1 //===- llvm/Instructions.h - Instruction subclass definitions ---*- C++ -*-===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file exposes the class definitions of all of the subclasses of the
10 // Instruction class. This is meant to be an easy way to get access to all
11 // instruction subclasses.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_IR_INSTRUCTIONS_H
16 #define LLVM_IR_INSTRUCTIONS_H
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/None.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/ADT/iterator.h"
25 #include "llvm/ADT/iterator_range.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/InstrTypes.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/OperandTraits.h"
35 #include "llvm/IR/Type.h"
36 #include "llvm/IR/Use.h"
37 #include "llvm/IR/User.h"
38 #include "llvm/IR/Value.h"
39 #include "llvm/Support/AtomicOrdering.h"
40 #include "llvm/Support/Casting.h"
41 #include "llvm/Support/ErrorHandling.h"
54 //===----------------------------------------------------------------------===//
56 //===----------------------------------------------------------------------===//
58 /// an instruction to allocate memory on the stack
59 class AllocaInst
: public UnaryInstruction
{
63 // Note: Instruction needs to be a friend here to call cloneImpl.
64 friend class Instruction
;
66 AllocaInst
*cloneImpl() const;
69 explicit AllocaInst(Type
*Ty
, unsigned AddrSpace
,
70 Value
*ArraySize
= nullptr,
71 const Twine
&Name
= "",
72 Instruction
*InsertBefore
= nullptr);
73 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
,
74 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
76 AllocaInst(Type
*Ty
, unsigned AddrSpace
,
77 const Twine
&Name
, Instruction
*InsertBefore
= nullptr);
78 AllocaInst(Type
*Ty
, unsigned AddrSpace
,
79 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
81 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
, unsigned Align
,
82 const Twine
&Name
= "", Instruction
*InsertBefore
= nullptr);
83 AllocaInst(Type
*Ty
, unsigned AddrSpace
, Value
*ArraySize
, unsigned Align
,
84 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
86 /// Return true if there is an allocation size parameter to the allocation
87 /// instruction that is not 1.
88 bool isArrayAllocation() const;
90 /// Get the number of elements allocated. For a simple allocation of a single
91 /// element, this will return a constant 1 value.
92 const Value
*getArraySize() const { return getOperand(0); }
93 Value
*getArraySize() { return getOperand(0); }
95 /// Overload to return most specific pointer type.
96 PointerType
*getType() const {
97 return cast
<PointerType
>(Instruction::getType());
100 /// Get allocation size in bits. Returns None if size can't be determined,
101 /// e.g. in case of a VLA.
102 Optional
<uint64_t> getAllocationSizeInBits(const DataLayout
&DL
) const;
104 /// Return the type that is being allocated by the instruction.
105 Type
*getAllocatedType() const { return AllocatedType
; }
106 /// for use only in special circumstances that need to generically
107 /// transform a whole instruction (eg: IR linking and vectorization).
108 void setAllocatedType(Type
*Ty
) { AllocatedType
= Ty
; }
110 /// Return the alignment of the memory that is being allocated by the
112 unsigned getAlignment() const {
113 return (1u << (getSubclassDataFromInstruction() & 31)) >> 1;
115 void setAlignment(unsigned Align
);
117 /// Return true if this alloca is in the entry block of the function and is a
118 /// constant size. If so, the code generator will fold it into the
119 /// prolog/epilog code, so it is basically free.
120 bool isStaticAlloca() const;
122 /// Return true if this alloca is used as an inalloca argument to a call. Such
123 /// allocas are never considered static even if they are in the entry block.
124 bool isUsedWithInAlloca() const {
125 return getSubclassDataFromInstruction() & 32;
128 /// Specify whether this alloca is used to represent the arguments to a call.
129 void setUsedWithInAlloca(bool V
) {
130 setInstructionSubclassData((getSubclassDataFromInstruction() & ~32) |
134 /// Return true if this alloca is used as a swifterror argument to a call.
135 bool isSwiftError() const {
136 return getSubclassDataFromInstruction() & 64;
139 /// Specify whether this alloca is used to represent a swifterror.
140 void setSwiftError(bool V
) {
141 setInstructionSubclassData((getSubclassDataFromInstruction() & ~64) |
145 // Methods for support type inquiry through isa, cast, and dyn_cast:
146 static bool classof(const Instruction
*I
) {
147 return (I
->getOpcode() == Instruction::Alloca
);
149 static bool classof(const Value
*V
) {
150 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
154 // Shadow Instruction::setInstructionSubclassData with a private forwarding
155 // method so that subclasses cannot accidentally use it.
156 void setInstructionSubclassData(unsigned short D
) {
157 Instruction::setInstructionSubclassData(D
);
161 //===----------------------------------------------------------------------===//
163 //===----------------------------------------------------------------------===//
165 /// An instruction for reading from memory. This uses the SubclassData field in
166 /// Value to store whether or not the load is volatile.
167 class LoadInst
: public UnaryInstruction
{
171 // Note: Instruction needs to be a friend here to call cloneImpl.
172 friend class Instruction
;
174 LoadInst
*cloneImpl() const;
177 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
= "",
178 Instruction
*InsertBefore
= nullptr);
179 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
180 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
181 Instruction
*InsertBefore
= nullptr);
182 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
183 BasicBlock
*InsertAtEnd
);
184 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
185 unsigned Align
, Instruction
*InsertBefore
= nullptr);
186 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
187 unsigned Align
, BasicBlock
*InsertAtEnd
);
188 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
189 unsigned Align
, AtomicOrdering Order
,
190 SyncScope::ID SSID
= SyncScope::System
,
191 Instruction
*InsertBefore
= nullptr);
192 LoadInst(Type
*Ty
, Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
193 unsigned Align
, AtomicOrdering Order
, SyncScope::ID SSID
,
194 BasicBlock
*InsertAtEnd
);
196 // Deprecated [opaque pointer types]
197 explicit LoadInst(Value
*Ptr
, const Twine
&NameStr
= "",
198 Instruction
*InsertBefore
= nullptr)
199 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
201 LoadInst(Value
*Ptr
, const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
202 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
204 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
205 Instruction
*InsertBefore
= nullptr)
206 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
207 isVolatile
, InsertBefore
) {}
208 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
,
209 BasicBlock
*InsertAtEnd
)
210 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
211 isVolatile
, InsertAtEnd
) {}
212 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
213 Instruction
*InsertBefore
= nullptr)
214 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
215 isVolatile
, Align
, InsertBefore
) {}
216 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
217 BasicBlock
*InsertAtEnd
)
218 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
219 isVolatile
, Align
, InsertAtEnd
) {}
220 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
221 AtomicOrdering Order
, SyncScope::ID SSID
= SyncScope::System
,
222 Instruction
*InsertBefore
= nullptr)
223 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
224 isVolatile
, Align
, Order
, SSID
, InsertBefore
) {}
225 LoadInst(Value
*Ptr
, const Twine
&NameStr
, bool isVolatile
, unsigned Align
,
226 AtomicOrdering Order
, SyncScope::ID SSID
, BasicBlock
*InsertAtEnd
)
227 : LoadInst(Ptr
->getType()->getPointerElementType(), Ptr
, NameStr
,
228 isVolatile
, Align
, Order
, SSID
, InsertAtEnd
) {}
230 /// Return true if this is a load from a volatile memory location.
231 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
233 /// Specify whether this is a volatile load or not.
234 void setVolatile(bool V
) {
235 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
239 /// Return the alignment of the access that is being performed.
240 unsigned getAlignment() const {
241 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
244 void setAlignment(unsigned Align
);
246 /// Returns the ordering constraint of this load instruction.
247 AtomicOrdering
getOrdering() const {
248 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
251 /// Sets the ordering constraint of this load instruction. May not be Release
252 /// or AcquireRelease.
253 void setOrdering(AtomicOrdering Ordering
) {
254 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
255 ((unsigned)Ordering
<< 7));
258 /// Returns the synchronization scope ID of this load instruction.
259 SyncScope::ID
getSyncScopeID() const {
263 /// Sets the synchronization scope ID of this load instruction.
264 void setSyncScopeID(SyncScope::ID SSID
) {
268 /// Sets the ordering constraint and the synchronization scope ID of this load
270 void setAtomic(AtomicOrdering Ordering
,
271 SyncScope::ID SSID
= SyncScope::System
) {
272 setOrdering(Ordering
);
273 setSyncScopeID(SSID
);
276 bool isSimple() const { return !isAtomic() && !isVolatile(); }
278 bool isUnordered() const {
279 return (getOrdering() == AtomicOrdering::NotAtomic
||
280 getOrdering() == AtomicOrdering::Unordered
) &&
284 Value
*getPointerOperand() { return getOperand(0); }
285 const Value
*getPointerOperand() const { return getOperand(0); }
286 static unsigned getPointerOperandIndex() { return 0U; }
287 Type
*getPointerOperandType() const { return getPointerOperand()->getType(); }
289 /// Returns the address space of the pointer operand.
290 unsigned getPointerAddressSpace() const {
291 return getPointerOperandType()->getPointerAddressSpace();
294 // Methods for support type inquiry through isa, cast, and dyn_cast:
295 static bool classof(const Instruction
*I
) {
296 return I
->getOpcode() == Instruction::Load
;
298 static bool classof(const Value
*V
) {
299 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
303 // Shadow Instruction::setInstructionSubclassData with a private forwarding
304 // method so that subclasses cannot accidentally use it.
305 void setInstructionSubclassData(unsigned short D
) {
306 Instruction::setInstructionSubclassData(D
);
309 /// The synchronization scope ID of this load instruction. Not quite enough
310 /// room in SubClassData for everything, so synchronization scope ID gets its
315 //===----------------------------------------------------------------------===//
317 //===----------------------------------------------------------------------===//
319 /// An instruction for storing to memory.
320 class StoreInst
: public Instruction
{
324 // Note: Instruction needs to be a friend here to call cloneImpl.
325 friend class Instruction
;
327 StoreInst
*cloneImpl() const;
330 StoreInst(Value
*Val
, Value
*Ptr
, Instruction
*InsertBefore
);
331 StoreInst(Value
*Val
, Value
*Ptr
, BasicBlock
*InsertAtEnd
);
332 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
= false,
333 Instruction
*InsertBefore
= nullptr);
334 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
, BasicBlock
*InsertAtEnd
);
335 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
336 unsigned Align
, Instruction
*InsertBefore
= nullptr);
337 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
338 unsigned Align
, BasicBlock
*InsertAtEnd
);
339 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
340 unsigned Align
, AtomicOrdering Order
,
341 SyncScope::ID SSID
= SyncScope::System
,
342 Instruction
*InsertBefore
= nullptr);
343 StoreInst(Value
*Val
, Value
*Ptr
, bool isVolatile
,
344 unsigned Align
, AtomicOrdering Order
, SyncScope::ID SSID
,
345 BasicBlock
*InsertAtEnd
);
347 // allocate space for exactly two operands
348 void *operator new(size_t s
) {
349 return User::operator new(s
, 2);
352 /// Return true if this is a store to a volatile memory location.
353 bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
355 /// Specify whether this is a volatile store or not.
356 void setVolatile(bool V
) {
357 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
361 /// Transparently provide more efficient getOperand methods.
362 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
364 /// Return the alignment of the access that is being performed
365 unsigned getAlignment() const {
366 return (1 << ((getSubclassDataFromInstruction() >> 1) & 31)) >> 1;
369 void setAlignment(unsigned Align
);
371 /// Returns the ordering constraint of this store instruction.
372 AtomicOrdering
getOrdering() const {
373 return AtomicOrdering((getSubclassDataFromInstruction() >> 7) & 7);
376 /// Sets the ordering constraint of this store instruction. May not be
377 /// Acquire or AcquireRelease.
378 void setOrdering(AtomicOrdering Ordering
) {
379 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 7)) |
380 ((unsigned)Ordering
<< 7));
383 /// Returns the synchronization scope ID of this store instruction.
384 SyncScope::ID
getSyncScopeID() const {
388 /// Sets the synchronization scope ID of this store instruction.
389 void setSyncScopeID(SyncScope::ID SSID
) {
393 /// Sets the ordering constraint and the synchronization scope ID of this
394 /// store instruction.
395 void setAtomic(AtomicOrdering Ordering
,
396 SyncScope::ID SSID
= SyncScope::System
) {
397 setOrdering(Ordering
);
398 setSyncScopeID(SSID
);
401 bool isSimple() const { return !isAtomic() && !isVolatile(); }
403 bool isUnordered() const {
404 return (getOrdering() == AtomicOrdering::NotAtomic
||
405 getOrdering() == AtomicOrdering::Unordered
) &&
409 Value
*getValueOperand() { return getOperand(0); }
410 const Value
*getValueOperand() const { return getOperand(0); }
412 Value
*getPointerOperand() { return getOperand(1); }
413 const Value
*getPointerOperand() const { return getOperand(1); }
414 static unsigned getPointerOperandIndex() { return 1U; }
415 Type
*getPointerOperandType() const { return getPointerOperand()->getType(); }
417 /// Returns the address space of the pointer operand.
418 unsigned getPointerAddressSpace() const {
419 return getPointerOperandType()->getPointerAddressSpace();
422 // Methods for support type inquiry through isa, cast, and dyn_cast:
423 static bool classof(const Instruction
*I
) {
424 return I
->getOpcode() == Instruction::Store
;
426 static bool classof(const Value
*V
) {
427 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
431 // Shadow Instruction::setInstructionSubclassData with a private forwarding
432 // method so that subclasses cannot accidentally use it.
433 void setInstructionSubclassData(unsigned short D
) {
434 Instruction::setInstructionSubclassData(D
);
437 /// The synchronization scope ID of this store instruction. Not quite enough
438 /// room in SubClassData for everything, so synchronization scope ID gets its
444 struct OperandTraits
<StoreInst
> : public FixedNumOperandTraits
<StoreInst
, 2> {
447 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst
, Value
)
449 //===----------------------------------------------------------------------===//
451 //===----------------------------------------------------------------------===//
453 /// An instruction for ordering other memory operations.
454 class FenceInst
: public Instruction
{
455 void Init(AtomicOrdering Ordering
, SyncScope::ID SSID
);
458 // Note: Instruction needs to be a friend here to call cloneImpl.
459 friend class Instruction
;
461 FenceInst
*cloneImpl() const;
464 // Ordering may only be Acquire, Release, AcquireRelease, or
465 // SequentiallyConsistent.
466 FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
,
467 SyncScope::ID SSID
= SyncScope::System
,
468 Instruction
*InsertBefore
= nullptr);
469 FenceInst(LLVMContext
&C
, AtomicOrdering Ordering
, SyncScope::ID SSID
,
470 BasicBlock
*InsertAtEnd
);
472 // allocate space for exactly zero operands
473 void *operator new(size_t s
) {
474 return User::operator new(s
, 0);
477 /// Returns the ordering constraint of this fence instruction.
478 AtomicOrdering
getOrdering() const {
479 return AtomicOrdering(getSubclassDataFromInstruction() >> 1);
482 /// Sets the ordering constraint of this fence instruction. May only be
483 /// Acquire, Release, AcquireRelease, or SequentiallyConsistent.
484 void setOrdering(AtomicOrdering Ordering
) {
485 setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
486 ((unsigned)Ordering
<< 1));
489 /// Returns the synchronization scope ID of this fence instruction.
490 SyncScope::ID
getSyncScopeID() const {
494 /// Sets the synchronization scope ID of this fence instruction.
495 void setSyncScopeID(SyncScope::ID SSID
) {
499 // Methods for support type inquiry through isa, cast, and dyn_cast:
500 static bool classof(const Instruction
*I
) {
501 return I
->getOpcode() == Instruction::Fence
;
503 static bool classof(const Value
*V
) {
504 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
508 // Shadow Instruction::setInstructionSubclassData with a private forwarding
509 // method so that subclasses cannot accidentally use it.
510 void setInstructionSubclassData(unsigned short D
) {
511 Instruction::setInstructionSubclassData(D
);
514 /// The synchronization scope ID of this fence instruction. Not quite enough
515 /// room in SubClassData for everything, so synchronization scope ID gets its
520 //===----------------------------------------------------------------------===//
521 // AtomicCmpXchgInst Class
522 //===----------------------------------------------------------------------===//
524 /// an instruction that atomically checks whether a
525 /// specified value is in a memory location, and, if it is, stores a new value
526 /// there. Returns the value that was loaded.
528 class AtomicCmpXchgInst
: public Instruction
{
529 void Init(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
530 AtomicOrdering SuccessOrdering
, AtomicOrdering FailureOrdering
,
534 // Note: Instruction needs to be a friend here to call cloneImpl.
535 friend class Instruction
;
537 AtomicCmpXchgInst
*cloneImpl() const;
540 AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
541 AtomicOrdering SuccessOrdering
,
542 AtomicOrdering FailureOrdering
,
543 SyncScope::ID SSID
, Instruction
*InsertBefore
= nullptr);
544 AtomicCmpXchgInst(Value
*Ptr
, Value
*Cmp
, Value
*NewVal
,
545 AtomicOrdering SuccessOrdering
,
546 AtomicOrdering FailureOrdering
,
547 SyncScope::ID SSID
, BasicBlock
*InsertAtEnd
);
549 // allocate space for exactly three operands
550 void *operator new(size_t s
) {
551 return User::operator new(s
, 3);
554 /// Return true if this is a cmpxchg from a volatile memory
557 bool isVolatile() const {
558 return getSubclassDataFromInstruction() & 1;
561 /// Specify whether this is a volatile cmpxchg.
563 void setVolatile(bool V
) {
564 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
568 /// Return true if this cmpxchg may spuriously fail.
569 bool isWeak() const {
570 return getSubclassDataFromInstruction() & 0x100;
573 void setWeak(bool IsWeak
) {
574 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x100) |
578 /// Transparently provide more efficient getOperand methods.
579 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
581 /// Returns the success ordering constraint of this cmpxchg instruction.
582 AtomicOrdering
getSuccessOrdering() const {
583 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
586 /// Sets the success ordering constraint of this cmpxchg instruction.
587 void setSuccessOrdering(AtomicOrdering Ordering
) {
588 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
589 "CmpXchg instructions can only be atomic.");
590 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0x1c) |
591 ((unsigned)Ordering
<< 2));
594 /// Returns the failure ordering constraint of this cmpxchg instruction.
595 AtomicOrdering
getFailureOrdering() const {
596 return AtomicOrdering((getSubclassDataFromInstruction() >> 5) & 7);
599 /// Sets the failure ordering constraint of this cmpxchg instruction.
600 void setFailureOrdering(AtomicOrdering Ordering
) {
601 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
602 "CmpXchg instructions can only be atomic.");
603 setInstructionSubclassData((getSubclassDataFromInstruction() & ~0xe0) |
604 ((unsigned)Ordering
<< 5));
607 /// Returns the synchronization scope ID of this cmpxchg instruction.
608 SyncScope::ID
getSyncScopeID() const {
612 /// Sets the synchronization scope ID of this cmpxchg instruction.
613 void setSyncScopeID(SyncScope::ID SSID
) {
617 Value
*getPointerOperand() { return getOperand(0); }
618 const Value
*getPointerOperand() const { return getOperand(0); }
619 static unsigned getPointerOperandIndex() { return 0U; }
621 Value
*getCompareOperand() { return getOperand(1); }
622 const Value
*getCompareOperand() const { return getOperand(1); }
624 Value
*getNewValOperand() { return getOperand(2); }
625 const Value
*getNewValOperand() const { return getOperand(2); }
627 /// Returns the address space of the pointer operand.
628 unsigned getPointerAddressSpace() const {
629 return getPointerOperand()->getType()->getPointerAddressSpace();
632 /// Returns the strongest permitted ordering on failure, given the
633 /// desired ordering on success.
635 /// If the comparison in a cmpxchg operation fails, there is no atomic store
636 /// so release semantics cannot be provided. So this function drops explicit
637 /// Release requests from the AtomicOrdering. A SequentiallyConsistent
638 /// operation would remain SequentiallyConsistent.
639 static AtomicOrdering
640 getStrongestFailureOrdering(AtomicOrdering SuccessOrdering
) {
641 switch (SuccessOrdering
) {
643 llvm_unreachable("invalid cmpxchg success ordering");
644 case AtomicOrdering::Release
:
645 case AtomicOrdering::Monotonic
:
646 return AtomicOrdering::Monotonic
;
647 case AtomicOrdering::AcquireRelease
:
648 case AtomicOrdering::Acquire
:
649 return AtomicOrdering::Acquire
;
650 case AtomicOrdering::SequentiallyConsistent
:
651 return AtomicOrdering::SequentiallyConsistent
;
655 // Methods for support type inquiry through isa, cast, and dyn_cast:
656 static bool classof(const Instruction
*I
) {
657 return I
->getOpcode() == Instruction::AtomicCmpXchg
;
659 static bool classof(const Value
*V
) {
660 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
664 // Shadow Instruction::setInstructionSubclassData with a private forwarding
665 // method so that subclasses cannot accidentally use it.
666 void setInstructionSubclassData(unsigned short D
) {
667 Instruction::setInstructionSubclassData(D
);
670 /// The synchronization scope ID of this cmpxchg instruction. Not quite
671 /// enough room in SubClassData for everything, so synchronization scope ID
672 /// gets its own field.
677 struct OperandTraits
<AtomicCmpXchgInst
> :
678 public FixedNumOperandTraits
<AtomicCmpXchgInst
, 3> {
681 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicCmpXchgInst
, Value
)
683 //===----------------------------------------------------------------------===//
684 // AtomicRMWInst Class
685 //===----------------------------------------------------------------------===//
687 /// an instruction that atomically reads a memory location,
688 /// combines it with another value, and then stores the result back. Returns
691 class AtomicRMWInst
: public Instruction
{
693 // Note: Instruction needs to be a friend here to call cloneImpl.
694 friend class Instruction
;
696 AtomicRMWInst
*cloneImpl() const;
699 /// This enumeration lists the possible modifications atomicrmw can make. In
700 /// the descriptions, 'p' is the pointer to the instruction's memory location,
701 /// 'old' is the initial value of *p, and 'v' is the other value passed to the
702 /// instruction. These instructions always return 'old'.
718 /// *p = old >signed v ? old : v
720 /// *p = old <signed v ? old : v
722 /// *p = old >unsigned v ? old : v
724 /// *p = old <unsigned v ? old : v
738 AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
739 AtomicOrdering Ordering
, SyncScope::ID SSID
,
740 Instruction
*InsertBefore
= nullptr);
741 AtomicRMWInst(BinOp Operation
, Value
*Ptr
, Value
*Val
,
742 AtomicOrdering Ordering
, SyncScope::ID SSID
,
743 BasicBlock
*InsertAtEnd
);
745 // allocate space for exactly two operands
746 void *operator new(size_t s
) {
747 return User::operator new(s
, 2);
750 BinOp
getOperation() const {
751 return static_cast<BinOp
>(getSubclassDataFromInstruction() >> 5);
754 static StringRef
getOperationName(BinOp Op
);
756 static bool isFPOperation(BinOp Op
) {
758 case AtomicRMWInst::FAdd
:
759 case AtomicRMWInst::FSub
:
766 void setOperation(BinOp Operation
) {
767 unsigned short SubclassData
= getSubclassDataFromInstruction();
768 setInstructionSubclassData((SubclassData
& 31) |
772 /// Return true if this is a RMW on a volatile memory location.
774 bool isVolatile() const {
775 return getSubclassDataFromInstruction() & 1;
778 /// Specify whether this is a volatile RMW or not.
780 void setVolatile(bool V
) {
781 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
785 /// Transparently provide more efficient getOperand methods.
786 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
788 /// Returns the ordering constraint of this rmw instruction.
789 AtomicOrdering
getOrdering() const {
790 return AtomicOrdering((getSubclassDataFromInstruction() >> 2) & 7);
793 /// Sets the ordering constraint of this rmw instruction.
794 void setOrdering(AtomicOrdering Ordering
) {
795 assert(Ordering
!= AtomicOrdering::NotAtomic
&&
796 "atomicrmw instructions can only be atomic.");
797 setInstructionSubclassData((getSubclassDataFromInstruction() & ~(7 << 2)) |
798 ((unsigned)Ordering
<< 2));
801 /// Returns the synchronization scope ID of this rmw instruction.
802 SyncScope::ID
getSyncScopeID() const {
806 /// Sets the synchronization scope ID of this rmw instruction.
807 void setSyncScopeID(SyncScope::ID SSID
) {
811 Value
*getPointerOperand() { return getOperand(0); }
812 const Value
*getPointerOperand() const { return getOperand(0); }
813 static unsigned getPointerOperandIndex() { return 0U; }
815 Value
*getValOperand() { return getOperand(1); }
816 const Value
*getValOperand() const { return getOperand(1); }
818 /// Returns the address space of the pointer operand.
819 unsigned getPointerAddressSpace() const {
820 return getPointerOperand()->getType()->getPointerAddressSpace();
823 bool isFloatingPointOperation() const {
824 return isFPOperation(getOperation());
827 // Methods for support type inquiry through isa, cast, and dyn_cast:
828 static bool classof(const Instruction
*I
) {
829 return I
->getOpcode() == Instruction::AtomicRMW
;
831 static bool classof(const Value
*V
) {
832 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
836 void Init(BinOp Operation
, Value
*Ptr
, Value
*Val
,
837 AtomicOrdering Ordering
, SyncScope::ID SSID
);
839 // Shadow Instruction::setInstructionSubclassData with a private forwarding
840 // method so that subclasses cannot accidentally use it.
841 void setInstructionSubclassData(unsigned short D
) {
842 Instruction::setInstructionSubclassData(D
);
845 /// The synchronization scope ID of this rmw instruction. Not quite enough
846 /// room in SubClassData for everything, so synchronization scope ID gets its
852 struct OperandTraits
<AtomicRMWInst
>
853 : public FixedNumOperandTraits
<AtomicRMWInst
,2> {
856 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(AtomicRMWInst
, Value
)
858 //===----------------------------------------------------------------------===//
859 // GetElementPtrInst Class
860 //===----------------------------------------------------------------------===//
862 // checkGEPType - Simple wrapper function to give a better assertion failure
863 // message on bad indexes for a gep instruction.
865 inline Type
*checkGEPType(Type
*Ty
) {
866 assert(Ty
&& "Invalid GetElementPtrInst indices for type!");
870 /// an instruction for type-safe pointer arithmetic to
871 /// access elements of arrays and structs
873 class GetElementPtrInst
: public Instruction
{
874 Type
*SourceElementType
;
875 Type
*ResultElementType
;
877 GetElementPtrInst(const GetElementPtrInst
&GEPI
);
879 /// Constructors - Create a getelementptr instruction with a base pointer an
880 /// list of indices. The first ctor can optionally insert before an existing
881 /// instruction, the second appends the new instruction to the specified
883 inline GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
884 ArrayRef
<Value
*> IdxList
, unsigned Values
,
885 const Twine
&NameStr
, Instruction
*InsertBefore
);
886 inline GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
887 ArrayRef
<Value
*> IdxList
, unsigned Values
,
888 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
890 void init(Value
*Ptr
, ArrayRef
<Value
*> IdxList
, const Twine
&NameStr
);
893 // Note: Instruction needs to be a friend here to call cloneImpl.
894 friend class Instruction
;
896 GetElementPtrInst
*cloneImpl() const;
899 static GetElementPtrInst
*Create(Type
*PointeeType
, Value
*Ptr
,
900 ArrayRef
<Value
*> IdxList
,
901 const Twine
&NameStr
= "",
902 Instruction
*InsertBefore
= nullptr) {
903 unsigned Values
= 1 + unsigned(IdxList
.size());
906 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType();
910 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType());
911 return new (Values
) GetElementPtrInst(PointeeType
, Ptr
, IdxList
, Values
,
912 NameStr
, InsertBefore
);
915 static GetElementPtrInst
*Create(Type
*PointeeType
, Value
*Ptr
,
916 ArrayRef
<Value
*> IdxList
,
917 const Twine
&NameStr
,
918 BasicBlock
*InsertAtEnd
) {
919 unsigned Values
= 1 + unsigned(IdxList
.size());
922 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType();
926 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType());
927 return new (Values
) GetElementPtrInst(PointeeType
, Ptr
, IdxList
, Values
,
928 NameStr
, InsertAtEnd
);
931 /// Create an "inbounds" getelementptr. See the documentation for the
932 /// "inbounds" flag in LangRef.html for details.
933 static GetElementPtrInst
*CreateInBounds(Value
*Ptr
,
934 ArrayRef
<Value
*> IdxList
,
935 const Twine
&NameStr
= "",
936 Instruction
*InsertBefore
= nullptr){
937 return CreateInBounds(nullptr, Ptr
, IdxList
, NameStr
, InsertBefore
);
940 static GetElementPtrInst
*
941 CreateInBounds(Type
*PointeeType
, Value
*Ptr
, ArrayRef
<Value
*> IdxList
,
942 const Twine
&NameStr
= "",
943 Instruction
*InsertBefore
= nullptr) {
944 GetElementPtrInst
*GEP
=
945 Create(PointeeType
, Ptr
, IdxList
, NameStr
, InsertBefore
);
946 GEP
->setIsInBounds(true);
950 static GetElementPtrInst
*CreateInBounds(Value
*Ptr
,
951 ArrayRef
<Value
*> IdxList
,
952 const Twine
&NameStr
,
953 BasicBlock
*InsertAtEnd
) {
954 return CreateInBounds(nullptr, Ptr
, IdxList
, NameStr
, InsertAtEnd
);
957 static GetElementPtrInst
*CreateInBounds(Type
*PointeeType
, Value
*Ptr
,
958 ArrayRef
<Value
*> IdxList
,
959 const Twine
&NameStr
,
960 BasicBlock
*InsertAtEnd
) {
961 GetElementPtrInst
*GEP
=
962 Create(PointeeType
, Ptr
, IdxList
, NameStr
, InsertAtEnd
);
963 GEP
->setIsInBounds(true);
967 /// Transparently provide more efficient getOperand methods.
968 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
970 Type
*getSourceElementType() const { return SourceElementType
; }
972 void setSourceElementType(Type
*Ty
) { SourceElementType
= Ty
; }
973 void setResultElementType(Type
*Ty
) { ResultElementType
= Ty
; }
975 Type
*getResultElementType() const {
976 assert(ResultElementType
==
977 cast
<PointerType
>(getType()->getScalarType())->getElementType());
978 return ResultElementType
;
981 /// Returns the address space of this instruction's pointer type.
982 unsigned getAddressSpace() const {
983 // Note that this is always the same as the pointer operand's address space
984 // and that is cheaper to compute, so cheat here.
985 return getPointerAddressSpace();
988 /// Returns the type of the element that would be loaded with
989 /// a load instruction with the specified parameters.
991 /// Null is returned if the indices are invalid for the specified
994 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<Value
*> IdxList
);
995 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<Constant
*> IdxList
);
996 static Type
*getIndexedType(Type
*Ty
, ArrayRef
<uint64_t> IdxList
);
998 inline op_iterator
idx_begin() { return op_begin()+1; }
999 inline const_op_iterator
idx_begin() const { return op_begin()+1; }
1000 inline op_iterator
idx_end() { return op_end(); }
1001 inline const_op_iterator
idx_end() const { return op_end(); }
1003 inline iterator_range
<op_iterator
> indices() {
1004 return make_range(idx_begin(), idx_end());
1007 inline iterator_range
<const_op_iterator
> indices() const {
1008 return make_range(idx_begin(), idx_end());
1011 Value
*getPointerOperand() {
1012 return getOperand(0);
1014 const Value
*getPointerOperand() const {
1015 return getOperand(0);
1017 static unsigned getPointerOperandIndex() {
1018 return 0U; // get index for modifying correct operand.
1021 /// Method to return the pointer operand as a
1023 Type
*getPointerOperandType() const {
1024 return getPointerOperand()->getType();
1027 /// Returns the address space of the pointer operand.
1028 unsigned getPointerAddressSpace() const {
1029 return getPointerOperandType()->getPointerAddressSpace();
1032 /// Returns the pointer type returned by the GEP
1033 /// instruction, which may be a vector of pointers.
1034 static Type
*getGEPReturnType(Value
*Ptr
, ArrayRef
<Value
*> IdxList
) {
1035 return getGEPReturnType(
1036 cast
<PointerType
>(Ptr
->getType()->getScalarType())->getElementType(),
1039 static Type
*getGEPReturnType(Type
*ElTy
, Value
*Ptr
,
1040 ArrayRef
<Value
*> IdxList
) {
1041 Type
*PtrTy
= PointerType::get(checkGEPType(getIndexedType(ElTy
, IdxList
)),
1042 Ptr
->getType()->getPointerAddressSpace());
1044 if (Ptr
->getType()->isVectorTy()) {
1045 unsigned NumElem
= Ptr
->getType()->getVectorNumElements();
1046 return VectorType::get(PtrTy
, NumElem
);
1048 for (Value
*Index
: IdxList
)
1049 if (Index
->getType()->isVectorTy()) {
1050 unsigned NumElem
= Index
->getType()->getVectorNumElements();
1051 return VectorType::get(PtrTy
, NumElem
);
1057 unsigned getNumIndices() const { // Note: always non-negative
1058 return getNumOperands() - 1;
1061 bool hasIndices() const {
1062 return getNumOperands() > 1;
1065 /// Return true if all of the indices of this GEP are
1066 /// zeros. If so, the result pointer and the first operand have the same
1067 /// value, just potentially different types.
1068 bool hasAllZeroIndices() const;
1070 /// Return true if all of the indices of this GEP are
1071 /// constant integers. If so, the result pointer and the first operand have
1072 /// a constant offset between them.
1073 bool hasAllConstantIndices() const;
1075 /// Set or clear the inbounds flag on this GEP instruction.
1076 /// See LangRef.html for the meaning of inbounds on a getelementptr.
1077 void setIsInBounds(bool b
= true);
1079 /// Determine whether the GEP has the inbounds flag.
1080 bool isInBounds() const;
1082 /// Accumulate the constant address offset of this GEP if possible.
1084 /// This routine accepts an APInt into which it will accumulate the constant
1085 /// offset of this GEP if the GEP is in fact constant. If the GEP is not
1086 /// all-constant, it returns false and the value of the offset APInt is
1087 /// undefined (it is *not* preserved!). The APInt passed into this routine
1088 /// must be at least as wide as the IntPtr type for the address space of
1089 /// the base GEP pointer.
1090 bool accumulateConstantOffset(const DataLayout
&DL
, APInt
&Offset
) const;
1092 // Methods for support type inquiry through isa, cast, and dyn_cast:
1093 static bool classof(const Instruction
*I
) {
1094 return (I
->getOpcode() == Instruction::GetElementPtr
);
1096 static bool classof(const Value
*V
) {
1097 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1102 struct OperandTraits
<GetElementPtrInst
> :
1103 public VariadicOperandTraits
<GetElementPtrInst
, 1> {
1106 GetElementPtrInst::GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
1107 ArrayRef
<Value
*> IdxList
, unsigned Values
,
1108 const Twine
&NameStr
,
1109 Instruction
*InsertBefore
)
1110 : Instruction(getGEPReturnType(PointeeType
, Ptr
, IdxList
), GetElementPtr
,
1111 OperandTraits
<GetElementPtrInst
>::op_end(this) - Values
,
1112 Values
, InsertBefore
),
1113 SourceElementType(PointeeType
),
1114 ResultElementType(getIndexedType(PointeeType
, IdxList
)) {
1115 assert(ResultElementType
==
1116 cast
<PointerType
>(getType()->getScalarType())->getElementType());
1117 init(Ptr
, IdxList
, NameStr
);
1120 GetElementPtrInst::GetElementPtrInst(Type
*PointeeType
, Value
*Ptr
,
1121 ArrayRef
<Value
*> IdxList
, unsigned Values
,
1122 const Twine
&NameStr
,
1123 BasicBlock
*InsertAtEnd
)
1124 : Instruction(getGEPReturnType(PointeeType
, Ptr
, IdxList
), GetElementPtr
,
1125 OperandTraits
<GetElementPtrInst
>::op_end(this) - Values
,
1126 Values
, InsertAtEnd
),
1127 SourceElementType(PointeeType
),
1128 ResultElementType(getIndexedType(PointeeType
, IdxList
)) {
1129 assert(ResultElementType
==
1130 cast
<PointerType
>(getType()->getScalarType())->getElementType());
1131 init(Ptr
, IdxList
, NameStr
);
1134 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst
, Value
)
1136 //===----------------------------------------------------------------------===//
1137 // UnaryOperator Class
1138 //===----------------------------------------------------------------------===//
1140 /// a unary instruction
1141 class UnaryOperator
: public UnaryInstruction
{
1145 UnaryOperator(UnaryOps iType
, Value
*S
, Type
*Ty
,
1146 const Twine
&Name
, Instruction
*InsertBefore
);
1147 UnaryOperator(UnaryOps iType
, Value
*S
, Type
*Ty
,
1148 const Twine
&Name
, BasicBlock
*InsertAtEnd
);
1150 // Note: Instruction needs to be a friend here to call cloneImpl.
1151 friend class Instruction
;
1153 UnaryOperator
*cloneImpl() const;
1157 /// Construct a unary instruction, given the opcode and an operand.
1158 /// Optionally (if InstBefore is specified) insert the instruction
1159 /// into a BasicBlock right before the specified instruction. The specified
1160 /// Instruction is allowed to be a dereferenced end iterator.
1162 static UnaryOperator
*Create(UnaryOps Op
, Value
*S
,
1163 const Twine
&Name
= Twine(),
1164 Instruction
*InsertBefore
= nullptr);
1166 /// Construct a unary instruction, given the opcode and an operand.
1167 /// Also automatically insert this instruction to the end of the
1168 /// BasicBlock specified.
1170 static UnaryOperator
*Create(UnaryOps Op
, Value
*S
,
1172 BasicBlock
*InsertAtEnd
);
1174 /// These methods just forward to Create, and are useful when you
1175 /// statically know what type of instruction you're going to create. These
1176 /// helpers just save some typing.
1177 #define HANDLE_UNARY_INST(N, OPC, CLASS) \
1178 static UnaryInstruction *Create##OPC(Value *V, \
1179 const Twine &Name = "") {\
1180 return Create(Instruction::OPC, V, Name);\
1182 #include "llvm/IR/Instruction.def"
1183 #define HANDLE_UNARY_INST(N, OPC, CLASS) \
1184 static UnaryInstruction *Create##OPC(Value *V, \
1185 const Twine &Name, BasicBlock *BB) {\
1186 return Create(Instruction::OPC, V, Name, BB);\
1188 #include "llvm/IR/Instruction.def"
1189 #define HANDLE_UNARY_INST(N, OPC, CLASS) \
1190 static UnaryInstruction *Create##OPC(Value *V, \
1191 const Twine &Name, Instruction *I) {\
1192 return Create(Instruction::OPC, V, Name, I);\
1194 #include "llvm/IR/Instruction.def"
1196 UnaryOps
getOpcode() const {
1197 return static_cast<UnaryOps
>(Instruction::getOpcode());
1201 //===----------------------------------------------------------------------===//
1203 //===----------------------------------------------------------------------===//
1205 /// This instruction compares its operands according to the predicate given
1206 /// to the constructor. It only operates on integers or pointers. The operands
1207 /// must be identical types.
1208 /// Represent an integer comparison operator.
1209 class ICmpInst
: public CmpInst
{
1211 assert(isIntPredicate() &&
1212 "Invalid ICmp predicate value");
1213 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1214 "Both operands to ICmp instruction are not of the same type!");
1215 // Check that the operands are the right type
1216 assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
1217 getOperand(0)->getType()->isPtrOrPtrVectorTy()) &&
1218 "Invalid operand types for ICmp instruction");
1222 // Note: Instruction needs to be a friend here to call cloneImpl.
1223 friend class Instruction
;
1225 /// Clone an identical ICmpInst
1226 ICmpInst
*cloneImpl() const;
1229 /// Constructor with insert-before-instruction semantics.
1231 Instruction
*InsertBefore
, ///< Where to insert
1232 Predicate pred
, ///< The predicate to use for the comparison
1233 Value
*LHS
, ///< The left-hand-side of the expression
1234 Value
*RHS
, ///< The right-hand-side of the expression
1235 const Twine
&NameStr
= "" ///< Name of the instruction
1236 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1237 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
,
1244 /// Constructor with insert-at-end semantics.
1246 BasicBlock
&InsertAtEnd
, ///< Block to insert into.
1247 Predicate pred
, ///< The predicate to use for the comparison
1248 Value
*LHS
, ///< The left-hand-side of the expression
1249 Value
*RHS
, ///< The right-hand-side of the expression
1250 const Twine
&NameStr
= "" ///< Name of the instruction
1251 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1252 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
,
1259 /// Constructor with no-insertion semantics
1261 Predicate pred
, ///< The predicate to use for the comparison
1262 Value
*LHS
, ///< The left-hand-side of the expression
1263 Value
*RHS
, ///< The right-hand-side of the expression
1264 const Twine
&NameStr
= "" ///< Name of the instruction
1265 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1266 Instruction::ICmp
, pred
, LHS
, RHS
, NameStr
) {
1272 /// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
1273 /// @returns the predicate that would be the result if the operand were
1274 /// regarded as signed.
1275 /// Return the signed version of the predicate
1276 Predicate
getSignedPredicate() const {
1277 return getSignedPredicate(getPredicate());
1280 /// This is a static version that you can use without an instruction.
1281 /// Return the signed version of the predicate.
1282 static Predicate
getSignedPredicate(Predicate pred
);
1284 /// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
1285 /// @returns the predicate that would be the result if the operand were
1286 /// regarded as unsigned.
1287 /// Return the unsigned version of the predicate
1288 Predicate
getUnsignedPredicate() const {
1289 return getUnsignedPredicate(getPredicate());
1292 /// This is a static version that you can use without an instruction.
1293 /// Return the unsigned version of the predicate.
1294 static Predicate
getUnsignedPredicate(Predicate pred
);
1296 /// Return true if this predicate is either EQ or NE. This also
1297 /// tests for commutativity.
1298 static bool isEquality(Predicate P
) {
1299 return P
== ICMP_EQ
|| P
== ICMP_NE
;
1302 /// Return true if this predicate is either EQ or NE. This also
1303 /// tests for commutativity.
1304 bool isEquality() const {
1305 return isEquality(getPredicate());
1308 /// @returns true if the predicate of this ICmpInst is commutative
1309 /// Determine if this relation is commutative.
1310 bool isCommutative() const { return isEquality(); }
1312 /// Return true if the predicate is relational (not EQ or NE).
1314 bool isRelational() const {
1315 return !isEquality();
1318 /// Return true if the predicate is relational (not EQ or NE).
1320 static bool isRelational(Predicate P
) {
1321 return !isEquality(P
);
1324 /// Exchange the two operands to this instruction in such a way that it does
1325 /// not modify the semantics of the instruction. The predicate value may be
1326 /// changed to retain the same result if the predicate is order dependent
1328 /// Swap operands and adjust predicate.
1329 void swapOperands() {
1330 setPredicate(getSwappedPredicate());
1331 Op
<0>().swap(Op
<1>());
1334 // Methods for support type inquiry through isa, cast, and dyn_cast:
1335 static bool classof(const Instruction
*I
) {
1336 return I
->getOpcode() == Instruction::ICmp
;
1338 static bool classof(const Value
*V
) {
1339 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1343 //===----------------------------------------------------------------------===//
1345 //===----------------------------------------------------------------------===//
1347 /// This instruction compares its operands according to the predicate given
1348 /// to the constructor. It only operates on floating point values or packed
1349 /// vectors of floating point values. The operands must be identical types.
1350 /// Represents a floating point comparison operator.
1351 class FCmpInst
: public CmpInst
{
1353 assert(isFPPredicate() && "Invalid FCmp predicate value");
1354 assert(getOperand(0)->getType() == getOperand(1)->getType() &&
1355 "Both operands to FCmp instruction are not of the same type!");
1356 // Check that the operands are the right type
1357 assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
1358 "Invalid operand types for FCmp instruction");
1362 // Note: Instruction needs to be a friend here to call cloneImpl.
1363 friend class Instruction
;
1365 /// Clone an identical FCmpInst
1366 FCmpInst
*cloneImpl() const;
1369 /// Constructor with insert-before-instruction semantics.
1371 Instruction
*InsertBefore
, ///< Where to insert
1372 Predicate pred
, ///< The predicate to use for the comparison
1373 Value
*LHS
, ///< The left-hand-side of the expression
1374 Value
*RHS
, ///< The right-hand-side of the expression
1375 const Twine
&NameStr
= "" ///< Name of the instruction
1376 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1377 Instruction::FCmp
, pred
, LHS
, RHS
, NameStr
,
1382 /// Constructor with insert-at-end semantics.
1384 BasicBlock
&InsertAtEnd
, ///< Block to insert into.
1385 Predicate pred
, ///< The predicate to use for the comparison
1386 Value
*LHS
, ///< The left-hand-side of the expression
1387 Value
*RHS
, ///< The right-hand-side of the expression
1388 const Twine
&NameStr
= "" ///< Name of the instruction
1389 ) : CmpInst(makeCmpResultType(LHS
->getType()),
1390 Instruction::FCmp
, pred
, LHS
, RHS
, NameStr
,
1395 /// Constructor with no-insertion semantics
1397 Predicate Pred
, ///< The predicate to use for the comparison
1398 Value
*LHS
, ///< The left-hand-side of the expression
1399 Value
*RHS
, ///< The right-hand-side of the expression
1400 const Twine
&NameStr
= "", ///< Name of the instruction
1401 Instruction
*FlagsSource
= nullptr
1402 ) : CmpInst(makeCmpResultType(LHS
->getType()), Instruction::FCmp
, Pred
, LHS
,
1403 RHS
, NameStr
, nullptr, FlagsSource
) {
1407 /// @returns true if the predicate of this instruction is EQ or NE.
1408 /// Determine if this is an equality predicate.
1409 static bool isEquality(Predicate Pred
) {
1410 return Pred
== FCMP_OEQ
|| Pred
== FCMP_ONE
|| Pred
== FCMP_UEQ
||
1414 /// @returns true if the predicate of this instruction is EQ or NE.
1415 /// Determine if this is an equality predicate.
1416 bool isEquality() const { return isEquality(getPredicate()); }
1418 /// @returns true if the predicate of this instruction is commutative.
1419 /// Determine if this is a commutative predicate.
1420 bool isCommutative() const {
1421 return isEquality() ||
1422 getPredicate() == FCMP_FALSE
||
1423 getPredicate() == FCMP_TRUE
||
1424 getPredicate() == FCMP_ORD
||
1425 getPredicate() == FCMP_UNO
;
1428 /// @returns true if the predicate is relational (not EQ or NE).
1429 /// Determine if this a relational predicate.
1430 bool isRelational() const { return !isEquality(); }
1432 /// Exchange the two operands to this instruction in such a way that it does
1433 /// not modify the semantics of the instruction. The predicate value may be
1434 /// changed to retain the same result if the predicate is order dependent
1436 /// Swap operands and adjust predicate.
1437 void swapOperands() {
1438 setPredicate(getSwappedPredicate());
1439 Op
<0>().swap(Op
<1>());
1442 /// Methods for support type inquiry through isa, cast, and dyn_cast:
1443 static bool classof(const Instruction
*I
) {
1444 return I
->getOpcode() == Instruction::FCmp
;
1446 static bool classof(const Value
*V
) {
1447 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1451 //===----------------------------------------------------------------------===//
1452 /// This class represents a function call, abstracting a target
1453 /// machine's calling convention. This class uses low bit of the SubClassData
1454 /// field to indicate whether or not this is a tail call. The rest of the bits
1455 /// hold the calling convention of the call.
1457 class CallInst
: public CallBase
{
1458 CallInst(const CallInst
&CI
);
1460 /// Construct a CallInst given a range of arguments.
1461 /// Construct a CallInst from a range of arguments
1462 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1463 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1464 Instruction
*InsertBefore
);
1466 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1467 const Twine
&NameStr
, Instruction
*InsertBefore
)
1468 : CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertBefore
) {}
1470 /// Construct a CallInst given a range of arguments.
1471 /// Construct a CallInst from a range of arguments
1472 inline CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1473 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1474 BasicBlock
*InsertAtEnd
);
1476 explicit CallInst(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
,
1477 Instruction
*InsertBefore
);
1479 CallInst(FunctionType
*ty
, Value
*F
, const Twine
&NameStr
,
1480 BasicBlock
*InsertAtEnd
);
1482 void init(FunctionType
*FTy
, Value
*Func
, ArrayRef
<Value
*> Args
,
1483 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
1484 void init(FunctionType
*FTy
, Value
*Func
, const Twine
&NameStr
);
1486 /// Compute the number of operands to allocate.
1487 static int ComputeNumOperands(int NumArgs
, int NumBundleInputs
= 0) {
1488 // We need one operand for the called function, plus the input operand
1490 return 1 + NumArgs
+ NumBundleInputs
;
1494 // Note: Instruction needs to be a friend here to call cloneImpl.
1495 friend class Instruction
;
1497 CallInst
*cloneImpl() const;
1500 static CallInst
*Create(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
= "",
1501 Instruction
*InsertBefore
= nullptr) {
1502 return new (ComputeNumOperands(0)) CallInst(Ty
, F
, NameStr
, InsertBefore
);
1505 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1506 const Twine
&NameStr
,
1507 Instruction
*InsertBefore
= nullptr) {
1508 return new (ComputeNumOperands(Args
.size()))
1509 CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertBefore
);
1512 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1513 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1514 const Twine
&NameStr
= "",
1515 Instruction
*InsertBefore
= nullptr) {
1516 const int NumOperands
=
1517 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
1518 const unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
1520 return new (NumOperands
, DescriptorBytes
)
1521 CallInst(Ty
, Func
, Args
, Bundles
, NameStr
, InsertBefore
);
1524 static CallInst
*Create(FunctionType
*Ty
, Value
*F
, const Twine
&NameStr
,
1525 BasicBlock
*InsertAtEnd
) {
1526 return new (ComputeNumOperands(0)) CallInst(Ty
, F
, NameStr
, InsertAtEnd
);
1529 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1530 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1531 return new (ComputeNumOperands(Args
.size()))
1532 CallInst(Ty
, Func
, Args
, None
, NameStr
, InsertAtEnd
);
1535 static CallInst
*Create(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1536 ArrayRef
<OperandBundleDef
> Bundles
,
1537 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1538 const int NumOperands
=
1539 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
1540 const unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
1542 return new (NumOperands
, DescriptorBytes
)
1543 CallInst(Ty
, Func
, Args
, Bundles
, NameStr
, InsertAtEnd
);
1546 static CallInst
*Create(FunctionCallee Func
, const Twine
&NameStr
= "",
1547 Instruction
*InsertBefore
= nullptr) {
1548 return Create(Func
.getFunctionType(), Func
.getCallee(), NameStr
,
1552 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1553 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1554 const Twine
&NameStr
= "",
1555 Instruction
*InsertBefore
= nullptr) {
1556 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, Bundles
,
1557 NameStr
, InsertBefore
);
1560 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1561 const Twine
&NameStr
,
1562 Instruction
*InsertBefore
= nullptr) {
1563 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, NameStr
,
1567 static CallInst
*Create(FunctionCallee Func
, const Twine
&NameStr
,
1568 BasicBlock
*InsertAtEnd
) {
1569 return Create(Func
.getFunctionType(), Func
.getCallee(), NameStr
,
1573 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1574 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1575 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, NameStr
,
1579 static CallInst
*Create(FunctionCallee Func
, ArrayRef
<Value
*> Args
,
1580 ArrayRef
<OperandBundleDef
> Bundles
,
1581 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1582 return Create(Func
.getFunctionType(), Func
.getCallee(), Args
, Bundles
,
1583 NameStr
, InsertAtEnd
);
1586 // Deprecated [opaque pointer types]
1587 static CallInst
*Create(Value
*Func
, const Twine
&NameStr
= "",
1588 Instruction
*InsertBefore
= nullptr) {
1589 return Create(cast
<FunctionType
>(
1590 cast
<PointerType
>(Func
->getType())->getElementType()),
1591 Func
, NameStr
, InsertBefore
);
1594 // Deprecated [opaque pointer types]
1595 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1596 const Twine
&NameStr
,
1597 Instruction
*InsertBefore
= nullptr) {
1598 return Create(cast
<FunctionType
>(
1599 cast
<PointerType
>(Func
->getType())->getElementType()),
1600 Func
, Args
, NameStr
, InsertBefore
);
1603 // Deprecated [opaque pointer types]
1604 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1605 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1606 const Twine
&NameStr
= "",
1607 Instruction
*InsertBefore
= nullptr) {
1608 return Create(cast
<FunctionType
>(
1609 cast
<PointerType
>(Func
->getType())->getElementType()),
1610 Func
, Args
, Bundles
, NameStr
, InsertBefore
);
1613 // Deprecated [opaque pointer types]
1614 static CallInst
*Create(Value
*Func
, const Twine
&NameStr
,
1615 BasicBlock
*InsertAtEnd
) {
1616 return Create(cast
<FunctionType
>(
1617 cast
<PointerType
>(Func
->getType())->getElementType()),
1618 Func
, NameStr
, InsertAtEnd
);
1621 // Deprecated [opaque pointer types]
1622 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1623 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1624 return Create(cast
<FunctionType
>(
1625 cast
<PointerType
>(Func
->getType())->getElementType()),
1626 Func
, Args
, NameStr
, InsertAtEnd
);
1629 // Deprecated [opaque pointer types]
1630 static CallInst
*Create(Value
*Func
, ArrayRef
<Value
*> Args
,
1631 ArrayRef
<OperandBundleDef
> Bundles
,
1632 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
1633 return Create(cast
<FunctionType
>(
1634 cast
<PointerType
>(Func
->getType())->getElementType()),
1635 Func
, Args
, Bundles
, NameStr
, InsertAtEnd
);
1638 /// Create a clone of \p CI with a different set of operand bundles and
1639 /// insert it before \p InsertPt.
1641 /// The returned call instruction is identical \p CI in every way except that
1642 /// the operand bundles for the new instruction are set to the operand bundles
1644 static CallInst
*Create(CallInst
*CI
, ArrayRef
<OperandBundleDef
> Bundles
,
1645 Instruction
*InsertPt
= nullptr);
1647 /// Generate the IR for a call to malloc:
1648 /// 1. Compute the malloc call's argument as the specified type's size,
1649 /// possibly multiplied by the array size if the array size is not
1651 /// 2. Call malloc with that argument.
1652 /// 3. Bitcast the result of the malloc call to the specified type.
1653 static Instruction
*CreateMalloc(Instruction
*InsertBefore
, Type
*IntPtrTy
,
1654 Type
*AllocTy
, Value
*AllocSize
,
1655 Value
*ArraySize
= nullptr,
1656 Function
*MallocF
= nullptr,
1657 const Twine
&Name
= "");
1658 static Instruction
*CreateMalloc(BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
1659 Type
*AllocTy
, Value
*AllocSize
,
1660 Value
*ArraySize
= nullptr,
1661 Function
*MallocF
= nullptr,
1662 const Twine
&Name
= "");
1663 static Instruction
*CreateMalloc(Instruction
*InsertBefore
, Type
*IntPtrTy
,
1664 Type
*AllocTy
, Value
*AllocSize
,
1665 Value
*ArraySize
= nullptr,
1666 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1667 Function
*MallocF
= nullptr,
1668 const Twine
&Name
= "");
1669 static Instruction
*CreateMalloc(BasicBlock
*InsertAtEnd
, Type
*IntPtrTy
,
1670 Type
*AllocTy
, Value
*AllocSize
,
1671 Value
*ArraySize
= nullptr,
1672 ArrayRef
<OperandBundleDef
> Bundles
= None
,
1673 Function
*MallocF
= nullptr,
1674 const Twine
&Name
= "");
1675 /// Generate the IR for a call to the builtin free function.
1676 static Instruction
*CreateFree(Value
*Source
, Instruction
*InsertBefore
);
1677 static Instruction
*CreateFree(Value
*Source
, BasicBlock
*InsertAtEnd
);
1678 static Instruction
*CreateFree(Value
*Source
,
1679 ArrayRef
<OperandBundleDef
> Bundles
,
1680 Instruction
*InsertBefore
);
1681 static Instruction
*CreateFree(Value
*Source
,
1682 ArrayRef
<OperandBundleDef
> Bundles
,
1683 BasicBlock
*InsertAtEnd
);
1685 // Note that 'musttail' implies 'tail'.
1692 TailCallKind
getTailCallKind() const {
1693 return TailCallKind(getSubclassDataFromInstruction() & 3);
1696 bool isTailCall() const {
1697 unsigned Kind
= getSubclassDataFromInstruction() & 3;
1698 return Kind
== TCK_Tail
|| Kind
== TCK_MustTail
;
1701 bool isMustTailCall() const {
1702 return (getSubclassDataFromInstruction() & 3) == TCK_MustTail
;
1705 bool isNoTailCall() const {
1706 return (getSubclassDataFromInstruction() & 3) == TCK_NoTail
;
1709 void setTailCall(bool isTC
= true) {
1710 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1711 unsigned(isTC
? TCK_Tail
: TCK_None
));
1714 void setTailCallKind(TailCallKind TCK
) {
1715 setInstructionSubclassData((getSubclassDataFromInstruction() & ~3) |
1719 /// Return true if the call can return twice
1720 bool canReturnTwice() const { return hasFnAttr(Attribute::ReturnsTwice
); }
1721 void setCanReturnTwice() {
1722 addAttribute(AttributeList::FunctionIndex
, Attribute::ReturnsTwice
);
1725 // Methods for support type inquiry through isa, cast, and dyn_cast:
1726 static bool classof(const Instruction
*I
) {
1727 return I
->getOpcode() == Instruction::Call
;
1729 static bool classof(const Value
*V
) {
1730 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1734 // Shadow Instruction::setInstructionSubclassData with a private forwarding
1735 // method so that subclasses cannot accidentally use it.
1736 void setInstructionSubclassData(unsigned short D
) {
1737 Instruction::setInstructionSubclassData(D
);
1741 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1742 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1743 BasicBlock
*InsertAtEnd
)
1744 : CallBase(Ty
->getReturnType(), Instruction::Call
,
1745 OperandTraits
<CallBase
>::op_end(this) -
1746 (Args
.size() + CountBundleInputs(Bundles
) + 1),
1747 unsigned(Args
.size() + CountBundleInputs(Bundles
) + 1),
1749 init(Ty
, Func
, Args
, Bundles
, NameStr
);
1752 CallInst::CallInst(FunctionType
*Ty
, Value
*Func
, ArrayRef
<Value
*> Args
,
1753 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
,
1754 Instruction
*InsertBefore
)
1755 : CallBase(Ty
->getReturnType(), Instruction::Call
,
1756 OperandTraits
<CallBase
>::op_end(this) -
1757 (Args
.size() + CountBundleInputs(Bundles
) + 1),
1758 unsigned(Args
.size() + CountBundleInputs(Bundles
) + 1),
1760 init(Ty
, Func
, Args
, Bundles
, NameStr
);
1763 //===----------------------------------------------------------------------===//
1765 //===----------------------------------------------------------------------===//
1767 /// This class represents the LLVM 'select' instruction.
1769 class SelectInst
: public Instruction
{
1770 SelectInst(Value
*C
, Value
*S1
, Value
*S2
, const Twine
&NameStr
,
1771 Instruction
*InsertBefore
)
1772 : Instruction(S1
->getType(), Instruction::Select
,
1773 &Op
<0>(), 3, InsertBefore
) {
1778 SelectInst(Value
*C
, Value
*S1
, Value
*S2
, const Twine
&NameStr
,
1779 BasicBlock
*InsertAtEnd
)
1780 : Instruction(S1
->getType(), Instruction::Select
,
1781 &Op
<0>(), 3, InsertAtEnd
) {
1786 void init(Value
*C
, Value
*S1
, Value
*S2
) {
1787 assert(!areInvalidOperands(C
, S1
, S2
) && "Invalid operands for select");
1794 // Note: Instruction needs to be a friend here to call cloneImpl.
1795 friend class Instruction
;
1797 SelectInst
*cloneImpl() const;
1800 static SelectInst
*Create(Value
*C
, Value
*S1
, Value
*S2
,
1801 const Twine
&NameStr
= "",
1802 Instruction
*InsertBefore
= nullptr,
1803 Instruction
*MDFrom
= nullptr) {
1804 SelectInst
*Sel
= new(3) SelectInst(C
, S1
, S2
, NameStr
, InsertBefore
);
1806 Sel
->copyMetadata(*MDFrom
);
1810 static SelectInst
*Create(Value
*C
, Value
*S1
, Value
*S2
,
1811 const Twine
&NameStr
,
1812 BasicBlock
*InsertAtEnd
) {
1813 return new(3) SelectInst(C
, S1
, S2
, NameStr
, InsertAtEnd
);
1816 const Value
*getCondition() const { return Op
<0>(); }
1817 const Value
*getTrueValue() const { return Op
<1>(); }
1818 const Value
*getFalseValue() const { return Op
<2>(); }
1819 Value
*getCondition() { return Op
<0>(); }
1820 Value
*getTrueValue() { return Op
<1>(); }
1821 Value
*getFalseValue() { return Op
<2>(); }
1823 void setCondition(Value
*V
) { Op
<0>() = V
; }
1824 void setTrueValue(Value
*V
) { Op
<1>() = V
; }
1825 void setFalseValue(Value
*V
) { Op
<2>() = V
; }
1827 /// Return a string if the specified operands are invalid
1828 /// for a select operation, otherwise return null.
1829 static const char *areInvalidOperands(Value
*Cond
, Value
*True
, Value
*False
);
1831 /// Transparently provide more efficient getOperand methods.
1832 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
1834 OtherOps
getOpcode() const {
1835 return static_cast<OtherOps
>(Instruction::getOpcode());
1838 // Methods for support type inquiry through isa, cast, and dyn_cast:
1839 static bool classof(const Instruction
*I
) {
1840 return I
->getOpcode() == Instruction::Select
;
1842 static bool classof(const Value
*V
) {
1843 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1848 struct OperandTraits
<SelectInst
> : public FixedNumOperandTraits
<SelectInst
, 3> {
1851 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst
, Value
)
1853 //===----------------------------------------------------------------------===//
1855 //===----------------------------------------------------------------------===//
1857 /// This class represents the va_arg llvm instruction, which returns
1858 /// an argument of the specified type given a va_list and increments that list
1860 class VAArgInst
: public UnaryInstruction
{
1862 // Note: Instruction needs to be a friend here to call cloneImpl.
1863 friend class Instruction
;
1865 VAArgInst
*cloneImpl() const;
1868 VAArgInst(Value
*List
, Type
*Ty
, const Twine
&NameStr
= "",
1869 Instruction
*InsertBefore
= nullptr)
1870 : UnaryInstruction(Ty
, VAArg
, List
, InsertBefore
) {
1874 VAArgInst(Value
*List
, Type
*Ty
, const Twine
&NameStr
,
1875 BasicBlock
*InsertAtEnd
)
1876 : UnaryInstruction(Ty
, VAArg
, List
, InsertAtEnd
) {
1880 Value
*getPointerOperand() { return getOperand(0); }
1881 const Value
*getPointerOperand() const { return getOperand(0); }
1882 static unsigned getPointerOperandIndex() { return 0U; }
1884 // Methods for support type inquiry through isa, cast, and dyn_cast:
1885 static bool classof(const Instruction
*I
) {
1886 return I
->getOpcode() == VAArg
;
1888 static bool classof(const Value
*V
) {
1889 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1893 //===----------------------------------------------------------------------===//
1894 // ExtractElementInst Class
1895 //===----------------------------------------------------------------------===//
1897 /// This instruction extracts a single (scalar)
1898 /// element from a VectorType value
1900 class ExtractElementInst
: public Instruction
{
1901 ExtractElementInst(Value
*Vec
, Value
*Idx
, const Twine
&NameStr
= "",
1902 Instruction
*InsertBefore
= nullptr);
1903 ExtractElementInst(Value
*Vec
, Value
*Idx
, const Twine
&NameStr
,
1904 BasicBlock
*InsertAtEnd
);
1907 // Note: Instruction needs to be a friend here to call cloneImpl.
1908 friend class Instruction
;
1910 ExtractElementInst
*cloneImpl() const;
1913 static ExtractElementInst
*Create(Value
*Vec
, Value
*Idx
,
1914 const Twine
&NameStr
= "",
1915 Instruction
*InsertBefore
= nullptr) {
1916 return new(2) ExtractElementInst(Vec
, Idx
, NameStr
, InsertBefore
);
1919 static ExtractElementInst
*Create(Value
*Vec
, Value
*Idx
,
1920 const Twine
&NameStr
,
1921 BasicBlock
*InsertAtEnd
) {
1922 return new(2) ExtractElementInst(Vec
, Idx
, NameStr
, InsertAtEnd
);
1925 /// Return true if an extractelement instruction can be
1926 /// formed with the specified operands.
1927 static bool isValidOperands(const Value
*Vec
, const Value
*Idx
);
1929 Value
*getVectorOperand() { return Op
<0>(); }
1930 Value
*getIndexOperand() { return Op
<1>(); }
1931 const Value
*getVectorOperand() const { return Op
<0>(); }
1932 const Value
*getIndexOperand() const { return Op
<1>(); }
1934 VectorType
*getVectorOperandType() const {
1935 return cast
<VectorType
>(getVectorOperand()->getType());
1938 /// Transparently provide more efficient getOperand methods.
1939 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
1941 // Methods for support type inquiry through isa, cast, and dyn_cast:
1942 static bool classof(const Instruction
*I
) {
1943 return I
->getOpcode() == Instruction::ExtractElement
;
1945 static bool classof(const Value
*V
) {
1946 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
1951 struct OperandTraits
<ExtractElementInst
> :
1952 public FixedNumOperandTraits
<ExtractElementInst
, 2> {
1955 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst
, Value
)
1957 //===----------------------------------------------------------------------===//
1958 // InsertElementInst Class
1959 //===----------------------------------------------------------------------===//
1961 /// This instruction inserts a single (scalar)
1962 /// element into a VectorType value
1964 class InsertElementInst
: public Instruction
{
1965 InsertElementInst(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1966 const Twine
&NameStr
= "",
1967 Instruction
*InsertBefore
= nullptr);
1968 InsertElementInst(Value
*Vec
, Value
*NewElt
, Value
*Idx
, const Twine
&NameStr
,
1969 BasicBlock
*InsertAtEnd
);
1972 // Note: Instruction needs to be a friend here to call cloneImpl.
1973 friend class Instruction
;
1975 InsertElementInst
*cloneImpl() const;
1978 static InsertElementInst
*Create(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1979 const Twine
&NameStr
= "",
1980 Instruction
*InsertBefore
= nullptr) {
1981 return new(3) InsertElementInst(Vec
, NewElt
, Idx
, NameStr
, InsertBefore
);
1984 static InsertElementInst
*Create(Value
*Vec
, Value
*NewElt
, Value
*Idx
,
1985 const Twine
&NameStr
,
1986 BasicBlock
*InsertAtEnd
) {
1987 return new(3) InsertElementInst(Vec
, NewElt
, Idx
, NameStr
, InsertAtEnd
);
1990 /// Return true if an insertelement instruction can be
1991 /// formed with the specified operands.
1992 static bool isValidOperands(const Value
*Vec
, const Value
*NewElt
,
1995 /// Overload to return most specific vector type.
1997 VectorType
*getType() const {
1998 return cast
<VectorType
>(Instruction::getType());
2001 /// Transparently provide more efficient getOperand methods.
2002 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2004 // Methods for support type inquiry through isa, cast, and dyn_cast:
2005 static bool classof(const Instruction
*I
) {
2006 return I
->getOpcode() == Instruction::InsertElement
;
2008 static bool classof(const Value
*V
) {
2009 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2014 struct OperandTraits
<InsertElementInst
> :
2015 public FixedNumOperandTraits
<InsertElementInst
, 3> {
2018 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst
, Value
)
2020 //===----------------------------------------------------------------------===//
2021 // ShuffleVectorInst Class
2022 //===----------------------------------------------------------------------===//
2024 /// This instruction constructs a fixed permutation of two
2027 class ShuffleVectorInst
: public Instruction
{
2029 // Note: Instruction needs to be a friend here to call cloneImpl.
2030 friend class Instruction
;
2032 ShuffleVectorInst
*cloneImpl() const;
2035 ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
2036 const Twine
&NameStr
= "",
2037 Instruction
*InsertBefor
= nullptr);
2038 ShuffleVectorInst(Value
*V1
, Value
*V2
, Value
*Mask
,
2039 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2041 // allocate space for exactly three operands
2042 void *operator new(size_t s
) {
2043 return User::operator new(s
, 3);
2046 /// Return true if a shufflevector instruction can be
2047 /// formed with the specified operands.
2048 static bool isValidOperands(const Value
*V1
, const Value
*V2
,
2051 /// Overload to return most specific vector type.
2053 VectorType
*getType() const {
2054 return cast
<VectorType
>(Instruction::getType());
2057 /// Transparently provide more efficient getOperand methods.
2058 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2060 Constant
*getMask() const {
2061 return cast
<Constant
>(getOperand(2));
2064 /// Return the shuffle mask value for the specified element of the mask.
2065 /// Return -1 if the element is undef.
2066 static int getMaskValue(const Constant
*Mask
, unsigned Elt
);
2068 /// Return the shuffle mask value of this instruction for the given element
2069 /// index. Return -1 if the element is undef.
2070 int getMaskValue(unsigned Elt
) const {
2071 return getMaskValue(getMask(), Elt
);
2074 /// Convert the input shuffle mask operand to a vector of integers. Undefined
2075 /// elements of the mask are returned as -1.
2076 static void getShuffleMask(const Constant
*Mask
,
2077 SmallVectorImpl
<int> &Result
);
2079 /// Return the mask for this instruction as a vector of integers. Undefined
2080 /// elements of the mask are returned as -1.
2081 void getShuffleMask(SmallVectorImpl
<int> &Result
) const {
2082 return getShuffleMask(getMask(), Result
);
2085 SmallVector
<int, 16> getShuffleMask() const {
2086 SmallVector
<int, 16> Mask
;
2087 getShuffleMask(Mask
);
2091 /// Return true if this shuffle returns a vector with a different number of
2092 /// elements than its source vectors.
2093 /// Examples: shufflevector <4 x n> A, <4 x n> B, <1,2,3>
2094 /// shufflevector <4 x n> A, <4 x n> B, <1,2,3,4,5>
2095 bool changesLength() const {
2096 unsigned NumSourceElts
= Op
<0>()->getType()->getVectorNumElements();
2097 unsigned NumMaskElts
= getMask()->getType()->getVectorNumElements();
2098 return NumSourceElts
!= NumMaskElts
;
2101 /// Return true if this shuffle returns a vector with a greater number of
2102 /// elements than its source vectors.
2103 /// Example: shufflevector <2 x n> A, <2 x n> B, <1,2,3>
2104 bool increasesLength() const {
2105 unsigned NumSourceElts
= Op
<0>()->getType()->getVectorNumElements();
2106 unsigned NumMaskElts
= getMask()->getType()->getVectorNumElements();
2107 return NumSourceElts
< NumMaskElts
;
2110 /// Return true if this shuffle mask chooses elements from exactly one source
2112 /// Example: <7,5,undef,7>
2113 /// This assumes that vector operands are the same length as the mask.
2114 static bool isSingleSourceMask(ArrayRef
<int> Mask
);
2115 static bool isSingleSourceMask(const Constant
*Mask
) {
2116 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2117 SmallVector
<int, 16> MaskAsInts
;
2118 getShuffleMask(Mask
, MaskAsInts
);
2119 return isSingleSourceMask(MaskAsInts
);
2122 /// Return true if this shuffle chooses elements from exactly one source
2123 /// vector without changing the length of that vector.
2124 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,0,undef,3>
2125 /// TODO: Optionally allow length-changing shuffles.
2126 bool isSingleSource() const {
2127 return !changesLength() && isSingleSourceMask(getMask());
2130 /// Return true if this shuffle mask chooses elements from exactly one source
2131 /// vector without lane crossings. A shuffle using this mask is not
2132 /// necessarily a no-op because it may change the number of elements from its
2133 /// input vectors or it may provide demanded bits knowledge via undef lanes.
2134 /// Example: <undef,undef,2,3>
2135 static bool isIdentityMask(ArrayRef
<int> Mask
);
2136 static bool isIdentityMask(const Constant
*Mask
) {
2137 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2138 SmallVector
<int, 16> MaskAsInts
;
2139 getShuffleMask(Mask
, MaskAsInts
);
2140 return isIdentityMask(MaskAsInts
);
2143 /// Return true if this shuffle chooses elements from exactly one source
2144 /// vector without lane crossings and does not change the number of elements
2145 /// from its input vectors.
2146 /// Example: shufflevector <4 x n> A, <4 x n> B, <4,undef,6,undef>
2147 bool isIdentity() const {
2148 return !changesLength() && isIdentityMask(getShuffleMask());
2151 /// Return true if this shuffle lengthens exactly one source vector with
2152 /// undefs in the high elements.
2153 bool isIdentityWithPadding() const;
2155 /// Return true if this shuffle extracts the first N elements of exactly one
2157 bool isIdentityWithExtract() const;
2159 /// Return true if this shuffle concatenates its 2 source vectors. This
2160 /// returns false if either input is undefined. In that case, the shuffle is
2161 /// is better classified as an identity with padding operation.
2162 bool isConcat() const;
2164 /// Return true if this shuffle mask chooses elements from its source vectors
2165 /// without lane crossings. A shuffle using this mask would be
2166 /// equivalent to a vector select with a constant condition operand.
2167 /// Example: <4,1,6,undef>
2168 /// This returns false if the mask does not choose from both input vectors.
2169 /// In that case, the shuffle is better classified as an identity shuffle.
2170 /// This assumes that vector operands are the same length as the mask
2171 /// (a length-changing shuffle can never be equivalent to a vector select).
2172 static bool isSelectMask(ArrayRef
<int> Mask
);
2173 static bool isSelectMask(const Constant
*Mask
) {
2174 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2175 SmallVector
<int, 16> MaskAsInts
;
2176 getShuffleMask(Mask
, MaskAsInts
);
2177 return isSelectMask(MaskAsInts
);
2180 /// Return true if this shuffle chooses elements from its source vectors
2181 /// without lane crossings and all operands have the same number of elements.
2182 /// In other words, this shuffle is equivalent to a vector select with a
2183 /// constant condition operand.
2184 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,1,6,3>
2185 /// This returns false if the mask does not choose from both input vectors.
2186 /// In that case, the shuffle is better classified as an identity shuffle.
2187 /// TODO: Optionally allow length-changing shuffles.
2188 bool isSelect() const {
2189 return !changesLength() && isSelectMask(getMask());
2192 /// Return true if this shuffle mask swaps the order of elements from exactly
2193 /// one source vector.
2194 /// Example: <7,6,undef,4>
2195 /// This assumes that vector operands are the same length as the mask.
2196 static bool isReverseMask(ArrayRef
<int> Mask
);
2197 static bool isReverseMask(const Constant
*Mask
) {
2198 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2199 SmallVector
<int, 16> MaskAsInts
;
2200 getShuffleMask(Mask
, MaskAsInts
);
2201 return isReverseMask(MaskAsInts
);
2204 /// Return true if this shuffle swaps the order of elements from exactly
2205 /// one source vector.
2206 /// Example: shufflevector <4 x n> A, <4 x n> B, <3,undef,1,undef>
2207 /// TODO: Optionally allow length-changing shuffles.
2208 bool isReverse() const {
2209 return !changesLength() && isReverseMask(getMask());
2212 /// Return true if this shuffle mask chooses all elements with the same value
2213 /// as the first element of exactly one source vector.
2214 /// Example: <4,undef,undef,4>
2215 /// This assumes that vector operands are the same length as the mask.
2216 static bool isZeroEltSplatMask(ArrayRef
<int> Mask
);
2217 static bool isZeroEltSplatMask(const Constant
*Mask
) {
2218 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2219 SmallVector
<int, 16> MaskAsInts
;
2220 getShuffleMask(Mask
, MaskAsInts
);
2221 return isZeroEltSplatMask(MaskAsInts
);
2224 /// Return true if all elements of this shuffle are the same value as the
2225 /// first element of exactly one source vector without changing the length
2227 /// Example: shufflevector <4 x n> A, <4 x n> B, <undef,0,undef,0>
2228 /// TODO: Optionally allow length-changing shuffles.
2229 /// TODO: Optionally allow splats from other elements.
2230 bool isZeroEltSplat() const {
2231 return !changesLength() && isZeroEltSplatMask(getMask());
2234 /// Return true if this shuffle mask is a transpose mask.
2235 /// Transpose vector masks transpose a 2xn matrix. They read corresponding
2236 /// even- or odd-numbered vector elements from two n-dimensional source
2237 /// vectors and write each result into consecutive elements of an
2238 /// n-dimensional destination vector. Two shuffles are necessary to complete
2239 /// the transpose, one for the even elements and another for the odd elements.
2240 /// This description closely follows how the TRN1 and TRN2 AArch64
2241 /// instructions operate.
2243 /// For example, a simple 2x2 matrix can be transposed with:
2245 /// ; Original matrix
2249 /// ; Transposed matrix
2250 /// t0 = < a, c > = shufflevector m0, m1, < 0, 2 >
2251 /// t1 = < b, d > = shufflevector m0, m1, < 1, 3 >
2253 /// For matrices having greater than n columns, the resulting nx2 transposed
2254 /// matrix is stored in two result vectors such that one vector contains
2255 /// interleaved elements from all the even-numbered rows and the other vector
2256 /// contains interleaved elements from all the odd-numbered rows. For example,
2257 /// a 2x4 matrix can be transposed with:
2259 /// ; Original matrix
2260 /// m0 = < a, b, c, d >
2261 /// m1 = < e, f, g, h >
2263 /// ; Transposed matrix
2264 /// t0 = < a, e, c, g > = shufflevector m0, m1 < 0, 4, 2, 6 >
2265 /// t1 = < b, f, d, h > = shufflevector m0, m1 < 1, 5, 3, 7 >
2266 static bool isTransposeMask(ArrayRef
<int> Mask
);
2267 static bool isTransposeMask(const Constant
*Mask
) {
2268 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2269 SmallVector
<int, 16> MaskAsInts
;
2270 getShuffleMask(Mask
, MaskAsInts
);
2271 return isTransposeMask(MaskAsInts
);
2274 /// Return true if this shuffle transposes the elements of its inputs without
2275 /// changing the length of the vectors. This operation may also be known as a
2276 /// merge or interleave. See the description for isTransposeMask() for the
2277 /// exact specification.
2278 /// Example: shufflevector <4 x n> A, <4 x n> B, <0,4,2,6>
2279 bool isTranspose() const {
2280 return !changesLength() && isTransposeMask(getMask());
2283 /// Return true if this shuffle mask is an extract subvector mask.
2284 /// A valid extract subvector mask returns a smaller vector from a single
2285 /// source operand. The base extraction index is returned as well.
2286 static bool isExtractSubvectorMask(ArrayRef
<int> Mask
, int NumSrcElts
,
2288 static bool isExtractSubvectorMask(const Constant
*Mask
, int NumSrcElts
,
2290 assert(Mask
->getType()->isVectorTy() && "Shuffle needs vector constant.");
2291 SmallVector
<int, 16> MaskAsInts
;
2292 getShuffleMask(Mask
, MaskAsInts
);
2293 return isExtractSubvectorMask(MaskAsInts
, NumSrcElts
, Index
);
2296 /// Return true if this shuffle mask is an extract subvector mask.
2297 bool isExtractSubvectorMask(int &Index
) const {
2298 int NumSrcElts
= Op
<0>()->getType()->getVectorNumElements();
2299 return isExtractSubvectorMask(getMask(), NumSrcElts
, Index
);
2302 /// Change values in a shuffle permute mask assuming the two vector operands
2303 /// of length InVecNumElts have swapped position.
2304 static void commuteShuffleMask(MutableArrayRef
<int> Mask
,
2305 unsigned InVecNumElts
) {
2306 for (int &Idx
: Mask
) {
2309 Idx
= Idx
< (int)InVecNumElts
? Idx
+ InVecNumElts
: Idx
- InVecNumElts
;
2310 assert(Idx
>= 0 && Idx
< (int)InVecNumElts
* 2 &&
2311 "shufflevector mask index out of range");
2315 // Methods for support type inquiry through isa, cast, and dyn_cast:
2316 static bool classof(const Instruction
*I
) {
2317 return I
->getOpcode() == Instruction::ShuffleVector
;
2319 static bool classof(const Value
*V
) {
2320 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2325 struct OperandTraits
<ShuffleVectorInst
> :
2326 public FixedNumOperandTraits
<ShuffleVectorInst
, 3> {
2329 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst
, Value
)
2331 //===----------------------------------------------------------------------===//
2332 // ExtractValueInst Class
2333 //===----------------------------------------------------------------------===//
2335 /// This instruction extracts a struct member or array
2336 /// element value from an aggregate value.
2338 class ExtractValueInst
: public UnaryInstruction
{
2339 SmallVector
<unsigned, 4> Indices
;
2341 ExtractValueInst(const ExtractValueInst
&EVI
);
2343 /// Constructors - Create a extractvalue instruction with a base aggregate
2344 /// value and a list of indices. The first ctor can optionally insert before
2345 /// an existing instruction, the second appends the new instruction to the
2346 /// specified BasicBlock.
2347 inline ExtractValueInst(Value
*Agg
,
2348 ArrayRef
<unsigned> Idxs
,
2349 const Twine
&NameStr
,
2350 Instruction
*InsertBefore
);
2351 inline ExtractValueInst(Value
*Agg
,
2352 ArrayRef
<unsigned> Idxs
,
2353 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2355 void init(ArrayRef
<unsigned> Idxs
, const Twine
&NameStr
);
2358 // Note: Instruction needs to be a friend here to call cloneImpl.
2359 friend class Instruction
;
2361 ExtractValueInst
*cloneImpl() const;
2364 static ExtractValueInst
*Create(Value
*Agg
,
2365 ArrayRef
<unsigned> Idxs
,
2366 const Twine
&NameStr
= "",
2367 Instruction
*InsertBefore
= nullptr) {
2369 ExtractValueInst(Agg
, Idxs
, NameStr
, InsertBefore
);
2372 static ExtractValueInst
*Create(Value
*Agg
,
2373 ArrayRef
<unsigned> Idxs
,
2374 const Twine
&NameStr
,
2375 BasicBlock
*InsertAtEnd
) {
2376 return new ExtractValueInst(Agg
, Idxs
, NameStr
, InsertAtEnd
);
2379 /// Returns the type of the element that would be extracted
2380 /// with an extractvalue instruction with the specified parameters.
2382 /// Null is returned if the indices are invalid for the specified type.
2383 static Type
*getIndexedType(Type
*Agg
, ArrayRef
<unsigned> Idxs
);
2385 using idx_iterator
= const unsigned*;
2387 inline idx_iterator
idx_begin() const { return Indices
.begin(); }
2388 inline idx_iterator
idx_end() const { return Indices
.end(); }
2389 inline iterator_range
<idx_iterator
> indices() const {
2390 return make_range(idx_begin(), idx_end());
2393 Value
*getAggregateOperand() {
2394 return getOperand(0);
2396 const Value
*getAggregateOperand() const {
2397 return getOperand(0);
2399 static unsigned getAggregateOperandIndex() {
2400 return 0U; // get index for modifying correct operand
2403 ArrayRef
<unsigned> getIndices() const {
2407 unsigned getNumIndices() const {
2408 return (unsigned)Indices
.size();
2411 bool hasIndices() const {
2415 // Methods for support type inquiry through isa, cast, and dyn_cast:
2416 static bool classof(const Instruction
*I
) {
2417 return I
->getOpcode() == Instruction::ExtractValue
;
2419 static bool classof(const Value
*V
) {
2420 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2424 ExtractValueInst::ExtractValueInst(Value
*Agg
,
2425 ArrayRef
<unsigned> Idxs
,
2426 const Twine
&NameStr
,
2427 Instruction
*InsertBefore
)
2428 : UnaryInstruction(checkGEPType(getIndexedType(Agg
->getType(), Idxs
)),
2429 ExtractValue
, Agg
, InsertBefore
) {
2430 init(Idxs
, NameStr
);
2433 ExtractValueInst::ExtractValueInst(Value
*Agg
,
2434 ArrayRef
<unsigned> Idxs
,
2435 const Twine
&NameStr
,
2436 BasicBlock
*InsertAtEnd
)
2437 : UnaryInstruction(checkGEPType(getIndexedType(Agg
->getType(), Idxs
)),
2438 ExtractValue
, Agg
, InsertAtEnd
) {
2439 init(Idxs
, NameStr
);
2442 //===----------------------------------------------------------------------===//
2443 // InsertValueInst Class
2444 //===----------------------------------------------------------------------===//
2446 /// This instruction inserts a struct field of array element
2447 /// value into an aggregate value.
2449 class InsertValueInst
: public Instruction
{
2450 SmallVector
<unsigned, 4> Indices
;
2452 InsertValueInst(const InsertValueInst
&IVI
);
2454 /// Constructors - Create a insertvalue instruction with a base aggregate
2455 /// value, a value to insert, and a list of indices. The first ctor can
2456 /// optionally insert before an existing instruction, the second appends
2457 /// the new instruction to the specified BasicBlock.
2458 inline InsertValueInst(Value
*Agg
, Value
*Val
,
2459 ArrayRef
<unsigned> Idxs
,
2460 const Twine
&NameStr
,
2461 Instruction
*InsertBefore
);
2462 inline InsertValueInst(Value
*Agg
, Value
*Val
,
2463 ArrayRef
<unsigned> Idxs
,
2464 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2466 /// Constructors - These two constructors are convenience methods because one
2467 /// and two index insertvalue instructions are so common.
2468 InsertValueInst(Value
*Agg
, Value
*Val
, unsigned Idx
,
2469 const Twine
&NameStr
= "",
2470 Instruction
*InsertBefore
= nullptr);
2471 InsertValueInst(Value
*Agg
, Value
*Val
, unsigned Idx
, const Twine
&NameStr
,
2472 BasicBlock
*InsertAtEnd
);
2474 void init(Value
*Agg
, Value
*Val
, ArrayRef
<unsigned> Idxs
,
2475 const Twine
&NameStr
);
2478 // Note: Instruction needs to be a friend here to call cloneImpl.
2479 friend class Instruction
;
2481 InsertValueInst
*cloneImpl() const;
2484 // allocate space for exactly two operands
2485 void *operator new(size_t s
) {
2486 return User::operator new(s
, 2);
2489 static InsertValueInst
*Create(Value
*Agg
, Value
*Val
,
2490 ArrayRef
<unsigned> Idxs
,
2491 const Twine
&NameStr
= "",
2492 Instruction
*InsertBefore
= nullptr) {
2493 return new InsertValueInst(Agg
, Val
, Idxs
, NameStr
, InsertBefore
);
2496 static InsertValueInst
*Create(Value
*Agg
, Value
*Val
,
2497 ArrayRef
<unsigned> Idxs
,
2498 const Twine
&NameStr
,
2499 BasicBlock
*InsertAtEnd
) {
2500 return new InsertValueInst(Agg
, Val
, Idxs
, NameStr
, InsertAtEnd
);
2503 /// Transparently provide more efficient getOperand methods.
2504 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2506 using idx_iterator
= const unsigned*;
2508 inline idx_iterator
idx_begin() const { return Indices
.begin(); }
2509 inline idx_iterator
idx_end() const { return Indices
.end(); }
2510 inline iterator_range
<idx_iterator
> indices() const {
2511 return make_range(idx_begin(), idx_end());
2514 Value
*getAggregateOperand() {
2515 return getOperand(0);
2517 const Value
*getAggregateOperand() const {
2518 return getOperand(0);
2520 static unsigned getAggregateOperandIndex() {
2521 return 0U; // get index for modifying correct operand
2524 Value
*getInsertedValueOperand() {
2525 return getOperand(1);
2527 const Value
*getInsertedValueOperand() const {
2528 return getOperand(1);
2530 static unsigned getInsertedValueOperandIndex() {
2531 return 1U; // get index for modifying correct operand
2534 ArrayRef
<unsigned> getIndices() const {
2538 unsigned getNumIndices() const {
2539 return (unsigned)Indices
.size();
2542 bool hasIndices() const {
2546 // Methods for support type inquiry through isa, cast, and dyn_cast:
2547 static bool classof(const Instruction
*I
) {
2548 return I
->getOpcode() == Instruction::InsertValue
;
2550 static bool classof(const Value
*V
) {
2551 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2556 struct OperandTraits
<InsertValueInst
> :
2557 public FixedNumOperandTraits
<InsertValueInst
, 2> {
2560 InsertValueInst::InsertValueInst(Value
*Agg
,
2562 ArrayRef
<unsigned> Idxs
,
2563 const Twine
&NameStr
,
2564 Instruction
*InsertBefore
)
2565 : Instruction(Agg
->getType(), InsertValue
,
2566 OperandTraits
<InsertValueInst
>::op_begin(this),
2568 init(Agg
, Val
, Idxs
, NameStr
);
2571 InsertValueInst::InsertValueInst(Value
*Agg
,
2573 ArrayRef
<unsigned> Idxs
,
2574 const Twine
&NameStr
,
2575 BasicBlock
*InsertAtEnd
)
2576 : Instruction(Agg
->getType(), InsertValue
,
2577 OperandTraits
<InsertValueInst
>::op_begin(this),
2579 init(Agg
, Val
, Idxs
, NameStr
);
2582 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst
, Value
)
2584 //===----------------------------------------------------------------------===//
2586 //===----------------------------------------------------------------------===//
2588 // PHINode - The PHINode class is used to represent the magical mystical PHI
2589 // node, that can not exist in nature, but can be synthesized in a computer
2590 // scientist's overactive imagination.
2592 class PHINode
: public Instruction
{
2593 /// The number of operands actually allocated. NumOperands is
2594 /// the number actually in use.
2595 unsigned ReservedSpace
;
2597 PHINode(const PHINode
&PN
);
2599 explicit PHINode(Type
*Ty
, unsigned NumReservedValues
,
2600 const Twine
&NameStr
= "",
2601 Instruction
*InsertBefore
= nullptr)
2602 : Instruction(Ty
, Instruction::PHI
, nullptr, 0, InsertBefore
),
2603 ReservedSpace(NumReservedValues
) {
2605 allocHungoffUses(ReservedSpace
);
2608 PHINode(Type
*Ty
, unsigned NumReservedValues
, const Twine
&NameStr
,
2609 BasicBlock
*InsertAtEnd
)
2610 : Instruction(Ty
, Instruction::PHI
, nullptr, 0, InsertAtEnd
),
2611 ReservedSpace(NumReservedValues
) {
2613 allocHungoffUses(ReservedSpace
);
2617 // Note: Instruction needs to be a friend here to call cloneImpl.
2618 friend class Instruction
;
2620 PHINode
*cloneImpl() const;
2622 // allocHungoffUses - this is more complicated than the generic
2623 // User::allocHungoffUses, because we have to allocate Uses for the incoming
2624 // values and pointers to the incoming blocks, all in one allocation.
2625 void allocHungoffUses(unsigned N
) {
2626 User::allocHungoffUses(N
, /* IsPhi */ true);
2630 /// Constructors - NumReservedValues is a hint for the number of incoming
2631 /// edges that this phi node will have (use 0 if you really have no idea).
2632 static PHINode
*Create(Type
*Ty
, unsigned NumReservedValues
,
2633 const Twine
&NameStr
= "",
2634 Instruction
*InsertBefore
= nullptr) {
2635 return new PHINode(Ty
, NumReservedValues
, NameStr
, InsertBefore
);
2638 static PHINode
*Create(Type
*Ty
, unsigned NumReservedValues
,
2639 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
2640 return new PHINode(Ty
, NumReservedValues
, NameStr
, InsertAtEnd
);
2643 /// Provide fast operand accessors
2644 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2646 // Block iterator interface. This provides access to the list of incoming
2647 // basic blocks, which parallels the list of incoming values.
2649 using block_iterator
= BasicBlock
**;
2650 using const_block_iterator
= BasicBlock
* const *;
2652 block_iterator
block_begin() {
2654 reinterpret_cast<Use::UserRef
*>(op_begin() + ReservedSpace
);
2655 return reinterpret_cast<block_iterator
>(ref
+ 1);
2658 const_block_iterator
block_begin() const {
2659 const Use::UserRef
*ref
=
2660 reinterpret_cast<const Use::UserRef
*>(op_begin() + ReservedSpace
);
2661 return reinterpret_cast<const_block_iterator
>(ref
+ 1);
2664 block_iterator
block_end() {
2665 return block_begin() + getNumOperands();
2668 const_block_iterator
block_end() const {
2669 return block_begin() + getNumOperands();
2672 iterator_range
<block_iterator
> blocks() {
2673 return make_range(block_begin(), block_end());
2676 iterator_range
<const_block_iterator
> blocks() const {
2677 return make_range(block_begin(), block_end());
2680 op_range
incoming_values() { return operands(); }
2682 const_op_range
incoming_values() const { return operands(); }
2684 /// Return the number of incoming edges
2686 unsigned getNumIncomingValues() const { return getNumOperands(); }
2688 /// Return incoming value number x
2690 Value
*getIncomingValue(unsigned i
) const {
2691 return getOperand(i
);
2693 void setIncomingValue(unsigned i
, Value
*V
) {
2694 assert(V
&& "PHI node got a null value!");
2695 assert(getType() == V
->getType() &&
2696 "All operands to PHI node must be the same type as the PHI node!");
2700 static unsigned getOperandNumForIncomingValue(unsigned i
) {
2704 static unsigned getIncomingValueNumForOperand(unsigned i
) {
2708 /// Return incoming basic block number @p i.
2710 BasicBlock
*getIncomingBlock(unsigned i
) const {
2711 return block_begin()[i
];
2714 /// Return incoming basic block corresponding
2715 /// to an operand of the PHI.
2717 BasicBlock
*getIncomingBlock(const Use
&U
) const {
2718 assert(this == U
.getUser() && "Iterator doesn't point to PHI's Uses?");
2719 return getIncomingBlock(unsigned(&U
- op_begin()));
2722 /// Return incoming basic block corresponding
2723 /// to value use iterator.
2725 BasicBlock
*getIncomingBlock(Value::const_user_iterator I
) const {
2726 return getIncomingBlock(I
.getUse());
2729 void setIncomingBlock(unsigned i
, BasicBlock
*BB
) {
2730 assert(BB
&& "PHI node got a null basic block!");
2731 block_begin()[i
] = BB
;
2734 /// Add an incoming value to the end of the PHI list
2736 void addIncoming(Value
*V
, BasicBlock
*BB
) {
2737 if (getNumOperands() == ReservedSpace
)
2738 growOperands(); // Get more space!
2739 // Initialize some new operands.
2740 setNumHungOffUseOperands(getNumOperands() + 1);
2741 setIncomingValue(getNumOperands() - 1, V
);
2742 setIncomingBlock(getNumOperands() - 1, BB
);
2745 /// Remove an incoming value. This is useful if a
2746 /// predecessor basic block is deleted. The value removed is returned.
2748 /// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
2749 /// is true), the PHI node is destroyed and any uses of it are replaced with
2750 /// dummy values. The only time there should be zero incoming values to a PHI
2751 /// node is when the block is dead, so this strategy is sound.
2753 Value
*removeIncomingValue(unsigned Idx
, bool DeletePHIIfEmpty
= true);
2755 Value
*removeIncomingValue(const BasicBlock
*BB
, bool DeletePHIIfEmpty
=true) {
2756 int Idx
= getBasicBlockIndex(BB
);
2757 assert(Idx
>= 0 && "Invalid basic block argument to remove!");
2758 return removeIncomingValue(Idx
, DeletePHIIfEmpty
);
2761 /// Return the first index of the specified basic
2762 /// block in the value list for this PHI. Returns -1 if no instance.
2764 int getBasicBlockIndex(const BasicBlock
*BB
) const {
2765 for (unsigned i
= 0, e
= getNumOperands(); i
!= e
; ++i
)
2766 if (block_begin()[i
] == BB
)
2771 Value
*getIncomingValueForBlock(const BasicBlock
*BB
) const {
2772 int Idx
= getBasicBlockIndex(BB
);
2773 assert(Idx
>= 0 && "Invalid basic block argument!");
2774 return getIncomingValue(Idx
);
2777 /// If the specified PHI node always merges together the
2778 /// same value, return the value, otherwise return null.
2779 Value
*hasConstantValue() const;
2781 /// Whether the specified PHI node always merges
2782 /// together the same value, assuming undefs are equal to a unique
2783 /// non-undef value.
2784 bool hasConstantOrUndefValue() const;
2786 /// Methods for support type inquiry through isa, cast, and dyn_cast:
2787 static bool classof(const Instruction
*I
) {
2788 return I
->getOpcode() == Instruction::PHI
;
2790 static bool classof(const Value
*V
) {
2791 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2795 void growOperands();
2799 struct OperandTraits
<PHINode
> : public HungoffOperandTraits
<2> {
2802 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode
, Value
)
2804 //===----------------------------------------------------------------------===//
2805 // LandingPadInst Class
2806 //===----------------------------------------------------------------------===//
2808 //===---------------------------------------------------------------------------
2809 /// The landingpad instruction holds all of the information
2810 /// necessary to generate correct exception handling. The landingpad instruction
2811 /// cannot be moved from the top of a landing pad block, which itself is
2812 /// accessible only from the 'unwind' edge of an invoke. This uses the
2813 /// SubclassData field in Value to store whether or not the landingpad is a
2816 class LandingPadInst
: public Instruction
{
2817 /// The number of operands actually allocated. NumOperands is
2818 /// the number actually in use.
2819 unsigned ReservedSpace
;
2821 LandingPadInst(const LandingPadInst
&LP
);
2824 enum ClauseType
{ Catch
, Filter
};
2827 explicit LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
2828 const Twine
&NameStr
, Instruction
*InsertBefore
);
2829 explicit LandingPadInst(Type
*RetTy
, unsigned NumReservedValues
,
2830 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2832 // Allocate space for exactly zero operands.
2833 void *operator new(size_t s
) {
2834 return User::operator new(s
);
2837 void growOperands(unsigned Size
);
2838 void init(unsigned NumReservedValues
, const Twine
&NameStr
);
2841 // Note: Instruction needs to be a friend here to call cloneImpl.
2842 friend class Instruction
;
2844 LandingPadInst
*cloneImpl() const;
2847 /// Constructors - NumReservedClauses is a hint for the number of incoming
2848 /// clauses that this landingpad will have (use 0 if you really have no idea).
2849 static LandingPadInst
*Create(Type
*RetTy
, unsigned NumReservedClauses
,
2850 const Twine
&NameStr
= "",
2851 Instruction
*InsertBefore
= nullptr);
2852 static LandingPadInst
*Create(Type
*RetTy
, unsigned NumReservedClauses
,
2853 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
2855 /// Provide fast operand accessors
2856 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2858 /// Return 'true' if this landingpad instruction is a
2859 /// cleanup. I.e., it should be run when unwinding even if its landing pad
2860 /// doesn't catch the exception.
2861 bool isCleanup() const { return getSubclassDataFromInstruction() & 1; }
2863 /// Indicate that this landingpad instruction is a cleanup.
2864 void setCleanup(bool V
) {
2865 setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
2869 /// Add a catch or filter clause to the landing pad.
2870 void addClause(Constant
*ClauseVal
);
2872 /// Get the value of the clause at index Idx. Use isCatch/isFilter to
2873 /// determine what type of clause this is.
2874 Constant
*getClause(unsigned Idx
) const {
2875 return cast
<Constant
>(getOperandList()[Idx
]);
2878 /// Return 'true' if the clause and index Idx is a catch clause.
2879 bool isCatch(unsigned Idx
) const {
2880 return !isa
<ArrayType
>(getOperandList()[Idx
]->getType());
2883 /// Return 'true' if the clause and index Idx is a filter clause.
2884 bool isFilter(unsigned Idx
) const {
2885 return isa
<ArrayType
>(getOperandList()[Idx
]->getType());
2888 /// Get the number of clauses for this landing pad.
2889 unsigned getNumClauses() const { return getNumOperands(); }
2891 /// Grow the size of the operand list to accommodate the new
2892 /// number of clauses.
2893 void reserveClauses(unsigned Size
) { growOperands(Size
); }
2895 // Methods for support type inquiry through isa, cast, and dyn_cast:
2896 static bool classof(const Instruction
*I
) {
2897 return I
->getOpcode() == Instruction::LandingPad
;
2899 static bool classof(const Value
*V
) {
2900 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2905 struct OperandTraits
<LandingPadInst
> : public HungoffOperandTraits
<1> {
2908 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(LandingPadInst
, Value
)
2910 //===----------------------------------------------------------------------===//
2912 //===----------------------------------------------------------------------===//
2914 //===---------------------------------------------------------------------------
2915 /// Return a value (possibly void), from a function. Execution
2916 /// does not continue in this function any longer.
2918 class ReturnInst
: public Instruction
{
2919 ReturnInst(const ReturnInst
&RI
);
2922 // ReturnInst constructors:
2923 // ReturnInst() - 'ret void' instruction
2924 // ReturnInst( null) - 'ret void' instruction
2925 // ReturnInst(Value* X) - 'ret X' instruction
2926 // ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
2927 // ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
2928 // ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
2929 // ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
2931 // NOTE: If the Value* passed is of type void then the constructor behaves as
2932 // if it was passed NULL.
2933 explicit ReturnInst(LLVMContext
&C
, Value
*retVal
= nullptr,
2934 Instruction
*InsertBefore
= nullptr);
2935 ReturnInst(LLVMContext
&C
, Value
*retVal
, BasicBlock
*InsertAtEnd
);
2936 explicit ReturnInst(LLVMContext
&C
, BasicBlock
*InsertAtEnd
);
2939 // Note: Instruction needs to be a friend here to call cloneImpl.
2940 friend class Instruction
;
2942 ReturnInst
*cloneImpl() const;
2945 static ReturnInst
* Create(LLVMContext
&C
, Value
*retVal
= nullptr,
2946 Instruction
*InsertBefore
= nullptr) {
2947 return new(!!retVal
) ReturnInst(C
, retVal
, InsertBefore
);
2950 static ReturnInst
* Create(LLVMContext
&C
, Value
*retVal
,
2951 BasicBlock
*InsertAtEnd
) {
2952 return new(!!retVal
) ReturnInst(C
, retVal
, InsertAtEnd
);
2955 static ReturnInst
* Create(LLVMContext
&C
, BasicBlock
*InsertAtEnd
) {
2956 return new(0) ReturnInst(C
, InsertAtEnd
);
2959 /// Provide fast operand accessors
2960 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
2962 /// Convenience accessor. Returns null if there is no return value.
2963 Value
*getReturnValue() const {
2964 return getNumOperands() != 0 ? getOperand(0) : nullptr;
2967 unsigned getNumSuccessors() const { return 0; }
2969 // Methods for support type inquiry through isa, cast, and dyn_cast:
2970 static bool classof(const Instruction
*I
) {
2971 return (I
->getOpcode() == Instruction::Ret
);
2973 static bool classof(const Value
*V
) {
2974 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
2978 BasicBlock
*getSuccessor(unsigned idx
) const {
2979 llvm_unreachable("ReturnInst has no successors!");
2982 void setSuccessor(unsigned idx
, BasicBlock
*B
) {
2983 llvm_unreachable("ReturnInst has no successors!");
2988 struct OperandTraits
<ReturnInst
> : public VariadicOperandTraits
<ReturnInst
> {
2991 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst
, Value
)
2993 //===----------------------------------------------------------------------===//
2995 //===----------------------------------------------------------------------===//
2997 //===---------------------------------------------------------------------------
2998 /// Conditional or Unconditional Branch instruction.
3000 class BranchInst
: public Instruction
{
3001 /// Ops list - Branches are strange. The operands are ordered:
3002 /// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
3003 /// they don't have to check for cond/uncond branchness. These are mostly
3004 /// accessed relative from op_end().
3005 BranchInst(const BranchInst
&BI
);
3006 // BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
3007 // BranchInst(BB *B) - 'br B'
3008 // BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
3009 // BranchInst(BB* B, Inst *I) - 'br B' insert before I
3010 // BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
3011 // BranchInst(BB* B, BB *I) - 'br B' insert at end
3012 // BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
3013 explicit BranchInst(BasicBlock
*IfTrue
, Instruction
*InsertBefore
= nullptr);
3014 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
3015 Instruction
*InsertBefore
= nullptr);
3016 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
);
3017 BranchInst(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
, Value
*Cond
,
3018 BasicBlock
*InsertAtEnd
);
3023 // Note: Instruction needs to be a friend here to call cloneImpl.
3024 friend class Instruction
;
3026 BranchInst
*cloneImpl() const;
3029 /// Iterator type that casts an operand to a basic block.
3031 /// This only makes sense because the successors are stored as adjacent
3032 /// operands for branch instructions.
3033 struct succ_op_iterator
3034 : iterator_adaptor_base
<succ_op_iterator
, value_op_iterator
,
3035 std::random_access_iterator_tag
, BasicBlock
*,
3036 ptrdiff_t, BasicBlock
*, BasicBlock
*> {
3037 explicit succ_op_iterator(value_op_iterator I
) : iterator_adaptor_base(I
) {}
3039 BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3040 BasicBlock
*operator->() const { return operator*(); }
3043 /// The const version of `succ_op_iterator`.
3044 struct const_succ_op_iterator
3045 : iterator_adaptor_base
<const_succ_op_iterator
, const_value_op_iterator
,
3046 std::random_access_iterator_tag
,
3047 const BasicBlock
*, ptrdiff_t, const BasicBlock
*,
3048 const BasicBlock
*> {
3049 explicit const_succ_op_iterator(const_value_op_iterator I
)
3050 : iterator_adaptor_base(I
) {}
3052 const BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3053 const BasicBlock
*operator->() const { return operator*(); }
3056 static BranchInst
*Create(BasicBlock
*IfTrue
,
3057 Instruction
*InsertBefore
= nullptr) {
3058 return new(1) BranchInst(IfTrue
, InsertBefore
);
3061 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
,
3062 Value
*Cond
, Instruction
*InsertBefore
= nullptr) {
3063 return new(3) BranchInst(IfTrue
, IfFalse
, Cond
, InsertBefore
);
3066 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*InsertAtEnd
) {
3067 return new(1) BranchInst(IfTrue
, InsertAtEnd
);
3070 static BranchInst
*Create(BasicBlock
*IfTrue
, BasicBlock
*IfFalse
,
3071 Value
*Cond
, BasicBlock
*InsertAtEnd
) {
3072 return new(3) BranchInst(IfTrue
, IfFalse
, Cond
, InsertAtEnd
);
3075 /// Transparently provide more efficient getOperand methods.
3076 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3078 bool isUnconditional() const { return getNumOperands() == 1; }
3079 bool isConditional() const { return getNumOperands() == 3; }
3081 Value
*getCondition() const {
3082 assert(isConditional() && "Cannot get condition of an uncond branch!");
3086 void setCondition(Value
*V
) {
3087 assert(isConditional() && "Cannot set condition of unconditional branch!");
3091 unsigned getNumSuccessors() const { return 1+isConditional(); }
3093 BasicBlock
*getSuccessor(unsigned i
) const {
3094 assert(i
< getNumSuccessors() && "Successor # out of range for Branch!");
3095 return cast_or_null
<BasicBlock
>((&Op
<-1>() - i
)->get());
3098 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
3099 assert(idx
< getNumSuccessors() && "Successor # out of range for Branch!");
3100 *(&Op
<-1>() - idx
) = NewSucc
;
3103 /// Swap the successors of this branch instruction.
3105 /// Swaps the successors of the branch instruction. This also swaps any
3106 /// branch weight metadata associated with the instruction so that it
3107 /// continues to map correctly to each operand.
3108 void swapSuccessors();
3110 iterator_range
<succ_op_iterator
> successors() {
3112 succ_op_iterator(std::next(value_op_begin(), isConditional() ? 1 : 0)),
3113 succ_op_iterator(value_op_end()));
3116 iterator_range
<const_succ_op_iterator
> successors() const {
3117 return make_range(const_succ_op_iterator(
3118 std::next(value_op_begin(), isConditional() ? 1 : 0)),
3119 const_succ_op_iterator(value_op_end()));
3122 // Methods for support type inquiry through isa, cast, and dyn_cast:
3123 static bool classof(const Instruction
*I
) {
3124 return (I
->getOpcode() == Instruction::Br
);
3126 static bool classof(const Value
*V
) {
3127 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3132 struct OperandTraits
<BranchInst
> : public VariadicOperandTraits
<BranchInst
, 1> {
3135 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst
, Value
)
3137 //===----------------------------------------------------------------------===//
3139 //===----------------------------------------------------------------------===//
3141 //===---------------------------------------------------------------------------
3144 class SwitchInst
: public Instruction
{
3145 unsigned ReservedSpace
;
3147 // Operand[0] = Value to switch on
3148 // Operand[1] = Default basic block destination
3149 // Operand[2n ] = Value to match
3150 // Operand[2n+1] = BasicBlock to go to on match
3151 SwitchInst(const SwitchInst
&SI
);
3153 /// Create a new switch instruction, specifying a value to switch on and a
3154 /// default destination. The number of additional cases can be specified here
3155 /// to make memory allocation more efficient. This constructor can also
3156 /// auto-insert before another instruction.
3157 SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3158 Instruction
*InsertBefore
);
3160 /// Create a new switch instruction, specifying a value to switch on and a
3161 /// default destination. The number of additional cases can be specified here
3162 /// to make memory allocation more efficient. This constructor also
3163 /// auto-inserts at the end of the specified BasicBlock.
3164 SwitchInst(Value
*Value
, BasicBlock
*Default
, unsigned NumCases
,
3165 BasicBlock
*InsertAtEnd
);
3167 // allocate space for exactly zero operands
3168 void *operator new(size_t s
) {
3169 return User::operator new(s
);
3172 void init(Value
*Value
, BasicBlock
*Default
, unsigned NumReserved
);
3173 void growOperands();
3176 // Note: Instruction needs to be a friend here to call cloneImpl.
3177 friend class Instruction
;
3179 SwitchInst
*cloneImpl() const;
3183 static const unsigned DefaultPseudoIndex
= static_cast<unsigned>(~0L-1);
3185 template <typename CaseHandleT
> class CaseIteratorImpl
;
3187 /// A handle to a particular switch case. It exposes a convenient interface
3188 /// to both the case value and the successor block.
3190 /// We define this as a template and instantiate it to form both a const and
3191 /// non-const handle.
3192 template <typename SwitchInstT
, typename ConstantIntT
, typename BasicBlockT
>
3193 class CaseHandleImpl
{
3194 // Directly befriend both const and non-const iterators.
3195 friend class SwitchInst::CaseIteratorImpl
<
3196 CaseHandleImpl
<SwitchInstT
, ConstantIntT
, BasicBlockT
>>;
3199 // Expose the switch type we're parameterized with to the iterator.
3200 using SwitchInstType
= SwitchInstT
;
3205 CaseHandleImpl() = default;
3206 CaseHandleImpl(SwitchInstT
*SI
, ptrdiff_t Index
) : SI(SI
), Index(Index
) {}
3209 /// Resolves case value for current case.
3210 ConstantIntT
*getCaseValue() const {
3211 assert((unsigned)Index
< SI
->getNumCases() &&
3212 "Index out the number of cases.");
3213 return reinterpret_cast<ConstantIntT
*>(SI
->getOperand(2 + Index
* 2));
3216 /// Resolves successor for current case.
3217 BasicBlockT
*getCaseSuccessor() const {
3218 assert(((unsigned)Index
< SI
->getNumCases() ||
3219 (unsigned)Index
== DefaultPseudoIndex
) &&
3220 "Index out the number of cases.");
3221 return SI
->getSuccessor(getSuccessorIndex());
3224 /// Returns number of current case.
3225 unsigned getCaseIndex() const { return Index
; }
3227 /// Returns successor index for current case successor.
3228 unsigned getSuccessorIndex() const {
3229 assert(((unsigned)Index
== DefaultPseudoIndex
||
3230 (unsigned)Index
< SI
->getNumCases()) &&
3231 "Index out the number of cases.");
3232 return (unsigned)Index
!= DefaultPseudoIndex
? Index
+ 1 : 0;
3235 bool operator==(const CaseHandleImpl
&RHS
) const {
3236 assert(SI
== RHS
.SI
&& "Incompatible operators.");
3237 return Index
== RHS
.Index
;
3241 using ConstCaseHandle
=
3242 CaseHandleImpl
<const SwitchInst
, const ConstantInt
, const BasicBlock
>;
3245 : public CaseHandleImpl
<SwitchInst
, ConstantInt
, BasicBlock
> {
3246 friend class SwitchInst::CaseIteratorImpl
<CaseHandle
>;
3249 CaseHandle(SwitchInst
*SI
, ptrdiff_t Index
) : CaseHandleImpl(SI
, Index
) {}
3251 /// Sets the new value for current case.
3252 void setValue(ConstantInt
*V
) {
3253 assert((unsigned)Index
< SI
->getNumCases() &&
3254 "Index out the number of cases.");
3255 SI
->setOperand(2 + Index
*2, reinterpret_cast<Value
*>(V
));
3258 /// Sets the new successor for current case.
3259 void setSuccessor(BasicBlock
*S
) {
3260 SI
->setSuccessor(getSuccessorIndex(), S
);
3264 template <typename CaseHandleT
>
3265 class CaseIteratorImpl
3266 : public iterator_facade_base
<CaseIteratorImpl
<CaseHandleT
>,
3267 std::random_access_iterator_tag
,
3269 using SwitchInstT
= typename
CaseHandleT::SwitchInstType
;
3274 /// Default constructed iterator is in an invalid state until assigned to
3275 /// a case for a particular switch.
3276 CaseIteratorImpl() = default;
3278 /// Initializes case iterator for given SwitchInst and for given
3280 CaseIteratorImpl(SwitchInstT
*SI
, unsigned CaseNum
) : Case(SI
, CaseNum
) {}
3282 /// Initializes case iterator for given SwitchInst and for given
3283 /// successor index.
3284 static CaseIteratorImpl
fromSuccessorIndex(SwitchInstT
*SI
,
3285 unsigned SuccessorIndex
) {
3286 assert(SuccessorIndex
< SI
->getNumSuccessors() &&
3287 "Successor index # out of range!");
3288 return SuccessorIndex
!= 0 ? CaseIteratorImpl(SI
, SuccessorIndex
- 1)
3289 : CaseIteratorImpl(SI
, DefaultPseudoIndex
);
3292 /// Support converting to the const variant. This will be a no-op for const
3294 operator CaseIteratorImpl
<ConstCaseHandle
>() const {
3295 return CaseIteratorImpl
<ConstCaseHandle
>(Case
.SI
, Case
.Index
);
3298 CaseIteratorImpl
&operator+=(ptrdiff_t N
) {
3299 // Check index correctness after addition.
3300 // Note: Index == getNumCases() means end().
3301 assert(Case
.Index
+ N
>= 0 &&
3302 (unsigned)(Case
.Index
+ N
) <= Case
.SI
->getNumCases() &&
3303 "Case.Index out the number of cases.");
3307 CaseIteratorImpl
&operator-=(ptrdiff_t N
) {
3308 // Check index correctness after subtraction.
3309 // Note: Case.Index == getNumCases() means end().
3310 assert(Case
.Index
- N
>= 0 &&
3311 (unsigned)(Case
.Index
- N
) <= Case
.SI
->getNumCases() &&
3312 "Case.Index out the number of cases.");
3316 ptrdiff_t operator-(const CaseIteratorImpl
&RHS
) const {
3317 assert(Case
.SI
== RHS
.Case
.SI
&& "Incompatible operators.");
3318 return Case
.Index
- RHS
.Case
.Index
;
3320 bool operator==(const CaseIteratorImpl
&RHS
) const {
3321 return Case
== RHS
.Case
;
3323 bool operator<(const CaseIteratorImpl
&RHS
) const {
3324 assert(Case
.SI
== RHS
.Case
.SI
&& "Incompatible operators.");
3325 return Case
.Index
< RHS
.Case
.Index
;
3327 CaseHandleT
&operator*() { return Case
; }
3328 const CaseHandleT
&operator*() const { return Case
; }
3331 using CaseIt
= CaseIteratorImpl
<CaseHandle
>;
3332 using ConstCaseIt
= CaseIteratorImpl
<ConstCaseHandle
>;
3334 static SwitchInst
*Create(Value
*Value
, BasicBlock
*Default
,
3336 Instruction
*InsertBefore
= nullptr) {
3337 return new SwitchInst(Value
, Default
, NumCases
, InsertBefore
);
3340 static SwitchInst
*Create(Value
*Value
, BasicBlock
*Default
,
3341 unsigned NumCases
, BasicBlock
*InsertAtEnd
) {
3342 return new SwitchInst(Value
, Default
, NumCases
, InsertAtEnd
);
3345 /// Provide fast operand accessors
3346 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3348 // Accessor Methods for Switch stmt
3349 Value
*getCondition() const { return getOperand(0); }
3350 void setCondition(Value
*V
) { setOperand(0, V
); }
3352 BasicBlock
*getDefaultDest() const {
3353 return cast
<BasicBlock
>(getOperand(1));
3356 void setDefaultDest(BasicBlock
*DefaultCase
) {
3357 setOperand(1, reinterpret_cast<Value
*>(DefaultCase
));
3360 /// Return the number of 'cases' in this switch instruction, excluding the
3362 unsigned getNumCases() const {
3363 return getNumOperands()/2 - 1;
3366 /// Returns a read/write iterator that points to the first case in the
3368 CaseIt
case_begin() {
3369 return CaseIt(this, 0);
3372 /// Returns a read-only iterator that points to the first case in the
3374 ConstCaseIt
case_begin() const {
3375 return ConstCaseIt(this, 0);
3378 /// Returns a read/write iterator that points one past the last in the
3381 return CaseIt(this, getNumCases());
3384 /// Returns a read-only iterator that points one past the last in the
3386 ConstCaseIt
case_end() const {
3387 return ConstCaseIt(this, getNumCases());
3390 /// Iteration adapter for range-for loops.
3391 iterator_range
<CaseIt
> cases() {
3392 return make_range(case_begin(), case_end());
3395 /// Constant iteration adapter for range-for loops.
3396 iterator_range
<ConstCaseIt
> cases() const {
3397 return make_range(case_begin(), case_end());
3400 /// Returns an iterator that points to the default case.
3401 /// Note: this iterator allows to resolve successor only. Attempt
3402 /// to resolve case value causes an assertion.
3403 /// Also note, that increment and decrement also causes an assertion and
3404 /// makes iterator invalid.
3405 CaseIt
case_default() {
3406 return CaseIt(this, DefaultPseudoIndex
);
3408 ConstCaseIt
case_default() const {
3409 return ConstCaseIt(this, DefaultPseudoIndex
);
3412 /// Search all of the case values for the specified constant. If it is
3413 /// explicitly handled, return the case iterator of it, otherwise return
3414 /// default case iterator to indicate that it is handled by the default
3416 CaseIt
findCaseValue(const ConstantInt
*C
) {
3417 CaseIt I
= llvm::find_if(
3418 cases(), [C
](CaseHandle
&Case
) { return Case
.getCaseValue() == C
; });
3419 if (I
!= case_end())
3422 return case_default();
3424 ConstCaseIt
findCaseValue(const ConstantInt
*C
) const {
3425 ConstCaseIt I
= llvm::find_if(cases(), [C
](ConstCaseHandle
&Case
) {
3426 return Case
.getCaseValue() == C
;
3428 if (I
!= case_end())
3431 return case_default();
3434 /// Finds the unique case value for a given successor. Returns null if the
3435 /// successor is not found, not unique, or is the default case.
3436 ConstantInt
*findCaseDest(BasicBlock
*BB
) {
3437 if (BB
== getDefaultDest())
3440 ConstantInt
*CI
= nullptr;
3441 for (auto Case
: cases()) {
3442 if (Case
.getCaseSuccessor() != BB
)
3446 return nullptr; // Multiple cases lead to BB.
3448 CI
= Case
.getCaseValue();
3454 /// Add an entry to the switch instruction.
3456 /// This action invalidates case_end(). Old case_end() iterator will
3457 /// point to the added case.
3458 void addCase(ConstantInt
*OnVal
, BasicBlock
*Dest
);
3460 /// This method removes the specified case and its successor from the switch
3461 /// instruction. Note that this operation may reorder the remaining cases at
3462 /// index idx and above.
3464 /// This action invalidates iterators for all cases following the one removed,
3465 /// including the case_end() iterator. It returns an iterator for the next
3467 CaseIt
removeCase(CaseIt I
);
3469 unsigned getNumSuccessors() const { return getNumOperands()/2; }
3470 BasicBlock
*getSuccessor(unsigned idx
) const {
3471 assert(idx
< getNumSuccessors() &&"Successor idx out of range for switch!");
3472 return cast
<BasicBlock
>(getOperand(idx
*2+1));
3474 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
3475 assert(idx
< getNumSuccessors() && "Successor # out of range for switch!");
3476 setOperand(idx
* 2 + 1, NewSucc
);
3479 // Methods for support type inquiry through isa, cast, and dyn_cast:
3480 static bool classof(const Instruction
*I
) {
3481 return I
->getOpcode() == Instruction::Switch
;
3483 static bool classof(const Value
*V
) {
3484 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3489 struct OperandTraits
<SwitchInst
> : public HungoffOperandTraits
<2> {
3492 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst
, Value
)
3494 //===----------------------------------------------------------------------===//
3495 // IndirectBrInst Class
3496 //===----------------------------------------------------------------------===//
3498 //===---------------------------------------------------------------------------
3499 /// Indirect Branch Instruction.
3501 class IndirectBrInst
: public Instruction
{
3502 unsigned ReservedSpace
;
3504 // Operand[0] = Address to jump to
3505 // Operand[n+1] = n-th destination
3506 IndirectBrInst(const IndirectBrInst
&IBI
);
3508 /// Create a new indirectbr instruction, specifying an
3509 /// Address to jump to. The number of expected destinations can be specified
3510 /// here to make memory allocation more efficient. This constructor can also
3511 /// autoinsert before another instruction.
3512 IndirectBrInst(Value
*Address
, unsigned NumDests
, Instruction
*InsertBefore
);
3514 /// Create a new indirectbr instruction, specifying an
3515 /// Address to jump to. The number of expected destinations can be specified
3516 /// here to make memory allocation more efficient. This constructor also
3517 /// autoinserts at the end of the specified BasicBlock.
3518 IndirectBrInst(Value
*Address
, unsigned NumDests
, BasicBlock
*InsertAtEnd
);
3520 // allocate space for exactly zero operands
3521 void *operator new(size_t s
) {
3522 return User::operator new(s
);
3525 void init(Value
*Address
, unsigned NumDests
);
3526 void growOperands();
3529 // Note: Instruction needs to be a friend here to call cloneImpl.
3530 friend class Instruction
;
3532 IndirectBrInst
*cloneImpl() const;
3535 /// Iterator type that casts an operand to a basic block.
3537 /// This only makes sense because the successors are stored as adjacent
3538 /// operands for indirectbr instructions.
3539 struct succ_op_iterator
3540 : iterator_adaptor_base
<succ_op_iterator
, value_op_iterator
,
3541 std::random_access_iterator_tag
, BasicBlock
*,
3542 ptrdiff_t, BasicBlock
*, BasicBlock
*> {
3543 explicit succ_op_iterator(value_op_iterator I
) : iterator_adaptor_base(I
) {}
3545 BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3546 BasicBlock
*operator->() const { return operator*(); }
3549 /// The const version of `succ_op_iterator`.
3550 struct const_succ_op_iterator
3551 : iterator_adaptor_base
<const_succ_op_iterator
, const_value_op_iterator
,
3552 std::random_access_iterator_tag
,
3553 const BasicBlock
*, ptrdiff_t, const BasicBlock
*,
3554 const BasicBlock
*> {
3555 explicit const_succ_op_iterator(const_value_op_iterator I
)
3556 : iterator_adaptor_base(I
) {}
3558 const BasicBlock
*operator*() const { return cast
<BasicBlock
>(*I
); }
3559 const BasicBlock
*operator->() const { return operator*(); }
3562 static IndirectBrInst
*Create(Value
*Address
, unsigned NumDests
,
3563 Instruction
*InsertBefore
= nullptr) {
3564 return new IndirectBrInst(Address
, NumDests
, InsertBefore
);
3567 static IndirectBrInst
*Create(Value
*Address
, unsigned NumDests
,
3568 BasicBlock
*InsertAtEnd
) {
3569 return new IndirectBrInst(Address
, NumDests
, InsertAtEnd
);
3572 /// Provide fast operand accessors.
3573 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
3575 // Accessor Methods for IndirectBrInst instruction.
3576 Value
*getAddress() { return getOperand(0); }
3577 const Value
*getAddress() const { return getOperand(0); }
3578 void setAddress(Value
*V
) { setOperand(0, V
); }
3580 /// return the number of possible destinations in this
3581 /// indirectbr instruction.
3582 unsigned getNumDestinations() const { return getNumOperands()-1; }
3584 /// Return the specified destination.
3585 BasicBlock
*getDestination(unsigned i
) { return getSuccessor(i
); }
3586 const BasicBlock
*getDestination(unsigned i
) const { return getSuccessor(i
); }
3588 /// Add a destination.
3590 void addDestination(BasicBlock
*Dest
);
3592 /// This method removes the specified successor from the
3593 /// indirectbr instruction.
3594 void removeDestination(unsigned i
);
3596 unsigned getNumSuccessors() const { return getNumOperands()-1; }
3597 BasicBlock
*getSuccessor(unsigned i
) const {
3598 return cast
<BasicBlock
>(getOperand(i
+1));
3600 void setSuccessor(unsigned i
, BasicBlock
*NewSucc
) {
3601 setOperand(i
+ 1, NewSucc
);
3604 iterator_range
<succ_op_iterator
> successors() {
3605 return make_range(succ_op_iterator(std::next(value_op_begin())),
3606 succ_op_iterator(value_op_end()));
3609 iterator_range
<const_succ_op_iterator
> successors() const {
3610 return make_range(const_succ_op_iterator(std::next(value_op_begin())),
3611 const_succ_op_iterator(value_op_end()));
3614 // Methods for support type inquiry through isa, cast, and dyn_cast:
3615 static bool classof(const Instruction
*I
) {
3616 return I
->getOpcode() == Instruction::IndirectBr
;
3618 static bool classof(const Value
*V
) {
3619 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3624 struct OperandTraits
<IndirectBrInst
> : public HungoffOperandTraits
<1> {
3627 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst
, Value
)
3629 //===----------------------------------------------------------------------===//
3631 //===----------------------------------------------------------------------===//
3633 /// Invoke instruction. The SubclassData field is used to hold the
3634 /// calling convention of the call.
3636 class InvokeInst
: public CallBase
{
3637 /// The number of operands for this call beyond the called function,
3638 /// arguments, and operand bundles.
3639 static constexpr int NumExtraOperands
= 2;
3641 /// The index from the end of the operand array to the normal destination.
3642 static constexpr int NormalDestOpEndIdx
= -3;
3644 /// The index from the end of the operand array to the unwind destination.
3645 static constexpr int UnwindDestOpEndIdx
= -2;
3647 InvokeInst(const InvokeInst
&BI
);
3649 /// Construct an InvokeInst given a range of arguments.
3651 /// Construct an InvokeInst from a range of arguments
3652 inline InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3653 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3654 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3655 const Twine
&NameStr
, Instruction
*InsertBefore
);
3657 inline InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3658 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3659 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3660 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
3662 void init(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3663 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3664 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
3666 /// Compute the number of operands to allocate.
3667 static int ComputeNumOperands(int NumArgs
, int NumBundleInputs
= 0) {
3668 // We need one operand for the called function, plus our extra operands and
3669 // the input operand counts provided.
3670 return 1 + NumExtraOperands
+ NumArgs
+ NumBundleInputs
;
3674 // Note: Instruction needs to be a friend here to call cloneImpl.
3675 friend class Instruction
;
3677 InvokeInst
*cloneImpl() const;
3680 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3681 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3682 const Twine
&NameStr
,
3683 Instruction
*InsertBefore
= nullptr) {
3684 int NumOperands
= ComputeNumOperands(Args
.size());
3685 return new (NumOperands
)
3686 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, None
, NumOperands
,
3687 NameStr
, InsertBefore
);
3690 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3691 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3692 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3693 const Twine
&NameStr
= "",
3694 Instruction
*InsertBefore
= nullptr) {
3696 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
3697 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3699 return new (NumOperands
, DescriptorBytes
)
3700 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NumOperands
,
3701 NameStr
, InsertBefore
);
3704 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3705 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3706 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3707 int NumOperands
= ComputeNumOperands(Args
.size());
3708 return new (NumOperands
)
3709 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, None
, NumOperands
,
3710 NameStr
, InsertAtEnd
);
3713 static InvokeInst
*Create(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3714 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3715 ArrayRef
<OperandBundleDef
> Bundles
,
3716 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3718 ComputeNumOperands(Args
.size(), CountBundleInputs(Bundles
));
3719 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3721 return new (NumOperands
, DescriptorBytes
)
3722 InvokeInst(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NumOperands
,
3723 NameStr
, InsertAtEnd
);
3726 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3727 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3728 const Twine
&NameStr
,
3729 Instruction
*InsertBefore
= nullptr) {
3730 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3731 IfException
, Args
, None
, NameStr
, InsertBefore
);
3734 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3735 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3736 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3737 const Twine
&NameStr
= "",
3738 Instruction
*InsertBefore
= nullptr) {
3739 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3740 IfException
, Args
, Bundles
, NameStr
, InsertBefore
);
3743 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3744 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3745 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3746 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3747 IfException
, Args
, NameStr
, InsertAtEnd
);
3750 static InvokeInst
*Create(FunctionCallee Func
, BasicBlock
*IfNormal
,
3751 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3752 ArrayRef
<OperandBundleDef
> Bundles
,
3753 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3754 return Create(Func
.getFunctionType(), Func
.getCallee(), IfNormal
,
3755 IfException
, Args
, Bundles
, NameStr
, InsertAtEnd
);
3758 // Deprecated [opaque pointer types]
3759 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3760 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3761 const Twine
&NameStr
,
3762 Instruction
*InsertBefore
= nullptr) {
3763 return Create(cast
<FunctionType
>(
3764 cast
<PointerType
>(Func
->getType())->getElementType()),
3765 Func
, IfNormal
, IfException
, Args
, None
, NameStr
,
3769 // Deprecated [opaque pointer types]
3770 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3771 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3772 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3773 const Twine
&NameStr
= "",
3774 Instruction
*InsertBefore
= nullptr) {
3775 return Create(cast
<FunctionType
>(
3776 cast
<PointerType
>(Func
->getType())->getElementType()),
3777 Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
,
3781 // Deprecated [opaque pointer types]
3782 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3783 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3784 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3785 return Create(cast
<FunctionType
>(
3786 cast
<PointerType
>(Func
->getType())->getElementType()),
3787 Func
, IfNormal
, IfException
, Args
, NameStr
, InsertAtEnd
);
3790 // Deprecated [opaque pointer types]
3791 static InvokeInst
*Create(Value
*Func
, BasicBlock
*IfNormal
,
3792 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3793 ArrayRef
<OperandBundleDef
> Bundles
,
3794 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3795 return Create(cast
<FunctionType
>(
3796 cast
<PointerType
>(Func
->getType())->getElementType()),
3797 Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
,
3801 /// Create a clone of \p II with a different set of operand bundles and
3802 /// insert it before \p InsertPt.
3804 /// The returned invoke instruction is identical to \p II in every way except
3805 /// that the operand bundles for the new instruction are set to the operand
3806 /// bundles in \p Bundles.
3807 static InvokeInst
*Create(InvokeInst
*II
, ArrayRef
<OperandBundleDef
> Bundles
,
3808 Instruction
*InsertPt
= nullptr);
3810 /// Determine if the call should not perform indirect branch tracking.
3811 bool doesNoCfCheck() const { return hasFnAttr(Attribute::NoCfCheck
); }
3813 /// Determine if the call cannot unwind.
3814 bool doesNotThrow() const { return hasFnAttr(Attribute::NoUnwind
); }
3815 void setDoesNotThrow() {
3816 addAttribute(AttributeList::FunctionIndex
, Attribute::NoUnwind
);
3819 // get*Dest - Return the destination basic blocks...
3820 BasicBlock
*getNormalDest() const {
3821 return cast
<BasicBlock
>(Op
<NormalDestOpEndIdx
>());
3823 BasicBlock
*getUnwindDest() const {
3824 return cast
<BasicBlock
>(Op
<UnwindDestOpEndIdx
>());
3826 void setNormalDest(BasicBlock
*B
) {
3827 Op
<NormalDestOpEndIdx
>() = reinterpret_cast<Value
*>(B
);
3829 void setUnwindDest(BasicBlock
*B
) {
3830 Op
<UnwindDestOpEndIdx
>() = reinterpret_cast<Value
*>(B
);
3833 /// Get the landingpad instruction from the landing pad
3834 /// block (the unwind destination).
3835 LandingPadInst
*getLandingPadInst() const;
3837 BasicBlock
*getSuccessor(unsigned i
) const {
3838 assert(i
< 2 && "Successor # out of range for invoke!");
3839 return i
== 0 ? getNormalDest() : getUnwindDest();
3842 void setSuccessor(unsigned i
, BasicBlock
*NewSucc
) {
3843 assert(i
< 2 && "Successor # out of range for invoke!");
3845 setNormalDest(NewSucc
);
3847 setUnwindDest(NewSucc
);
3850 unsigned getNumSuccessors() const { return 2; }
3852 // Methods for support type inquiry through isa, cast, and dyn_cast:
3853 static bool classof(const Instruction
*I
) {
3854 return (I
->getOpcode() == Instruction::Invoke
);
3856 static bool classof(const Value
*V
) {
3857 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
3862 // Shadow Instruction::setInstructionSubclassData with a private forwarding
3863 // method so that subclasses cannot accidentally use it.
3864 void setInstructionSubclassData(unsigned short D
) {
3865 Instruction::setInstructionSubclassData(D
);
3869 InvokeInst::InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3870 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3871 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3872 const Twine
&NameStr
, Instruction
*InsertBefore
)
3873 : CallBase(Ty
->getReturnType(), Instruction::Invoke
,
3874 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
3876 init(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
);
3879 InvokeInst::InvokeInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*IfNormal
,
3880 BasicBlock
*IfException
, ArrayRef
<Value
*> Args
,
3881 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3882 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
3883 : CallBase(Ty
->getReturnType(), Instruction::Invoke
,
3884 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
3886 init(Ty
, Func
, IfNormal
, IfException
, Args
, Bundles
, NameStr
);
3889 //===----------------------------------------------------------------------===//
3891 //===----------------------------------------------------------------------===//
3893 /// CallBr instruction, tracking function calls that may not return control but
3894 /// instead transfer it to a third location. The SubclassData field is used to
3895 /// hold the calling convention of the call.
3897 class CallBrInst
: public CallBase
{
3899 unsigned NumIndirectDests
;
3901 CallBrInst(const CallBrInst
&BI
);
3903 /// Construct a CallBrInst given a range of arguments.
3905 /// Construct a CallBrInst from a range of arguments
3906 inline CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
3907 ArrayRef
<BasicBlock
*> IndirectDests
,
3908 ArrayRef
<Value
*> Args
,
3909 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3910 const Twine
&NameStr
, Instruction
*InsertBefore
);
3912 inline CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
3913 ArrayRef
<BasicBlock
*> IndirectDests
,
3914 ArrayRef
<Value
*> Args
,
3915 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
3916 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
);
3918 void init(FunctionType
*FTy
, Value
*Func
, BasicBlock
*DefaultDest
,
3919 ArrayRef
<BasicBlock
*> IndirectDests
, ArrayRef
<Value
*> Args
,
3920 ArrayRef
<OperandBundleDef
> Bundles
, const Twine
&NameStr
);
3922 /// Compute the number of operands to allocate.
3923 static int ComputeNumOperands(int NumArgs
, int NumIndirectDests
,
3924 int NumBundleInputs
= 0) {
3925 // We need one operand for the called function, plus our extra operands and
3926 // the input operand counts provided.
3927 return 2 + NumIndirectDests
+ NumArgs
+ NumBundleInputs
;
3931 // Note: Instruction needs to be a friend here to call cloneImpl.
3932 friend class Instruction
;
3934 CallBrInst
*cloneImpl() const;
3937 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3938 BasicBlock
*DefaultDest
,
3939 ArrayRef
<BasicBlock
*> IndirectDests
,
3940 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
3941 Instruction
*InsertBefore
= nullptr) {
3942 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size());
3943 return new (NumOperands
)
3944 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, None
,
3945 NumOperands
, NameStr
, InsertBefore
);
3948 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3949 BasicBlock
*DefaultDest
,
3950 ArrayRef
<BasicBlock
*> IndirectDests
,
3951 ArrayRef
<Value
*> Args
,
3952 ArrayRef
<OperandBundleDef
> Bundles
= None
,
3953 const Twine
&NameStr
= "",
3954 Instruction
*InsertBefore
= nullptr) {
3955 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size(),
3956 CountBundleInputs(Bundles
));
3957 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3959 return new (NumOperands
, DescriptorBytes
)
3960 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
,
3961 NumOperands
, NameStr
, InsertBefore
);
3964 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3965 BasicBlock
*DefaultDest
,
3966 ArrayRef
<BasicBlock
*> IndirectDests
,
3967 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
3968 BasicBlock
*InsertAtEnd
) {
3969 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size());
3970 return new (NumOperands
)
3971 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, None
,
3972 NumOperands
, NameStr
, InsertAtEnd
);
3975 static CallBrInst
*Create(FunctionType
*Ty
, Value
*Func
,
3976 BasicBlock
*DefaultDest
,
3977 ArrayRef
<BasicBlock
*> IndirectDests
,
3978 ArrayRef
<Value
*> Args
,
3979 ArrayRef
<OperandBundleDef
> Bundles
,
3980 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
3981 int NumOperands
= ComputeNumOperands(Args
.size(), IndirectDests
.size(),
3982 CountBundleInputs(Bundles
));
3983 unsigned DescriptorBytes
= Bundles
.size() * sizeof(BundleOpInfo
);
3985 return new (NumOperands
, DescriptorBytes
)
3986 CallBrInst(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
,
3987 NumOperands
, NameStr
, InsertAtEnd
);
3990 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
3991 ArrayRef
<BasicBlock
*> IndirectDests
,
3992 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
3993 Instruction
*InsertBefore
= nullptr) {
3994 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
3995 IndirectDests
, Args
, NameStr
, InsertBefore
);
3998 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
3999 ArrayRef
<BasicBlock
*> IndirectDests
,
4000 ArrayRef
<Value
*> Args
,
4001 ArrayRef
<OperandBundleDef
> Bundles
= None
,
4002 const Twine
&NameStr
= "",
4003 Instruction
*InsertBefore
= nullptr) {
4004 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4005 IndirectDests
, Args
, Bundles
, NameStr
, InsertBefore
);
4008 static CallBrInst
*Create(FunctionCallee Func
, BasicBlock
*DefaultDest
,
4009 ArrayRef
<BasicBlock
*> IndirectDests
,
4010 ArrayRef
<Value
*> Args
, const Twine
&NameStr
,
4011 BasicBlock
*InsertAtEnd
) {
4012 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4013 IndirectDests
, Args
, NameStr
, InsertAtEnd
);
4016 static CallBrInst
*Create(FunctionCallee Func
,
4017 BasicBlock
*DefaultDest
,
4018 ArrayRef
<BasicBlock
*> IndirectDests
,
4019 ArrayRef
<Value
*> Args
,
4020 ArrayRef
<OperandBundleDef
> Bundles
,
4021 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4022 return Create(Func
.getFunctionType(), Func
.getCallee(), DefaultDest
,
4023 IndirectDests
, Args
, Bundles
, NameStr
, InsertAtEnd
);
4026 /// Create a clone of \p CBI with a different set of operand bundles and
4027 /// insert it before \p InsertPt.
4029 /// The returned callbr instruction is identical to \p CBI in every way
4030 /// except that the operand bundles for the new instruction are set to the
4031 /// operand bundles in \p Bundles.
4032 static CallBrInst
*Create(CallBrInst
*CBI
,
4033 ArrayRef
<OperandBundleDef
> Bundles
,
4034 Instruction
*InsertPt
= nullptr);
4036 /// Return the number of callbr indirect dest labels.
4038 unsigned getNumIndirectDests() const { return NumIndirectDests
; }
4040 /// getIndirectDestLabel - Return the i-th indirect dest label.
4042 Value
*getIndirectDestLabel(unsigned i
) const {
4043 assert(i
< getNumIndirectDests() && "Out of bounds!");
4044 return getOperand(i
+ getNumArgOperands() + getNumTotalBundleOperands() +
4048 Value
*getIndirectDestLabelUse(unsigned i
) const {
4049 assert(i
< getNumIndirectDests() && "Out of bounds!");
4050 return getOperandUse(i
+ getNumArgOperands() + getNumTotalBundleOperands() +
4054 // Return the destination basic blocks...
4055 BasicBlock
*getDefaultDest() const {
4056 return cast
<BasicBlock
>(*(&Op
<-1>() - getNumIndirectDests() - 1));
4058 BasicBlock
*getIndirectDest(unsigned i
) const {
4059 return cast
<BasicBlock
>(*(&Op
<-1>() - getNumIndirectDests() + i
));
4061 SmallVector
<BasicBlock
*, 16> getIndirectDests() const {
4062 SmallVector
<BasicBlock
*, 16> IndirectDests
;
4063 for (unsigned i
= 0, e
= getNumIndirectDests(); i
< e
; ++i
)
4064 IndirectDests
.push_back(getIndirectDest(i
));
4065 return IndirectDests
;
4067 void setDefaultDest(BasicBlock
*B
) {
4068 *(&Op
<-1>() - getNumIndirectDests() - 1) = reinterpret_cast<Value
*>(B
);
4070 void setIndirectDest(unsigned i
, BasicBlock
*B
) {
4071 *(&Op
<-1>() - getNumIndirectDests() + i
) = reinterpret_cast<Value
*>(B
);
4074 BasicBlock
*getSuccessor(unsigned i
) const {
4075 assert(i
< getNumSuccessors() + 1 &&
4076 "Successor # out of range for callbr!");
4077 return i
== 0 ? getDefaultDest() : getIndirectDest(i
- 1);
4080 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
4081 assert(idx
< getNumIndirectDests() + 1 &&
4082 "Successor # out of range for callbr!");
4083 *(&Op
<-1>() - getNumIndirectDests() -1 + idx
) =
4084 reinterpret_cast<Value
*>(NewSucc
);
4087 unsigned getNumSuccessors() const { return getNumIndirectDests() + 1; }
4089 // Methods for support type inquiry through isa, cast, and dyn_cast:
4090 static bool classof(const Instruction
*I
) {
4091 return (I
->getOpcode() == Instruction::CallBr
);
4093 static bool classof(const Value
*V
) {
4094 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4099 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4100 // method so that subclasses cannot accidentally use it.
4101 void setInstructionSubclassData(unsigned short D
) {
4102 Instruction::setInstructionSubclassData(D
);
4106 CallBrInst::CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
4107 ArrayRef
<BasicBlock
*> IndirectDests
,
4108 ArrayRef
<Value
*> Args
,
4109 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
4110 const Twine
&NameStr
, Instruction
*InsertBefore
)
4111 : CallBase(Ty
->getReturnType(), Instruction::CallBr
,
4112 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
4114 init(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
, NameStr
);
4117 CallBrInst::CallBrInst(FunctionType
*Ty
, Value
*Func
, BasicBlock
*DefaultDest
,
4118 ArrayRef
<BasicBlock
*> IndirectDests
,
4119 ArrayRef
<Value
*> Args
,
4120 ArrayRef
<OperandBundleDef
> Bundles
, int NumOperands
,
4121 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
)
4124 cast
<PointerType
>(Func
->getType())->getElementType())
4126 Instruction::CallBr
,
4127 OperandTraits
<CallBase
>::op_end(this) - NumOperands
, NumOperands
,
4129 init(Ty
, Func
, DefaultDest
, IndirectDests
, Args
, Bundles
, NameStr
);
4132 //===----------------------------------------------------------------------===//
4134 //===----------------------------------------------------------------------===//
4136 //===---------------------------------------------------------------------------
4137 /// Resume the propagation of an exception.
4139 class ResumeInst
: public Instruction
{
4140 ResumeInst(const ResumeInst
&RI
);
4142 explicit ResumeInst(Value
*Exn
, Instruction
*InsertBefore
=nullptr);
4143 ResumeInst(Value
*Exn
, BasicBlock
*InsertAtEnd
);
4146 // Note: Instruction needs to be a friend here to call cloneImpl.
4147 friend class Instruction
;
4149 ResumeInst
*cloneImpl() const;
4152 static ResumeInst
*Create(Value
*Exn
, Instruction
*InsertBefore
= nullptr) {
4153 return new(1) ResumeInst(Exn
, InsertBefore
);
4156 static ResumeInst
*Create(Value
*Exn
, BasicBlock
*InsertAtEnd
) {
4157 return new(1) ResumeInst(Exn
, InsertAtEnd
);
4160 /// Provide fast operand accessors
4161 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4163 /// Convenience accessor.
4164 Value
*getValue() const { return Op
<0>(); }
4166 unsigned getNumSuccessors() const { return 0; }
4168 // Methods for support type inquiry through isa, cast, and dyn_cast:
4169 static bool classof(const Instruction
*I
) {
4170 return I
->getOpcode() == Instruction::Resume
;
4172 static bool classof(const Value
*V
) {
4173 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4177 BasicBlock
*getSuccessor(unsigned idx
) const {
4178 llvm_unreachable("ResumeInst has no successors!");
4181 void setSuccessor(unsigned idx
, BasicBlock
*NewSucc
) {
4182 llvm_unreachable("ResumeInst has no successors!");
4187 struct OperandTraits
<ResumeInst
> :
4188 public FixedNumOperandTraits
<ResumeInst
, 1> {
4191 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ResumeInst
, Value
)
4193 //===----------------------------------------------------------------------===//
4194 // CatchSwitchInst Class
4195 //===----------------------------------------------------------------------===//
4196 class CatchSwitchInst
: public Instruction
{
4197 /// The number of operands actually allocated. NumOperands is
4198 /// the number actually in use.
4199 unsigned ReservedSpace
;
4201 // Operand[0] = Outer scope
4202 // Operand[1] = Unwind block destination
4203 // Operand[n] = BasicBlock to go to on match
4204 CatchSwitchInst(const CatchSwitchInst
&CSI
);
4206 /// Create a new switch instruction, specifying a
4207 /// default destination. The number of additional handlers can be specified
4208 /// here to make memory allocation more efficient.
4209 /// This constructor can also autoinsert before another instruction.
4210 CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4211 unsigned NumHandlers
, const Twine
&NameStr
,
4212 Instruction
*InsertBefore
);
4214 /// Create a new switch instruction, specifying a
4215 /// default destination. The number of additional handlers can be specified
4216 /// here to make memory allocation more efficient.
4217 /// This constructor also autoinserts at the end of the specified BasicBlock.
4218 CatchSwitchInst(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4219 unsigned NumHandlers
, const Twine
&NameStr
,
4220 BasicBlock
*InsertAtEnd
);
4222 // allocate space for exactly zero operands
4223 void *operator new(size_t s
) { return User::operator new(s
); }
4225 void init(Value
*ParentPad
, BasicBlock
*UnwindDest
, unsigned NumReserved
);
4226 void growOperands(unsigned Size
);
4229 // Note: Instruction needs to be a friend here to call cloneImpl.
4230 friend class Instruction
;
4232 CatchSwitchInst
*cloneImpl() const;
4235 static CatchSwitchInst
*Create(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4236 unsigned NumHandlers
,
4237 const Twine
&NameStr
= "",
4238 Instruction
*InsertBefore
= nullptr) {
4239 return new CatchSwitchInst(ParentPad
, UnwindDest
, NumHandlers
, NameStr
,
4243 static CatchSwitchInst
*Create(Value
*ParentPad
, BasicBlock
*UnwindDest
,
4244 unsigned NumHandlers
, const Twine
&NameStr
,
4245 BasicBlock
*InsertAtEnd
) {
4246 return new CatchSwitchInst(ParentPad
, UnwindDest
, NumHandlers
, NameStr
,
4250 /// Provide fast operand accessors
4251 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4253 // Accessor Methods for CatchSwitch stmt
4254 Value
*getParentPad() const { return getOperand(0); }
4255 void setParentPad(Value
*ParentPad
) { setOperand(0, ParentPad
); }
4257 // Accessor Methods for CatchSwitch stmt
4258 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4259 bool unwindsToCaller() const { return !hasUnwindDest(); }
4260 BasicBlock
*getUnwindDest() const {
4261 if (hasUnwindDest())
4262 return cast
<BasicBlock
>(getOperand(1));
4265 void setUnwindDest(BasicBlock
*UnwindDest
) {
4267 assert(hasUnwindDest());
4268 setOperand(1, UnwindDest
);
4271 /// return the number of 'handlers' in this catchswitch
4272 /// instruction, except the default handler
4273 unsigned getNumHandlers() const {
4274 if (hasUnwindDest())
4275 return getNumOperands() - 2;
4276 return getNumOperands() - 1;
4280 static BasicBlock
*handler_helper(Value
*V
) { return cast
<BasicBlock
>(V
); }
4281 static const BasicBlock
*handler_helper(const Value
*V
) {
4282 return cast
<BasicBlock
>(V
);
4286 using DerefFnTy
= BasicBlock
*(*)(Value
*);
4287 using handler_iterator
= mapped_iterator
<op_iterator
, DerefFnTy
>;
4288 using handler_range
= iterator_range
<handler_iterator
>;
4289 using ConstDerefFnTy
= const BasicBlock
*(*)(const Value
*);
4290 using const_handler_iterator
=
4291 mapped_iterator
<const_op_iterator
, ConstDerefFnTy
>;
4292 using const_handler_range
= iterator_range
<const_handler_iterator
>;
4294 /// Returns an iterator that points to the first handler in CatchSwitchInst.
4295 handler_iterator
handler_begin() {
4296 op_iterator It
= op_begin() + 1;
4297 if (hasUnwindDest())
4299 return handler_iterator(It
, DerefFnTy(handler_helper
));
4302 /// Returns an iterator that points to the first handler in the
4303 /// CatchSwitchInst.
4304 const_handler_iterator
handler_begin() const {
4305 const_op_iterator It
= op_begin() + 1;
4306 if (hasUnwindDest())
4308 return const_handler_iterator(It
, ConstDerefFnTy(handler_helper
));
4311 /// Returns a read-only iterator that points one past the last
4312 /// handler in the CatchSwitchInst.
4313 handler_iterator
handler_end() {
4314 return handler_iterator(op_end(), DerefFnTy(handler_helper
));
4317 /// Returns an iterator that points one past the last handler in the
4318 /// CatchSwitchInst.
4319 const_handler_iterator
handler_end() const {
4320 return const_handler_iterator(op_end(), ConstDerefFnTy(handler_helper
));
4323 /// iteration adapter for range-for loops.
4324 handler_range
handlers() {
4325 return make_range(handler_begin(), handler_end());
4328 /// iteration adapter for range-for loops.
4329 const_handler_range
handlers() const {
4330 return make_range(handler_begin(), handler_end());
4333 /// Add an entry to the switch instruction...
4335 /// This action invalidates handler_end(). Old handler_end() iterator will
4336 /// point to the added handler.
4337 void addHandler(BasicBlock
*Dest
);
4339 void removeHandler(handler_iterator HI
);
4341 unsigned getNumSuccessors() const { return getNumOperands() - 1; }
4342 BasicBlock
*getSuccessor(unsigned Idx
) const {
4343 assert(Idx
< getNumSuccessors() &&
4344 "Successor # out of range for catchswitch!");
4345 return cast
<BasicBlock
>(getOperand(Idx
+ 1));
4347 void setSuccessor(unsigned Idx
, BasicBlock
*NewSucc
) {
4348 assert(Idx
< getNumSuccessors() &&
4349 "Successor # out of range for catchswitch!");
4350 setOperand(Idx
+ 1, NewSucc
);
4353 // Methods for support type inquiry through isa, cast, and dyn_cast:
4354 static bool classof(const Instruction
*I
) {
4355 return I
->getOpcode() == Instruction::CatchSwitch
;
4357 static bool classof(const Value
*V
) {
4358 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4363 struct OperandTraits
<CatchSwitchInst
> : public HungoffOperandTraits
<2> {};
4365 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchSwitchInst
, Value
)
4367 //===----------------------------------------------------------------------===//
4368 // CleanupPadInst Class
4369 //===----------------------------------------------------------------------===//
4370 class CleanupPadInst
: public FuncletPadInst
{
4372 explicit CleanupPadInst(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4373 unsigned Values
, const Twine
&NameStr
,
4374 Instruction
*InsertBefore
)
4375 : FuncletPadInst(Instruction::CleanupPad
, ParentPad
, Args
, Values
,
4376 NameStr
, InsertBefore
) {}
4377 explicit CleanupPadInst(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4378 unsigned Values
, const Twine
&NameStr
,
4379 BasicBlock
*InsertAtEnd
)
4380 : FuncletPadInst(Instruction::CleanupPad
, ParentPad
, Args
, Values
,
4381 NameStr
, InsertAtEnd
) {}
4384 static CleanupPadInst
*Create(Value
*ParentPad
, ArrayRef
<Value
*> Args
= None
,
4385 const Twine
&NameStr
= "",
4386 Instruction
*InsertBefore
= nullptr) {
4387 unsigned Values
= 1 + Args
.size();
4389 CleanupPadInst(ParentPad
, Args
, Values
, NameStr
, InsertBefore
);
4392 static CleanupPadInst
*Create(Value
*ParentPad
, ArrayRef
<Value
*> Args
,
4393 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4394 unsigned Values
= 1 + Args
.size();
4396 CleanupPadInst(ParentPad
, Args
, Values
, NameStr
, InsertAtEnd
);
4399 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4400 static bool classof(const Instruction
*I
) {
4401 return I
->getOpcode() == Instruction::CleanupPad
;
4403 static bool classof(const Value
*V
) {
4404 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4408 //===----------------------------------------------------------------------===//
4409 // CatchPadInst Class
4410 //===----------------------------------------------------------------------===//
4411 class CatchPadInst
: public FuncletPadInst
{
4413 explicit CatchPadInst(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4414 unsigned Values
, const Twine
&NameStr
,
4415 Instruction
*InsertBefore
)
4416 : FuncletPadInst(Instruction::CatchPad
, CatchSwitch
, Args
, Values
,
4417 NameStr
, InsertBefore
) {}
4418 explicit CatchPadInst(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4419 unsigned Values
, const Twine
&NameStr
,
4420 BasicBlock
*InsertAtEnd
)
4421 : FuncletPadInst(Instruction::CatchPad
, CatchSwitch
, Args
, Values
,
4422 NameStr
, InsertAtEnd
) {}
4425 static CatchPadInst
*Create(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4426 const Twine
&NameStr
= "",
4427 Instruction
*InsertBefore
= nullptr) {
4428 unsigned Values
= 1 + Args
.size();
4430 CatchPadInst(CatchSwitch
, Args
, Values
, NameStr
, InsertBefore
);
4433 static CatchPadInst
*Create(Value
*CatchSwitch
, ArrayRef
<Value
*> Args
,
4434 const Twine
&NameStr
, BasicBlock
*InsertAtEnd
) {
4435 unsigned Values
= 1 + Args
.size();
4437 CatchPadInst(CatchSwitch
, Args
, Values
, NameStr
, InsertAtEnd
);
4440 /// Convenience accessors
4441 CatchSwitchInst
*getCatchSwitch() const {
4442 return cast
<CatchSwitchInst
>(Op
<-1>());
4444 void setCatchSwitch(Value
*CatchSwitch
) {
4445 assert(CatchSwitch
);
4446 Op
<-1>() = CatchSwitch
;
4449 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4450 static bool classof(const Instruction
*I
) {
4451 return I
->getOpcode() == Instruction::CatchPad
;
4453 static bool classof(const Value
*V
) {
4454 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4458 //===----------------------------------------------------------------------===//
4459 // CatchReturnInst Class
4460 //===----------------------------------------------------------------------===//
4462 class CatchReturnInst
: public Instruction
{
4463 CatchReturnInst(const CatchReturnInst
&RI
);
4464 CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
, Instruction
*InsertBefore
);
4465 CatchReturnInst(Value
*CatchPad
, BasicBlock
*BB
, BasicBlock
*InsertAtEnd
);
4467 void init(Value
*CatchPad
, BasicBlock
*BB
);
4470 // Note: Instruction needs to be a friend here to call cloneImpl.
4471 friend class Instruction
;
4473 CatchReturnInst
*cloneImpl() const;
4476 static CatchReturnInst
*Create(Value
*CatchPad
, BasicBlock
*BB
,
4477 Instruction
*InsertBefore
= nullptr) {
4480 return new (2) CatchReturnInst(CatchPad
, BB
, InsertBefore
);
4483 static CatchReturnInst
*Create(Value
*CatchPad
, BasicBlock
*BB
,
4484 BasicBlock
*InsertAtEnd
) {
4487 return new (2) CatchReturnInst(CatchPad
, BB
, InsertAtEnd
);
4490 /// Provide fast operand accessors
4491 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4493 /// Convenience accessors.
4494 CatchPadInst
*getCatchPad() const { return cast
<CatchPadInst
>(Op
<0>()); }
4495 void setCatchPad(CatchPadInst
*CatchPad
) {
4500 BasicBlock
*getSuccessor() const { return cast
<BasicBlock
>(Op
<1>()); }
4501 void setSuccessor(BasicBlock
*NewSucc
) {
4505 unsigned getNumSuccessors() const { return 1; }
4507 /// Get the parentPad of this catchret's catchpad's catchswitch.
4508 /// The successor block is implicitly a member of this funclet.
4509 Value
*getCatchSwitchParentPad() const {
4510 return getCatchPad()->getCatchSwitch()->getParentPad();
4513 // Methods for support type inquiry through isa, cast, and dyn_cast:
4514 static bool classof(const Instruction
*I
) {
4515 return (I
->getOpcode() == Instruction::CatchRet
);
4517 static bool classof(const Value
*V
) {
4518 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4522 BasicBlock
*getSuccessor(unsigned Idx
) const {
4523 assert(Idx
< getNumSuccessors() && "Successor # out of range for catchret!");
4524 return getSuccessor();
4527 void setSuccessor(unsigned Idx
, BasicBlock
*B
) {
4528 assert(Idx
< getNumSuccessors() && "Successor # out of range for catchret!");
4534 struct OperandTraits
<CatchReturnInst
>
4535 : public FixedNumOperandTraits
<CatchReturnInst
, 2> {};
4537 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CatchReturnInst
, Value
)
4539 //===----------------------------------------------------------------------===//
4540 // CleanupReturnInst Class
4541 //===----------------------------------------------------------------------===//
4543 class CleanupReturnInst
: public Instruction
{
4545 CleanupReturnInst(const CleanupReturnInst
&RI
);
4546 CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
, unsigned Values
,
4547 Instruction
*InsertBefore
= nullptr);
4548 CleanupReturnInst(Value
*CleanupPad
, BasicBlock
*UnwindBB
, unsigned Values
,
4549 BasicBlock
*InsertAtEnd
);
4551 void init(Value
*CleanupPad
, BasicBlock
*UnwindBB
);
4554 // Note: Instruction needs to be a friend here to call cloneImpl.
4555 friend class Instruction
;
4557 CleanupReturnInst
*cloneImpl() const;
4560 static CleanupReturnInst
*Create(Value
*CleanupPad
,
4561 BasicBlock
*UnwindBB
= nullptr,
4562 Instruction
*InsertBefore
= nullptr) {
4564 unsigned Values
= 1;
4568 CleanupReturnInst(CleanupPad
, UnwindBB
, Values
, InsertBefore
);
4571 static CleanupReturnInst
*Create(Value
*CleanupPad
, BasicBlock
*UnwindBB
,
4572 BasicBlock
*InsertAtEnd
) {
4574 unsigned Values
= 1;
4578 CleanupReturnInst(CleanupPad
, UnwindBB
, Values
, InsertAtEnd
);
4581 /// Provide fast operand accessors
4582 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value
);
4584 bool hasUnwindDest() const { return getSubclassDataFromInstruction() & 1; }
4585 bool unwindsToCaller() const { return !hasUnwindDest(); }
4587 /// Convenience accessor.
4588 CleanupPadInst
*getCleanupPad() const {
4589 return cast
<CleanupPadInst
>(Op
<0>());
4591 void setCleanupPad(CleanupPadInst
*CleanupPad
) {
4593 Op
<0>() = CleanupPad
;
4596 unsigned getNumSuccessors() const { return hasUnwindDest() ? 1 : 0; }
4598 BasicBlock
*getUnwindDest() const {
4599 return hasUnwindDest() ? cast
<BasicBlock
>(Op
<1>()) : nullptr;
4601 void setUnwindDest(BasicBlock
*NewDest
) {
4603 assert(hasUnwindDest());
4607 // Methods for support type inquiry through isa, cast, and dyn_cast:
4608 static bool classof(const Instruction
*I
) {
4609 return (I
->getOpcode() == Instruction::CleanupRet
);
4611 static bool classof(const Value
*V
) {
4612 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4616 BasicBlock
*getSuccessor(unsigned Idx
) const {
4618 return getUnwindDest();
4621 void setSuccessor(unsigned Idx
, BasicBlock
*B
) {
4626 // Shadow Instruction::setInstructionSubclassData with a private forwarding
4627 // method so that subclasses cannot accidentally use it.
4628 void setInstructionSubclassData(unsigned short D
) {
4629 Instruction::setInstructionSubclassData(D
);
4634 struct OperandTraits
<CleanupReturnInst
>
4635 : public VariadicOperandTraits
<CleanupReturnInst
, /*MINARITY=*/1> {};
4637 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CleanupReturnInst
, Value
)
4639 //===----------------------------------------------------------------------===//
4640 // UnreachableInst Class
4641 //===----------------------------------------------------------------------===//
4643 //===---------------------------------------------------------------------------
4644 /// This function has undefined behavior. In particular, the
4645 /// presence of this instruction indicates some higher level knowledge that the
4646 /// end of the block cannot be reached.
4648 class UnreachableInst
: public Instruction
{
4650 // Note: Instruction needs to be a friend here to call cloneImpl.
4651 friend class Instruction
;
4653 UnreachableInst
*cloneImpl() const;
4656 explicit UnreachableInst(LLVMContext
&C
, Instruction
*InsertBefore
= nullptr);
4657 explicit UnreachableInst(LLVMContext
&C
, BasicBlock
*InsertAtEnd
);
4659 // allocate space for exactly zero operands
4660 void *operator new(size_t s
) {
4661 return User::operator new(s
, 0);
4664 unsigned getNumSuccessors() const { return 0; }
4666 // Methods for support type inquiry through isa, cast, and dyn_cast:
4667 static bool classof(const Instruction
*I
) {
4668 return I
->getOpcode() == Instruction::Unreachable
;
4670 static bool classof(const Value
*V
) {
4671 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4675 BasicBlock
*getSuccessor(unsigned idx
) const {
4676 llvm_unreachable("UnreachableInst has no successors!");
4679 void setSuccessor(unsigned idx
, BasicBlock
*B
) {
4680 llvm_unreachable("UnreachableInst has no successors!");
4684 //===----------------------------------------------------------------------===//
4686 //===----------------------------------------------------------------------===//
4688 /// This class represents a truncation of integer types.
4689 class TruncInst
: public CastInst
{
4691 // Note: Instruction needs to be a friend here to call cloneImpl.
4692 friend class Instruction
;
4694 /// Clone an identical TruncInst
4695 TruncInst
*cloneImpl() const;
4698 /// Constructor with insert-before-instruction semantics
4700 Value
*S
, ///< The value to be truncated
4701 Type
*Ty
, ///< The (smaller) type to truncate to
4702 const Twine
&NameStr
= "", ///< A name for the new instruction
4703 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4706 /// Constructor with insert-at-end-of-block semantics
4708 Value
*S
, ///< The value to be truncated
4709 Type
*Ty
, ///< The (smaller) type to truncate to
4710 const Twine
&NameStr
, ///< A name for the new instruction
4711 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4714 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4715 static bool classof(const Instruction
*I
) {
4716 return I
->getOpcode() == Trunc
;
4718 static bool classof(const Value
*V
) {
4719 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4723 //===----------------------------------------------------------------------===//
4725 //===----------------------------------------------------------------------===//
4727 /// This class represents zero extension of integer types.
4728 class ZExtInst
: public CastInst
{
4730 // Note: Instruction needs to be a friend here to call cloneImpl.
4731 friend class Instruction
;
4733 /// Clone an identical ZExtInst
4734 ZExtInst
*cloneImpl() const;
4737 /// Constructor with insert-before-instruction semantics
4739 Value
*S
, ///< The value to be zero extended
4740 Type
*Ty
, ///< The type to zero extend to
4741 const Twine
&NameStr
= "", ///< A name for the new instruction
4742 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4745 /// Constructor with insert-at-end semantics.
4747 Value
*S
, ///< The value to be zero extended
4748 Type
*Ty
, ///< The type to zero extend to
4749 const Twine
&NameStr
, ///< A name for the new instruction
4750 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4753 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4754 static bool classof(const Instruction
*I
) {
4755 return I
->getOpcode() == ZExt
;
4757 static bool classof(const Value
*V
) {
4758 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4762 //===----------------------------------------------------------------------===//
4764 //===----------------------------------------------------------------------===//
4766 /// This class represents a sign extension of integer types.
4767 class SExtInst
: public CastInst
{
4769 // Note: Instruction needs to be a friend here to call cloneImpl.
4770 friend class Instruction
;
4772 /// Clone an identical SExtInst
4773 SExtInst
*cloneImpl() const;
4776 /// Constructor with insert-before-instruction semantics
4778 Value
*S
, ///< The value to be sign extended
4779 Type
*Ty
, ///< The type to sign extend to
4780 const Twine
&NameStr
= "", ///< A name for the new instruction
4781 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4784 /// Constructor with insert-at-end-of-block semantics
4786 Value
*S
, ///< The value to be sign extended
4787 Type
*Ty
, ///< The type to sign extend to
4788 const Twine
&NameStr
, ///< A name for the new instruction
4789 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4792 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4793 static bool classof(const Instruction
*I
) {
4794 return I
->getOpcode() == SExt
;
4796 static bool classof(const Value
*V
) {
4797 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4801 //===----------------------------------------------------------------------===//
4802 // FPTruncInst Class
4803 //===----------------------------------------------------------------------===//
4805 /// This class represents a truncation of floating point types.
4806 class FPTruncInst
: public CastInst
{
4808 // Note: Instruction needs to be a friend here to call cloneImpl.
4809 friend class Instruction
;
4811 /// Clone an identical FPTruncInst
4812 FPTruncInst
*cloneImpl() const;
4815 /// Constructor with insert-before-instruction semantics
4817 Value
*S
, ///< The value to be truncated
4818 Type
*Ty
, ///< The type to truncate to
4819 const Twine
&NameStr
= "", ///< A name for the new instruction
4820 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4823 /// Constructor with insert-before-instruction semantics
4825 Value
*S
, ///< The value to be truncated
4826 Type
*Ty
, ///< The type to truncate to
4827 const Twine
&NameStr
, ///< A name for the new instruction
4828 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4831 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4832 static bool classof(const Instruction
*I
) {
4833 return I
->getOpcode() == FPTrunc
;
4835 static bool classof(const Value
*V
) {
4836 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4840 //===----------------------------------------------------------------------===//
4842 //===----------------------------------------------------------------------===//
4844 /// This class represents an extension of floating point types.
4845 class FPExtInst
: public CastInst
{
4847 // Note: Instruction needs to be a friend here to call cloneImpl.
4848 friend class Instruction
;
4850 /// Clone an identical FPExtInst
4851 FPExtInst
*cloneImpl() const;
4854 /// Constructor with insert-before-instruction semantics
4856 Value
*S
, ///< The value to be extended
4857 Type
*Ty
, ///< The type to extend to
4858 const Twine
&NameStr
= "", ///< A name for the new instruction
4859 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4862 /// Constructor with insert-at-end-of-block semantics
4864 Value
*S
, ///< The value to be extended
4865 Type
*Ty
, ///< The type to extend to
4866 const Twine
&NameStr
, ///< A name for the new instruction
4867 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4870 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4871 static bool classof(const Instruction
*I
) {
4872 return I
->getOpcode() == FPExt
;
4874 static bool classof(const Value
*V
) {
4875 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4879 //===----------------------------------------------------------------------===//
4881 //===----------------------------------------------------------------------===//
4883 /// This class represents a cast unsigned integer to floating point.
4884 class UIToFPInst
: public CastInst
{
4886 // Note: Instruction needs to be a friend here to call cloneImpl.
4887 friend class Instruction
;
4889 /// Clone an identical UIToFPInst
4890 UIToFPInst
*cloneImpl() const;
4893 /// Constructor with insert-before-instruction semantics
4895 Value
*S
, ///< The value to be converted
4896 Type
*Ty
, ///< The type to convert to
4897 const Twine
&NameStr
= "", ///< A name for the new instruction
4898 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4901 /// Constructor with insert-at-end-of-block semantics
4903 Value
*S
, ///< The value to be converted
4904 Type
*Ty
, ///< The type to convert to
4905 const Twine
&NameStr
, ///< A name for the new instruction
4906 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4909 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4910 static bool classof(const Instruction
*I
) {
4911 return I
->getOpcode() == UIToFP
;
4913 static bool classof(const Value
*V
) {
4914 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4918 //===----------------------------------------------------------------------===//
4920 //===----------------------------------------------------------------------===//
4922 /// This class represents a cast from signed integer to floating point.
4923 class SIToFPInst
: public CastInst
{
4925 // Note: Instruction needs to be a friend here to call cloneImpl.
4926 friend class Instruction
;
4928 /// Clone an identical SIToFPInst
4929 SIToFPInst
*cloneImpl() const;
4932 /// Constructor with insert-before-instruction semantics
4934 Value
*S
, ///< The value to be converted
4935 Type
*Ty
, ///< The type to convert to
4936 const Twine
&NameStr
= "", ///< A name for the new instruction
4937 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4940 /// Constructor with insert-at-end-of-block semantics
4942 Value
*S
, ///< The value to be converted
4943 Type
*Ty
, ///< The type to convert to
4944 const Twine
&NameStr
, ///< A name for the new instruction
4945 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
4948 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4949 static bool classof(const Instruction
*I
) {
4950 return I
->getOpcode() == SIToFP
;
4952 static bool classof(const Value
*V
) {
4953 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4957 //===----------------------------------------------------------------------===//
4959 //===----------------------------------------------------------------------===//
4961 /// This class represents a cast from floating point to unsigned integer
4962 class FPToUIInst
: public CastInst
{
4964 // Note: Instruction needs to be a friend here to call cloneImpl.
4965 friend class Instruction
;
4967 /// Clone an identical FPToUIInst
4968 FPToUIInst
*cloneImpl() const;
4971 /// Constructor with insert-before-instruction semantics
4973 Value
*S
, ///< The value to be converted
4974 Type
*Ty
, ///< The type to convert to
4975 const Twine
&NameStr
= "", ///< A name for the new instruction
4976 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
4979 /// Constructor with insert-at-end-of-block semantics
4981 Value
*S
, ///< The value to be converted
4982 Type
*Ty
, ///< The type to convert to
4983 const Twine
&NameStr
, ///< A name for the new instruction
4984 BasicBlock
*InsertAtEnd
///< Where to insert the new instruction
4987 /// Methods for support type inquiry through isa, cast, and dyn_cast:
4988 static bool classof(const Instruction
*I
) {
4989 return I
->getOpcode() == FPToUI
;
4991 static bool classof(const Value
*V
) {
4992 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
4996 //===----------------------------------------------------------------------===//
4998 //===----------------------------------------------------------------------===//
5000 /// This class represents a cast from floating point to signed integer.
5001 class FPToSIInst
: public CastInst
{
5003 // Note: Instruction needs to be a friend here to call cloneImpl.
5004 friend class Instruction
;
5006 /// Clone an identical FPToSIInst
5007 FPToSIInst
*cloneImpl() const;
5010 /// Constructor with insert-before-instruction semantics
5012 Value
*S
, ///< The value to be converted
5013 Type
*Ty
, ///< The type to convert to
5014 const Twine
&NameStr
= "", ///< A name for the new instruction
5015 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5018 /// Constructor with insert-at-end-of-block semantics
5020 Value
*S
, ///< The value to be converted
5021 Type
*Ty
, ///< The type to convert to
5022 const Twine
&NameStr
, ///< A name for the new instruction
5023 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5026 /// Methods for support type inquiry through isa, cast, and dyn_cast:
5027 static bool classof(const Instruction
*I
) {
5028 return I
->getOpcode() == FPToSI
;
5030 static bool classof(const Value
*V
) {
5031 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5035 //===----------------------------------------------------------------------===//
5036 // IntToPtrInst Class
5037 //===----------------------------------------------------------------------===//
5039 /// This class represents a cast from an integer to a pointer.
5040 class IntToPtrInst
: public CastInst
{
5042 // Note: Instruction needs to be a friend here to call cloneImpl.
5043 friend class Instruction
;
5045 /// Constructor with insert-before-instruction semantics
5047 Value
*S
, ///< The value to be converted
5048 Type
*Ty
, ///< The type to convert to
5049 const Twine
&NameStr
= "", ///< A name for the new instruction
5050 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5053 /// Constructor with insert-at-end-of-block semantics
5055 Value
*S
, ///< The value to be converted
5056 Type
*Ty
, ///< The type to convert to
5057 const Twine
&NameStr
, ///< A name for the new instruction
5058 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5061 /// Clone an identical IntToPtrInst.
5062 IntToPtrInst
*cloneImpl() const;
5064 /// Returns the address space of this instruction's pointer type.
5065 unsigned getAddressSpace() const {
5066 return getType()->getPointerAddressSpace();
5069 // Methods for support type inquiry through isa, cast, and dyn_cast:
5070 static bool classof(const Instruction
*I
) {
5071 return I
->getOpcode() == IntToPtr
;
5073 static bool classof(const Value
*V
) {
5074 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5078 //===----------------------------------------------------------------------===//
5079 // PtrToIntInst Class
5080 //===----------------------------------------------------------------------===//
5082 /// This class represents a cast from a pointer to an integer.
5083 class PtrToIntInst
: public CastInst
{
5085 // Note: Instruction needs to be a friend here to call cloneImpl.
5086 friend class Instruction
;
5088 /// Clone an identical PtrToIntInst.
5089 PtrToIntInst
*cloneImpl() const;
5092 /// Constructor with insert-before-instruction semantics
5094 Value
*S
, ///< The value to be converted
5095 Type
*Ty
, ///< The type to convert to
5096 const Twine
&NameStr
= "", ///< A name for the new instruction
5097 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5100 /// Constructor with insert-at-end-of-block semantics
5102 Value
*S
, ///< The value to be converted
5103 Type
*Ty
, ///< The type to convert to
5104 const Twine
&NameStr
, ///< A name for the new instruction
5105 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5108 /// Gets the pointer operand.
5109 Value
*getPointerOperand() { return getOperand(0); }
5110 /// Gets the pointer operand.
5111 const Value
*getPointerOperand() const { return getOperand(0); }
5112 /// Gets the operand index of the pointer operand.
5113 static unsigned getPointerOperandIndex() { return 0U; }
5115 /// Returns the address space of the pointer operand.
5116 unsigned getPointerAddressSpace() const {
5117 return getPointerOperand()->getType()->getPointerAddressSpace();
5120 // Methods for support type inquiry through isa, cast, and dyn_cast:
5121 static bool classof(const Instruction
*I
) {
5122 return I
->getOpcode() == PtrToInt
;
5124 static bool classof(const Value
*V
) {
5125 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5129 //===----------------------------------------------------------------------===//
5130 // BitCastInst Class
5131 //===----------------------------------------------------------------------===//
5133 /// This class represents a no-op cast from one type to another.
5134 class BitCastInst
: public CastInst
{
5136 // Note: Instruction needs to be a friend here to call cloneImpl.
5137 friend class Instruction
;
5139 /// Clone an identical BitCastInst.
5140 BitCastInst
*cloneImpl() const;
5143 /// Constructor with insert-before-instruction semantics
5145 Value
*S
, ///< The value to be casted
5146 Type
*Ty
, ///< The type to casted to
5147 const Twine
&NameStr
= "", ///< A name for the new instruction
5148 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5151 /// Constructor with insert-at-end-of-block semantics
5153 Value
*S
, ///< The value to be casted
5154 Type
*Ty
, ///< The type to casted to
5155 const Twine
&NameStr
, ///< A name for the new instruction
5156 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5159 // Methods for support type inquiry through isa, cast, and dyn_cast:
5160 static bool classof(const Instruction
*I
) {
5161 return I
->getOpcode() == BitCast
;
5163 static bool classof(const Value
*V
) {
5164 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5168 //===----------------------------------------------------------------------===//
5169 // AddrSpaceCastInst Class
5170 //===----------------------------------------------------------------------===//
5172 /// This class represents a conversion between pointers from one address space
5174 class AddrSpaceCastInst
: public CastInst
{
5176 // Note: Instruction needs to be a friend here to call cloneImpl.
5177 friend class Instruction
;
5179 /// Clone an identical AddrSpaceCastInst.
5180 AddrSpaceCastInst
*cloneImpl() const;
5183 /// Constructor with insert-before-instruction semantics
5185 Value
*S
, ///< The value to be casted
5186 Type
*Ty
, ///< The type to casted to
5187 const Twine
&NameStr
= "", ///< A name for the new instruction
5188 Instruction
*InsertBefore
= nullptr ///< Where to insert the new instruction
5191 /// Constructor with insert-at-end-of-block semantics
5193 Value
*S
, ///< The value to be casted
5194 Type
*Ty
, ///< The type to casted to
5195 const Twine
&NameStr
, ///< A name for the new instruction
5196 BasicBlock
*InsertAtEnd
///< The block to insert the instruction into
5199 // Methods for support type inquiry through isa, cast, and dyn_cast:
5200 static bool classof(const Instruction
*I
) {
5201 return I
->getOpcode() == AddrSpaceCast
;
5203 static bool classof(const Value
*V
) {
5204 return isa
<Instruction
>(V
) && classof(cast
<Instruction
>(V
));
5207 /// Gets the pointer operand.
5208 Value
*getPointerOperand() {
5209 return getOperand(0);
5212 /// Gets the pointer operand.
5213 const Value
*getPointerOperand() const {
5214 return getOperand(0);
5217 /// Gets the operand index of the pointer operand.
5218 static unsigned getPointerOperandIndex() {
5222 /// Returns the address space of the pointer operand.
5223 unsigned getSrcAddressSpace() const {
5224 return getPointerOperand()->getType()->getPointerAddressSpace();
5227 /// Returns the address space of the result.
5228 unsigned getDestAddressSpace() const {
5229 return getType()->getPointerAddressSpace();
5233 /// A helper function that returns the pointer operand of a load or store
5234 /// instruction. Returns nullptr if not load or store.
5235 inline Value
*getLoadStorePointerOperand(Value
*V
) {
5236 if (auto *Load
= dyn_cast
<LoadInst
>(V
))
5237 return Load
->getPointerOperand();
5238 if (auto *Store
= dyn_cast
<StoreInst
>(V
))
5239 return Store
->getPointerOperand();
5243 /// A helper function that returns the pointer operand of a load, store
5244 /// or GEP instruction. Returns nullptr if not load, store, or GEP.
5245 inline Value
*getPointerOperand(Value
*V
) {
5246 if (auto *Ptr
= getLoadStorePointerOperand(V
))
5248 if (auto *Gep
= dyn_cast
<GetElementPtrInst
>(V
))
5249 return Gep
->getPointerOperand();
5253 /// A helper function that returns the alignment of load or store instruction.
5254 inline unsigned getLoadStoreAlignment(Value
*I
) {
5255 assert((isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
)) &&
5256 "Expected Load or Store instruction");
5257 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
5258 return LI
->getAlignment();
5259 return cast
<StoreInst
>(I
)->getAlignment();
5262 /// A helper function that returns the address space of the pointer operand of
5263 /// load or store instruction.
5264 inline unsigned getLoadStoreAddressSpace(Value
*I
) {
5265 assert((isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
)) &&
5266 "Expected Load or Store instruction");
5267 if (auto *LI
= dyn_cast
<LoadInst
>(I
))
5268 return LI
->getPointerAddressSpace();
5269 return cast
<StoreInst
>(I
)->getPointerAddressSpace();
5272 } // end namespace llvm
5274 #endif // LLVM_IR_INSTRUCTIONS_H