Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / IR / PatternMatch.h
blob6c51d487737018d99109fec698d811c351165586
1 //===- PatternMatch.h - Match on the LLVM IR --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file provides a simple and efficient mechanism for performing general
10 // tree-based pattern matches on the LLVM IR. The power of these routines is
11 // that it allows you to write concise patterns that are expressive and easy to
12 // understand. The other major advantage of this is that it allows you to
13 // trivially capture/bind elements in the pattern to variables. For example,
14 // you can do something like this:
16 // Value *Exp = ...
17 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
18 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
19 // m_And(m_Value(Y), m_ConstantInt(C2))))) {
20 // ... Pattern is matched and variables are bound ...
21 // }
23 // This is primarily useful to things like the instruction combiner, but can
24 // also be useful for static analysis tools or code generators.
26 //===----------------------------------------------------------------------===//
28 #ifndef LLVM_IR_PATTERNMATCH_H
29 #define LLVM_IR_PATTERNMATCH_H
31 #include "llvm/ADT/APFloat.h"
32 #include "llvm/ADT/APInt.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/InstrTypes.h"
36 #include "llvm/IR/Instruction.h"
37 #include "llvm/IR/Instructions.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/Support/Casting.h"
42 #include <cstdint>
44 namespace llvm {
45 namespace PatternMatch {
47 template <typename Val, typename Pattern> bool match(Val *V, const Pattern &P) {
48 return const_cast<Pattern &>(P).match(V);
51 template <typename SubPattern_t> struct OneUse_match {
52 SubPattern_t SubPattern;
54 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
56 template <typename OpTy> bool match(OpTy *V) {
57 return V->hasOneUse() && SubPattern.match(V);
61 template <typename T> inline OneUse_match<T> m_OneUse(const T &SubPattern) {
62 return SubPattern;
65 template <typename Class> struct class_match {
66 template <typename ITy> bool match(ITy *V) { return isa<Class>(V); }
69 /// Match an arbitrary value and ignore it.
70 inline class_match<Value> m_Value() { return class_match<Value>(); }
72 /// Match an arbitrary binary operation and ignore it.
73 inline class_match<BinaryOperator> m_BinOp() {
74 return class_match<BinaryOperator>();
77 /// Matches any compare instruction and ignore it.
78 inline class_match<CmpInst> m_Cmp() { return class_match<CmpInst>(); }
80 /// Match an arbitrary ConstantInt and ignore it.
81 inline class_match<ConstantInt> m_ConstantInt() {
82 return class_match<ConstantInt>();
85 /// Match an arbitrary undef constant.
86 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
88 /// Match an arbitrary Constant and ignore it.
89 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
91 /// Matching combinators
92 template <typename LTy, typename RTy> struct match_combine_or {
93 LTy L;
94 RTy R;
96 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
98 template <typename ITy> bool match(ITy *V) {
99 if (L.match(V))
100 return true;
101 if (R.match(V))
102 return true;
103 return false;
107 template <typename LTy, typename RTy> struct match_combine_and {
108 LTy L;
109 RTy R;
111 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) {}
113 template <typename ITy> bool match(ITy *V) {
114 if (L.match(V))
115 if (R.match(V))
116 return true;
117 return false;
121 /// Combine two pattern matchers matching L || R
122 template <typename LTy, typename RTy>
123 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
124 return match_combine_or<LTy, RTy>(L, R);
127 /// Combine two pattern matchers matching L && R
128 template <typename LTy, typename RTy>
129 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
130 return match_combine_and<LTy, RTy>(L, R);
133 struct apint_match {
134 const APInt *&Res;
136 apint_match(const APInt *&R) : Res(R) {}
138 template <typename ITy> bool match(ITy *V) {
139 if (auto *CI = dyn_cast<ConstantInt>(V)) {
140 Res = &CI->getValue();
141 return true;
143 if (V->getType()->isVectorTy())
144 if (const auto *C = dyn_cast<Constant>(V))
145 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
146 Res = &CI->getValue();
147 return true;
149 return false;
152 // Either constexpr if or renaming ConstantFP::getValueAPF to
153 // ConstantFP::getValue is needed to do it via single template
154 // function for both apint/apfloat.
155 struct apfloat_match {
156 const APFloat *&Res;
157 apfloat_match(const APFloat *&R) : Res(R) {}
158 template <typename ITy> bool match(ITy *V) {
159 if (auto *CI = dyn_cast<ConstantFP>(V)) {
160 Res = &CI->getValueAPF();
161 return true;
163 if (V->getType()->isVectorTy())
164 if (const auto *C = dyn_cast<Constant>(V))
165 if (auto *CI = dyn_cast_or_null<ConstantFP>(C->getSplatValue())) {
166 Res = &CI->getValueAPF();
167 return true;
169 return false;
173 /// Match a ConstantInt or splatted ConstantVector, binding the
174 /// specified pointer to the contained APInt.
175 inline apint_match m_APInt(const APInt *&Res) { return Res; }
177 /// Match a ConstantFP or splatted ConstantVector, binding the
178 /// specified pointer to the contained APFloat.
179 inline apfloat_match m_APFloat(const APFloat *&Res) { return Res; }
181 template <int64_t Val> struct constantint_match {
182 template <typename ITy> bool match(ITy *V) {
183 if (const auto *CI = dyn_cast<ConstantInt>(V)) {
184 const APInt &CIV = CI->getValue();
185 if (Val >= 0)
186 return CIV == static_cast<uint64_t>(Val);
187 // If Val is negative, and CI is shorter than it, truncate to the right
188 // number of bits. If it is larger, then we have to sign extend. Just
189 // compare their negated values.
190 return -CIV == -Val;
192 return false;
196 /// Match a ConstantInt with a specific value.
197 template <int64_t Val> inline constantint_match<Val> m_ConstantInt() {
198 return constantint_match<Val>();
201 /// This helper class is used to match scalar and vector integer constants that
202 /// satisfy a specified predicate.
203 /// For vector constants, undefined elements are ignored.
204 template <typename Predicate> struct cst_pred_ty : public Predicate {
205 template <typename ITy> bool match(ITy *V) {
206 if (const auto *CI = dyn_cast<ConstantInt>(V))
207 return this->isValue(CI->getValue());
208 if (V->getType()->isVectorTy()) {
209 if (const auto *C = dyn_cast<Constant>(V)) {
210 if (const auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
211 return this->isValue(CI->getValue());
213 // Non-splat vector constant: check each element for a match.
214 unsigned NumElts = V->getType()->getVectorNumElements();
215 assert(NumElts != 0 && "Constant vector with no elements?");
216 bool HasNonUndefElements = false;
217 for (unsigned i = 0; i != NumElts; ++i) {
218 Constant *Elt = C->getAggregateElement(i);
219 if (!Elt)
220 return false;
221 if (isa<UndefValue>(Elt))
222 continue;
223 auto *CI = dyn_cast<ConstantInt>(Elt);
224 if (!CI || !this->isValue(CI->getValue()))
225 return false;
226 HasNonUndefElements = true;
228 return HasNonUndefElements;
231 return false;
235 /// This helper class is used to match scalar and vector constants that
236 /// satisfy a specified predicate, and bind them to an APInt.
237 template <typename Predicate> struct api_pred_ty : public Predicate {
238 const APInt *&Res;
240 api_pred_ty(const APInt *&R) : Res(R) {}
242 template <typename ITy> bool match(ITy *V) {
243 if (const auto *CI = dyn_cast<ConstantInt>(V))
244 if (this->isValue(CI->getValue())) {
245 Res = &CI->getValue();
246 return true;
248 if (V->getType()->isVectorTy())
249 if (const auto *C = dyn_cast<Constant>(V))
250 if (auto *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
251 if (this->isValue(CI->getValue())) {
252 Res = &CI->getValue();
253 return true;
256 return false;
260 /// This helper class is used to match scalar and vector floating-point
261 /// constants that satisfy a specified predicate.
262 /// For vector constants, undefined elements are ignored.
263 template <typename Predicate> struct cstfp_pred_ty : public Predicate {
264 template <typename ITy> bool match(ITy *V) {
265 if (const auto *CF = dyn_cast<ConstantFP>(V))
266 return this->isValue(CF->getValueAPF());
267 if (V->getType()->isVectorTy()) {
268 if (const auto *C = dyn_cast<Constant>(V)) {
269 if (const auto *CF = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
270 return this->isValue(CF->getValueAPF());
272 // Non-splat vector constant: check each element for a match.
273 unsigned NumElts = V->getType()->getVectorNumElements();
274 assert(NumElts != 0 && "Constant vector with no elements?");
275 bool HasNonUndefElements = false;
276 for (unsigned i = 0; i != NumElts; ++i) {
277 Constant *Elt = C->getAggregateElement(i);
278 if (!Elt)
279 return false;
280 if (isa<UndefValue>(Elt))
281 continue;
282 auto *CF = dyn_cast<ConstantFP>(Elt);
283 if (!CF || !this->isValue(CF->getValueAPF()))
284 return false;
285 HasNonUndefElements = true;
287 return HasNonUndefElements;
290 return false;
294 ///////////////////////////////////////////////////////////////////////////////
296 // Encapsulate constant value queries for use in templated predicate matchers.
297 // This allows checking if constants match using compound predicates and works
298 // with vector constants, possibly with relaxed constraints. For example, ignore
299 // undef values.
301 ///////////////////////////////////////////////////////////////////////////////
303 struct is_all_ones {
304 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
306 /// Match an integer or vector with all bits set.
307 /// For vectors, this includes constants with undefined elements.
308 inline cst_pred_ty<is_all_ones> m_AllOnes() {
309 return cst_pred_ty<is_all_ones>();
312 struct is_maxsignedvalue {
313 bool isValue(const APInt &C) { return C.isMaxSignedValue(); }
315 /// Match an integer or vector with values having all bits except for the high
316 /// bit set (0x7f...).
317 /// For vectors, this includes constants with undefined elements.
318 inline cst_pred_ty<is_maxsignedvalue> m_MaxSignedValue() {
319 return cst_pred_ty<is_maxsignedvalue>();
321 inline api_pred_ty<is_maxsignedvalue> m_MaxSignedValue(const APInt *&V) {
322 return V;
325 struct is_negative {
326 bool isValue(const APInt &C) { return C.isNegative(); }
328 /// Match an integer or vector of negative values.
329 /// For vectors, this includes constants with undefined elements.
330 inline cst_pred_ty<is_negative> m_Negative() {
331 return cst_pred_ty<is_negative>();
333 inline api_pred_ty<is_negative> m_Negative(const APInt *&V) {
334 return V;
337 struct is_nonnegative {
338 bool isValue(const APInt &C) { return C.isNonNegative(); }
340 /// Match an integer or vector of nonnegative values.
341 /// For vectors, this includes constants with undefined elements.
342 inline cst_pred_ty<is_nonnegative> m_NonNegative() {
343 return cst_pred_ty<is_nonnegative>();
345 inline api_pred_ty<is_nonnegative> m_NonNegative(const APInt *&V) {
346 return V;
349 struct is_one {
350 bool isValue(const APInt &C) { return C.isOneValue(); }
352 /// Match an integer 1 or a vector with all elements equal to 1.
353 /// For vectors, this includes constants with undefined elements.
354 inline cst_pred_ty<is_one> m_One() {
355 return cst_pred_ty<is_one>();
358 struct is_zero_int {
359 bool isValue(const APInt &C) { return C.isNullValue(); }
361 /// Match an integer 0 or a vector with all elements equal to 0.
362 /// For vectors, this includes constants with undefined elements.
363 inline cst_pred_ty<is_zero_int> m_ZeroInt() {
364 return cst_pred_ty<is_zero_int>();
367 struct is_zero {
368 template <typename ITy> bool match(ITy *V) {
369 auto *C = dyn_cast<Constant>(V);
370 return C && (C->isNullValue() || cst_pred_ty<is_zero_int>().match(C));
373 /// Match any null constant or a vector with all elements equal to 0.
374 /// For vectors, this includes constants with undefined elements.
375 inline is_zero m_Zero() {
376 return is_zero();
379 struct is_power2 {
380 bool isValue(const APInt &C) { return C.isPowerOf2(); }
382 /// Match an integer or vector power-of-2.
383 /// For vectors, this includes constants with undefined elements.
384 inline cst_pred_ty<is_power2> m_Power2() {
385 return cst_pred_ty<is_power2>();
387 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) {
388 return V;
391 struct is_power2_or_zero {
392 bool isValue(const APInt &C) { return !C || C.isPowerOf2(); }
394 /// Match an integer or vector of 0 or power-of-2 values.
395 /// For vectors, this includes constants with undefined elements.
396 inline cst_pred_ty<is_power2_or_zero> m_Power2OrZero() {
397 return cst_pred_ty<is_power2_or_zero>();
399 inline api_pred_ty<is_power2_or_zero> m_Power2OrZero(const APInt *&V) {
400 return V;
403 struct is_sign_mask {
404 bool isValue(const APInt &C) { return C.isSignMask(); }
406 /// Match an integer or vector with only the sign bit(s) set.
407 /// For vectors, this includes constants with undefined elements.
408 inline cst_pred_ty<is_sign_mask> m_SignMask() {
409 return cst_pred_ty<is_sign_mask>();
412 struct is_lowbit_mask {
413 bool isValue(const APInt &C) { return C.isMask(); }
415 /// Match an integer or vector with only the low bit(s) set.
416 /// For vectors, this includes constants with undefined elements.
417 inline cst_pred_ty<is_lowbit_mask> m_LowBitMask() {
418 return cst_pred_ty<is_lowbit_mask>();
421 struct is_nan {
422 bool isValue(const APFloat &C) { return C.isNaN(); }
424 /// Match an arbitrary NaN constant. This includes quiet and signalling nans.
425 /// For vectors, this includes constants with undefined elements.
426 inline cstfp_pred_ty<is_nan> m_NaN() {
427 return cstfp_pred_ty<is_nan>();
430 struct is_any_zero_fp {
431 bool isValue(const APFloat &C) { return C.isZero(); }
433 /// Match a floating-point negative zero or positive zero.
434 /// For vectors, this includes constants with undefined elements.
435 inline cstfp_pred_ty<is_any_zero_fp> m_AnyZeroFP() {
436 return cstfp_pred_ty<is_any_zero_fp>();
439 struct is_pos_zero_fp {
440 bool isValue(const APFloat &C) { return C.isPosZero(); }
442 /// Match a floating-point positive zero.
443 /// For vectors, this includes constants with undefined elements.
444 inline cstfp_pred_ty<is_pos_zero_fp> m_PosZeroFP() {
445 return cstfp_pred_ty<is_pos_zero_fp>();
448 struct is_neg_zero_fp {
449 bool isValue(const APFloat &C) { return C.isNegZero(); }
451 /// Match a floating-point negative zero.
452 /// For vectors, this includes constants with undefined elements.
453 inline cstfp_pred_ty<is_neg_zero_fp> m_NegZeroFP() {
454 return cstfp_pred_ty<is_neg_zero_fp>();
457 ///////////////////////////////////////////////////////////////////////////////
459 template <typename Class> struct bind_ty {
460 Class *&VR;
462 bind_ty(Class *&V) : VR(V) {}
464 template <typename ITy> bool match(ITy *V) {
465 if (auto *CV = dyn_cast<Class>(V)) {
466 VR = CV;
467 return true;
469 return false;
473 /// Match a value, capturing it if we match.
474 inline bind_ty<Value> m_Value(Value *&V) { return V; }
475 inline bind_ty<const Value> m_Value(const Value *&V) { return V; }
477 /// Match an instruction, capturing it if we match.
478 inline bind_ty<Instruction> m_Instruction(Instruction *&I) { return I; }
479 /// Match a binary operator, capturing it if we match.
480 inline bind_ty<BinaryOperator> m_BinOp(BinaryOperator *&I) { return I; }
482 /// Match a ConstantInt, capturing the value if we match.
483 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
485 /// Match a Constant, capturing the value if we match.
486 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
488 /// Match a ConstantFP, capturing the value if we match.
489 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
491 /// Match a specified Value*.
492 struct specificval_ty {
493 const Value *Val;
495 specificval_ty(const Value *V) : Val(V) {}
497 template <typename ITy> bool match(ITy *V) { return V == Val; }
500 /// Match if we have a specific specified value.
501 inline specificval_ty m_Specific(const Value *V) { return V; }
503 /// Stores a reference to the Value *, not the Value * itself,
504 /// thus can be used in commutative matchers.
505 template <typename Class> struct deferredval_ty {
506 Class *const &Val;
508 deferredval_ty(Class *const &V) : Val(V) {}
510 template <typename ITy> bool match(ITy *const V) { return V == Val; }
513 /// A commutative-friendly version of m_Specific().
514 inline deferredval_ty<Value> m_Deferred(Value *const &V) { return V; }
515 inline deferredval_ty<const Value> m_Deferred(const Value *const &V) {
516 return V;
519 /// Match a specified floating point value or vector of all elements of
520 /// that value.
521 struct specific_fpval {
522 double Val;
524 specific_fpval(double V) : Val(V) {}
526 template <typename ITy> bool match(ITy *V) {
527 if (const auto *CFP = dyn_cast<ConstantFP>(V))
528 return CFP->isExactlyValue(Val);
529 if (V->getType()->isVectorTy())
530 if (const auto *C = dyn_cast<Constant>(V))
531 if (auto *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
532 return CFP->isExactlyValue(Val);
533 return false;
537 /// Match a specific floating point value or vector with all elements
538 /// equal to the value.
539 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
541 /// Match a float 1.0 or vector with all elements equal to 1.0.
542 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
544 struct bind_const_intval_ty {
545 uint64_t &VR;
547 bind_const_intval_ty(uint64_t &V) : VR(V) {}
549 template <typename ITy> bool match(ITy *V) {
550 if (const auto *CV = dyn_cast<ConstantInt>(V))
551 if (CV->getValue().ule(UINT64_MAX)) {
552 VR = CV->getZExtValue();
553 return true;
555 return false;
559 /// Match a specified integer value or vector of all elements of that
560 // value.
561 struct specific_intval {
562 uint64_t Val;
564 specific_intval(uint64_t V) : Val(V) {}
566 template <typename ITy> bool match(ITy *V) {
567 const auto *CI = dyn_cast<ConstantInt>(V);
568 if (!CI && V->getType()->isVectorTy())
569 if (const auto *C = dyn_cast<Constant>(V))
570 CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue());
572 return CI && CI->getValue() == Val;
576 /// Match a specific integer value or vector with all elements equal to
577 /// the value.
578 inline specific_intval m_SpecificInt(uint64_t V) { return specific_intval(V); }
580 /// Match a ConstantInt and bind to its value. This does not match
581 /// ConstantInts wider than 64-bits.
582 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
584 //===----------------------------------------------------------------------===//
585 // Matcher for any binary operator.
587 template <typename LHS_t, typename RHS_t, bool Commutable = false>
588 struct AnyBinaryOp_match {
589 LHS_t L;
590 RHS_t R;
592 // The evaluation order is always stable, regardless of Commutability.
593 // The LHS is always matched first.
594 AnyBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
596 template <typename OpTy> bool match(OpTy *V) {
597 if (auto *I = dyn_cast<BinaryOperator>(V))
598 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
599 (Commutable && L.match(I->getOperand(1)) &&
600 R.match(I->getOperand(0)));
601 return false;
605 template <typename LHS, typename RHS>
606 inline AnyBinaryOp_match<LHS, RHS> m_BinOp(const LHS &L, const RHS &R) {
607 return AnyBinaryOp_match<LHS, RHS>(L, R);
610 //===----------------------------------------------------------------------===//
611 // Matchers for specific binary operators.
614 template <typename LHS_t, typename RHS_t, unsigned Opcode,
615 bool Commutable = false>
616 struct BinaryOp_match {
617 LHS_t L;
618 RHS_t R;
620 // The evaluation order is always stable, regardless of Commutability.
621 // The LHS is always matched first.
622 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
624 template <typename OpTy> bool match(OpTy *V) {
625 if (V->getValueID() == Value::InstructionVal + Opcode) {
626 auto *I = cast<BinaryOperator>(V);
627 return (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
628 (Commutable && L.match(I->getOperand(1)) &&
629 R.match(I->getOperand(0)));
631 if (auto *CE = dyn_cast<ConstantExpr>(V))
632 return CE->getOpcode() == Opcode &&
633 ((L.match(CE->getOperand(0)) && R.match(CE->getOperand(1))) ||
634 (Commutable && L.match(CE->getOperand(1)) &&
635 R.match(CE->getOperand(0))));
636 return false;
640 template <typename LHS, typename RHS>
641 inline BinaryOp_match<LHS, RHS, Instruction::Add> m_Add(const LHS &L,
642 const RHS &R) {
643 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
646 template <typename LHS, typename RHS>
647 inline BinaryOp_match<LHS, RHS, Instruction::FAdd> m_FAdd(const LHS &L,
648 const RHS &R) {
649 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
652 template <typename LHS, typename RHS>
653 inline BinaryOp_match<LHS, RHS, Instruction::Sub> m_Sub(const LHS &L,
654 const RHS &R) {
655 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
658 template <typename LHS, typename RHS>
659 inline BinaryOp_match<LHS, RHS, Instruction::FSub> m_FSub(const LHS &L,
660 const RHS &R) {
661 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
664 template <typename Op_t> struct FNeg_match {
665 Op_t X;
667 FNeg_match(const Op_t &Op) : X(Op) {}
668 template <typename OpTy> bool match(OpTy *V) {
669 auto *FPMO = dyn_cast<FPMathOperator>(V);
670 if (!FPMO || FPMO->getOpcode() != Instruction::FSub)
671 return false;
672 if (FPMO->hasNoSignedZeros()) {
673 // With 'nsz', any zero goes.
674 if (!cstfp_pred_ty<is_any_zero_fp>().match(FPMO->getOperand(0)))
675 return false;
676 } else {
677 // Without 'nsz', we need fsub -0.0, X exactly.
678 if (!cstfp_pred_ty<is_neg_zero_fp>().match(FPMO->getOperand(0)))
679 return false;
681 return X.match(FPMO->getOperand(1));
685 /// Match 'fneg X' as 'fsub -0.0, X'.
686 template <typename OpTy>
687 inline FNeg_match<OpTy>
688 m_FNeg(const OpTy &X) {
689 return FNeg_match<OpTy>(X);
692 /// Match 'fneg X' as 'fsub +-0.0, X'.
693 template <typename RHS>
694 inline BinaryOp_match<cstfp_pred_ty<is_any_zero_fp>, RHS, Instruction::FSub>
695 m_FNegNSZ(const RHS &X) {
696 return m_FSub(m_AnyZeroFP(), X);
699 template <typename LHS, typename RHS>
700 inline BinaryOp_match<LHS, RHS, Instruction::Mul> m_Mul(const LHS &L,
701 const RHS &R) {
702 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
705 template <typename LHS, typename RHS>
706 inline BinaryOp_match<LHS, RHS, Instruction::FMul> m_FMul(const LHS &L,
707 const RHS &R) {
708 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
711 template <typename LHS, typename RHS>
712 inline BinaryOp_match<LHS, RHS, Instruction::UDiv> m_UDiv(const LHS &L,
713 const RHS &R) {
714 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
717 template <typename LHS, typename RHS>
718 inline BinaryOp_match<LHS, RHS, Instruction::SDiv> m_SDiv(const LHS &L,
719 const RHS &R) {
720 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
723 template <typename LHS, typename RHS>
724 inline BinaryOp_match<LHS, RHS, Instruction::FDiv> m_FDiv(const LHS &L,
725 const RHS &R) {
726 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
729 template <typename LHS, typename RHS>
730 inline BinaryOp_match<LHS, RHS, Instruction::URem> m_URem(const LHS &L,
731 const RHS &R) {
732 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
735 template <typename LHS, typename RHS>
736 inline BinaryOp_match<LHS, RHS, Instruction::SRem> m_SRem(const LHS &L,
737 const RHS &R) {
738 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
741 template <typename LHS, typename RHS>
742 inline BinaryOp_match<LHS, RHS, Instruction::FRem> m_FRem(const LHS &L,
743 const RHS &R) {
744 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
747 template <typename LHS, typename RHS>
748 inline BinaryOp_match<LHS, RHS, Instruction::And> m_And(const LHS &L,
749 const RHS &R) {
750 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
753 template <typename LHS, typename RHS>
754 inline BinaryOp_match<LHS, RHS, Instruction::Or> m_Or(const LHS &L,
755 const RHS &R) {
756 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
759 template <typename LHS, typename RHS>
760 inline BinaryOp_match<LHS, RHS, Instruction::Xor> m_Xor(const LHS &L,
761 const RHS &R) {
762 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
765 template <typename LHS, typename RHS>
766 inline BinaryOp_match<LHS, RHS, Instruction::Shl> m_Shl(const LHS &L,
767 const RHS &R) {
768 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
771 template <typename LHS, typename RHS>
772 inline BinaryOp_match<LHS, RHS, Instruction::LShr> m_LShr(const LHS &L,
773 const RHS &R) {
774 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
777 template <typename LHS, typename RHS>
778 inline BinaryOp_match<LHS, RHS, Instruction::AShr> m_AShr(const LHS &L,
779 const RHS &R) {
780 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
783 template <typename LHS_t, typename RHS_t, unsigned Opcode,
784 unsigned WrapFlags = 0>
785 struct OverflowingBinaryOp_match {
786 LHS_t L;
787 RHS_t R;
789 OverflowingBinaryOp_match(const LHS_t &LHS, const RHS_t &RHS)
790 : L(LHS), R(RHS) {}
792 template <typename OpTy> bool match(OpTy *V) {
793 if (auto *Op = dyn_cast<OverflowingBinaryOperator>(V)) {
794 if (Op->getOpcode() != Opcode)
795 return false;
796 if (WrapFlags & OverflowingBinaryOperator::NoUnsignedWrap &&
797 !Op->hasNoUnsignedWrap())
798 return false;
799 if (WrapFlags & OverflowingBinaryOperator::NoSignedWrap &&
800 !Op->hasNoSignedWrap())
801 return false;
802 return L.match(Op->getOperand(0)) && R.match(Op->getOperand(1));
804 return false;
808 template <typename LHS, typename RHS>
809 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
810 OverflowingBinaryOperator::NoSignedWrap>
811 m_NSWAdd(const LHS &L, const RHS &R) {
812 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
813 OverflowingBinaryOperator::NoSignedWrap>(
814 L, R);
816 template <typename LHS, typename RHS>
817 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
818 OverflowingBinaryOperator::NoSignedWrap>
819 m_NSWSub(const LHS &L, const RHS &R) {
820 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
821 OverflowingBinaryOperator::NoSignedWrap>(
822 L, R);
824 template <typename LHS, typename RHS>
825 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
826 OverflowingBinaryOperator::NoSignedWrap>
827 m_NSWMul(const LHS &L, const RHS &R) {
828 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
829 OverflowingBinaryOperator::NoSignedWrap>(
830 L, R);
832 template <typename LHS, typename RHS>
833 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
834 OverflowingBinaryOperator::NoSignedWrap>
835 m_NSWShl(const LHS &L, const RHS &R) {
836 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
837 OverflowingBinaryOperator::NoSignedWrap>(
838 L, R);
841 template <typename LHS, typename RHS>
842 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
843 OverflowingBinaryOperator::NoUnsignedWrap>
844 m_NUWAdd(const LHS &L, const RHS &R) {
845 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Add,
846 OverflowingBinaryOperator::NoUnsignedWrap>(
847 L, R);
849 template <typename LHS, typename RHS>
850 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
851 OverflowingBinaryOperator::NoUnsignedWrap>
852 m_NUWSub(const LHS &L, const RHS &R) {
853 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Sub,
854 OverflowingBinaryOperator::NoUnsignedWrap>(
855 L, R);
857 template <typename LHS, typename RHS>
858 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
859 OverflowingBinaryOperator::NoUnsignedWrap>
860 m_NUWMul(const LHS &L, const RHS &R) {
861 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Mul,
862 OverflowingBinaryOperator::NoUnsignedWrap>(
863 L, R);
865 template <typename LHS, typename RHS>
866 inline OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
867 OverflowingBinaryOperator::NoUnsignedWrap>
868 m_NUWShl(const LHS &L, const RHS &R) {
869 return OverflowingBinaryOp_match<LHS, RHS, Instruction::Shl,
870 OverflowingBinaryOperator::NoUnsignedWrap>(
871 L, R);
874 //===----------------------------------------------------------------------===//
875 // Class that matches a group of binary opcodes.
877 template <typename LHS_t, typename RHS_t, typename Predicate>
878 struct BinOpPred_match : Predicate {
879 LHS_t L;
880 RHS_t R;
882 BinOpPred_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
884 template <typename OpTy> bool match(OpTy *V) {
885 if (auto *I = dyn_cast<Instruction>(V))
886 return this->isOpType(I->getOpcode()) && L.match(I->getOperand(0)) &&
887 R.match(I->getOperand(1));
888 if (auto *CE = dyn_cast<ConstantExpr>(V))
889 return this->isOpType(CE->getOpcode()) && L.match(CE->getOperand(0)) &&
890 R.match(CE->getOperand(1));
891 return false;
895 struct is_shift_op {
896 bool isOpType(unsigned Opcode) { return Instruction::isShift(Opcode); }
899 struct is_right_shift_op {
900 bool isOpType(unsigned Opcode) {
901 return Opcode == Instruction::LShr || Opcode == Instruction::AShr;
905 struct is_logical_shift_op {
906 bool isOpType(unsigned Opcode) {
907 return Opcode == Instruction::LShr || Opcode == Instruction::Shl;
911 struct is_bitwiselogic_op {
912 bool isOpType(unsigned Opcode) {
913 return Instruction::isBitwiseLogicOp(Opcode);
917 struct is_idiv_op {
918 bool isOpType(unsigned Opcode) {
919 return Opcode == Instruction::SDiv || Opcode == Instruction::UDiv;
923 /// Matches shift operations.
924 template <typename LHS, typename RHS>
925 inline BinOpPred_match<LHS, RHS, is_shift_op> m_Shift(const LHS &L,
926 const RHS &R) {
927 return BinOpPred_match<LHS, RHS, is_shift_op>(L, R);
930 /// Matches logical shift operations.
931 template <typename LHS, typename RHS>
932 inline BinOpPred_match<LHS, RHS, is_right_shift_op> m_Shr(const LHS &L,
933 const RHS &R) {
934 return BinOpPred_match<LHS, RHS, is_right_shift_op>(L, R);
937 /// Matches logical shift operations.
938 template <typename LHS, typename RHS>
939 inline BinOpPred_match<LHS, RHS, is_logical_shift_op>
940 m_LogicalShift(const LHS &L, const RHS &R) {
941 return BinOpPred_match<LHS, RHS, is_logical_shift_op>(L, R);
944 /// Matches bitwise logic operations.
945 template <typename LHS, typename RHS>
946 inline BinOpPred_match<LHS, RHS, is_bitwiselogic_op>
947 m_BitwiseLogic(const LHS &L, const RHS &R) {
948 return BinOpPred_match<LHS, RHS, is_bitwiselogic_op>(L, R);
951 /// Matches integer division operations.
952 template <typename LHS, typename RHS>
953 inline BinOpPred_match<LHS, RHS, is_idiv_op> m_IDiv(const LHS &L,
954 const RHS &R) {
955 return BinOpPred_match<LHS, RHS, is_idiv_op>(L, R);
958 //===----------------------------------------------------------------------===//
959 // Class that matches exact binary ops.
961 template <typename SubPattern_t> struct Exact_match {
962 SubPattern_t SubPattern;
964 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
966 template <typename OpTy> bool match(OpTy *V) {
967 if (auto *PEO = dyn_cast<PossiblyExactOperator>(V))
968 return PEO->isExact() && SubPattern.match(V);
969 return false;
973 template <typename T> inline Exact_match<T> m_Exact(const T &SubPattern) {
974 return SubPattern;
977 //===----------------------------------------------------------------------===//
978 // Matchers for CmpInst classes
981 template <typename LHS_t, typename RHS_t, typename Class, typename PredicateTy,
982 bool Commutable = false>
983 struct CmpClass_match {
984 PredicateTy &Predicate;
985 LHS_t L;
986 RHS_t R;
988 // The evaluation order is always stable, regardless of Commutability.
989 // The LHS is always matched first.
990 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
991 : Predicate(Pred), L(LHS), R(RHS) {}
993 template <typename OpTy> bool match(OpTy *V) {
994 if (auto *I = dyn_cast<Class>(V))
995 if ((L.match(I->getOperand(0)) && R.match(I->getOperand(1))) ||
996 (Commutable && L.match(I->getOperand(1)) &&
997 R.match(I->getOperand(0)))) {
998 Predicate = I->getPredicate();
999 return true;
1001 return false;
1005 template <typename LHS, typename RHS>
1006 inline CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>
1007 m_Cmp(CmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1008 return CmpClass_match<LHS, RHS, CmpInst, CmpInst::Predicate>(Pred, L, R);
1011 template <typename LHS, typename RHS>
1012 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
1013 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1014 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>(Pred, L, R);
1017 template <typename LHS, typename RHS>
1018 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
1019 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1020 return CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>(Pred, L, R);
1023 //===----------------------------------------------------------------------===//
1024 // Matchers for instructions with a given opcode and number of operands.
1027 /// Matches instructions with Opcode and three operands.
1028 template <typename T0, unsigned Opcode> struct OneOps_match {
1029 T0 Op1;
1031 OneOps_match(const T0 &Op1) : Op1(Op1) {}
1033 template <typename OpTy> bool match(OpTy *V) {
1034 if (V->getValueID() == Value::InstructionVal + Opcode) {
1035 auto *I = cast<Instruction>(V);
1036 return Op1.match(I->getOperand(0));
1038 return false;
1042 /// Matches instructions with Opcode and three operands.
1043 template <typename T0, typename T1, unsigned Opcode> struct TwoOps_match {
1044 T0 Op1;
1045 T1 Op2;
1047 TwoOps_match(const T0 &Op1, const T1 &Op2) : Op1(Op1), Op2(Op2) {}
1049 template <typename OpTy> bool match(OpTy *V) {
1050 if (V->getValueID() == Value::InstructionVal + Opcode) {
1051 auto *I = cast<Instruction>(V);
1052 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1));
1054 return false;
1058 /// Matches instructions with Opcode and three operands.
1059 template <typename T0, typename T1, typename T2, unsigned Opcode>
1060 struct ThreeOps_match {
1061 T0 Op1;
1062 T1 Op2;
1063 T2 Op3;
1065 ThreeOps_match(const T0 &Op1, const T1 &Op2, const T2 &Op3)
1066 : Op1(Op1), Op2(Op2), Op3(Op3) {}
1068 template <typename OpTy> bool match(OpTy *V) {
1069 if (V->getValueID() == Value::InstructionVal + Opcode) {
1070 auto *I = cast<Instruction>(V);
1071 return Op1.match(I->getOperand(0)) && Op2.match(I->getOperand(1)) &&
1072 Op3.match(I->getOperand(2));
1074 return false;
1078 /// Matches SelectInst.
1079 template <typename Cond, typename LHS, typename RHS>
1080 inline ThreeOps_match<Cond, LHS, RHS, Instruction::Select>
1081 m_Select(const Cond &C, const LHS &L, const RHS &R) {
1082 return ThreeOps_match<Cond, LHS, RHS, Instruction::Select>(C, L, R);
1085 /// This matches a select of two constants, e.g.:
1086 /// m_SelectCst<-1, 0>(m_Value(V))
1087 template <int64_t L, int64_t R, typename Cond>
1088 inline ThreeOps_match<Cond, constantint_match<L>, constantint_match<R>,
1089 Instruction::Select>
1090 m_SelectCst(const Cond &C) {
1091 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
1094 /// Matches InsertElementInst.
1095 template <typename Val_t, typename Elt_t, typename Idx_t>
1096 inline ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>
1097 m_InsertElement(const Val_t &Val, const Elt_t &Elt, const Idx_t &Idx) {
1098 return ThreeOps_match<Val_t, Elt_t, Idx_t, Instruction::InsertElement>(
1099 Val, Elt, Idx);
1102 /// Matches ExtractElementInst.
1103 template <typename Val_t, typename Idx_t>
1104 inline TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>
1105 m_ExtractElement(const Val_t &Val, const Idx_t &Idx) {
1106 return TwoOps_match<Val_t, Idx_t, Instruction::ExtractElement>(Val, Idx);
1109 /// Matches ShuffleVectorInst.
1110 template <typename V1_t, typename V2_t, typename Mask_t>
1111 inline ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>
1112 m_ShuffleVector(const V1_t &v1, const V2_t &v2, const Mask_t &m) {
1113 return ThreeOps_match<V1_t, V2_t, Mask_t, Instruction::ShuffleVector>(v1, v2,
1117 /// Matches LoadInst.
1118 template <typename OpTy>
1119 inline OneOps_match<OpTy, Instruction::Load> m_Load(const OpTy &Op) {
1120 return OneOps_match<OpTy, Instruction::Load>(Op);
1123 /// Matches StoreInst.
1124 template <typename ValueOpTy, typename PointerOpTy>
1125 inline TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>
1126 m_Store(const ValueOpTy &ValueOp, const PointerOpTy &PointerOp) {
1127 return TwoOps_match<ValueOpTy, PointerOpTy, Instruction::Store>(ValueOp,
1128 PointerOp);
1131 //===----------------------------------------------------------------------===//
1132 // Matchers for CastInst classes
1135 template <typename Op_t, unsigned Opcode> struct CastClass_match {
1136 Op_t Op;
1138 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
1140 template <typename OpTy> bool match(OpTy *V) {
1141 if (auto *O = dyn_cast<Operator>(V))
1142 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
1143 return false;
1147 /// Matches BitCast.
1148 template <typename OpTy>
1149 inline CastClass_match<OpTy, Instruction::BitCast> m_BitCast(const OpTy &Op) {
1150 return CastClass_match<OpTy, Instruction::BitCast>(Op);
1153 /// Matches PtrToInt.
1154 template <typename OpTy>
1155 inline CastClass_match<OpTy, Instruction::PtrToInt> m_PtrToInt(const OpTy &Op) {
1156 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
1159 /// Matches Trunc.
1160 template <typename OpTy>
1161 inline CastClass_match<OpTy, Instruction::Trunc> m_Trunc(const OpTy &Op) {
1162 return CastClass_match<OpTy, Instruction::Trunc>(Op);
1165 /// Matches SExt.
1166 template <typename OpTy>
1167 inline CastClass_match<OpTy, Instruction::SExt> m_SExt(const OpTy &Op) {
1168 return CastClass_match<OpTy, Instruction::SExt>(Op);
1171 /// Matches ZExt.
1172 template <typename OpTy>
1173 inline CastClass_match<OpTy, Instruction::ZExt> m_ZExt(const OpTy &Op) {
1174 return CastClass_match<OpTy, Instruction::ZExt>(Op);
1177 template <typename OpTy>
1178 inline match_combine_or<CastClass_match<OpTy, Instruction::ZExt>,
1179 CastClass_match<OpTy, Instruction::SExt>>
1180 m_ZExtOrSExt(const OpTy &Op) {
1181 return m_CombineOr(m_ZExt(Op), m_SExt(Op));
1184 /// Matches UIToFP.
1185 template <typename OpTy>
1186 inline CastClass_match<OpTy, Instruction::UIToFP> m_UIToFP(const OpTy &Op) {
1187 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
1190 /// Matches SIToFP.
1191 template <typename OpTy>
1192 inline CastClass_match<OpTy, Instruction::SIToFP> m_SIToFP(const OpTy &Op) {
1193 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
1196 /// Matches FPTrunc
1197 template <typename OpTy>
1198 inline CastClass_match<OpTy, Instruction::FPTrunc> m_FPTrunc(const OpTy &Op) {
1199 return CastClass_match<OpTy, Instruction::FPTrunc>(Op);
1202 /// Matches FPExt
1203 template <typename OpTy>
1204 inline CastClass_match<OpTy, Instruction::FPExt> m_FPExt(const OpTy &Op) {
1205 return CastClass_match<OpTy, Instruction::FPExt>(Op);
1208 //===----------------------------------------------------------------------===//
1209 // Matchers for control flow.
1212 struct br_match {
1213 BasicBlock *&Succ;
1215 br_match(BasicBlock *&Succ) : Succ(Succ) {}
1217 template <typename OpTy> bool match(OpTy *V) {
1218 if (auto *BI = dyn_cast<BranchInst>(V))
1219 if (BI->isUnconditional()) {
1220 Succ = BI->getSuccessor(0);
1221 return true;
1223 return false;
1227 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
1229 template <typename Cond_t> struct brc_match {
1230 Cond_t Cond;
1231 BasicBlock *&T, *&F;
1233 brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
1234 : Cond(C), T(t), F(f) {}
1236 template <typename OpTy> bool match(OpTy *V) {
1237 if (auto *BI = dyn_cast<BranchInst>(V))
1238 if (BI->isConditional() && Cond.match(BI->getCondition())) {
1239 T = BI->getSuccessor(0);
1240 F = BI->getSuccessor(1);
1241 return true;
1243 return false;
1247 template <typename Cond_t>
1248 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
1249 return brc_match<Cond_t>(C, T, F);
1252 //===----------------------------------------------------------------------===//
1253 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
1256 template <typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t,
1257 bool Commutable = false>
1258 struct MaxMin_match {
1259 LHS_t L;
1260 RHS_t R;
1262 // The evaluation order is always stable, regardless of Commutability.
1263 // The LHS is always matched first.
1264 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
1266 template <typename OpTy> bool match(OpTy *V) {
1267 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
1268 auto *SI = dyn_cast<SelectInst>(V);
1269 if (!SI)
1270 return false;
1271 auto *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
1272 if (!Cmp)
1273 return false;
1274 // At this point we have a select conditioned on a comparison. Check that
1275 // it is the values returned by the select that are being compared.
1276 Value *TrueVal = SI->getTrueValue();
1277 Value *FalseVal = SI->getFalseValue();
1278 Value *LHS = Cmp->getOperand(0);
1279 Value *RHS = Cmp->getOperand(1);
1280 if ((TrueVal != LHS || FalseVal != RHS) &&
1281 (TrueVal != RHS || FalseVal != LHS))
1282 return false;
1283 typename CmpInst_t::Predicate Pred =
1284 LHS == TrueVal ? Cmp->getPredicate() : Cmp->getInversePredicate();
1285 // Does "(x pred y) ? x : y" represent the desired max/min operation?
1286 if (!Pred_t::match(Pred))
1287 return false;
1288 // It does! Bind the operands.
1289 return (L.match(LHS) && R.match(RHS)) ||
1290 (Commutable && L.match(RHS) && R.match(LHS));
1294 /// Helper class for identifying signed max predicates.
1295 struct smax_pred_ty {
1296 static bool match(ICmpInst::Predicate Pred) {
1297 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
1301 /// Helper class for identifying signed min predicates.
1302 struct smin_pred_ty {
1303 static bool match(ICmpInst::Predicate Pred) {
1304 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
1308 /// Helper class for identifying unsigned max predicates.
1309 struct umax_pred_ty {
1310 static bool match(ICmpInst::Predicate Pred) {
1311 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
1315 /// Helper class for identifying unsigned min predicates.
1316 struct umin_pred_ty {
1317 static bool match(ICmpInst::Predicate Pred) {
1318 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
1322 /// Helper class for identifying ordered max predicates.
1323 struct ofmax_pred_ty {
1324 static bool match(FCmpInst::Predicate Pred) {
1325 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
1329 /// Helper class for identifying ordered min predicates.
1330 struct ofmin_pred_ty {
1331 static bool match(FCmpInst::Predicate Pred) {
1332 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
1336 /// Helper class for identifying unordered max predicates.
1337 struct ufmax_pred_ty {
1338 static bool match(FCmpInst::Predicate Pred) {
1339 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
1343 /// Helper class for identifying unordered min predicates.
1344 struct ufmin_pred_ty {
1345 static bool match(FCmpInst::Predicate Pred) {
1346 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
1350 template <typename LHS, typename RHS>
1351 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty> m_SMax(const LHS &L,
1352 const RHS &R) {
1353 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
1356 template <typename LHS, typename RHS>
1357 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty> m_SMin(const LHS &L,
1358 const RHS &R) {
1359 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
1362 template <typename LHS, typename RHS>
1363 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty> m_UMax(const LHS &L,
1364 const RHS &R) {
1365 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
1368 template <typename LHS, typename RHS>
1369 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty> m_UMin(const LHS &L,
1370 const RHS &R) {
1371 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
1374 /// Match an 'ordered' floating point maximum function.
1375 /// Floating point has one special value 'NaN'. Therefore, there is no total
1376 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1377 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1378 /// semantics. In the presence of 'NaN' we have to preserve the original
1379 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
1381 /// max(L, R) iff L and R are not NaN
1382 /// m_OrdFMax(L, R) = R iff L or R are NaN
1383 template <typename LHS, typename RHS>
1384 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty> m_OrdFMax(const LHS &L,
1385 const RHS &R) {
1386 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
1389 /// Match an 'ordered' floating point minimum function.
1390 /// Floating point has one special value 'NaN'. Therefore, there is no total
1391 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1392 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1393 /// semantics. In the presence of 'NaN' we have to preserve the original
1394 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
1396 /// min(L, R) iff L and R are not NaN
1397 /// m_OrdFMin(L, R) = R iff L or R are NaN
1398 template <typename LHS, typename RHS>
1399 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty> m_OrdFMin(const LHS &L,
1400 const RHS &R) {
1401 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
1404 /// Match an 'unordered' floating point maximum function.
1405 /// Floating point has one special value 'NaN'. Therefore, there is no total
1406 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1407 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
1408 /// semantics. In the presence of 'NaN' we have to preserve the original
1409 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
1411 /// max(L, R) iff L and R are not NaN
1412 /// m_UnordFMax(L, R) = L iff L or R are NaN
1413 template <typename LHS, typename RHS>
1414 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
1415 m_UnordFMax(const LHS &L, const RHS &R) {
1416 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1419 /// Match an 'unordered' floating point minimum function.
1420 /// Floating point has one special value 'NaN'. Therefore, there is no total
1421 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1422 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1423 /// semantics. In the presence of 'NaN' we have to preserve the original
1424 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1426 /// min(L, R) iff L and R are not NaN
1427 /// m_UnordFMin(L, R) = L iff L or R are NaN
1428 template <typename LHS, typename RHS>
1429 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
1430 m_UnordFMin(const LHS &L, const RHS &R) {
1431 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1434 //===----------------------------------------------------------------------===//
1435 // Matchers for overflow check patterns: e.g. (a + b) u< a
1438 template <typename LHS_t, typename RHS_t, typename Sum_t>
1439 struct UAddWithOverflow_match {
1440 LHS_t L;
1441 RHS_t R;
1442 Sum_t S;
1444 UAddWithOverflow_match(const LHS_t &L, const RHS_t &R, const Sum_t &S)
1445 : L(L), R(R), S(S) {}
1447 template <typename OpTy> bool match(OpTy *V) {
1448 Value *ICmpLHS, *ICmpRHS;
1449 ICmpInst::Predicate Pred;
1450 if (!m_ICmp(Pred, m_Value(ICmpLHS), m_Value(ICmpRHS)).match(V))
1451 return false;
1453 Value *AddLHS, *AddRHS;
1454 auto AddExpr = m_Add(m_Value(AddLHS), m_Value(AddRHS));
1456 // (a + b) u< a, (a + b) u< b
1457 if (Pred == ICmpInst::ICMP_ULT)
1458 if (AddExpr.match(ICmpLHS) && (ICmpRHS == AddLHS || ICmpRHS == AddRHS))
1459 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1461 // a >u (a + b), b >u (a + b)
1462 if (Pred == ICmpInst::ICMP_UGT)
1463 if (AddExpr.match(ICmpRHS) && (ICmpLHS == AddLHS || ICmpLHS == AddRHS))
1464 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1466 // Match special-case for increment-by-1.
1467 if (Pred == ICmpInst::ICMP_EQ) {
1468 // (a + 1) == 0
1469 // (1 + a) == 0
1470 if (AddExpr.match(ICmpLHS) && m_ZeroInt().match(ICmpRHS) &&
1471 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1472 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpLHS);
1473 // 0 == (a + 1)
1474 // 0 == (1 + a)
1475 if (m_ZeroInt().match(ICmpLHS) && AddExpr.match(ICmpRHS) &&
1476 (m_One().match(AddLHS) || m_One().match(AddRHS)))
1477 return L.match(AddLHS) && R.match(AddRHS) && S.match(ICmpRHS);
1480 return false;
1484 /// Match an icmp instruction checking for unsigned overflow on addition.
1486 /// S is matched to the addition whose result is being checked for overflow, and
1487 /// L and R are matched to the LHS and RHS of S.
1488 template <typename LHS_t, typename RHS_t, typename Sum_t>
1489 UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>
1490 m_UAddWithOverflow(const LHS_t &L, const RHS_t &R, const Sum_t &S) {
1491 return UAddWithOverflow_match<LHS_t, RHS_t, Sum_t>(L, R, S);
1494 template <typename Opnd_t> struct Argument_match {
1495 unsigned OpI;
1496 Opnd_t Val;
1498 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) {}
1500 template <typename OpTy> bool match(OpTy *V) {
1501 // FIXME: Should likely be switched to use `CallBase`.
1502 if (const auto *CI = dyn_cast<CallInst>(V))
1503 return Val.match(CI->getArgOperand(OpI));
1504 return false;
1508 /// Match an argument.
1509 template <unsigned OpI, typename Opnd_t>
1510 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1511 return Argument_match<Opnd_t>(OpI, Op);
1514 /// Intrinsic matchers.
1515 struct IntrinsicID_match {
1516 unsigned ID;
1518 IntrinsicID_match(Intrinsic::ID IntrID) : ID(IntrID) {}
1520 template <typename OpTy> bool match(OpTy *V) {
1521 if (const auto *CI = dyn_cast<CallInst>(V))
1522 if (const auto *F = CI->getCalledFunction())
1523 return F->getIntrinsicID() == ID;
1524 return false;
1528 /// Intrinsic matches are combinations of ID matchers, and argument
1529 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1530 /// them with lower arity matchers. Here's some convenient typedefs for up to
1531 /// several arguments, and more can be added as needed
1532 template <typename T0 = void, typename T1 = void, typename T2 = void,
1533 typename T3 = void, typename T4 = void, typename T5 = void,
1534 typename T6 = void, typename T7 = void, typename T8 = void,
1535 typename T9 = void, typename T10 = void>
1536 struct m_Intrinsic_Ty;
1537 template <typename T0> struct m_Intrinsic_Ty<T0> {
1538 using Ty = match_combine_and<IntrinsicID_match, Argument_match<T0>>;
1540 template <typename T0, typename T1> struct m_Intrinsic_Ty<T0, T1> {
1541 using Ty =
1542 match_combine_and<typename m_Intrinsic_Ty<T0>::Ty, Argument_match<T1>>;
1544 template <typename T0, typename T1, typename T2>
1545 struct m_Intrinsic_Ty<T0, T1, T2> {
1546 using Ty =
1547 match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1548 Argument_match<T2>>;
1550 template <typename T0, typename T1, typename T2, typename T3>
1551 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1552 using Ty =
1553 match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1554 Argument_match<T3>>;
1557 /// Match intrinsic calls like this:
1558 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1559 template <Intrinsic::ID IntrID> inline IntrinsicID_match m_Intrinsic() {
1560 return IntrinsicID_match(IntrID);
1563 template <Intrinsic::ID IntrID, typename T0>
1564 inline typename m_Intrinsic_Ty<T0>::Ty m_Intrinsic(const T0 &Op0) {
1565 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1568 template <Intrinsic::ID IntrID, typename T0, typename T1>
1569 inline typename m_Intrinsic_Ty<T0, T1>::Ty m_Intrinsic(const T0 &Op0,
1570 const T1 &Op1) {
1571 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1574 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2>
1575 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1576 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1577 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1580 template <Intrinsic::ID IntrID, typename T0, typename T1, typename T2,
1581 typename T3>
1582 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1583 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1584 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1587 // Helper intrinsic matching specializations.
1588 template <typename Opnd0>
1589 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BitReverse(const Opnd0 &Op0) {
1590 return m_Intrinsic<Intrinsic::bitreverse>(Op0);
1593 template <typename Opnd0>
1594 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_BSwap(const Opnd0 &Op0) {
1595 return m_Intrinsic<Intrinsic::bswap>(Op0);
1598 template <typename Opnd0>
1599 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FAbs(const Opnd0 &Op0) {
1600 return m_Intrinsic<Intrinsic::fabs>(Op0);
1603 template <typename Opnd0>
1604 inline typename m_Intrinsic_Ty<Opnd0>::Ty m_FCanonicalize(const Opnd0 &Op0) {
1605 return m_Intrinsic<Intrinsic::canonicalize>(Op0);
1608 template <typename Opnd0, typename Opnd1>
1609 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMin(const Opnd0 &Op0,
1610 const Opnd1 &Op1) {
1611 return m_Intrinsic<Intrinsic::minnum>(Op0, Op1);
1614 template <typename Opnd0, typename Opnd1>
1615 inline typename m_Intrinsic_Ty<Opnd0, Opnd1>::Ty m_FMax(const Opnd0 &Op0,
1616 const Opnd1 &Op1) {
1617 return m_Intrinsic<Intrinsic::maxnum>(Op0, Op1);
1620 //===----------------------------------------------------------------------===//
1621 // Matchers for two-operands operators with the operators in either order
1624 /// Matches a BinaryOperator with LHS and RHS in either order.
1625 template <typename LHS, typename RHS>
1626 inline AnyBinaryOp_match<LHS, RHS, true> m_c_BinOp(const LHS &L, const RHS &R) {
1627 return AnyBinaryOp_match<LHS, RHS, true>(L, R);
1630 /// Matches an ICmp with a predicate over LHS and RHS in either order.
1631 /// Does not swap the predicate.
1632 template <typename LHS, typename RHS>
1633 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>
1634 m_c_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
1635 return CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate, true>(Pred, L,
1639 /// Matches a Add with LHS and RHS in either order.
1640 template <typename LHS, typename RHS>
1641 inline BinaryOp_match<LHS, RHS, Instruction::Add, true> m_c_Add(const LHS &L,
1642 const RHS &R) {
1643 return BinaryOp_match<LHS, RHS, Instruction::Add, true>(L, R);
1646 /// Matches a Mul with LHS and RHS in either order.
1647 template <typename LHS, typename RHS>
1648 inline BinaryOp_match<LHS, RHS, Instruction::Mul, true> m_c_Mul(const LHS &L,
1649 const RHS &R) {
1650 return BinaryOp_match<LHS, RHS, Instruction::Mul, true>(L, R);
1653 /// Matches an And with LHS and RHS in either order.
1654 template <typename LHS, typename RHS>
1655 inline BinaryOp_match<LHS, RHS, Instruction::And, true> m_c_And(const LHS &L,
1656 const RHS &R) {
1657 return BinaryOp_match<LHS, RHS, Instruction::And, true>(L, R);
1660 /// Matches an Or with LHS and RHS in either order.
1661 template <typename LHS, typename RHS>
1662 inline BinaryOp_match<LHS, RHS, Instruction::Or, true> m_c_Or(const LHS &L,
1663 const RHS &R) {
1664 return BinaryOp_match<LHS, RHS, Instruction::Or, true>(L, R);
1667 /// Matches an Xor with LHS and RHS in either order.
1668 template <typename LHS, typename RHS>
1669 inline BinaryOp_match<LHS, RHS, Instruction::Xor, true> m_c_Xor(const LHS &L,
1670 const RHS &R) {
1671 return BinaryOp_match<LHS, RHS, Instruction::Xor, true>(L, R);
1674 /// Matches a 'Neg' as 'sub 0, V'.
1675 template <typename ValTy>
1676 inline BinaryOp_match<cst_pred_ty<is_zero_int>, ValTy, Instruction::Sub>
1677 m_Neg(const ValTy &V) {
1678 return m_Sub(m_ZeroInt(), V);
1681 /// Matches a 'Not' as 'xor V, -1' or 'xor -1, V'.
1682 template <typename ValTy>
1683 inline BinaryOp_match<ValTy, cst_pred_ty<is_all_ones>, Instruction::Xor, true>
1684 m_Not(const ValTy &V) {
1685 return m_c_Xor(V, m_AllOnes());
1688 /// Matches an SMin with LHS and RHS in either order.
1689 template <typename LHS, typename RHS>
1690 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>
1691 m_c_SMin(const LHS &L, const RHS &R) {
1692 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty, true>(L, R);
1694 /// Matches an SMax with LHS and RHS in either order.
1695 template <typename LHS, typename RHS>
1696 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>
1697 m_c_SMax(const LHS &L, const RHS &R) {
1698 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty, true>(L, R);
1700 /// Matches a UMin with LHS and RHS in either order.
1701 template <typename LHS, typename RHS>
1702 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>
1703 m_c_UMin(const LHS &L, const RHS &R) {
1704 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty, true>(L, R);
1706 /// Matches a UMax with LHS and RHS in either order.
1707 template <typename LHS, typename RHS>
1708 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>
1709 m_c_UMax(const LHS &L, const RHS &R) {
1710 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty, true>(L, R);
1713 /// Matches FAdd with LHS and RHS in either order.
1714 template <typename LHS, typename RHS>
1715 inline BinaryOp_match<LHS, RHS, Instruction::FAdd, true>
1716 m_c_FAdd(const LHS &L, const RHS &R) {
1717 return BinaryOp_match<LHS, RHS, Instruction::FAdd, true>(L, R);
1720 /// Matches FMul with LHS and RHS in either order.
1721 template <typename LHS, typename RHS>
1722 inline BinaryOp_match<LHS, RHS, Instruction::FMul, true>
1723 m_c_FMul(const LHS &L, const RHS &R) {
1724 return BinaryOp_match<LHS, RHS, Instruction::FMul, true>(L, R);
1727 template <typename Opnd_t> struct Signum_match {
1728 Opnd_t Val;
1729 Signum_match(const Opnd_t &V) : Val(V) {}
1731 template <typename OpTy> bool match(OpTy *V) {
1732 unsigned TypeSize = V->getType()->getScalarSizeInBits();
1733 if (TypeSize == 0)
1734 return false;
1736 unsigned ShiftWidth = TypeSize - 1;
1737 Value *OpL = nullptr, *OpR = nullptr;
1739 // This is the representation of signum we match:
1741 // signum(x) == (x >> 63) | (-x >>u 63)
1743 // An i1 value is its own signum, so it's correct to match
1745 // signum(x) == (x >> 0) | (-x >>u 0)
1747 // for i1 values.
1749 auto LHS = m_AShr(m_Value(OpL), m_SpecificInt(ShiftWidth));
1750 auto RHS = m_LShr(m_Neg(m_Value(OpR)), m_SpecificInt(ShiftWidth));
1751 auto Signum = m_Or(LHS, RHS);
1753 return Signum.match(V) && OpL == OpR && Val.match(OpL);
1757 /// Matches a signum pattern.
1759 /// signum(x) =
1760 /// x > 0 -> 1
1761 /// x == 0 -> 0
1762 /// x < 0 -> -1
1763 template <typename Val_t> inline Signum_match<Val_t> m_Signum(const Val_t &V) {
1764 return Signum_match<Val_t>(V);
1767 } // end namespace PatternMatch
1768 } // end namespace llvm
1770 #endif // LLVM_IR_PATTERNMATCH_H