Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / IR / DataLayout.h
blob274ec2351d8be700965d3ea398608e5ba1777b9b
1 //===- llvm/DataLayout.h - Data size & alignment info -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file defines layout properties related to datatype size/offset/alignment
10 // information. It uses lazy annotations to cache information about how
11 // structure types are laid out and used.
13 // This structure should be created once, filled in if the defaults are not
14 // correct and then passed around by const&. None of the members functions
15 // require modification to the object.
17 //===----------------------------------------------------------------------===//
19 #ifndef LLVM_IR_DATALAYOUT_H
20 #define LLVM_IR_DATALAYOUT_H
22 #include "llvm/ADT/ArrayRef.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/Pass.h"
29 #include "llvm/Support/Casting.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/MathExtras.h"
32 #include <cassert>
33 #include <cstdint>
34 #include <string>
36 // This needs to be outside of the namespace, to avoid conflict with llvm-c
37 // decl.
38 using LLVMTargetDataRef = struct LLVMOpaqueTargetData *;
40 namespace llvm {
42 class GlobalVariable;
43 class LLVMContext;
44 class Module;
45 class StructLayout;
46 class Triple;
47 class Value;
49 /// Enum used to categorize the alignment types stored by LayoutAlignElem
50 enum AlignTypeEnum {
51 INVALID_ALIGN = 0,
52 INTEGER_ALIGN = 'i',
53 VECTOR_ALIGN = 'v',
54 FLOAT_ALIGN = 'f',
55 AGGREGATE_ALIGN = 'a'
58 // FIXME: Currently the DataLayout string carries a "preferred alignment"
59 // for types. As the DataLayout is module/global, this should likely be
60 // sunk down to an FTTI element that is queried rather than a global
61 // preference.
63 /// Layout alignment element.
64 ///
65 /// Stores the alignment data associated with a given alignment type (integer,
66 /// vector, float) and type bit width.
67 ///
68 /// \note The unusual order of elements in the structure attempts to reduce
69 /// padding and make the structure slightly more cache friendly.
70 struct LayoutAlignElem {
71 /// Alignment type from \c AlignTypeEnum
72 unsigned AlignType : 8;
73 unsigned TypeBitWidth : 24;
74 unsigned ABIAlign : 16;
75 unsigned PrefAlign : 16;
77 static LayoutAlignElem get(AlignTypeEnum align_type, unsigned abi_align,
78 unsigned pref_align, uint32_t bit_width);
80 bool operator==(const LayoutAlignElem &rhs) const;
83 /// Layout pointer alignment element.
84 ///
85 /// Stores the alignment data associated with a given pointer and address space.
86 ///
87 /// \note The unusual order of elements in the structure attempts to reduce
88 /// padding and make the structure slightly more cache friendly.
89 struct PointerAlignElem {
90 unsigned ABIAlign;
91 unsigned PrefAlign;
92 uint32_t TypeByteWidth;
93 uint32_t AddressSpace;
94 uint32_t IndexWidth;
96 /// Initializer
97 static PointerAlignElem get(uint32_t AddressSpace, unsigned ABIAlign,
98 unsigned PrefAlign, uint32_t TypeByteWidth,
99 uint32_t IndexWidth);
101 bool operator==(const PointerAlignElem &rhs) const;
104 /// A parsed version of the target data layout string in and methods for
105 /// querying it.
107 /// The target data layout string is specified *by the target* - a frontend
108 /// generating LLVM IR is required to generate the right target data for the
109 /// target being codegen'd to.
110 class DataLayout {
111 private:
112 /// Defaults to false.
113 bool BigEndian;
115 unsigned AllocaAddrSpace;
116 unsigned StackNaturalAlign;
117 unsigned ProgramAddrSpace;
119 enum ManglingModeT {
120 MM_None,
121 MM_ELF,
122 MM_MachO,
123 MM_WinCOFF,
124 MM_WinCOFFX86,
125 MM_Mips
127 ManglingModeT ManglingMode;
129 SmallVector<unsigned char, 8> LegalIntWidths;
131 /// Primitive type alignment data. This is sorted by type and bit
132 /// width during construction.
133 using AlignmentsTy = SmallVector<LayoutAlignElem, 16>;
134 AlignmentsTy Alignments;
136 AlignmentsTy::const_iterator
137 findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth) const {
138 return const_cast<DataLayout *>(this)->findAlignmentLowerBound(AlignType,
139 BitWidth);
142 AlignmentsTy::iterator
143 findAlignmentLowerBound(AlignTypeEnum AlignType, uint32_t BitWidth);
145 /// The string representation used to create this DataLayout
146 std::string StringRepresentation;
148 using PointersTy = SmallVector<PointerAlignElem, 8>;
149 PointersTy Pointers;
151 PointersTy::const_iterator
152 findPointerLowerBound(uint32_t AddressSpace) const {
153 return const_cast<DataLayout *>(this)->findPointerLowerBound(AddressSpace);
156 PointersTy::iterator findPointerLowerBound(uint32_t AddressSpace);
158 // The StructType -> StructLayout map.
159 mutable void *LayoutMap = nullptr;
161 /// Pointers in these address spaces are non-integral, and don't have a
162 /// well-defined bitwise representation.
163 SmallVector<unsigned, 8> NonIntegralAddressSpaces;
165 void setAlignment(AlignTypeEnum align_type, unsigned abi_align,
166 unsigned pref_align, uint32_t bit_width);
167 unsigned getAlignmentInfo(AlignTypeEnum align_type, uint32_t bit_width,
168 bool ABIAlign, Type *Ty) const;
169 void setPointerAlignment(uint32_t AddrSpace, unsigned ABIAlign,
170 unsigned PrefAlign, uint32_t TypeByteWidth,
171 uint32_t IndexWidth);
173 /// Internal helper method that returns requested alignment for type.
174 unsigned getAlignment(Type *Ty, bool abi_or_pref) const;
176 /// Parses a target data specification string. Assert if the string is
177 /// malformed.
178 void parseSpecifier(StringRef LayoutDescription);
180 // Free all internal data structures.
181 void clear();
183 public:
184 /// Constructs a DataLayout from a specification string. See reset().
185 explicit DataLayout(StringRef LayoutDescription) {
186 reset(LayoutDescription);
189 /// Initialize target data from properties stored in the module.
190 explicit DataLayout(const Module *M);
192 DataLayout(const DataLayout &DL) { *this = DL; }
194 ~DataLayout(); // Not virtual, do not subclass this class
196 DataLayout &operator=(const DataLayout &DL) {
197 clear();
198 StringRepresentation = DL.StringRepresentation;
199 BigEndian = DL.isBigEndian();
200 AllocaAddrSpace = DL.AllocaAddrSpace;
201 StackNaturalAlign = DL.StackNaturalAlign;
202 ProgramAddrSpace = DL.ProgramAddrSpace;
203 ManglingMode = DL.ManglingMode;
204 LegalIntWidths = DL.LegalIntWidths;
205 Alignments = DL.Alignments;
206 Pointers = DL.Pointers;
207 NonIntegralAddressSpaces = DL.NonIntegralAddressSpaces;
208 return *this;
211 bool operator==(const DataLayout &Other) const;
212 bool operator!=(const DataLayout &Other) const { return !(*this == Other); }
214 void init(const Module *M);
216 /// Parse a data layout string (with fallback to default values).
217 void reset(StringRef LayoutDescription);
219 /// Layout endianness...
220 bool isLittleEndian() const { return !BigEndian; }
221 bool isBigEndian() const { return BigEndian; }
223 /// Returns the string representation of the DataLayout.
225 /// This representation is in the same format accepted by the string
226 /// constructor above. This should not be used to compare two DataLayout as
227 /// different string can represent the same layout.
228 const std::string &getStringRepresentation() const {
229 return StringRepresentation;
232 /// Test if the DataLayout was constructed from an empty string.
233 bool isDefault() const { return StringRepresentation.empty(); }
235 /// Returns true if the specified type is known to be a native integer
236 /// type supported by the CPU.
238 /// For example, i64 is not native on most 32-bit CPUs and i37 is not native
239 /// on any known one. This returns false if the integer width is not legal.
241 /// The width is specified in bits.
242 bool isLegalInteger(uint64_t Width) const {
243 for (unsigned LegalIntWidth : LegalIntWidths)
244 if (LegalIntWidth == Width)
245 return true;
246 return false;
249 bool isIllegalInteger(uint64_t Width) const { return !isLegalInteger(Width); }
251 /// Returns true if the given alignment exceeds the natural stack alignment.
252 bool exceedsNaturalStackAlignment(unsigned Align) const {
253 return (StackNaturalAlign != 0) && (Align > StackNaturalAlign);
256 unsigned getStackAlignment() const { return StackNaturalAlign; }
257 unsigned getAllocaAddrSpace() const { return AllocaAddrSpace; }
259 unsigned getProgramAddressSpace() const { return ProgramAddrSpace; }
261 bool hasMicrosoftFastStdCallMangling() const {
262 return ManglingMode == MM_WinCOFFX86;
265 /// Returns true if symbols with leading question marks should not receive IR
266 /// mangling. True for Windows mangling modes.
267 bool doNotMangleLeadingQuestionMark() const {
268 return ManglingMode == MM_WinCOFF || ManglingMode == MM_WinCOFFX86;
271 bool hasLinkerPrivateGlobalPrefix() const { return ManglingMode == MM_MachO; }
273 StringRef getLinkerPrivateGlobalPrefix() const {
274 if (ManglingMode == MM_MachO)
275 return "l";
276 return "";
279 char getGlobalPrefix() const {
280 switch (ManglingMode) {
281 case MM_None:
282 case MM_ELF:
283 case MM_Mips:
284 case MM_WinCOFF:
285 return '\0';
286 case MM_MachO:
287 case MM_WinCOFFX86:
288 return '_';
290 llvm_unreachable("invalid mangling mode");
293 StringRef getPrivateGlobalPrefix() const {
294 switch (ManglingMode) {
295 case MM_None:
296 return "";
297 case MM_ELF:
298 case MM_WinCOFF:
299 return ".L";
300 case MM_Mips:
301 return "$";
302 case MM_MachO:
303 case MM_WinCOFFX86:
304 return "L";
306 llvm_unreachable("invalid mangling mode");
309 static const char *getManglingComponent(const Triple &T);
311 /// Returns true if the specified type fits in a native integer type
312 /// supported by the CPU.
314 /// For example, if the CPU only supports i32 as a native integer type, then
315 /// i27 fits in a legal integer type but i45 does not.
316 bool fitsInLegalInteger(unsigned Width) const {
317 for (unsigned LegalIntWidth : LegalIntWidths)
318 if (Width <= LegalIntWidth)
319 return true;
320 return false;
323 /// Layout pointer alignment
324 unsigned getPointerABIAlignment(unsigned AS) const;
326 /// Return target's alignment for stack-based pointers
327 /// FIXME: The defaults need to be removed once all of
328 /// the backends/clients are updated.
329 unsigned getPointerPrefAlignment(unsigned AS = 0) const;
331 /// Layout pointer size
332 /// FIXME: The defaults need to be removed once all of
333 /// the backends/clients are updated.
334 unsigned getPointerSize(unsigned AS = 0) const;
336 /// Returns the maximum pointer size over all address spaces.
337 unsigned getMaxPointerSize() const;
339 // Index size used for address calculation.
340 unsigned getIndexSize(unsigned AS) const;
342 /// Return the address spaces containing non-integral pointers. Pointers in
343 /// this address space don't have a well-defined bitwise representation.
344 ArrayRef<unsigned> getNonIntegralAddressSpaces() const {
345 return NonIntegralAddressSpaces;
348 bool isNonIntegralPointerType(PointerType *PT) const {
349 ArrayRef<unsigned> NonIntegralSpaces = getNonIntegralAddressSpaces();
350 return find(NonIntegralSpaces, PT->getAddressSpace()) !=
351 NonIntegralSpaces.end();
354 bool isNonIntegralPointerType(Type *Ty) const {
355 auto *PTy = dyn_cast<PointerType>(Ty);
356 return PTy && isNonIntegralPointerType(PTy);
359 /// Layout pointer size, in bits
360 /// FIXME: The defaults need to be removed once all of
361 /// the backends/clients are updated.
362 unsigned getPointerSizeInBits(unsigned AS = 0) const {
363 return getPointerSize(AS) * 8;
366 /// Returns the maximum pointer size over all address spaces.
367 unsigned getMaxPointerSizeInBits() const {
368 return getMaxPointerSize() * 8;
371 /// Size in bits of index used for address calculation in getelementptr.
372 unsigned getIndexSizeInBits(unsigned AS) const {
373 return getIndexSize(AS) * 8;
376 /// Layout pointer size, in bits, based on the type. If this function is
377 /// called with a pointer type, then the type size of the pointer is returned.
378 /// If this function is called with a vector of pointers, then the type size
379 /// of the pointer is returned. This should only be called with a pointer or
380 /// vector of pointers.
381 unsigned getPointerTypeSizeInBits(Type *) const;
383 /// Layout size of the index used in GEP calculation.
384 /// The function should be called with pointer or vector of pointers type.
385 unsigned getIndexTypeSizeInBits(Type *Ty) const;
387 unsigned getPointerTypeSize(Type *Ty) const {
388 return getPointerTypeSizeInBits(Ty) / 8;
391 /// Size examples:
393 /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
394 /// ---- ---------- --------------- ---------------
395 /// i1 1 8 8
396 /// i8 8 8 8
397 /// i19 19 24 32
398 /// i32 32 32 32
399 /// i100 100 104 128
400 /// i128 128 128 128
401 /// Float 32 32 32
402 /// Double 64 64 64
403 /// X86_FP80 80 80 96
405 /// [*] The alloc size depends on the alignment, and thus on the target.
406 /// These values are for x86-32 linux.
408 /// Returns the number of bits necessary to hold the specified type.
410 /// For example, returns 36 for i36 and 80 for x86_fp80. The type passed must
411 /// have a size (Type::isSized() must return true).
412 uint64_t getTypeSizeInBits(Type *Ty) const;
414 /// Returns the maximum number of bytes that may be overwritten by
415 /// storing the specified type.
417 /// For example, returns 5 for i36 and 10 for x86_fp80.
418 uint64_t getTypeStoreSize(Type *Ty) const {
419 return (getTypeSizeInBits(Ty) + 7) / 8;
422 /// Returns the maximum number of bits that may be overwritten by
423 /// storing the specified type; always a multiple of 8.
425 /// For example, returns 40 for i36 and 80 for x86_fp80.
426 uint64_t getTypeStoreSizeInBits(Type *Ty) const {
427 return 8 * getTypeStoreSize(Ty);
430 /// Returns the offset in bytes between successive objects of the
431 /// specified type, including alignment padding.
433 /// This is the amount that alloca reserves for this type. For example,
434 /// returns 12 or 16 for x86_fp80, depending on alignment.
435 uint64_t getTypeAllocSize(Type *Ty) const {
436 // Round up to the next alignment boundary.
437 return alignTo(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
440 /// Returns the offset in bits between successive objects of the
441 /// specified type, including alignment padding; always a multiple of 8.
443 /// This is the amount that alloca reserves for this type. For example,
444 /// returns 96 or 128 for x86_fp80, depending on alignment.
445 uint64_t getTypeAllocSizeInBits(Type *Ty) const {
446 return 8 * getTypeAllocSize(Ty);
449 /// Returns the minimum ABI-required alignment for the specified type.
450 unsigned getABITypeAlignment(Type *Ty) const;
452 /// Returns the minimum ABI-required alignment for an integer type of
453 /// the specified bitwidth.
454 unsigned getABIIntegerTypeAlignment(unsigned BitWidth) const;
456 /// Returns the preferred stack/global alignment for the specified
457 /// type.
459 /// This is always at least as good as the ABI alignment.
460 unsigned getPrefTypeAlignment(Type *Ty) const;
462 /// Returns the preferred alignment for the specified type, returned as
463 /// log2 of the value (a shift amount).
464 unsigned getPreferredTypeAlignmentShift(Type *Ty) const;
466 /// Returns an integer type with size at least as big as that of a
467 /// pointer in the given address space.
468 IntegerType *getIntPtrType(LLVMContext &C, unsigned AddressSpace = 0) const;
470 /// Returns an integer (vector of integer) type with size at least as
471 /// big as that of a pointer of the given pointer (vector of pointer) type.
472 Type *getIntPtrType(Type *) const;
474 /// Returns the smallest integer type with size at least as big as
475 /// Width bits.
476 Type *getSmallestLegalIntType(LLVMContext &C, unsigned Width = 0) const;
478 /// Returns the largest legal integer type, or null if none are set.
479 Type *getLargestLegalIntType(LLVMContext &C) const {
480 unsigned LargestSize = getLargestLegalIntTypeSizeInBits();
481 return (LargestSize == 0) ? nullptr : Type::getIntNTy(C, LargestSize);
484 /// Returns the size of largest legal integer type size, or 0 if none
485 /// are set.
486 unsigned getLargestLegalIntTypeSizeInBits() const;
488 /// Returns the type of a GEP index.
489 /// If it was not specified explicitly, it will be the integer type of the
490 /// pointer width - IntPtrType.
491 Type *getIndexType(Type *PtrTy) const;
493 /// Returns the offset from the beginning of the type for the specified
494 /// indices.
496 /// Note that this takes the element type, not the pointer type.
497 /// This is used to implement getelementptr.
498 int64_t getIndexedOffsetInType(Type *ElemTy, ArrayRef<Value *> Indices) const;
500 /// Returns a StructLayout object, indicating the alignment of the
501 /// struct, its size, and the offsets of its fields.
503 /// Note that this information is lazily cached.
504 const StructLayout *getStructLayout(StructType *Ty) const;
506 /// Returns the preferred alignment of the specified global.
508 /// This includes an explicitly requested alignment (if the global has one).
509 unsigned getPreferredAlignment(const GlobalVariable *GV) const;
511 /// Returns the preferred alignment of the specified global, returned
512 /// in log form.
514 /// This includes an explicitly requested alignment (if the global has one).
515 unsigned getPreferredAlignmentLog(const GlobalVariable *GV) const;
518 inline DataLayout *unwrap(LLVMTargetDataRef P) {
519 return reinterpret_cast<DataLayout *>(P);
522 inline LLVMTargetDataRef wrap(const DataLayout *P) {
523 return reinterpret_cast<LLVMTargetDataRef>(const_cast<DataLayout *>(P));
526 /// Used to lazily calculate structure layout information for a target machine,
527 /// based on the DataLayout structure.
528 class StructLayout {
529 uint64_t StructSize;
530 unsigned StructAlignment;
531 unsigned IsPadded : 1;
532 unsigned NumElements : 31;
533 uint64_t MemberOffsets[1]; // variable sized array!
535 public:
536 uint64_t getSizeInBytes() const { return StructSize; }
538 uint64_t getSizeInBits() const { return 8 * StructSize; }
540 unsigned getAlignment() const { return StructAlignment; }
542 /// Returns whether the struct has padding or not between its fields.
543 /// NB: Padding in nested element is not taken into account.
544 bool hasPadding() const { return IsPadded; }
546 /// Given a valid byte offset into the structure, returns the structure
547 /// index that contains it.
548 unsigned getElementContainingOffset(uint64_t Offset) const;
550 uint64_t getElementOffset(unsigned Idx) const {
551 assert(Idx < NumElements && "Invalid element idx!");
552 return MemberOffsets[Idx];
555 uint64_t getElementOffsetInBits(unsigned Idx) const {
556 return getElementOffset(Idx) * 8;
559 private:
560 friend class DataLayout; // Only DataLayout can create this class
562 StructLayout(StructType *ST, const DataLayout &DL);
565 // The implementation of this method is provided inline as it is particularly
566 // well suited to constant folding when called on a specific Type subclass.
567 inline uint64_t DataLayout::getTypeSizeInBits(Type *Ty) const {
568 assert(Ty->isSized() && "Cannot getTypeInfo() on a type that is unsized!");
569 switch (Ty->getTypeID()) {
570 case Type::LabelTyID:
571 return getPointerSizeInBits(0);
572 case Type::PointerTyID:
573 return getPointerSizeInBits(Ty->getPointerAddressSpace());
574 case Type::ArrayTyID: {
575 ArrayType *ATy = cast<ArrayType>(Ty);
576 return ATy->getNumElements() *
577 getTypeAllocSizeInBits(ATy->getElementType());
579 case Type::StructTyID:
580 // Get the layout annotation... which is lazily created on demand.
581 return getStructLayout(cast<StructType>(Ty))->getSizeInBits();
582 case Type::IntegerTyID:
583 return Ty->getIntegerBitWidth();
584 case Type::HalfTyID:
585 return 16;
586 case Type::FloatTyID:
587 return 32;
588 case Type::DoubleTyID:
589 case Type::X86_MMXTyID:
590 return 64;
591 case Type::PPC_FP128TyID:
592 case Type::FP128TyID:
593 return 128;
594 // In memory objects this is always aligned to a higher boundary, but
595 // only 80 bits contain information.
596 case Type::X86_FP80TyID:
597 return 80;
598 case Type::VectorTyID: {
599 VectorType *VTy = cast<VectorType>(Ty);
600 return VTy->getNumElements() * getTypeSizeInBits(VTy->getElementType());
602 default:
603 llvm_unreachable("DataLayout::getTypeSizeInBits(): Unsupported type");
607 } // end namespace llvm
609 #endif // LLVM_IR_DATALAYOUT_H