Recommit [NFC] Better encapsulation of llvm::Optional Storage
[llvm-complete.git] / include / llvm / Support / GenericDomTreeConstruction.h
blob69cc721203f20607cd1e6b0a9bf2a29eb3d9749d
1 //===- GenericDomTreeConstruction.h - Dominator Calculation ------*- C++ -*-==//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Generic dominator tree construction - This file provides routines to
11 /// construct immediate dominator information for a flow-graph based on the
12 /// Semi-NCA algorithm described in this dissertation:
13 ///
14 /// Linear-Time Algorithms for Dominators and Related Problems
15 /// Loukas Georgiadis, Princeton University, November 2005, pp. 21-23:
16 /// ftp://ftp.cs.princeton.edu/reports/2005/737.pdf
17 ///
18 /// This implements the O(n*log(n)) versions of EVAL and LINK, because it turns
19 /// out that the theoretically slower O(n*log(n)) implementation is actually
20 /// faster than the almost-linear O(n*alpha(n)) version, even for large CFGs.
21 ///
22 /// The file uses the Depth Based Search algorithm to perform incremental
23 /// updates (insertion and deletions). The implemented algorithm is based on
24 /// this publication:
25 ///
26 /// An Experimental Study of Dynamic Dominators
27 /// Loukas Georgiadis, et al., April 12 2016, pp. 5-7, 9-10:
28 /// https://arxiv.org/pdf/1604.02711.pdf
29 ///
30 //===----------------------------------------------------------------------===//
32 #ifndef LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
33 #define LLVM_SUPPORT_GENERICDOMTREECONSTRUCTION_H
35 #include <queue>
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseSet.h"
38 #include "llvm/ADT/DepthFirstIterator.h"
39 #include "llvm/ADT/PointerIntPair.h"
40 #include "llvm/ADT/SmallPtrSet.h"
41 #include "llvm/Support/Debug.h"
42 #include "llvm/Support/GenericDomTree.h"
44 #define DEBUG_TYPE "dom-tree-builder"
46 namespace llvm {
47 namespace DomTreeBuilder {
49 template <typename DomTreeT>
50 struct SemiNCAInfo {
51 using NodePtr = typename DomTreeT::NodePtr;
52 using NodeT = typename DomTreeT::NodeType;
53 using TreeNodePtr = DomTreeNodeBase<NodeT> *;
54 using RootsT = decltype(DomTreeT::Roots);
55 static constexpr bool IsPostDom = DomTreeT::IsPostDominator;
57 // Information record used by Semi-NCA during tree construction.
58 struct InfoRec {
59 unsigned DFSNum = 0;
60 unsigned Parent = 0;
61 unsigned Semi = 0;
62 NodePtr Label = nullptr;
63 NodePtr IDom = nullptr;
64 SmallVector<NodePtr, 2> ReverseChildren;
67 // Number to node mapping is 1-based. Initialize the mapping to start with
68 // a dummy element.
69 std::vector<NodePtr> NumToNode = {nullptr};
70 DenseMap<NodePtr, InfoRec> NodeToInfo;
72 using UpdateT = typename DomTreeT::UpdateType;
73 using UpdateKind = typename DomTreeT::UpdateKind;
74 struct BatchUpdateInfo {
75 SmallVector<UpdateT, 4> Updates;
76 using NodePtrAndKind = PointerIntPair<NodePtr, 1, UpdateKind>;
78 // In order to be able to walk a CFG that is out of sync with the CFG
79 // DominatorTree last knew about, use the list of updates to reconstruct
80 // previous CFG versions of the current CFG. For each node, we store a set
81 // of its virtually added/deleted future successors and predecessors.
82 // Note that these children are from the future relative to what the
83 // DominatorTree knows about -- using them to gets us some snapshot of the
84 // CFG from the past (relative to the state of the CFG).
85 DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FutureSuccessors;
86 DenseMap<NodePtr, SmallVector<NodePtrAndKind, 4>> FuturePredecessors;
87 // Remembers if the whole tree was recalculated at some point during the
88 // current batch update.
89 bool IsRecalculated = false;
92 BatchUpdateInfo *BatchUpdates;
93 using BatchUpdatePtr = BatchUpdateInfo *;
95 // If BUI is a nullptr, then there's no batch update in progress.
96 SemiNCAInfo(BatchUpdatePtr BUI) : BatchUpdates(BUI) {}
98 void clear() {
99 NumToNode = {nullptr}; // Restore to initial state with a dummy start node.
100 NodeToInfo.clear();
101 // Don't reset the pointer to BatchUpdateInfo here -- if there's an update
102 // in progress, we need this information to continue it.
105 template <bool Inverse>
106 struct ChildrenGetter {
107 using ResultTy = SmallVector<NodePtr, 8>;
109 static ResultTy Get(NodePtr N, std::integral_constant<bool, false>) {
110 auto RChildren = reverse(children<NodePtr>(N));
111 return ResultTy(RChildren.begin(), RChildren.end());
114 static ResultTy Get(NodePtr N, std::integral_constant<bool, true>) {
115 auto IChildren = inverse_children<NodePtr>(N);
116 return ResultTy(IChildren.begin(), IChildren.end());
119 using Tag = std::integral_constant<bool, Inverse>;
121 // The function below is the core part of the batch updater. It allows the
122 // Depth Based Search algorithm to perform incremental updates in lockstep
123 // with updates to the CFG. We emulated lockstep CFG updates by getting its
124 // next snapshots by reverse-applying future updates.
125 static ResultTy Get(NodePtr N, BatchUpdatePtr BUI) {
126 ResultTy Res = Get(N, Tag());
127 // If there's no batch update in progress, simply return node's children.
128 if (!BUI) return Res;
130 // CFG children are actually its *most current* children, and we have to
131 // reverse-apply the future updates to get the node's children at the
132 // point in time the update was performed.
133 auto &FutureChildren = (Inverse != IsPostDom) ? BUI->FuturePredecessors
134 : BUI->FutureSuccessors;
135 auto FCIt = FutureChildren.find(N);
136 if (FCIt == FutureChildren.end()) return Res;
138 for (auto ChildAndKind : FCIt->second) {
139 const NodePtr Child = ChildAndKind.getPointer();
140 const UpdateKind UK = ChildAndKind.getInt();
142 // Reverse-apply the future update.
143 if (UK == UpdateKind::Insert) {
144 // If there's an insertion in the future, it means that the edge must
145 // exist in the current CFG, but was not present in it before.
146 assert(llvm::find(Res, Child) != Res.end()
147 && "Expected child not found in the CFG");
148 Res.erase(std::remove(Res.begin(), Res.end(), Child), Res.end());
149 LLVM_DEBUG(dbgs() << "\tHiding edge " << BlockNamePrinter(N) << " -> "
150 << BlockNamePrinter(Child) << "\n");
151 } else {
152 // If there's an deletion in the future, it means that the edge cannot
153 // exist in the current CFG, but existed in it before.
154 assert(llvm::find(Res, Child) == Res.end() &&
155 "Unexpected child found in the CFG");
156 LLVM_DEBUG(dbgs() << "\tShowing virtual edge " << BlockNamePrinter(N)
157 << " -> " << BlockNamePrinter(Child) << "\n");
158 Res.push_back(Child);
162 return Res;
166 NodePtr getIDom(NodePtr BB) const {
167 auto InfoIt = NodeToInfo.find(BB);
168 if (InfoIt == NodeToInfo.end()) return nullptr;
170 return InfoIt->second.IDom;
173 TreeNodePtr getNodeForBlock(NodePtr BB, DomTreeT &DT) {
174 if (TreeNodePtr Node = DT.getNode(BB)) return Node;
176 // Haven't calculated this node yet? Get or calculate the node for the
177 // immediate dominator.
178 NodePtr IDom = getIDom(BB);
180 assert(IDom || DT.DomTreeNodes[nullptr]);
181 TreeNodePtr IDomNode = getNodeForBlock(IDom, DT);
183 // Add a new tree node for this NodeT, and link it as a child of
184 // IDomNode
185 return (DT.DomTreeNodes[BB] = IDomNode->addChild(
186 llvm::make_unique<DomTreeNodeBase<NodeT>>(BB, IDomNode)))
187 .get();
190 static bool AlwaysDescend(NodePtr, NodePtr) { return true; }
192 struct BlockNamePrinter {
193 NodePtr N;
195 BlockNamePrinter(NodePtr Block) : N(Block) {}
196 BlockNamePrinter(TreeNodePtr TN) : N(TN ? TN->getBlock() : nullptr) {}
198 friend raw_ostream &operator<<(raw_ostream &O, const BlockNamePrinter &BP) {
199 if (!BP.N)
200 O << "nullptr";
201 else
202 BP.N->printAsOperand(O, false);
204 return O;
208 // Custom DFS implementation which can skip nodes based on a provided
209 // predicate. It also collects ReverseChildren so that we don't have to spend
210 // time getting predecessors in SemiNCA.
212 // If IsReverse is set to true, the DFS walk will be performed backwards
213 // relative to IsPostDom -- using reverse edges for dominators and forward
214 // edges for postdominators.
215 template <bool IsReverse = false, typename DescendCondition>
216 unsigned runDFS(NodePtr V, unsigned LastNum, DescendCondition Condition,
217 unsigned AttachToNum) {
218 assert(V);
219 SmallVector<NodePtr, 64> WorkList = {V};
220 if (NodeToInfo.count(V) != 0) NodeToInfo[V].Parent = AttachToNum;
222 while (!WorkList.empty()) {
223 const NodePtr BB = WorkList.pop_back_val();
224 auto &BBInfo = NodeToInfo[BB];
226 // Visited nodes always have positive DFS numbers.
227 if (BBInfo.DFSNum != 0) continue;
228 BBInfo.DFSNum = BBInfo.Semi = ++LastNum;
229 BBInfo.Label = BB;
230 NumToNode.push_back(BB);
232 constexpr bool Direction = IsReverse != IsPostDom; // XOR.
233 for (const NodePtr Succ :
234 ChildrenGetter<Direction>::Get(BB, BatchUpdates)) {
235 const auto SIT = NodeToInfo.find(Succ);
236 // Don't visit nodes more than once but remember to collect
237 // ReverseChildren.
238 if (SIT != NodeToInfo.end() && SIT->second.DFSNum != 0) {
239 if (Succ != BB) SIT->second.ReverseChildren.push_back(BB);
240 continue;
243 if (!Condition(BB, Succ)) continue;
245 // It's fine to add Succ to the map, because we know that it will be
246 // visited later.
247 auto &SuccInfo = NodeToInfo[Succ];
248 WorkList.push_back(Succ);
249 SuccInfo.Parent = LastNum;
250 SuccInfo.ReverseChildren.push_back(BB);
254 return LastNum;
257 NodePtr eval(NodePtr VIn, unsigned LastLinked) {
258 auto &VInInfo = NodeToInfo[VIn];
259 if (VInInfo.DFSNum < LastLinked)
260 return VIn;
262 SmallVector<NodePtr, 32> Work;
263 SmallPtrSet<NodePtr, 32> Visited;
265 if (VInInfo.Parent >= LastLinked)
266 Work.push_back(VIn);
268 while (!Work.empty()) {
269 NodePtr V = Work.back();
270 auto &VInfo = NodeToInfo[V];
271 NodePtr VAncestor = NumToNode[VInfo.Parent];
273 // Process Ancestor first
274 if (Visited.insert(VAncestor).second && VInfo.Parent >= LastLinked) {
275 Work.push_back(VAncestor);
276 continue;
278 Work.pop_back();
280 // Update VInfo based on Ancestor info
281 if (VInfo.Parent < LastLinked)
282 continue;
284 auto &VAInfo = NodeToInfo[VAncestor];
285 NodePtr VAncestorLabel = VAInfo.Label;
286 NodePtr VLabel = VInfo.Label;
287 if (NodeToInfo[VAncestorLabel].Semi < NodeToInfo[VLabel].Semi)
288 VInfo.Label = VAncestorLabel;
289 VInfo.Parent = VAInfo.Parent;
292 return VInInfo.Label;
295 // This function requires DFS to be run before calling it.
296 void runSemiNCA(DomTreeT &DT, const unsigned MinLevel = 0) {
297 const unsigned NextDFSNum(NumToNode.size());
298 // Initialize IDoms to spanning tree parents.
299 for (unsigned i = 1; i < NextDFSNum; ++i) {
300 const NodePtr V = NumToNode[i];
301 auto &VInfo = NodeToInfo[V];
302 VInfo.IDom = NumToNode[VInfo.Parent];
305 // Step #1: Calculate the semidominators of all vertices.
306 for (unsigned i = NextDFSNum - 1; i >= 2; --i) {
307 NodePtr W = NumToNode[i];
308 auto &WInfo = NodeToInfo[W];
310 // Initialize the semi dominator to point to the parent node.
311 WInfo.Semi = WInfo.Parent;
312 for (const auto &N : WInfo.ReverseChildren) {
313 if (NodeToInfo.count(N) == 0) // Skip unreachable predecessors.
314 continue;
316 const TreeNodePtr TN = DT.getNode(N);
317 // Skip predecessors whose level is above the subtree we are processing.
318 if (TN && TN->getLevel() < MinLevel)
319 continue;
321 unsigned SemiU = NodeToInfo[eval(N, i + 1)].Semi;
322 if (SemiU < WInfo.Semi) WInfo.Semi = SemiU;
326 // Step #2: Explicitly define the immediate dominator of each vertex.
327 // IDom[i] = NCA(SDom[i], SpanningTreeParent(i)).
328 // Note that the parents were stored in IDoms and later got invalidated
329 // during path compression in Eval.
330 for (unsigned i = 2; i < NextDFSNum; ++i) {
331 const NodePtr W = NumToNode[i];
332 auto &WInfo = NodeToInfo[W];
333 const unsigned SDomNum = NodeToInfo[NumToNode[WInfo.Semi]].DFSNum;
334 NodePtr WIDomCandidate = WInfo.IDom;
335 while (NodeToInfo[WIDomCandidate].DFSNum > SDomNum)
336 WIDomCandidate = NodeToInfo[WIDomCandidate].IDom;
338 WInfo.IDom = WIDomCandidate;
342 // PostDominatorTree always has a virtual root that represents a virtual CFG
343 // node that serves as a single exit from the function. All the other exits
344 // (CFG nodes with terminators and nodes in infinite loops are logically
345 // connected to this virtual CFG exit node).
346 // This functions maps a nullptr CFG node to the virtual root tree node.
347 void addVirtualRoot() {
348 assert(IsPostDom && "Only postdominators have a virtual root");
349 assert(NumToNode.size() == 1 && "SNCAInfo must be freshly constructed");
351 auto &BBInfo = NodeToInfo[nullptr];
352 BBInfo.DFSNum = BBInfo.Semi = 1;
353 BBInfo.Label = nullptr;
355 NumToNode.push_back(nullptr); // NumToNode[1] = nullptr;
358 // For postdominators, nodes with no forward successors are trivial roots that
359 // are always selected as tree roots. Roots with forward successors correspond
360 // to CFG nodes within infinite loops.
361 static bool HasForwardSuccessors(const NodePtr N, BatchUpdatePtr BUI) {
362 assert(N && "N must be a valid node");
363 return !ChildrenGetter<false>::Get(N, BUI).empty();
366 static NodePtr GetEntryNode(const DomTreeT &DT) {
367 assert(DT.Parent && "Parent not set");
368 return GraphTraits<typename DomTreeT::ParentPtr>::getEntryNode(DT.Parent);
371 // Finds all roots without relaying on the set of roots already stored in the
372 // tree.
373 // We define roots to be some non-redundant set of the CFG nodes
374 static RootsT FindRoots(const DomTreeT &DT, BatchUpdatePtr BUI) {
375 assert(DT.Parent && "Parent pointer is not set");
376 RootsT Roots;
378 // For dominators, function entry CFG node is always a tree root node.
379 if (!IsPostDom) {
380 Roots.push_back(GetEntryNode(DT));
381 return Roots;
384 SemiNCAInfo SNCA(BUI);
386 // PostDominatorTree always has a virtual root.
387 SNCA.addVirtualRoot();
388 unsigned Num = 1;
390 LLVM_DEBUG(dbgs() << "\t\tLooking for trivial roots\n");
392 // Step #1: Find all the trivial roots that are going to will definitely
393 // remain tree roots.
394 unsigned Total = 0;
395 // It may happen that there are some new nodes in the CFG that are result of
396 // the ongoing batch update, but we cannot really pretend that they don't
397 // exist -- we won't see any outgoing or incoming edges to them, so it's
398 // fine to discover them here, as they would end up appearing in the CFG at
399 // some point anyway.
400 for (const NodePtr N : nodes(DT.Parent)) {
401 ++Total;
402 // If it has no *successors*, it is definitely a root.
403 if (!HasForwardSuccessors(N, BUI)) {
404 Roots.push_back(N);
405 // Run DFS not to walk this part of CFG later.
406 Num = SNCA.runDFS(N, Num, AlwaysDescend, 1);
407 LLVM_DEBUG(dbgs() << "Found a new trivial root: " << BlockNamePrinter(N)
408 << "\n");
409 LLVM_DEBUG(dbgs() << "Last visited node: "
410 << BlockNamePrinter(SNCA.NumToNode[Num]) << "\n");
414 LLVM_DEBUG(dbgs() << "\t\tLooking for non-trivial roots\n");
416 // Step #2: Find all non-trivial root candidates. Those are CFG nodes that
417 // are reverse-unreachable were not visited by previous DFS walks (i.e. CFG
418 // nodes in infinite loops).
419 bool HasNonTrivialRoots = false;
420 // Accounting for the virtual exit, see if we had any reverse-unreachable
421 // nodes.
422 if (Total + 1 != Num) {
423 HasNonTrivialRoots = true;
424 // Make another DFS pass over all other nodes to find the
425 // reverse-unreachable blocks, and find the furthest paths we'll be able
426 // to make.
427 // Note that this looks N^2, but it's really 2N worst case, if every node
428 // is unreachable. This is because we are still going to only visit each
429 // unreachable node once, we may just visit it in two directions,
430 // depending on how lucky we get.
431 SmallPtrSet<NodePtr, 4> ConnectToExitBlock;
432 for (const NodePtr I : nodes(DT.Parent)) {
433 if (SNCA.NodeToInfo.count(I) == 0) {
434 LLVM_DEBUG(dbgs()
435 << "\t\t\tVisiting node " << BlockNamePrinter(I) << "\n");
436 // Find the furthest away we can get by following successors, then
437 // follow them in reverse. This gives us some reasonable answer about
438 // the post-dom tree inside any infinite loop. In particular, it
439 // guarantees we get to the farthest away point along *some*
440 // path. This also matches the GCC's behavior.
441 // If we really wanted a totally complete picture of dominance inside
442 // this infinite loop, we could do it with SCC-like algorithms to find
443 // the lowest and highest points in the infinite loop. In theory, it
444 // would be nice to give the canonical backedge for the loop, but it's
445 // expensive and does not always lead to a minimal set of roots.
446 LLVM_DEBUG(dbgs() << "\t\t\tRunning forward DFS\n");
448 const unsigned NewNum = SNCA.runDFS<true>(I, Num, AlwaysDescend, Num);
449 const NodePtr FurthestAway = SNCA.NumToNode[NewNum];
450 LLVM_DEBUG(dbgs() << "\t\t\tFound a new furthest away node "
451 << "(non-trivial root): "
452 << BlockNamePrinter(FurthestAway) << "\n");
453 ConnectToExitBlock.insert(FurthestAway);
454 Roots.push_back(FurthestAway);
455 LLVM_DEBUG(dbgs() << "\t\t\tPrev DFSNum: " << Num << ", new DFSNum: "
456 << NewNum << "\n\t\t\tRemoving DFS info\n");
457 for (unsigned i = NewNum; i > Num; --i) {
458 const NodePtr N = SNCA.NumToNode[i];
459 LLVM_DEBUG(dbgs() << "\t\t\t\tRemoving DFS info for "
460 << BlockNamePrinter(N) << "\n");
461 SNCA.NodeToInfo.erase(N);
462 SNCA.NumToNode.pop_back();
464 const unsigned PrevNum = Num;
465 LLVM_DEBUG(dbgs() << "\t\t\tRunning reverse DFS\n");
466 Num = SNCA.runDFS(FurthestAway, Num, AlwaysDescend, 1);
467 for (unsigned i = PrevNum + 1; i <= Num; ++i)
468 LLVM_DEBUG(dbgs() << "\t\t\t\tfound node "
469 << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
474 LLVM_DEBUG(dbgs() << "Total: " << Total << ", Num: " << Num << "\n");
475 LLVM_DEBUG(dbgs() << "Discovered CFG nodes:\n");
476 LLVM_DEBUG(for (size_t i = 0; i <= Num; ++i) dbgs()
477 << i << ": " << BlockNamePrinter(SNCA.NumToNode[i]) << "\n");
479 assert((Total + 1 == Num) && "Everything should have been visited");
481 // Step #3: If we found some non-trivial roots, make them non-redundant.
482 if (HasNonTrivialRoots) RemoveRedundantRoots(DT, BUI, Roots);
484 LLVM_DEBUG(dbgs() << "Found roots: ");
485 LLVM_DEBUG(for (auto *Root
486 : Roots) dbgs()
487 << BlockNamePrinter(Root) << " ");
488 LLVM_DEBUG(dbgs() << "\n");
490 return Roots;
493 // This function only makes sense for postdominators.
494 // We define roots to be some set of CFG nodes where (reverse) DFS walks have
495 // to start in order to visit all the CFG nodes (including the
496 // reverse-unreachable ones).
497 // When the search for non-trivial roots is done it may happen that some of
498 // the non-trivial roots are reverse-reachable from other non-trivial roots,
499 // which makes them redundant. This function removes them from the set of
500 // input roots.
501 static void RemoveRedundantRoots(const DomTreeT &DT, BatchUpdatePtr BUI,
502 RootsT &Roots) {
503 assert(IsPostDom && "This function is for postdominators only");
504 LLVM_DEBUG(dbgs() << "Removing redundant roots\n");
506 SemiNCAInfo SNCA(BUI);
508 for (unsigned i = 0; i < Roots.size(); ++i) {
509 auto &Root = Roots[i];
510 // Trivial roots are always non-redundant.
511 if (!HasForwardSuccessors(Root, BUI)) continue;
512 LLVM_DEBUG(dbgs() << "\tChecking if " << BlockNamePrinter(Root)
513 << " remains a root\n");
514 SNCA.clear();
515 // Do a forward walk looking for the other roots.
516 const unsigned Num = SNCA.runDFS<true>(Root, 0, AlwaysDescend, 0);
517 // Skip the start node and begin from the second one (note that DFS uses
518 // 1-based indexing).
519 for (unsigned x = 2; x <= Num; ++x) {
520 const NodePtr N = SNCA.NumToNode[x];
521 // If we wound another root in a (forward) DFS walk, remove the current
522 // root from the set of roots, as it is reverse-reachable from the other
523 // one.
524 if (llvm::find(Roots, N) != Roots.end()) {
525 LLVM_DEBUG(dbgs() << "\tForward DFS walk found another root "
526 << BlockNamePrinter(N) << "\n\tRemoving root "
527 << BlockNamePrinter(Root) << "\n");
528 std::swap(Root, Roots.back());
529 Roots.pop_back();
531 // Root at the back takes the current root's place.
532 // Start the next loop iteration with the same index.
533 --i;
534 break;
540 template <typename DescendCondition>
541 void doFullDFSWalk(const DomTreeT &DT, DescendCondition DC) {
542 if (!IsPostDom) {
543 assert(DT.Roots.size() == 1 && "Dominators should have a singe root");
544 runDFS(DT.Roots[0], 0, DC, 0);
545 return;
548 addVirtualRoot();
549 unsigned Num = 1;
550 for (const NodePtr Root : DT.Roots) Num = runDFS(Root, Num, DC, 0);
553 static void CalculateFromScratch(DomTreeT &DT, BatchUpdatePtr BUI) {
554 auto *Parent = DT.Parent;
555 DT.reset();
556 DT.Parent = Parent;
557 SemiNCAInfo SNCA(nullptr); // Since we are rebuilding the whole tree,
558 // there's no point doing it incrementally.
560 // Step #0: Number blocks in depth-first order and initialize variables used
561 // in later stages of the algorithm.
562 DT.Roots = FindRoots(DT, nullptr);
563 SNCA.doFullDFSWalk(DT, AlwaysDescend);
565 SNCA.runSemiNCA(DT);
566 if (BUI) {
567 BUI->IsRecalculated = true;
568 LLVM_DEBUG(
569 dbgs() << "DomTree recalculated, skipping future batch updates\n");
572 if (DT.Roots.empty()) return;
574 // Add a node for the root. If the tree is a PostDominatorTree it will be
575 // the virtual exit (denoted by (BasicBlock *) nullptr) which postdominates
576 // all real exits (including multiple exit blocks, infinite loops).
577 NodePtr Root = IsPostDom ? nullptr : DT.Roots[0];
579 DT.RootNode = (DT.DomTreeNodes[Root] =
580 llvm::make_unique<DomTreeNodeBase<NodeT>>(Root, nullptr))
581 .get();
582 SNCA.attachNewSubtree(DT, DT.RootNode);
585 void attachNewSubtree(DomTreeT& DT, const TreeNodePtr AttachTo) {
586 // Attach the first unreachable block to AttachTo.
587 NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
588 // Loop over all of the discovered blocks in the function...
589 for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
590 NodePtr W = NumToNode[i];
591 LLVM_DEBUG(dbgs() << "\tdiscovered a new reachable node "
592 << BlockNamePrinter(W) << "\n");
594 // Don't replace this with 'count', the insertion side effect is important
595 if (DT.DomTreeNodes[W]) continue; // Haven't calculated this node yet?
597 NodePtr ImmDom = getIDom(W);
599 // Get or calculate the node for the immediate dominator.
600 TreeNodePtr IDomNode = getNodeForBlock(ImmDom, DT);
602 // Add a new tree node for this BasicBlock, and link it as a child of
603 // IDomNode.
604 DT.DomTreeNodes[W] = IDomNode->addChild(
605 llvm::make_unique<DomTreeNodeBase<NodeT>>(W, IDomNode));
609 void reattachExistingSubtree(DomTreeT &DT, const TreeNodePtr AttachTo) {
610 NodeToInfo[NumToNode[1]].IDom = AttachTo->getBlock();
611 for (size_t i = 1, e = NumToNode.size(); i != e; ++i) {
612 const NodePtr N = NumToNode[i];
613 const TreeNodePtr TN = DT.getNode(N);
614 assert(TN);
615 const TreeNodePtr NewIDom = DT.getNode(NodeToInfo[N].IDom);
616 TN->setIDom(NewIDom);
620 // Helper struct used during edge insertions.
621 struct InsertionInfo {
622 using BucketElementTy = std::pair<unsigned, TreeNodePtr>;
623 struct DecreasingLevel {
624 bool operator()(const BucketElementTy &First,
625 const BucketElementTy &Second) const {
626 return First.first > Second.first;
630 std::priority_queue<BucketElementTy, SmallVector<BucketElementTy, 8>,
631 DecreasingLevel>
632 Bucket; // Queue of tree nodes sorted by level in descending order.
633 SmallDenseSet<TreeNodePtr, 8> Affected;
634 SmallDenseMap<TreeNodePtr, unsigned, 8> Visited;
635 SmallVector<TreeNodePtr, 8> AffectedQueue;
636 SmallVector<TreeNodePtr, 8> VisitedNotAffectedQueue;
639 static void InsertEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
640 const NodePtr From, const NodePtr To) {
641 assert((From || IsPostDom) &&
642 "From has to be a valid CFG node or a virtual root");
643 assert(To && "Cannot be a nullptr");
644 LLVM_DEBUG(dbgs() << "Inserting edge " << BlockNamePrinter(From) << " -> "
645 << BlockNamePrinter(To) << "\n");
646 TreeNodePtr FromTN = DT.getNode(From);
648 if (!FromTN) {
649 // Ignore edges from unreachable nodes for (forward) dominators.
650 if (!IsPostDom) return;
652 // The unreachable node becomes a new root -- a tree node for it.
653 TreeNodePtr VirtualRoot = DT.getNode(nullptr);
654 FromTN =
655 (DT.DomTreeNodes[From] = VirtualRoot->addChild(
656 llvm::make_unique<DomTreeNodeBase<NodeT>>(From, VirtualRoot)))
657 .get();
658 DT.Roots.push_back(From);
661 DT.DFSInfoValid = false;
663 const TreeNodePtr ToTN = DT.getNode(To);
664 if (!ToTN)
665 InsertUnreachable(DT, BUI, FromTN, To);
666 else
667 InsertReachable(DT, BUI, FromTN, ToTN);
670 // Determines if some existing root becomes reverse-reachable after the
671 // insertion. Rebuilds the whole tree if that situation happens.
672 static bool UpdateRootsBeforeInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
673 const TreeNodePtr From,
674 const TreeNodePtr To) {
675 assert(IsPostDom && "This function is only for postdominators");
676 // Destination node is not attached to the virtual root, so it cannot be a
677 // root.
678 if (!DT.isVirtualRoot(To->getIDom())) return false;
680 auto RIt = llvm::find(DT.Roots, To->getBlock());
681 if (RIt == DT.Roots.end())
682 return false; // To is not a root, nothing to update.
684 LLVM_DEBUG(dbgs() << "\t\tAfter the insertion, " << BlockNamePrinter(To)
685 << " is no longer a root\n\t\tRebuilding the tree!!!\n");
687 CalculateFromScratch(DT, BUI);
688 return true;
691 // Updates the set of roots after insertion or deletion. This ensures that
692 // roots are the same when after a series of updates and when the tree would
693 // be built from scratch.
694 static void UpdateRootsAfterUpdate(DomTreeT &DT, const BatchUpdatePtr BUI) {
695 assert(IsPostDom && "This function is only for postdominators");
697 // The tree has only trivial roots -- nothing to update.
698 if (std::none_of(DT.Roots.begin(), DT.Roots.end(), [BUI](const NodePtr N) {
699 return HasForwardSuccessors(N, BUI);
701 return;
703 // Recalculate the set of roots.
704 auto Roots = FindRoots(DT, BUI);
705 if (DT.Roots.size() != Roots.size() ||
706 !std::is_permutation(DT.Roots.begin(), DT.Roots.end(), Roots.begin())) {
707 // The roots chosen in the CFG have changed. This is because the
708 // incremental algorithm does not really know or use the set of roots and
709 // can make a different (implicit) decision about which node within an
710 // infinite loop becomes a root.
712 LLVM_DEBUG(dbgs() << "Roots are different in updated trees\n"
713 << "The entire tree needs to be rebuilt\n");
714 // It may be possible to update the tree without recalculating it, but
715 // we do not know yet how to do it, and it happens rarely in practise.
716 CalculateFromScratch(DT, BUI);
717 return;
721 // Handles insertion to a node already in the dominator tree.
722 static void InsertReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
723 const TreeNodePtr From, const TreeNodePtr To) {
724 LLVM_DEBUG(dbgs() << "\tReachable " << BlockNamePrinter(From->getBlock())
725 << " -> " << BlockNamePrinter(To->getBlock()) << "\n");
726 if (IsPostDom && UpdateRootsBeforeInsertion(DT, BUI, From, To)) return;
727 // DT.findNCD expects both pointers to be valid. When From is a virtual
728 // root, then its CFG block pointer is a nullptr, so we have to 'compute'
729 // the NCD manually.
730 const NodePtr NCDBlock =
731 (From->getBlock() && To->getBlock())
732 ? DT.findNearestCommonDominator(From->getBlock(), To->getBlock())
733 : nullptr;
734 assert(NCDBlock || DT.isPostDominator());
735 const TreeNodePtr NCD = DT.getNode(NCDBlock);
736 assert(NCD);
738 LLVM_DEBUG(dbgs() << "\t\tNCA == " << BlockNamePrinter(NCD) << "\n");
739 const TreeNodePtr ToIDom = To->getIDom();
741 // Nothing affected -- NCA property holds.
742 // (Based on the lemma 2.5 from the second paper.)
743 if (NCD == To || NCD == ToIDom) return;
745 // Identify and collect affected nodes.
746 InsertionInfo II;
747 LLVM_DEBUG(dbgs() << "Marking " << BlockNamePrinter(To)
748 << " as affected\n");
749 II.Affected.insert(To);
750 const unsigned ToLevel = To->getLevel();
751 LLVM_DEBUG(dbgs() << "Putting " << BlockNamePrinter(To)
752 << " into a Bucket\n");
753 II.Bucket.push({ToLevel, To});
755 while (!II.Bucket.empty()) {
756 const TreeNodePtr CurrentNode = II.Bucket.top().second;
757 const unsigned CurrentLevel = CurrentNode->getLevel();
758 II.Bucket.pop();
759 LLVM_DEBUG(dbgs() << "\tAdding to Visited and AffectedQueue: "
760 << BlockNamePrinter(CurrentNode) << "\n");
762 II.Visited.insert({CurrentNode, CurrentLevel});
763 II.AffectedQueue.push_back(CurrentNode);
765 // Discover and collect affected successors of the current node.
766 VisitInsertion(DT, BUI, CurrentNode, CurrentLevel, NCD, II);
769 // Finish by updating immediate dominators and levels.
770 UpdateInsertion(DT, BUI, NCD, II);
773 // Visits an affected node and collect its affected successors.
774 static void VisitInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
775 const TreeNodePtr TN, const unsigned RootLevel,
776 const TreeNodePtr NCD, InsertionInfo &II) {
777 const unsigned NCDLevel = NCD->getLevel();
778 LLVM_DEBUG(dbgs() << "Visiting " << BlockNamePrinter(TN) << ", RootLevel "
779 << RootLevel << "\n");
781 SmallVector<TreeNodePtr, 8> Stack = {TN};
782 assert(TN->getBlock() && II.Visited.count(TN) && "Preconditions!");
784 SmallPtrSet<TreeNodePtr, 8> Processed;
786 do {
787 TreeNodePtr Next = Stack.pop_back_val();
788 LLVM_DEBUG(dbgs() << " Next: " << BlockNamePrinter(Next) << "\n");
790 for (const NodePtr Succ :
791 ChildrenGetter<IsPostDom>::Get(Next->getBlock(), BUI)) {
792 const TreeNodePtr SuccTN = DT.getNode(Succ);
793 assert(SuccTN && "Unreachable successor found at reachable insertion");
794 const unsigned SuccLevel = SuccTN->getLevel();
796 LLVM_DEBUG(dbgs() << "\tSuccessor " << BlockNamePrinter(Succ)
797 << ", level = " << SuccLevel << "\n");
799 // Do not process the same node multiple times.
800 if (Processed.count(Next) > 0)
801 continue;
803 // Succ dominated by subtree From -- not affected.
804 // (Based on the lemma 2.5 from the second paper.)
805 if (SuccLevel > RootLevel) {
806 LLVM_DEBUG(dbgs() << "\t\tDominated by subtree From\n");
807 if (II.Visited.count(SuccTN) != 0) {
808 LLVM_DEBUG(dbgs() << "\t\t\talready visited at level "
809 << II.Visited[SuccTN] << "\n\t\t\tcurrent level "
810 << RootLevel << ")\n");
812 // A node can be necessary to visit again if we see it again at
813 // a lower level than before.
814 if (II.Visited[SuccTN] >= RootLevel)
815 continue;
818 LLVM_DEBUG(dbgs() << "\t\tMarking visited not affected "
819 << BlockNamePrinter(Succ) << "\n");
820 II.Visited.insert({SuccTN, RootLevel});
821 II.VisitedNotAffectedQueue.push_back(SuccTN);
822 Stack.push_back(SuccTN);
823 } else if ((SuccLevel > NCDLevel + 1) &&
824 II.Affected.count(SuccTN) == 0) {
825 LLVM_DEBUG(dbgs() << "\t\tMarking affected and adding "
826 << BlockNamePrinter(Succ) << " to a Bucket\n");
827 II.Affected.insert(SuccTN);
828 II.Bucket.push({SuccLevel, SuccTN});
832 Processed.insert(Next);
833 } while (!Stack.empty());
836 // Updates immediate dominators and levels after insertion.
837 static void UpdateInsertion(DomTreeT &DT, const BatchUpdatePtr BUI,
838 const TreeNodePtr NCD, InsertionInfo &II) {
839 LLVM_DEBUG(dbgs() << "Updating NCD = " << BlockNamePrinter(NCD) << "\n");
841 for (const TreeNodePtr TN : II.AffectedQueue) {
842 LLVM_DEBUG(dbgs() << "\tIDom(" << BlockNamePrinter(TN)
843 << ") = " << BlockNamePrinter(NCD) << "\n");
844 TN->setIDom(NCD);
847 UpdateLevelsAfterInsertion(II);
848 if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
851 static void UpdateLevelsAfterInsertion(InsertionInfo &II) {
852 LLVM_DEBUG(
853 dbgs() << "Updating levels for visited but not affected nodes\n");
855 for (const TreeNodePtr TN : II.VisitedNotAffectedQueue) {
856 LLVM_DEBUG(dbgs() << "\tlevel(" << BlockNamePrinter(TN) << ") = ("
857 << BlockNamePrinter(TN->getIDom()) << ") "
858 << TN->getIDom()->getLevel() << " + 1\n");
859 TN->UpdateLevel();
863 // Handles insertion to previously unreachable nodes.
864 static void InsertUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
865 const TreeNodePtr From, const NodePtr To) {
866 LLVM_DEBUG(dbgs() << "Inserting " << BlockNamePrinter(From)
867 << " -> (unreachable) " << BlockNamePrinter(To) << "\n");
869 // Collect discovered edges to already reachable nodes.
870 SmallVector<std::pair<NodePtr, TreeNodePtr>, 8> DiscoveredEdgesToReachable;
871 // Discover and connect nodes that became reachable with the insertion.
872 ComputeUnreachableDominators(DT, BUI, To, From, DiscoveredEdgesToReachable);
874 LLVM_DEBUG(dbgs() << "Inserted " << BlockNamePrinter(From)
875 << " -> (prev unreachable) " << BlockNamePrinter(To)
876 << "\n");
878 // Used the discovered edges and inset discovered connecting (incoming)
879 // edges.
880 for (const auto &Edge : DiscoveredEdgesToReachable) {
881 LLVM_DEBUG(dbgs() << "\tInserting discovered connecting edge "
882 << BlockNamePrinter(Edge.first) << " -> "
883 << BlockNamePrinter(Edge.second) << "\n");
884 InsertReachable(DT, BUI, DT.getNode(Edge.first), Edge.second);
888 // Connects nodes that become reachable with an insertion.
889 static void ComputeUnreachableDominators(
890 DomTreeT &DT, const BatchUpdatePtr BUI, const NodePtr Root,
891 const TreeNodePtr Incoming,
892 SmallVectorImpl<std::pair<NodePtr, TreeNodePtr>>
893 &DiscoveredConnectingEdges) {
894 assert(!DT.getNode(Root) && "Root must not be reachable");
896 // Visit only previously unreachable nodes.
897 auto UnreachableDescender = [&DT, &DiscoveredConnectingEdges](NodePtr From,
898 NodePtr To) {
899 const TreeNodePtr ToTN = DT.getNode(To);
900 if (!ToTN) return true;
902 DiscoveredConnectingEdges.push_back({From, ToTN});
903 return false;
906 SemiNCAInfo SNCA(BUI);
907 SNCA.runDFS(Root, 0, UnreachableDescender, 0);
908 SNCA.runSemiNCA(DT);
909 SNCA.attachNewSubtree(DT, Incoming);
911 LLVM_DEBUG(dbgs() << "After adding unreachable nodes\n");
914 static void DeleteEdge(DomTreeT &DT, const BatchUpdatePtr BUI,
915 const NodePtr From, const NodePtr To) {
916 assert(From && To && "Cannot disconnect nullptrs");
917 LLVM_DEBUG(dbgs() << "Deleting edge " << BlockNamePrinter(From) << " -> "
918 << BlockNamePrinter(To) << "\n");
920 #ifndef NDEBUG
921 // Ensure that the edge was in fact deleted from the CFG before informing
922 // the DomTree about it.
923 // The check is O(N), so run it only in debug configuration.
924 auto IsSuccessor = [BUI](const NodePtr SuccCandidate, const NodePtr Of) {
925 auto Successors = ChildrenGetter<IsPostDom>::Get(Of, BUI);
926 return llvm::find(Successors, SuccCandidate) != Successors.end();
928 (void)IsSuccessor;
929 assert(!IsSuccessor(To, From) && "Deleted edge still exists in the CFG!");
930 #endif
932 const TreeNodePtr FromTN = DT.getNode(From);
933 // Deletion in an unreachable subtree -- nothing to do.
934 if (!FromTN) return;
936 const TreeNodePtr ToTN = DT.getNode(To);
937 if (!ToTN) {
938 LLVM_DEBUG(
939 dbgs() << "\tTo (" << BlockNamePrinter(To)
940 << ") already unreachable -- there is no edge to delete\n");
941 return;
944 const NodePtr NCDBlock = DT.findNearestCommonDominator(From, To);
945 const TreeNodePtr NCD = DT.getNode(NCDBlock);
947 // If To dominates From -- nothing to do.
948 if (ToTN != NCD) {
949 DT.DFSInfoValid = false;
951 const TreeNodePtr ToIDom = ToTN->getIDom();
952 LLVM_DEBUG(dbgs() << "\tNCD " << BlockNamePrinter(NCD) << ", ToIDom "
953 << BlockNamePrinter(ToIDom) << "\n");
955 // To remains reachable after deletion.
956 // (Based on the caption under Figure 4. from the second paper.)
957 if (FromTN != ToIDom || HasProperSupport(DT, BUI, ToTN))
958 DeleteReachable(DT, BUI, FromTN, ToTN);
959 else
960 DeleteUnreachable(DT, BUI, ToTN);
963 if (IsPostDom) UpdateRootsAfterUpdate(DT, BUI);
966 // Handles deletions that leave destination nodes reachable.
967 static void DeleteReachable(DomTreeT &DT, const BatchUpdatePtr BUI,
968 const TreeNodePtr FromTN,
969 const TreeNodePtr ToTN) {
970 LLVM_DEBUG(dbgs() << "Deleting reachable " << BlockNamePrinter(FromTN)
971 << " -> " << BlockNamePrinter(ToTN) << "\n");
972 LLVM_DEBUG(dbgs() << "\tRebuilding subtree\n");
974 // Find the top of the subtree that needs to be rebuilt.
975 // (Based on the lemma 2.6 from the second paper.)
976 const NodePtr ToIDom =
977 DT.findNearestCommonDominator(FromTN->getBlock(), ToTN->getBlock());
978 assert(ToIDom || DT.isPostDominator());
979 const TreeNodePtr ToIDomTN = DT.getNode(ToIDom);
980 assert(ToIDomTN);
981 const TreeNodePtr PrevIDomSubTree = ToIDomTN->getIDom();
982 // Top of the subtree to rebuild is the root node. Rebuild the tree from
983 // scratch.
984 if (!PrevIDomSubTree) {
985 LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
986 CalculateFromScratch(DT, BUI);
987 return;
990 // Only visit nodes in the subtree starting at To.
991 const unsigned Level = ToIDomTN->getLevel();
992 auto DescendBelow = [Level, &DT](NodePtr, NodePtr To) {
993 return DT.getNode(To)->getLevel() > Level;
996 LLVM_DEBUG(dbgs() << "\tTop of subtree: " << BlockNamePrinter(ToIDomTN)
997 << "\n");
999 SemiNCAInfo SNCA(BUI);
1000 SNCA.runDFS(ToIDom, 0, DescendBelow, 0);
1001 LLVM_DEBUG(dbgs() << "\tRunning Semi-NCA\n");
1002 SNCA.runSemiNCA(DT, Level);
1003 SNCA.reattachExistingSubtree(DT, PrevIDomSubTree);
1006 // Checks if a node has proper support, as defined on the page 3 and later
1007 // explained on the page 7 of the second paper.
1008 static bool HasProperSupport(DomTreeT &DT, const BatchUpdatePtr BUI,
1009 const TreeNodePtr TN) {
1010 LLVM_DEBUG(dbgs() << "IsReachableFromIDom " << BlockNamePrinter(TN)
1011 << "\n");
1012 for (const NodePtr Pred :
1013 ChildrenGetter<!IsPostDom>::Get(TN->getBlock(), BUI)) {
1014 LLVM_DEBUG(dbgs() << "\tPred " << BlockNamePrinter(Pred) << "\n");
1015 if (!DT.getNode(Pred)) continue;
1017 const NodePtr Support =
1018 DT.findNearestCommonDominator(TN->getBlock(), Pred);
1019 LLVM_DEBUG(dbgs() << "\tSupport " << BlockNamePrinter(Support) << "\n");
1020 if (Support != TN->getBlock()) {
1021 LLVM_DEBUG(dbgs() << "\t" << BlockNamePrinter(TN)
1022 << " is reachable from support "
1023 << BlockNamePrinter(Support) << "\n");
1024 return true;
1028 return false;
1031 // Handle deletions that make destination node unreachable.
1032 // (Based on the lemma 2.7 from the second paper.)
1033 static void DeleteUnreachable(DomTreeT &DT, const BatchUpdatePtr BUI,
1034 const TreeNodePtr ToTN) {
1035 LLVM_DEBUG(dbgs() << "Deleting unreachable subtree "
1036 << BlockNamePrinter(ToTN) << "\n");
1037 assert(ToTN);
1038 assert(ToTN->getBlock());
1040 if (IsPostDom) {
1041 // Deletion makes a region reverse-unreachable and creates a new root.
1042 // Simulate that by inserting an edge from the virtual root to ToTN and
1043 // adding it as a new root.
1044 LLVM_DEBUG(dbgs() << "\tDeletion made a region reverse-unreachable\n");
1045 LLVM_DEBUG(dbgs() << "\tAdding new root " << BlockNamePrinter(ToTN)
1046 << "\n");
1047 DT.Roots.push_back(ToTN->getBlock());
1048 InsertReachable(DT, BUI, DT.getNode(nullptr), ToTN);
1049 return;
1052 SmallVector<NodePtr, 16> AffectedQueue;
1053 const unsigned Level = ToTN->getLevel();
1055 // Traverse destination node's descendants with greater level in the tree
1056 // and collect visited nodes.
1057 auto DescendAndCollect = [Level, &AffectedQueue, &DT](NodePtr, NodePtr To) {
1058 const TreeNodePtr TN = DT.getNode(To);
1059 assert(TN);
1060 if (TN->getLevel() > Level) return true;
1061 if (llvm::find(AffectedQueue, To) == AffectedQueue.end())
1062 AffectedQueue.push_back(To);
1064 return false;
1067 SemiNCAInfo SNCA(BUI);
1068 unsigned LastDFSNum =
1069 SNCA.runDFS(ToTN->getBlock(), 0, DescendAndCollect, 0);
1071 TreeNodePtr MinNode = ToTN;
1073 // Identify the top of the subtree to rebuild by finding the NCD of all
1074 // the affected nodes.
1075 for (const NodePtr N : AffectedQueue) {
1076 const TreeNodePtr TN = DT.getNode(N);
1077 const NodePtr NCDBlock =
1078 DT.findNearestCommonDominator(TN->getBlock(), ToTN->getBlock());
1079 assert(NCDBlock || DT.isPostDominator());
1080 const TreeNodePtr NCD = DT.getNode(NCDBlock);
1081 assert(NCD);
1083 LLVM_DEBUG(dbgs() << "Processing affected node " << BlockNamePrinter(TN)
1084 << " with NCD = " << BlockNamePrinter(NCD)
1085 << ", MinNode =" << BlockNamePrinter(MinNode) << "\n");
1086 if (NCD != TN && NCD->getLevel() < MinNode->getLevel()) MinNode = NCD;
1089 // Root reached, rebuild the whole tree from scratch.
1090 if (!MinNode->getIDom()) {
1091 LLVM_DEBUG(dbgs() << "The entire tree needs to be rebuilt\n");
1092 CalculateFromScratch(DT, BUI);
1093 return;
1096 // Erase the unreachable subtree in reverse preorder to process all children
1097 // before deleting their parent.
1098 for (unsigned i = LastDFSNum; i > 0; --i) {
1099 const NodePtr N = SNCA.NumToNode[i];
1100 const TreeNodePtr TN = DT.getNode(N);
1101 LLVM_DEBUG(dbgs() << "Erasing node " << BlockNamePrinter(TN) << "\n");
1103 EraseNode(DT, TN);
1106 // The affected subtree start at the To node -- there's no extra work to do.
1107 if (MinNode == ToTN) return;
1109 LLVM_DEBUG(dbgs() << "DeleteUnreachable: running DFS with MinNode = "
1110 << BlockNamePrinter(MinNode) << "\n");
1111 const unsigned MinLevel = MinNode->getLevel();
1112 const TreeNodePtr PrevIDom = MinNode->getIDom();
1113 assert(PrevIDom);
1114 SNCA.clear();
1116 // Identify nodes that remain in the affected subtree.
1117 auto DescendBelow = [MinLevel, &DT](NodePtr, NodePtr To) {
1118 const TreeNodePtr ToTN = DT.getNode(To);
1119 return ToTN && ToTN->getLevel() > MinLevel;
1121 SNCA.runDFS(MinNode->getBlock(), 0, DescendBelow, 0);
1123 LLVM_DEBUG(dbgs() << "Previous IDom(MinNode) = "
1124 << BlockNamePrinter(PrevIDom) << "\nRunning Semi-NCA\n");
1126 // Rebuild the remaining part of affected subtree.
1127 SNCA.runSemiNCA(DT, MinLevel);
1128 SNCA.reattachExistingSubtree(DT, PrevIDom);
1131 // Removes leaf tree nodes from the dominator tree.
1132 static void EraseNode(DomTreeT &DT, const TreeNodePtr TN) {
1133 assert(TN);
1134 assert(TN->getNumChildren() == 0 && "Not a tree leaf");
1136 const TreeNodePtr IDom = TN->getIDom();
1137 assert(IDom);
1139 auto ChIt = llvm::find(IDom->Children, TN);
1140 assert(ChIt != IDom->Children.end());
1141 std::swap(*ChIt, IDom->Children.back());
1142 IDom->Children.pop_back();
1144 DT.DomTreeNodes.erase(TN->getBlock());
1147 //~~
1148 //===--------------------- DomTree Batch Updater --------------------------===
1149 //~~
1151 static void ApplyUpdates(DomTreeT &DT, ArrayRef<UpdateT> Updates) {
1152 const size_t NumUpdates = Updates.size();
1153 if (NumUpdates == 0)
1154 return;
1156 // Take the fast path for a single update and avoid running the batch update
1157 // machinery.
1158 if (NumUpdates == 1) {
1159 const auto &Update = Updates.front();
1160 if (Update.getKind() == UpdateKind::Insert)
1161 DT.insertEdge(Update.getFrom(), Update.getTo());
1162 else
1163 DT.deleteEdge(Update.getFrom(), Update.getTo());
1165 return;
1168 BatchUpdateInfo BUI;
1169 LLVM_DEBUG(dbgs() << "Legalizing " << BUI.Updates.size() << " updates\n");
1170 cfg::LegalizeUpdates<NodePtr>(Updates, BUI.Updates, IsPostDom);
1172 const size_t NumLegalized = BUI.Updates.size();
1173 BUI.FutureSuccessors.reserve(NumLegalized);
1174 BUI.FuturePredecessors.reserve(NumLegalized);
1176 // Use the legalized future updates to initialize future successors and
1177 // predecessors. Note that these sets will only decrease size over time, as
1178 // the next CFG snapshots slowly approach the actual (current) CFG.
1179 for (UpdateT &U : BUI.Updates) {
1180 BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
1181 BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
1184 LLVM_DEBUG(dbgs() << "About to apply " << NumLegalized << " updates\n");
1185 LLVM_DEBUG(if (NumLegalized < 32) for (const auto &U
1186 : reverse(BUI.Updates)) {
1187 dbgs() << "\t";
1188 U.dump();
1189 dbgs() << "\n";
1191 LLVM_DEBUG(dbgs() << "\n");
1193 // Recalculate the DominatorTree when the number of updates
1194 // exceeds a threshold, which usually makes direct updating slower than
1195 // recalculation. We select this threshold proportional to the
1196 // size of the DominatorTree. The constant is selected
1197 // by choosing the one with an acceptable performance on some real-world
1198 // inputs.
1200 // Make unittests of the incremental algorithm work
1201 if (DT.DomTreeNodes.size() <= 100) {
1202 if (NumLegalized > DT.DomTreeNodes.size())
1203 CalculateFromScratch(DT, &BUI);
1204 } else if (NumLegalized > DT.DomTreeNodes.size() / 40)
1205 CalculateFromScratch(DT, &BUI);
1207 // If the DominatorTree was recalculated at some point, stop the batch
1208 // updates. Full recalculations ignore batch updates and look at the actual
1209 // CFG.
1210 for (size_t i = 0; i < NumLegalized && !BUI.IsRecalculated; ++i)
1211 ApplyNextUpdate(DT, BUI);
1214 static void ApplyNextUpdate(DomTreeT &DT, BatchUpdateInfo &BUI) {
1215 assert(!BUI.Updates.empty() && "No updates to apply!");
1216 UpdateT CurrentUpdate = BUI.Updates.pop_back_val();
1217 LLVM_DEBUG(dbgs() << "Applying update: ");
1218 LLVM_DEBUG(CurrentUpdate.dump(); dbgs() << "\n");
1220 // Move to the next snapshot of the CFG by removing the reverse-applied
1221 // current update. Since updates are performed in the same order they are
1222 // legalized it's sufficient to pop the last item here.
1223 auto &FS = BUI.FutureSuccessors[CurrentUpdate.getFrom()];
1224 assert(FS.back().getPointer() == CurrentUpdate.getTo() &&
1225 FS.back().getInt() == CurrentUpdate.getKind());
1226 FS.pop_back();
1227 if (FS.empty()) BUI.FutureSuccessors.erase(CurrentUpdate.getFrom());
1229 auto &FP = BUI.FuturePredecessors[CurrentUpdate.getTo()];
1230 assert(FP.back().getPointer() == CurrentUpdate.getFrom() &&
1231 FP.back().getInt() == CurrentUpdate.getKind());
1232 FP.pop_back();
1233 if (FP.empty()) BUI.FuturePredecessors.erase(CurrentUpdate.getTo());
1235 if (CurrentUpdate.getKind() == UpdateKind::Insert)
1236 InsertEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1237 else
1238 DeleteEdge(DT, &BUI, CurrentUpdate.getFrom(), CurrentUpdate.getTo());
1241 //~~
1242 //===--------------- DomTree correctness verification ---------------------===
1243 //~~
1245 // Check if the tree has correct roots. A DominatorTree always has a single
1246 // root which is the function's entry node. A PostDominatorTree can have
1247 // multiple roots - one for each node with no successors and for infinite
1248 // loops.
1249 // Running time: O(N).
1250 bool verifyRoots(const DomTreeT &DT) {
1251 if (!DT.Parent && !DT.Roots.empty()) {
1252 errs() << "Tree has no parent but has roots!\n";
1253 errs().flush();
1254 return false;
1257 if (!IsPostDom) {
1258 if (DT.Roots.empty()) {
1259 errs() << "Tree doesn't have a root!\n";
1260 errs().flush();
1261 return false;
1264 if (DT.getRoot() != GetEntryNode(DT)) {
1265 errs() << "Tree's root is not its parent's entry node!\n";
1266 errs().flush();
1267 return false;
1271 RootsT ComputedRoots = FindRoots(DT, nullptr);
1272 if (DT.Roots.size() != ComputedRoots.size() ||
1273 !std::is_permutation(DT.Roots.begin(), DT.Roots.end(),
1274 ComputedRoots.begin())) {
1275 errs() << "Tree has different roots than freshly computed ones!\n";
1276 errs() << "\tPDT roots: ";
1277 for (const NodePtr N : DT.Roots) errs() << BlockNamePrinter(N) << ", ";
1278 errs() << "\n\tComputed roots: ";
1279 for (const NodePtr N : ComputedRoots)
1280 errs() << BlockNamePrinter(N) << ", ";
1281 errs() << "\n";
1282 errs().flush();
1283 return false;
1286 return true;
1289 // Checks if the tree contains all reachable nodes in the input graph.
1290 // Running time: O(N).
1291 bool verifyReachability(const DomTreeT &DT) {
1292 clear();
1293 doFullDFSWalk(DT, AlwaysDescend);
1295 for (auto &NodeToTN : DT.DomTreeNodes) {
1296 const TreeNodePtr TN = NodeToTN.second.get();
1297 const NodePtr BB = TN->getBlock();
1299 // Virtual root has a corresponding virtual CFG node.
1300 if (DT.isVirtualRoot(TN)) continue;
1302 if (NodeToInfo.count(BB) == 0) {
1303 errs() << "DomTree node " << BlockNamePrinter(BB)
1304 << " not found by DFS walk!\n";
1305 errs().flush();
1307 return false;
1311 for (const NodePtr N : NumToNode) {
1312 if (N && !DT.getNode(N)) {
1313 errs() << "CFG node " << BlockNamePrinter(N)
1314 << " not found in the DomTree!\n";
1315 errs().flush();
1317 return false;
1321 return true;
1324 // Check if for every parent with a level L in the tree all of its children
1325 // have level L + 1.
1326 // Running time: O(N).
1327 static bool VerifyLevels(const DomTreeT &DT) {
1328 for (auto &NodeToTN : DT.DomTreeNodes) {
1329 const TreeNodePtr TN = NodeToTN.second.get();
1330 const NodePtr BB = TN->getBlock();
1331 if (!BB) continue;
1333 const TreeNodePtr IDom = TN->getIDom();
1334 if (!IDom && TN->getLevel() != 0) {
1335 errs() << "Node without an IDom " << BlockNamePrinter(BB)
1336 << " has a nonzero level " << TN->getLevel() << "!\n";
1337 errs().flush();
1339 return false;
1342 if (IDom && TN->getLevel() != IDom->getLevel() + 1) {
1343 errs() << "Node " << BlockNamePrinter(BB) << " has level "
1344 << TN->getLevel() << " while its IDom "
1345 << BlockNamePrinter(IDom->getBlock()) << " has level "
1346 << IDom->getLevel() << "!\n";
1347 errs().flush();
1349 return false;
1353 return true;
1356 // Check if the computed DFS numbers are correct. Note that DFS info may not
1357 // be valid, and when that is the case, we don't verify the numbers.
1358 // Running time: O(N log(N)).
1359 static bool VerifyDFSNumbers(const DomTreeT &DT) {
1360 if (!DT.DFSInfoValid || !DT.Parent)
1361 return true;
1363 const NodePtr RootBB = IsPostDom ? nullptr : DT.getRoots()[0];
1364 const TreeNodePtr Root = DT.getNode(RootBB);
1366 auto PrintNodeAndDFSNums = [](const TreeNodePtr TN) {
1367 errs() << BlockNamePrinter(TN) << " {" << TN->getDFSNumIn() << ", "
1368 << TN->getDFSNumOut() << '}';
1371 // Verify the root's DFS In number. Although DFS numbering would also work
1372 // if we started from some other value, we assume 0-based numbering.
1373 if (Root->getDFSNumIn() != 0) {
1374 errs() << "DFSIn number for the tree root is not:\n\t";
1375 PrintNodeAndDFSNums(Root);
1376 errs() << '\n';
1377 errs().flush();
1378 return false;
1381 // For each tree node verify if children's DFS numbers cover their parent's
1382 // DFS numbers with no gaps.
1383 for (const auto &NodeToTN : DT.DomTreeNodes) {
1384 const TreeNodePtr Node = NodeToTN.second.get();
1386 // Handle tree leaves.
1387 if (Node->getChildren().empty()) {
1388 if (Node->getDFSNumIn() + 1 != Node->getDFSNumOut()) {
1389 errs() << "Tree leaf should have DFSOut = DFSIn + 1:\n\t";
1390 PrintNodeAndDFSNums(Node);
1391 errs() << '\n';
1392 errs().flush();
1393 return false;
1396 continue;
1399 // Make a copy and sort it such that it is possible to check if there are
1400 // no gaps between DFS numbers of adjacent children.
1401 SmallVector<TreeNodePtr, 8> Children(Node->begin(), Node->end());
1402 llvm::sort(Children, [](const TreeNodePtr Ch1, const TreeNodePtr Ch2) {
1403 return Ch1->getDFSNumIn() < Ch2->getDFSNumIn();
1406 auto PrintChildrenError = [Node, &Children, PrintNodeAndDFSNums](
1407 const TreeNodePtr FirstCh, const TreeNodePtr SecondCh) {
1408 assert(FirstCh);
1410 errs() << "Incorrect DFS numbers for:\n\tParent ";
1411 PrintNodeAndDFSNums(Node);
1413 errs() << "\n\tChild ";
1414 PrintNodeAndDFSNums(FirstCh);
1416 if (SecondCh) {
1417 errs() << "\n\tSecond child ";
1418 PrintNodeAndDFSNums(SecondCh);
1421 errs() << "\nAll children: ";
1422 for (const TreeNodePtr Ch : Children) {
1423 PrintNodeAndDFSNums(Ch);
1424 errs() << ", ";
1427 errs() << '\n';
1428 errs().flush();
1431 if (Children.front()->getDFSNumIn() != Node->getDFSNumIn() + 1) {
1432 PrintChildrenError(Children.front(), nullptr);
1433 return false;
1436 if (Children.back()->getDFSNumOut() + 1 != Node->getDFSNumOut()) {
1437 PrintChildrenError(Children.back(), nullptr);
1438 return false;
1441 for (size_t i = 0, e = Children.size() - 1; i != e; ++i) {
1442 if (Children[i]->getDFSNumOut() + 1 != Children[i + 1]->getDFSNumIn()) {
1443 PrintChildrenError(Children[i], Children[i + 1]);
1444 return false;
1449 return true;
1452 // The below routines verify the correctness of the dominator tree relative to
1453 // the CFG it's coming from. A tree is a dominator tree iff it has two
1454 // properties, called the parent property and the sibling property. Tarjan
1455 // and Lengauer prove (but don't explicitly name) the properties as part of
1456 // the proofs in their 1972 paper, but the proofs are mostly part of proving
1457 // things about semidominators and idoms, and some of them are simply asserted
1458 // based on even earlier papers (see, e.g., lemma 2). Some papers refer to
1459 // these properties as "valid" and "co-valid". See, e.g., "Dominators,
1460 // directed bipolar orders, and independent spanning trees" by Loukas
1461 // Georgiadis and Robert E. Tarjan, as well as "Dominator Tree Verification
1462 // and Vertex-Disjoint Paths " by the same authors.
1464 // A very simple and direct explanation of these properties can be found in
1465 // "An Experimental Study of Dynamic Dominators", found at
1466 // https://arxiv.org/abs/1604.02711
1468 // The easiest way to think of the parent property is that it's a requirement
1469 // of being a dominator. Let's just take immediate dominators. For PARENT to
1470 // be an immediate dominator of CHILD, all paths in the CFG must go through
1471 // PARENT before they hit CHILD. This implies that if you were to cut PARENT
1472 // out of the CFG, there should be no paths to CHILD that are reachable. If
1473 // there are, then you now have a path from PARENT to CHILD that goes around
1474 // PARENT and still reaches CHILD, which by definition, means PARENT can't be
1475 // a dominator of CHILD (let alone an immediate one).
1477 // The sibling property is similar. It says that for each pair of sibling
1478 // nodes in the dominator tree (LEFT and RIGHT) , they must not dominate each
1479 // other. If sibling LEFT dominated sibling RIGHT, it means there are no
1480 // paths in the CFG from sibling LEFT to sibling RIGHT that do not go through
1481 // LEFT, and thus, LEFT is really an ancestor (in the dominator tree) of
1482 // RIGHT, not a sibling.
1484 // It is possible to verify the parent and sibling properties in
1485 // linear time, but the algorithms are complex. Instead, we do it in a
1486 // straightforward N^2 and N^3 way below, using direct path reachability.
1488 // Checks if the tree has the parent property: if for all edges from V to W in
1489 // the input graph, such that V is reachable, the parent of W in the tree is
1490 // an ancestor of V in the tree.
1491 // Running time: O(N^2).
1493 // This means that if a node gets disconnected from the graph, then all of
1494 // the nodes it dominated previously will now become unreachable.
1495 bool verifyParentProperty(const DomTreeT &DT) {
1496 for (auto &NodeToTN : DT.DomTreeNodes) {
1497 const TreeNodePtr TN = NodeToTN.second.get();
1498 const NodePtr BB = TN->getBlock();
1499 if (!BB || TN->getChildren().empty()) continue;
1501 LLVM_DEBUG(dbgs() << "Verifying parent property of node "
1502 << BlockNamePrinter(TN) << "\n");
1503 clear();
1504 doFullDFSWalk(DT, [BB](NodePtr From, NodePtr To) {
1505 return From != BB && To != BB;
1508 for (TreeNodePtr Child : TN->getChildren())
1509 if (NodeToInfo.count(Child->getBlock()) != 0) {
1510 errs() << "Child " << BlockNamePrinter(Child)
1511 << " reachable after its parent " << BlockNamePrinter(BB)
1512 << " is removed!\n";
1513 errs().flush();
1515 return false;
1519 return true;
1522 // Check if the tree has sibling property: if a node V does not dominate a
1523 // node W for all siblings V and W in the tree.
1524 // Running time: O(N^3).
1526 // This means that if a node gets disconnected from the graph, then all of its
1527 // siblings will now still be reachable.
1528 bool verifySiblingProperty(const DomTreeT &DT) {
1529 for (auto &NodeToTN : DT.DomTreeNodes) {
1530 const TreeNodePtr TN = NodeToTN.second.get();
1531 const NodePtr BB = TN->getBlock();
1532 if (!BB || TN->getChildren().empty()) continue;
1534 const auto &Siblings = TN->getChildren();
1535 for (const TreeNodePtr N : Siblings) {
1536 clear();
1537 NodePtr BBN = N->getBlock();
1538 doFullDFSWalk(DT, [BBN](NodePtr From, NodePtr To) {
1539 return From != BBN && To != BBN;
1542 for (const TreeNodePtr S : Siblings) {
1543 if (S == N) continue;
1545 if (NodeToInfo.count(S->getBlock()) == 0) {
1546 errs() << "Node " << BlockNamePrinter(S)
1547 << " not reachable when its sibling " << BlockNamePrinter(N)
1548 << " is removed!\n";
1549 errs().flush();
1551 return false;
1557 return true;
1560 // Check if the given tree is the same as a freshly computed one for the same
1561 // Parent.
1562 // Running time: O(N^2), but faster in practise (same as tree construction).
1564 // Note that this does not check if that the tree construction algorithm is
1565 // correct and should be only used for fast (but possibly unsound)
1566 // verification.
1567 static bool IsSameAsFreshTree(const DomTreeT &DT) {
1568 DomTreeT FreshTree;
1569 FreshTree.recalculate(*DT.Parent);
1570 const bool Different = DT.compare(FreshTree);
1572 if (Different) {
1573 errs() << (DT.isPostDominator() ? "Post" : "")
1574 << "DominatorTree is different than a freshly computed one!\n"
1575 << "\tCurrent:\n";
1576 DT.print(errs());
1577 errs() << "\n\tFreshly computed tree:\n";
1578 FreshTree.print(errs());
1579 errs().flush();
1582 return !Different;
1586 template <class DomTreeT>
1587 void Calculate(DomTreeT &DT) {
1588 SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, nullptr);
1591 template <typename DomTreeT>
1592 void CalculateWithUpdates(DomTreeT &DT,
1593 ArrayRef<typename DomTreeT::UpdateType> Updates) {
1594 // TODO: Move BUI creation in common method, reuse in ApplyUpdates.
1595 typename SemiNCAInfo<DomTreeT>::BatchUpdateInfo BUI;
1596 LLVM_DEBUG(dbgs() << "Legalizing " << BUI.Updates.size() << " updates\n");
1597 cfg::LegalizeUpdates<typename DomTreeT::NodePtr>(Updates, BUI.Updates,
1598 DomTreeT::IsPostDominator);
1599 const size_t NumLegalized = BUI.Updates.size();
1600 BUI.FutureSuccessors.reserve(NumLegalized);
1601 BUI.FuturePredecessors.reserve(NumLegalized);
1602 for (auto &U : BUI.Updates) {
1603 BUI.FutureSuccessors[U.getFrom()].push_back({U.getTo(), U.getKind()});
1604 BUI.FuturePredecessors[U.getTo()].push_back({U.getFrom(), U.getKind()});
1607 SemiNCAInfo<DomTreeT>::CalculateFromScratch(DT, &BUI);
1610 template <class DomTreeT>
1611 void InsertEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1612 typename DomTreeT::NodePtr To) {
1613 if (DT.isPostDominator()) std::swap(From, To);
1614 SemiNCAInfo<DomTreeT>::InsertEdge(DT, nullptr, From, To);
1617 template <class DomTreeT>
1618 void DeleteEdge(DomTreeT &DT, typename DomTreeT::NodePtr From,
1619 typename DomTreeT::NodePtr To) {
1620 if (DT.isPostDominator()) std::swap(From, To);
1621 SemiNCAInfo<DomTreeT>::DeleteEdge(DT, nullptr, From, To);
1624 template <class DomTreeT>
1625 void ApplyUpdates(DomTreeT &DT,
1626 ArrayRef<typename DomTreeT::UpdateType> Updates) {
1627 SemiNCAInfo<DomTreeT>::ApplyUpdates(DT, Updates);
1630 template <class DomTreeT>
1631 bool Verify(const DomTreeT &DT, typename DomTreeT::VerificationLevel VL) {
1632 SemiNCAInfo<DomTreeT> SNCA(nullptr);
1634 // Simplist check is to compare against a new tree. This will also
1635 // usefully print the old and new trees, if they are different.
1636 if (!SNCA.IsSameAsFreshTree(DT))
1637 return false;
1639 // Common checks to verify the properties of the tree. O(N log N) at worst
1640 if (!SNCA.verifyRoots(DT) || !SNCA.verifyReachability(DT) ||
1641 !SNCA.VerifyLevels(DT) || !SNCA.VerifyDFSNumbers(DT))
1642 return false;
1644 // Extra checks depending on VerificationLevel. Up to O(N^3)
1645 if (VL == DomTreeT::VerificationLevel::Basic ||
1646 VL == DomTreeT::VerificationLevel::Full)
1647 if (!SNCA.verifyParentProperty(DT))
1648 return false;
1649 if (VL == DomTreeT::VerificationLevel::Full)
1650 if (!SNCA.verifySiblingProperty(DT))
1651 return false;
1653 return true;
1656 } // namespace DomTreeBuilder
1657 } // namespace llvm
1659 #undef DEBUG_TYPE
1661 #endif