /// @param MBB Block where select instruction would be inserted.
757 /// @param Cond Condition returned by AnalyzeBranch.
758 /// @param TrueReg Virtual register to select when Cond is true.
759 /// @param FalseReg Virtual register to select when Cond is false.
760 /// @param CondCycles Latency from Cond+Branch to select output.
761 /// @param TrueCycles Latency from TrueReg to select output.
762 /// @param FalseCycles Latency from FalseReg to select output.
763 virtual bool canInsertSelect(const MachineBasicBlock
&MBB
,
764 ArrayRef
<MachineOperand
> Cond
, unsigned TrueReg
,
765 unsigned FalseReg
, int &CondCycles
,
766 int &TrueCycles
, int &FalseCycles
) const {
770 /// Insert a select instruction into MBB before I that will copy TrueReg to
771 /// DstReg when Cond is true, and FalseReg to DstReg when Cond is false.
773 /// This function can only be called after canInsertSelect() returned true.
774 /// The condition in Cond comes from AnalyzeBranch, and it can be assumed
775 /// that the same flags or registers required by Cond are available at the
778 /// @param MBB Block where select instruction should be inserted.
779 /// @param I Insertion point.
780 /// @param DL Source location for debugging.
781 /// @param DstReg Virtual register to be defined by select instruction.
782 /// @param Cond Condition as computed by AnalyzeBranch.
783 /// @param TrueReg Virtual register to copy when Cond is true.
784 /// @param FalseReg Virtual register to copy when Cons is false.
785 virtual void insertSelect(MachineBasicBlock
&MBB
,
786 MachineBasicBlock::iterator I
, const DebugLoc
&DL
,
787 unsigned DstReg
, ArrayRef
<MachineOperand
> Cond
,
788 unsigned TrueReg
, unsigned FalseReg
) const {
789 llvm_unreachable("Target didn't implement TargetInstrInfo::insertSelect!");
792 /// Analyze the given select instruction, returning true if
793 /// it cannot be understood. It is assumed that MI->isSelect() is true.
795 /// When successful, return the controlling condition and the operands that
796 /// determine the true and false result values.
798 /// Result = SELECT Cond, TrueOp, FalseOp
800 /// Some targets can optimize select instructions, for example by predicating
801 /// the instruction defining one of the operands. Such targets should set
804 /// @param MI Select instruction to analyze.
805 /// @param Cond Condition controlling the select.
806 /// @param TrueOp Operand number of the value selected when Cond is true.
807 /// @param FalseOp Operand number of the value selected when Cond is false.
808 /// @param Optimizable Returned as true if MI is optimizable.
809 /// @returns False on success.
810 virtual bool analyzeSelect(const MachineInstr
&MI
,
811 SmallVectorImpl
<MachineOperand
> &Cond
,
812 unsigned &TrueOp
, unsigned &FalseOp
,
813 bool &Optimizable
) const {
814 assert(MI
.getDesc().isSelect() && "MI must be a select instruction");
818 /// Given a select instruction that was understood by
819 /// analyzeSelect and returned Optimizable = true, attempt to optimize MI by
820 /// merging it with one of its operands. Returns NULL on failure.
822 /// When successful, returns the new select instruction. The client is
823 /// responsible for deleting MI.
825 /// If both sides of the select can be optimized, PreferFalse is used to pick
828 /// @param MI Optimizable select instruction.
829 /// @param NewMIs Set that record all MIs in the basic block up to \p
830 /// MI. Has to be updated with any newly created MI or deleted ones.
831 /// @param PreferFalse Try to optimize FalseOp instead of TrueOp.
832 /// @returns Optimized instruction or NULL.
833 virtual MachineInstr
*optimizeSelect(MachineInstr
&MI
,
834 SmallPtrSetImpl
<MachineInstr
*> &NewMIs
,
835 bool PreferFalse
= false) const {
836 // This function must be implemented if Optimizable is ever set.
837 llvm_unreachable("Target must implement TargetInstrInfo::optimizeSelect!");
840 /// Emit instructions to copy a pair of physical registers.
842 /// This function should support copies within any legal register class as
843 /// well as any cross-class copies created during instruction selection.
845 /// The source and destination registers may overlap, which may require a
846 /// careful implementation when multiple copy instructions are required for
847 /// large registers. See for example the ARM target.
848 virtual void copyPhysReg(MachineBasicBlock
&MBB
,
849 MachineBasicBlock::iterator MI
, const DebugLoc
&DL
,
850 unsigned DestReg
, unsigned SrcReg
,
851 bool KillSrc
) const {
852 llvm_unreachable("Target didn't implement TargetInstrInfo::copyPhysReg!");
856 /// Target-dependent implemenation for IsCopyInstr.
857 /// If the specific machine instruction is a instruction that moves/copies
858 /// value from one register to another register return true along with
859 /// @Source machine operand and @Destination machine operand.
860 virtual bool isCopyInstrImpl(const MachineInstr
&MI
,
861 const MachineOperand
*&Source
,
862 const MachineOperand
*&Destination
) const {
867 /// If the specific machine instruction is a instruction that moves/copies
868 /// value from one register to another register return true along with
869 /// @Source machine operand and @Destination machine operand.
870 /// For COPY-instruction the method naturally returns true, for all other
871 /// instructions the method calls target-dependent implementation.
872 bool isCopyInstr(const MachineInstr
&MI
, const MachineOperand
*&Source
,
873 const MachineOperand
*&Destination
) const {
875 Destination
= &MI
.getOperand(0);
876 Source
= &MI
.getOperand(1);
879 return isCopyInstrImpl(MI
, Source
, Destination
);
882 /// Store the specified register of the given register class to the specified
883 /// stack frame index. The store instruction is to be added to the given
884 /// machine basic block before the specified machine instruction. If isKill
885 /// is true, the register operand is the last use and must be marked kill.
886 virtual void storeRegToStackSlot(MachineBasicBlock
&MBB
,
887 MachineBasicBlock::iterator MI
,
888 unsigned SrcReg
, bool isKill
, int FrameIndex
,
889 const TargetRegisterClass
*RC
,
890 const TargetRegisterInfo
*TRI
) const {
891 llvm_unreachable("Target didn't implement "
892 "TargetInstrInfo::storeRegToStackSlot!");
895 /// Load the specified register of the given register class from the specified
896 /// stack frame index. The load instruction is to be added to the given
897 /// machine basic block before the specified machine instruction.
898 virtual void loadRegFromStackSlot(MachineBasicBlock
&MBB
,
899 MachineBasicBlock::iterator MI
,
900 unsigned DestReg
, int FrameIndex
,
901 const TargetRegisterClass
*RC
,
902 const TargetRegisterInfo
*TRI
) const {
903 llvm_unreachable("Target didn't implement "
904 "TargetInstrInfo::loadRegFromStackSlot!");
907 /// This function is called for all pseudo instructions
908 /// that remain after register allocation. Many pseudo instructions are
909 /// created to help register allocation. This is the place to convert them
910 /// into real instructions. The target can edit MI in place, or it can insert
911 /// new instructions and erase MI. The function should return true if
912 /// anything was changed.
913 virtual bool expandPostRAPseudo(MachineInstr
&MI
) const { return false; }
915 /// Check whether the target can fold a load that feeds a subreg operand
916 /// (or a subreg operand that feeds a store).
917 /// For example, X86 may want to return true if it can fold
918 /// movl (%esp), %eax
923 /// Ideally, we'd like the target implementation of foldMemoryOperand() to
924 /// reject subregs - but since this behavior used to be enforced in the
925 /// target-independent code, moving this responsibility to the targets
926 /// has the potential of causing nasty silent breakage in out-of-tree targets.
927 virtual bool isSubregFoldable() const { return false; }
929 /// Attempt to fold a load or store of the specified stack
930 /// slot into the specified machine instruction for the specified operand(s).
931 /// If this is possible, a new instruction is returned with the specified
932 /// operand folded, otherwise NULL is returned.
933 /// The new instruction is inserted before MI, and the client is responsible
934 /// for removing the old instruction.
935 MachineInstr
*foldMemoryOperand(MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
937 LiveIntervals
*LIS
= nullptr) const;
939 /// Same as the previous version except it allows folding of any load and
940 /// store from / to any address, not just from a specific stack slot.
941 MachineInstr
*foldMemoryOperand(MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
942 MachineInstr
&LoadMI
,
943 LiveIntervals
*LIS
= nullptr) const;
945 /// Return true when there is potentially a faster code sequence
946 /// for an instruction chain ending in \p Root. All potential patterns are
947 /// returned in the \p Pattern vector. Pattern should be sorted in priority
948 /// order since the pattern evaluator stops checking as soon as it finds a
950 /// \param Root - Instruction that could be combined with one of its operands
951 /// \param Patterns - Vector of possible combination patterns
952 virtual bool getMachineCombinerPatterns(
954 SmallVectorImpl
<MachineCombinerPattern
> &Patterns
) const;
956 /// Return true when a code sequence can improve throughput. It
957 /// should be called only for instructions in loops.
958 /// \param Pattern - combiner pattern
959 virtual bool isThroughputPattern(MachineCombinerPattern Pattern
) const;
961 /// Return true if the input \P Inst is part of a chain of dependent ops
962 /// that are suitable for reassociation, otherwise return false.
963 /// If the instruction's operands must be commuted to have a previous
964 /// instruction of the same type define the first source operand, \P Commuted
965 /// will be set to true.
966 bool isReassociationCandidate(const MachineInstr
&Inst
, bool &Commuted
) const;
968 /// Return true when \P Inst is both associative and commutative.
969 virtual bool isAssociativeAndCommutative(const MachineInstr
&Inst
) const {
973 /// Return true when \P Inst has reassociable operands in the same \P MBB.
974 virtual bool hasReassociableOperands(const MachineInstr
&Inst
,
975 const MachineBasicBlock
*MBB
) const;
977 /// Return true when \P Inst has reassociable sibling.
978 bool hasReassociableSibling(const MachineInstr
&Inst
, bool &Commuted
) const;
980 /// When getMachineCombinerPatterns() finds patterns, this function generates
981 /// the instructions that could replace the original code sequence. The client
982 /// has to decide whether the actual replacement is beneficial or not.
983 /// \param Root - Instruction that could be combined with one of its operands
984 /// \param Pattern - Combination pattern for Root
985 /// \param InsInstrs - Vector of new instructions that implement P
986 /// \param DelInstrs - Old instructions, including Root, that could be
987 /// replaced by InsInstr
988 /// \param InstIdxForVirtReg - map of virtual register to instruction in
989 /// InsInstr that defines it
990 virtual void genAlternativeCodeSequence(
991 MachineInstr
&Root
, MachineCombinerPattern Pattern
,
992 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
993 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
994 DenseMap
<unsigned, unsigned> &InstIdxForVirtReg
) const;
996 /// Attempt to reassociate \P Root and \P Prev according to \P Pattern to
997 /// reduce critical path length.
998 void reassociateOps(MachineInstr
&Root
, MachineInstr
&Prev
,
999 MachineCombinerPattern Pattern
,
1000 SmallVectorImpl
<MachineInstr
*> &InsInstrs
,
1001 SmallVectorImpl
<MachineInstr
*> &DelInstrs
,
1002 DenseMap
<unsigned, unsigned> &InstrIdxForVirtReg
) const;
1004 /// This is an architecture-specific helper function of reassociateOps.
1005 /// Set special operand attributes for new instructions after reassociation.
1006 virtual void setSpecialOperandAttr(MachineInstr
&OldMI1
, MachineInstr
&OldMI2
,
1007 MachineInstr
&NewMI1
,
1008 MachineInstr
&NewMI2
) const {}
1010 /// Return true when a target supports MachineCombiner.
1011 virtual bool useMachineCombiner() const { return false; }
1013 /// Return true if the given SDNode can be copied during scheduling
1014 /// even if it has glue.
1015 virtual bool canCopyGluedNodeDuringSchedule(SDNode
*N
) const { return false; }
1018 /// Target-dependent implementation for foldMemoryOperand.
1019 /// Target-independent code in foldMemoryOperand will
1020 /// take care of adding a MachineMemOperand to the newly created instruction.
1021 /// The instruction and any auxiliary instructions necessary will be inserted
1023 virtual MachineInstr
*
1024 foldMemoryOperandImpl(MachineFunction
&MF
, MachineInstr
&MI
,
1025 ArrayRef
<unsigned> Ops
,
1026 MachineBasicBlock::iterator InsertPt
, int FrameIndex
,
1027 LiveIntervals
*LIS
= nullptr) const {
1031 /// Target-dependent implementation for foldMemoryOperand.
1032 /// Target-independent code in foldMemoryOperand will
1033 /// take care of adding a MachineMemOperand to the newly created instruction.
1034 /// The instruction and any auxiliary instructions necessary will be inserted
1036 virtual MachineInstr
*foldMemoryOperandImpl(
1037 MachineFunction
&MF
, MachineInstr
&MI
, ArrayRef
<unsigned> Ops
,
1038 MachineBasicBlock::iterator InsertPt
, MachineInstr
&LoadMI
,
1039 LiveIntervals
*LIS
= nullptr) const {
1043 /// Target-dependent implementation of getRegSequenceInputs.
1045 /// \returns true if it is possible to build the equivalent
1046 /// REG_SEQUENCE inputs with the pair \p MI, \p DefIdx. False otherwise.
1048 /// \pre MI.isRegSequenceLike().
1050 /// \see TargetInstrInfo::getRegSequenceInputs.
1051 virtual bool getRegSequenceLikeInputs(
1052 const MachineInstr
&MI
, unsigned DefIdx
,
1053 SmallVectorImpl
<RegSubRegPairAndIdx
> &InputRegs
) const {
1057 /// Target-dependent implementation of getExtractSubregInputs.
1059 /// \returns true if it is possible to build the equivalent
1060 /// EXTRACT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1062 /// \pre MI.isExtractSubregLike().
1064 /// \see TargetInstrInfo::getExtractSubregInputs.
1065 virtual bool getExtractSubregLikeInputs(const MachineInstr
&MI
,
1067 RegSubRegPairAndIdx
&InputReg
) const {
1071 /// Target-dependent implementation of getInsertSubregInputs.
1073 /// \returns true if it is possible to build the equivalent
1074 /// INSERT_SUBREG inputs with the pair \p MI, \p DefIdx. False otherwise.
1076 /// \pre MI.isInsertSubregLike().
1078 /// \see TargetInstrInfo::getInsertSubregInputs.
1080 getInsertSubregLikeInputs(const MachineInstr
&MI
, unsigned DefIdx
,
1081 RegSubRegPair
&BaseReg
,
1082 RegSubRegPairAndIdx
&InsertedReg
) const {
1087 /// getAddressSpaceForPseudoSourceKind - Given the kind of memory
1088 /// (e.g. stack) the target returns the corresponding address space.
1090 getAddressSpaceForPseudoSourceKind(unsigned Kind
) const {
1094 /// unfoldMemoryOperand - Separate a single instruction which folded a load or
1095 /// a store or a load and a store into two or more instruction. If this is
1096 /// possible, returns true as well as the new instructions by reference.
1098 unfoldMemoryOperand(MachineFunction
&MF
, MachineInstr
&MI
, unsigned Reg
,
1099 bool UnfoldLoad
, bool UnfoldStore
,
1100 SmallVectorImpl
<MachineInstr
*> &NewMIs
) const {
1104 virtual bool unfoldMemoryOperand(SelectionDAG
&DAG
, SDNode
*N
,
1105 SmallVectorImpl
<SDNode
*> &NewNodes
) const {
1109 /// Returns the opcode of the would be new
1110 /// instruction after load / store are unfolded from an instruction of the
1111 /// specified opcode. It returns zero if the specified unfolding is not
1112 /// possible. If LoadRegIndex is non-null, it is filled in with the operand
1113 /// index of the operand which will hold the register holding the loaded
1116 getOpcodeAfterMemoryUnfold(unsigned Opc
, bool UnfoldLoad
, bool UnfoldStore
,
1117 unsigned *LoadRegIndex
= nullptr) const {
1121 /// This is used by the pre-regalloc scheduler to determine if two loads are
1122 /// loading from the same base address. It should only return true if the base
1123 /// pointers are the same and the only differences between the two addresses
1124 /// are the offset. It also returns the offsets by reference.
1125 virtual bool areLoadsFromSameBasePtr(SDNode
*Load1
, SDNode
*Load2
,
1127 int64_t &Offset2
) const {
1131 /// This is a used by the pre-regalloc scheduler to determine (in conjunction
1132 /// with areLoadsFromSameBasePtr) if two loads should be scheduled together.
1133 /// On some targets if two loads are loading from
1134 /// addresses in the same cache line, it's better if they are scheduled
1135 /// together. This function takes two integers that represent the load offsets
1136 /// from the common base address. It returns true if it decides it's desirable
1137 /// to schedule the two loads together. "NumLoads" is the number of loads that
1138 /// have already been scheduled after Load1.
1139 virtual bool shouldScheduleLoadsNear(SDNode
*Load1
, SDNode
*Load2
,
1140 int64_t Offset1
, int64_t Offset2
,
1141 unsigned NumLoads
) const {
1145 /// Get the base operand and byte offset of an instruction that reads/writes
1147 virtual bool getMemOperandWithOffset(MachineInstr
&MI
,
1148 MachineOperand
*&BaseOp
, int64_t &Offset
,
1149 const TargetRegisterInfo
*TRI
) const {
1153 /// Return true if the instruction contains a base register and offset. If
1154 /// true, the function also sets the operand position in the instruction
1155 /// for the base register and offset.
1156 virtual bool getBaseAndOffsetPosition(const MachineInstr
&MI
,
1158 unsigned &OffsetPos
) const {
1162 /// If the instruction is an increment of a constant value, return the amount.
1163 virtual bool getIncrementValue(const MachineInstr
&MI
, int &Value
) const {
1167 /// Returns true if the two given memory operations should be scheduled
1168 /// adjacent. Note that you have to add:
1169 /// DAG->addMutation(createLoadClusterDAGMutation(DAG->TII, DAG->TRI));
1171 /// DAG->addMutation(createStoreClusterDAGMutation(DAG->TII, DAG->TRI));
1172 /// to TargetPassConfig::createMachineScheduler() to have an effect.
1173 virtual bool shouldClusterMemOps(MachineOperand
&BaseOp1
,
1174 MachineOperand
&BaseOp2
,
1175 unsigned NumLoads
) const {
1176 llvm_unreachable("target did not implement shouldClusterMemOps()");
1179 /// Reverses the branch condition of the specified condition list,
1180 /// returning false on success and true if it cannot be reversed.
1182 reverseBranchCondition(SmallVectorImpl
<MachineOperand
> &Cond
) const {
1186 /// Insert a noop into the instruction stream at the specified point.
1187 virtual void insertNoop(MachineBasicBlock
&MBB
,
1188 MachineBasicBlock::iterator MI
) const;
1190 /// Return the noop instruction to use for a noop.
1191 virtual void getNoop(MCInst
&NopInst
) const;
1193 /// Return true for post-incremented instructions.
1194 virtual bool isPostIncrement(const MachineInstr
&MI
) const { return false; }
1196 /// Returns true if the instruction is already predicated.
1197 virtual bool isPredicated(const MachineInstr
&MI
) const { return false; }
1199 /// Returns true if the instruction is a
1200 /// terminator instruction that has not been predicated.
1201 virtual bool isUnpredicatedTerminator(const MachineInstr
&MI
) const;
1203 /// Returns true if MI is an unconditional tail call.
1204 virtual bool isUnconditionalTailCall(const MachineInstr
&MI
) const {
1208 /// Returns true if the tail call can be made conditional on BranchCond.
1209 virtual bool canMakeTailCallConditional(SmallVectorImpl
<MachineOperand
> &Cond
,
1210 const MachineInstr
&TailCall
) const {
1214 /// Replace the conditional branch in MBB with a conditional tail call.
1215 virtual void replaceBranchWithTailCall(MachineBasicBlock
&MBB
,
1216 SmallVectorImpl
<MachineOperand
> &Cond
,
1217 const MachineInstr
&TailCall
) const {
1218 llvm_unreachable("Target didn't implement replaceBranchWithTailCall!");
1221 /// Convert the instruction into a predicated instruction.
1222 /// It returns true if the operation was successful.
1223 virtual bool PredicateInstruction(MachineInstr
&MI
,
1224 ArrayRef
<MachineOperand
> Pred
) const;
1226 /// Returns true if the first specified predicate
1227 /// subsumes the second, e.g. GE subsumes GT.
1228 virtual bool SubsumesPredicate(ArrayRef
<MachineOperand
> Pred1
,
1229 ArrayRef
<MachineOperand
> Pred2
) const {
1233 /// If the specified instruction defines any predicate
1234 /// or condition code register(s) used for predication, returns true as well
1235 /// as the definition predicate(s) by reference.
1236 virtual bool DefinesPredicate(MachineInstr
&MI
,
1237 std::vector
<MachineOperand
> &Pred
) const {
1241 /// Return true if the specified instruction can be predicated.
1242 /// By default, this returns true for every instruction with a
1243 /// PredicateOperand.
1244 virtual bool isPredicable(const MachineInstr
&MI
) const {
1245 return MI
.getDesc().isPredicable();
1248 /// Return true if it's safe to move a machine
1249 /// instruction that defines the specified register class.
1250 virtual bool isSafeToMoveRegClassDefs(const TargetRegisterClass
*RC
) const {
1254 /// Test if the given instruction should be considered a scheduling boundary.
1255 /// This primarily includes labels and terminators.
1256 virtual bool isSchedulingBoundary(const MachineInstr
&MI
,
1257 const MachineBasicBlock
*MBB
,
1258 const MachineFunction
&MF
) const;
1260 /// Measure the specified inline asm to determine an approximation of its
1262 virtual unsigned getInlineAsmLength(const char *Str
,
1263 const MCAsmInfo
&MAI
) const;
1265 /// Allocate and return a hazard recognizer to use for this target when
1266 /// scheduling the machine instructions before register allocation.
1267 virtual ScheduleHazardRecognizer
*
1268 CreateTargetHazardRecognizer(const TargetSubtargetInfo
*STI
,
1269 const ScheduleDAG
*DAG
) const;
1271 /// Allocate and return a hazard recognizer to use for this target when
1272 /// scheduling the machine instructions before register allocation.
1273 virtual ScheduleHazardRecognizer
*
1274 CreateTargetMIHazardRecognizer(const InstrItineraryData
*,
1275 const ScheduleDAG
*DAG
) const;
1277 /// Allocate and return a hazard recognizer to use for this target when
1278 /// scheduling the machine instructions after register allocation.
1279 virtual ScheduleHazardRecognizer
*
1280 CreateTargetPostRAHazardRecognizer(const InstrItineraryData
*,
1281 const ScheduleDAG
*DAG
) const;
1283 /// Allocate and return a hazard recognizer to use for by non-scheduling
1285 virtual ScheduleHazardRecognizer
*
1286 CreateTargetPostRAHazardRecognizer(const MachineFunction
&MF
) const {
1290 /// Provide a global flag for disabling the PreRA hazard recognizer that
1291 /// targets may choose to honor.
1292 bool usePreRAHazardRecognizer() const;
1294 /// For a comparison instruction, return the source registers
1295 /// in SrcReg and SrcReg2 if having two register operands, and the value it
1296 /// compares against in CmpValue. Return true if the comparison instruction
1297 /// can be analyzed.
1298 virtual bool analyzeCompare(const MachineInstr
&MI
, unsigned &SrcReg
,
1299 unsigned &SrcReg2
, int &Mask
, int &Value
) const {
1303 /// See if the comparison instruction can be converted
1304 /// into something more efficient. E.g., on ARM most instructions can set the
1305 /// flags register, obviating the need for a separate CMP.
1306 virtual bool optimizeCompareInstr(MachineInstr
&CmpInstr
, unsigned SrcReg
,
1307 unsigned SrcReg2
, int Mask
, int Value
,
1308 const MachineRegisterInfo
*MRI
) const {
1311 virtual bool optimizeCondBranch(MachineInstr
&MI
) const { return false; }
1313 /// Try to remove the load by folding it to a register operand at the use.
1314 /// We fold the load instructions if and only if the
1315 /// def and use are in the same BB. We only look at one load and see
1316 /// whether it can be folded into MI. FoldAsLoadDefReg is the virtual register
1317 /// defined by the load we are trying to fold. DefMI returns the machine
1318 /// instruction that defines FoldAsLoadDefReg, and the function returns
1319 /// the machine instruction generated due to folding.
1320 virtual MachineInstr
*optimizeLoadInstr(MachineInstr
&MI
,
1321 const MachineRegisterInfo
*MRI
,
1322 unsigned &FoldAsLoadDefReg
,
1323 MachineInstr
*&DefMI
) const {
1327 /// 'Reg' is known to be defined by a move immediate instruction,
1328 /// try to fold the immediate into the use instruction.
1329 /// If MRI->hasOneNonDBGUse(Reg) is true, and this function returns true,
1330 /// then the caller may assume that DefMI has been erased from its parent
1331 /// block. The caller may assume that it will not be erased by this
1332 /// function otherwise.
1333 virtual bool FoldImmediate(MachineInstr
&UseMI
, MachineInstr
&DefMI
,
1334 unsigned Reg
, MachineRegisterInfo
*MRI
) const {
1338 /// Return the number of u-operations the given machine
1339 /// instruction will be decoded to on the target cpu. The itinerary's
1340 /// IssueWidth is the number of microops that can be dispatched each
1341 /// cycle. An instruction with zero microops takes no dispatch resources.
1342 virtual unsigned getNumMicroOps(const InstrItineraryData
*ItinData
,
1343 const MachineInstr
&MI
) const;
1345 /// Return true for pseudo instructions that don't consume any
1346 /// machine resources in their current form. These are common cases that the
1347 /// scheduler should consider free, rather than conservatively handling them
1348 /// as instructions with no itinerary.
1349 bool isZeroCost(unsigned Opcode
) const {
1350 return Opcode
<= TargetOpcode::COPY
;
1353 virtual int getOperandLatency(const InstrItineraryData
*ItinData
,
1354 SDNode
*DefNode
, unsigned DefIdx
,
1355 SDNode
*UseNode
, unsigned UseIdx
) const;
1357 /// Compute and return the use operand latency of a given pair of def and use.
1358 /// In most cases, the static scheduling itinerary was enough to determine the
1359 /// operand latency. But it may not be possible for instructions with variable
1360 /// number of defs / uses.
1362 /// This is a raw interface to the itinerary that may be directly overridden
1363 /// by a target. Use computeOperandLatency to get the best estimate of
1365 virtual int getOperandLatency(const InstrItineraryData
*ItinData
,
1366 const MachineInstr
&DefMI
, unsigned DefIdx
,
1367 const MachineInstr
&UseMI
,
1368 unsigned UseIdx
) const;
1370 /// Compute the instruction latency of a given instruction.
1371 /// If the instruction has higher cost when predicated, it's returned via
1373 virtual unsigned getInstrLatency(const InstrItineraryData
*ItinData
,
1374 const MachineInstr
&MI
,
1375 unsigned *PredCost
= nullptr) const;
1377 virtual unsigned getPredicationCost(const MachineInstr
&MI
) const;
1379 virtual int getInstrLatency(const InstrItineraryData
*ItinData
,
1380 SDNode
*Node
) const;
1382 /// Return the default expected latency for a def based on its opcode.
1383 unsigned defaultDefLatency(const MCSchedModel
&SchedModel
,
1384 const MachineInstr
&DefMI
) const;
1386 int computeDefOperandLatency(const InstrItineraryData
*ItinData
,
1387 const MachineInstr
&DefMI
) const;
1389 /// Return true if this opcode has high latency to its result.
1390 virtual bool isHighLatencyDef(int opc
) const { return false; }
1392 /// Compute operand latency between a def of 'Reg'
1393 /// and a use in the current loop. Return true if the target considered
1394 /// it 'high'. This is used by optimization passes such as machine LICM to
1395 /// determine whether it makes sense to hoist an instruction out even in a
1396 /// high register pressure situation.
1397 virtual bool hasHighOperandLatency(const TargetSchedModel
&SchedModel
,
1398 const MachineRegisterInfo
*MRI
,
1399 const MachineInstr
&DefMI
, unsigned DefIdx
,
1400 const MachineInstr
&UseMI
,
1401 unsigned UseIdx
) const {
1405 /// Compute operand latency of a def of 'Reg'. Return true
1406 /// if the target considered it 'low'.
1407 virtual bool hasLowDefLatency(const TargetSchedModel
&SchedModel
,
1408 const MachineInstr
&DefMI
,
1409 unsigned DefIdx
) const;
1411 /// Perform target-specific instruction verification.
1412 virtual bool verifyInstruction(const MachineInstr
&MI
,
1413 StringRef
&ErrInfo
) const {
1417 /// Return the current execution domain and bit mask of
1418 /// possible domains for instruction.
1420 /// Some micro-architectures have multiple execution domains, and multiple
1421 /// opcodes that perform the same operation in different domains. For
1422 /// example, the x86 architecture provides the por, orps, and orpd
1423 /// instructions that all do the same thing. There is a latency penalty if a
1424 /// register is written in one domain and read in another.
1426 /// This function returns a pair (domain, mask) containing the execution
1427 /// domain of MI, and a bit mask of possible domains. The setExecutionDomain
1428 /// function can be used to change the opcode to one of the domains in the
1429 /// bit mask. Instructions whose execution domain can't be changed should
1430 /// return a 0 mask.
1432 /// The execution domain numbers don't have any special meaning except domain
1433 /// 0 is used for instructions that are not associated with any interesting
1434 /// execution domain.
1436 virtual std::pair
<uint16_t, uint16_t>
1437 getExecutionDomain(const MachineInstr
&MI
) const {
1438 return std::make_pair(0, 0);
1441 /// Change the opcode of MI to execute in Domain.
1443 /// The bit (1 << Domain) must be set in the mask returned from
1444 /// getExecutionDomain(MI).
1445 virtual void setExecutionDomain(MachineInstr
&MI
, unsigned Domain
) const {}
1447 /// Returns the preferred minimum clearance
1448 /// before an instruction with an unwanted partial register update.
1450 /// Some instructions only write part of a register, and implicitly need to
1451 /// read the other parts of the register. This may cause unwanted stalls
1452 /// preventing otherwise unrelated instructions from executing in parallel in
1453 /// an out-of-order CPU.
1455 /// For example, the x86 instruction cvtsi2ss writes its result to bits
1456 /// [31:0] of the destination xmm register. Bits [127:32] are unaffected, so
1457 /// the instruction needs to wait for the old value of the register to become
1460 /// addps %xmm1, %xmm0
1461 /// movaps %xmm0, (%rax)
1462 /// cvtsi2ss %rbx, %xmm0
1464 /// In the code above, the cvtsi2ss instruction needs to wait for the addps
1465 /// instruction before it can issue, even though the high bits of %xmm0
1466 /// probably aren't needed.
1468 /// This hook returns the preferred clearance before MI, measured in
1469 /// instructions. Other defs of MI's operand OpNum are avoided in the last N
1470 /// instructions before MI. It should only return a positive value for
1471 /// unwanted dependencies. If the old bits of the defined register have
1472 /// useful values, or if MI is determined to otherwise read the dependency,
1473 /// the hook should return 0.
1475 /// The unwanted dependency may be handled by:
1477 /// 1. Allocating the same register for an MI def and use. That makes the
1478 /// unwanted dependency identical to a required dependency.
1480 /// 2. Allocating a register for the def that has no defs in the previous N
1483 /// 3. Calling breakPartialRegDependency() with the same arguments. This
1484 /// allows the target to insert a dependency breaking instruction.
1487 getPartialRegUpdateClearance(const MachineInstr
&MI
, unsigned OpNum
,
1488 const TargetRegisterInfo
*TRI
) const {
1489 // The default implementation returns 0 for no partial register dependency.
1493 /// Return the minimum clearance before an instruction that reads an
1494 /// unused register.
1496 /// For example, AVX instructions may copy part of a register operand into
1497 /// the unused high bits of the destination register.
1499 /// vcvtsi2sdq %rax, undef %xmm0, %xmm14
1501 /// In the code above, vcvtsi2sdq copies %xmm0[127:64] into %xmm14 creating a
1502 /// false dependence on any previous write to %xmm0.
1504 /// This hook works similarly to getPartialRegUpdateClearance, except that it
1505 /// does not take an operand index. Instead sets \p OpNum to the index of the
1506 /// unused register.
1507 virtual unsigned getUndefRegClearance(const MachineInstr
&MI
, unsigned &OpNum
,
1508 const TargetRegisterInfo
*TRI
) const {
1509 // The default implementation returns 0 for no undef register dependency.
1513 /// Insert a dependency-breaking instruction
1514 /// before MI to eliminate an unwanted dependency on OpNum.
1516 /// If it wasn't possible to avoid a def in the last N instructions before MI
1517 /// (see getPartialRegUpdateClearance), this hook will be called to break the
1518 /// unwanted dependency.
1520 /// On x86, an xorps instruction can be used as a dependency breaker:
1522 /// addps %xmm1, %xmm0
1523 /// movaps %xmm0, (%rax)
1524 /// xorps %xmm0, %xmm0
1525 /// cvtsi2ss %rbx, %xmm0
1527 /// An <imp-kill> operand should be added to MI if an instruction was
1528 /// inserted. This ties the instructions together in the post-ra scheduler.
1530 virtual void breakPartialRegDependency(MachineInstr
&MI
, unsigned OpNum
,
1531 const TargetRegisterInfo
*TRI
) const {}
1533 /// Create machine specific model for scheduling.
1534 virtual DFAPacketizer
*
1535 CreateTargetScheduleState(const TargetSubtargetInfo
&) const {
1539 /// Sometimes, it is possible for the target
1540 /// to tell, even without aliasing information, that two MIs access different
1541 /// memory addresses. This function returns true if two MIs access different
1542 /// memory addresses and false otherwise.
1544 /// Assumes any physical registers used to compute addresses have the same
1545 /// value for both instructions. (This is the most useful assumption for
1546 /// post-RA scheduling.)
1548 /// See also MachineInstr::mayAlias, which is implemented on top of this
1551 areMemAccessesTriviallyDisjoint(MachineInstr
&MIa
, MachineInstr
&MIb
,
1552 AliasAnalysis
*AA
= nullptr) const {
1553 assert((MIa
.mayLoad() || MIa
.mayStore()) &&
1554 "MIa must load from or modify a memory location");
1555 assert((MIb
.mayLoad() || MIb
.mayStore()) &&
1556 "MIb must load from or modify a memory location");
1560 /// Return the value to use for the MachineCSE's LookAheadLimit,
1561 /// which is a heuristic used for CSE'ing phys reg defs.
1562 virtual unsigned getMachineCSELookAheadLimit() const {
1563 // The default lookahead is small to prevent unprofitable quadratic
1568 /// Return an array that contains the ids of the target indices (used for the
1569 /// TargetIndex machine operand) and their names.
1571 /// MIR Serialization is able to serialize only the target indices that are
1572 /// defined by this method.
1573 virtual ArrayRef
<std::pair
<int, const char *>>
1574 getSerializableTargetIndices() const {
1578 /// Decompose the machine operand's target flags into two values - the direct
1579 /// target flag value and any of bit flags that are applied.
1580 virtual std::pair
<unsigned, unsigned>
1581 decomposeMachineOperandsTargetFlags(unsigned /*TF*/) const {
1582 return std::make_pair(0u, 0u);
1585 /// Return an array that contains the direct target flag values and their
1588 /// MIR Serialization is able to serialize only the target flags that are
1589 /// defined by this method.
1590 virtual ArrayRef
<std::pair
<unsigned, const char *>>
1591 getSerializableDirectMachineOperandTargetFlags() const {
1595 /// Return an array that contains the bitmask target flag values and their
1598 /// MIR Serialization is able to serialize only the target flags that are
1599 /// defined by this method.
1600 virtual ArrayRef
<std::pair
<unsigned, const char *>>
1601 getSerializableBitmaskMachineOperandTargetFlags() const {
1605 /// Return an array that contains the MMO target flag values and their
1608 /// MIR Serialization is able to serialize only the MMO target flags that are
1609 /// defined by this method.
1610 virtual ArrayRef
<std::pair
<MachineMemOperand::Flags
, const char *>>
1611 getSerializableMachineMemOperandTargetFlags() const {
1615 /// Determines whether \p Inst is a tail call instruction. Override this
1616 /// method on targets that do not properly set MCID::Return and MCID::Call on
1617 /// tail call instructions."
1618 virtual bool isTailCall(const MachineInstr
&Inst
) const {
1619 return Inst
.isReturn() && Inst
.isCall();
1622 /// True if the instruction is bound to the top of its basic block and no
1623 /// other instructions shall be inserted before it. This can be implemented
1624 /// to prevent register allocator to insert spills before such instructions.
1625 virtual bool isBasicBlockPrologue(const MachineInstr
&MI
) const {
1629 /// Returns a \p outliner::OutlinedFunction struct containing target-specific
1630 /// information for a set of outlining candidates.
1631 virtual outliner::OutlinedFunction
getOutliningCandidateInfo(
1632 std::vector
<outliner::Candidate
> &RepeatedSequenceLocs
) const {
1634 "Target didn't implement TargetInstrInfo::getOutliningCandidateInfo!");
1637 /// Returns how or if \p MI should be outlined.
1638 virtual outliner::InstrType
1639 getOutliningType(MachineBasicBlock::iterator
&MIT
, unsigned Flags
) const {
1641 "Target didn't implement TargetInstrInfo::getOutliningType!");
1644 /// Optional target hook that returns true if \p MBB is safe to outline from,
1645 /// and returns any target-specific information in \p Flags.
1646 virtual bool isMBBSafeToOutlineFrom(MachineBasicBlock
&MBB
,
1647 unsigned &Flags
) const {
1651 /// Insert a custom frame for outlined functions.
1652 virtual void buildOutlinedFrame(MachineBasicBlock
&MBB
, MachineFunction
&MF
,
1653 const outliner::OutlinedFunction
&OF
) const {
1655 "Target didn't implement TargetInstrInfo::buildOutlinedFrame!");
1658 /// Insert a call to an outlined function into the program.
1659 /// Returns an iterator to the spot where we inserted the call. This must be
1660 /// implemented by the target.
1661 virtual MachineBasicBlock::iterator
1662 insertOutlinedCall(Module
&M
, MachineBasicBlock
&MBB
,
1663 MachineBasicBlock::iterator
&It
, MachineFunction
&MF
,
1664 const outliner::Candidate
&C
) const {
1666 "Target didn't implement TargetInstrInfo::insertOutlinedCall!");
1669 /// Return true if the function can safely be outlined from.
1670 /// A function \p MF is considered safe for outlining if an outlined function
1671 /// produced from instructions in F will produce a program which produces the
1672 /// same output for any set of given inputs.
1673 virtual bool isFunctionSafeToOutlineFrom(MachineFunction
&MF
,
1674 bool OutlineFromLinkOnceODRs
) const {
1675 llvm_unreachable("Target didn't implement "
1676 "TargetInstrInfo::isFunctionSafeToOutlineFrom!");
1679 /// Return true if the function should be outlined from by default.
1680 virtual bool shouldOutlineFromFunctionByDefault(MachineFunction
&MF
) const {
1685 unsigned CallFrameSetupOpcode
, CallFrameDestroyOpcode
;
1686 unsigned CatchRetOpcode
;
1687 unsigned ReturnOpcode
;
1690 /// Provide DenseMapInfo for TargetInstrInfo::RegSubRegPair.
1691 template <> struct DenseMapInfo
<TargetInstrInfo::RegSubRegPair
> {
1692 using RegInfo
= DenseMapInfo
<unsigned>;
1694 static inline TargetInstrInfo::RegSubRegPair
getEmptyKey() {
1695 return TargetInstrInfo::RegSubRegPair(RegInfo::getEmptyKey(),
1696 RegInfo::getEmptyKey());
1699 static inline TargetInstrInfo::RegSubRegPair
getTombstoneKey() {
1700 return TargetInstrInfo::RegSubRegPair(RegInfo::getTombstoneKey(),
1701 RegInfo::getTombstoneKey());
1704 /// Reuse getHashValue implementation from
1705 /// std::pair<unsigned, unsigned>.
1706 static unsigned getHashValue(const TargetInstrInfo::RegSubRegPair
&Val
) {
1707 std::pair
<unsigned, unsigned> PairVal
= std::make_pair(Val
.Reg
, Val
.SubReg
);
1708 return DenseMapInfo
<std::pair
<unsigned, unsigned>>::getHashValue(PairVal
);
1711 static bool isEqual(const TargetInstrInfo::RegSubRegPair
&LHS
,
1712 const TargetInstrInfo::RegSubRegPair
&RHS
) {
1713 return RegInfo::isEqual(LHS
.Reg
, RHS
.Reg
) &&
1714 RegInfo::isEqual(LHS
.SubReg
, RHS
.SubReg
);
1718 } // end namespace llvm
1720 #endif // LLVM_TARGET_TARGETINSTRINFO_H