1 //===- llvm/DerivedTypes.h - Classes for handling data types ----*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file contains the declarations of classes that represent "derived
10 // types". These are things like "arrays of x" or "structure of x, y, z" or
11 // "function returning x taking (y,z) as parameters", etc...
13 // The implementations of these classes live in the Type.cpp file.
15 //===----------------------------------------------------------------------===//
17 #ifndef LLVM_IR_DERIVEDTYPES_H
18 #define LLVM_IR_DERIVEDTYPES_H
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Type.h"
24 #include "llvm/Support/Casting.h"
25 #include "llvm/Support/Compiler.h"
35 /// Class to represent integer types. Note that this class is also used to
36 /// represent the built-in integer types: Int1Ty, Int8Ty, Int16Ty, Int32Ty and
38 /// Integer representation type
39 class IntegerType
: public Type
{
40 friend class LLVMContextImpl
;
43 explicit IntegerType(LLVMContext
&C
, unsigned NumBits
) : Type(C
, IntegerTyID
){
44 setSubclassData(NumBits
);
48 /// This enum is just used to hold constants we need for IntegerType.
50 MIN_INT_BITS
= 1, ///< Minimum number of bits that can be specified
51 MAX_INT_BITS
= (1<<24)-1 ///< Maximum number of bits that can be specified
52 ///< Note that bit width is stored in the Type classes SubclassData field
53 ///< which has 24 bits. This yields a maximum bit width of 16,777,215
57 /// This static method is the primary way of constructing an IntegerType.
58 /// If an IntegerType with the same NumBits value was previously instantiated,
59 /// that instance will be returned. Otherwise a new one will be created. Only
60 /// one instance with a given NumBits value is ever created.
61 /// Get or create an IntegerType instance.
62 static IntegerType
*get(LLVMContext
&C
, unsigned NumBits
);
64 /// Get the number of bits in this IntegerType
65 unsigned getBitWidth() const { return getSubclassData(); }
67 /// Return a bitmask with ones set for all of the bits that can be set by an
68 /// unsigned version of this type. This is 0xFF for i8, 0xFFFF for i16, etc.
69 uint64_t getBitMask() const {
70 return ~uint64_t(0UL) >> (64-getBitWidth());
73 /// Return a uint64_t with just the most significant bit set (the sign bit, if
74 /// the value is treated as a signed number).
75 uint64_t getSignBit() const {
76 return 1ULL << (getBitWidth()-1);
79 /// For example, this is 0xFF for an 8 bit integer, 0xFFFF for i16, etc.
80 /// @returns a bit mask with ones set for all the bits of this type.
81 /// Get a bit mask for this type.
82 APInt
getMask() const;
84 /// This method determines if the width of this IntegerType is a power-of-2
85 /// in terms of 8 bit bytes.
86 /// @returns true if this is a power-of-2 byte width.
87 /// Is this a power-of-2 byte-width IntegerType ?
88 bool isPowerOf2ByteWidth() const;
90 /// Methods for support type inquiry through isa, cast, and dyn_cast.
91 static bool classof(const Type
*T
) {
92 return T
->getTypeID() == IntegerTyID
;
96 unsigned Type::getIntegerBitWidth() const {
97 return cast
<IntegerType
>(this)->getBitWidth();
100 /// Class to represent function types
102 class FunctionType
: public Type
{
103 FunctionType(Type
*Result
, ArrayRef
<Type
*> Params
, bool IsVarArgs
);
106 FunctionType(const FunctionType
&) = delete;
107 FunctionType
&operator=(const FunctionType
&) = delete;
109 /// This static method is the primary way of constructing a FunctionType.
110 static FunctionType
*get(Type
*Result
,
111 ArrayRef
<Type
*> Params
, bool isVarArg
);
113 /// Create a FunctionType taking no parameters.
114 static FunctionType
*get(Type
*Result
, bool isVarArg
);
116 /// Return true if the specified type is valid as a return type.
117 static bool isValidReturnType(Type
*RetTy
);
119 /// Return true if the specified type is valid as an argument type.
120 static bool isValidArgumentType(Type
*ArgTy
);
122 bool isVarArg() const { return getSubclassData()!=0; }
123 Type
*getReturnType() const { return ContainedTys
[0]; }
125 using param_iterator
= Type::subtype_iterator
;
127 param_iterator
param_begin() const { return ContainedTys
+ 1; }
128 param_iterator
param_end() const { return &ContainedTys
[NumContainedTys
]; }
129 ArrayRef
<Type
*> params() const {
130 return makeArrayRef(param_begin(), param_end());
133 /// Parameter type accessors.
134 Type
*getParamType(unsigned i
) const { return ContainedTys
[i
+1]; }
136 /// Return the number of fixed parameters this function type requires.
137 /// This does not consider varargs.
138 unsigned getNumParams() const { return NumContainedTys
- 1; }
140 /// Methods for support type inquiry through isa, cast, and dyn_cast.
141 static bool classof(const Type
*T
) {
142 return T
->getTypeID() == FunctionTyID
;
145 static_assert(alignof(FunctionType
) >= alignof(Type
*),
146 "Alignment sufficient for objects appended to FunctionType");
148 bool Type::isFunctionVarArg() const {
149 return cast
<FunctionType
>(this)->isVarArg();
152 Type
*Type::getFunctionParamType(unsigned i
) const {
153 return cast
<FunctionType
>(this)->getParamType(i
);
156 unsigned Type::getFunctionNumParams() const {
157 return cast
<FunctionType
>(this)->getNumParams();
160 /// A handy container for a FunctionType+Callee-pointer pair, which can be
161 /// passed around as a single entity. This assists in replacing the use of
162 /// PointerType::getElementType() to access the function's type, since that's
163 /// slated for removal as part of the [opaque pointer types] project.
164 class FunctionCallee
{
166 // Allow implicit conversion from types which have a getFunctionType member
167 // (e.g. Function and InlineAsm).
168 template <typename T
, typename U
= decltype(&T::getFunctionType
)>
169 FunctionCallee(T
*Fn
)
170 : FnTy(Fn
? Fn
->getFunctionType() : nullptr), Callee(Fn
) {}
172 FunctionCallee(FunctionType
*FnTy
, Value
*Callee
)
173 : FnTy(FnTy
), Callee(Callee
) {
174 assert((FnTy
== nullptr) == (Callee
== nullptr));
177 FunctionCallee(std::nullptr_t
) {}
179 FunctionCallee() = default;
181 FunctionType
*getFunctionType() { return FnTy
; }
183 Value
*getCallee() { return Callee
; }
185 explicit operator bool() { return Callee
; }
188 FunctionType
*FnTy
= nullptr;
189 Value
*Callee
= nullptr;
192 /// Common super class of ArrayType, StructType and VectorType.
193 class CompositeType
: public Type
{
195 explicit CompositeType(LLVMContext
&C
, TypeID tid
) : Type(C
, tid
) {}
198 /// Given an index value into the type, return the type of the element.
199 Type
*getTypeAtIndex(const Value
*V
) const;
200 Type
*getTypeAtIndex(unsigned Idx
) const;
201 bool indexValid(const Value
*V
) const;
202 bool indexValid(unsigned Idx
) const;
204 /// Methods for support type inquiry through isa, cast, and dyn_cast.
205 static bool classof(const Type
*T
) {
206 return T
->getTypeID() == ArrayTyID
||
207 T
->getTypeID() == StructTyID
||
208 T
->getTypeID() == VectorTyID
;
212 /// Class to represent struct types. There are two different kinds of struct
213 /// types: Literal structs and Identified structs.
215 /// Literal struct types (e.g. { i32, i32 }) are uniqued structurally, and must
216 /// always have a body when created. You can get one of these by using one of
217 /// the StructType::get() forms.
219 /// Identified structs (e.g. %foo or %42) may optionally have a name and are not
220 /// uniqued. The names for identified structs are managed at the LLVMContext
221 /// level, so there can only be a single identified struct with a given name in
222 /// a particular LLVMContext. Identified structs may also optionally be opaque
223 /// (have no body specified). You get one of these by using one of the
224 /// StructType::create() forms.
226 /// Independent of what kind of struct you have, the body of a struct type are
227 /// laid out in memory consecutively with the elements directly one after the
228 /// other (if the struct is packed) or (if not packed) with padding between the
229 /// elements as defined by DataLayout (which is required to match what the code
230 /// generator for a target expects).
232 class StructType
: public CompositeType
{
233 StructType(LLVMContext
&C
) : CompositeType(C
, StructTyID
) {}
236 /// This is the contents of the SubClassData field.
243 /// For a named struct that actually has a name, this is a pointer to the
244 /// symbol table entry (maintained by LLVMContext) for the struct.
245 /// This is null if the type is an literal struct or if it is a identified
246 /// type that has an empty name.
247 void *SymbolTableEntry
= nullptr;
250 StructType(const StructType
&) = delete;
251 StructType
&operator=(const StructType
&) = delete;
253 /// This creates an identified struct.
254 static StructType
*create(LLVMContext
&Context
, StringRef Name
);
255 static StructType
*create(LLVMContext
&Context
);
257 static StructType
*create(ArrayRef
<Type
*> Elements
, StringRef Name
,
258 bool isPacked
= false);
259 static StructType
*create(ArrayRef
<Type
*> Elements
);
260 static StructType
*create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
,
261 StringRef Name
, bool isPacked
= false);
262 static StructType
*create(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
);
263 template <class... Tys
>
264 static typename
std::enable_if
<are_base_of
<Type
, Tys
...>::value
,
266 create(StringRef Name
, Type
*elt1
, Tys
*... elts
) {
267 assert(elt1
&& "Cannot create a struct type with no elements with this");
268 SmallVector
<llvm::Type
*, 8> StructFields({elt1
, elts
...});
269 return create(StructFields
, Name
);
272 /// This static method is the primary way to create a literal StructType.
273 static StructType
*get(LLVMContext
&Context
, ArrayRef
<Type
*> Elements
,
274 bool isPacked
= false);
276 /// Create an empty structure type.
277 static StructType
*get(LLVMContext
&Context
, bool isPacked
= false);
279 /// This static method is a convenience method for creating structure types by
280 /// specifying the elements as arguments. Note that this method always returns
281 /// a non-packed struct, and requires at least one element type.
282 template <class... Tys
>
283 static typename
std::enable_if
<are_base_of
<Type
, Tys
...>::value
,
285 get(Type
*elt1
, Tys
*... elts
) {
286 assert(elt1
&& "Cannot create a struct type with no elements with this");
287 LLVMContext
&Ctx
= elt1
->getContext();
288 SmallVector
<llvm::Type
*, 8> StructFields({elt1
, elts
...});
289 return llvm::StructType::get(Ctx
, StructFields
);
292 bool isPacked() const { return (getSubclassData() & SCDB_Packed
) != 0; }
294 /// Return true if this type is uniqued by structural equivalence, false if it
295 /// is a struct definition.
296 bool isLiteral() const { return (getSubclassData() & SCDB_IsLiteral
) != 0; }
298 /// Return true if this is a type with an identity that has no body specified
299 /// yet. These prints as 'opaque' in .ll files.
300 bool isOpaque() const { return (getSubclassData() & SCDB_HasBody
) == 0; }
302 /// isSized - Return true if this is a sized type.
303 bool isSized(SmallPtrSetImpl
<Type
*> *Visited
= nullptr) const;
305 /// Return true if this is a named struct that has a non-empty name.
306 bool hasName() const { return SymbolTableEntry
!= nullptr; }
308 /// Return the name for this struct type if it has an identity.
309 /// This may return an empty string for an unnamed struct type. Do not call
310 /// this on an literal type.
311 StringRef
getName() const;
313 /// Change the name of this type to the specified name, or to a name with a
314 /// suffix if there is a collision. Do not call this on an literal type.
315 void setName(StringRef Name
);
317 /// Specify a body for an opaque identified type.
318 void setBody(ArrayRef
<Type
*> Elements
, bool isPacked
= false);
320 template <typename
... Tys
>
321 typename
std::enable_if
<are_base_of
<Type
, Tys
...>::value
, void>::type
322 setBody(Type
*elt1
, Tys
*... elts
) {
323 assert(elt1
&& "Cannot create a struct type with no elements with this");
324 SmallVector
<llvm::Type
*, 8> StructFields({elt1
, elts
...});
325 setBody(StructFields
);
328 /// Return true if the specified type is valid as a element type.
329 static bool isValidElementType(Type
*ElemTy
);
331 // Iterator access to the elements.
332 using element_iterator
= Type::subtype_iterator
;
334 element_iterator
element_begin() const { return ContainedTys
; }
335 element_iterator
element_end() const { return &ContainedTys
[NumContainedTys
];}
336 ArrayRef
<Type
*> const elements() const {
337 return makeArrayRef(element_begin(), element_end());
340 /// Return true if this is layout identical to the specified struct.
341 bool isLayoutIdentical(StructType
*Other
) const;
343 /// Random access to the elements
344 unsigned getNumElements() const { return NumContainedTys
; }
345 Type
*getElementType(unsigned N
) const {
346 assert(N
< NumContainedTys
&& "Element number out of range!");
347 return ContainedTys
[N
];
350 /// Methods for support type inquiry through isa, cast, and dyn_cast.
351 static bool classof(const Type
*T
) {
352 return T
->getTypeID() == StructTyID
;
356 StringRef
Type::getStructName() const {
357 return cast
<StructType
>(this)->getName();
360 unsigned Type::getStructNumElements() const {
361 return cast
<StructType
>(this)->getNumElements();
364 Type
*Type::getStructElementType(unsigned N
) const {
365 return cast
<StructType
>(this)->getElementType(N
);
368 /// This is the superclass of the array and vector type classes. Both of these
369 /// represent "arrays" in memory. The array type represents a specifically sized
370 /// array, and the vector type represents a specifically sized array that allows
371 /// for use of SIMD instructions. SequentialType holds the common features of
372 /// both, which stem from the fact that both lay their components out in memory
374 class SequentialType
: public CompositeType
{
375 Type
*ContainedType
; ///< Storage for the single contained type.
376 uint64_t NumElements
;
379 SequentialType(TypeID TID
, Type
*ElType
, uint64_t NumElements
)
380 : CompositeType(ElType
->getContext(), TID
), ContainedType(ElType
),
381 NumElements(NumElements
) {
382 ContainedTys
= &ContainedType
;
387 SequentialType(const SequentialType
&) = delete;
388 SequentialType
&operator=(const SequentialType
&) = delete;
390 uint64_t getNumElements() const { return NumElements
; }
391 Type
*getElementType() const { return ContainedType
; }
393 /// Methods for support type inquiry through isa, cast, and dyn_cast.
394 static bool classof(const Type
*T
) {
395 return T
->getTypeID() == ArrayTyID
|| T
->getTypeID() == VectorTyID
;
399 /// Class to represent array types.
400 class ArrayType
: public SequentialType
{
401 ArrayType(Type
*ElType
, uint64_t NumEl
);
404 ArrayType(const ArrayType
&) = delete;
405 ArrayType
&operator=(const ArrayType
&) = delete;
407 /// This static method is the primary way to construct an ArrayType
408 static ArrayType
*get(Type
*ElementType
, uint64_t NumElements
);
410 /// Return true if the specified type is valid as a element type.
411 static bool isValidElementType(Type
*ElemTy
);
413 /// Methods for support type inquiry through isa, cast, and dyn_cast.
414 static bool classof(const Type
*T
) {
415 return T
->getTypeID() == ArrayTyID
;
419 uint64_t Type::getArrayNumElements() const {
420 return cast
<ArrayType
>(this)->getNumElements();
423 /// Class to represent vector types.
424 class VectorType
: public SequentialType
{
425 VectorType(Type
*ElType
, unsigned NumEl
);
428 VectorType(const VectorType
&) = delete;
429 VectorType
&operator=(const VectorType
&) = delete;
431 /// This static method is the primary way to construct an VectorType.
432 static VectorType
*get(Type
*ElementType
, unsigned NumElements
);
434 /// This static method gets a VectorType with the same number of elements as
435 /// the input type, and the element type is an integer type of the same width
436 /// as the input element type.
437 static VectorType
*getInteger(VectorType
*VTy
) {
438 unsigned EltBits
= VTy
->getElementType()->getPrimitiveSizeInBits();
439 assert(EltBits
&& "Element size must be of a non-zero size");
440 Type
*EltTy
= IntegerType::get(VTy
->getContext(), EltBits
);
441 return VectorType::get(EltTy
, VTy
->getNumElements());
444 /// This static method is like getInteger except that the element types are
445 /// twice as wide as the elements in the input type.
446 static VectorType
*getExtendedElementVectorType(VectorType
*VTy
) {
447 unsigned EltBits
= VTy
->getElementType()->getPrimitiveSizeInBits();
448 Type
*EltTy
= IntegerType::get(VTy
->getContext(), EltBits
* 2);
449 return VectorType::get(EltTy
, VTy
->getNumElements());
452 /// This static method is like getInteger except that the element types are
453 /// half as wide as the elements in the input type.
454 static VectorType
*getTruncatedElementVectorType(VectorType
*VTy
) {
455 unsigned EltBits
= VTy
->getElementType()->getPrimitiveSizeInBits();
456 assert((EltBits
& 1) == 0 &&
457 "Cannot truncate vector element with odd bit-width");
458 Type
*EltTy
= IntegerType::get(VTy
->getContext(), EltBits
/ 2);
459 return VectorType::get(EltTy
, VTy
->getNumElements());
462 /// This static method returns a VectorType with half as many elements as the
463 /// input type and the same element type.
464 static VectorType
*getHalfElementsVectorType(VectorType
*VTy
) {
465 unsigned NumElts
= VTy
->getNumElements();
466 assert ((NumElts
& 1) == 0 &&
467 "Cannot halve vector with odd number of elements.");
468 return VectorType::get(VTy
->getElementType(), NumElts
/2);
471 /// This static method returns a VectorType with twice as many elements as the
472 /// input type and the same element type.
473 static VectorType
*getDoubleElementsVectorType(VectorType
*VTy
) {
474 unsigned NumElts
= VTy
->getNumElements();
475 return VectorType::get(VTy
->getElementType(), NumElts
*2);
478 /// Return true if the specified type is valid as a element type.
479 static bool isValidElementType(Type
*ElemTy
);
481 /// Return the number of bits in the Vector type.
482 /// Returns zero when the vector is a vector of pointers.
483 unsigned getBitWidth() const {
484 return getNumElements() * getElementType()->getPrimitiveSizeInBits();
487 /// Methods for support type inquiry through isa, cast, and dyn_cast.
488 static bool classof(const Type
*T
) {
489 return T
->getTypeID() == VectorTyID
;
493 unsigned Type::getVectorNumElements() const {
494 return cast
<VectorType
>(this)->getNumElements();
497 /// Class to represent pointers.
498 class PointerType
: public Type
{
499 explicit PointerType(Type
*ElType
, unsigned AddrSpace
);
504 PointerType(const PointerType
&) = delete;
505 PointerType
&operator=(const PointerType
&) = delete;
507 /// This constructs a pointer to an object of the specified type in a numbered
509 static PointerType
*get(Type
*ElementType
, unsigned AddressSpace
);
511 /// This constructs a pointer to an object of the specified type in the
512 /// generic address space (address space zero).
513 static PointerType
*getUnqual(Type
*ElementType
) {
514 return PointerType::get(ElementType
, 0);
517 Type
*getElementType() const { return PointeeTy
; }
519 /// Return true if the specified type is valid as a element type.
520 static bool isValidElementType(Type
*ElemTy
);
522 /// Return true if we can load or store from a pointer to this type.
523 static bool isLoadableOrStorableType(Type
*ElemTy
);
525 /// Return the address space of the Pointer type.
526 inline unsigned getAddressSpace() const { return getSubclassData(); }
528 /// Implement support type inquiry through isa, cast, and dyn_cast.
529 static bool classof(const Type
*T
) {
530 return T
->getTypeID() == PointerTyID
;
534 unsigned Type::getPointerAddressSpace() const {
535 return cast
<PointerType
>(getScalarType())->getAddressSpace();
538 } // end namespace llvm
540 #endif // LLVM_IR_DERIVEDTYPES_H