Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / Support / ARMWinEH.h
blobb1b821b78a4e262226cf83cce3a66f88fb0a2451
1 //===-- llvm/Support/ARMWinEH.h - Windows on ARM EH Constants ---*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
9 #ifndef LLVM_SUPPORT_ARMWINEH_H
10 #define LLVM_SUPPORT_ARMWINEH_H
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/Support/Endian.h"
15 namespace llvm {
16 namespace ARM {
17 namespace WinEH {
18 enum class RuntimeFunctionFlag {
19 RFF_Unpacked, /// unpacked entry
20 RFF_Packed, /// packed entry
21 RFF_PackedFragment, /// packed entry representing a fragment
22 RFF_Reserved, /// reserved
25 enum class ReturnType {
26 RT_POP, /// return via pop {pc} (L flag must be set)
27 RT_B, /// 16-bit branch
28 RT_BW, /// 32-bit branch
29 RT_NoEpilogue, /// no epilogue (fragment)
32 /// RuntimeFunction - An entry in the table of procedure data (.pdata)
33 ///
34 /// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
35 /// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
36 /// +---------------------------------------------------------------+
37 /// | Function Start RVA |
38 /// +-------------------+-+-+-+-----+-+---+---------------------+---+
39 /// | Stack Adjust |C|L|R| Reg |H|Ret| Function Length |Flg|
40 /// +-------------------+-+-+-+-----+-+---+---------------------+---+
41 ///
42 /// Flag : 2-bit field with the following meanings:
43 /// - 00 = packed unwind data not used; reamining bits point to .xdata record
44 /// - 01 = packed unwind data
45 /// - 10 = packed unwind data, function assumed to have no prologue; useful
46 /// for function fragments that are discontiguous with the start of the
47 /// function
48 /// - 11 = reserved
49 /// Function Length : 11-bit field providing the length of the entire function
50 /// in bytes, divided by 2; if the function is greater than
51 /// 4KB, a full .xdata record must be used instead
52 /// Ret : 2-bit field indicating how the function returns
53 /// - 00 = return via pop {pc} (the L bit must be set)
54 /// - 01 = return via 16-bit branch
55 /// - 10 = return via 32-bit branch
56 /// - 11 = no epilogue; useful for function fragments that may only contain a
57 /// prologue but the epilogue is elsewhere
58 /// H : 1-bit flag indicating whether the function "homes" the integer parameter
59 /// registers (r0-r3), allocating 16-bytes on the stack
60 /// Reg : 3-bit field indicating the index of the last saved non-volatile
61 /// register. If the R bit is set to 0, then only integer registers are
62 /// saved (r4-rN, where N is 4 + Reg). If the R bit is set to 1, then
63 /// only floating-point registers are being saved (d8-dN, where N is
64 /// 8 + Reg). The special case of the R bit being set to 1 and Reg equal
65 /// to 7 indicates that no registers are saved.
66 /// R : 1-bit flag indicating whether the non-volatile registers are integer or
67 /// floating-point. 0 indicates integer, 1 indicates floating-point. The
68 /// special case of the R-flag being set and Reg being set to 7 indicates
69 /// that no non-volatile registers are saved.
70 /// L : 1-bit flag indicating whether the function saves/restores the link
71 /// register (LR)
72 /// C : 1-bit flag indicating whether the function includes extra instructions
73 /// to setup a frame chain for fast walking. If this flag is set, r11 is
74 /// implicitly added to the list of saved non-volatile integer registers.
75 /// Stack Adjust : 10-bit field indicating the number of bytes of stack that are
76 /// allocated for this function. Only values between 0x000 and
77 /// 0x3f3 can be directly encoded. If the value is 0x3f4 or
78 /// greater, then the low 4 bits have special meaning as follows:
79 /// - Bit 0-1
80 /// indicate the number of words' of adjustment (1-4), minus 1
81 /// - Bit 2
82 /// indicates if the prologue combined adjustment into push
83 /// - Bit 3
84 /// indicates if the epilogue combined adjustment into pop
85 ///
86 /// RESTRICTIONS:
87 /// - IF C is SET:
88 /// + L flag must be set since frame chaining requires r11 and lr
89 /// + r11 must NOT be included in the set of registers described by Reg
90 /// - IF Ret is 0:
91 /// + L flag must be set
93 // NOTE: RuntimeFunction is meant to be a simple class that provides raw access
94 // to all fields in the structure. The accessor methods reflect the names of
95 // the bitfields that they correspond to. Although some obvious simplifications
96 // are possible via merging of methods, it would prevent the use of this class
97 // to fully inspect the contents of the data structure which is particularly
98 // useful for scenarios such as llvm-readobj to aid in testing.
100 class RuntimeFunction {
101 public:
102 const support::ulittle32_t BeginAddress;
103 const support::ulittle32_t UnwindData;
105 RuntimeFunction(const support::ulittle32_t *Data)
106 : BeginAddress(Data[0]), UnwindData(Data[1]) {}
108 RuntimeFunction(const support::ulittle32_t BeginAddress,
109 const support::ulittle32_t UnwindData)
110 : BeginAddress(BeginAddress), UnwindData(UnwindData) {}
112 RuntimeFunctionFlag Flag() const {
113 return RuntimeFunctionFlag(UnwindData & 0x3);
116 uint32_t ExceptionInformationRVA() const {
117 assert(Flag() == RuntimeFunctionFlag::RFF_Unpacked &&
118 "unpacked form required for this operation");
119 return (UnwindData & ~0x3);
122 uint32_t PackedUnwindData() const {
123 assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
124 Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
125 "packed form required for this operation");
126 return (UnwindData & ~0x3);
128 uint32_t FunctionLength() const {
129 assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
130 Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
131 "packed form required for this operation");
132 return (((UnwindData & 0x00001ffc) >> 2) << 1);
134 ReturnType Ret() const {
135 assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
136 Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
137 "packed form required for this operation");
138 assert(((UnwindData & 0x00006000) || L()) && "L must be set to 1");
139 return ReturnType((UnwindData & 0x00006000) >> 13);
141 bool H() const {
142 assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
143 Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
144 "packed form required for this operation");
145 return ((UnwindData & 0x00008000) >> 15);
147 uint8_t Reg() const {
148 assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
149 Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
150 "packed form required for this operation");
151 return ((UnwindData & 0x00070000) >> 16);
153 bool R() const {
154 assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
155 Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
156 "packed form required for this operation");
157 return ((UnwindData & 0x00080000) >> 19);
159 bool L() const {
160 assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
161 Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
162 "packed form required for this operation");
163 return ((UnwindData & 0x00100000) >> 20);
165 bool C() const {
166 assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
167 Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
168 "packed form required for this operation");
169 assert(((~UnwindData & 0x00200000) || L()) &&
170 "L flag must be set, chaining requires r11 and LR");
171 assert(((~UnwindData & 0x00200000) || (Reg() < 7) || R()) &&
172 "r11 must not be included in Reg; C implies r11");
173 return ((UnwindData & 0x00200000) >> 21);
175 uint16_t StackAdjust() const {
176 assert((Flag() == RuntimeFunctionFlag::RFF_Packed ||
177 Flag() == RuntimeFunctionFlag::RFF_PackedFragment) &&
178 "packed form required for this operation");
179 return ((UnwindData & 0xffc00000) >> 22);
183 /// PrologueFolding - pseudo-flag derived from Stack Adjust indicating that the
184 /// prologue has stack adjustment combined into the push
185 inline bool PrologueFolding(const RuntimeFunction &RF) {
186 return RF.StackAdjust() >= 0x3f4 && (RF.StackAdjust() & 0x4);
188 /// Epilogue - pseudo-flag derived from Stack Adjust indicating that the
189 /// epilogue has stack adjustment combined into the pop
190 inline bool EpilogueFolding(const RuntimeFunction &RF) {
191 return RF.StackAdjust() >= 0x3f4 && (RF.StackAdjust() & 0x8);
193 /// StackAdjustment - calculated stack adjustment in words. The stack
194 /// adjustment should be determined via this function to account for the special
195 /// handling the special encoding when the value is >= 0x3f4.
196 inline uint16_t StackAdjustment(const RuntimeFunction &RF) {
197 uint16_t Adjustment = RF.StackAdjust();
198 if (Adjustment >= 0x3f4)
199 return (Adjustment & 0x3) ? ((Adjustment & 0x3) << 2) - 1 : 0;
200 return Adjustment;
203 /// SavedRegisterMask - Utility function to calculate the set of saved general
204 /// purpose (r0-r15) and VFP (d0-d31) registers.
205 std::pair<uint16_t, uint32_t> SavedRegisterMask(const RuntimeFunction &RF);
207 /// ExceptionDataRecord - An entry in the table of exception data (.xdata)
209 /// The format on ARM is:
211 /// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
212 /// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
213 /// +-------+---------+-+-+-+---+-----------------------------------+
214 /// | C Wrd | Epi Cnt |F|E|X|Ver| Function Length |
215 /// +-------+--------+'-'-'-'---'---+-------------------------------+
216 /// | Reserved |Ex. Code Words| (Extended Epilogue Count) |
217 /// +-------+--------+--------------+-------------------------------+
219 /// The format on ARM64 is:
221 /// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
222 /// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
223 /// +---------+---------+-+-+---+-----------------------------------+
224 /// | C Wrd | Epi Cnt |E|X|Ver| Function Length |
225 /// +---------+------+--'-'-'---'---+-------------------------------+
226 /// | Reserved |Ex. Code Words| (Extended Epilogue Count) |
227 /// +-------+--------+--------------+-------------------------------+
229 /// Function Length : 18-bit field indicating the total length of the function
230 /// in bytes divided by 2. If a function is larger than
231 /// 512KB, then multiple pdata and xdata records must be used.
232 /// Vers : 2-bit field describing the version of the remaining structure. Only
233 /// version 0 is currently defined (values 1-3 are not permitted).
234 /// X : 1-bit field indicating the presence of exception data
235 /// E : 1-bit field indicating that the single epilogue is packed into the
236 /// header
237 /// F : 1-bit field indicating that the record describes a function fragment
238 /// (implies that no prologue is present, and prologue processing should be
239 /// skipped) (ARM only)
240 /// Epilogue Count : 5-bit field that differs in meaning based on the E field.
242 /// If E is set, then this field specifies the index of the
243 /// first unwind code describing the (only) epilogue.
245 /// Otherwise, this field indicates the number of exception
246 /// scopes. If more than 31 scopes exist, then this field and
247 /// the Code Words field must both be set to 0 to indicate that
248 /// an extension word is required.
249 /// Code Words : 4-bit (5-bit on ARM64) field that specifies the number of
250 /// 32-bit words needed to contain all the unwind codes. If more
251 /// than 15 words (31 words on ARM64) are required, then this field
252 /// and the Epilogue Count field must both be set to 0 to indicate
253 /// that an extension word is required.
254 /// Extended Epilogue Count, Extended Code Words :
255 /// Valid only if Epilog Count and Code Words are both
256 /// set to 0. Provides an 8-bit extended code word
257 /// count and 16-bits for epilogue count
259 /// The epilogue scope format on ARM is:
261 /// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
262 /// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
263 /// +----------------+------+---+---+-------------------------------+
264 /// | Ep Start Idx | Cond |Res| Epilogue Start Offset |
265 /// +----------------+------+---+-----------------------------------+
267 /// The epilogue scope format on ARM64 is:
269 /// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
270 /// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
271 /// +-------------------+-------+---+-------------------------------+
272 /// | Ep Start Idx | Res | Epilogue Start Offset |
273 /// +-------------------+-------+-----------------------------------+
275 /// If the E bit is unset in the header, the header is followed by a series of
276 /// epilogue scopes, which are sorted by their offset.
278 /// Epilogue Start Offset: 18-bit field encoding the offset of epilogue relative
279 /// to the start of the function in bytes divided by two
280 /// Res : 2-bit field reserved for future expansion (must be set to 0)
281 /// Condition : (ARM only) 4-bit field providing the condition under which the
282 /// epilogue is executed. Unconditional epilogues should set this
283 /// field to 0xe. Epilogues must be entirely conditional or
284 /// unconditional, and in Thumb-2 mode. The epilogue begins with
285 /// the first instruction after the IT opcode.
286 /// Epilogue Start Index : 8-bit field indicating the byte index of the first
287 /// unwind code describing the epilogue
289 /// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
290 /// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
291 /// +---------------+---------------+---------------+---------------+
292 /// | Unwind Code 3 | Unwind Code 2 | Unwind Code 1 | Unwind Code 0 |
293 /// +---------------+---------------+---------------+---------------+
295 /// Following the epilogue scopes, the byte code describing the unwinding
296 /// follows. This is padded to align up to word alignment. Bytes are stored in
297 /// little endian.
299 /// 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
300 /// 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
301 /// +---------------------------------------------------------------+
302 /// | Exception Handler RVA (requires X = 1) |
303 /// +---------------------------------------------------------------+
304 /// | (possibly followed by data required for exception handler) |
305 /// +---------------------------------------------------------------+
307 /// If the X bit is set in the header, the unwind byte code is followed by the
308 /// exception handler information. This constants of one Exception Handler RVA
309 /// which is the address to the exception handler, followed immediately by the
310 /// variable length data associated with the exception handler.
313 struct EpilogueScope {
314 const support::ulittle32_t ES;
316 EpilogueScope(const support::ulittle32_t Data) : ES(Data) {}
317 // Same for both ARM and AArch64.
318 uint32_t EpilogueStartOffset() const {
319 return (ES & 0x0003ffff);
322 // Different implementations for ARM and AArch64.
323 uint8_t ResARM() const {
324 return ((ES & 0x000c0000) >> 18);
327 uint8_t ResAArch64() const {
328 return ((ES & 0x000f0000) >> 18);
331 // Condition is only applicable to ARM.
332 uint8_t Condition() const {
333 return ((ES & 0x00f00000) >> 20);
336 // Different implementations for ARM and AArch64.
337 uint8_t EpilogueStartIndexARM() const {
338 return ((ES & 0xff000000) >> 24);
341 uint16_t EpilogueStartIndexAArch64() const {
342 return ((ES & 0xffc00000) >> 22);
346 struct ExceptionDataRecord;
347 inline size_t HeaderWords(const ExceptionDataRecord &XR);
349 struct ExceptionDataRecord {
350 const support::ulittle32_t *Data;
351 bool isAArch64;
353 ExceptionDataRecord(const support::ulittle32_t *Data, bool isAArch64) :
354 Data(Data), isAArch64(isAArch64) {}
356 uint32_t FunctionLength() const {
357 return (Data[0] & 0x0003ffff);
360 uint32_t FunctionLengthInBytesARM() const {
361 return FunctionLength() << 1;
364 uint32_t FunctionLengthInBytesAArch64() const {
365 return FunctionLength() << 2;
368 uint8_t Vers() const {
369 return (Data[0] & 0x000C0000) >> 18;
372 bool X() const {
373 return ((Data[0] & 0x00100000) >> 20);
376 bool E() const {
377 return ((Data[0] & 0x00200000) >> 21);
380 bool F() const {
381 assert(!isAArch64 && "Fragments are only supported on ARMv7 WinEH");
382 return ((Data[0] & 0x00400000) >> 22);
385 uint8_t EpilogueCount() const {
386 if (HeaderWords(*this) == 1) {
387 if (isAArch64)
388 return (Data[0] & 0x07C00000) >> 22;
389 return (Data[0] & 0x0f800000) >> 23;
391 return Data[1] & 0x0000ffff;
394 uint8_t CodeWords() const {
395 if (HeaderWords(*this) == 1) {
396 if (isAArch64)
397 return (Data[0] & 0xf8000000) >> 27;
398 return (Data[0] & 0xf0000000) >> 28;
400 return (Data[1] & 0x00ff0000) >> 16;
403 ArrayRef<support::ulittle32_t> EpilogueScopes() const {
404 assert(E() == 0 && "epilogue scopes are only present when the E bit is 0");
405 size_t Offset = HeaderWords(*this);
406 return makeArrayRef(&Data[Offset], EpilogueCount());
409 ArrayRef<uint8_t> UnwindByteCode() const {
410 const size_t Offset = HeaderWords(*this)
411 + (E() ? 0 : EpilogueCount());
412 const uint8_t *ByteCode =
413 reinterpret_cast<const uint8_t *>(&Data[Offset]);
414 return makeArrayRef(ByteCode, CodeWords() * sizeof(uint32_t));
417 uint32_t ExceptionHandlerRVA() const {
418 assert(X() && "Exception Handler RVA is only valid if the X bit is set");
419 return Data[HeaderWords(*this) + EpilogueCount() + CodeWords()];
422 uint32_t ExceptionHandlerParameter() const {
423 assert(X() && "Exception Handler RVA is only valid if the X bit is set");
424 return Data[HeaderWords(*this) + EpilogueCount() + CodeWords() + 1];
428 inline size_t HeaderWords(const ExceptionDataRecord &XR) {
429 if (XR.isAArch64)
430 return (XR.Data[0] & 0xffc00000) ? 1 : 2;
431 return (XR.Data[0] & 0xff800000) ? 1 : 2;
437 #endif