Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / CodeGen / TargetRegisterInfo.h
blob5ed1e448575fc1ea783dc505e1a9a626db2aa5aa
1 //==- CodeGen/TargetRegisterInfo.h - Target Register Information -*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file describes an abstract interface used to get information about a
10 // target machines register file. This information is used for a variety of
11 // purposed, especially register allocation.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_CODEGEN_TARGETREGISTERINFO_H
16 #define LLVM_CODEGEN_TARGETREGISTERINFO_H
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/iterator_range.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/IR/CallingConv.h"
24 #include "llvm/MC/LaneBitmask.h"
25 #include "llvm/MC/MCRegisterInfo.h"
26 #include "llvm/Support/ErrorHandling.h"
27 #include "llvm/Support/MachineValueType.h"
28 #include "llvm/Support/MathExtras.h"
29 #include "llvm/Support/Printable.h"
30 #include <cassert>
31 #include <cstdint>
32 #include <functional>
34 namespace llvm {
36 class BitVector;
37 class LiveRegMatrix;
38 class MachineFunction;
39 class MachineInstr;
40 class RegScavenger;
41 class VirtRegMap;
42 class LiveIntervals;
44 class TargetRegisterClass {
45 public:
46 using iterator = const MCPhysReg *;
47 using const_iterator = const MCPhysReg *;
48 using sc_iterator = const TargetRegisterClass* const *;
50 // Instance variables filled by tablegen, do not use!
51 const MCRegisterClass *MC;
52 const uint32_t *SubClassMask;
53 const uint16_t *SuperRegIndices;
54 const LaneBitmask LaneMask;
55 /// Classes with a higher priority value are assigned first by register
56 /// allocators using a greedy heuristic. The value is in the range [0,63].
57 const uint8_t AllocationPriority;
58 /// Whether the class supports two (or more) disjunct subregister indices.
59 const bool HasDisjunctSubRegs;
60 /// Whether a combination of subregisters can cover every register in the
61 /// class. See also the CoveredBySubRegs description in Target.td.
62 const bool CoveredBySubRegs;
63 const sc_iterator SuperClasses;
64 ArrayRef<MCPhysReg> (*OrderFunc)(const MachineFunction&);
66 /// Return the register class ID number.
67 unsigned getID() const { return MC->getID(); }
69 /// begin/end - Return all of the registers in this class.
70 ///
71 iterator begin() const { return MC->begin(); }
72 iterator end() const { return MC->end(); }
74 /// Return the number of registers in this class.
75 unsigned getNumRegs() const { return MC->getNumRegs(); }
77 iterator_range<SmallVectorImpl<MCPhysReg>::const_iterator>
78 getRegisters() const {
79 return make_range(MC->begin(), MC->end());
82 /// Return the specified register in the class.
83 unsigned getRegister(unsigned i) const {
84 return MC->getRegister(i);
87 /// Return true if the specified register is included in this register class.
88 /// This does not include virtual registers.
89 bool contains(unsigned Reg) const {
90 return MC->contains(Reg);
93 /// Return true if both registers are in this class.
94 bool contains(unsigned Reg1, unsigned Reg2) const {
95 return MC->contains(Reg1, Reg2);
98 /// Return the cost of copying a value between two registers in this class.
99 /// A negative number means the register class is very expensive
100 /// to copy e.g. status flag register classes.
101 int getCopyCost() const { return MC->getCopyCost(); }
103 /// Return true if this register class may be used to create virtual
104 /// registers.
105 bool isAllocatable() const { return MC->isAllocatable(); }
107 /// Return true if the specified TargetRegisterClass
108 /// is a proper sub-class of this TargetRegisterClass.
109 bool hasSubClass(const TargetRegisterClass *RC) const {
110 return RC != this && hasSubClassEq(RC);
113 /// Returns true if RC is a sub-class of or equal to this class.
114 bool hasSubClassEq(const TargetRegisterClass *RC) const {
115 unsigned ID = RC->getID();
116 return (SubClassMask[ID / 32] >> (ID % 32)) & 1;
119 /// Return true if the specified TargetRegisterClass is a
120 /// proper super-class of this TargetRegisterClass.
121 bool hasSuperClass(const TargetRegisterClass *RC) const {
122 return RC->hasSubClass(this);
125 /// Returns true if RC is a super-class of or equal to this class.
126 bool hasSuperClassEq(const TargetRegisterClass *RC) const {
127 return RC->hasSubClassEq(this);
130 /// Returns a bit vector of subclasses, including this one.
131 /// The vector is indexed by class IDs.
133 /// To use it, consider the returned array as a chunk of memory that
134 /// contains an array of bits of size NumRegClasses. Each 32-bit chunk
135 /// contains a bitset of the ID of the subclasses in big-endian style.
137 /// I.e., the representation of the memory from left to right at the
138 /// bit level looks like:
139 /// [31 30 ... 1 0] [ 63 62 ... 33 32] ...
140 /// [ XXX NumRegClasses NumRegClasses - 1 ... ]
141 /// Where the number represents the class ID and XXX bits that
142 /// should be ignored.
144 /// See the implementation of hasSubClassEq for an example of how it
145 /// can be used.
146 const uint32_t *getSubClassMask() const {
147 return SubClassMask;
150 /// Returns a 0-terminated list of sub-register indices that project some
151 /// super-register class into this register class. The list has an entry for
152 /// each Idx such that:
154 /// There exists SuperRC where:
155 /// For all Reg in SuperRC:
156 /// this->contains(Reg:Idx)
157 const uint16_t *getSuperRegIndices() const {
158 return SuperRegIndices;
161 /// Returns a NULL-terminated list of super-classes. The
162 /// classes are ordered by ID which is also a topological ordering from large
163 /// to small classes. The list does NOT include the current class.
164 sc_iterator getSuperClasses() const {
165 return SuperClasses;
168 /// Return true if this TargetRegisterClass is a subset
169 /// class of at least one other TargetRegisterClass.
170 bool isASubClass() const {
171 return SuperClasses[0] != nullptr;
174 /// Returns the preferred order for allocating registers from this register
175 /// class in MF. The raw order comes directly from the .td file and may
176 /// include reserved registers that are not allocatable.
177 /// Register allocators should also make sure to allocate
178 /// callee-saved registers only after all the volatiles are used. The
179 /// RegisterClassInfo class provides filtered allocation orders with
180 /// callee-saved registers moved to the end.
182 /// The MachineFunction argument can be used to tune the allocatable
183 /// registers based on the characteristics of the function, subtarget, or
184 /// other criteria.
186 /// By default, this method returns all registers in the class.
187 ArrayRef<MCPhysReg> getRawAllocationOrder(const MachineFunction &MF) const {
188 return OrderFunc ? OrderFunc(MF) : makeArrayRef(begin(), getNumRegs());
191 /// Returns the combination of all lane masks of register in this class.
192 /// The lane masks of the registers are the combination of all lane masks
193 /// of their subregisters. Returns 1 if there are no subregisters.
194 LaneBitmask getLaneMask() const {
195 return LaneMask;
199 /// Extra information, not in MCRegisterDesc, about registers.
200 /// These are used by codegen, not by MC.
201 struct TargetRegisterInfoDesc {
202 unsigned CostPerUse; // Extra cost of instructions using register.
203 bool inAllocatableClass; // Register belongs to an allocatable regclass.
206 /// Each TargetRegisterClass has a per register weight, and weight
207 /// limit which must be less than the limits of its pressure sets.
208 struct RegClassWeight {
209 unsigned RegWeight;
210 unsigned WeightLimit;
213 /// TargetRegisterInfo base class - We assume that the target defines a static
214 /// array of TargetRegisterDesc objects that represent all of the machine
215 /// registers that the target has. As such, we simply have to track a pointer
216 /// to this array so that we can turn register number into a register
217 /// descriptor.
219 class TargetRegisterInfo : public MCRegisterInfo {
220 public:
221 using regclass_iterator = const TargetRegisterClass * const *;
222 using vt_iterator = const MVT::SimpleValueType *;
223 struct RegClassInfo {
224 unsigned RegSize, SpillSize, SpillAlignment;
225 vt_iterator VTList;
227 private:
228 const TargetRegisterInfoDesc *InfoDesc; // Extra desc array for codegen
229 const char *const *SubRegIndexNames; // Names of subreg indexes.
230 // Pointer to array of lane masks, one per sub-reg index.
231 const LaneBitmask *SubRegIndexLaneMasks;
233 regclass_iterator RegClassBegin, RegClassEnd; // List of regclasses
234 LaneBitmask CoveringLanes;
235 const RegClassInfo *const RCInfos;
236 unsigned HwMode;
238 protected:
239 TargetRegisterInfo(const TargetRegisterInfoDesc *ID,
240 regclass_iterator RCB,
241 regclass_iterator RCE,
242 const char *const *SRINames,
243 const LaneBitmask *SRILaneMasks,
244 LaneBitmask CoveringLanes,
245 const RegClassInfo *const RCIs,
246 unsigned Mode = 0);
247 virtual ~TargetRegisterInfo();
249 public:
250 // Register numbers can represent physical registers, virtual registers, and
251 // sometimes stack slots. The unsigned values are divided into these ranges:
253 // 0 Not a register, can be used as a sentinel.
254 // [1;2^30) Physical registers assigned by TableGen.
255 // [2^30;2^31) Stack slots. (Rarely used.)
256 // [2^31;2^32) Virtual registers assigned by MachineRegisterInfo.
258 // Further sentinels can be allocated from the small negative integers.
259 // DenseMapInfo<unsigned> uses -1u and -2u.
261 /// isStackSlot - Sometimes it is useful the be able to store a non-negative
262 /// frame index in a variable that normally holds a register. isStackSlot()
263 /// returns true if Reg is in the range used for stack slots.
265 /// Note that isVirtualRegister() and isPhysicalRegister() cannot handle stack
266 /// slots, so if a variable may contains a stack slot, always check
267 /// isStackSlot() first.
269 static bool isStackSlot(unsigned Reg) {
270 return int(Reg) >= (1 << 30);
273 /// Compute the frame index from a register value representing a stack slot.
274 static int stackSlot2Index(unsigned Reg) {
275 assert(isStackSlot(Reg) && "Not a stack slot");
276 return int(Reg - (1u << 30));
279 /// Convert a non-negative frame index to a stack slot register value.
280 static unsigned index2StackSlot(int FI) {
281 assert(FI >= 0 && "Cannot hold a negative frame index.");
282 return FI + (1u << 30);
285 /// Return true if the specified register number is in
286 /// the physical register namespace.
287 static bool isPhysicalRegister(unsigned Reg) {
288 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
289 return int(Reg) > 0;
292 /// Return true if the specified register number is in
293 /// the virtual register namespace.
294 static bool isVirtualRegister(unsigned Reg) {
295 assert(!isStackSlot(Reg) && "Not a register! Check isStackSlot() first.");
296 return int(Reg) < 0;
299 /// Convert a virtual register number to a 0-based index.
300 /// The first virtual register in a function will get the index 0.
301 static unsigned virtReg2Index(unsigned Reg) {
302 assert(isVirtualRegister(Reg) && "Not a virtual register");
303 return Reg & ~(1u << 31);
306 /// Convert a 0-based index to a virtual register number.
307 /// This is the inverse operation of VirtReg2IndexFunctor below.
308 static unsigned index2VirtReg(unsigned Index) {
309 return Index | (1u << 31);
312 /// Return the size in bits of a register from class RC.
313 unsigned getRegSizeInBits(const TargetRegisterClass &RC) const {
314 return getRegClassInfo(RC).RegSize;
317 /// Return the size in bytes of the stack slot allocated to hold a spilled
318 /// copy of a register from class RC.
319 unsigned getSpillSize(const TargetRegisterClass &RC) const {
320 return getRegClassInfo(RC).SpillSize / 8;
323 /// Return the minimum required alignment in bytes for a spill slot for
324 /// a register of this class.
325 unsigned getSpillAlignment(const TargetRegisterClass &RC) const {
326 return getRegClassInfo(RC).SpillAlignment / 8;
329 /// Return true if the given TargetRegisterClass has the ValueType T.
330 bool isTypeLegalForClass(const TargetRegisterClass &RC, MVT T) const {
331 for (auto I = legalclasstypes_begin(RC); *I != MVT::Other; ++I)
332 if (MVT(*I) == T)
333 return true;
334 return false;
337 /// Loop over all of the value types that can be represented by values
338 /// in the given register class.
339 vt_iterator legalclasstypes_begin(const TargetRegisterClass &RC) const {
340 return getRegClassInfo(RC).VTList;
343 vt_iterator legalclasstypes_end(const TargetRegisterClass &RC) const {
344 vt_iterator I = legalclasstypes_begin(RC);
345 while (*I != MVT::Other)
346 ++I;
347 return I;
350 /// Returns the Register Class of a physical register of the given type,
351 /// picking the most sub register class of the right type that contains this
352 /// physreg.
353 const TargetRegisterClass *
354 getMinimalPhysRegClass(unsigned Reg, MVT VT = MVT::Other) const;
356 /// Return the maximal subclass of the given register class that is
357 /// allocatable or NULL.
358 const TargetRegisterClass *
359 getAllocatableClass(const TargetRegisterClass *RC) const;
361 /// Returns a bitset indexed by register number indicating if a register is
362 /// allocatable or not. If a register class is specified, returns the subset
363 /// for the class.
364 BitVector getAllocatableSet(const MachineFunction &MF,
365 const TargetRegisterClass *RC = nullptr) const;
367 /// Return the additional cost of using this register instead
368 /// of other registers in its class.
369 unsigned getCostPerUse(unsigned RegNo) const {
370 return InfoDesc[RegNo].CostPerUse;
373 /// Return true if the register is in the allocation of any register class.
374 bool isInAllocatableClass(unsigned RegNo) const {
375 return InfoDesc[RegNo].inAllocatableClass;
378 /// Return the human-readable symbolic target-specific
379 /// name for the specified SubRegIndex.
380 const char *getSubRegIndexName(unsigned SubIdx) const {
381 assert(SubIdx && SubIdx < getNumSubRegIndices() &&
382 "This is not a subregister index");
383 return SubRegIndexNames[SubIdx-1];
386 /// Return a bitmask representing the parts of a register that are covered by
387 /// SubIdx \see LaneBitmask.
389 /// SubIdx == 0 is allowed, it has the lane mask ~0u.
390 LaneBitmask getSubRegIndexLaneMask(unsigned SubIdx) const {
391 assert(SubIdx < getNumSubRegIndices() && "This is not a subregister index");
392 return SubRegIndexLaneMasks[SubIdx];
395 /// The lane masks returned by getSubRegIndexLaneMask() above can only be
396 /// used to determine if sub-registers overlap - they can't be used to
397 /// determine if a set of sub-registers completely cover another
398 /// sub-register.
400 /// The X86 general purpose registers have two lanes corresponding to the
401 /// sub_8bit and sub_8bit_hi sub-registers. Both sub_32bit and sub_16bit have
402 /// lane masks '3', but the sub_16bit sub-register doesn't fully cover the
403 /// sub_32bit sub-register.
405 /// On the other hand, the ARM NEON lanes fully cover their registers: The
406 /// dsub_0 sub-register is completely covered by the ssub_0 and ssub_1 lanes.
407 /// This is related to the CoveredBySubRegs property on register definitions.
409 /// This function returns a bit mask of lanes that completely cover their
410 /// sub-registers. More precisely, given:
412 /// Covering = getCoveringLanes();
413 /// MaskA = getSubRegIndexLaneMask(SubA);
414 /// MaskB = getSubRegIndexLaneMask(SubB);
416 /// If (MaskA & ~(MaskB & Covering)) == 0, then SubA is completely covered by
417 /// SubB.
418 LaneBitmask getCoveringLanes() const { return CoveringLanes; }
420 /// Returns true if the two registers are equal or alias each other.
421 /// The registers may be virtual registers.
422 bool regsOverlap(unsigned regA, unsigned regB) const {
423 if (regA == regB) return true;
424 if (isVirtualRegister(regA) || isVirtualRegister(regB))
425 return false;
427 // Regunits are numerically ordered. Find a common unit.
428 MCRegUnitIterator RUA(regA, this);
429 MCRegUnitIterator RUB(regB, this);
430 do {
431 if (*RUA == *RUB) return true;
432 if (*RUA < *RUB) ++RUA;
433 else ++RUB;
434 } while (RUA.isValid() && RUB.isValid());
435 return false;
438 /// Returns true if Reg contains RegUnit.
439 bool hasRegUnit(unsigned Reg, unsigned RegUnit) const {
440 for (MCRegUnitIterator Units(Reg, this); Units.isValid(); ++Units)
441 if (*Units == RegUnit)
442 return true;
443 return false;
446 /// Returns the original SrcReg unless it is the target of a copy-like
447 /// operation, in which case we chain backwards through all such operations
448 /// to the ultimate source register. If a physical register is encountered,
449 /// we stop the search.
450 virtual unsigned lookThruCopyLike(unsigned SrcReg,
451 const MachineRegisterInfo *MRI) const;
453 /// Return a null-terminated list of all of the callee-saved registers on
454 /// this target. The register should be in the order of desired callee-save
455 /// stack frame offset. The first register is closest to the incoming stack
456 /// pointer if stack grows down, and vice versa.
457 /// Notice: This function does not take into account disabled CSRs.
458 /// In most cases you will want to use instead the function
459 /// getCalleeSavedRegs that is implemented in MachineRegisterInfo.
460 virtual const MCPhysReg*
461 getCalleeSavedRegs(const MachineFunction *MF) const = 0;
463 /// Return a mask of call-preserved registers for the given calling convention
464 /// on the current function. The mask should include all call-preserved
465 /// aliases. This is used by the register allocator to determine which
466 /// registers can be live across a call.
468 /// The mask is an array containing (TRI::getNumRegs()+31)/32 entries.
469 /// A set bit indicates that all bits of the corresponding register are
470 /// preserved across the function call. The bit mask is expected to be
471 /// sub-register complete, i.e. if A is preserved, so are all its
472 /// sub-registers.
474 /// Bits are numbered from the LSB, so the bit for physical register Reg can
475 /// be found as (Mask[Reg / 32] >> Reg % 32) & 1.
477 /// A NULL pointer means that no register mask will be used, and call
478 /// instructions should use implicit-def operands to indicate call clobbered
479 /// registers.
481 virtual const uint32_t *getCallPreservedMask(const MachineFunction &MF,
482 CallingConv::ID) const {
483 // The default mask clobbers everything. All targets should override.
484 return nullptr;
487 /// Return a register mask that clobbers everything.
488 virtual const uint32_t *getNoPreservedMask() const {
489 llvm_unreachable("target does not provide no preserved mask");
492 /// Return true if all bits that are set in mask \p mask0 are also set in
493 /// \p mask1.
494 bool regmaskSubsetEqual(const uint32_t *mask0, const uint32_t *mask1) const;
496 /// Return all the call-preserved register masks defined for this target.
497 virtual ArrayRef<const uint32_t *> getRegMasks() const = 0;
498 virtual ArrayRef<const char *> getRegMaskNames() const = 0;
500 /// Returns a bitset indexed by physical register number indicating if a
501 /// register is a special register that has particular uses and should be
502 /// considered unavailable at all times, e.g. stack pointer, return address.
503 /// A reserved register:
504 /// - is not allocatable
505 /// - is considered always live
506 /// - is ignored by liveness tracking
507 /// It is often necessary to reserve the super registers of a reserved
508 /// register as well, to avoid them getting allocated indirectly. You may use
509 /// markSuperRegs() and checkAllSuperRegsMarked() in this case.
510 virtual BitVector getReservedRegs(const MachineFunction &MF) const = 0;
512 /// Returns false if we can't guarantee that Physreg, specified as an IR asm
513 /// clobber constraint, will be preserved across the statement.
514 virtual bool isAsmClobberable(const MachineFunction &MF,
515 unsigned PhysReg) const {
516 return true;
519 /// Returns true if PhysReg is unallocatable and constant throughout the
520 /// function. Used by MachineRegisterInfo::isConstantPhysReg().
521 virtual bool isConstantPhysReg(unsigned PhysReg) const { return false; }
523 /// Physical registers that may be modified within a function but are
524 /// guaranteed to be restored before any uses. This is useful for targets that
525 /// have call sequences where a GOT register may be updated by the caller
526 /// prior to a call and is guaranteed to be restored (also by the caller)
527 /// after the call.
528 virtual bool isCallerPreservedPhysReg(unsigned PhysReg,
529 const MachineFunction &MF) const {
530 return false;
533 /// Prior to adding the live-out mask to a stackmap or patchpoint
534 /// instruction, provide the target the opportunity to adjust it (mainly to
535 /// remove pseudo-registers that should be ignored).
536 virtual void adjustStackMapLiveOutMask(uint32_t *Mask) const {}
538 /// Return a super-register of the specified register
539 /// Reg so its sub-register of index SubIdx is Reg.
540 unsigned getMatchingSuperReg(unsigned Reg, unsigned SubIdx,
541 const TargetRegisterClass *RC) const {
542 return MCRegisterInfo::getMatchingSuperReg(Reg, SubIdx, RC->MC);
545 /// Return a subclass of the specified register
546 /// class A so that each register in it has a sub-register of the
547 /// specified sub-register index which is in the specified register class B.
549 /// TableGen will synthesize missing A sub-classes.
550 virtual const TargetRegisterClass *
551 getMatchingSuperRegClass(const TargetRegisterClass *A,
552 const TargetRegisterClass *B, unsigned Idx) const;
554 // For a copy-like instruction that defines a register of class DefRC with
555 // subreg index DefSubReg, reading from another source with class SrcRC and
556 // subregister SrcSubReg return true if this is a preferable copy
557 // instruction or an earlier use should be used.
558 virtual bool shouldRewriteCopySrc(const TargetRegisterClass *DefRC,
559 unsigned DefSubReg,
560 const TargetRegisterClass *SrcRC,
561 unsigned SrcSubReg) const;
563 /// Returns the largest legal sub-class of RC that
564 /// supports the sub-register index Idx.
565 /// If no such sub-class exists, return NULL.
566 /// If all registers in RC already have an Idx sub-register, return RC.
568 /// TableGen generates a version of this function that is good enough in most
569 /// cases. Targets can override if they have constraints that TableGen
570 /// doesn't understand. For example, the x86 sub_8bit sub-register index is
571 /// supported by the full GR32 register class in 64-bit mode, but only by the
572 /// GR32_ABCD regiister class in 32-bit mode.
574 /// TableGen will synthesize missing RC sub-classes.
575 virtual const TargetRegisterClass *
576 getSubClassWithSubReg(const TargetRegisterClass *RC, unsigned Idx) const {
577 assert(Idx == 0 && "Target has no sub-registers");
578 return RC;
581 /// Return the subregister index you get from composing
582 /// two subregister indices.
584 /// The special null sub-register index composes as the identity.
586 /// If R:a:b is the same register as R:c, then composeSubRegIndices(a, b)
587 /// returns c. Note that composeSubRegIndices does not tell you about illegal
588 /// compositions. If R does not have a subreg a, or R:a does not have a subreg
589 /// b, composeSubRegIndices doesn't tell you.
591 /// The ARM register Q0 has two D subregs dsub_0:D0 and dsub_1:D1. It also has
592 /// ssub_0:S0 - ssub_3:S3 subregs.
593 /// If you compose subreg indices dsub_1, ssub_0 you get ssub_2.
594 unsigned composeSubRegIndices(unsigned a, unsigned b) const {
595 if (!a) return b;
596 if (!b) return a;
597 return composeSubRegIndicesImpl(a, b);
600 /// Transforms a LaneMask computed for one subregister to the lanemask that
601 /// would have been computed when composing the subsubregisters with IdxA
602 /// first. @sa composeSubRegIndices()
603 LaneBitmask composeSubRegIndexLaneMask(unsigned IdxA,
604 LaneBitmask Mask) const {
605 if (!IdxA)
606 return Mask;
607 return composeSubRegIndexLaneMaskImpl(IdxA, Mask);
610 /// Transform a lanemask given for a virtual register to the corresponding
611 /// lanemask before using subregister with index \p IdxA.
612 /// This is the reverse of composeSubRegIndexLaneMask(), assuming Mask is a
613 /// valie lane mask (no invalid bits set) the following holds:
614 /// X0 = composeSubRegIndexLaneMask(Idx, Mask)
615 /// X1 = reverseComposeSubRegIndexLaneMask(Idx, X0)
616 /// => X1 == Mask
617 LaneBitmask reverseComposeSubRegIndexLaneMask(unsigned IdxA,
618 LaneBitmask LaneMask) const {
619 if (!IdxA)
620 return LaneMask;
621 return reverseComposeSubRegIndexLaneMaskImpl(IdxA, LaneMask);
624 /// Debugging helper: dump register in human readable form to dbgs() stream.
625 static void dumpReg(unsigned Reg, unsigned SubRegIndex = 0,
626 const TargetRegisterInfo* TRI = nullptr);
628 protected:
629 /// Overridden by TableGen in targets that have sub-registers.
630 virtual unsigned composeSubRegIndicesImpl(unsigned, unsigned) const {
631 llvm_unreachable("Target has no sub-registers");
634 /// Overridden by TableGen in targets that have sub-registers.
635 virtual LaneBitmask
636 composeSubRegIndexLaneMaskImpl(unsigned, LaneBitmask) const {
637 llvm_unreachable("Target has no sub-registers");
640 virtual LaneBitmask reverseComposeSubRegIndexLaneMaskImpl(unsigned,
641 LaneBitmask) const {
642 llvm_unreachable("Target has no sub-registers");
645 public:
646 /// Find a common super-register class if it exists.
648 /// Find a register class, SuperRC and two sub-register indices, PreA and
649 /// PreB, such that:
651 /// 1. PreA + SubA == PreB + SubB (using composeSubRegIndices()), and
653 /// 2. For all Reg in SuperRC: Reg:PreA in RCA and Reg:PreB in RCB, and
655 /// 3. SuperRC->getSize() >= max(RCA->getSize(), RCB->getSize()).
657 /// SuperRC will be chosen such that no super-class of SuperRC satisfies the
658 /// requirements, and there is no register class with a smaller spill size
659 /// that satisfies the requirements.
661 /// SubA and SubB must not be 0. Use getMatchingSuperRegClass() instead.
663 /// Either of the PreA and PreB sub-register indices may be returned as 0. In
664 /// that case, the returned register class will be a sub-class of the
665 /// corresponding argument register class.
667 /// The function returns NULL if no register class can be found.
668 const TargetRegisterClass*
669 getCommonSuperRegClass(const TargetRegisterClass *RCA, unsigned SubA,
670 const TargetRegisterClass *RCB, unsigned SubB,
671 unsigned &PreA, unsigned &PreB) const;
673 //===--------------------------------------------------------------------===//
674 // Register Class Information
676 protected:
677 const RegClassInfo &getRegClassInfo(const TargetRegisterClass &RC) const {
678 return RCInfos[getNumRegClasses() * HwMode + RC.getID()];
681 public:
682 /// Register class iterators
683 regclass_iterator regclass_begin() const { return RegClassBegin; }
684 regclass_iterator regclass_end() const { return RegClassEnd; }
685 iterator_range<regclass_iterator> regclasses() const {
686 return make_range(regclass_begin(), regclass_end());
689 unsigned getNumRegClasses() const {
690 return (unsigned)(regclass_end()-regclass_begin());
693 /// Returns the register class associated with the enumeration value.
694 /// See class MCOperandInfo.
695 const TargetRegisterClass *getRegClass(unsigned i) const {
696 assert(i < getNumRegClasses() && "Register Class ID out of range");
697 return RegClassBegin[i];
700 /// Returns the name of the register class.
701 const char *getRegClassName(const TargetRegisterClass *Class) const {
702 return MCRegisterInfo::getRegClassName(Class->MC);
705 /// Find the largest common subclass of A and B.
706 /// Return NULL if there is no common subclass.
707 /// The common subclass should contain
708 /// simple value type SVT if it is not the Any type.
709 const TargetRegisterClass *
710 getCommonSubClass(const TargetRegisterClass *A,
711 const TargetRegisterClass *B,
712 const MVT::SimpleValueType SVT =
713 MVT::SimpleValueType::Any) const;
715 /// Returns a TargetRegisterClass used for pointer values.
716 /// If a target supports multiple different pointer register classes,
717 /// kind specifies which one is indicated.
718 virtual const TargetRegisterClass *
719 getPointerRegClass(const MachineFunction &MF, unsigned Kind=0) const {
720 llvm_unreachable("Target didn't implement getPointerRegClass!");
723 /// Returns a legal register class to copy a register in the specified class
724 /// to or from. If it is possible to copy the register directly without using
725 /// a cross register class copy, return the specified RC. Returns NULL if it
726 /// is not possible to copy between two registers of the specified class.
727 virtual const TargetRegisterClass *
728 getCrossCopyRegClass(const TargetRegisterClass *RC) const {
729 return RC;
732 /// Returns the largest super class of RC that is legal to use in the current
733 /// sub-target and has the same spill size.
734 /// The returned register class can be used to create virtual registers which
735 /// means that all its registers can be copied and spilled.
736 virtual const TargetRegisterClass *
737 getLargestLegalSuperClass(const TargetRegisterClass *RC,
738 const MachineFunction &) const {
739 /// The default implementation is very conservative and doesn't allow the
740 /// register allocator to inflate register classes.
741 return RC;
744 /// Return the register pressure "high water mark" for the specific register
745 /// class. The scheduler is in high register pressure mode (for the specific
746 /// register class) if it goes over the limit.
748 /// Note: this is the old register pressure model that relies on a manually
749 /// specified representative register class per value type.
750 virtual unsigned getRegPressureLimit(const TargetRegisterClass *RC,
751 MachineFunction &MF) const {
752 return 0;
755 /// Return a heuristic for the machine scheduler to compare the profitability
756 /// of increasing one register pressure set versus another. The scheduler
757 /// will prefer increasing the register pressure of the set which returns
758 /// the largest value for this function.
759 virtual unsigned getRegPressureSetScore(const MachineFunction &MF,
760 unsigned PSetID) const {
761 return PSetID;
764 /// Get the weight in units of pressure for this register class.
765 virtual const RegClassWeight &getRegClassWeight(
766 const TargetRegisterClass *RC) const = 0;
768 /// Returns size in bits of a phys/virtual/generic register.
769 unsigned getRegSizeInBits(unsigned Reg, const MachineRegisterInfo &MRI) const;
771 /// Get the weight in units of pressure for this register unit.
772 virtual unsigned getRegUnitWeight(unsigned RegUnit) const = 0;
774 /// Get the number of dimensions of register pressure.
775 virtual unsigned getNumRegPressureSets() const = 0;
777 /// Get the name of this register unit pressure set.
778 virtual const char *getRegPressureSetName(unsigned Idx) const = 0;
780 /// Get the register unit pressure limit for this dimension.
781 /// This limit must be adjusted dynamically for reserved registers.
782 virtual unsigned getRegPressureSetLimit(const MachineFunction &MF,
783 unsigned Idx) const = 0;
785 /// Get the dimensions of register pressure impacted by this register class.
786 /// Returns a -1 terminated array of pressure set IDs.
787 virtual const int *getRegClassPressureSets(
788 const TargetRegisterClass *RC) const = 0;
790 /// Get the dimensions of register pressure impacted by this register unit.
791 /// Returns a -1 terminated array of pressure set IDs.
792 virtual const int *getRegUnitPressureSets(unsigned RegUnit) const = 0;
794 /// Get a list of 'hint' registers that the register allocator should try
795 /// first when allocating a physical register for the virtual register
796 /// VirtReg. These registers are effectively moved to the front of the
797 /// allocation order. If true is returned, regalloc will try to only use
798 /// hints to the greatest extent possible even if it means spilling.
800 /// The Order argument is the allocation order for VirtReg's register class
801 /// as returned from RegisterClassInfo::getOrder(). The hint registers must
802 /// come from Order, and they must not be reserved.
804 /// The default implementation of this function will only add target
805 /// independent register allocation hints. Targets that override this
806 /// function should typically call this default implementation as well and
807 /// expect to see generic copy hints added.
808 virtual bool getRegAllocationHints(unsigned VirtReg,
809 ArrayRef<MCPhysReg> Order,
810 SmallVectorImpl<MCPhysReg> &Hints,
811 const MachineFunction &MF,
812 const VirtRegMap *VRM = nullptr,
813 const LiveRegMatrix *Matrix = nullptr)
814 const;
816 /// A callback to allow target a chance to update register allocation hints
817 /// when a register is "changed" (e.g. coalesced) to another register.
818 /// e.g. On ARM, some virtual registers should target register pairs,
819 /// if one of pair is coalesced to another register, the allocation hint of
820 /// the other half of the pair should be changed to point to the new register.
821 virtual void updateRegAllocHint(unsigned Reg, unsigned NewReg,
822 MachineFunction &MF) const {
823 // Do nothing.
826 /// Allow the target to reverse allocation order of local live ranges. This
827 /// will generally allocate shorter local live ranges first. For targets with
828 /// many registers, this could reduce regalloc compile time by a large
829 /// factor. It is disabled by default for three reasons:
830 /// (1) Top-down allocation is simpler and easier to debug for targets that
831 /// don't benefit from reversing the order.
832 /// (2) Bottom-up allocation could result in poor evicition decisions on some
833 /// targets affecting the performance of compiled code.
834 /// (3) Bottom-up allocation is no longer guaranteed to optimally color.
835 virtual bool reverseLocalAssignment() const { return false; }
837 /// Allow the target to override the cost of using a callee-saved register for
838 /// the first time. Default value of 0 means we will use a callee-saved
839 /// register if it is available.
840 virtual unsigned getCSRFirstUseCost() const { return 0; }
842 /// Returns true if the target requires (and can make use of) the register
843 /// scavenger.
844 virtual bool requiresRegisterScavenging(const MachineFunction &MF) const {
845 return false;
848 /// Returns true if the target wants to use frame pointer based accesses to
849 /// spill to the scavenger emergency spill slot.
850 virtual bool useFPForScavengingIndex(const MachineFunction &MF) const {
851 return true;
854 /// Returns true if the target requires post PEI scavenging of registers for
855 /// materializing frame index constants.
856 virtual bool requiresFrameIndexScavenging(const MachineFunction &MF) const {
857 return false;
860 /// Returns true if the target requires using the RegScavenger directly for
861 /// frame elimination despite using requiresFrameIndexScavenging.
862 virtual bool requiresFrameIndexReplacementScavenging(
863 const MachineFunction &MF) const {
864 return false;
867 /// Returns true if the target wants the LocalStackAllocation pass to be run
868 /// and virtual base registers used for more efficient stack access.
869 virtual bool requiresVirtualBaseRegisters(const MachineFunction &MF) const {
870 return false;
873 /// Return true if target has reserved a spill slot in the stack frame of
874 /// the given function for the specified register. e.g. On x86, if the frame
875 /// register is required, the first fixed stack object is reserved as its
876 /// spill slot. This tells PEI not to create a new stack frame
877 /// object for the given register. It should be called only after
878 /// determineCalleeSaves().
879 virtual bool hasReservedSpillSlot(const MachineFunction &MF, unsigned Reg,
880 int &FrameIdx) const {
881 return false;
884 /// Returns true if the live-ins should be tracked after register allocation.
885 virtual bool trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
886 return false;
889 /// True if the stack can be realigned for the target.
890 virtual bool canRealignStack(const MachineFunction &MF) const;
892 /// True if storage within the function requires the stack pointer to be
893 /// aligned more than the normal calling convention calls for.
894 /// This cannot be overriden by the target, but canRealignStack can be
895 /// overridden.
896 bool needsStackRealignment(const MachineFunction &MF) const;
898 /// Get the offset from the referenced frame index in the instruction,
899 /// if there is one.
900 virtual int64_t getFrameIndexInstrOffset(const MachineInstr *MI,
901 int Idx) const {
902 return 0;
905 /// Returns true if the instruction's frame index reference would be better
906 /// served by a base register other than FP or SP.
907 /// Used by LocalStackFrameAllocation to determine which frame index
908 /// references it should create new base registers for.
909 virtual bool needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
910 return false;
913 /// Insert defining instruction(s) for BaseReg to be a pointer to FrameIdx
914 /// before insertion point I.
915 virtual void materializeFrameBaseRegister(MachineBasicBlock *MBB,
916 unsigned BaseReg, int FrameIdx,
917 int64_t Offset) const {
918 llvm_unreachable("materializeFrameBaseRegister does not exist on this "
919 "target");
922 /// Resolve a frame index operand of an instruction
923 /// to reference the indicated base register plus offset instead.
924 virtual void resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
925 int64_t Offset) const {
926 llvm_unreachable("resolveFrameIndex does not exist on this target");
929 /// Determine whether a given base register plus offset immediate is
930 /// encodable to resolve a frame index.
931 virtual bool isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
932 int64_t Offset) const {
933 llvm_unreachable("isFrameOffsetLegal does not exist on this target");
936 /// Spill the register so it can be used by the register scavenger.
937 /// Return true if the register was spilled, false otherwise.
938 /// If this function does not spill the register, the scavenger
939 /// will instead spill it to the emergency spill slot.
940 virtual bool saveScavengerRegister(MachineBasicBlock &MBB,
941 MachineBasicBlock::iterator I,
942 MachineBasicBlock::iterator &UseMI,
943 const TargetRegisterClass *RC,
944 unsigned Reg) const {
945 return false;
948 /// This method must be overriden to eliminate abstract frame indices from
949 /// instructions which may use them. The instruction referenced by the
950 /// iterator contains an MO_FrameIndex operand which must be eliminated by
951 /// this method. This method may modify or replace the specified instruction,
952 /// as long as it keeps the iterator pointing at the finished product.
953 /// SPAdj is the SP adjustment due to call frame setup instruction.
954 /// FIOperandNum is the FI operand number.
955 virtual void eliminateFrameIndex(MachineBasicBlock::iterator MI,
956 int SPAdj, unsigned FIOperandNum,
957 RegScavenger *RS = nullptr) const = 0;
959 /// Return the assembly name for \p Reg.
960 virtual StringRef getRegAsmName(unsigned Reg) const {
961 // FIXME: We are assuming that the assembly name is equal to the TableGen
962 // name converted to lower case
964 // The TableGen name is the name of the definition for this register in the
965 // target's tablegen files. For example, the TableGen name of
966 // def EAX : Register <...>; is "EAX"
967 return StringRef(getName(Reg));
970 //===--------------------------------------------------------------------===//
971 /// Subtarget Hooks
973 /// SrcRC and DstRC will be morphed into NewRC if this returns true.
974 virtual bool shouldCoalesce(MachineInstr *MI,
975 const TargetRegisterClass *SrcRC,
976 unsigned SubReg,
977 const TargetRegisterClass *DstRC,
978 unsigned DstSubReg,
979 const TargetRegisterClass *NewRC,
980 LiveIntervals &LIS) const
981 { return true; }
983 //===--------------------------------------------------------------------===//
984 /// Debug information queries.
986 /// getFrameRegister - This method should return the register used as a base
987 /// for values allocated in the current stack frame.
988 virtual unsigned getFrameRegister(const MachineFunction &MF) const = 0;
990 /// Mark a register and all its aliases as reserved in the given set.
991 void markSuperRegs(BitVector &RegisterSet, unsigned Reg) const;
993 /// Returns true if for every register in the set all super registers are part
994 /// of the set as well.
995 bool checkAllSuperRegsMarked(const BitVector &RegisterSet,
996 ArrayRef<MCPhysReg> Exceptions = ArrayRef<MCPhysReg>()) const;
998 virtual const TargetRegisterClass *
999 getConstrainedRegClassForOperand(const MachineOperand &MO,
1000 const MachineRegisterInfo &MRI) const {
1001 return nullptr;
1005 //===----------------------------------------------------------------------===//
1006 // SuperRegClassIterator
1007 //===----------------------------------------------------------------------===//
1009 // Iterate over the possible super-registers for a given register class. The
1010 // iterator will visit a list of pairs (Idx, Mask) corresponding to the
1011 // possible classes of super-registers.
1013 // Each bit mask will have at least one set bit, and each set bit in Mask
1014 // corresponds to a SuperRC such that:
1016 // For all Reg in SuperRC: Reg:Idx is in RC.
1018 // The iterator can include (O, RC->getSubClassMask()) as the first entry which
1019 // also satisfies the above requirement, assuming Reg:0 == Reg.
1021 class SuperRegClassIterator {
1022 const unsigned RCMaskWords;
1023 unsigned SubReg = 0;
1024 const uint16_t *Idx;
1025 const uint32_t *Mask;
1027 public:
1028 /// Create a SuperRegClassIterator that visits all the super-register classes
1029 /// of RC. When IncludeSelf is set, also include the (0, sub-classes) entry.
1030 SuperRegClassIterator(const TargetRegisterClass *RC,
1031 const TargetRegisterInfo *TRI,
1032 bool IncludeSelf = false)
1033 : RCMaskWords((TRI->getNumRegClasses() + 31) / 32),
1034 Idx(RC->getSuperRegIndices()), Mask(RC->getSubClassMask()) {
1035 if (!IncludeSelf)
1036 ++*this;
1039 /// Returns true if this iterator is still pointing at a valid entry.
1040 bool isValid() const { return Idx; }
1042 /// Returns the current sub-register index.
1043 unsigned getSubReg() const { return SubReg; }
1045 /// Returns the bit mask of register classes that getSubReg() projects into
1046 /// RC.
1047 /// See TargetRegisterClass::getSubClassMask() for how to use it.
1048 const uint32_t *getMask() const { return Mask; }
1050 /// Advance iterator to the next entry.
1051 void operator++() {
1052 assert(isValid() && "Cannot move iterator past end.");
1053 Mask += RCMaskWords;
1054 SubReg = *Idx++;
1055 if (!SubReg)
1056 Idx = nullptr;
1060 //===----------------------------------------------------------------------===//
1061 // BitMaskClassIterator
1062 //===----------------------------------------------------------------------===//
1063 /// This class encapuslates the logic to iterate over bitmask returned by
1064 /// the various RegClass related APIs.
1065 /// E.g., this class can be used to iterate over the subclasses provided by
1066 /// TargetRegisterClass::getSubClassMask or SuperRegClassIterator::getMask.
1067 class BitMaskClassIterator {
1068 /// Total number of register classes.
1069 const unsigned NumRegClasses;
1070 /// Base index of CurrentChunk.
1071 /// In other words, the number of bit we read to get at the
1072 /// beginning of that chunck.
1073 unsigned Base = 0;
1074 /// Adjust base index of CurrentChunk.
1075 /// Base index + how many bit we read within CurrentChunk.
1076 unsigned Idx = 0;
1077 /// Current register class ID.
1078 unsigned ID = 0;
1079 /// Mask we are iterating over.
1080 const uint32_t *Mask;
1081 /// Current chunk of the Mask we are traversing.
1082 uint32_t CurrentChunk;
1084 /// Move ID to the next set bit.
1085 void moveToNextID() {
1086 // If the current chunk of memory is empty, move to the next one,
1087 // while making sure we do not go pass the number of register
1088 // classes.
1089 while (!CurrentChunk) {
1090 // Move to the next chunk.
1091 Base += 32;
1092 if (Base >= NumRegClasses) {
1093 ID = NumRegClasses;
1094 return;
1096 CurrentChunk = *++Mask;
1097 Idx = Base;
1099 // Otherwise look for the first bit set from the right
1100 // (representation of the class ID is big endian).
1101 // See getSubClassMask for more details on the representation.
1102 unsigned Offset = countTrailingZeros(CurrentChunk);
1103 // Add the Offset to the adjusted base number of this chunk: Idx.
1104 // This is the ID of the register class.
1105 ID = Idx + Offset;
1107 // Consume the zeros, if any, and the bit we just read
1108 // so that we are at the right spot for the next call.
1109 // Do not do Offset + 1 because Offset may be 31 and 32
1110 // will be UB for the shift, though in that case we could
1111 // have make the chunk being equal to 0, but that would
1112 // have introduced a if statement.
1113 moveNBits(Offset);
1114 moveNBits(1);
1117 /// Move \p NumBits Bits forward in CurrentChunk.
1118 void moveNBits(unsigned NumBits) {
1119 assert(NumBits < 32 && "Undefined behavior spotted!");
1120 // Consume the bit we read for the next call.
1121 CurrentChunk >>= NumBits;
1122 // Adjust the base for the chunk.
1123 Idx += NumBits;
1126 public:
1127 /// Create a BitMaskClassIterator that visits all the register classes
1128 /// represented by \p Mask.
1130 /// \pre \p Mask != nullptr
1131 BitMaskClassIterator(const uint32_t *Mask, const TargetRegisterInfo &TRI)
1132 : NumRegClasses(TRI.getNumRegClasses()), Mask(Mask), CurrentChunk(*Mask) {
1133 // Move to the first ID.
1134 moveToNextID();
1137 /// Returns true if this iterator is still pointing at a valid entry.
1138 bool isValid() const { return getID() != NumRegClasses; }
1140 /// Returns the current register class ID.
1141 unsigned getID() const { return ID; }
1143 /// Advance iterator to the next entry.
1144 void operator++() {
1145 assert(isValid() && "Cannot move iterator past end.");
1146 moveToNextID();
1150 // This is useful when building IndexedMaps keyed on virtual registers
1151 struct VirtReg2IndexFunctor {
1152 using argument_type = unsigned;
1153 unsigned operator()(unsigned Reg) const {
1154 return TargetRegisterInfo::virtReg2Index(Reg);
1158 /// Prints virtual and physical registers with or without a TRI instance.
1160 /// The format is:
1161 /// %noreg - NoRegister
1162 /// %5 - a virtual register.
1163 /// %5:sub_8bit - a virtual register with sub-register index (with TRI).
1164 /// %eax - a physical register
1165 /// %physreg17 - a physical register when no TRI instance given.
1167 /// Usage: OS << printReg(Reg, TRI, SubRegIdx) << '\n';
1168 Printable printReg(unsigned Reg, const TargetRegisterInfo *TRI = nullptr,
1169 unsigned SubIdx = 0,
1170 const MachineRegisterInfo *MRI = nullptr);
1172 /// Create Printable object to print register units on a \ref raw_ostream.
1174 /// Register units are named after their root registers:
1176 /// al - Single root.
1177 /// fp0~st7 - Dual roots.
1179 /// Usage: OS << printRegUnit(Unit, TRI) << '\n';
1180 Printable printRegUnit(unsigned Unit, const TargetRegisterInfo *TRI);
1182 /// Create Printable object to print virtual registers and physical
1183 /// registers on a \ref raw_ostream.
1184 Printable printVRegOrUnit(unsigned VRegOrUnit, const TargetRegisterInfo *TRI);
1186 /// Create Printable object to print register classes or register banks
1187 /// on a \ref raw_ostream.
1188 Printable printRegClassOrBank(unsigned Reg, const MachineRegisterInfo &RegInfo,
1189 const TargetRegisterInfo *TRI);
1191 } // end namespace llvm
1193 #endif // LLVM_CODEGEN_TARGETREGISTERINFO_H