1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
124 using namespace llvm
;
125 using namespace PatternMatch
;
127 #define DEBUG_TYPE "isel"
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision
;
133 static cl::opt
<unsigned, true>
134 LimitFPPrecision("limit-float-precision",
135 cl::desc("Generate low-precision inline sequences "
136 "for some float libcalls"),
137 cl::location(LimitFloatPrecision
), cl::Hidden
,
140 static cl::opt
<unsigned> SwitchPeelThreshold(
141 "switch-peel-threshold", cl::Hidden
, cl::init(66),
142 cl::desc("Set the case probability threshold for peeling the case from a "
143 "switch statement. A value greater than 100 will void this "
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains
= 64;
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
165 static Optional
<CallingConv::ID
> getABIRegCopyCC(const Value
*V
) {
166 if (auto *R
= dyn_cast
<ReturnInst
>(V
))
167 return R
->getParent()->getParent()->getCallingConv();
169 if (auto *CI
= dyn_cast
<CallInst
>(V
)) {
170 const bool IsInlineAsm
= CI
->isInlineAsm();
171 const bool IsIndirectFunctionCall
=
172 !IsInlineAsm
&& !CI
->getCalledFunction();
174 // It is possible that the call instruction is an inline asm statement or an
175 // indirect function call in which case the return value of
176 // getCalledFunction() would be nullptr.
177 const bool IsInstrinsicCall
=
178 !IsInlineAsm
&& !IsIndirectFunctionCall
&&
179 CI
->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic
;
181 if (!IsInlineAsm
&& !IsInstrinsicCall
)
182 return CI
->getCallingConv();
188 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
189 const SDValue
*Parts
, unsigned NumParts
,
190 MVT PartVT
, EVT ValueVT
, const Value
*V
,
191 Optional
<CallingConv::ID
> CC
);
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent. If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue
getCopyFromParts(SelectionDAG
&DAG
, const SDLoc
&DL
,
199 const SDValue
*Parts
, unsigned NumParts
,
200 MVT PartVT
, EVT ValueVT
, const Value
*V
,
201 Optional
<CallingConv::ID
> CC
= None
,
202 Optional
<ISD::NodeType
> AssertOp
= None
) {
203 if (ValueVT
.isVector())
204 return getCopyFromPartsVector(DAG
, DL
, Parts
, NumParts
, PartVT
, ValueVT
, V
,
207 assert(NumParts
> 0 && "No parts to assemble!");
208 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
209 SDValue Val
= Parts
[0];
212 // Assemble the value from multiple parts.
213 if (ValueVT
.isInteger()) {
214 unsigned PartBits
= PartVT
.getSizeInBits();
215 unsigned ValueBits
= ValueVT
.getSizeInBits();
217 // Assemble the power of 2 part.
218 unsigned RoundParts
=
219 (NumParts
& (NumParts
- 1)) ? 1 << Log2_32(NumParts
) : NumParts
;
220 unsigned RoundBits
= PartBits
* RoundParts
;
221 EVT RoundVT
= RoundBits
== ValueBits
?
222 ValueVT
: EVT::getIntegerVT(*DAG
.getContext(), RoundBits
);
225 EVT HalfVT
= EVT::getIntegerVT(*DAG
.getContext(), RoundBits
/2);
227 if (RoundParts
> 2) {
228 Lo
= getCopyFromParts(DAG
, DL
, Parts
, RoundParts
/ 2,
230 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
/ 2,
231 RoundParts
/ 2, PartVT
, HalfVT
, V
);
233 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[0]);
234 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, HalfVT
, Parts
[1]);
237 if (DAG
.getDataLayout().isBigEndian())
240 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, RoundVT
, Lo
, Hi
);
242 if (RoundParts
< NumParts
) {
243 // Assemble the trailing non-power-of-2 part.
244 unsigned OddParts
= NumParts
- RoundParts
;
245 EVT OddVT
= EVT::getIntegerVT(*DAG
.getContext(), OddParts
* PartBits
);
246 Hi
= getCopyFromParts(DAG
, DL
, Parts
+ RoundParts
, OddParts
, PartVT
,
249 // Combine the round and odd parts.
251 if (DAG
.getDataLayout().isBigEndian())
253 EVT TotalVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
254 Hi
= DAG
.getNode(ISD::ANY_EXTEND
, DL
, TotalVT
, Hi
);
256 DAG
.getNode(ISD::SHL
, DL
, TotalVT
, Hi
,
257 DAG
.getConstant(Lo
.getValueSizeInBits(), DL
,
258 TLI
.getPointerTy(DAG
.getDataLayout())));
259 Lo
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, TotalVT
, Lo
);
260 Val
= DAG
.getNode(ISD::OR
, DL
, TotalVT
, Lo
, Hi
);
262 } else if (PartVT
.isFloatingPoint()) {
263 // FP split into multiple FP parts (for ppcf128)
264 assert(ValueVT
== EVT(MVT::ppcf128
) && PartVT
== MVT::f64
&&
267 Lo
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[0]);
268 Hi
= DAG
.getNode(ISD::BITCAST
, DL
, EVT(MVT::f64
), Parts
[1]);
269 if (TLI
.hasBigEndianPartOrdering(ValueVT
, DAG
.getDataLayout()))
271 Val
= DAG
.getNode(ISD::BUILD_PAIR
, DL
, ValueVT
, Lo
, Hi
);
273 // FP split into integer parts (soft fp)
274 assert(ValueVT
.isFloatingPoint() && PartVT
.isInteger() &&
275 !PartVT
.isVector() && "Unexpected split");
276 EVT IntVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
277 Val
= getCopyFromParts(DAG
, DL
, Parts
, NumParts
, PartVT
, IntVT
, V
, CC
);
281 // There is now one part, held in Val. Correct it to match ValueVT.
282 // PartEVT is the type of the register class that holds the value.
283 // ValueVT is the type of the inline asm operation.
284 EVT PartEVT
= Val
.getValueType();
286 if (PartEVT
== ValueVT
)
289 if (PartEVT
.isInteger() && ValueVT
.isFloatingPoint() &&
290 ValueVT
.bitsLT(PartEVT
)) {
291 // For an FP value in an integer part, we need to truncate to the right
293 PartEVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
294 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, PartEVT
, Val
);
297 // Handle types that have the same size.
298 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits())
299 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
301 // Handle types with different sizes.
302 if (PartEVT
.isInteger() && ValueVT
.isInteger()) {
303 if (ValueVT
.bitsLT(PartEVT
)) {
304 // For a truncate, see if we have any information to
305 // indicate whether the truncated bits will always be
306 // zero or sign-extension.
307 if (AssertOp
.hasValue())
308 Val
= DAG
.getNode(*AssertOp
, DL
, PartEVT
, Val
,
309 DAG
.getValueType(ValueVT
));
310 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
312 return DAG
.getNode(ISD::ANY_EXTEND
, DL
, ValueVT
, Val
);
315 if (PartEVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
316 // FP_ROUND's are always exact here.
317 if (ValueVT
.bitsLT(Val
.getValueType()))
319 ISD::FP_ROUND
, DL
, ValueVT
, Val
,
320 DAG
.getTargetConstant(1, DL
, TLI
.getPointerTy(DAG
.getDataLayout())));
322 return DAG
.getNode(ISD::FP_EXTEND
, DL
, ValueVT
, Val
);
325 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
327 if (PartEVT
== MVT::x86mmx
&& ValueVT
.isInteger() &&
328 ValueVT
.bitsLT(PartEVT
)) {
329 Val
= DAG
.getNode(ISD::BITCAST
, DL
, MVT::i64
, Val
);
330 return DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
333 report_fatal_error("Unknown mismatch in getCopyFromParts!");
336 static void diagnosePossiblyInvalidConstraint(LLVMContext
&Ctx
, const Value
*V
,
337 const Twine
&ErrMsg
) {
338 const Instruction
*I
= dyn_cast_or_null
<Instruction
>(V
);
340 return Ctx
.emitError(ErrMsg
);
342 const char *AsmError
= ", possible invalid constraint for vector type";
343 if (const CallInst
*CI
= dyn_cast
<CallInst
>(I
))
344 if (isa
<InlineAsm
>(CI
->getCalledValue()))
345 return Ctx
.emitError(I
, ErrMsg
+ AsmError
);
347 return Ctx
.emitError(I
, ErrMsg
);
350 /// getCopyFromPartsVector - Create a value that contains the specified legal
351 /// parts combined into the value they represent. If the parts combine to a
352 /// type larger than ValueVT then AssertOp can be used to specify whether the
353 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
354 /// ValueVT (ISD::AssertSext).
355 static SDValue
getCopyFromPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
356 const SDValue
*Parts
, unsigned NumParts
,
357 MVT PartVT
, EVT ValueVT
, const Value
*V
,
358 Optional
<CallingConv::ID
> CallConv
) {
359 assert(ValueVT
.isVector() && "Not a vector value");
360 assert(NumParts
> 0 && "No parts to assemble!");
361 const bool IsABIRegCopy
= CallConv
.hasValue();
363 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
364 SDValue Val
= Parts
[0];
366 // Handle a multi-element vector.
370 unsigned NumIntermediates
;
374 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
375 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
376 NumIntermediates
, RegisterVT
);
379 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
380 NumIntermediates
, RegisterVT
);
383 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
384 NumParts
= NumRegs
; // Silence a compiler warning.
385 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
386 assert(RegisterVT
.getSizeInBits() ==
387 Parts
[0].getSimpleValueType().getSizeInBits() &&
388 "Part type sizes don't match!");
390 // Assemble the parts into intermediate operands.
391 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
392 if (NumIntermediates
== NumParts
) {
393 // If the register was not expanded, truncate or copy the value,
395 for (unsigned i
= 0; i
!= NumParts
; ++i
)
396 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
], 1,
397 PartVT
, IntermediateVT
, V
);
398 } else if (NumParts
> 0) {
399 // If the intermediate type was expanded, build the intermediate
400 // operands from the parts.
401 assert(NumParts
% NumIntermediates
== 0 &&
402 "Must expand into a divisible number of parts!");
403 unsigned Factor
= NumParts
/ NumIntermediates
;
404 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
405 Ops
[i
] = getCopyFromParts(DAG
, DL
, &Parts
[i
* Factor
], Factor
,
406 PartVT
, IntermediateVT
, V
);
409 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
410 // intermediate operands.
412 EVT::getVectorVT(*DAG
.getContext(), IntermediateVT
.getScalarType(),
413 (IntermediateVT
.isVector()
414 ? IntermediateVT
.getVectorNumElements() * NumParts
415 : NumIntermediates
));
416 Val
= DAG
.getNode(IntermediateVT
.isVector() ? ISD::CONCAT_VECTORS
418 DL
, BuiltVectorTy
, Ops
);
421 // There is now one part, held in Val. Correct it to match ValueVT.
422 EVT PartEVT
= Val
.getValueType();
424 if (PartEVT
== ValueVT
)
427 if (PartEVT
.isVector()) {
428 // If the element type of the source/dest vectors are the same, but the
429 // parts vector has more elements than the value vector, then we have a
430 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
432 if (PartEVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
433 assert(PartEVT
.getVectorNumElements() > ValueVT
.getVectorNumElements() &&
434 "Cannot narrow, it would be a lossy transformation");
436 ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
437 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
440 // Vector/Vector bitcast.
441 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits())
442 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
444 assert(PartEVT
.getVectorNumElements() == ValueVT
.getVectorNumElements() &&
445 "Cannot handle this kind of promotion");
446 // Promoted vector extract
447 return DAG
.getAnyExtOrTrunc(Val
, DL
, ValueVT
);
451 // Trivial bitcast if the types are the same size and the destination
452 // vector type is legal.
453 if (PartEVT
.getSizeInBits() == ValueVT
.getSizeInBits() &&
454 TLI
.isTypeLegal(ValueVT
))
455 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
457 if (ValueVT
.getVectorNumElements() != 1) {
458 // Certain ABIs require that vectors are passed as integers. For vectors
459 // are the same size, this is an obvious bitcast.
460 if (ValueVT
.getSizeInBits() == PartEVT
.getSizeInBits()) {
461 return DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
462 } else if (ValueVT
.getSizeInBits() < PartEVT
.getSizeInBits()) {
463 // Bitcast Val back the original type and extract the corresponding
465 unsigned Elts
= PartEVT
.getSizeInBits() / ValueVT
.getScalarSizeInBits();
466 EVT WiderVecType
= EVT::getVectorVT(*DAG
.getContext(),
467 ValueVT
.getVectorElementType(), Elts
);
468 Val
= DAG
.getBitcast(WiderVecType
, Val
);
470 ISD::EXTRACT_SUBVECTOR
, DL
, ValueVT
, Val
,
471 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
474 diagnosePossiblyInvalidConstraint(
475 *DAG
.getContext(), V
, "non-trivial scalar-to-vector conversion");
476 return DAG
.getUNDEF(ValueVT
);
479 // Handle cases such as i8 -> <1 x i1>
480 EVT ValueSVT
= ValueVT
.getVectorElementType();
481 if (ValueVT
.getVectorNumElements() == 1 && ValueSVT
!= PartEVT
)
482 Val
= ValueVT
.isFloatingPoint() ? DAG
.getFPExtendOrRound(Val
, DL
, ValueSVT
)
483 : DAG
.getAnyExtOrTrunc(Val
, DL
, ValueSVT
);
485 return DAG
.getBuildVector(ValueVT
, DL
, Val
);
488 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&dl
,
489 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
490 MVT PartVT
, const Value
*V
,
491 Optional
<CallingConv::ID
> CallConv
);
493 /// getCopyToParts - Create a series of nodes that contain the specified value
494 /// split into legal parts. If the parts contain more bits than Val, then, for
495 /// integers, ExtendKind can be used to specify how to generate the extra bits.
496 static void getCopyToParts(SelectionDAG
&DAG
, const SDLoc
&DL
, SDValue Val
,
497 SDValue
*Parts
, unsigned NumParts
, MVT PartVT
,
499 Optional
<CallingConv::ID
> CallConv
= None
,
500 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
) {
501 EVT ValueVT
= Val
.getValueType();
503 // Handle the vector case separately.
504 if (ValueVT
.isVector())
505 return getCopyToPartsVector(DAG
, DL
, Val
, Parts
, NumParts
, PartVT
, V
,
508 unsigned PartBits
= PartVT
.getSizeInBits();
509 unsigned OrigNumParts
= NumParts
;
510 assert(DAG
.getTargetLoweringInfo().isTypeLegal(PartVT
) &&
511 "Copying to an illegal type!");
516 assert(!ValueVT
.isVector() && "Vector case handled elsewhere");
517 EVT PartEVT
= PartVT
;
518 if (PartEVT
== ValueVT
) {
519 assert(NumParts
== 1 && "No-op copy with multiple parts!");
524 if (NumParts
* PartBits
> ValueVT
.getSizeInBits()) {
525 // If the parts cover more bits than the value has, promote the value.
526 if (PartVT
.isFloatingPoint() && ValueVT
.isFloatingPoint()) {
527 assert(NumParts
== 1 && "Do not know what to promote to!");
528 Val
= DAG
.getNode(ISD::FP_EXTEND
, DL
, PartVT
, Val
);
530 if (ValueVT
.isFloatingPoint()) {
531 // FP values need to be bitcast, then extended if they are being put
532 // into a larger container.
533 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
534 Val
= DAG
.getNode(ISD::BITCAST
, DL
, ValueVT
, Val
);
536 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
537 ValueVT
.isInteger() &&
538 "Unknown mismatch!");
539 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
540 Val
= DAG
.getNode(ExtendKind
, DL
, ValueVT
, Val
);
541 if (PartVT
== MVT::x86mmx
)
542 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
544 } else if (PartBits
== ValueVT
.getSizeInBits()) {
545 // Different types of the same size.
546 assert(NumParts
== 1 && PartEVT
!= ValueVT
);
547 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
548 } else if (NumParts
* PartBits
< ValueVT
.getSizeInBits()) {
549 // If the parts cover less bits than value has, truncate the value.
550 assert((PartVT
.isInteger() || PartVT
== MVT::x86mmx
) &&
551 ValueVT
.isInteger() &&
552 "Unknown mismatch!");
553 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
554 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
555 if (PartVT
== MVT::x86mmx
)
556 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
559 // The value may have changed - recompute ValueVT.
560 ValueVT
= Val
.getValueType();
561 assert(NumParts
* PartBits
== ValueVT
.getSizeInBits() &&
562 "Failed to tile the value with PartVT!");
565 if (PartEVT
!= ValueVT
) {
566 diagnosePossiblyInvalidConstraint(*DAG
.getContext(), V
,
567 "scalar-to-vector conversion failed");
568 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
575 // Expand the value into multiple parts.
576 if (NumParts
& (NumParts
- 1)) {
577 // The number of parts is not a power of 2. Split off and copy the tail.
578 assert(PartVT
.isInteger() && ValueVT
.isInteger() &&
579 "Do not know what to expand to!");
580 unsigned RoundParts
= 1 << Log2_32(NumParts
);
581 unsigned RoundBits
= RoundParts
* PartBits
;
582 unsigned OddParts
= NumParts
- RoundParts
;
583 SDValue OddVal
= DAG
.getNode(ISD::SRL
, DL
, ValueVT
, Val
,
584 DAG
.getShiftAmountConstant(RoundBits
, ValueVT
, DL
, /*LegalTypes*/false));
586 getCopyToParts(DAG
, DL
, OddVal
, Parts
+ RoundParts
, OddParts
, PartVT
, V
,
589 if (DAG
.getDataLayout().isBigEndian())
590 // The odd parts were reversed by getCopyToParts - unreverse them.
591 std::reverse(Parts
+ RoundParts
, Parts
+ NumParts
);
593 NumParts
= RoundParts
;
594 ValueVT
= EVT::getIntegerVT(*DAG
.getContext(), NumParts
* PartBits
);
595 Val
= DAG
.getNode(ISD::TRUNCATE
, DL
, ValueVT
, Val
);
598 // The number of parts is a power of 2. Repeatedly bisect the value using
600 Parts
[0] = DAG
.getNode(ISD::BITCAST
, DL
,
601 EVT::getIntegerVT(*DAG
.getContext(),
602 ValueVT
.getSizeInBits()),
605 for (unsigned StepSize
= NumParts
; StepSize
> 1; StepSize
/= 2) {
606 for (unsigned i
= 0; i
< NumParts
; i
+= StepSize
) {
607 unsigned ThisBits
= StepSize
* PartBits
/ 2;
608 EVT ThisVT
= EVT::getIntegerVT(*DAG
.getContext(), ThisBits
);
609 SDValue
&Part0
= Parts
[i
];
610 SDValue
&Part1
= Parts
[i
+StepSize
/2];
612 Part1
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
613 ThisVT
, Part0
, DAG
.getIntPtrConstant(1, DL
));
614 Part0
= DAG
.getNode(ISD::EXTRACT_ELEMENT
, DL
,
615 ThisVT
, Part0
, DAG
.getIntPtrConstant(0, DL
));
617 if (ThisBits
== PartBits
&& ThisVT
!= PartVT
) {
618 Part0
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part0
);
619 Part1
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Part1
);
624 if (DAG
.getDataLayout().isBigEndian())
625 std::reverse(Parts
, Parts
+ OrigNumParts
);
628 static SDValue
widenVectorToPartType(SelectionDAG
&DAG
,
629 SDValue Val
, const SDLoc
&DL
, EVT PartVT
) {
630 if (!PartVT
.isVector())
633 EVT ValueVT
= Val
.getValueType();
634 unsigned PartNumElts
= PartVT
.getVectorNumElements();
635 unsigned ValueNumElts
= ValueVT
.getVectorNumElements();
636 if (PartNumElts
> ValueNumElts
&&
637 PartVT
.getVectorElementType() == ValueVT
.getVectorElementType()) {
638 EVT ElementVT
= PartVT
.getVectorElementType();
639 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
641 SmallVector
<SDValue
, 16> Ops
;
642 DAG
.ExtractVectorElements(Val
, Ops
);
643 SDValue EltUndef
= DAG
.getUNDEF(ElementVT
);
644 for (unsigned i
= ValueNumElts
, e
= PartNumElts
; i
!= e
; ++i
)
645 Ops
.push_back(EltUndef
);
647 // FIXME: Use CONCAT for 2x -> 4x.
648 return DAG
.getBuildVector(PartVT
, DL
, Ops
);
654 /// getCopyToPartsVector - Create a series of nodes that contain the specified
655 /// value split into legal parts.
656 static void getCopyToPartsVector(SelectionDAG
&DAG
, const SDLoc
&DL
,
657 SDValue Val
, SDValue
*Parts
, unsigned NumParts
,
658 MVT PartVT
, const Value
*V
,
659 Optional
<CallingConv::ID
> CallConv
) {
660 EVT ValueVT
= Val
.getValueType();
661 assert(ValueVT
.isVector() && "Not a vector");
662 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
663 const bool IsABIRegCopy
= CallConv
.hasValue();
666 EVT PartEVT
= PartVT
;
667 if (PartEVT
== ValueVT
) {
669 } else if (PartVT
.getSizeInBits() == ValueVT
.getSizeInBits()) {
670 // Bitconvert vector->vector case.
671 Val
= DAG
.getNode(ISD::BITCAST
, DL
, PartVT
, Val
);
672 } else if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, PartVT
)) {
674 } else if (PartVT
.isVector() &&
675 PartEVT
.getVectorElementType().bitsGE(
676 ValueVT
.getVectorElementType()) &&
677 PartEVT
.getVectorNumElements() == ValueVT
.getVectorNumElements()) {
679 // Promoted vector extract
680 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
682 if (ValueVT
.getVectorNumElements() == 1) {
684 ISD::EXTRACT_VECTOR_ELT
, DL
, PartVT
, Val
,
685 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
687 assert(PartVT
.getSizeInBits() > ValueVT
.getSizeInBits() &&
688 "lossy conversion of vector to scalar type");
689 EVT IntermediateType
=
690 EVT::getIntegerVT(*DAG
.getContext(), ValueVT
.getSizeInBits());
691 Val
= DAG
.getBitcast(IntermediateType
, Val
);
692 Val
= DAG
.getAnyExtOrTrunc(Val
, DL
, PartVT
);
696 assert(Val
.getValueType() == PartVT
&& "Unexpected vector part value type");
701 // Handle a multi-element vector.
704 unsigned NumIntermediates
;
707 NumRegs
= TLI
.getVectorTypeBreakdownForCallingConv(
708 *DAG
.getContext(), CallConv
.getValue(), ValueVT
, IntermediateVT
,
709 NumIntermediates
, RegisterVT
);
712 TLI
.getVectorTypeBreakdown(*DAG
.getContext(), ValueVT
, IntermediateVT
,
713 NumIntermediates
, RegisterVT
);
716 assert(NumRegs
== NumParts
&& "Part count doesn't match vector breakdown!");
717 NumParts
= NumRegs
; // Silence a compiler warning.
718 assert(RegisterVT
== PartVT
&& "Part type doesn't match vector breakdown!");
720 unsigned IntermediateNumElts
= IntermediateVT
.isVector() ?
721 IntermediateVT
.getVectorNumElements() : 1;
723 // Convert the vector to the appropiate type if necessary.
724 unsigned DestVectorNoElts
= NumIntermediates
* IntermediateNumElts
;
726 EVT BuiltVectorTy
= EVT::getVectorVT(
727 *DAG
.getContext(), IntermediateVT
.getScalarType(), DestVectorNoElts
);
728 MVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
729 if (ValueVT
!= BuiltVectorTy
) {
730 if (SDValue Widened
= widenVectorToPartType(DAG
, Val
, DL
, BuiltVectorTy
))
733 Val
= DAG
.getNode(ISD::BITCAST
, DL
, BuiltVectorTy
, Val
);
736 // Split the vector into intermediate operands.
737 SmallVector
<SDValue
, 8> Ops(NumIntermediates
);
738 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
) {
739 if (IntermediateVT
.isVector()) {
740 Ops
[i
] = DAG
.getNode(ISD::EXTRACT_SUBVECTOR
, DL
, IntermediateVT
, Val
,
741 DAG
.getConstant(i
* IntermediateNumElts
, DL
, IdxVT
));
743 Ops
[i
] = DAG
.getNode(
744 ISD::EXTRACT_VECTOR_ELT
, DL
, IntermediateVT
, Val
,
745 DAG
.getConstant(i
, DL
, IdxVT
));
749 // Split the intermediate operands into legal parts.
750 if (NumParts
== NumIntermediates
) {
751 // If the register was not expanded, promote or copy the value,
753 for (unsigned i
= 0; i
!= NumParts
; ++i
)
754 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
], 1, PartVT
, V
, CallConv
);
755 } else if (NumParts
> 0) {
756 // If the intermediate type was expanded, split each the value into
758 assert(NumIntermediates
!= 0 && "division by zero");
759 assert(NumParts
% NumIntermediates
== 0 &&
760 "Must expand into a divisible number of parts!");
761 unsigned Factor
= NumParts
/ NumIntermediates
;
762 for (unsigned i
= 0; i
!= NumIntermediates
; ++i
)
763 getCopyToParts(DAG
, DL
, Ops
[i
], &Parts
[i
* Factor
], Factor
, PartVT
, V
,
768 RegsForValue::RegsForValue(const SmallVector
<unsigned, 4> ®s
, MVT regvt
,
769 EVT valuevt
, Optional
<CallingConv::ID
> CC
)
770 : ValueVTs(1, valuevt
), RegVTs(1, regvt
), Regs(regs
),
771 RegCount(1, regs
.size()), CallConv(CC
) {}
773 RegsForValue::RegsForValue(LLVMContext
&Context
, const TargetLowering
&TLI
,
774 const DataLayout
&DL
, unsigned Reg
, Type
*Ty
,
775 Optional
<CallingConv::ID
> CC
) {
776 ComputeValueVTs(TLI
, DL
, Ty
, ValueVTs
);
780 for (EVT ValueVT
: ValueVTs
) {
783 ? TLI
.getNumRegistersForCallingConv(Context
, CC
.getValue(), ValueVT
)
784 : TLI
.getNumRegisters(Context
, ValueVT
);
787 ? TLI
.getRegisterTypeForCallingConv(Context
, CC
.getValue(), ValueVT
)
788 : TLI
.getRegisterType(Context
, ValueVT
);
789 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
790 Regs
.push_back(Reg
+ i
);
791 RegVTs
.push_back(RegisterVT
);
792 RegCount
.push_back(NumRegs
);
797 SDValue
RegsForValue::getCopyFromRegs(SelectionDAG
&DAG
,
798 FunctionLoweringInfo
&FuncInfo
,
799 const SDLoc
&dl
, SDValue
&Chain
,
800 SDValue
*Flag
, const Value
*V
) const {
801 // A Value with type {} or [0 x %t] needs no registers.
802 if (ValueVTs
.empty())
805 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
807 // Assemble the legal parts into the final values.
808 SmallVector
<SDValue
, 4> Values(ValueVTs
.size());
809 SmallVector
<SDValue
, 8> Parts
;
810 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
811 // Copy the legal parts from the registers.
812 EVT ValueVT
= ValueVTs
[Value
];
813 unsigned NumRegs
= RegCount
[Value
];
814 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
816 CallConv
.getValue(), RegVTs
[Value
])
819 Parts
.resize(NumRegs
);
820 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
823 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
);
825 P
= DAG
.getCopyFromReg(Chain
, dl
, Regs
[Part
+i
], RegisterVT
, *Flag
);
826 *Flag
= P
.getValue(2);
829 Chain
= P
.getValue(1);
832 // If the source register was virtual and if we know something about it,
833 // add an assert node.
834 if (!TargetRegisterInfo::isVirtualRegister(Regs
[Part
+i
]) ||
835 !RegisterVT
.isInteger())
838 const FunctionLoweringInfo::LiveOutInfo
*LOI
=
839 FuncInfo
.GetLiveOutRegInfo(Regs
[Part
+i
]);
843 unsigned RegSize
= RegisterVT
.getScalarSizeInBits();
844 unsigned NumSignBits
= LOI
->NumSignBits
;
845 unsigned NumZeroBits
= LOI
->Known
.countMinLeadingZeros();
847 if (NumZeroBits
== RegSize
) {
848 // The current value is a zero.
849 // Explicitly express that as it would be easier for
850 // optimizations to kick in.
851 Parts
[i
] = DAG
.getConstant(0, dl
, RegisterVT
);
855 // FIXME: We capture more information than the dag can represent. For
856 // now, just use the tightest assertzext/assertsext possible.
858 EVT
FromVT(MVT::Other
);
860 FromVT
= EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumZeroBits
);
862 } else if (NumSignBits
> 1) {
864 EVT::getIntegerVT(*DAG
.getContext(), RegSize
- NumSignBits
+ 1);
869 // Add an assertion node.
870 assert(FromVT
!= MVT::Other
);
871 Parts
[i
] = DAG
.getNode(isSExt
? ISD::AssertSext
: ISD::AssertZext
, dl
,
872 RegisterVT
, P
, DAG
.getValueType(FromVT
));
875 Values
[Value
] = getCopyFromParts(DAG
, dl
, Parts
.begin(), NumRegs
,
876 RegisterVT
, ValueVT
, V
, CallConv
);
881 return DAG
.getNode(ISD::MERGE_VALUES
, dl
, DAG
.getVTList(ValueVTs
), Values
);
884 void RegsForValue::getCopyToRegs(SDValue Val
, SelectionDAG
&DAG
,
885 const SDLoc
&dl
, SDValue
&Chain
, SDValue
*Flag
,
887 ISD::NodeType PreferredExtendType
) const {
888 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
889 ISD::NodeType ExtendKind
= PreferredExtendType
;
891 // Get the list of the values's legal parts.
892 unsigned NumRegs
= Regs
.size();
893 SmallVector
<SDValue
, 8> Parts(NumRegs
);
894 for (unsigned Value
= 0, Part
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
895 unsigned NumParts
= RegCount
[Value
];
897 MVT RegisterVT
= isABIMangled() ? TLI
.getRegisterTypeForCallingConv(
899 CallConv
.getValue(), RegVTs
[Value
])
902 if (ExtendKind
== ISD::ANY_EXTEND
&& TLI
.isZExtFree(Val
, RegisterVT
))
903 ExtendKind
= ISD::ZERO_EXTEND
;
905 getCopyToParts(DAG
, dl
, Val
.getValue(Val
.getResNo() + Value
), &Parts
[Part
],
906 NumParts
, RegisterVT
, V
, CallConv
, ExtendKind
);
910 // Copy the parts into the registers.
911 SmallVector
<SDValue
, 8> Chains(NumRegs
);
912 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
915 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
]);
917 Part
= DAG
.getCopyToReg(Chain
, dl
, Regs
[i
], Parts
[i
], *Flag
);
918 *Flag
= Part
.getValue(1);
921 Chains
[i
] = Part
.getValue(0);
924 if (NumRegs
== 1 || Flag
)
925 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
926 // flagged to it. That is the CopyToReg nodes and the user are considered
927 // a single scheduling unit. If we create a TokenFactor and return it as
928 // chain, then the TokenFactor is both a predecessor (operand) of the
929 // user as well as a successor (the TF operands are flagged to the user).
930 // c1, f1 = CopyToReg
931 // c2, f2 = CopyToReg
932 // c3 = TokenFactor c1, c2
935 Chain
= Chains
[NumRegs
-1];
937 Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
940 void RegsForValue::AddInlineAsmOperands(unsigned Code
, bool HasMatching
,
941 unsigned MatchingIdx
, const SDLoc
&dl
,
943 std::vector
<SDValue
> &Ops
) const {
944 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
946 unsigned Flag
= InlineAsm::getFlagWord(Code
, Regs
.size());
948 Flag
= InlineAsm::getFlagWordForMatchingOp(Flag
, MatchingIdx
);
949 else if (!Regs
.empty() &&
950 TargetRegisterInfo::isVirtualRegister(Regs
.front())) {
951 // Put the register class of the virtual registers in the flag word. That
952 // way, later passes can recompute register class constraints for inline
953 // assembly as well as normal instructions.
954 // Don't do this for tied operands that can use the regclass information
956 const MachineRegisterInfo
&MRI
= DAG
.getMachineFunction().getRegInfo();
957 const TargetRegisterClass
*RC
= MRI
.getRegClass(Regs
.front());
958 Flag
= InlineAsm::getFlagWordForRegClass(Flag
, RC
->getID());
961 SDValue Res
= DAG
.getTargetConstant(Flag
, dl
, MVT::i32
);
964 if (Code
== InlineAsm::Kind_Clobber
) {
965 // Clobbers should always have a 1:1 mapping with registers, and may
966 // reference registers that have illegal (e.g. vector) types. Hence, we
967 // shouldn't try to apply any sort of splitting logic to them.
968 assert(Regs
.size() == RegVTs
.size() && Regs
.size() == ValueVTs
.size() &&
969 "No 1:1 mapping from clobbers to regs?");
970 unsigned SP
= TLI
.getStackPointerRegisterToSaveRestore();
972 for (unsigned I
= 0, E
= ValueVTs
.size(); I
!= E
; ++I
) {
973 Ops
.push_back(DAG
.getRegister(Regs
[I
], RegVTs
[I
]));
976 DAG
.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
977 "If we clobbered the stack pointer, MFI should know about it.");
982 for (unsigned Value
= 0, Reg
= 0, e
= ValueVTs
.size(); Value
!= e
; ++Value
) {
983 unsigned NumRegs
= TLI
.getNumRegisters(*DAG
.getContext(), ValueVTs
[Value
]);
984 MVT RegisterVT
= RegVTs
[Value
];
985 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
986 assert(Reg
< Regs
.size() && "Mismatch in # registers expected");
987 unsigned TheReg
= Regs
[Reg
++];
988 Ops
.push_back(DAG
.getRegister(TheReg
, RegisterVT
));
993 SmallVector
<std::pair
<unsigned, unsigned>, 4>
994 RegsForValue::getRegsAndSizes() const {
995 SmallVector
<std::pair
<unsigned, unsigned>, 4> OutVec
;
997 for (auto CountAndVT
: zip_first(RegCount
, RegVTs
)) {
998 unsigned RegCount
= std::get
<0>(CountAndVT
);
999 MVT RegisterVT
= std::get
<1>(CountAndVT
);
1000 unsigned RegisterSize
= RegisterVT
.getSizeInBits();
1001 for (unsigned E
= I
+ RegCount
; I
!= E
; ++I
)
1002 OutVec
.push_back(std::make_pair(Regs
[I
], RegisterSize
));
1007 void SelectionDAGBuilder::init(GCFunctionInfo
*gfi
, AliasAnalysis
*aa
,
1008 const TargetLibraryInfo
*li
) {
1012 DL
= &DAG
.getDataLayout();
1013 Context
= DAG
.getContext();
1014 LPadToCallSiteMap
.clear();
1017 void SelectionDAGBuilder::clear() {
1019 UnusedArgNodeMap
.clear();
1020 PendingLoads
.clear();
1021 PendingExports
.clear();
1023 HasTailCall
= false;
1024 SDNodeOrder
= LowestSDNodeOrder
;
1025 StatepointLowering
.clear();
1028 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1029 DanglingDebugInfoMap
.clear();
1032 SDValue
SelectionDAGBuilder::getRoot() {
1033 if (PendingLoads
.empty())
1034 return DAG
.getRoot();
1036 if (PendingLoads
.size() == 1) {
1037 SDValue Root
= PendingLoads
[0];
1039 PendingLoads
.clear();
1043 // Otherwise, we have to make a token factor node.
1044 SDValue Root
= DAG
.getTokenFactor(getCurSDLoc(), PendingLoads
);
1045 PendingLoads
.clear();
1050 SDValue
SelectionDAGBuilder::getControlRoot() {
1051 SDValue Root
= DAG
.getRoot();
1053 if (PendingExports
.empty())
1056 // Turn all of the CopyToReg chains into one factored node.
1057 if (Root
.getOpcode() != ISD::EntryToken
) {
1058 unsigned i
= 0, e
= PendingExports
.size();
1059 for (; i
!= e
; ++i
) {
1060 assert(PendingExports
[i
].getNode()->getNumOperands() > 1);
1061 if (PendingExports
[i
].getNode()->getOperand(0) == Root
)
1062 break; // Don't add the root if we already indirectly depend on it.
1066 PendingExports
.push_back(Root
);
1069 Root
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(), MVT::Other
,
1071 PendingExports
.clear();
1076 void SelectionDAGBuilder::visit(const Instruction
&I
) {
1077 // Set up outgoing PHI node register values before emitting the terminator.
1078 if (I
.isTerminator()) {
1079 HandlePHINodesInSuccessorBlocks(I
.getParent());
1082 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1083 if (!isa
<DbgInfoIntrinsic
>(I
))
1088 visit(I
.getOpcode(), I
);
1090 if (auto *FPMO
= dyn_cast
<FPMathOperator
>(&I
)) {
1091 // Propagate the fast-math-flags of this IR instruction to the DAG node that
1092 // maps to this instruction.
1093 // TODO: We could handle all flags (nsw, etc) here.
1094 // TODO: If an IR instruction maps to >1 node, only the final node will have
1096 if (SDNode
*Node
= getNodeForIRValue(&I
)) {
1097 SDNodeFlags IncomingFlags
;
1098 IncomingFlags
.copyFMF(*FPMO
);
1099 if (!Node
->getFlags().isDefined())
1100 Node
->setFlags(IncomingFlags
);
1102 Node
->intersectFlagsWith(IncomingFlags
);
1106 if (!I
.isTerminator() && !HasTailCall
&&
1107 !isStatepoint(&I
)) // statepoints handle their exports internally
1108 CopyToExportRegsIfNeeded(&I
);
1113 void SelectionDAGBuilder::visitPHI(const PHINode
&) {
1114 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1117 void SelectionDAGBuilder::visit(unsigned Opcode
, const User
&I
) {
1118 // Note: this doesn't use InstVisitor, because it has to work with
1119 // ConstantExpr's in addition to instructions.
1121 default: llvm_unreachable("Unknown instruction type encountered!");
1122 // Build the switch statement using the Instruction.def file.
1123 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1124 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1125 #include "llvm/IR/Instruction.def"
1129 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable
*Variable
,
1130 const DIExpression
*Expr
) {
1131 auto isMatchingDbgValue
= [&](DanglingDebugInfo
&DDI
) {
1132 const DbgValueInst
*DI
= DDI
.getDI();
1133 DIVariable
*DanglingVariable
= DI
->getVariable();
1134 DIExpression
*DanglingExpr
= DI
->getExpression();
1135 if (DanglingVariable
== Variable
&& Expr
->fragmentsOverlap(DanglingExpr
)) {
1136 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI
<< "\n");
1142 for (auto &DDIMI
: DanglingDebugInfoMap
) {
1143 DanglingDebugInfoVector
&DDIV
= DDIMI
.second
;
1145 // If debug info is to be dropped, run it through final checks to see
1146 // whether it can be salvaged.
1147 for (auto &DDI
: DDIV
)
1148 if (isMatchingDbgValue(DDI
))
1149 salvageUnresolvedDbgValue(DDI
);
1151 DDIV
.erase(remove_if(DDIV
, isMatchingDbgValue
), DDIV
.end());
1155 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1156 // generate the debug data structures now that we've seen its definition.
1157 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value
*V
,
1159 auto DanglingDbgInfoIt
= DanglingDebugInfoMap
.find(V
);
1160 if (DanglingDbgInfoIt
== DanglingDebugInfoMap
.end())
1163 DanglingDebugInfoVector
&DDIV
= DanglingDbgInfoIt
->second
;
1164 for (auto &DDI
: DDIV
) {
1165 const DbgValueInst
*DI
= DDI
.getDI();
1166 assert(DI
&& "Ill-formed DanglingDebugInfo");
1167 DebugLoc dl
= DDI
.getdl();
1168 unsigned ValSDNodeOrder
= Val
.getNode()->getIROrder();
1169 unsigned DbgSDNodeOrder
= DDI
.getSDNodeOrder();
1170 DILocalVariable
*Variable
= DI
->getVariable();
1171 DIExpression
*Expr
= DI
->getExpression();
1172 assert(Variable
->isValidLocationForIntrinsic(dl
) &&
1173 "Expected inlined-at fields to agree");
1175 if (Val
.getNode()) {
1176 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1177 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1178 // we couldn't resolve it directly when examining the DbgValue intrinsic
1179 // in the first place we should not be more successful here). Unless we
1180 // have some test case that prove this to be correct we should avoid
1181 // calling EmitFuncArgumentDbgValue here.
1182 if (!EmitFuncArgumentDbgValue(V
, Variable
, Expr
, dl
, false, Val
)) {
1183 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1184 << DbgSDNodeOrder
<< "] for:\n " << *DI
<< "\n");
1185 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val
.dump());
1186 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1187 // inserted after the definition of Val when emitting the instructions
1188 // after ISel. An alternative could be to teach
1189 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1190 LLVM_DEBUG(if (ValSDNodeOrder
> DbgSDNodeOrder
) dbgs()
1191 << "changing SDNodeOrder from " << DbgSDNodeOrder
<< " to "
1192 << ValSDNodeOrder
<< "\n");
1193 SDV
= getDbgValue(Val
, Variable
, Expr
, dl
,
1194 std::max(DbgSDNodeOrder
, ValSDNodeOrder
));
1195 DAG
.AddDbgValue(SDV
, Val
.getNode(), false);
1197 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1198 << "in EmitFuncArgumentDbgValue\n");
1200 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI
<< "\n");
1202 UndefValue::get(DDI
.getDI()->getVariableLocation()->getType());
1204 DAG
.getConstantDbgValue(Variable
, Expr
, Undef
, dl
, DbgSDNodeOrder
);
1205 DAG
.AddDbgValue(SDV
, nullptr, false);
1211 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo
&DDI
) {
1212 Value
*V
= DDI
.getDI()->getValue();
1213 DILocalVariable
*Var
= DDI
.getDI()->getVariable();
1214 DIExpression
*Expr
= DDI
.getDI()->getExpression();
1215 DebugLoc DL
= DDI
.getdl();
1216 DebugLoc InstDL
= DDI
.getDI()->getDebugLoc();
1217 unsigned SDOrder
= DDI
.getSDNodeOrder();
1219 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1220 // that DW_OP_stack_value is desired.
1221 assert(isa
<DbgValueInst
>(DDI
.getDI()));
1222 bool StackValue
= true;
1224 // Can this Value can be encoded without any further work?
1225 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
))
1228 // Attempt to salvage back through as many instructions as possible. Bail if
1229 // a non-instruction is seen, such as a constant expression or global
1230 // variable. FIXME: Further work could recover those too.
1231 while (isa
<Instruction
>(V
)) {
1232 Instruction
&VAsInst
= *cast
<Instruction
>(V
);
1233 DIExpression
*NewExpr
= salvageDebugInfoImpl(VAsInst
, Expr
, StackValue
);
1235 // If we cannot salvage any further, and haven't yet found a suitable debug
1236 // expression, bail out.
1240 // New value and expr now represent this debuginfo.
1241 V
= VAsInst
.getOperand(0);
1244 // Some kind of simplification occurred: check whether the operand of the
1245 // salvaged debug expression can be encoded in this DAG.
1246 if (handleDebugValue(V
, Var
, Expr
, DL
, InstDL
, SDOrder
)) {
1247 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1248 << DDI
.getDI() << "\nBy stripping back to:\n " << V
);
1253 // This was the final opportunity to salvage this debug information, and it
1254 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1255 // any earlier variable location.
1256 auto Undef
= UndefValue::get(DDI
.getDI()->getVariableLocation()->getType());
1257 auto SDV
= DAG
.getConstantDbgValue(Var
, Expr
, Undef
, DL
, SDNodeOrder
);
1258 DAG
.AddDbgValue(SDV
, nullptr, false);
1260 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI
.getDI()
1262 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI
.getDI()->getOperand(0)
1266 bool SelectionDAGBuilder::handleDebugValue(const Value
*V
, DILocalVariable
*Var
,
1267 DIExpression
*Expr
, DebugLoc dl
,
1268 DebugLoc InstDL
, unsigned Order
) {
1269 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1271 if (isa
<ConstantInt
>(V
) || isa
<ConstantFP
>(V
) || isa
<UndefValue
>(V
) ||
1272 isa
<ConstantPointerNull
>(V
)) {
1273 SDV
= DAG
.getConstantDbgValue(Var
, Expr
, V
, dl
, SDNodeOrder
);
1274 DAG
.AddDbgValue(SDV
, nullptr, false);
1278 // If the Value is a frame index, we can create a FrameIndex debug value
1279 // without relying on the DAG at all.
1280 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1281 auto SI
= FuncInfo
.StaticAllocaMap
.find(AI
);
1282 if (SI
!= FuncInfo
.StaticAllocaMap
.end()) {
1284 DAG
.getFrameIndexDbgValue(Var
, Expr
, SI
->second
,
1285 /*IsIndirect*/ false, dl
, SDNodeOrder
);
1286 // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1287 // is still available even if the SDNode gets optimized out.
1288 DAG
.AddDbgValue(SDV
, nullptr, false);
1293 // Do not use getValue() in here; we don't want to generate code at
1294 // this point if it hasn't been done yet.
1295 SDValue N
= NodeMap
[V
];
1296 if (!N
.getNode() && isa
<Argument
>(V
)) // Check unused arguments map.
1297 N
= UnusedArgNodeMap
[V
];
1299 if (EmitFuncArgumentDbgValue(V
, Var
, Expr
, dl
, false, N
))
1301 SDV
= getDbgValue(N
, Var
, Expr
, dl
, SDNodeOrder
);
1302 DAG
.AddDbgValue(SDV
, N
.getNode(), false);
1306 // Special rules apply for the first dbg.values of parameter variables in a
1307 // function. Identify them by the fact they reference Argument Values, that
1308 // they're parameters, and they are parameters of the current function. We
1309 // need to let them dangle until they get an SDNode.
1310 bool IsParamOfFunc
= isa
<Argument
>(V
) && Var
->isParameter() &&
1311 !InstDL
.getInlinedAt();
1312 if (!IsParamOfFunc
) {
1313 // The value is not used in this block yet (or it would have an SDNode).
1314 // We still want the value to appear for the user if possible -- if it has
1315 // an associated VReg, we can refer to that instead.
1316 auto VMI
= FuncInfo
.ValueMap
.find(V
);
1317 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1318 unsigned Reg
= VMI
->second
;
1319 // If this is a PHI node, it may be split up into several MI PHI nodes
1320 // (in FunctionLoweringInfo::set).
1321 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
,
1322 V
->getType(), None
);
1323 if (RFV
.occupiesMultipleRegs()) {
1324 unsigned Offset
= 0;
1325 unsigned BitsToDescribe
= 0;
1326 if (auto VarSize
= Var
->getSizeInBits())
1327 BitsToDescribe
= *VarSize
;
1328 if (auto Fragment
= Expr
->getFragmentInfo())
1329 BitsToDescribe
= Fragment
->SizeInBits
;
1330 for (auto RegAndSize
: RFV
.getRegsAndSizes()) {
1331 unsigned RegisterSize
= RegAndSize
.second
;
1332 // Bail out if all bits are described already.
1333 if (Offset
>= BitsToDescribe
)
1335 unsigned FragmentSize
= (Offset
+ RegisterSize
> BitsToDescribe
)
1336 ? BitsToDescribe
- Offset
1338 auto FragmentExpr
= DIExpression::createFragmentExpression(
1339 Expr
, Offset
, FragmentSize
);
1342 SDV
= DAG
.getVRegDbgValue(Var
, *FragmentExpr
, RegAndSize
.first
,
1343 false, dl
, SDNodeOrder
);
1344 DAG
.AddDbgValue(SDV
, nullptr, false);
1345 Offset
+= RegisterSize
;
1348 SDV
= DAG
.getVRegDbgValue(Var
, Expr
, Reg
, false, dl
, SDNodeOrder
);
1349 DAG
.AddDbgValue(SDV
, nullptr, false);
1358 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1359 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1360 for (auto &Pair
: DanglingDebugInfoMap
)
1361 for (auto &DDI
: Pair
.second
)
1362 salvageUnresolvedDbgValue(DDI
);
1363 clearDanglingDebugInfo();
1366 /// getCopyFromRegs - If there was virtual register allocated for the value V
1367 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1368 SDValue
SelectionDAGBuilder::getCopyFromRegs(const Value
*V
, Type
*Ty
) {
1369 DenseMap
<const Value
*, unsigned>::iterator It
= FuncInfo
.ValueMap
.find(V
);
1372 if (It
!= FuncInfo
.ValueMap
.end()) {
1373 unsigned InReg
= It
->second
;
1375 RegsForValue
RFV(*DAG
.getContext(), DAG
.getTargetLoweringInfo(),
1376 DAG
.getDataLayout(), InReg
, Ty
,
1377 None
); // This is not an ABI copy.
1378 SDValue Chain
= DAG
.getEntryNode();
1379 Result
= RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr,
1381 resolveDanglingDebugInfo(V
, Result
);
1387 /// getValue - Return an SDValue for the given Value.
1388 SDValue
SelectionDAGBuilder::getValue(const Value
*V
) {
1389 // If we already have an SDValue for this value, use it. It's important
1390 // to do this first, so that we don't create a CopyFromReg if we already
1391 // have a regular SDValue.
1392 SDValue
&N
= NodeMap
[V
];
1393 if (N
.getNode()) return N
;
1395 // If there's a virtual register allocated and initialized for this
1397 if (SDValue copyFromReg
= getCopyFromRegs(V
, V
->getType()))
1400 // Otherwise create a new SDValue and remember it.
1401 SDValue Val
= getValueImpl(V
);
1403 resolveDanglingDebugInfo(V
, Val
);
1407 // Return true if SDValue exists for the given Value
1408 bool SelectionDAGBuilder::findValue(const Value
*V
) const {
1409 return (NodeMap
.find(V
) != NodeMap
.end()) ||
1410 (FuncInfo
.ValueMap
.find(V
) != FuncInfo
.ValueMap
.end());
1413 /// getNonRegisterValue - Return an SDValue for the given Value, but
1414 /// don't look in FuncInfo.ValueMap for a virtual register.
1415 SDValue
SelectionDAGBuilder::getNonRegisterValue(const Value
*V
) {
1416 // If we already have an SDValue for this value, use it.
1417 SDValue
&N
= NodeMap
[V
];
1419 if (isa
<ConstantSDNode
>(N
) || isa
<ConstantFPSDNode
>(N
)) {
1420 // Remove the debug location from the node as the node is about to be used
1421 // in a location which may differ from the original debug location. This
1422 // is relevant to Constant and ConstantFP nodes because they can appear
1423 // as constant expressions inside PHI nodes.
1424 N
->setDebugLoc(DebugLoc());
1429 // Otherwise create a new SDValue and remember it.
1430 SDValue Val
= getValueImpl(V
);
1432 resolveDanglingDebugInfo(V
, Val
);
1436 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1437 /// Create an SDValue for the given value.
1438 SDValue
SelectionDAGBuilder::getValueImpl(const Value
*V
) {
1439 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1441 if (const Constant
*C
= dyn_cast
<Constant
>(V
)) {
1442 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), V
->getType(), true);
1444 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(C
))
1445 return DAG
.getConstant(*CI
, getCurSDLoc(), VT
);
1447 if (const GlobalValue
*GV
= dyn_cast
<GlobalValue
>(C
))
1448 return DAG
.getGlobalAddress(GV
, getCurSDLoc(), VT
);
1450 if (isa
<ConstantPointerNull
>(C
)) {
1451 unsigned AS
= V
->getType()->getPointerAddressSpace();
1452 return DAG
.getConstant(0, getCurSDLoc(),
1453 TLI
.getPointerTy(DAG
.getDataLayout(), AS
));
1456 if (const ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(C
))
1457 return DAG
.getConstantFP(*CFP
, getCurSDLoc(), VT
);
1459 if (isa
<UndefValue
>(C
) && !V
->getType()->isAggregateType())
1460 return DAG
.getUNDEF(VT
);
1462 if (const ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(C
)) {
1463 visit(CE
->getOpcode(), *CE
);
1464 SDValue N1
= NodeMap
[V
];
1465 assert(N1
.getNode() && "visit didn't populate the NodeMap!");
1469 if (isa
<ConstantStruct
>(C
) || isa
<ConstantArray
>(C
)) {
1470 SmallVector
<SDValue
, 4> Constants
;
1471 for (User::const_op_iterator OI
= C
->op_begin(), OE
= C
->op_end();
1473 SDNode
*Val
= getValue(*OI
).getNode();
1474 // If the operand is an empty aggregate, there are no values.
1476 // Add each leaf value from the operand to the Constants list
1477 // to form a flattened list of all the values.
1478 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1479 Constants
.push_back(SDValue(Val
, i
));
1482 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1485 if (const ConstantDataSequential
*CDS
=
1486 dyn_cast
<ConstantDataSequential
>(C
)) {
1487 SmallVector
<SDValue
, 4> Ops
;
1488 for (unsigned i
= 0, e
= CDS
->getNumElements(); i
!= e
; ++i
) {
1489 SDNode
*Val
= getValue(CDS
->getElementAsConstant(i
)).getNode();
1490 // Add each leaf value from the operand to the Constants list
1491 // to form a flattened list of all the values.
1492 for (unsigned i
= 0, e
= Val
->getNumValues(); i
!= e
; ++i
)
1493 Ops
.push_back(SDValue(Val
, i
));
1496 if (isa
<ArrayType
>(CDS
->getType()))
1497 return DAG
.getMergeValues(Ops
, getCurSDLoc());
1498 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1501 if (C
->getType()->isStructTy() || C
->getType()->isArrayTy()) {
1502 assert((isa
<ConstantAggregateZero
>(C
) || isa
<UndefValue
>(C
)) &&
1503 "Unknown struct or array constant!");
1505 SmallVector
<EVT
, 4> ValueVTs
;
1506 ComputeValueVTs(TLI
, DAG
.getDataLayout(), C
->getType(), ValueVTs
);
1507 unsigned NumElts
= ValueVTs
.size();
1509 return SDValue(); // empty struct
1510 SmallVector
<SDValue
, 4> Constants(NumElts
);
1511 for (unsigned i
= 0; i
!= NumElts
; ++i
) {
1512 EVT EltVT
= ValueVTs
[i
];
1513 if (isa
<UndefValue
>(C
))
1514 Constants
[i
] = DAG
.getUNDEF(EltVT
);
1515 else if (EltVT
.isFloatingPoint())
1516 Constants
[i
] = DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1518 Constants
[i
] = DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1521 return DAG
.getMergeValues(Constants
, getCurSDLoc());
1524 if (const BlockAddress
*BA
= dyn_cast
<BlockAddress
>(C
))
1525 return DAG
.getBlockAddress(BA
, VT
);
1527 VectorType
*VecTy
= cast
<VectorType
>(V
->getType());
1528 unsigned NumElements
= VecTy
->getNumElements();
1530 // Now that we know the number and type of the elements, get that number of
1531 // elements into the Ops array based on what kind of constant it is.
1532 SmallVector
<SDValue
, 16> Ops
;
1533 if (const ConstantVector
*CV
= dyn_cast
<ConstantVector
>(C
)) {
1534 for (unsigned i
= 0; i
!= NumElements
; ++i
)
1535 Ops
.push_back(getValue(CV
->getOperand(i
)));
1537 assert(isa
<ConstantAggregateZero
>(C
) && "Unknown vector constant!");
1539 TLI
.getValueType(DAG
.getDataLayout(), VecTy
->getElementType());
1542 if (EltVT
.isFloatingPoint())
1543 Op
= DAG
.getConstantFP(0, getCurSDLoc(), EltVT
);
1545 Op
= DAG
.getConstant(0, getCurSDLoc(), EltVT
);
1546 Ops
.assign(NumElements
, Op
);
1549 // Create a BUILD_VECTOR node.
1550 return NodeMap
[V
] = DAG
.getBuildVector(VT
, getCurSDLoc(), Ops
);
1553 // If this is a static alloca, generate it as the frameindex instead of
1555 if (const AllocaInst
*AI
= dyn_cast
<AllocaInst
>(V
)) {
1556 DenseMap
<const AllocaInst
*, int>::iterator SI
=
1557 FuncInfo
.StaticAllocaMap
.find(AI
);
1558 if (SI
!= FuncInfo
.StaticAllocaMap
.end())
1559 return DAG
.getFrameIndex(SI
->second
,
1560 TLI
.getFrameIndexTy(DAG
.getDataLayout()));
1563 // If this is an instruction which fast-isel has deferred, select it now.
1564 if (const Instruction
*Inst
= dyn_cast
<Instruction
>(V
)) {
1565 unsigned InReg
= FuncInfo
.InitializeRegForValue(Inst
);
1567 RegsForValue
RFV(*DAG
.getContext(), TLI
, DAG
.getDataLayout(), InReg
,
1568 Inst
->getType(), getABIRegCopyCC(V
));
1569 SDValue Chain
= DAG
.getEntryNode();
1570 return RFV
.getCopyFromRegs(DAG
, FuncInfo
, getCurSDLoc(), Chain
, nullptr, V
);
1573 llvm_unreachable("Can't get register for value!");
1576 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst
&I
) {
1577 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1578 bool IsMSVCCXX
= Pers
== EHPersonality::MSVC_CXX
;
1579 bool IsCoreCLR
= Pers
== EHPersonality::CoreCLR
;
1580 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1581 bool IsWasmCXX
= Pers
== EHPersonality::Wasm_CXX
;
1582 MachineBasicBlock
*CatchPadMBB
= FuncInfo
.MBB
;
1584 CatchPadMBB
->setIsEHScopeEntry();
1585 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1586 if (IsMSVCCXX
|| IsCoreCLR
)
1587 CatchPadMBB
->setIsEHFuncletEntry();
1588 // Wasm does not need catchpads anymore
1590 DAG
.setRoot(DAG
.getNode(ISD::CATCHPAD
, getCurSDLoc(), MVT::Other
,
1594 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst
&I
) {
1595 // Update machine-CFG edge.
1596 MachineBasicBlock
*TargetMBB
= FuncInfo
.MBBMap
[I
.getSuccessor()];
1597 FuncInfo
.MBB
->addSuccessor(TargetMBB
);
1599 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1600 bool IsSEH
= isAsynchronousEHPersonality(Pers
);
1602 // If this is not a fall-through branch or optimizations are switched off,
1604 if (TargetMBB
!= NextBlock(FuncInfo
.MBB
) ||
1605 TM
.getOptLevel() == CodeGenOpt::None
)
1606 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
1607 getControlRoot(), DAG
.getBasicBlock(TargetMBB
)));
1611 // Figure out the funclet membership for the catchret's successor.
1612 // This will be used by the FuncletLayout pass to determine how to order the
1614 // A 'catchret' returns to the outer scope's color.
1615 Value
*ParentPad
= I
.getCatchSwitchParentPad();
1616 const BasicBlock
*SuccessorColor
;
1617 if (isa
<ConstantTokenNone
>(ParentPad
))
1618 SuccessorColor
= &FuncInfo
.Fn
->getEntryBlock();
1620 SuccessorColor
= cast
<Instruction
>(ParentPad
)->getParent();
1621 assert(SuccessorColor
&& "No parent funclet for catchret!");
1622 MachineBasicBlock
*SuccessorColorMBB
= FuncInfo
.MBBMap
[SuccessorColor
];
1623 assert(SuccessorColorMBB
&& "No MBB for SuccessorColor!");
1625 // Create the terminator node.
1626 SDValue Ret
= DAG
.getNode(ISD::CATCHRET
, getCurSDLoc(), MVT::Other
,
1627 getControlRoot(), DAG
.getBasicBlock(TargetMBB
),
1628 DAG
.getBasicBlock(SuccessorColorMBB
));
1632 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst
&CPI
) {
1633 // Don't emit any special code for the cleanuppad instruction. It just marks
1634 // the start of an EH scope/funclet.
1635 FuncInfo
.MBB
->setIsEHScopeEntry();
1636 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1637 if (Pers
!= EHPersonality::Wasm_CXX
) {
1638 FuncInfo
.MBB
->setIsEHFuncletEntry();
1639 FuncInfo
.MBB
->setIsCleanupFuncletEntry();
1643 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1644 // the control flow always stops at the single catch pad, as it does for a
1645 // cleanup pad. In case the exception caught is not of the types the catch pad
1646 // catches, it will be rethrown by a rethrow.
1647 static void findWasmUnwindDestinations(
1648 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1649 BranchProbability Prob
,
1650 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1653 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1654 if (isa
<CleanupPadInst
>(Pad
)) {
1655 // Stop on cleanup pads.
1656 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1657 UnwindDests
.back().first
->setIsEHScopeEntry();
1659 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1660 // Add the catchpad handlers to the possible destinations. We don't
1661 // continue to the unwind destination of the catchswitch for wasm.
1662 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1663 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1664 UnwindDests
.back().first
->setIsEHScopeEntry();
1673 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1674 /// many places it could ultimately go. In the IR, we have a single unwind
1675 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1676 /// This function skips over imaginary basic blocks that hold catchswitch
1677 /// instructions, and finds all the "real" machine
1678 /// basic block destinations. As those destinations may not be successors of
1679 /// EHPadBB, here we also calculate the edge probability to those destinations.
1680 /// The passed-in Prob is the edge probability to EHPadBB.
1681 static void findUnwindDestinations(
1682 FunctionLoweringInfo
&FuncInfo
, const BasicBlock
*EHPadBB
,
1683 BranchProbability Prob
,
1684 SmallVectorImpl
<std::pair
<MachineBasicBlock
*, BranchProbability
>>
1686 EHPersonality Personality
=
1687 classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
1688 bool IsMSVCCXX
= Personality
== EHPersonality::MSVC_CXX
;
1689 bool IsCoreCLR
= Personality
== EHPersonality::CoreCLR
;
1690 bool IsWasmCXX
= Personality
== EHPersonality::Wasm_CXX
;
1691 bool IsSEH
= isAsynchronousEHPersonality(Personality
);
1694 findWasmUnwindDestinations(FuncInfo
, EHPadBB
, Prob
, UnwindDests
);
1695 assert(UnwindDests
.size() <= 1 &&
1696 "There should be at most one unwind destination for wasm");
1701 const Instruction
*Pad
= EHPadBB
->getFirstNonPHI();
1702 BasicBlock
*NewEHPadBB
= nullptr;
1703 if (isa
<LandingPadInst
>(Pad
)) {
1704 // Stop on landingpads. They are not funclets.
1705 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1707 } else if (isa
<CleanupPadInst
>(Pad
)) {
1708 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1710 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[EHPadBB
], Prob
);
1711 UnwindDests
.back().first
->setIsEHScopeEntry();
1712 UnwindDests
.back().first
->setIsEHFuncletEntry();
1714 } else if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(Pad
)) {
1715 // Add the catchpad handlers to the possible destinations.
1716 for (const BasicBlock
*CatchPadBB
: CatchSwitch
->handlers()) {
1717 UnwindDests
.emplace_back(FuncInfo
.MBBMap
[CatchPadBB
], Prob
);
1718 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1719 if (IsMSVCCXX
|| IsCoreCLR
)
1720 UnwindDests
.back().first
->setIsEHFuncletEntry();
1722 UnwindDests
.back().first
->setIsEHScopeEntry();
1724 NewEHPadBB
= CatchSwitch
->getUnwindDest();
1729 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1730 if (BPI
&& NewEHPadBB
)
1731 Prob
*= BPI
->getEdgeProbability(EHPadBB
, NewEHPadBB
);
1732 EHPadBB
= NewEHPadBB
;
1736 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst
&I
) {
1737 // Update successor info.
1738 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
1739 auto UnwindDest
= I
.getUnwindDest();
1740 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1741 BranchProbability UnwindDestProb
=
1743 ? BPI
->getEdgeProbability(FuncInfo
.MBB
->getBasicBlock(), UnwindDest
)
1744 : BranchProbability::getZero();
1745 findUnwindDestinations(FuncInfo
, UnwindDest
, UnwindDestProb
, UnwindDests
);
1746 for (auto &UnwindDest
: UnwindDests
) {
1747 UnwindDest
.first
->setIsEHPad();
1748 addSuccessorWithProb(FuncInfo
.MBB
, UnwindDest
.first
, UnwindDest
.second
);
1750 FuncInfo
.MBB
->normalizeSuccProbs();
1752 // Create the terminator node.
1754 DAG
.getNode(ISD::CLEANUPRET
, getCurSDLoc(), MVT::Other
, getControlRoot());
1758 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst
&CSI
) {
1759 report_fatal_error("visitCatchSwitch not yet implemented!");
1762 void SelectionDAGBuilder::visitRet(const ReturnInst
&I
) {
1763 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
1764 auto &DL
= DAG
.getDataLayout();
1765 SDValue Chain
= getControlRoot();
1766 SmallVector
<ISD::OutputArg
, 8> Outs
;
1767 SmallVector
<SDValue
, 8> OutVals
;
1769 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1772 // %val = call <ty> @llvm.experimental.deoptimize()
1776 if (I
.getParent()->getTerminatingDeoptimizeCall()) {
1777 LowerDeoptimizingReturn();
1781 if (!FuncInfo
.CanLowerReturn
) {
1782 unsigned DemoteReg
= FuncInfo
.DemoteRegister
;
1783 const Function
*F
= I
.getParent()->getParent();
1785 // Emit a store of the return value through the virtual register.
1786 // Leave Outs empty so that LowerReturn won't try to load return
1787 // registers the usual way.
1788 SmallVector
<EVT
, 1> PtrValueVTs
;
1789 ComputeValueVTs(TLI
, DL
,
1790 F
->getReturnType()->getPointerTo(
1791 DAG
.getDataLayout().getAllocaAddrSpace()),
1794 SDValue RetPtr
= DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(),
1795 DemoteReg
, PtrValueVTs
[0]);
1796 SDValue RetOp
= getValue(I
.getOperand(0));
1798 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
1799 SmallVector
<uint64_t, 4> Offsets
;
1800 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
, &MemVTs
,
1802 unsigned NumValues
= ValueVTs
.size();
1804 SmallVector
<SDValue
, 4> Chains(NumValues
);
1805 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
1806 // An aggregate return value cannot wrap around the address space, so
1807 // offsets to its parts don't wrap either.
1808 SDValue Ptr
= DAG
.getObjectPtrOffset(getCurSDLoc(), RetPtr
, Offsets
[i
]);
1810 SDValue Val
= RetOp
.getValue(i
);
1811 if (MemVTs
[i
] != ValueVTs
[i
])
1812 Val
= DAG
.getPtrExtOrTrunc(Val
, getCurSDLoc(), MemVTs
[i
]);
1813 Chains
[i
] = DAG
.getStore(Chain
, getCurSDLoc(), Val
,
1814 // FIXME: better loc info would be nice.
1815 Ptr
, MachinePointerInfo::getUnknownStack(DAG
.getMachineFunction()));
1818 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(),
1819 MVT::Other
, Chains
);
1820 } else if (I
.getNumOperands() != 0) {
1821 SmallVector
<EVT
, 4> ValueVTs
;
1822 ComputeValueVTs(TLI
, DL
, I
.getOperand(0)->getType(), ValueVTs
);
1823 unsigned NumValues
= ValueVTs
.size();
1825 SDValue RetOp
= getValue(I
.getOperand(0));
1827 const Function
*F
= I
.getParent()->getParent();
1829 bool NeedsRegBlock
= TLI
.functionArgumentNeedsConsecutiveRegisters(
1830 I
.getOperand(0)->getType(), F
->getCallingConv(),
1831 /*IsVarArg*/ false);
1833 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
1834 if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1836 ExtendKind
= ISD::SIGN_EXTEND
;
1837 else if (F
->getAttributes().hasAttribute(AttributeList::ReturnIndex
,
1839 ExtendKind
= ISD::ZERO_EXTEND
;
1841 LLVMContext
&Context
= F
->getContext();
1842 bool RetInReg
= F
->getAttributes().hasAttribute(
1843 AttributeList::ReturnIndex
, Attribute::InReg
);
1845 for (unsigned j
= 0; j
!= NumValues
; ++j
) {
1846 EVT VT
= ValueVTs
[j
];
1848 if (ExtendKind
!= ISD::ANY_EXTEND
&& VT
.isInteger())
1849 VT
= TLI
.getTypeForExtReturn(Context
, VT
, ExtendKind
);
1851 CallingConv::ID CC
= F
->getCallingConv();
1853 unsigned NumParts
= TLI
.getNumRegistersForCallingConv(Context
, CC
, VT
);
1854 MVT PartVT
= TLI
.getRegisterTypeForCallingConv(Context
, CC
, VT
);
1855 SmallVector
<SDValue
, 4> Parts(NumParts
);
1856 getCopyToParts(DAG
, getCurSDLoc(),
1857 SDValue(RetOp
.getNode(), RetOp
.getResNo() + j
),
1858 &Parts
[0], NumParts
, PartVT
, &I
, CC
, ExtendKind
);
1860 // 'inreg' on function refers to return value
1861 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1865 if (I
.getOperand(0)->getType()->isPointerTy()) {
1867 Flags
.setPointerAddrSpace(
1868 cast
<PointerType
>(I
.getOperand(0)->getType())->getAddressSpace());
1871 if (NeedsRegBlock
) {
1872 Flags
.setInConsecutiveRegs();
1873 if (j
== NumValues
- 1)
1874 Flags
.setInConsecutiveRegsLast();
1877 // Propagate extension type if any
1878 if (ExtendKind
== ISD::SIGN_EXTEND
)
1880 else if (ExtendKind
== ISD::ZERO_EXTEND
)
1883 for (unsigned i
= 0; i
< NumParts
; ++i
) {
1884 Outs
.push_back(ISD::OutputArg(Flags
, Parts
[i
].getValueType(),
1885 VT
, /*isfixed=*/true, 0, 0));
1886 OutVals
.push_back(Parts
[i
]);
1892 // Push in swifterror virtual register as the last element of Outs. This makes
1893 // sure swifterror virtual register will be returned in the swifterror
1894 // physical register.
1895 const Function
*F
= I
.getParent()->getParent();
1896 if (TLI
.supportSwiftError() &&
1897 F
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
)) {
1898 assert(FuncInfo
.SwiftErrorArg
&& "Need a swift error argument");
1899 ISD::ArgFlagsTy Flags
= ISD::ArgFlagsTy();
1900 Flags
.setSwiftError();
1901 Outs
.push_back(ISD::OutputArg(Flags
, EVT(TLI
.getPointerTy(DL
)) /*vt*/,
1902 EVT(TLI
.getPointerTy(DL
)) /*argvt*/,
1903 true /*isfixed*/, 1 /*origidx*/,
1905 // Create SDNode for the swifterror virtual register.
1907 DAG
.getRegister(FuncInfo
.getOrCreateSwiftErrorVRegUseAt(
1908 &I
, FuncInfo
.MBB
, FuncInfo
.SwiftErrorArg
).first
,
1909 EVT(TLI
.getPointerTy(DL
))));
1912 bool isVarArg
= DAG
.getMachineFunction().getFunction().isVarArg();
1913 CallingConv::ID CallConv
=
1914 DAG
.getMachineFunction().getFunction().getCallingConv();
1915 Chain
= DAG
.getTargetLoweringInfo().LowerReturn(
1916 Chain
, CallConv
, isVarArg
, Outs
, OutVals
, getCurSDLoc(), DAG
);
1918 // Verify that the target's LowerReturn behaved as expected.
1919 assert(Chain
.getNode() && Chain
.getValueType() == MVT::Other
&&
1920 "LowerReturn didn't return a valid chain!");
1922 // Update the DAG with the new chain value resulting from return lowering.
1926 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1927 /// created for it, emit nodes to copy the value into the virtual
1929 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value
*V
) {
1931 if (V
->getType()->isEmptyTy())
1934 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
1935 if (VMI
!= FuncInfo
.ValueMap
.end()) {
1936 assert(!V
->use_empty() && "Unused value assigned virtual registers!");
1937 CopyValueToVirtualRegister(V
, VMI
->second
);
1941 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1942 /// the current basic block, add it to ValueMap now so that we'll get a
1944 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value
*V
) {
1945 // No need to export constants.
1946 if (!isa
<Instruction
>(V
) && !isa
<Argument
>(V
)) return;
1948 // Already exported?
1949 if (FuncInfo
.isExportedInst(V
)) return;
1951 unsigned Reg
= FuncInfo
.InitializeRegForValue(V
);
1952 CopyValueToVirtualRegister(V
, Reg
);
1955 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value
*V
,
1956 const BasicBlock
*FromBB
) {
1957 // The operands of the setcc have to be in this block. We don't know
1958 // how to export them from some other block.
1959 if (const Instruction
*VI
= dyn_cast
<Instruction
>(V
)) {
1960 // Can export from current BB.
1961 if (VI
->getParent() == FromBB
)
1964 // Is already exported, noop.
1965 return FuncInfo
.isExportedInst(V
);
1968 // If this is an argument, we can export it if the BB is the entry block or
1969 // if it is already exported.
1970 if (isa
<Argument
>(V
)) {
1971 if (FromBB
== &FromBB
->getParent()->getEntryBlock())
1974 // Otherwise, can only export this if it is already exported.
1975 return FuncInfo
.isExportedInst(V
);
1978 // Otherwise, constants can always be exported.
1982 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1984 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock
*Src
,
1985 const MachineBasicBlock
*Dst
) const {
1986 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
1987 const BasicBlock
*SrcBB
= Src
->getBasicBlock();
1988 const BasicBlock
*DstBB
= Dst
->getBasicBlock();
1990 // If BPI is not available, set the default probability as 1 / N, where N is
1991 // the number of successors.
1992 auto SuccSize
= std::max
<uint32_t>(succ_size(SrcBB
), 1);
1993 return BranchProbability(1, SuccSize
);
1995 return BPI
->getEdgeProbability(SrcBB
, DstBB
);
1998 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock
*Src
,
1999 MachineBasicBlock
*Dst
,
2000 BranchProbability Prob
) {
2002 Src
->addSuccessorWithoutProb(Dst
);
2004 if (Prob
.isUnknown())
2005 Prob
= getEdgeProbability(Src
, Dst
);
2006 Src
->addSuccessor(Dst
, Prob
);
2010 static bool InBlock(const Value
*V
, const BasicBlock
*BB
) {
2011 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
))
2012 return I
->getParent() == BB
;
2016 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2017 /// This function emits a branch and is used at the leaves of an OR or an
2018 /// AND operator tree.
2020 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value
*Cond
,
2021 MachineBasicBlock
*TBB
,
2022 MachineBasicBlock
*FBB
,
2023 MachineBasicBlock
*CurBB
,
2024 MachineBasicBlock
*SwitchBB
,
2025 BranchProbability TProb
,
2026 BranchProbability FProb
,
2028 const BasicBlock
*BB
= CurBB
->getBasicBlock();
2030 // If the leaf of the tree is a comparison, merge the condition into
2032 if (const CmpInst
*BOp
= dyn_cast
<CmpInst
>(Cond
)) {
2033 // The operands of the cmp have to be in this block. We don't know
2034 // how to export them from some other block. If this is the first block
2035 // of the sequence, no exporting is needed.
2036 if (CurBB
== SwitchBB
||
2037 (isExportableFromCurrentBlock(BOp
->getOperand(0), BB
) &&
2038 isExportableFromCurrentBlock(BOp
->getOperand(1), BB
))) {
2039 ISD::CondCode Condition
;
2040 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(Cond
)) {
2041 ICmpInst::Predicate Pred
=
2042 InvertCond
? IC
->getInversePredicate() : IC
->getPredicate();
2043 Condition
= getICmpCondCode(Pred
);
2045 const FCmpInst
*FC
= cast
<FCmpInst
>(Cond
);
2046 FCmpInst::Predicate Pred
=
2047 InvertCond
? FC
->getInversePredicate() : FC
->getPredicate();
2048 Condition
= getFCmpCondCode(Pred
);
2049 if (TM
.Options
.NoNaNsFPMath
)
2050 Condition
= getFCmpCodeWithoutNaN(Condition
);
2053 CaseBlock
CB(Condition
, BOp
->getOperand(0), BOp
->getOperand(1), nullptr,
2054 TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2055 SwitchCases
.push_back(CB
);
2060 // Create a CaseBlock record representing this branch.
2061 ISD::CondCode Opc
= InvertCond
? ISD::SETNE
: ISD::SETEQ
;
2062 CaseBlock
CB(Opc
, Cond
, ConstantInt::getTrue(*DAG
.getContext()),
2063 nullptr, TBB
, FBB
, CurBB
, getCurSDLoc(), TProb
, FProb
);
2064 SwitchCases
.push_back(CB
);
2067 void SelectionDAGBuilder::FindMergedConditions(const Value
*Cond
,
2068 MachineBasicBlock
*TBB
,
2069 MachineBasicBlock
*FBB
,
2070 MachineBasicBlock
*CurBB
,
2071 MachineBasicBlock
*SwitchBB
,
2072 Instruction::BinaryOps Opc
,
2073 BranchProbability TProb
,
2074 BranchProbability FProb
,
2076 // Skip over not part of the tree and remember to invert op and operands at
2079 if (match(Cond
, m_OneUse(m_Not(m_Value(NotCond
)))) &&
2080 InBlock(NotCond
, CurBB
->getBasicBlock())) {
2081 FindMergedConditions(NotCond
, TBB
, FBB
, CurBB
, SwitchBB
, Opc
, TProb
, FProb
,
2086 const Instruction
*BOp
= dyn_cast
<Instruction
>(Cond
);
2087 // Compute the effective opcode for Cond, taking into account whether it needs
2088 // to be inverted, e.g.
2089 // and (not (or A, B)), C
2091 // and (and (not A, not B), C)
2094 BOpc
= BOp
->getOpcode();
2096 if (BOpc
== Instruction::And
)
2097 BOpc
= Instruction::Or
;
2098 else if (BOpc
== Instruction::Or
)
2099 BOpc
= Instruction::And
;
2103 // If this node is not part of the or/and tree, emit it as a branch.
2104 if (!BOp
|| !(isa
<BinaryOperator
>(BOp
) || isa
<CmpInst
>(BOp
)) ||
2105 BOpc
!= unsigned(Opc
) || !BOp
->hasOneUse() ||
2106 BOp
->getParent() != CurBB
->getBasicBlock() ||
2107 !InBlock(BOp
->getOperand(0), CurBB
->getBasicBlock()) ||
2108 !InBlock(BOp
->getOperand(1), CurBB
->getBasicBlock())) {
2109 EmitBranchForMergedCondition(Cond
, TBB
, FBB
, CurBB
, SwitchBB
,
2110 TProb
, FProb
, InvertCond
);
2114 // Create TmpBB after CurBB.
2115 MachineFunction::iterator
BBI(CurBB
);
2116 MachineFunction
&MF
= DAG
.getMachineFunction();
2117 MachineBasicBlock
*TmpBB
= MF
.CreateMachineBasicBlock(CurBB
->getBasicBlock());
2118 CurBB
->getParent()->insert(++BBI
, TmpBB
);
2120 if (Opc
== Instruction::Or
) {
2121 // Codegen X | Y as:
2130 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2131 // The requirement is that
2132 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2133 // = TrueProb for original BB.
2134 // Assuming the original probabilities are A and B, one choice is to set
2135 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2136 // A/(1+B) and 2B/(1+B). This choice assumes that
2137 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2138 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2139 // TmpBB, but the math is more complicated.
2141 auto NewTrueProb
= TProb
/ 2;
2142 auto NewFalseProb
= TProb
/ 2 + FProb
;
2143 // Emit the LHS condition.
2144 FindMergedConditions(BOp
->getOperand(0), TBB
, TmpBB
, CurBB
, SwitchBB
, Opc
,
2145 NewTrueProb
, NewFalseProb
, InvertCond
);
2147 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2148 SmallVector
<BranchProbability
, 2> Probs
{TProb
/ 2, FProb
};
2149 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2150 // Emit the RHS condition into TmpBB.
2151 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
,
2152 Probs
[0], Probs
[1], InvertCond
);
2154 assert(Opc
== Instruction::And
&& "Unknown merge op!");
2155 // Codegen X & Y as:
2163 // This requires creation of TmpBB after CurBB.
2165 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2166 // The requirement is that
2167 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2168 // = FalseProb for original BB.
2169 // Assuming the original probabilities are A and B, one choice is to set
2170 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2171 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2172 // TrueProb for BB1 * FalseProb for TmpBB.
2174 auto NewTrueProb
= TProb
+ FProb
/ 2;
2175 auto NewFalseProb
= FProb
/ 2;
2176 // Emit the LHS condition.
2177 FindMergedConditions(BOp
->getOperand(0), TmpBB
, FBB
, CurBB
, SwitchBB
, Opc
,
2178 NewTrueProb
, NewFalseProb
, InvertCond
);
2180 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2181 SmallVector
<BranchProbability
, 2> Probs
{TProb
, FProb
/ 2};
2182 BranchProbability::normalizeProbabilities(Probs
.begin(), Probs
.end());
2183 // Emit the RHS condition into TmpBB.
2184 FindMergedConditions(BOp
->getOperand(1), TBB
, FBB
, TmpBB
, SwitchBB
, Opc
,
2185 Probs
[0], Probs
[1], InvertCond
);
2189 /// If the set of cases should be emitted as a series of branches, return true.
2190 /// If we should emit this as a bunch of and/or'd together conditions, return
2193 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector
<CaseBlock
> &Cases
) {
2194 if (Cases
.size() != 2) return true;
2196 // If this is two comparisons of the same values or'd or and'd together, they
2197 // will get folded into a single comparison, so don't emit two blocks.
2198 if ((Cases
[0].CmpLHS
== Cases
[1].CmpLHS
&&
2199 Cases
[0].CmpRHS
== Cases
[1].CmpRHS
) ||
2200 (Cases
[0].CmpRHS
== Cases
[1].CmpLHS
&&
2201 Cases
[0].CmpLHS
== Cases
[1].CmpRHS
)) {
2205 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2206 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2207 if (Cases
[0].CmpRHS
== Cases
[1].CmpRHS
&&
2208 Cases
[0].CC
== Cases
[1].CC
&&
2209 isa
<Constant
>(Cases
[0].CmpRHS
) &&
2210 cast
<Constant
>(Cases
[0].CmpRHS
)->isNullValue()) {
2211 if (Cases
[0].CC
== ISD::SETEQ
&& Cases
[0].TrueBB
== Cases
[1].ThisBB
)
2213 if (Cases
[0].CC
== ISD::SETNE
&& Cases
[0].FalseBB
== Cases
[1].ThisBB
)
2220 void SelectionDAGBuilder::visitBr(const BranchInst
&I
) {
2221 MachineBasicBlock
*BrMBB
= FuncInfo
.MBB
;
2223 // Update machine-CFG edges.
2224 MachineBasicBlock
*Succ0MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2226 if (I
.isUnconditional()) {
2227 // Update machine-CFG edges.
2228 BrMBB
->addSuccessor(Succ0MBB
);
2230 // If this is not a fall-through branch or optimizations are switched off,
2232 if (Succ0MBB
!= NextBlock(BrMBB
) || TM
.getOptLevel() == CodeGenOpt::None
)
2233 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2234 MVT::Other
, getControlRoot(),
2235 DAG
.getBasicBlock(Succ0MBB
)));
2240 // If this condition is one of the special cases we handle, do special stuff
2242 const Value
*CondVal
= I
.getCondition();
2243 MachineBasicBlock
*Succ1MBB
= FuncInfo
.MBBMap
[I
.getSuccessor(1)];
2245 // If this is a series of conditions that are or'd or and'd together, emit
2246 // this as a sequence of branches instead of setcc's with and/or operations.
2247 // As long as jumps are not expensive, this should improve performance.
2248 // For example, instead of something like:
2260 if (const BinaryOperator
*BOp
= dyn_cast
<BinaryOperator
>(CondVal
)) {
2261 Instruction::BinaryOps Opcode
= BOp
->getOpcode();
2262 if (!DAG
.getTargetLoweringInfo().isJumpExpensive() && BOp
->hasOneUse() &&
2263 !I
.getMetadata(LLVMContext::MD_unpredictable
) &&
2264 (Opcode
== Instruction::And
|| Opcode
== Instruction::Or
)) {
2265 FindMergedConditions(BOp
, Succ0MBB
, Succ1MBB
, BrMBB
, BrMBB
,
2267 getEdgeProbability(BrMBB
, Succ0MBB
),
2268 getEdgeProbability(BrMBB
, Succ1MBB
),
2269 /*InvertCond=*/false);
2270 // If the compares in later blocks need to use values not currently
2271 // exported from this block, export them now. This block should always
2272 // be the first entry.
2273 assert(SwitchCases
[0].ThisBB
== BrMBB
&& "Unexpected lowering!");
2275 // Allow some cases to be rejected.
2276 if (ShouldEmitAsBranches(SwitchCases
)) {
2277 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
) {
2278 ExportFromCurrentBlock(SwitchCases
[i
].CmpLHS
);
2279 ExportFromCurrentBlock(SwitchCases
[i
].CmpRHS
);
2282 // Emit the branch for this block.
2283 visitSwitchCase(SwitchCases
[0], BrMBB
);
2284 SwitchCases
.erase(SwitchCases
.begin());
2288 // Okay, we decided not to do this, remove any inserted MBB's and clear
2290 for (unsigned i
= 1, e
= SwitchCases
.size(); i
!= e
; ++i
)
2291 FuncInfo
.MF
->erase(SwitchCases
[i
].ThisBB
);
2293 SwitchCases
.clear();
2297 // Create a CaseBlock record representing this branch.
2298 CaseBlock
CB(ISD::SETEQ
, CondVal
, ConstantInt::getTrue(*DAG
.getContext()),
2299 nullptr, Succ0MBB
, Succ1MBB
, BrMBB
, getCurSDLoc());
2301 // Use visitSwitchCase to actually insert the fast branch sequence for this
2303 visitSwitchCase(CB
, BrMBB
);
2306 /// visitSwitchCase - Emits the necessary code to represent a single node in
2307 /// the binary search tree resulting from lowering a switch instruction.
2308 void SelectionDAGBuilder::visitSwitchCase(CaseBlock
&CB
,
2309 MachineBasicBlock
*SwitchBB
) {
2311 SDValue CondLHS
= getValue(CB
.CmpLHS
);
2314 if (CB
.CC
== ISD::SETTRUE
) {
2315 // Branch or fall through to TrueBB.
2316 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2317 SwitchBB
->normalizeSuccProbs();
2318 if (CB
.TrueBB
!= NextBlock(SwitchBB
)) {
2319 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, getControlRoot(),
2320 DAG
.getBasicBlock(CB
.TrueBB
)));
2325 auto &TLI
= DAG
.getTargetLoweringInfo();
2326 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), CB
.CmpLHS
->getType());
2328 // Build the setcc now.
2330 // Fold "(X == true)" to X and "(X == false)" to !X to
2331 // handle common cases produced by branch lowering.
2332 if (CB
.CmpRHS
== ConstantInt::getTrue(*DAG
.getContext()) &&
2333 CB
.CC
== ISD::SETEQ
)
2335 else if (CB
.CmpRHS
== ConstantInt::getFalse(*DAG
.getContext()) &&
2336 CB
.CC
== ISD::SETEQ
) {
2337 SDValue True
= DAG
.getConstant(1, dl
, CondLHS
.getValueType());
2338 Cond
= DAG
.getNode(ISD::XOR
, dl
, CondLHS
.getValueType(), CondLHS
, True
);
2340 SDValue CondRHS
= getValue(CB
.CmpRHS
);
2342 // If a pointer's DAG type is larger than its memory type then the DAG
2343 // values are zero-extended. This breaks signed comparisons so truncate
2344 // back to the underlying type before doing the compare.
2345 if (CondLHS
.getValueType() != MemVT
) {
2346 CondLHS
= DAG
.getPtrExtOrTrunc(CondLHS
, getCurSDLoc(), MemVT
);
2347 CondRHS
= DAG
.getPtrExtOrTrunc(CondRHS
, getCurSDLoc(), MemVT
);
2349 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CondLHS
, CondRHS
, CB
.CC
);
2352 assert(CB
.CC
== ISD::SETLE
&& "Can handle only LE ranges now");
2354 const APInt
& Low
= cast
<ConstantInt
>(CB
.CmpLHS
)->getValue();
2355 const APInt
& High
= cast
<ConstantInt
>(CB
.CmpRHS
)->getValue();
2357 SDValue CmpOp
= getValue(CB
.CmpMHS
);
2358 EVT VT
= CmpOp
.getValueType();
2360 if (cast
<ConstantInt
>(CB
.CmpLHS
)->isMinValue(true)) {
2361 Cond
= DAG
.getSetCC(dl
, MVT::i1
, CmpOp
, DAG
.getConstant(High
, dl
, VT
),
2364 SDValue SUB
= DAG
.getNode(ISD::SUB
, dl
,
2365 VT
, CmpOp
, DAG
.getConstant(Low
, dl
, VT
));
2366 Cond
= DAG
.getSetCC(dl
, MVT::i1
, SUB
,
2367 DAG
.getConstant(High
-Low
, dl
, VT
), ISD::SETULE
);
2371 // Update successor info
2372 addSuccessorWithProb(SwitchBB
, CB
.TrueBB
, CB
.TrueProb
);
2373 // TrueBB and FalseBB are always different unless the incoming IR is
2374 // degenerate. This only happens when running llc on weird IR.
2375 if (CB
.TrueBB
!= CB
.FalseBB
)
2376 addSuccessorWithProb(SwitchBB
, CB
.FalseBB
, CB
.FalseProb
);
2377 SwitchBB
->normalizeSuccProbs();
2379 // If the lhs block is the next block, invert the condition so that we can
2380 // fall through to the lhs instead of the rhs block.
2381 if (CB
.TrueBB
== NextBlock(SwitchBB
)) {
2382 std::swap(CB
.TrueBB
, CB
.FalseBB
);
2383 SDValue True
= DAG
.getConstant(1, dl
, Cond
.getValueType());
2384 Cond
= DAG
.getNode(ISD::XOR
, dl
, Cond
.getValueType(), Cond
, True
);
2387 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2388 MVT::Other
, getControlRoot(), Cond
,
2389 DAG
.getBasicBlock(CB
.TrueBB
));
2391 // Insert the false branch. Do this even if it's a fall through branch,
2392 // this makes it easier to do DAG optimizations which require inverting
2393 // the branch condition.
2394 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2395 DAG
.getBasicBlock(CB
.FalseBB
));
2397 DAG
.setRoot(BrCond
);
2400 /// visitJumpTable - Emit JumpTable node in the current MBB
2401 void SelectionDAGBuilder::visitJumpTable(JumpTable
&JT
) {
2402 // Emit the code for the jump table
2403 assert(JT
.Reg
!= -1U && "Should lower JT Header first!");
2404 EVT PTy
= DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout());
2405 SDValue Index
= DAG
.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2407 SDValue Table
= DAG
.getJumpTable(JT
.JTI
, PTy
);
2408 SDValue BrJumpTable
= DAG
.getNode(ISD::BR_JT
, getCurSDLoc(),
2409 MVT::Other
, Index
.getValue(1),
2411 DAG
.setRoot(BrJumpTable
);
2414 /// visitJumpTableHeader - This function emits necessary code to produce index
2415 /// in the JumpTable from switch case.
2416 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable
&JT
,
2417 JumpTableHeader
&JTH
,
2418 MachineBasicBlock
*SwitchBB
) {
2419 SDLoc dl
= getCurSDLoc();
2421 // Subtract the lowest switch case value from the value being switched on.
2422 SDValue SwitchOp
= getValue(JTH
.SValue
);
2423 EVT VT
= SwitchOp
.getValueType();
2424 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
,
2425 DAG
.getConstant(JTH
.First
, dl
, VT
));
2427 // The SDNode we just created, which holds the value being switched on minus
2428 // the smallest case value, needs to be copied to a virtual register so it
2429 // can be used as an index into the jump table in a subsequent basic block.
2430 // This value may be smaller or larger than the target's pointer type, and
2431 // therefore require extension or truncating.
2432 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2433 SwitchOp
= DAG
.getZExtOrTrunc(Sub
, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
2435 unsigned JumpTableReg
=
2436 FuncInfo
.CreateReg(TLI
.getPointerTy(DAG
.getDataLayout()));
2437 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
,
2438 JumpTableReg
, SwitchOp
);
2439 JT
.Reg
= JumpTableReg
;
2441 if (!JTH
.OmitRangeCheck
) {
2442 // Emit the range check for the jump table, and branch to the default block
2443 // for the switch statement if the value being switched on exceeds the
2444 // largest case in the switch.
2445 SDValue CMP
= DAG
.getSetCC(
2446 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2447 Sub
.getValueType()),
2448 Sub
, DAG
.getConstant(JTH
.Last
- JTH
.First
, dl
, VT
), ISD::SETUGT
);
2450 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2451 MVT::Other
, CopyTo
, CMP
,
2452 DAG
.getBasicBlock(JT
.Default
));
2454 // Avoid emitting unnecessary branches to the next block.
2455 if (JT
.MBB
!= NextBlock(SwitchBB
))
2456 BrCond
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrCond
,
2457 DAG
.getBasicBlock(JT
.MBB
));
2459 DAG
.setRoot(BrCond
);
2461 // Avoid emitting unnecessary branches to the next block.
2462 if (JT
.MBB
!= NextBlock(SwitchBB
))
2463 DAG
.setRoot(DAG
.getNode(ISD::BR
, dl
, MVT::Other
, CopyTo
,
2464 DAG
.getBasicBlock(JT
.MBB
)));
2466 DAG
.setRoot(CopyTo
);
2470 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2471 /// variable if there exists one.
2472 static SDValue
getLoadStackGuard(SelectionDAG
&DAG
, const SDLoc
&DL
,
2474 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2475 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2476 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2477 MachineFunction
&MF
= DAG
.getMachineFunction();
2478 Value
*Global
= TLI
.getSDagStackGuard(*MF
.getFunction().getParent());
2479 MachineSDNode
*Node
=
2480 DAG
.getMachineNode(TargetOpcode::LOAD_STACK_GUARD
, DL
, PtrTy
, Chain
);
2482 MachinePointerInfo
MPInfo(Global
);
2483 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOInvariant
|
2484 MachineMemOperand::MODereferenceable
;
2485 MachineMemOperand
*MemRef
= MF
.getMachineMemOperand(
2486 MPInfo
, Flags
, PtrTy
.getSizeInBits() / 8, DAG
.getEVTAlignment(PtrTy
));
2487 DAG
.setNodeMemRefs(Node
, {MemRef
});
2489 if (PtrTy
!= PtrMemTy
)
2490 return DAG
.getPtrExtOrTrunc(SDValue(Node
, 0), DL
, PtrMemTy
);
2491 return SDValue(Node
, 0);
2494 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2495 /// tail spliced into a stack protector check success bb.
2497 /// For a high level explanation of how this fits into the stack protector
2498 /// generation see the comment on the declaration of class
2499 /// StackProtectorDescriptor.
2500 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor
&SPD
,
2501 MachineBasicBlock
*ParentBB
) {
2503 // First create the loads to the guard/stack slot for the comparison.
2504 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2505 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
2506 EVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout());
2508 MachineFrameInfo
&MFI
= ParentBB
->getParent()->getFrameInfo();
2509 int FI
= MFI
.getStackProtectorIndex();
2512 SDLoc dl
= getCurSDLoc();
2513 SDValue StackSlotPtr
= DAG
.getFrameIndex(FI
, PtrTy
);
2514 const Module
&M
= *ParentBB
->getParent()->getFunction().getParent();
2515 unsigned Align
= DL
->getPrefTypeAlignment(Type::getInt8PtrTy(M
.getContext()));
2517 // Generate code to load the content of the guard slot.
2518 SDValue GuardVal
= DAG
.getLoad(
2519 PtrMemTy
, dl
, DAG
.getEntryNode(), StackSlotPtr
,
2520 MachinePointerInfo::getFixedStack(DAG
.getMachineFunction(), FI
), Align
,
2521 MachineMemOperand::MOVolatile
);
2523 if (TLI
.useStackGuardXorFP())
2524 GuardVal
= TLI
.emitStackGuardXorFP(DAG
, GuardVal
, dl
);
2526 // Retrieve guard check function, nullptr if instrumentation is inlined.
2527 if (const Function
*GuardCheckFn
= TLI
.getSSPStackGuardCheck(M
)) {
2528 // The target provides a guard check function to validate the guard value.
2529 // Generate a call to that function with the content of the guard slot as
2531 FunctionType
*FnTy
= GuardCheckFn
->getFunctionType();
2532 assert(FnTy
->getNumParams() == 1 && "Invalid function signature");
2534 TargetLowering::ArgListTy Args
;
2535 TargetLowering::ArgListEntry Entry
;
2536 Entry
.Node
= GuardVal
;
2537 Entry
.Ty
= FnTy
->getParamType(0);
2538 if (GuardCheckFn
->hasAttribute(1, Attribute::AttrKind::InReg
))
2539 Entry
.IsInReg
= true;
2540 Args
.push_back(Entry
);
2542 TargetLowering::CallLoweringInfo
CLI(DAG
);
2543 CLI
.setDebugLoc(getCurSDLoc())
2544 .setChain(DAG
.getEntryNode())
2545 .setCallee(GuardCheckFn
->getCallingConv(), FnTy
->getReturnType(),
2546 getValue(GuardCheckFn
), std::move(Args
));
2548 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
2549 DAG
.setRoot(Result
.second
);
2553 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2554 // Otherwise, emit a volatile load to retrieve the stack guard value.
2555 SDValue Chain
= DAG
.getEntryNode();
2556 if (TLI
.useLoadStackGuardNode()) {
2557 Guard
= getLoadStackGuard(DAG
, dl
, Chain
);
2559 const Value
*IRGuard
= TLI
.getSDagStackGuard(M
);
2560 SDValue GuardPtr
= getValue(IRGuard
);
2562 Guard
= DAG
.getLoad(PtrMemTy
, dl
, Chain
, GuardPtr
,
2563 MachinePointerInfo(IRGuard
, 0), Align
,
2564 MachineMemOperand::MOVolatile
);
2567 // Perform the comparison via a subtract/getsetcc.
2568 EVT VT
= Guard
.getValueType();
2569 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, Guard
, GuardVal
);
2571 SDValue Cmp
= DAG
.getSetCC(dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(),
2573 Sub
.getValueType()),
2574 Sub
, DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
2576 // If the sub is not 0, then we know the guard/stackslot do not equal, so
2577 // branch to failure MBB.
2578 SDValue BrCond
= DAG
.getNode(ISD::BRCOND
, dl
,
2579 MVT::Other
, GuardVal
.getOperand(0),
2580 Cmp
, DAG
.getBasicBlock(SPD
.getFailureMBB()));
2581 // Otherwise branch to success MBB.
2582 SDValue Br
= DAG
.getNode(ISD::BR
, dl
,
2584 DAG
.getBasicBlock(SPD
.getSuccessMBB()));
2589 /// Codegen the failure basic block for a stack protector check.
2591 /// A failure stack protector machine basic block consists simply of a call to
2592 /// __stack_chk_fail().
2594 /// For a high level explanation of how this fits into the stack protector
2595 /// generation see the comment on the declaration of class
2596 /// StackProtectorDescriptor.
2598 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor
&SPD
) {
2599 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2601 TLI
.makeLibCall(DAG
, RTLIB::STACKPROTECTOR_CHECK_FAIL
, MVT::isVoid
,
2602 None
, false, getCurSDLoc(), false, false).second
;
2603 // On PS4, the "return address" must still be within the calling function,
2604 // even if it's at the very end, so emit an explicit TRAP here.
2605 // Passing 'true' for doesNotReturn above won't generate the trap for us.
2606 if (TM
.getTargetTriple().isPS4CPU())
2607 Chain
= DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, Chain
);
2612 /// visitBitTestHeader - This function emits necessary code to produce value
2613 /// suitable for "bit tests"
2614 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock
&B
,
2615 MachineBasicBlock
*SwitchBB
) {
2616 SDLoc dl
= getCurSDLoc();
2618 // Subtract the minimum value
2619 SDValue SwitchOp
= getValue(B
.SValue
);
2620 EVT VT
= SwitchOp
.getValueType();
2621 SDValue Sub
= DAG
.getNode(ISD::SUB
, dl
, VT
, SwitchOp
,
2622 DAG
.getConstant(B
.First
, dl
, VT
));
2625 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2626 SDValue RangeCmp
= DAG
.getSetCC(
2627 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(),
2628 Sub
.getValueType()),
2629 Sub
, DAG
.getConstant(B
.Range
, dl
, VT
), ISD::SETUGT
);
2631 // Determine the type of the test operands.
2632 bool UsePtrType
= false;
2633 if (!TLI
.isTypeLegal(VT
))
2636 for (unsigned i
= 0, e
= B
.Cases
.size(); i
!= e
; ++i
)
2637 if (!isUIntN(VT
.getSizeInBits(), B
.Cases
[i
].Mask
)) {
2638 // Switch table case range are encoded into series of masks.
2639 // Just use pointer type, it's guaranteed to fit.
2645 VT
= TLI
.getPointerTy(DAG
.getDataLayout());
2646 Sub
= DAG
.getZExtOrTrunc(Sub
, dl
, VT
);
2649 B
.RegVT
= VT
.getSimpleVT();
2650 B
.Reg
= FuncInfo
.CreateReg(B
.RegVT
);
2651 SDValue CopyTo
= DAG
.getCopyToReg(getControlRoot(), dl
, B
.Reg
, Sub
);
2653 MachineBasicBlock
* MBB
= B
.Cases
[0].ThisBB
;
2655 addSuccessorWithProb(SwitchBB
, B
.Default
, B
.DefaultProb
);
2656 addSuccessorWithProb(SwitchBB
, MBB
, B
.Prob
);
2657 SwitchBB
->normalizeSuccProbs();
2659 SDValue BrRange
= DAG
.getNode(ISD::BRCOND
, dl
,
2660 MVT::Other
, CopyTo
, RangeCmp
,
2661 DAG
.getBasicBlock(B
.Default
));
2663 // Avoid emitting unnecessary branches to the next block.
2664 if (MBB
!= NextBlock(SwitchBB
))
2665 BrRange
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrRange
,
2666 DAG
.getBasicBlock(MBB
));
2668 DAG
.setRoot(BrRange
);
2671 /// visitBitTestCase - this function produces one "bit test"
2672 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock
&BB
,
2673 MachineBasicBlock
* NextMBB
,
2674 BranchProbability BranchProbToNext
,
2677 MachineBasicBlock
*SwitchBB
) {
2678 SDLoc dl
= getCurSDLoc();
2680 SDValue ShiftOp
= DAG
.getCopyFromReg(getControlRoot(), dl
, Reg
, VT
);
2682 unsigned PopCount
= countPopulation(B
.Mask
);
2683 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2684 if (PopCount
== 1) {
2685 // Testing for a single bit; just compare the shift count with what it
2686 // would need to be to shift a 1 bit in that position.
2688 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2689 ShiftOp
, DAG
.getConstant(countTrailingZeros(B
.Mask
), dl
, VT
),
2691 } else if (PopCount
== BB
.Range
) {
2692 // There is only one zero bit in the range, test for it directly.
2694 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2695 ShiftOp
, DAG
.getConstant(countTrailingOnes(B
.Mask
), dl
, VT
),
2698 // Make desired shift
2699 SDValue SwitchVal
= DAG
.getNode(ISD::SHL
, dl
, VT
,
2700 DAG
.getConstant(1, dl
, VT
), ShiftOp
);
2702 // Emit bit tests and jumps
2703 SDValue AndOp
= DAG
.getNode(ISD::AND
, dl
,
2704 VT
, SwitchVal
, DAG
.getConstant(B
.Mask
, dl
, VT
));
2706 dl
, TLI
.getSetCCResultType(DAG
.getDataLayout(), *DAG
.getContext(), VT
),
2707 AndOp
, DAG
.getConstant(0, dl
, VT
), ISD::SETNE
);
2710 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2711 addSuccessorWithProb(SwitchBB
, B
.TargetBB
, B
.ExtraProb
);
2712 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2713 addSuccessorWithProb(SwitchBB
, NextMBB
, BranchProbToNext
);
2714 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2715 // one as they are relative probabilities (and thus work more like weights),
2716 // and hence we need to normalize them to let the sum of them become one.
2717 SwitchBB
->normalizeSuccProbs();
2719 SDValue BrAnd
= DAG
.getNode(ISD::BRCOND
, dl
,
2720 MVT::Other
, getControlRoot(),
2721 Cmp
, DAG
.getBasicBlock(B
.TargetBB
));
2723 // Avoid emitting unnecessary branches to the next block.
2724 if (NextMBB
!= NextBlock(SwitchBB
))
2725 BrAnd
= DAG
.getNode(ISD::BR
, dl
, MVT::Other
, BrAnd
,
2726 DAG
.getBasicBlock(NextMBB
));
2731 void SelectionDAGBuilder::visitInvoke(const InvokeInst
&I
) {
2732 MachineBasicBlock
*InvokeMBB
= FuncInfo
.MBB
;
2734 // Retrieve successors. Look through artificial IR level blocks like
2735 // catchswitch for successors.
2736 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getSuccessor(0)];
2737 const BasicBlock
*EHPadBB
= I
.getSuccessor(1);
2739 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2740 // have to do anything here to lower funclet bundles.
2741 assert(!I
.hasOperandBundlesOtherThan(
2742 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
2743 "Cannot lower invokes with arbitrary operand bundles yet!");
2745 const Value
*Callee(I
.getCalledValue());
2746 const Function
*Fn
= dyn_cast
<Function
>(Callee
);
2747 if (isa
<InlineAsm
>(Callee
))
2749 else if (Fn
&& Fn
->isIntrinsic()) {
2750 switch (Fn
->getIntrinsicID()) {
2752 llvm_unreachable("Cannot invoke this intrinsic");
2753 case Intrinsic::donothing
:
2754 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2756 case Intrinsic::experimental_patchpoint_void
:
2757 case Intrinsic::experimental_patchpoint_i64
:
2758 visitPatchpoint(&I
, EHPadBB
);
2760 case Intrinsic::experimental_gc_statepoint
:
2761 LowerStatepoint(ImmutableStatepoint(&I
), EHPadBB
);
2763 case Intrinsic::wasm_rethrow_in_catch
: {
2764 // This is usually done in visitTargetIntrinsic, but this intrinsic is
2765 // special because it can be invoked, so we manually lower it to a DAG
2767 SmallVector
<SDValue
, 8> Ops
;
2768 Ops
.push_back(getRoot()); // inchain
2769 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2771 DAG
.getTargetConstant(Intrinsic::wasm_rethrow_in_catch
, getCurSDLoc(),
2772 TLI
.getPointerTy(DAG
.getDataLayout())));
2773 SDVTList VTs
= DAG
.getVTList(ArrayRef
<EVT
>({MVT::Other
})); // outchain
2774 DAG
.setRoot(DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
));
2778 } else if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
)) {
2779 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2780 // Eventually we will support lowering the @llvm.experimental.deoptimize
2781 // intrinsic, and right now there are no plans to support other intrinsics
2782 // with deopt state.
2783 LowerCallSiteWithDeoptBundle(&I
, getValue(Callee
), EHPadBB
);
2785 LowerCallTo(&I
, getValue(Callee
), false, EHPadBB
);
2788 // If the value of the invoke is used outside of its defining block, make it
2789 // available as a virtual register.
2790 // We already took care of the exported value for the statepoint instruction
2791 // during call to the LowerStatepoint.
2792 if (!isStatepoint(I
)) {
2793 CopyToExportRegsIfNeeded(&I
);
2796 SmallVector
<std::pair
<MachineBasicBlock
*, BranchProbability
>, 1> UnwindDests
;
2797 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
2798 BranchProbability EHPadBBProb
=
2799 BPI
? BPI
->getEdgeProbability(InvokeMBB
->getBasicBlock(), EHPadBB
)
2800 : BranchProbability::getZero();
2801 findUnwindDestinations(FuncInfo
, EHPadBB
, EHPadBBProb
, UnwindDests
);
2803 // Update successor info.
2804 addSuccessorWithProb(InvokeMBB
, Return
);
2805 for (auto &UnwindDest
: UnwindDests
) {
2806 UnwindDest
.first
->setIsEHPad();
2807 addSuccessorWithProb(InvokeMBB
, UnwindDest
.first
, UnwindDest
.second
);
2809 InvokeMBB
->normalizeSuccProbs();
2811 // Drop into normal successor.
2812 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
, getControlRoot(),
2813 DAG
.getBasicBlock(Return
)));
2816 void SelectionDAGBuilder::visitCallBr(const CallBrInst
&I
) {
2817 MachineBasicBlock
*CallBrMBB
= FuncInfo
.MBB
;
2819 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2820 // have to do anything here to lower funclet bundles.
2821 assert(!I
.hasOperandBundlesOtherThan(
2822 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
2823 "Cannot lower callbrs with arbitrary operand bundles yet!");
2825 assert(isa
<InlineAsm
>(I
.getCalledValue()) &&
2826 "Only know how to handle inlineasm callbr");
2829 // Retrieve successors.
2830 MachineBasicBlock
*Return
= FuncInfo
.MBBMap
[I
.getDefaultDest()];
2832 // Update successor info.
2833 addSuccessorWithProb(CallBrMBB
, Return
);
2834 for (unsigned i
= 0, e
= I
.getNumIndirectDests(); i
< e
; ++i
) {
2835 MachineBasicBlock
*Target
= FuncInfo
.MBBMap
[I
.getIndirectDest(i
)];
2836 addSuccessorWithProb(CallBrMBB
, Target
);
2838 CallBrMBB
->normalizeSuccProbs();
2840 // Drop into default successor.
2841 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(),
2842 MVT::Other
, getControlRoot(),
2843 DAG
.getBasicBlock(Return
)));
2846 void SelectionDAGBuilder::visitResume(const ResumeInst
&RI
) {
2847 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2850 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst
&LP
) {
2851 assert(FuncInfo
.MBB
->isEHPad() &&
2852 "Call to landingpad not in landing pad!");
2854 // If there aren't registers to copy the values into (e.g., during SjLj
2855 // exceptions), then don't bother to create these DAG nodes.
2856 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
2857 const Constant
*PersonalityFn
= FuncInfo
.Fn
->getPersonalityFn();
2858 if (TLI
.getExceptionPointerRegister(PersonalityFn
) == 0 &&
2859 TLI
.getExceptionSelectorRegister(PersonalityFn
) == 0)
2862 // If landingpad's return type is token type, we don't create DAG nodes
2863 // for its exception pointer and selector value. The extraction of exception
2864 // pointer or selector value from token type landingpads is not currently
2866 if (LP
.getType()->isTokenTy())
2869 SmallVector
<EVT
, 2> ValueVTs
;
2870 SDLoc dl
= getCurSDLoc();
2871 ComputeValueVTs(TLI
, DAG
.getDataLayout(), LP
.getType(), ValueVTs
);
2872 assert(ValueVTs
.size() == 2 && "Only two-valued landingpads are supported");
2874 // Get the two live-in registers as SDValues. The physregs have already been
2875 // copied into virtual registers.
2877 if (FuncInfo
.ExceptionPointerVirtReg
) {
2878 Ops
[0] = DAG
.getZExtOrTrunc(
2879 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
2880 FuncInfo
.ExceptionPointerVirtReg
,
2881 TLI
.getPointerTy(DAG
.getDataLayout())),
2884 Ops
[0] = DAG
.getConstant(0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()));
2886 Ops
[1] = DAG
.getZExtOrTrunc(
2887 DAG
.getCopyFromReg(DAG
.getEntryNode(), dl
,
2888 FuncInfo
.ExceptionSelectorVirtReg
,
2889 TLI
.getPointerTy(DAG
.getDataLayout())),
2893 SDValue Res
= DAG
.getNode(ISD::MERGE_VALUES
, dl
,
2894 DAG
.getVTList(ValueVTs
), Ops
);
2898 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector
&Clusters
) {
2900 for (const CaseCluster
&CC
: Clusters
)
2901 assert(CC
.Low
== CC
.High
&& "Input clusters must be single-case");
2904 llvm::sort(Clusters
, [](const CaseCluster
&a
, const CaseCluster
&b
) {
2905 return a
.Low
->getValue().slt(b
.Low
->getValue());
2908 // Merge adjacent clusters with the same destination.
2909 const unsigned N
= Clusters
.size();
2910 unsigned DstIndex
= 0;
2911 for (unsigned SrcIndex
= 0; SrcIndex
< N
; ++SrcIndex
) {
2912 CaseCluster
&CC
= Clusters
[SrcIndex
];
2913 const ConstantInt
*CaseVal
= CC
.Low
;
2914 MachineBasicBlock
*Succ
= CC
.MBB
;
2916 if (DstIndex
!= 0 && Clusters
[DstIndex
- 1].MBB
== Succ
&&
2917 (CaseVal
->getValue() - Clusters
[DstIndex
- 1].High
->getValue()) == 1) {
2918 // If this case has the same successor and is a neighbour, merge it into
2919 // the previous cluster.
2920 Clusters
[DstIndex
- 1].High
= CaseVal
;
2921 Clusters
[DstIndex
- 1].Prob
+= CC
.Prob
;
2923 std::memmove(&Clusters
[DstIndex
++], &Clusters
[SrcIndex
],
2924 sizeof(Clusters
[SrcIndex
]));
2927 Clusters
.resize(DstIndex
);
2930 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock
*First
,
2931 MachineBasicBlock
*Last
) {
2933 for (unsigned i
= 0, e
= JTCases
.size(); i
!= e
; ++i
)
2934 if (JTCases
[i
].first
.HeaderBB
== First
)
2935 JTCases
[i
].first
.HeaderBB
= Last
;
2937 // Update BitTestCases.
2938 for (unsigned i
= 0, e
= BitTestCases
.size(); i
!= e
; ++i
)
2939 if (BitTestCases
[i
].Parent
== First
)
2940 BitTestCases
[i
].Parent
= Last
;
2943 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst
&I
) {
2944 MachineBasicBlock
*IndirectBrMBB
= FuncInfo
.MBB
;
2946 // Update machine-CFG edges with unique successors.
2947 SmallSet
<BasicBlock
*, 32> Done
;
2948 for (unsigned i
= 0, e
= I
.getNumSuccessors(); i
!= e
; ++i
) {
2949 BasicBlock
*BB
= I
.getSuccessor(i
);
2950 bool Inserted
= Done
.insert(BB
).second
;
2954 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[BB
];
2955 addSuccessorWithProb(IndirectBrMBB
, Succ
);
2957 IndirectBrMBB
->normalizeSuccProbs();
2959 DAG
.setRoot(DAG
.getNode(ISD::BRIND
, getCurSDLoc(),
2960 MVT::Other
, getControlRoot(),
2961 getValue(I
.getAddress())));
2964 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst
&I
) {
2965 if (!DAG
.getTarget().Options
.TrapUnreachable
)
2968 // We may be able to ignore unreachable behind a noreturn call.
2969 if (DAG
.getTarget().Options
.NoTrapAfterNoreturn
) {
2970 const BasicBlock
&BB
= *I
.getParent();
2971 if (&I
!= &BB
.front()) {
2972 BasicBlock::const_iterator PredI
=
2973 std::prev(BasicBlock::const_iterator(&I
));
2974 if (const CallInst
*Call
= dyn_cast
<CallInst
>(&*PredI
)) {
2975 if (Call
->doesNotReturn())
2981 DAG
.setRoot(DAG
.getNode(ISD::TRAP
, getCurSDLoc(), MVT::Other
, DAG
.getRoot()));
2984 void SelectionDAGBuilder::visitFSub(const User
&I
) {
2985 // -0.0 - X --> fneg
2986 Type
*Ty
= I
.getType();
2987 if (isa
<Constant
>(I
.getOperand(0)) &&
2988 I
.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty
)) {
2989 SDValue Op2
= getValue(I
.getOperand(1));
2990 setValue(&I
, DAG
.getNode(ISD::FNEG
, getCurSDLoc(),
2991 Op2
.getValueType(), Op2
));
2995 visitBinary(I
, ISD::FSUB
);
2998 /// Checks if the given instruction performs a vector reduction, in which case
2999 /// we have the freedom to alter the elements in the result as long as the
3000 /// reduction of them stays unchanged.
3001 static bool isVectorReductionOp(const User
*I
) {
3002 const Instruction
*Inst
= dyn_cast
<Instruction
>(I
);
3003 if (!Inst
|| !Inst
->getType()->isVectorTy())
3006 auto OpCode
= Inst
->getOpcode();
3008 case Instruction::Add
:
3009 case Instruction::Mul
:
3010 case Instruction::And
:
3011 case Instruction::Or
:
3012 case Instruction::Xor
:
3014 case Instruction::FAdd
:
3015 case Instruction::FMul
:
3016 if (const FPMathOperator
*FPOp
= dyn_cast
<const FPMathOperator
>(Inst
))
3017 if (FPOp
->getFastMathFlags().isFast())
3024 unsigned ElemNum
= Inst
->getType()->getVectorNumElements();
3025 // Ensure the reduction size is a power of 2.
3026 if (!isPowerOf2_32(ElemNum
))
3029 unsigned ElemNumToReduce
= ElemNum
;
3031 // Do DFS search on the def-use chain from the given instruction. We only
3032 // allow four kinds of operations during the search until we reach the
3033 // instruction that extracts the first element from the vector:
3035 // 1. The reduction operation of the same opcode as the given instruction.
3039 // 3. ShuffleVector instruction together with a reduction operation that
3040 // does a partial reduction.
3042 // 4. ExtractElement that extracts the first element from the vector, and we
3043 // stop searching the def-use chain here.
3045 // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3046 // from 1-3 to the stack to continue the DFS. The given instruction is not
3047 // a reduction operation if we meet any other instructions other than those
3050 SmallVector
<const User
*, 16> UsersToVisit
{Inst
};
3051 SmallPtrSet
<const User
*, 16> Visited
;
3052 bool ReduxExtracted
= false;
3054 while (!UsersToVisit
.empty()) {
3055 auto User
= UsersToVisit
.back();
3056 UsersToVisit
.pop_back();
3057 if (!Visited
.insert(User
).second
)
3060 for (const auto &U
: User
->users()) {
3061 auto Inst
= dyn_cast
<Instruction
>(U
);
3065 if (Inst
->getOpcode() == OpCode
|| isa
<PHINode
>(U
)) {
3066 if (const FPMathOperator
*FPOp
= dyn_cast
<const FPMathOperator
>(Inst
))
3067 if (!isa
<PHINode
>(FPOp
) && !FPOp
->getFastMathFlags().isFast())
3069 UsersToVisit
.push_back(U
);
3070 } else if (const ShuffleVectorInst
*ShufInst
=
3071 dyn_cast
<ShuffleVectorInst
>(U
)) {
3072 // Detect the following pattern: A ShuffleVector instruction together
3073 // with a reduction that do partial reduction on the first and second
3074 // ElemNumToReduce / 2 elements, and store the result in
3075 // ElemNumToReduce / 2 elements in another vector.
3077 unsigned ResultElements
= ShufInst
->getType()->getVectorNumElements();
3078 if (ResultElements
< ElemNum
)
3081 if (ElemNumToReduce
== 1)
3083 if (!isa
<UndefValue
>(U
->getOperand(1)))
3085 for (unsigned i
= 0; i
< ElemNumToReduce
/ 2; ++i
)
3086 if (ShufInst
->getMaskValue(i
) != int(i
+ ElemNumToReduce
/ 2))
3088 for (unsigned i
= ElemNumToReduce
/ 2; i
< ElemNum
; ++i
)
3089 if (ShufInst
->getMaskValue(i
) != -1)
3092 // There is only one user of this ShuffleVector instruction, which
3093 // must be a reduction operation.
3094 if (!U
->hasOneUse())
3097 auto U2
= dyn_cast
<Instruction
>(*U
->user_begin());
3098 if (!U2
|| U2
->getOpcode() != OpCode
)
3101 // Check operands of the reduction operation.
3102 if ((U2
->getOperand(0) == U
->getOperand(0) && U2
->getOperand(1) == U
) ||
3103 (U2
->getOperand(1) == U
->getOperand(0) && U2
->getOperand(0) == U
)) {
3104 UsersToVisit
.push_back(U2
);
3105 ElemNumToReduce
/= 2;
3108 } else if (isa
<ExtractElementInst
>(U
)) {
3109 // At this moment we should have reduced all elements in the vector.
3110 if (ElemNumToReduce
!= 1)
3113 const ConstantInt
*Val
= dyn_cast
<ConstantInt
>(U
->getOperand(1));
3114 if (!Val
|| !Val
->isZero())
3117 ReduxExtracted
= true;
3122 return ReduxExtracted
;
3125 void SelectionDAGBuilder::visitUnary(const User
&I
, unsigned Opcode
) {
3128 SDValue Op
= getValue(I
.getOperand(0));
3129 SDValue UnNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op
.getValueType(),
3131 setValue(&I
, UnNodeValue
);
3134 void SelectionDAGBuilder::visitBinary(const User
&I
, unsigned Opcode
) {
3136 if (auto *OFBinOp
= dyn_cast
<OverflowingBinaryOperator
>(&I
)) {
3137 Flags
.setNoSignedWrap(OFBinOp
->hasNoSignedWrap());
3138 Flags
.setNoUnsignedWrap(OFBinOp
->hasNoUnsignedWrap());
3140 if (auto *ExactOp
= dyn_cast
<PossiblyExactOperator
>(&I
)) {
3141 Flags
.setExact(ExactOp
->isExact());
3143 if (isVectorReductionOp(&I
)) {
3144 Flags
.setVectorReduction(true);
3145 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I
<< "\n");
3148 SDValue Op1
= getValue(I
.getOperand(0));
3149 SDValue Op2
= getValue(I
.getOperand(1));
3150 SDValue BinNodeValue
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(),
3152 setValue(&I
, BinNodeValue
);
3155 void SelectionDAGBuilder::visitShift(const User
&I
, unsigned Opcode
) {
3156 SDValue Op1
= getValue(I
.getOperand(0));
3157 SDValue Op2
= getValue(I
.getOperand(1));
3159 EVT ShiftTy
= DAG
.getTargetLoweringInfo().getShiftAmountTy(
3160 Op1
.getValueType(), DAG
.getDataLayout());
3162 // Coerce the shift amount to the right type if we can.
3163 if (!I
.getType()->isVectorTy() && Op2
.getValueType() != ShiftTy
) {
3164 unsigned ShiftSize
= ShiftTy
.getSizeInBits();
3165 unsigned Op2Size
= Op2
.getValueSizeInBits();
3166 SDLoc DL
= getCurSDLoc();
3168 // If the operand is smaller than the shift count type, promote it.
3169 if (ShiftSize
> Op2Size
)
3170 Op2
= DAG
.getNode(ISD::ZERO_EXTEND
, DL
, ShiftTy
, Op2
);
3172 // If the operand is larger than the shift count type but the shift
3173 // count type has enough bits to represent any shift value, truncate
3174 // it now. This is a common case and it exposes the truncate to
3175 // optimization early.
3176 else if (ShiftSize
>= Log2_32_Ceil(Op2
.getValueSizeInBits()))
3177 Op2
= DAG
.getNode(ISD::TRUNCATE
, DL
, ShiftTy
, Op2
);
3178 // Otherwise we'll need to temporarily settle for some other convenient
3179 // type. Type legalization will make adjustments once the shiftee is split.
3181 Op2
= DAG
.getZExtOrTrunc(Op2
, DL
, MVT::i32
);
3188 if (Opcode
== ISD::SRL
|| Opcode
== ISD::SRA
|| Opcode
== ISD::SHL
) {
3190 if (const OverflowingBinaryOperator
*OFBinOp
=
3191 dyn_cast
<const OverflowingBinaryOperator
>(&I
)) {
3192 nuw
= OFBinOp
->hasNoUnsignedWrap();
3193 nsw
= OFBinOp
->hasNoSignedWrap();
3195 if (const PossiblyExactOperator
*ExactOp
=
3196 dyn_cast
<const PossiblyExactOperator
>(&I
))
3197 exact
= ExactOp
->isExact();
3200 Flags
.setExact(exact
);
3201 Flags
.setNoSignedWrap(nsw
);
3202 Flags
.setNoUnsignedWrap(nuw
);
3203 SDValue Res
= DAG
.getNode(Opcode
, getCurSDLoc(), Op1
.getValueType(), Op1
, Op2
,
3208 void SelectionDAGBuilder::visitSDiv(const User
&I
) {
3209 SDValue Op1
= getValue(I
.getOperand(0));
3210 SDValue Op2
= getValue(I
.getOperand(1));
3213 Flags
.setExact(isa
<PossiblyExactOperator
>(&I
) &&
3214 cast
<PossiblyExactOperator
>(&I
)->isExact());
3215 setValue(&I
, DAG
.getNode(ISD::SDIV
, getCurSDLoc(), Op1
.getValueType(), Op1
,
3219 void SelectionDAGBuilder::visitICmp(const User
&I
) {
3220 ICmpInst::Predicate predicate
= ICmpInst::BAD_ICMP_PREDICATE
;
3221 if (const ICmpInst
*IC
= dyn_cast
<ICmpInst
>(&I
))
3222 predicate
= IC
->getPredicate();
3223 else if (const ConstantExpr
*IC
= dyn_cast
<ConstantExpr
>(&I
))
3224 predicate
= ICmpInst::Predicate(IC
->getPredicate());
3225 SDValue Op1
= getValue(I
.getOperand(0));
3226 SDValue Op2
= getValue(I
.getOperand(1));
3227 ISD::CondCode Opcode
= getICmpCondCode(predicate
);
3229 auto &TLI
= DAG
.getTargetLoweringInfo();
3231 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3233 // If a pointer's DAG type is larger than its memory type then the DAG values
3234 // are zero-extended. This breaks signed comparisons so truncate back to the
3235 // underlying type before doing the compare.
3236 if (Op1
.getValueType() != MemVT
) {
3237 Op1
= DAG
.getPtrExtOrTrunc(Op1
, getCurSDLoc(), MemVT
);
3238 Op2
= DAG
.getPtrExtOrTrunc(Op2
, getCurSDLoc(), MemVT
);
3241 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3243 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Opcode
));
3246 void SelectionDAGBuilder::visitFCmp(const User
&I
) {
3247 FCmpInst::Predicate predicate
= FCmpInst::BAD_FCMP_PREDICATE
;
3248 if (const FCmpInst
*FC
= dyn_cast
<FCmpInst
>(&I
))
3249 predicate
= FC
->getPredicate();
3250 else if (const ConstantExpr
*FC
= dyn_cast
<ConstantExpr
>(&I
))
3251 predicate
= FCmpInst::Predicate(FC
->getPredicate());
3252 SDValue Op1
= getValue(I
.getOperand(0));
3253 SDValue Op2
= getValue(I
.getOperand(1));
3255 ISD::CondCode Condition
= getFCmpCondCode(predicate
);
3256 auto *FPMO
= dyn_cast
<FPMathOperator
>(&I
);
3257 if ((FPMO
&& FPMO
->hasNoNaNs()) || TM
.Options
.NoNaNsFPMath
)
3258 Condition
= getFCmpCodeWithoutNaN(Condition
);
3260 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3262 setValue(&I
, DAG
.getSetCC(getCurSDLoc(), DestVT
, Op1
, Op2
, Condition
));
3265 // Check if the condition of the select has one use or two users that are both
3266 // selects with the same condition.
3267 static bool hasOnlySelectUsers(const Value
*Cond
) {
3268 return llvm::all_of(Cond
->users(), [](const Value
*V
) {
3269 return isa
<SelectInst
>(V
);
3273 void SelectionDAGBuilder::visitSelect(const User
&I
) {
3274 SmallVector
<EVT
, 4> ValueVTs
;
3275 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), I
.getType(),
3277 unsigned NumValues
= ValueVTs
.size();
3278 if (NumValues
== 0) return;
3280 SmallVector
<SDValue
, 4> Values(NumValues
);
3281 SDValue Cond
= getValue(I
.getOperand(0));
3282 SDValue LHSVal
= getValue(I
.getOperand(1));
3283 SDValue RHSVal
= getValue(I
.getOperand(2));
3284 auto BaseOps
= {Cond
};
3285 ISD::NodeType OpCode
= Cond
.getValueType().isVector() ?
3286 ISD::VSELECT
: ISD::SELECT
;
3288 bool IsUnaryAbs
= false;
3290 // Min/max matching is only viable if all output VTs are the same.
3291 if (is_splat(ValueVTs
)) {
3292 EVT VT
= ValueVTs
[0];
3293 LLVMContext
&Ctx
= *DAG
.getContext();
3294 auto &TLI
= DAG
.getTargetLoweringInfo();
3296 // We care about the legality of the operation after it has been type
3298 while (TLI
.getTypeAction(Ctx
, VT
) != TargetLoweringBase::TypeLegal
&&
3299 VT
!= TLI
.getTypeToTransformTo(Ctx
, VT
))
3300 VT
= TLI
.getTypeToTransformTo(Ctx
, VT
);
3302 // If the vselect is legal, assume we want to leave this as a vector setcc +
3303 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3304 // min/max is legal on the scalar type.
3305 bool UseScalarMinMax
= VT
.isVector() &&
3306 !TLI
.isOperationLegalOrCustom(ISD::VSELECT
, VT
);
3309 auto SPR
= matchSelectPattern(const_cast<User
*>(&I
), LHS
, RHS
);
3310 ISD::NodeType Opc
= ISD::DELETED_NODE
;
3311 switch (SPR
.Flavor
) {
3312 case SPF_UMAX
: Opc
= ISD::UMAX
; break;
3313 case SPF_UMIN
: Opc
= ISD::UMIN
; break;
3314 case SPF_SMAX
: Opc
= ISD::SMAX
; break;
3315 case SPF_SMIN
: Opc
= ISD::SMIN
; break;
3317 switch (SPR
.NaNBehavior
) {
3318 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3319 case SPNB_RETURNS_NAN
: Opc
= ISD::FMINIMUM
; break;
3320 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMINNUM
; break;
3321 case SPNB_RETURNS_ANY
: {
3322 if (TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
))
3324 else if (TLI
.isOperationLegalOrCustom(ISD::FMINIMUM
, VT
))
3325 Opc
= ISD::FMINIMUM
;
3326 else if (UseScalarMinMax
)
3327 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMINNUM
, VT
.getScalarType()) ?
3328 ISD::FMINNUM
: ISD::FMINIMUM
;
3334 switch (SPR
.NaNBehavior
) {
3335 case SPNB_NA
: llvm_unreachable("No NaN behavior for FP op?");
3336 case SPNB_RETURNS_NAN
: Opc
= ISD::FMAXIMUM
; break;
3337 case SPNB_RETURNS_OTHER
: Opc
= ISD::FMAXNUM
; break;
3338 case SPNB_RETURNS_ANY
:
3340 if (TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
))
3342 else if (TLI
.isOperationLegalOrCustom(ISD::FMAXIMUM
, VT
))
3343 Opc
= ISD::FMAXIMUM
;
3344 else if (UseScalarMinMax
)
3345 Opc
= TLI
.isOperationLegalOrCustom(ISD::FMAXNUM
, VT
.getScalarType()) ?
3346 ISD::FMAXNUM
: ISD::FMAXIMUM
;
3355 // TODO: we need to produce sub(0, abs(X)).
3359 if (!IsUnaryAbs
&& Opc
!= ISD::DELETED_NODE
&&
3360 (TLI
.isOperationLegalOrCustom(Opc
, VT
) ||
3362 TLI
.isOperationLegalOrCustom(Opc
, VT
.getScalarType()))) &&
3363 // If the underlying comparison instruction is used by any other
3364 // instruction, the consumed instructions won't be destroyed, so it is
3365 // not profitable to convert to a min/max.
3366 hasOnlySelectUsers(cast
<SelectInst
>(I
).getCondition())) {
3368 LHSVal
= getValue(LHS
);
3369 RHSVal
= getValue(RHS
);
3375 LHSVal
= getValue(LHS
);
3381 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3383 DAG
.getNode(OpCode
, getCurSDLoc(),
3384 LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
),
3385 SDValue(LHSVal
.getNode(), LHSVal
.getResNo() + i
));
3388 for (unsigned i
= 0; i
!= NumValues
; ++i
) {
3389 SmallVector
<SDValue
, 3> Ops(BaseOps
.begin(), BaseOps
.end());
3390 Ops
.push_back(SDValue(LHSVal
.getNode(), LHSVal
.getResNo() + i
));
3391 Ops
.push_back(SDValue(RHSVal
.getNode(), RHSVal
.getResNo() + i
));
3392 Values
[i
] = DAG
.getNode(
3393 OpCode
, getCurSDLoc(),
3394 LHSVal
.getNode()->getValueType(LHSVal
.getResNo() + i
), Ops
);
3398 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3399 DAG
.getVTList(ValueVTs
), Values
));
3402 void SelectionDAGBuilder::visitTrunc(const User
&I
) {
3403 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3404 SDValue N
= getValue(I
.getOperand(0));
3405 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3407 setValue(&I
, DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), DestVT
, N
));
3410 void SelectionDAGBuilder::visitZExt(const User
&I
) {
3411 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3412 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3413 SDValue N
= getValue(I
.getOperand(0));
3414 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3416 setValue(&I
, DAG
.getNode(ISD::ZERO_EXTEND
, getCurSDLoc(), DestVT
, N
));
3419 void SelectionDAGBuilder::visitSExt(const User
&I
) {
3420 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3421 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3422 SDValue N
= getValue(I
.getOperand(0));
3423 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3425 setValue(&I
, DAG
.getNode(ISD::SIGN_EXTEND
, getCurSDLoc(), DestVT
, N
));
3428 void SelectionDAGBuilder::visitFPTrunc(const User
&I
) {
3429 // FPTrunc is never a no-op cast, no need to check
3430 SDValue N
= getValue(I
.getOperand(0));
3431 SDLoc dl
= getCurSDLoc();
3432 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3433 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3434 setValue(&I
, DAG
.getNode(ISD::FP_ROUND
, dl
, DestVT
, N
,
3435 DAG
.getTargetConstant(
3436 0, dl
, TLI
.getPointerTy(DAG
.getDataLayout()))));
3439 void SelectionDAGBuilder::visitFPExt(const User
&I
) {
3440 // FPExt is never a no-op cast, no need to check
3441 SDValue N
= getValue(I
.getOperand(0));
3442 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3444 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, getCurSDLoc(), DestVT
, N
));
3447 void SelectionDAGBuilder::visitFPToUI(const User
&I
) {
3448 // FPToUI is never a no-op cast, no need to check
3449 SDValue N
= getValue(I
.getOperand(0));
3450 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3452 setValue(&I
, DAG
.getNode(ISD::FP_TO_UINT
, getCurSDLoc(), DestVT
, N
));
3455 void SelectionDAGBuilder::visitFPToSI(const User
&I
) {
3456 // FPToSI is never a no-op cast, no need to check
3457 SDValue N
= getValue(I
.getOperand(0));
3458 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3460 setValue(&I
, DAG
.getNode(ISD::FP_TO_SINT
, getCurSDLoc(), DestVT
, N
));
3463 void SelectionDAGBuilder::visitUIToFP(const User
&I
) {
3464 // UIToFP is never a no-op cast, no need to check
3465 SDValue N
= getValue(I
.getOperand(0));
3466 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3468 setValue(&I
, DAG
.getNode(ISD::UINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3471 void SelectionDAGBuilder::visitSIToFP(const User
&I
) {
3472 // SIToFP is never a no-op cast, no need to check
3473 SDValue N
= getValue(I
.getOperand(0));
3474 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3476 setValue(&I
, DAG
.getNode(ISD::SINT_TO_FP
, getCurSDLoc(), DestVT
, N
));
3479 void SelectionDAGBuilder::visitPtrToInt(const User
&I
) {
3480 // What to do depends on the size of the integer and the size of the pointer.
3481 // We can either truncate, zero extend, or no-op, accordingly.
3482 SDValue N
= getValue(I
.getOperand(0));
3483 auto &TLI
= DAG
.getTargetLoweringInfo();
3484 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3487 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getOperand(0)->getType());
3488 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3489 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3493 void SelectionDAGBuilder::visitIntToPtr(const User
&I
) {
3494 // What to do depends on the size of the integer and the size of the pointer.
3495 // We can either truncate, zero extend, or no-op, accordingly.
3496 SDValue N
= getValue(I
.getOperand(0));
3497 auto &TLI
= DAG
.getTargetLoweringInfo();
3498 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3499 EVT PtrMemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
3500 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), PtrMemVT
);
3501 N
= DAG
.getPtrExtOrTrunc(N
, getCurSDLoc(), DestVT
);
3505 void SelectionDAGBuilder::visitBitCast(const User
&I
) {
3506 SDValue N
= getValue(I
.getOperand(0));
3507 SDLoc dl
= getCurSDLoc();
3508 EVT DestVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
3511 // BitCast assures us that source and destination are the same size so this is
3512 // either a BITCAST or a no-op.
3513 if (DestVT
!= N
.getValueType())
3514 setValue(&I
, DAG
.getNode(ISD::BITCAST
, dl
,
3515 DestVT
, N
)); // convert types.
3516 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3517 // might fold any kind of constant expression to an integer constant and that
3518 // is not what we are looking for. Only recognize a bitcast of a genuine
3519 // constant integer as an opaque constant.
3520 else if(ConstantInt
*C
= dyn_cast
<ConstantInt
>(I
.getOperand(0)))
3521 setValue(&I
, DAG
.getConstant(C
->getValue(), dl
, DestVT
, /*isTarget=*/false,
3524 setValue(&I
, N
); // noop cast.
3527 void SelectionDAGBuilder::visitAddrSpaceCast(const User
&I
) {
3528 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3529 const Value
*SV
= I
.getOperand(0);
3530 SDValue N
= getValue(SV
);
3531 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3533 unsigned SrcAS
= SV
->getType()->getPointerAddressSpace();
3534 unsigned DestAS
= I
.getType()->getPointerAddressSpace();
3536 if (!TLI
.isNoopAddrSpaceCast(SrcAS
, DestAS
))
3537 N
= DAG
.getAddrSpaceCast(getCurSDLoc(), DestVT
, N
, SrcAS
, DestAS
);
3542 void SelectionDAGBuilder::visitInsertElement(const User
&I
) {
3543 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3544 SDValue InVec
= getValue(I
.getOperand(0));
3545 SDValue InVal
= getValue(I
.getOperand(1));
3546 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(2)), getCurSDLoc(),
3547 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3548 setValue(&I
, DAG
.getNode(ISD::INSERT_VECTOR_ELT
, getCurSDLoc(),
3549 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3550 InVec
, InVal
, InIdx
));
3553 void SelectionDAGBuilder::visitExtractElement(const User
&I
) {
3554 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3555 SDValue InVec
= getValue(I
.getOperand(0));
3556 SDValue InIdx
= DAG
.getSExtOrTrunc(getValue(I
.getOperand(1)), getCurSDLoc(),
3557 TLI
.getVectorIdxTy(DAG
.getDataLayout()));
3558 setValue(&I
, DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, getCurSDLoc(),
3559 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
3563 void SelectionDAGBuilder::visitShuffleVector(const User
&I
) {
3564 SDValue Src1
= getValue(I
.getOperand(0));
3565 SDValue Src2
= getValue(I
.getOperand(1));
3566 SDLoc DL
= getCurSDLoc();
3568 SmallVector
<int, 8> Mask
;
3569 ShuffleVectorInst::getShuffleMask(cast
<Constant
>(I
.getOperand(2)), Mask
);
3570 unsigned MaskNumElts
= Mask
.size();
3572 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3573 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
3574 EVT SrcVT
= Src1
.getValueType();
3575 unsigned SrcNumElts
= SrcVT
.getVectorNumElements();
3577 if (SrcNumElts
== MaskNumElts
) {
3578 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, Mask
));
3582 // Normalize the shuffle vector since mask and vector length don't match.
3583 if (SrcNumElts
< MaskNumElts
) {
3584 // Mask is longer than the source vectors. We can use concatenate vector to
3585 // make the mask and vectors lengths match.
3587 if (MaskNumElts
% SrcNumElts
== 0) {
3588 // Mask length is a multiple of the source vector length.
3589 // Check if the shuffle is some kind of concatenation of the input
3591 unsigned NumConcat
= MaskNumElts
/ SrcNumElts
;
3592 bool IsConcat
= true;
3593 SmallVector
<int, 8> ConcatSrcs(NumConcat
, -1);
3594 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3598 // Ensure the indices in each SrcVT sized piece are sequential and that
3599 // the same source is used for the whole piece.
3600 if ((Idx
% SrcNumElts
!= (i
% SrcNumElts
)) ||
3601 (ConcatSrcs
[i
/ SrcNumElts
] >= 0 &&
3602 ConcatSrcs
[i
/ SrcNumElts
] != (int)(Idx
/ SrcNumElts
))) {
3606 // Remember which source this index came from.
3607 ConcatSrcs
[i
/ SrcNumElts
] = Idx
/ SrcNumElts
;
3610 // The shuffle is concatenating multiple vectors together. Just emit
3611 // a CONCAT_VECTORS operation.
3613 SmallVector
<SDValue
, 8> ConcatOps
;
3614 for (auto Src
: ConcatSrcs
) {
3616 ConcatOps
.push_back(DAG
.getUNDEF(SrcVT
));
3618 ConcatOps
.push_back(Src1
);
3620 ConcatOps
.push_back(Src2
);
3622 setValue(&I
, DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, VT
, ConcatOps
));
3627 unsigned PaddedMaskNumElts
= alignTo(MaskNumElts
, SrcNumElts
);
3628 unsigned NumConcat
= PaddedMaskNumElts
/ SrcNumElts
;
3629 EVT PaddedVT
= EVT::getVectorVT(*DAG
.getContext(), VT
.getScalarType(),
3632 // Pad both vectors with undefs to make them the same length as the mask.
3633 SDValue UndefVal
= DAG
.getUNDEF(SrcVT
);
3635 SmallVector
<SDValue
, 8> MOps1(NumConcat
, UndefVal
);
3636 SmallVector
<SDValue
, 8> MOps2(NumConcat
, UndefVal
);
3640 Src1
= Src1
.isUndef()
3641 ? DAG
.getUNDEF(PaddedVT
)
3642 : DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps1
);
3643 Src2
= Src2
.isUndef()
3644 ? DAG
.getUNDEF(PaddedVT
)
3645 : DAG
.getNode(ISD::CONCAT_VECTORS
, DL
, PaddedVT
, MOps2
);
3647 // Readjust mask for new input vector length.
3648 SmallVector
<int, 8> MappedOps(PaddedMaskNumElts
, -1);
3649 for (unsigned i
= 0; i
!= MaskNumElts
; ++i
) {
3651 if (Idx
>= (int)SrcNumElts
)
3652 Idx
-= SrcNumElts
- PaddedMaskNumElts
;
3656 SDValue Result
= DAG
.getVectorShuffle(PaddedVT
, DL
, Src1
, Src2
, MappedOps
);
3658 // If the concatenated vector was padded, extract a subvector with the
3659 // correct number of elements.
3660 if (MaskNumElts
!= PaddedMaskNumElts
)
3661 Result
= DAG
.getNode(
3662 ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Result
,
3663 DAG
.getConstant(0, DL
, TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3665 setValue(&I
, Result
);
3669 if (SrcNumElts
> MaskNumElts
) {
3670 // Analyze the access pattern of the vector to see if we can extract
3671 // two subvectors and do the shuffle.
3672 int StartIdx
[2] = { -1, -1 }; // StartIdx to extract from
3673 bool CanExtract
= true;
3674 for (int Idx
: Mask
) {
3679 if (Idx
>= (int)SrcNumElts
) {
3684 // If all the indices come from the same MaskNumElts sized portion of
3685 // the sources we can use extract. Also make sure the extract wouldn't
3686 // extract past the end of the source.
3687 int NewStartIdx
= alignDown(Idx
, MaskNumElts
);
3688 if (NewStartIdx
+ MaskNumElts
> SrcNumElts
||
3689 (StartIdx
[Input
] >= 0 && StartIdx
[Input
] != NewStartIdx
))
3691 // Make sure we always update StartIdx as we use it to track if all
3692 // elements are undef.
3693 StartIdx
[Input
] = NewStartIdx
;
3696 if (StartIdx
[0] < 0 && StartIdx
[1] < 0) {
3697 setValue(&I
, DAG
.getUNDEF(VT
)); // Vectors are not used.
3701 // Extract appropriate subvector and generate a vector shuffle
3702 for (unsigned Input
= 0; Input
< 2; ++Input
) {
3703 SDValue
&Src
= Input
== 0 ? Src1
: Src2
;
3704 if (StartIdx
[Input
] < 0)
3705 Src
= DAG
.getUNDEF(VT
);
3708 ISD::EXTRACT_SUBVECTOR
, DL
, VT
, Src
,
3709 DAG
.getConstant(StartIdx
[Input
], DL
,
3710 TLI
.getVectorIdxTy(DAG
.getDataLayout())));
3714 // Calculate new mask.
3715 SmallVector
<int, 8> MappedOps(Mask
.begin(), Mask
.end());
3716 for (int &Idx
: MappedOps
) {
3717 if (Idx
>= (int)SrcNumElts
)
3718 Idx
-= SrcNumElts
+ StartIdx
[1] - MaskNumElts
;
3723 setValue(&I
, DAG
.getVectorShuffle(VT
, DL
, Src1
, Src2
, MappedOps
));
3728 // We can't use either concat vectors or extract subvectors so fall back to
3729 // replacing the shuffle with extract and build vector.
3730 // to insert and build vector.
3731 EVT EltVT
= VT
.getVectorElementType();
3732 EVT IdxVT
= TLI
.getVectorIdxTy(DAG
.getDataLayout());
3733 SmallVector
<SDValue
,8> Ops
;
3734 for (int Idx
: Mask
) {
3738 Res
= DAG
.getUNDEF(EltVT
);
3740 SDValue
&Src
= Idx
< (int)SrcNumElts
? Src1
: Src2
;
3741 if (Idx
>= (int)SrcNumElts
) Idx
-= SrcNumElts
;
3743 Res
= DAG
.getNode(ISD::EXTRACT_VECTOR_ELT
, DL
,
3744 EltVT
, Src
, DAG
.getConstant(Idx
, DL
, IdxVT
));
3750 setValue(&I
, DAG
.getBuildVector(VT
, DL
, Ops
));
3753 void SelectionDAGBuilder::visitInsertValue(const User
&I
) {
3754 ArrayRef
<unsigned> Indices
;
3755 if (const InsertValueInst
*IV
= dyn_cast
<InsertValueInst
>(&I
))
3756 Indices
= IV
->getIndices();
3758 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3760 const Value
*Op0
= I
.getOperand(0);
3761 const Value
*Op1
= I
.getOperand(1);
3762 Type
*AggTy
= I
.getType();
3763 Type
*ValTy
= Op1
->getType();
3764 bool IntoUndef
= isa
<UndefValue
>(Op0
);
3765 bool FromUndef
= isa
<UndefValue
>(Op1
);
3767 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3769 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3770 SmallVector
<EVT
, 4> AggValueVTs
;
3771 ComputeValueVTs(TLI
, DAG
.getDataLayout(), AggTy
, AggValueVTs
);
3772 SmallVector
<EVT
, 4> ValValueVTs
;
3773 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3775 unsigned NumAggValues
= AggValueVTs
.size();
3776 unsigned NumValValues
= ValValueVTs
.size();
3777 SmallVector
<SDValue
, 4> Values(NumAggValues
);
3779 // Ignore an insertvalue that produces an empty object
3780 if (!NumAggValues
) {
3781 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3785 SDValue Agg
= getValue(Op0
);
3787 // Copy the beginning value(s) from the original aggregate.
3788 for (; i
!= LinearIndex
; ++i
)
3789 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3790 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3791 // Copy values from the inserted value(s).
3793 SDValue Val
= getValue(Op1
);
3794 for (; i
!= LinearIndex
+ NumValValues
; ++i
)
3795 Values
[i
] = FromUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3796 SDValue(Val
.getNode(), Val
.getResNo() + i
- LinearIndex
);
3798 // Copy remaining value(s) from the original aggregate.
3799 for (; i
!= NumAggValues
; ++i
)
3800 Values
[i
] = IntoUndef
? DAG
.getUNDEF(AggValueVTs
[i
]) :
3801 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3803 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3804 DAG
.getVTList(AggValueVTs
), Values
));
3807 void SelectionDAGBuilder::visitExtractValue(const User
&I
) {
3808 ArrayRef
<unsigned> Indices
;
3809 if (const ExtractValueInst
*EV
= dyn_cast
<ExtractValueInst
>(&I
))
3810 Indices
= EV
->getIndices();
3812 Indices
= cast
<ConstantExpr
>(&I
)->getIndices();
3814 const Value
*Op0
= I
.getOperand(0);
3815 Type
*AggTy
= Op0
->getType();
3816 Type
*ValTy
= I
.getType();
3817 bool OutOfUndef
= isa
<UndefValue
>(Op0
);
3819 unsigned LinearIndex
= ComputeLinearIndex(AggTy
, Indices
);
3821 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3822 SmallVector
<EVT
, 4> ValValueVTs
;
3823 ComputeValueVTs(TLI
, DAG
.getDataLayout(), ValTy
, ValValueVTs
);
3825 unsigned NumValValues
= ValValueVTs
.size();
3827 // Ignore a extractvalue that produces an empty object
3828 if (!NumValValues
) {
3829 setValue(&I
, DAG
.getUNDEF(MVT(MVT::Other
)));
3833 SmallVector
<SDValue
, 4> Values(NumValValues
);
3835 SDValue Agg
= getValue(Op0
);
3836 // Copy out the selected value(s).
3837 for (unsigned i
= LinearIndex
; i
!= LinearIndex
+ NumValValues
; ++i
)
3838 Values
[i
- LinearIndex
] =
3840 DAG
.getUNDEF(Agg
.getNode()->getValueType(Agg
.getResNo() + i
)) :
3841 SDValue(Agg
.getNode(), Agg
.getResNo() + i
);
3843 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
3844 DAG
.getVTList(ValValueVTs
), Values
));
3847 void SelectionDAGBuilder::visitGetElementPtr(const User
&I
) {
3848 Value
*Op0
= I
.getOperand(0);
3849 // Note that the pointer operand may be a vector of pointers. Take the scalar
3850 // element which holds a pointer.
3851 unsigned AS
= Op0
->getType()->getScalarType()->getPointerAddressSpace();
3852 SDValue N
= getValue(Op0
);
3853 SDLoc dl
= getCurSDLoc();
3854 auto &TLI
= DAG
.getTargetLoweringInfo();
3855 MVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout(), AS
);
3856 MVT PtrMemTy
= TLI
.getPointerMemTy(DAG
.getDataLayout(), AS
);
3858 // Normalize Vector GEP - all scalar operands should be converted to the
3860 unsigned VectorWidth
= I
.getType()->isVectorTy() ?
3861 cast
<VectorType
>(I
.getType())->getVectorNumElements() : 0;
3863 if (VectorWidth
&& !N
.getValueType().isVector()) {
3864 LLVMContext
&Context
= *DAG
.getContext();
3865 EVT VT
= EVT::getVectorVT(Context
, N
.getValueType(), VectorWidth
);
3866 N
= DAG
.getSplatBuildVector(VT
, dl
, N
);
3869 for (gep_type_iterator GTI
= gep_type_begin(&I
), E
= gep_type_end(&I
);
3871 const Value
*Idx
= GTI
.getOperand();
3872 if (StructType
*StTy
= GTI
.getStructTypeOrNull()) {
3873 unsigned Field
= cast
<Constant
>(Idx
)->getUniqueInteger().getZExtValue();
3876 uint64_t Offset
= DL
->getStructLayout(StTy
)->getElementOffset(Field
);
3878 // In an inbounds GEP with an offset that is nonnegative even when
3879 // interpreted as signed, assume there is no unsigned overflow.
3881 if (int64_t(Offset
) >= 0 && cast
<GEPOperator
>(I
).isInBounds())
3882 Flags
.setNoUnsignedWrap(true);
3884 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
,
3885 DAG
.getConstant(Offset
, dl
, N
.getValueType()), Flags
);
3888 unsigned IdxSize
= DAG
.getDataLayout().getIndexSizeInBits(AS
);
3889 MVT IdxTy
= MVT::getIntegerVT(IdxSize
);
3890 APInt
ElementSize(IdxSize
, DL
->getTypeAllocSize(GTI
.getIndexedType()));
3892 // If this is a scalar constant or a splat vector of constants,
3893 // handle it quickly.
3894 const auto *CI
= dyn_cast
<ConstantInt
>(Idx
);
3895 if (!CI
&& isa
<ConstantDataVector
>(Idx
) &&
3896 cast
<ConstantDataVector
>(Idx
)->getSplatValue())
3897 CI
= cast
<ConstantInt
>(cast
<ConstantDataVector
>(Idx
)->getSplatValue());
3902 APInt Offs
= ElementSize
* CI
->getValue().sextOrTrunc(IdxSize
);
3903 LLVMContext
&Context
= *DAG
.getContext();
3904 SDValue OffsVal
= VectorWidth
?
3905 DAG
.getConstant(Offs
, dl
, EVT::getVectorVT(Context
, IdxTy
, VectorWidth
)) :
3906 DAG
.getConstant(Offs
, dl
, IdxTy
);
3908 // In an inbouds GEP with an offset that is nonnegative even when
3909 // interpreted as signed, assume there is no unsigned overflow.
3911 if (Offs
.isNonNegative() && cast
<GEPOperator
>(I
).isInBounds())
3912 Flags
.setNoUnsignedWrap(true);
3914 OffsVal
= DAG
.getSExtOrTrunc(OffsVal
, dl
, N
.getValueType());
3916 N
= DAG
.getNode(ISD::ADD
, dl
, N
.getValueType(), N
, OffsVal
, Flags
);
3920 // N = N + Idx * ElementSize;
3921 SDValue IdxN
= getValue(Idx
);
3923 if (!IdxN
.getValueType().isVector() && VectorWidth
) {
3924 EVT VT
= EVT::getVectorVT(*Context
, IdxN
.getValueType(), VectorWidth
);
3925 IdxN
= DAG
.getSplatBuildVector(VT
, dl
, IdxN
);
3928 // If the index is smaller or larger than intptr_t, truncate or extend
3930 IdxN
= DAG
.getSExtOrTrunc(IdxN
, dl
, N
.getValueType());
3932 // If this is a multiply by a power of two, turn it into a shl
3933 // immediately. This is a very common case.
3934 if (ElementSize
!= 1) {
3935 if (ElementSize
.isPowerOf2()) {
3936 unsigned Amt
= ElementSize
.logBase2();
3937 IdxN
= DAG
.getNode(ISD::SHL
, dl
,
3938 N
.getValueType(), IdxN
,
3939 DAG
.getConstant(Amt
, dl
, IdxN
.getValueType()));
3941 SDValue Scale
= DAG
.getConstant(ElementSize
.getZExtValue(), dl
,
3942 IdxN
.getValueType());
3943 IdxN
= DAG
.getNode(ISD::MUL
, dl
,
3944 N
.getValueType(), IdxN
, Scale
);
3948 N
= DAG
.getNode(ISD::ADD
, dl
,
3949 N
.getValueType(), N
, IdxN
);
3953 if (PtrMemTy
!= PtrTy
&& !cast
<GEPOperator
>(I
).isInBounds())
3954 N
= DAG
.getPtrExtendInReg(N
, dl
, PtrMemTy
);
3959 void SelectionDAGBuilder::visitAlloca(const AllocaInst
&I
) {
3960 // If this is a fixed sized alloca in the entry block of the function,
3961 // allocate it statically on the stack.
3962 if (FuncInfo
.StaticAllocaMap
.count(&I
))
3963 return; // getValue will auto-populate this.
3965 SDLoc dl
= getCurSDLoc();
3966 Type
*Ty
= I
.getAllocatedType();
3967 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
3968 auto &DL
= DAG
.getDataLayout();
3969 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
3971 std::max((unsigned)DL
.getPrefTypeAlignment(Ty
), I
.getAlignment());
3973 SDValue AllocSize
= getValue(I
.getArraySize());
3975 EVT IntPtr
= TLI
.getPointerTy(DAG
.getDataLayout(), DL
.getAllocaAddrSpace());
3976 if (AllocSize
.getValueType() != IntPtr
)
3977 AllocSize
= DAG
.getZExtOrTrunc(AllocSize
, dl
, IntPtr
);
3979 AllocSize
= DAG
.getNode(ISD::MUL
, dl
, IntPtr
,
3981 DAG
.getConstant(TySize
, dl
, IntPtr
));
3983 // Handle alignment. If the requested alignment is less than or equal to
3984 // the stack alignment, ignore it. If the size is greater than or equal to
3985 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3986 unsigned StackAlign
=
3987 DAG
.getSubtarget().getFrameLowering()->getStackAlignment();
3988 if (Align
<= StackAlign
)
3991 // Round the size of the allocation up to the stack alignment size
3992 // by add SA-1 to the size. This doesn't overflow because we're computing
3993 // an address inside an alloca.
3995 Flags
.setNoUnsignedWrap(true);
3996 AllocSize
= DAG
.getNode(ISD::ADD
, dl
, AllocSize
.getValueType(), AllocSize
,
3997 DAG
.getConstant(StackAlign
- 1, dl
, IntPtr
), Flags
);
3999 // Mask out the low bits for alignment purposes.
4001 DAG
.getNode(ISD::AND
, dl
, AllocSize
.getValueType(), AllocSize
,
4002 DAG
.getConstant(~(uint64_t)(StackAlign
- 1), dl
, IntPtr
));
4004 SDValue Ops
[] = {getRoot(), AllocSize
, DAG
.getConstant(Align
, dl
, IntPtr
)};
4005 SDVTList VTs
= DAG
.getVTList(AllocSize
.getValueType(), MVT::Other
);
4006 SDValue DSA
= DAG
.getNode(ISD::DYNAMIC_STACKALLOC
, dl
, VTs
, Ops
);
4008 DAG
.setRoot(DSA
.getValue(1));
4010 assert(FuncInfo
.MF
->getFrameInfo().hasVarSizedObjects());
4013 void SelectionDAGBuilder::visitLoad(const LoadInst
&I
) {
4015 return visitAtomicLoad(I
);
4017 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4018 const Value
*SV
= I
.getOperand(0);
4019 if (TLI
.supportSwiftError()) {
4020 // Swifterror values can come from either a function parameter with
4021 // swifterror attribute or an alloca with swifterror attribute.
4022 if (const Argument
*Arg
= dyn_cast
<Argument
>(SV
)) {
4023 if (Arg
->hasSwiftErrorAttr())
4024 return visitLoadFromSwiftError(I
);
4027 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(SV
)) {
4028 if (Alloca
->isSwiftError())
4029 return visitLoadFromSwiftError(I
);
4033 SDValue Ptr
= getValue(SV
);
4035 Type
*Ty
= I
.getType();
4037 bool isVolatile
= I
.isVolatile();
4038 bool isNonTemporal
= I
.getMetadata(LLVMContext::MD_nontemporal
) != nullptr;
4039 bool isInvariant
= I
.getMetadata(LLVMContext::MD_invariant_load
) != nullptr;
4040 bool isDereferenceable
= isDereferenceablePointer(SV
, DAG
.getDataLayout());
4041 unsigned Alignment
= I
.getAlignment();
4044 I
.getAAMetadata(AAInfo
);
4045 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4047 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
4048 SmallVector
<uint64_t, 4> Offsets
;
4049 ComputeValueVTs(TLI
, DAG
.getDataLayout(), Ty
, ValueVTs
, &MemVTs
, &Offsets
);
4050 unsigned NumValues
= ValueVTs
.size();
4055 bool ConstantMemory
= false;
4056 if (isVolatile
|| NumValues
> MaxParallelChains
)
4057 // Serialize volatile loads with other side effects.
4060 AA
->pointsToConstantMemory(MemoryLocation(
4062 LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
4064 // Do not serialize (non-volatile) loads of constant memory with anything.
4065 Root
= DAG
.getEntryNode();
4066 ConstantMemory
= true;
4068 // Do not serialize non-volatile loads against each other.
4069 Root
= DAG
.getRoot();
4072 SDLoc dl
= getCurSDLoc();
4075 Root
= TLI
.prepareVolatileOrAtomicLoad(Root
, dl
, DAG
);
4077 // An aggregate load cannot wrap around the address space, so offsets to its
4078 // parts don't wrap either.
4080 Flags
.setNoUnsignedWrap(true);
4082 SmallVector
<SDValue
, 4> Values(NumValues
);
4083 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
4084 EVT PtrVT
= Ptr
.getValueType();
4085 unsigned ChainI
= 0;
4086 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
4087 // Serializing loads here may result in excessive register pressure, and
4088 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4089 // could recover a bit by hoisting nodes upward in the chain by recognizing
4090 // they are side-effect free or do not alias. The optimizer should really
4091 // avoid this case by converting large object/array copies to llvm.memcpy
4092 // (MaxParallelChains should always remain as failsafe).
4093 if (ChainI
== MaxParallelChains
) {
4094 assert(PendingLoads
.empty() && "PendingLoads must be serialized first");
4095 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4096 makeArrayRef(Chains
.data(), ChainI
));
4100 SDValue A
= DAG
.getNode(ISD::ADD
, dl
,
4102 DAG
.getConstant(Offsets
[i
], dl
, PtrVT
),
4104 auto MMOFlags
= MachineMemOperand::MONone
;
4106 MMOFlags
|= MachineMemOperand::MOVolatile
;
4108 MMOFlags
|= MachineMemOperand::MONonTemporal
;
4110 MMOFlags
|= MachineMemOperand::MOInvariant
;
4111 if (isDereferenceable
)
4112 MMOFlags
|= MachineMemOperand::MODereferenceable
;
4113 MMOFlags
|= TLI
.getMMOFlags(I
);
4115 SDValue L
= DAG
.getLoad(MemVTs
[i
], dl
, Root
, A
,
4116 MachinePointerInfo(SV
, Offsets
[i
]), Alignment
,
4117 MMOFlags
, AAInfo
, Ranges
);
4118 Chains
[ChainI
] = L
.getValue(1);
4120 if (MemVTs
[i
] != ValueVTs
[i
])
4121 L
= DAG
.getZExtOrTrunc(L
, dl
, ValueVTs
[i
]);
4126 if (!ConstantMemory
) {
4127 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4128 makeArrayRef(Chains
.data(), ChainI
));
4132 PendingLoads
.push_back(Chain
);
4135 setValue(&I
, DAG
.getNode(ISD::MERGE_VALUES
, dl
,
4136 DAG
.getVTList(ValueVTs
), Values
));
4139 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst
&I
) {
4140 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4141 "call visitStoreToSwiftError when backend supports swifterror");
4143 SmallVector
<EVT
, 4> ValueVTs
;
4144 SmallVector
<uint64_t, 4> Offsets
;
4145 const Value
*SrcV
= I
.getOperand(0);
4146 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4147 SrcV
->getType(), ValueVTs
, &Offsets
);
4148 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4149 "expect a single EVT for swifterror");
4151 SDValue Src
= getValue(SrcV
);
4152 // Create a virtual register, then update the virtual register.
4153 unsigned VReg
; bool CreatedVReg
;
4154 std::tie(VReg
, CreatedVReg
) = FuncInfo
.getOrCreateSwiftErrorVRegDefAt(&I
);
4155 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4156 // Chain can be getRoot or getControlRoot.
4157 SDValue CopyNode
= DAG
.getCopyToReg(getRoot(), getCurSDLoc(), VReg
,
4158 SDValue(Src
.getNode(), Src
.getResNo()));
4159 DAG
.setRoot(CopyNode
);
4161 FuncInfo
.setCurrentSwiftErrorVReg(FuncInfo
.MBB
, I
.getOperand(1), VReg
);
4164 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst
&I
) {
4165 assert(DAG
.getTargetLoweringInfo().supportSwiftError() &&
4166 "call visitLoadFromSwiftError when backend supports swifterror");
4168 assert(!I
.isVolatile() &&
4169 I
.getMetadata(LLVMContext::MD_nontemporal
) == nullptr &&
4170 I
.getMetadata(LLVMContext::MD_invariant_load
) == nullptr &&
4171 "Support volatile, non temporal, invariant for load_from_swift_error");
4173 const Value
*SV
= I
.getOperand(0);
4174 Type
*Ty
= I
.getType();
4176 I
.getAAMetadata(AAInfo
);
4179 !AA
->pointsToConstantMemory(MemoryLocation(
4180 SV
, LocationSize::precise(DAG
.getDataLayout().getTypeStoreSize(Ty
)),
4182 "load_from_swift_error should not be constant memory");
4184 SmallVector
<EVT
, 4> ValueVTs
;
4185 SmallVector
<uint64_t, 4> Offsets
;
4186 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(), Ty
,
4187 ValueVTs
, &Offsets
);
4188 assert(ValueVTs
.size() == 1 && Offsets
[0] == 0 &&
4189 "expect a single EVT for swifterror");
4191 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4192 SDValue L
= DAG
.getCopyFromReg(
4193 getRoot(), getCurSDLoc(),
4194 FuncInfo
.getOrCreateSwiftErrorVRegUseAt(&I
, FuncInfo
.MBB
, SV
).first
,
4200 void SelectionDAGBuilder::visitStore(const StoreInst
&I
) {
4202 return visitAtomicStore(I
);
4204 const Value
*SrcV
= I
.getOperand(0);
4205 const Value
*PtrV
= I
.getOperand(1);
4207 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4208 if (TLI
.supportSwiftError()) {
4209 // Swifterror values can come from either a function parameter with
4210 // swifterror attribute or an alloca with swifterror attribute.
4211 if (const Argument
*Arg
= dyn_cast
<Argument
>(PtrV
)) {
4212 if (Arg
->hasSwiftErrorAttr())
4213 return visitStoreToSwiftError(I
);
4216 if (const AllocaInst
*Alloca
= dyn_cast
<AllocaInst
>(PtrV
)) {
4217 if (Alloca
->isSwiftError())
4218 return visitStoreToSwiftError(I
);
4222 SmallVector
<EVT
, 4> ValueVTs
, MemVTs
;
4223 SmallVector
<uint64_t, 4> Offsets
;
4224 ComputeValueVTs(DAG
.getTargetLoweringInfo(), DAG
.getDataLayout(),
4225 SrcV
->getType(), ValueVTs
, &MemVTs
, &Offsets
);
4226 unsigned NumValues
= ValueVTs
.size();
4230 // Get the lowered operands. Note that we do this after
4231 // checking if NumResults is zero, because with zero results
4232 // the operands won't have values in the map.
4233 SDValue Src
= getValue(SrcV
);
4234 SDValue Ptr
= getValue(PtrV
);
4236 SDValue Root
= getRoot();
4237 SmallVector
<SDValue
, 4> Chains(std::min(MaxParallelChains
, NumValues
));
4238 SDLoc dl
= getCurSDLoc();
4239 EVT PtrVT
= Ptr
.getValueType();
4240 unsigned Alignment
= I
.getAlignment();
4242 I
.getAAMetadata(AAInfo
);
4244 auto MMOFlags
= MachineMemOperand::MONone
;
4246 MMOFlags
|= MachineMemOperand::MOVolatile
;
4247 if (I
.getMetadata(LLVMContext::MD_nontemporal
) != nullptr)
4248 MMOFlags
|= MachineMemOperand::MONonTemporal
;
4249 MMOFlags
|= TLI
.getMMOFlags(I
);
4251 // An aggregate load cannot wrap around the address space, so offsets to its
4252 // parts don't wrap either.
4254 Flags
.setNoUnsignedWrap(true);
4256 unsigned ChainI
= 0;
4257 for (unsigned i
= 0; i
!= NumValues
; ++i
, ++ChainI
) {
4258 // See visitLoad comments.
4259 if (ChainI
== MaxParallelChains
) {
4260 SDValue Chain
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4261 makeArrayRef(Chains
.data(), ChainI
));
4265 SDValue Add
= DAG
.getNode(ISD::ADD
, dl
, PtrVT
, Ptr
,
4266 DAG
.getConstant(Offsets
[i
], dl
, PtrVT
), Flags
);
4267 SDValue Val
= SDValue(Src
.getNode(), Src
.getResNo() + i
);
4268 if (MemVTs
[i
] != ValueVTs
[i
])
4269 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVTs
[i
]);
4271 DAG
.getStore(Root
, dl
, Val
, Add
, MachinePointerInfo(PtrV
, Offsets
[i
]),
4272 Alignment
, MMOFlags
, AAInfo
);
4273 Chains
[ChainI
] = St
;
4276 SDValue StoreNode
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
,
4277 makeArrayRef(Chains
.data(), ChainI
));
4278 DAG
.setRoot(StoreNode
);
4281 void SelectionDAGBuilder::visitMaskedStore(const CallInst
&I
,
4282 bool IsCompressing
) {
4283 SDLoc sdl
= getCurSDLoc();
4285 auto getMaskedStoreOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4286 unsigned& Alignment
) {
4287 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4288 Src0
= I
.getArgOperand(0);
4289 Ptr
= I
.getArgOperand(1);
4290 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(2))->getZExtValue();
4291 Mask
= I
.getArgOperand(3);
4293 auto getCompressingStoreOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4294 unsigned& Alignment
) {
4295 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4296 Src0
= I
.getArgOperand(0);
4297 Ptr
= I
.getArgOperand(1);
4298 Mask
= I
.getArgOperand(2);
4302 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4305 getCompressingStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4307 getMaskedStoreOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4309 SDValue Ptr
= getValue(PtrOperand
);
4310 SDValue Src0
= getValue(Src0Operand
);
4311 SDValue Mask
= getValue(MaskOperand
);
4313 EVT VT
= Src0
.getValueType();
4315 Alignment
= DAG
.getEVTAlignment(VT
);
4318 I
.getAAMetadata(AAInfo
);
4320 MachineMemOperand
*MMO
=
4321 DAG
.getMachineFunction().
4322 getMachineMemOperand(MachinePointerInfo(PtrOperand
),
4323 MachineMemOperand::MOStore
, VT
.getStoreSize(),
4325 SDValue StoreNode
= DAG
.getMaskedStore(getRoot(), sdl
, Src0
, Ptr
, Mask
, VT
,
4326 MMO
, false /* Truncating */,
4328 DAG
.setRoot(StoreNode
);
4329 setValue(&I
, StoreNode
);
4332 // Get a uniform base for the Gather/Scatter intrinsic.
4333 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4334 // We try to represent it as a base pointer + vector of indices.
4335 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4336 // The first operand of the GEP may be a single pointer or a vector of pointers
4338 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4340 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4341 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4343 // When the first GEP operand is a single pointer - it is the uniform base we
4344 // are looking for. If first operand of the GEP is a splat vector - we
4345 // extract the splat value and use it as a uniform base.
4346 // In all other cases the function returns 'false'.
4347 static bool getUniformBase(const Value
* &Ptr
, SDValue
& Base
, SDValue
& Index
,
4348 SDValue
&Scale
, SelectionDAGBuilder
* SDB
) {
4349 SelectionDAG
& DAG
= SDB
->DAG
;
4350 LLVMContext
&Context
= *DAG
.getContext();
4352 assert(Ptr
->getType()->isVectorTy() && "Uexpected pointer type");
4353 const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Ptr
);
4357 const Value
*GEPPtr
= GEP
->getPointerOperand();
4358 if (!GEPPtr
->getType()->isVectorTy())
4360 else if (!(Ptr
= getSplatValue(GEPPtr
)))
4363 unsigned FinalIndex
= GEP
->getNumOperands() - 1;
4364 Value
*IndexVal
= GEP
->getOperand(FinalIndex
);
4366 // Ensure all the other indices are 0.
4367 for (unsigned i
= 1; i
< FinalIndex
; ++i
) {
4368 auto *C
= dyn_cast
<ConstantInt
>(GEP
->getOperand(i
));
4369 if (!C
|| !C
->isZero())
4373 // The operands of the GEP may be defined in another basic block.
4374 // In this case we'll not find nodes for the operands.
4375 if (!SDB
->findValue(Ptr
) || !SDB
->findValue(IndexVal
))
4378 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4379 const DataLayout
&DL
= DAG
.getDataLayout();
4380 Scale
= DAG
.getTargetConstant(DL
.getTypeAllocSize(GEP
->getResultElementType()),
4381 SDB
->getCurSDLoc(), TLI
.getPointerTy(DL
));
4382 Base
= SDB
->getValue(Ptr
);
4383 Index
= SDB
->getValue(IndexVal
);
4385 if (!Index
.getValueType().isVector()) {
4386 unsigned GEPWidth
= GEP
->getType()->getVectorNumElements();
4387 EVT VT
= EVT::getVectorVT(Context
, Index
.getValueType(), GEPWidth
);
4388 Index
= DAG
.getSplatBuildVector(VT
, SDLoc(Index
), Index
);
4393 void SelectionDAGBuilder::visitMaskedScatter(const CallInst
&I
) {
4394 SDLoc sdl
= getCurSDLoc();
4396 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4397 const Value
*Ptr
= I
.getArgOperand(1);
4398 SDValue Src0
= getValue(I
.getArgOperand(0));
4399 SDValue Mask
= getValue(I
.getArgOperand(3));
4400 EVT VT
= Src0
.getValueType();
4401 unsigned Alignment
= (cast
<ConstantInt
>(I
.getArgOperand(2)))->getZExtValue();
4403 Alignment
= DAG
.getEVTAlignment(VT
);
4404 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4407 I
.getAAMetadata(AAInfo
);
4412 const Value
*BasePtr
= Ptr
;
4413 bool UniformBase
= getUniformBase(BasePtr
, Base
, Index
, Scale
, this);
4415 const Value
*MemOpBasePtr
= UniformBase
? BasePtr
: nullptr;
4416 MachineMemOperand
*MMO
= DAG
.getMachineFunction().
4417 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr
),
4418 MachineMemOperand::MOStore
, VT
.getStoreSize(),
4421 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4422 Index
= getValue(Ptr
);
4423 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4425 SDValue Ops
[] = { getRoot(), Src0
, Mask
, Base
, Index
, Scale
};
4426 SDValue Scatter
= DAG
.getMaskedScatter(DAG
.getVTList(MVT::Other
), VT
, sdl
,
4428 DAG
.setRoot(Scatter
);
4429 setValue(&I
, Scatter
);
4432 void SelectionDAGBuilder::visitMaskedLoad(const CallInst
&I
, bool IsExpanding
) {
4433 SDLoc sdl
= getCurSDLoc();
4435 auto getMaskedLoadOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4436 unsigned& Alignment
) {
4437 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4438 Ptr
= I
.getArgOperand(0);
4439 Alignment
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
4440 Mask
= I
.getArgOperand(2);
4441 Src0
= I
.getArgOperand(3);
4443 auto getExpandingLoadOps
= [&](Value
* &Ptr
, Value
* &Mask
, Value
* &Src0
,
4444 unsigned& Alignment
) {
4445 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4446 Ptr
= I
.getArgOperand(0);
4448 Mask
= I
.getArgOperand(1);
4449 Src0
= I
.getArgOperand(2);
4452 Value
*PtrOperand
, *MaskOperand
, *Src0Operand
;
4455 getExpandingLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4457 getMaskedLoadOps(PtrOperand
, MaskOperand
, Src0Operand
, Alignment
);
4459 SDValue Ptr
= getValue(PtrOperand
);
4460 SDValue Src0
= getValue(Src0Operand
);
4461 SDValue Mask
= getValue(MaskOperand
);
4463 EVT VT
= Src0
.getValueType();
4465 Alignment
= DAG
.getEVTAlignment(VT
);
4468 I
.getAAMetadata(AAInfo
);
4469 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4471 // Do not serialize masked loads of constant memory with anything.
4473 !AA
|| !AA
->pointsToConstantMemory(MemoryLocation(
4475 LocationSize::precise(
4476 DAG
.getDataLayout().getTypeStoreSize(I
.getType())),
4478 SDValue InChain
= AddToChain
? DAG
.getRoot() : DAG
.getEntryNode();
4480 MachineMemOperand
*MMO
=
4481 DAG
.getMachineFunction().
4482 getMachineMemOperand(MachinePointerInfo(PtrOperand
),
4483 MachineMemOperand::MOLoad
, VT
.getStoreSize(),
4484 Alignment
, AAInfo
, Ranges
);
4486 SDValue Load
= DAG
.getMaskedLoad(VT
, sdl
, InChain
, Ptr
, Mask
, Src0
, VT
, MMO
,
4487 ISD::NON_EXTLOAD
, IsExpanding
);
4489 PendingLoads
.push_back(Load
.getValue(1));
4493 void SelectionDAGBuilder::visitMaskedGather(const CallInst
&I
) {
4494 SDLoc sdl
= getCurSDLoc();
4496 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4497 const Value
*Ptr
= I
.getArgOperand(0);
4498 SDValue Src0
= getValue(I
.getArgOperand(3));
4499 SDValue Mask
= getValue(I
.getArgOperand(2));
4501 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4502 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4503 unsigned Alignment
= (cast
<ConstantInt
>(I
.getArgOperand(1)))->getZExtValue();
4505 Alignment
= DAG
.getEVTAlignment(VT
);
4508 I
.getAAMetadata(AAInfo
);
4509 const MDNode
*Ranges
= I
.getMetadata(LLVMContext::MD_range
);
4511 SDValue Root
= DAG
.getRoot();
4515 const Value
*BasePtr
= Ptr
;
4516 bool UniformBase
= getUniformBase(BasePtr
, Base
, Index
, Scale
, this);
4517 bool ConstantMemory
= false;
4518 if (UniformBase
&& AA
&&
4519 AA
->pointsToConstantMemory(
4520 MemoryLocation(BasePtr
,
4521 LocationSize::precise(
4522 DAG
.getDataLayout().getTypeStoreSize(I
.getType())),
4524 // Do not serialize (non-volatile) loads of constant memory with anything.
4525 Root
= DAG
.getEntryNode();
4526 ConstantMemory
= true;
4529 MachineMemOperand
*MMO
=
4530 DAG
.getMachineFunction().
4531 getMachineMemOperand(MachinePointerInfo(UniformBase
? BasePtr
: nullptr),
4532 MachineMemOperand::MOLoad
, VT
.getStoreSize(),
4533 Alignment
, AAInfo
, Ranges
);
4536 Base
= DAG
.getConstant(0, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4537 Index
= getValue(Ptr
);
4538 Scale
= DAG
.getTargetConstant(1, sdl
, TLI
.getPointerTy(DAG
.getDataLayout()));
4540 SDValue Ops
[] = { Root
, Src0
, Mask
, Base
, Index
, Scale
};
4541 SDValue Gather
= DAG
.getMaskedGather(DAG
.getVTList(VT
, MVT::Other
), VT
, sdl
,
4544 SDValue OutChain
= Gather
.getValue(1);
4545 if (!ConstantMemory
)
4546 PendingLoads
.push_back(OutChain
);
4547 setValue(&I
, Gather
);
4550 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst
&I
) {
4551 SDLoc dl
= getCurSDLoc();
4552 AtomicOrdering SuccessOrdering
= I
.getSuccessOrdering();
4553 AtomicOrdering FailureOrdering
= I
.getFailureOrdering();
4554 SyncScope::ID SSID
= I
.getSyncScopeID();
4556 SDValue InChain
= getRoot();
4558 MVT MemVT
= getValue(I
.getCompareOperand()).getSimpleValueType();
4559 SDVTList VTs
= DAG
.getVTList(MemVT
, MVT::i1
, MVT::Other
);
4561 auto Alignment
= DAG
.getEVTAlignment(MemVT
);
4563 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4565 Flags
|= MachineMemOperand::MOVolatile
;
4566 Flags
|= DAG
.getTargetLoweringInfo().getMMOFlags(I
);
4568 MachineFunction
&MF
= DAG
.getMachineFunction();
4569 MachineMemOperand
*MMO
=
4570 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()),
4571 Flags
, MemVT
.getStoreSize(), Alignment
,
4572 AAMDNodes(), nullptr, SSID
, SuccessOrdering
,
4575 SDValue L
= DAG
.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS
,
4576 dl
, MemVT
, VTs
, InChain
,
4577 getValue(I
.getPointerOperand()),
4578 getValue(I
.getCompareOperand()),
4579 getValue(I
.getNewValOperand()), MMO
);
4581 SDValue OutChain
= L
.getValue(2);
4584 DAG
.setRoot(OutChain
);
4587 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst
&I
) {
4588 SDLoc dl
= getCurSDLoc();
4590 switch (I
.getOperation()) {
4591 default: llvm_unreachable("Unknown atomicrmw operation");
4592 case AtomicRMWInst::Xchg
: NT
= ISD::ATOMIC_SWAP
; break;
4593 case AtomicRMWInst::Add
: NT
= ISD::ATOMIC_LOAD_ADD
; break;
4594 case AtomicRMWInst::Sub
: NT
= ISD::ATOMIC_LOAD_SUB
; break;
4595 case AtomicRMWInst::And
: NT
= ISD::ATOMIC_LOAD_AND
; break;
4596 case AtomicRMWInst::Nand
: NT
= ISD::ATOMIC_LOAD_NAND
; break;
4597 case AtomicRMWInst::Or
: NT
= ISD::ATOMIC_LOAD_OR
; break;
4598 case AtomicRMWInst::Xor
: NT
= ISD::ATOMIC_LOAD_XOR
; break;
4599 case AtomicRMWInst::Max
: NT
= ISD::ATOMIC_LOAD_MAX
; break;
4600 case AtomicRMWInst::Min
: NT
= ISD::ATOMIC_LOAD_MIN
; break;
4601 case AtomicRMWInst::UMax
: NT
= ISD::ATOMIC_LOAD_UMAX
; break;
4602 case AtomicRMWInst::UMin
: NT
= ISD::ATOMIC_LOAD_UMIN
; break;
4603 case AtomicRMWInst::FAdd
: NT
= ISD::ATOMIC_LOAD_FADD
; break;
4604 case AtomicRMWInst::FSub
: NT
= ISD::ATOMIC_LOAD_FSUB
; break;
4606 AtomicOrdering Ordering
= I
.getOrdering();
4607 SyncScope::ID SSID
= I
.getSyncScopeID();
4609 SDValue InChain
= getRoot();
4611 auto MemVT
= getValue(I
.getValOperand()).getSimpleValueType();
4612 auto Alignment
= DAG
.getEVTAlignment(MemVT
);
4614 auto Flags
= MachineMemOperand::MOLoad
| MachineMemOperand::MOStore
;
4616 Flags
|= MachineMemOperand::MOVolatile
;
4617 Flags
|= DAG
.getTargetLoweringInfo().getMMOFlags(I
);
4619 MachineFunction
&MF
= DAG
.getMachineFunction();
4620 MachineMemOperand
*MMO
=
4621 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()), Flags
,
4622 MemVT
.getStoreSize(), Alignment
, AAMDNodes(),
4623 nullptr, SSID
, Ordering
);
4626 DAG
.getAtomic(NT
, dl
, MemVT
, InChain
,
4627 getValue(I
.getPointerOperand()), getValue(I
.getValOperand()),
4630 SDValue OutChain
= L
.getValue(1);
4633 DAG
.setRoot(OutChain
);
4636 void SelectionDAGBuilder::visitFence(const FenceInst
&I
) {
4637 SDLoc dl
= getCurSDLoc();
4638 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4641 Ops
[1] = DAG
.getConstant((unsigned)I
.getOrdering(), dl
,
4642 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4643 Ops
[2] = DAG
.getConstant(I
.getSyncScopeID(), dl
,
4644 TLI
.getFenceOperandTy(DAG
.getDataLayout()));
4645 DAG
.setRoot(DAG
.getNode(ISD::ATOMIC_FENCE
, dl
, MVT::Other
, Ops
));
4648 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst
&I
) {
4649 SDLoc dl
= getCurSDLoc();
4650 AtomicOrdering Order
= I
.getOrdering();
4651 SyncScope::ID SSID
= I
.getSyncScopeID();
4653 SDValue InChain
= getRoot();
4655 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4656 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
4657 EVT MemVT
= TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType());
4659 if (!TLI
.supportsUnalignedAtomics() &&
4660 I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4661 report_fatal_error("Cannot generate unaligned atomic load");
4663 auto Flags
= MachineMemOperand::MOLoad
;
4665 Flags
|= MachineMemOperand::MOVolatile
;
4666 if (I
.getMetadata(LLVMContext::MD_invariant_load
) != nullptr)
4667 Flags
|= MachineMemOperand::MOInvariant
;
4668 if (isDereferenceablePointer(I
.getPointerOperand(), DAG
.getDataLayout()))
4669 Flags
|= MachineMemOperand::MODereferenceable
;
4671 Flags
|= TLI
.getMMOFlags(I
);
4673 MachineMemOperand
*MMO
=
4674 DAG
.getMachineFunction().
4675 getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()),
4676 Flags
, MemVT
.getStoreSize(),
4677 I
.getAlignment() ? I
.getAlignment() :
4678 DAG
.getEVTAlignment(MemVT
),
4679 AAMDNodes(), nullptr, SSID
, Order
);
4681 InChain
= TLI
.prepareVolatileOrAtomicLoad(InChain
, dl
, DAG
);
4683 DAG
.getAtomic(ISD::ATOMIC_LOAD
, dl
, MemVT
, MemVT
, InChain
,
4684 getValue(I
.getPointerOperand()), MMO
);
4686 SDValue OutChain
= L
.getValue(1);
4688 L
= DAG
.getPtrExtOrTrunc(L
, dl
, VT
);
4691 DAG
.setRoot(OutChain
);
4694 void SelectionDAGBuilder::visitAtomicStore(const StoreInst
&I
) {
4695 SDLoc dl
= getCurSDLoc();
4697 AtomicOrdering Ordering
= I
.getOrdering();
4698 SyncScope::ID SSID
= I
.getSyncScopeID();
4700 SDValue InChain
= getRoot();
4702 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4704 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getValueOperand()->getType());
4706 if (I
.getAlignment() < MemVT
.getSizeInBits() / 8)
4707 report_fatal_error("Cannot generate unaligned atomic store");
4709 auto Flags
= MachineMemOperand::MOStore
;
4711 Flags
|= MachineMemOperand::MOVolatile
;
4712 Flags
|= TLI
.getMMOFlags(I
);
4714 MachineFunction
&MF
= DAG
.getMachineFunction();
4715 MachineMemOperand
*MMO
=
4716 MF
.getMachineMemOperand(MachinePointerInfo(I
.getPointerOperand()), Flags
,
4717 MemVT
.getStoreSize(), I
.getAlignment(), AAMDNodes(),
4718 nullptr, SSID
, Ordering
);
4720 SDValue Val
= getValue(I
.getValueOperand());
4721 if (Val
.getValueType() != MemVT
)
4722 Val
= DAG
.getPtrExtOrTrunc(Val
, dl
, MemVT
);
4724 SDValue OutChain
= DAG
.getAtomic(ISD::ATOMIC_STORE
, dl
, MemVT
, InChain
,
4725 getValue(I
.getPointerOperand()), Val
, MMO
);
4728 DAG
.setRoot(OutChain
);
4731 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4733 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst
&I
,
4734 unsigned Intrinsic
) {
4735 // Ignore the callsite's attributes. A specific call site may be marked with
4736 // readnone, but the lowering code will expect the chain based on the
4738 const Function
*F
= I
.getCalledFunction();
4739 bool HasChain
= !F
->doesNotAccessMemory();
4740 bool OnlyLoad
= HasChain
&& F
->onlyReadsMemory();
4742 // Build the operand list.
4743 SmallVector
<SDValue
, 8> Ops
;
4744 if (HasChain
) { // If this intrinsic has side-effects, chainify it.
4746 // We don't need to serialize loads against other loads.
4747 Ops
.push_back(DAG
.getRoot());
4749 Ops
.push_back(getRoot());
4753 // Info is set by getTgtMemInstrinsic
4754 TargetLowering::IntrinsicInfo Info
;
4755 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
4756 bool IsTgtIntrinsic
= TLI
.getTgtMemIntrinsic(Info
, I
,
4757 DAG
.getMachineFunction(),
4760 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4761 if (!IsTgtIntrinsic
|| Info
.opc
== ISD::INTRINSIC_VOID
||
4762 Info
.opc
== ISD::INTRINSIC_W_CHAIN
)
4763 Ops
.push_back(DAG
.getTargetConstant(Intrinsic
, getCurSDLoc(),
4764 TLI
.getPointerTy(DAG
.getDataLayout())));
4766 // Add all operands of the call to the operand list.
4767 for (unsigned i
= 0, e
= I
.getNumArgOperands(); i
!= e
; ++i
) {
4768 SDValue Op
= getValue(I
.getArgOperand(i
));
4772 SmallVector
<EVT
, 4> ValueVTs
;
4773 ComputeValueVTs(TLI
, DAG
.getDataLayout(), I
.getType(), ValueVTs
);
4776 ValueVTs
.push_back(MVT::Other
);
4778 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
4782 if (IsTgtIntrinsic
) {
4783 // This is target intrinsic that touches memory
4784 Result
= DAG
.getMemIntrinsicNode(Info
.opc
, getCurSDLoc(), VTs
,
4786 MachinePointerInfo(Info
.ptrVal
, Info
.offset
), Info
.align
,
4787 Info
.flags
, Info
.size
);
4788 } else if (!HasChain
) {
4789 Result
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4790 } else if (!I
.getType()->isVoidTy()) {
4791 Result
= DAG
.getNode(ISD::INTRINSIC_W_CHAIN
, getCurSDLoc(), VTs
, Ops
);
4793 Result
= DAG
.getNode(ISD::INTRINSIC_VOID
, getCurSDLoc(), VTs
, Ops
);
4797 SDValue Chain
= Result
.getValue(Result
.getNode()->getNumValues()-1);
4799 PendingLoads
.push_back(Chain
);
4804 if (!I
.getType()->isVoidTy()) {
4805 if (VectorType
*PTy
= dyn_cast
<VectorType
>(I
.getType())) {
4806 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), PTy
);
4807 Result
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), VT
, Result
);
4809 Result
= lowerRangeToAssertZExt(DAG
, I
, Result
);
4811 setValue(&I
, Result
);
4815 /// GetSignificand - Get the significand and build it into a floating-point
4816 /// number with exponent of 1:
4818 /// Op = (Op & 0x007fffff) | 0x3f800000;
4820 /// where Op is the hexadecimal representation of floating point value.
4821 static SDValue
GetSignificand(SelectionDAG
&DAG
, SDValue Op
, const SDLoc
&dl
) {
4822 SDValue t1
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4823 DAG
.getConstant(0x007fffff, dl
, MVT::i32
));
4824 SDValue t2
= DAG
.getNode(ISD::OR
, dl
, MVT::i32
, t1
,
4825 DAG
.getConstant(0x3f800000, dl
, MVT::i32
));
4826 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
, t2
);
4829 /// GetExponent - Get the exponent:
4831 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4833 /// where Op is the hexadecimal representation of floating point value.
4834 static SDValue
GetExponent(SelectionDAG
&DAG
, SDValue Op
,
4835 const TargetLowering
&TLI
, const SDLoc
&dl
) {
4836 SDValue t0
= DAG
.getNode(ISD::AND
, dl
, MVT::i32
, Op
,
4837 DAG
.getConstant(0x7f800000, dl
, MVT::i32
));
4838 SDValue t1
= DAG
.getNode(
4839 ISD::SRL
, dl
, MVT::i32
, t0
,
4840 DAG
.getConstant(23, dl
, TLI
.getPointerTy(DAG
.getDataLayout())));
4841 SDValue t2
= DAG
.getNode(ISD::SUB
, dl
, MVT::i32
, t1
,
4842 DAG
.getConstant(127, dl
, MVT::i32
));
4843 return DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, t2
);
4846 /// getF32Constant - Get 32-bit floating point constant.
4847 static SDValue
getF32Constant(SelectionDAG
&DAG
, unsigned Flt
,
4849 return DAG
.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt
)), dl
,
4853 static SDValue
getLimitedPrecisionExp2(SDValue t0
, const SDLoc
&dl
,
4854 SelectionDAG
&DAG
) {
4855 // TODO: What fast-math-flags should be set on the floating-point nodes?
4857 // IntegerPartOfX = ((int32_t)(t0);
4858 SDValue IntegerPartOfX
= DAG
.getNode(ISD::FP_TO_SINT
, dl
, MVT::i32
, t0
);
4860 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4861 SDValue t1
= DAG
.getNode(ISD::SINT_TO_FP
, dl
, MVT::f32
, IntegerPartOfX
);
4862 SDValue X
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
, t1
);
4864 // IntegerPartOfX <<= 23;
4865 IntegerPartOfX
= DAG
.getNode(
4866 ISD::SHL
, dl
, MVT::i32
, IntegerPartOfX
,
4867 DAG
.getConstant(23, dl
, DAG
.getTargetLoweringInfo().getPointerTy(
4868 DAG
.getDataLayout())));
4870 SDValue TwoToFractionalPartOfX
;
4871 if (LimitFloatPrecision
<= 6) {
4872 // For floating-point precision of 6:
4874 // TwoToFractionalPartOfX =
4876 // (0.735607626f + 0.252464424f * x) * x;
4878 // error 0.0144103317, which is 6 bits
4879 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4880 getF32Constant(DAG
, 0x3e814304, dl
));
4881 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4882 getF32Constant(DAG
, 0x3f3c50c8, dl
));
4883 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4884 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4885 getF32Constant(DAG
, 0x3f7f5e7e, dl
));
4886 } else if (LimitFloatPrecision
<= 12) {
4887 // For floating-point precision of 12:
4889 // TwoToFractionalPartOfX =
4892 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4894 // error 0.000107046256, which is 13 to 14 bits
4895 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4896 getF32Constant(DAG
, 0x3da235e3, dl
));
4897 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4898 getF32Constant(DAG
, 0x3e65b8f3, dl
));
4899 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4900 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4901 getF32Constant(DAG
, 0x3f324b07, dl
));
4902 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4903 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4904 getF32Constant(DAG
, 0x3f7ff8fd, dl
));
4905 } else { // LimitFloatPrecision <= 18
4906 // For floating-point precision of 18:
4908 // TwoToFractionalPartOfX =
4912 // (0.554906021e-1f +
4913 // (0.961591928e-2f +
4914 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4915 // error 2.47208000*10^(-7), which is better than 18 bits
4916 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4917 getF32Constant(DAG
, 0x3924b03e, dl
));
4918 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
4919 getF32Constant(DAG
, 0x3ab24b87, dl
));
4920 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
4921 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
4922 getF32Constant(DAG
, 0x3c1d8c17, dl
));
4923 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
4924 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
4925 getF32Constant(DAG
, 0x3d634a1d, dl
));
4926 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
4927 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
4928 getF32Constant(DAG
, 0x3e75fe14, dl
));
4929 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
4930 SDValue t11
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t10
,
4931 getF32Constant(DAG
, 0x3f317234, dl
));
4932 SDValue t12
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t11
, X
);
4933 TwoToFractionalPartOfX
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t12
,
4934 getF32Constant(DAG
, 0x3f800000, dl
));
4937 // Add the exponent into the result in integer domain.
4938 SDValue t13
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, TwoToFractionalPartOfX
);
4939 return DAG
.getNode(ISD::BITCAST
, dl
, MVT::f32
,
4940 DAG
.getNode(ISD::ADD
, dl
, MVT::i32
, t13
, IntegerPartOfX
));
4943 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4944 /// limited-precision mode.
4945 static SDValue
expandExp(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
4946 const TargetLowering
&TLI
) {
4947 if (Op
.getValueType() == MVT::f32
&&
4948 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
4950 // Put the exponent in the right bit position for later addition to the
4953 // #define LOG2OFe 1.4426950f
4954 // t0 = Op * LOG2OFe
4956 // TODO: What fast-math-flags should be set here?
4957 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Op
,
4958 getF32Constant(DAG
, 0x3fb8aa3b, dl
));
4959 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
4962 // No special expansion.
4963 return DAG
.getNode(ISD::FEXP
, dl
, Op
.getValueType(), Op
);
4966 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4967 /// limited-precision mode.
4968 static SDValue
expandLog(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
4969 const TargetLowering
&TLI
) {
4970 // TODO: What fast-math-flags should be set on the floating-point nodes?
4972 if (Op
.getValueType() == MVT::f32
&&
4973 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
4974 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
4976 // Scale the exponent by log(2) [0.69314718f].
4977 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
4978 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
4979 getF32Constant(DAG
, 0x3f317218, dl
));
4981 // Get the significand and build it into a floating-point number with
4983 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
4985 SDValue LogOfMantissa
;
4986 if (LimitFloatPrecision
<= 6) {
4987 // For floating-point precision of 6:
4991 // (1.4034025f - 0.23903021f * x) * x;
4993 // error 0.0034276066, which is better than 8 bits
4994 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
4995 getF32Constant(DAG
, 0xbe74c456, dl
));
4996 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
4997 getF32Constant(DAG
, 0x3fb3a2b1, dl
));
4998 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
4999 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5000 getF32Constant(DAG
, 0x3f949a29, dl
));
5001 } else if (LimitFloatPrecision
<= 12) {
5002 // For floating-point precision of 12:
5008 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5010 // error 0.000061011436, which is 14 bits
5011 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5012 getF32Constant(DAG
, 0xbd67b6d6, dl
));
5013 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5014 getF32Constant(DAG
, 0x3ee4f4b8, dl
));
5015 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5016 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5017 getF32Constant(DAG
, 0x3fbc278b, dl
));
5018 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5019 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5020 getF32Constant(DAG
, 0x40348e95, dl
));
5021 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5022 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5023 getF32Constant(DAG
, 0x3fdef31a, dl
));
5024 } else { // LimitFloatPrecision <= 18
5025 // For floating-point precision of 18:
5033 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5035 // error 0.0000023660568, which is better than 18 bits
5036 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5037 getF32Constant(DAG
, 0xbc91e5ac, dl
));
5038 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5039 getF32Constant(DAG
, 0x3e4350aa, dl
));
5040 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5041 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5042 getF32Constant(DAG
, 0x3f60d3e3, dl
));
5043 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5044 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5045 getF32Constant(DAG
, 0x4011cdf0, dl
));
5046 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5047 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5048 getF32Constant(DAG
, 0x406cfd1c, dl
));
5049 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5050 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
5051 getF32Constant(DAG
, 0x408797cb, dl
));
5052 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
5053 LogOfMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
5054 getF32Constant(DAG
, 0x4006dcab, dl
));
5057 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, LogOfMantissa
);
5060 // No special expansion.
5061 return DAG
.getNode(ISD::FLOG
, dl
, Op
.getValueType(), Op
);
5064 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5065 /// limited-precision mode.
5066 static SDValue
expandLog2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5067 const TargetLowering
&TLI
) {
5068 // TODO: What fast-math-flags should be set on the floating-point nodes?
5070 if (Op
.getValueType() == MVT::f32
&&
5071 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5072 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5074 // Get the exponent.
5075 SDValue LogOfExponent
= GetExponent(DAG
, Op1
, TLI
, dl
);
5077 // Get the significand and build it into a floating-point number with
5079 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5081 // Different possible minimax approximations of significand in
5082 // floating-point for various degrees of accuracy over [1,2].
5083 SDValue Log2ofMantissa
;
5084 if (LimitFloatPrecision
<= 6) {
5085 // For floating-point precision of 6:
5087 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5089 // error 0.0049451742, which is more than 7 bits
5090 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5091 getF32Constant(DAG
, 0xbeb08fe0, dl
));
5092 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5093 getF32Constant(DAG
, 0x40019463, dl
));
5094 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5095 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5096 getF32Constant(DAG
, 0x3fd6633d, dl
));
5097 } else if (LimitFloatPrecision
<= 12) {
5098 // For floating-point precision of 12:
5104 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5106 // error 0.0000876136000, which is better than 13 bits
5107 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5108 getF32Constant(DAG
, 0xbda7262e, dl
));
5109 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5110 getF32Constant(DAG
, 0x3f25280b, dl
));
5111 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5112 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5113 getF32Constant(DAG
, 0x4007b923, dl
));
5114 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5115 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5116 getF32Constant(DAG
, 0x40823e2f, dl
));
5117 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5118 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5119 getF32Constant(DAG
, 0x4020d29c, dl
));
5120 } else { // LimitFloatPrecision <= 18
5121 // For floating-point precision of 18:
5130 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5132 // error 0.0000018516, which is better than 18 bits
5133 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5134 getF32Constant(DAG
, 0xbcd2769e, dl
));
5135 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5136 getF32Constant(DAG
, 0x3e8ce0b9, dl
));
5137 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5138 SDValue t3
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5139 getF32Constant(DAG
, 0x3fa22ae7, dl
));
5140 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5141 SDValue t5
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t4
,
5142 getF32Constant(DAG
, 0x40525723, dl
));
5143 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5144 SDValue t7
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t6
,
5145 getF32Constant(DAG
, 0x40aaf200, dl
));
5146 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5147 SDValue t9
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t8
,
5148 getF32Constant(DAG
, 0x40c39dad, dl
));
5149 SDValue t10
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t9
, X
);
5150 Log2ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t10
,
5151 getF32Constant(DAG
, 0x4042902c, dl
));
5154 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log2ofMantissa
);
5157 // No special expansion.
5158 return DAG
.getNode(ISD::FLOG2
, dl
, Op
.getValueType(), Op
);
5161 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5162 /// limited-precision mode.
5163 static SDValue
expandLog10(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5164 const TargetLowering
&TLI
) {
5165 // TODO: What fast-math-flags should be set on the floating-point nodes?
5167 if (Op
.getValueType() == MVT::f32
&&
5168 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5169 SDValue Op1
= DAG
.getNode(ISD::BITCAST
, dl
, MVT::i32
, Op
);
5171 // Scale the exponent by log10(2) [0.30102999f].
5172 SDValue Exp
= GetExponent(DAG
, Op1
, TLI
, dl
);
5173 SDValue LogOfExponent
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, Exp
,
5174 getF32Constant(DAG
, 0x3e9a209a, dl
));
5176 // Get the significand and build it into a floating-point number with
5178 SDValue X
= GetSignificand(DAG
, Op1
, dl
);
5180 SDValue Log10ofMantissa
;
5181 if (LimitFloatPrecision
<= 6) {
5182 // For floating-point precision of 6:
5184 // Log10ofMantissa =
5186 // (0.60948995f - 0.10380950f * x) * x;
5188 // error 0.0014886165, which is 6 bits
5189 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5190 getF32Constant(DAG
, 0xbdd49a13, dl
));
5191 SDValue t1
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t0
,
5192 getF32Constant(DAG
, 0x3f1c0789, dl
));
5193 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5194 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t2
,
5195 getF32Constant(DAG
, 0x3f011300, dl
));
5196 } else if (LimitFloatPrecision
<= 12) {
5197 // For floating-point precision of 12:
5199 // Log10ofMantissa =
5202 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5204 // error 0.00019228036, which is better than 12 bits
5205 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5206 getF32Constant(DAG
, 0x3d431f31, dl
));
5207 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5208 getF32Constant(DAG
, 0x3ea21fb2, dl
));
5209 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5210 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5211 getF32Constant(DAG
, 0x3f6ae232, dl
));
5212 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5213 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5214 getF32Constant(DAG
, 0x3f25f7c3, dl
));
5215 } else { // LimitFloatPrecision <= 18
5216 // For floating-point precision of 18:
5218 // Log10ofMantissa =
5223 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5225 // error 0.0000037995730, which is better than 18 bits
5226 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, X
,
5227 getF32Constant(DAG
, 0x3c5d51ce, dl
));
5228 SDValue t1
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t0
,
5229 getF32Constant(DAG
, 0x3e00685a, dl
));
5230 SDValue t2
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t1
, X
);
5231 SDValue t3
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t2
,
5232 getF32Constant(DAG
, 0x3efb6798, dl
));
5233 SDValue t4
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t3
, X
);
5234 SDValue t5
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t4
,
5235 getF32Constant(DAG
, 0x3f88d192, dl
));
5236 SDValue t6
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t5
, X
);
5237 SDValue t7
= DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, t6
,
5238 getF32Constant(DAG
, 0x3fc4316c, dl
));
5239 SDValue t8
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, t7
, X
);
5240 Log10ofMantissa
= DAG
.getNode(ISD::FSUB
, dl
, MVT::f32
, t8
,
5241 getF32Constant(DAG
, 0x3f57ce70, dl
));
5244 return DAG
.getNode(ISD::FADD
, dl
, MVT::f32
, LogOfExponent
, Log10ofMantissa
);
5247 // No special expansion.
5248 return DAG
.getNode(ISD::FLOG10
, dl
, Op
.getValueType(), Op
);
5251 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5252 /// limited-precision mode.
5253 static SDValue
expandExp2(const SDLoc
&dl
, SDValue Op
, SelectionDAG
&DAG
,
5254 const TargetLowering
&TLI
) {
5255 if (Op
.getValueType() == MVT::f32
&&
5256 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18)
5257 return getLimitedPrecisionExp2(Op
, dl
, DAG
);
5259 // No special expansion.
5260 return DAG
.getNode(ISD::FEXP2
, dl
, Op
.getValueType(), Op
);
5263 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5264 /// limited-precision mode with x == 10.0f.
5265 static SDValue
expandPow(const SDLoc
&dl
, SDValue LHS
, SDValue RHS
,
5266 SelectionDAG
&DAG
, const TargetLowering
&TLI
) {
5267 bool IsExp10
= false;
5268 if (LHS
.getValueType() == MVT::f32
&& RHS
.getValueType() == MVT::f32
&&
5269 LimitFloatPrecision
> 0 && LimitFloatPrecision
<= 18) {
5270 if (ConstantFPSDNode
*LHSC
= dyn_cast
<ConstantFPSDNode
>(LHS
)) {
5272 IsExp10
= LHSC
->isExactlyValue(Ten
);
5276 // TODO: What fast-math-flags should be set on the FMUL node?
5278 // Put the exponent in the right bit position for later addition to the
5281 // #define LOG2OF10 3.3219281f
5282 // t0 = Op * LOG2OF10;
5283 SDValue t0
= DAG
.getNode(ISD::FMUL
, dl
, MVT::f32
, RHS
,
5284 getF32Constant(DAG
, 0x40549a78, dl
));
5285 return getLimitedPrecisionExp2(t0
, dl
, DAG
);
5288 // No special expansion.
5289 return DAG
.getNode(ISD::FPOW
, dl
, LHS
.getValueType(), LHS
, RHS
);
5292 /// ExpandPowI - Expand a llvm.powi intrinsic.
5293 static SDValue
ExpandPowI(const SDLoc
&DL
, SDValue LHS
, SDValue RHS
,
5294 SelectionDAG
&DAG
) {
5295 // If RHS is a constant, we can expand this out to a multiplication tree,
5296 // otherwise we end up lowering to a call to __powidf2 (for example). When
5297 // optimizing for size, we only want to do this if the expansion would produce
5298 // a small number of multiplies, otherwise we do the full expansion.
5299 if (ConstantSDNode
*RHSC
= dyn_cast
<ConstantSDNode
>(RHS
)) {
5300 // Get the exponent as a positive value.
5301 unsigned Val
= RHSC
->getSExtValue();
5302 if ((int)Val
< 0) Val
= -Val
;
5304 // powi(x, 0) -> 1.0
5306 return DAG
.getConstantFP(1.0, DL
, LHS
.getValueType());
5308 const Function
&F
= DAG
.getMachineFunction().getFunction();
5309 if (!F
.hasOptSize() ||
5310 // If optimizing for size, don't insert too many multiplies.
5311 // This inserts up to 5 multiplies.
5312 countPopulation(Val
) + Log2_32(Val
) < 7) {
5313 // We use the simple binary decomposition method to generate the multiply
5314 // sequence. There are more optimal ways to do this (for example,
5315 // powi(x,15) generates one more multiply than it should), but this has
5316 // the benefit of being both really simple and much better than a libcall.
5317 SDValue Res
; // Logically starts equal to 1.0
5318 SDValue CurSquare
= LHS
;
5319 // TODO: Intrinsics should have fast-math-flags that propagate to these
5324 Res
= DAG
.getNode(ISD::FMUL
, DL
,Res
.getValueType(), Res
, CurSquare
);
5326 Res
= CurSquare
; // 1.0*CurSquare.
5329 CurSquare
= DAG
.getNode(ISD::FMUL
, DL
, CurSquare
.getValueType(),
5330 CurSquare
, CurSquare
);
5334 // If the original was negative, invert the result, producing 1/(x*x*x).
5335 if (RHSC
->getSExtValue() < 0)
5336 Res
= DAG
.getNode(ISD::FDIV
, DL
, LHS
.getValueType(),
5337 DAG
.getConstantFP(1.0, DL
, LHS
.getValueType()), Res
);
5342 // Otherwise, expand to a libcall.
5343 return DAG
.getNode(ISD::FPOWI
, DL
, LHS
.getValueType(), LHS
, RHS
);
5346 // getUnderlyingArgReg - Find underlying register used for a truncated or
5347 // bitcasted argument.
5348 static unsigned getUnderlyingArgReg(const SDValue
&N
) {
5349 switch (N
.getOpcode()) {
5350 case ISD::CopyFromReg
:
5351 return cast
<RegisterSDNode
>(N
.getOperand(1))->getReg();
5353 case ISD::AssertZext
:
5354 case ISD::AssertSext
:
5356 return getUnderlyingArgReg(N
.getOperand(0));
5362 /// If the DbgValueInst is a dbg_value of a function argument, create the
5363 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5364 /// instruction selection, they will be inserted to the entry BB.
5365 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5366 const Value
*V
, DILocalVariable
*Variable
, DIExpression
*Expr
,
5367 DILocation
*DL
, bool IsDbgDeclare
, const SDValue
&N
) {
5368 const Argument
*Arg
= dyn_cast
<Argument
>(V
);
5372 if (!IsDbgDeclare
) {
5373 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5374 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5376 bool IsInEntryBlock
= FuncInfo
.MBB
== &FuncInfo
.MF
->front();
5377 if (!IsInEntryBlock
)
5380 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5381 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5382 // variable that also is a param.
5384 // Although, if we are at the top of the entry block already, we can still
5385 // emit using ArgDbgValue. This might catch some situations when the
5386 // dbg.value refers to an argument that isn't used in the entry block, so
5387 // any CopyToReg node would be optimized out and the only way to express
5388 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5389 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5390 // we should only emit as ArgDbgValue if the Variable is an argument to the
5391 // current function, and the dbg.value intrinsic is found in the entry
5393 bool VariableIsFunctionInputArg
= Variable
->isParameter() &&
5394 !DL
->getInlinedAt();
5395 bool IsInPrologue
= SDNodeOrder
== LowestSDNodeOrder
;
5396 if (!IsInPrologue
&& !VariableIsFunctionInputArg
)
5399 // Here we assume that a function argument on IR level only can be used to
5400 // describe one input parameter on source level. If we for example have
5401 // source code like this
5403 // struct A { long x, y; };
5404 // void foo(struct A a, long b) {
5412 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5414 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5415 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5416 // call void @llvm.dbg.value(metadata i32 %b, "b",
5418 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5421 // then the last dbg.value is describing a parameter "b" using a value that
5422 // is an argument. But since we already has used %a1 to describe a parameter
5423 // we should not handle that last dbg.value here (that would result in an
5424 // incorrect hoisting of the DBG_VALUE to the function entry).
5425 // Notice that we allow one dbg.value per IR level argument, to accomodate
5426 // for the situation with fragments above.
5427 if (VariableIsFunctionInputArg
) {
5428 unsigned ArgNo
= Arg
->getArgNo();
5429 if (ArgNo
>= FuncInfo
.DescribedArgs
.size())
5430 FuncInfo
.DescribedArgs
.resize(ArgNo
+ 1, false);
5431 else if (!IsInPrologue
&& FuncInfo
.DescribedArgs
.test(ArgNo
))
5433 FuncInfo
.DescribedArgs
.set(ArgNo
);
5437 MachineFunction
&MF
= DAG
.getMachineFunction();
5438 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
5440 bool IsIndirect
= false;
5441 Optional
<MachineOperand
> Op
;
5442 // Some arguments' frame index is recorded during argument lowering.
5443 int FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
5444 if (FI
!= std::numeric_limits
<int>::max())
5445 Op
= MachineOperand::CreateFI(FI
);
5447 if (!Op
&& N
.getNode()) {
5448 unsigned Reg
= getUnderlyingArgReg(N
);
5449 if (Reg
&& TargetRegisterInfo::isVirtualRegister(Reg
)) {
5450 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
5451 unsigned PR
= RegInfo
.getLiveInPhysReg(Reg
);
5456 Op
= MachineOperand::CreateReg(Reg
, false);
5457 IsIndirect
= IsDbgDeclare
;
5461 if (!Op
&& N
.getNode()) {
5462 // Check if frame index is available.
5463 SDValue LCandidate
= peekThroughBitcasts(N
);
5464 if (LoadSDNode
*LNode
= dyn_cast
<LoadSDNode
>(LCandidate
.getNode()))
5465 if (FrameIndexSDNode
*FINode
=
5466 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
5467 Op
= MachineOperand::CreateFI(FINode
->getIndex());
5471 // Check if ValueMap has reg number.
5472 DenseMap
<const Value
*, unsigned>::iterator VMI
= FuncInfo
.ValueMap
.find(V
);
5473 if (VMI
!= FuncInfo
.ValueMap
.end()) {
5474 const auto &TLI
= DAG
.getTargetLoweringInfo();
5475 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), VMI
->second
,
5476 V
->getType(), getABIRegCopyCC(V
));
5477 if (RFV
.occupiesMultipleRegs()) {
5478 unsigned Offset
= 0;
5479 for (auto RegAndSize
: RFV
.getRegsAndSizes()) {
5480 Op
= MachineOperand::CreateReg(RegAndSize
.first
, false);
5481 auto FragmentExpr
= DIExpression::createFragmentExpression(
5482 Expr
, Offset
, RegAndSize
.second
);
5485 FuncInfo
.ArgDbgValues
.push_back(
5486 BuildMI(MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsDbgDeclare
,
5487 Op
->getReg(), Variable
, *FragmentExpr
));
5488 Offset
+= RegAndSize
.second
;
5492 Op
= MachineOperand::CreateReg(VMI
->second
, false);
5493 IsIndirect
= IsDbgDeclare
;
5500 assert(Variable
->isValidLocationForIntrinsic(DL
) &&
5501 "Expected inlined-at fields to agree");
5502 IsIndirect
= (Op
->isReg()) ? IsIndirect
: true;
5503 FuncInfo
.ArgDbgValues
.push_back(
5504 BuildMI(MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
), IsIndirect
,
5505 *Op
, Variable
, Expr
));
5510 /// Return the appropriate SDDbgValue based on N.
5511 SDDbgValue
*SelectionDAGBuilder::getDbgValue(SDValue N
,
5512 DILocalVariable
*Variable
,
5515 unsigned DbgSDNodeOrder
) {
5516 if (auto *FISDN
= dyn_cast
<FrameIndexSDNode
>(N
.getNode())) {
5517 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5518 // stack slot locations.
5520 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5521 // debug values here after optimization:
5523 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5524 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5526 // Both describe the direct values of their associated variables.
5527 return DAG
.getFrameIndexDbgValue(Variable
, Expr
, FISDN
->getIndex(),
5528 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5530 return DAG
.getDbgValue(Variable
, Expr
, N
.getNode(), N
.getResNo(),
5531 /*IsIndirect*/ false, dl
, DbgSDNodeOrder
);
5534 // VisualStudio defines setjmp as _setjmp
5535 #if defined(_MSC_VER) && defined(setjmp) && \
5536 !defined(setjmp_undefined_for_msvc)
5537 # pragma push_macro("setjmp")
5539 # define setjmp_undefined_for_msvc
5542 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic
) {
5543 switch (Intrinsic
) {
5544 case Intrinsic::smul_fix
:
5545 return ISD::SMULFIX
;
5546 case Intrinsic::umul_fix
:
5547 return ISD::UMULFIX
;
5549 llvm_unreachable("Unhandled fixed point intrinsic");
5553 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst
&I
,
5554 const char *FunctionName
) {
5555 assert(FunctionName
&& "FunctionName must not be nullptr");
5556 SDValue Callee
= DAG
.getExternalSymbol(
5558 DAG
.getTargetLoweringInfo().getPointerTy(DAG
.getDataLayout()));
5559 LowerCallTo(&I
, Callee
, I
.isTailCall());
5562 /// Lower the call to the specified intrinsic function.
5563 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst
&I
,
5564 unsigned Intrinsic
) {
5565 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
5566 SDLoc sdl
= getCurSDLoc();
5567 DebugLoc dl
= getCurDebugLoc();
5570 switch (Intrinsic
) {
5572 // By default, turn this into a target intrinsic node.
5573 visitTargetIntrinsic(I
, Intrinsic
);
5575 case Intrinsic::vastart
: visitVAStart(I
); return;
5576 case Intrinsic::vaend
: visitVAEnd(I
); return;
5577 case Intrinsic::vacopy
: visitVACopy(I
); return;
5578 case Intrinsic::returnaddress
:
5579 setValue(&I
, DAG
.getNode(ISD::RETURNADDR
, sdl
,
5580 TLI
.getPointerTy(DAG
.getDataLayout()),
5581 getValue(I
.getArgOperand(0))));
5583 case Intrinsic::addressofreturnaddress
:
5584 setValue(&I
, DAG
.getNode(ISD::ADDROFRETURNADDR
, sdl
,
5585 TLI
.getPointerTy(DAG
.getDataLayout())));
5587 case Intrinsic::sponentry
:
5588 setValue(&I
, DAG
.getNode(ISD::SPONENTRY
, sdl
,
5589 TLI
.getPointerTy(DAG
.getDataLayout())));
5591 case Intrinsic::frameaddress
:
5592 setValue(&I
, DAG
.getNode(ISD::FRAMEADDR
, sdl
,
5593 TLI
.getPointerTy(DAG
.getDataLayout()),
5594 getValue(I
.getArgOperand(0))));
5596 case Intrinsic::read_register
: {
5597 Value
*Reg
= I
.getArgOperand(0);
5598 SDValue Chain
= getRoot();
5600 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5601 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
5602 Res
= DAG
.getNode(ISD::READ_REGISTER
, sdl
,
5603 DAG
.getVTList(VT
, MVT::Other
), Chain
, RegName
);
5605 DAG
.setRoot(Res
.getValue(1));
5608 case Intrinsic::write_register
: {
5609 Value
*Reg
= I
.getArgOperand(0);
5610 Value
*RegValue
= I
.getArgOperand(1);
5611 SDValue Chain
= getRoot();
5613 DAG
.getMDNode(cast
<MDNode
>(cast
<MetadataAsValue
>(Reg
)->getMetadata()));
5614 DAG
.setRoot(DAG
.getNode(ISD::WRITE_REGISTER
, sdl
, MVT::Other
, Chain
,
5615 RegName
, getValue(RegValue
)));
5618 case Intrinsic::setjmp
:
5619 lowerCallToExternalSymbol(I
, &"_setjmp"[!TLI
.usesUnderscoreSetJmp()]);
5621 case Intrinsic::longjmp
:
5622 lowerCallToExternalSymbol(I
, &"_longjmp"[!TLI
.usesUnderscoreLongJmp()]);
5624 case Intrinsic::memcpy
: {
5625 const auto &MCI
= cast
<MemCpyInst
>(I
);
5626 SDValue Op1
= getValue(I
.getArgOperand(0));
5627 SDValue Op2
= getValue(I
.getArgOperand(1));
5628 SDValue Op3
= getValue(I
.getArgOperand(2));
5629 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5630 unsigned DstAlign
= std::max
<unsigned>(MCI
.getDestAlignment(), 1);
5631 unsigned SrcAlign
= std::max
<unsigned>(MCI
.getSourceAlignment(), 1);
5632 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
5633 bool isVol
= MCI
.isVolatile();
5634 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5635 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5637 SDValue MC
= DAG
.getMemcpy(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5639 MachinePointerInfo(I
.getArgOperand(0)),
5640 MachinePointerInfo(I
.getArgOperand(1)));
5641 updateDAGForMaybeTailCall(MC
);
5644 case Intrinsic::memset
: {
5645 const auto &MSI
= cast
<MemSetInst
>(I
);
5646 SDValue Op1
= getValue(I
.getArgOperand(0));
5647 SDValue Op2
= getValue(I
.getArgOperand(1));
5648 SDValue Op3
= getValue(I
.getArgOperand(2));
5649 // @llvm.memset defines 0 and 1 to both mean no alignment.
5650 unsigned Align
= std::max
<unsigned>(MSI
.getDestAlignment(), 1);
5651 bool isVol
= MSI
.isVolatile();
5652 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5653 SDValue MS
= DAG
.getMemset(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5654 isTC
, MachinePointerInfo(I
.getArgOperand(0)));
5655 updateDAGForMaybeTailCall(MS
);
5658 case Intrinsic::memmove
: {
5659 const auto &MMI
= cast
<MemMoveInst
>(I
);
5660 SDValue Op1
= getValue(I
.getArgOperand(0));
5661 SDValue Op2
= getValue(I
.getArgOperand(1));
5662 SDValue Op3
= getValue(I
.getArgOperand(2));
5663 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5664 unsigned DstAlign
= std::max
<unsigned>(MMI
.getDestAlignment(), 1);
5665 unsigned SrcAlign
= std::max
<unsigned>(MMI
.getSourceAlignment(), 1);
5666 unsigned Align
= MinAlign(DstAlign
, SrcAlign
);
5667 bool isVol
= MMI
.isVolatile();
5668 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5669 // FIXME: Support passing different dest/src alignments to the memmove DAG
5671 SDValue MM
= DAG
.getMemmove(getRoot(), sdl
, Op1
, Op2
, Op3
, Align
, isVol
,
5672 isTC
, MachinePointerInfo(I
.getArgOperand(0)),
5673 MachinePointerInfo(I
.getArgOperand(1)));
5674 updateDAGForMaybeTailCall(MM
);
5677 case Intrinsic::memcpy_element_unordered_atomic
: {
5678 const AtomicMemCpyInst
&MI
= cast
<AtomicMemCpyInst
>(I
);
5679 SDValue Dst
= getValue(MI
.getRawDest());
5680 SDValue Src
= getValue(MI
.getRawSource());
5681 SDValue Length
= getValue(MI
.getLength());
5683 unsigned DstAlign
= MI
.getDestAlignment();
5684 unsigned SrcAlign
= MI
.getSourceAlignment();
5685 Type
*LengthTy
= MI
.getLength()->getType();
5686 unsigned ElemSz
= MI
.getElementSizeInBytes();
5687 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5688 SDValue MC
= DAG
.getAtomicMemcpy(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5689 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5690 MachinePointerInfo(MI
.getRawDest()),
5691 MachinePointerInfo(MI
.getRawSource()));
5692 updateDAGForMaybeTailCall(MC
);
5695 case Intrinsic::memmove_element_unordered_atomic
: {
5696 auto &MI
= cast
<AtomicMemMoveInst
>(I
);
5697 SDValue Dst
= getValue(MI
.getRawDest());
5698 SDValue Src
= getValue(MI
.getRawSource());
5699 SDValue Length
= getValue(MI
.getLength());
5701 unsigned DstAlign
= MI
.getDestAlignment();
5702 unsigned SrcAlign
= MI
.getSourceAlignment();
5703 Type
*LengthTy
= MI
.getLength()->getType();
5704 unsigned ElemSz
= MI
.getElementSizeInBytes();
5705 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5706 SDValue MC
= DAG
.getAtomicMemmove(getRoot(), sdl
, Dst
, DstAlign
, Src
,
5707 SrcAlign
, Length
, LengthTy
, ElemSz
, isTC
,
5708 MachinePointerInfo(MI
.getRawDest()),
5709 MachinePointerInfo(MI
.getRawSource()));
5710 updateDAGForMaybeTailCall(MC
);
5713 case Intrinsic::memset_element_unordered_atomic
: {
5714 auto &MI
= cast
<AtomicMemSetInst
>(I
);
5715 SDValue Dst
= getValue(MI
.getRawDest());
5716 SDValue Val
= getValue(MI
.getValue());
5717 SDValue Length
= getValue(MI
.getLength());
5719 unsigned DstAlign
= MI
.getDestAlignment();
5720 Type
*LengthTy
= MI
.getLength()->getType();
5721 unsigned ElemSz
= MI
.getElementSizeInBytes();
5722 bool isTC
= I
.isTailCall() && isInTailCallPosition(&I
, DAG
.getTarget());
5723 SDValue MC
= DAG
.getAtomicMemset(getRoot(), sdl
, Dst
, DstAlign
, Val
, Length
,
5724 LengthTy
, ElemSz
, isTC
,
5725 MachinePointerInfo(MI
.getRawDest()));
5726 updateDAGForMaybeTailCall(MC
);
5729 case Intrinsic::dbg_addr
:
5730 case Intrinsic::dbg_declare
: {
5731 const auto &DI
= cast
<DbgVariableIntrinsic
>(I
);
5732 DILocalVariable
*Variable
= DI
.getVariable();
5733 DIExpression
*Expression
= DI
.getExpression();
5734 dropDanglingDebugInfo(Variable
, Expression
);
5735 assert(Variable
&& "Missing variable");
5737 // Check if address has undef value.
5738 const Value
*Address
= DI
.getVariableLocation();
5739 if (!Address
|| isa
<UndefValue
>(Address
) ||
5740 (Address
->use_empty() && !isa
<Argument
>(Address
))) {
5741 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
<< "\n");
5745 bool isParameter
= Variable
->isParameter() || isa
<Argument
>(Address
);
5747 // Check if this variable can be described by a frame index, typically
5748 // either as a static alloca or a byval parameter.
5749 int FI
= std::numeric_limits
<int>::max();
5750 if (const auto *AI
=
5751 dyn_cast
<AllocaInst
>(Address
->stripInBoundsConstantOffsets())) {
5752 if (AI
->isStaticAlloca()) {
5753 auto I
= FuncInfo
.StaticAllocaMap
.find(AI
);
5754 if (I
!= FuncInfo
.StaticAllocaMap
.end())
5757 } else if (const auto *Arg
= dyn_cast
<Argument
>(
5758 Address
->stripInBoundsConstantOffsets())) {
5759 FI
= FuncInfo
.getArgumentFrameIndex(Arg
);
5762 // llvm.dbg.addr is control dependent and always generates indirect
5763 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5764 // the MachineFunction variable table.
5765 if (FI
!= std::numeric_limits
<int>::max()) {
5766 if (Intrinsic
== Intrinsic::dbg_addr
) {
5767 SDDbgValue
*SDV
= DAG
.getFrameIndexDbgValue(
5768 Variable
, Expression
, FI
, /*IsIndirect*/ true, dl
, SDNodeOrder
);
5769 DAG
.AddDbgValue(SDV
, getRoot().getNode(), isParameter
);
5774 SDValue
&N
= NodeMap
[Address
];
5775 if (!N
.getNode() && isa
<Argument
>(Address
))
5776 // Check unused arguments map.
5777 N
= UnusedArgNodeMap
[Address
];
5780 if (const BitCastInst
*BCI
= dyn_cast
<BitCastInst
>(Address
))
5781 Address
= BCI
->getOperand(0);
5782 // Parameters are handled specially.
5783 auto FINode
= dyn_cast
<FrameIndexSDNode
>(N
.getNode());
5784 if (isParameter
&& FINode
) {
5785 // Byval parameter. We have a frame index at this point.
5787 DAG
.getFrameIndexDbgValue(Variable
, Expression
, FINode
->getIndex(),
5788 /*IsIndirect*/ true, dl
, SDNodeOrder
);
5789 } else if (isa
<Argument
>(Address
)) {
5790 // Address is an argument, so try to emit its dbg value using
5791 // virtual register info from the FuncInfo.ValueMap.
5792 EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true, N
);
5795 SDV
= DAG
.getDbgValue(Variable
, Expression
, N
.getNode(), N
.getResNo(),
5796 true, dl
, SDNodeOrder
);
5798 DAG
.AddDbgValue(SDV
, N
.getNode(), isParameter
);
5800 // If Address is an argument then try to emit its dbg value using
5801 // virtual register info from the FuncInfo.ValueMap.
5802 if (!EmitFuncArgumentDbgValue(Address
, Variable
, Expression
, dl
, true,
5804 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI
<< "\n");
5809 case Intrinsic::dbg_label
: {
5810 const DbgLabelInst
&DI
= cast
<DbgLabelInst
>(I
);
5811 DILabel
*Label
= DI
.getLabel();
5812 assert(Label
&& "Missing label");
5815 SDV
= DAG
.getDbgLabel(Label
, dl
, SDNodeOrder
);
5816 DAG
.AddDbgLabel(SDV
);
5819 case Intrinsic::dbg_value
: {
5820 const DbgValueInst
&DI
= cast
<DbgValueInst
>(I
);
5821 assert(DI
.getVariable() && "Missing variable");
5823 DILocalVariable
*Variable
= DI
.getVariable();
5824 DIExpression
*Expression
= DI
.getExpression();
5825 dropDanglingDebugInfo(Variable
, Expression
);
5826 const Value
*V
= DI
.getValue();
5830 if (handleDebugValue(V
, Variable
, Expression
, dl
, DI
.getDebugLoc(),
5834 // TODO: Dangling debug info will eventually either be resolved or produce
5835 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5836 // between the original dbg.value location and its resolved DBG_VALUE, which
5837 // we should ideally fill with an extra Undef DBG_VALUE.
5839 DanglingDebugInfoMap
[V
].emplace_back(&DI
, dl
, SDNodeOrder
);
5843 case Intrinsic::eh_typeid_for
: {
5844 // Find the type id for the given typeinfo.
5845 GlobalValue
*GV
= ExtractTypeInfo(I
.getArgOperand(0));
5846 unsigned TypeID
= DAG
.getMachineFunction().getTypeIDFor(GV
);
5847 Res
= DAG
.getConstant(TypeID
, sdl
, MVT::i32
);
5852 case Intrinsic::eh_return_i32
:
5853 case Intrinsic::eh_return_i64
:
5854 DAG
.getMachineFunction().setCallsEHReturn(true);
5855 DAG
.setRoot(DAG
.getNode(ISD::EH_RETURN
, sdl
,
5858 getValue(I
.getArgOperand(0)),
5859 getValue(I
.getArgOperand(1))));
5861 case Intrinsic::eh_unwind_init
:
5862 DAG
.getMachineFunction().setCallsUnwindInit(true);
5864 case Intrinsic::eh_dwarf_cfa
:
5865 setValue(&I
, DAG
.getNode(ISD::EH_DWARF_CFA
, sdl
,
5866 TLI
.getPointerTy(DAG
.getDataLayout()),
5867 getValue(I
.getArgOperand(0))));
5869 case Intrinsic::eh_sjlj_callsite
: {
5870 MachineModuleInfo
&MMI
= DAG
.getMachineFunction().getMMI();
5871 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(0));
5872 assert(CI
&& "Non-constant call site value in eh.sjlj.callsite!");
5873 assert(MMI
.getCurrentCallSite() == 0 && "Overlapping call sites!");
5875 MMI
.setCurrentCallSite(CI
->getZExtValue());
5878 case Intrinsic::eh_sjlj_functioncontext
: {
5879 // Get and store the index of the function context.
5880 MachineFrameInfo
&MFI
= DAG
.getMachineFunction().getFrameInfo();
5882 cast
<AllocaInst
>(I
.getArgOperand(0)->stripPointerCasts());
5883 int FI
= FuncInfo
.StaticAllocaMap
[FnCtx
];
5884 MFI
.setFunctionContextIndex(FI
);
5887 case Intrinsic::eh_sjlj_setjmp
: {
5890 Ops
[1] = getValue(I
.getArgOperand(0));
5891 SDValue Op
= DAG
.getNode(ISD::EH_SJLJ_SETJMP
, sdl
,
5892 DAG
.getVTList(MVT::i32
, MVT::Other
), Ops
);
5893 setValue(&I
, Op
.getValue(0));
5894 DAG
.setRoot(Op
.getValue(1));
5897 case Intrinsic::eh_sjlj_longjmp
:
5898 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_LONGJMP
, sdl
, MVT::Other
,
5899 getRoot(), getValue(I
.getArgOperand(0))));
5901 case Intrinsic::eh_sjlj_setup_dispatch
:
5902 DAG
.setRoot(DAG
.getNode(ISD::EH_SJLJ_SETUP_DISPATCH
, sdl
, MVT::Other
,
5905 case Intrinsic::masked_gather
:
5906 visitMaskedGather(I
);
5908 case Intrinsic::masked_load
:
5911 case Intrinsic::masked_scatter
:
5912 visitMaskedScatter(I
);
5914 case Intrinsic::masked_store
:
5915 visitMaskedStore(I
);
5917 case Intrinsic::masked_expandload
:
5918 visitMaskedLoad(I
, true /* IsExpanding */);
5920 case Intrinsic::masked_compressstore
:
5921 visitMaskedStore(I
, true /* IsCompressing */);
5923 case Intrinsic::x86_mmx_pslli_w
:
5924 case Intrinsic::x86_mmx_pslli_d
:
5925 case Intrinsic::x86_mmx_pslli_q
:
5926 case Intrinsic::x86_mmx_psrli_w
:
5927 case Intrinsic::x86_mmx_psrli_d
:
5928 case Intrinsic::x86_mmx_psrli_q
:
5929 case Intrinsic::x86_mmx_psrai_w
:
5930 case Intrinsic::x86_mmx_psrai_d
: {
5931 SDValue ShAmt
= getValue(I
.getArgOperand(1));
5932 if (isa
<ConstantSDNode
>(ShAmt
)) {
5933 visitTargetIntrinsic(I
, Intrinsic
);
5936 unsigned NewIntrinsic
= 0;
5937 EVT ShAmtVT
= MVT::v2i32
;
5938 switch (Intrinsic
) {
5939 case Intrinsic::x86_mmx_pslli_w
:
5940 NewIntrinsic
= Intrinsic::x86_mmx_psll_w
;
5942 case Intrinsic::x86_mmx_pslli_d
:
5943 NewIntrinsic
= Intrinsic::x86_mmx_psll_d
;
5945 case Intrinsic::x86_mmx_pslli_q
:
5946 NewIntrinsic
= Intrinsic::x86_mmx_psll_q
;
5948 case Intrinsic::x86_mmx_psrli_w
:
5949 NewIntrinsic
= Intrinsic::x86_mmx_psrl_w
;
5951 case Intrinsic::x86_mmx_psrli_d
:
5952 NewIntrinsic
= Intrinsic::x86_mmx_psrl_d
;
5954 case Intrinsic::x86_mmx_psrli_q
:
5955 NewIntrinsic
= Intrinsic::x86_mmx_psrl_q
;
5957 case Intrinsic::x86_mmx_psrai_w
:
5958 NewIntrinsic
= Intrinsic::x86_mmx_psra_w
;
5960 case Intrinsic::x86_mmx_psrai_d
:
5961 NewIntrinsic
= Intrinsic::x86_mmx_psra_d
;
5963 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5966 // The vector shift intrinsics with scalars uses 32b shift amounts but
5967 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5969 // We must do this early because v2i32 is not a legal type.
5972 ShOps
[1] = DAG
.getConstant(0, sdl
, MVT::i32
);
5973 ShAmt
= DAG
.getBuildVector(ShAmtVT
, sdl
, ShOps
);
5974 EVT DestVT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
5975 ShAmt
= DAG
.getNode(ISD::BITCAST
, sdl
, DestVT
, ShAmt
);
5976 Res
= DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, sdl
, DestVT
,
5977 DAG
.getConstant(NewIntrinsic
, sdl
, MVT::i32
),
5978 getValue(I
.getArgOperand(0)), ShAmt
);
5982 case Intrinsic::powi
:
5983 setValue(&I
, ExpandPowI(sdl
, getValue(I
.getArgOperand(0)),
5984 getValue(I
.getArgOperand(1)), DAG
));
5986 case Intrinsic::log
:
5987 setValue(&I
, expandLog(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
5989 case Intrinsic::log2
:
5990 setValue(&I
, expandLog2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
5992 case Intrinsic::log10
:
5993 setValue(&I
, expandLog10(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
5995 case Intrinsic::exp
:
5996 setValue(&I
, expandExp(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
5998 case Intrinsic::exp2
:
5999 setValue(&I
, expandExp2(sdl
, getValue(I
.getArgOperand(0)), DAG
, TLI
));
6001 case Intrinsic::pow
:
6002 setValue(&I
, expandPow(sdl
, getValue(I
.getArgOperand(0)),
6003 getValue(I
.getArgOperand(1)), DAG
, TLI
));
6005 case Intrinsic::sqrt
:
6006 case Intrinsic::fabs
:
6007 case Intrinsic::sin
:
6008 case Intrinsic::cos
:
6009 case Intrinsic::floor
:
6010 case Intrinsic::ceil
:
6011 case Intrinsic::trunc
:
6012 case Intrinsic::rint
:
6013 case Intrinsic::nearbyint
:
6014 case Intrinsic::round
:
6015 case Intrinsic::canonicalize
: {
6017 switch (Intrinsic
) {
6018 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6019 case Intrinsic::sqrt
: Opcode
= ISD::FSQRT
; break;
6020 case Intrinsic::fabs
: Opcode
= ISD::FABS
; break;
6021 case Intrinsic::sin
: Opcode
= ISD::FSIN
; break;
6022 case Intrinsic::cos
: Opcode
= ISD::FCOS
; break;
6023 case Intrinsic::floor
: Opcode
= ISD::FFLOOR
; break;
6024 case Intrinsic::ceil
: Opcode
= ISD::FCEIL
; break;
6025 case Intrinsic::trunc
: Opcode
= ISD::FTRUNC
; break;
6026 case Intrinsic::rint
: Opcode
= ISD::FRINT
; break;
6027 case Intrinsic::nearbyint
: Opcode
= ISD::FNEARBYINT
; break;
6028 case Intrinsic::round
: Opcode
= ISD::FROUND
; break;
6029 case Intrinsic::canonicalize
: Opcode
= ISD::FCANONICALIZE
; break;
6032 setValue(&I
, DAG
.getNode(Opcode
, sdl
,
6033 getValue(I
.getArgOperand(0)).getValueType(),
6034 getValue(I
.getArgOperand(0))));
6037 case Intrinsic::lround_i32
:
6038 case Intrinsic::lround_i64
:
6039 case Intrinsic::llround
: {
6042 switch (Intrinsic
) {
6043 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6044 case Intrinsic::lround_i32
: Opcode
= ISD::LROUND
; RetVT
= MVT::i32
; break;
6045 case Intrinsic::lround_i64
: Opcode
= ISD::LROUND
; RetVT
= MVT::i64
; break;
6046 case Intrinsic::llround
: Opcode
= ISD::LLROUND
; RetVT
= MVT::i64
; break;
6049 setValue(&I
, DAG
.getNode(Opcode
, sdl
, RetVT
,
6050 getValue(I
.getArgOperand(0))));
6053 case Intrinsic::minnum
: {
6054 auto VT
= getValue(I
.getArgOperand(0)).getValueType();
6056 I
.hasNoNaNs() && TLI
.isOperationLegalOrCustom(ISD::FMINIMUM
, VT
)
6059 setValue(&I
, DAG
.getNode(Opc
, sdl
, VT
,
6060 getValue(I
.getArgOperand(0)),
6061 getValue(I
.getArgOperand(1))));
6064 case Intrinsic::maxnum
: {
6065 auto VT
= getValue(I
.getArgOperand(0)).getValueType();
6067 I
.hasNoNaNs() && TLI
.isOperationLegalOrCustom(ISD::FMAXIMUM
, VT
)
6070 setValue(&I
, DAG
.getNode(Opc
, sdl
, VT
,
6071 getValue(I
.getArgOperand(0)),
6072 getValue(I
.getArgOperand(1))));
6075 case Intrinsic::minimum
:
6076 setValue(&I
, DAG
.getNode(ISD::FMINIMUM
, sdl
,
6077 getValue(I
.getArgOperand(0)).getValueType(),
6078 getValue(I
.getArgOperand(0)),
6079 getValue(I
.getArgOperand(1))));
6081 case Intrinsic::maximum
:
6082 setValue(&I
, DAG
.getNode(ISD::FMAXIMUM
, sdl
,
6083 getValue(I
.getArgOperand(0)).getValueType(),
6084 getValue(I
.getArgOperand(0)),
6085 getValue(I
.getArgOperand(1))));
6087 case Intrinsic::copysign
:
6088 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, sdl
,
6089 getValue(I
.getArgOperand(0)).getValueType(),
6090 getValue(I
.getArgOperand(0)),
6091 getValue(I
.getArgOperand(1))));
6093 case Intrinsic::fma
:
6094 setValue(&I
, DAG
.getNode(ISD::FMA
, sdl
,
6095 getValue(I
.getArgOperand(0)).getValueType(),
6096 getValue(I
.getArgOperand(0)),
6097 getValue(I
.getArgOperand(1)),
6098 getValue(I
.getArgOperand(2))));
6100 case Intrinsic::experimental_constrained_fadd
:
6101 case Intrinsic::experimental_constrained_fsub
:
6102 case Intrinsic::experimental_constrained_fmul
:
6103 case Intrinsic::experimental_constrained_fdiv
:
6104 case Intrinsic::experimental_constrained_frem
:
6105 case Intrinsic::experimental_constrained_fma
:
6106 case Intrinsic::experimental_constrained_fptrunc
:
6107 case Intrinsic::experimental_constrained_fpext
:
6108 case Intrinsic::experimental_constrained_sqrt
:
6109 case Intrinsic::experimental_constrained_pow
:
6110 case Intrinsic::experimental_constrained_powi
:
6111 case Intrinsic::experimental_constrained_sin
:
6112 case Intrinsic::experimental_constrained_cos
:
6113 case Intrinsic::experimental_constrained_exp
:
6114 case Intrinsic::experimental_constrained_exp2
:
6115 case Intrinsic::experimental_constrained_log
:
6116 case Intrinsic::experimental_constrained_log10
:
6117 case Intrinsic::experimental_constrained_log2
:
6118 case Intrinsic::experimental_constrained_rint
:
6119 case Intrinsic::experimental_constrained_nearbyint
:
6120 case Intrinsic::experimental_constrained_maxnum
:
6121 case Intrinsic::experimental_constrained_minnum
:
6122 case Intrinsic::experimental_constrained_ceil
:
6123 case Intrinsic::experimental_constrained_floor
:
6124 case Intrinsic::experimental_constrained_round
:
6125 case Intrinsic::experimental_constrained_trunc
:
6126 visitConstrainedFPIntrinsic(cast
<ConstrainedFPIntrinsic
>(I
));
6128 case Intrinsic::fmuladd
: {
6129 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6130 if (TM
.Options
.AllowFPOpFusion
!= FPOpFusion::Strict
&&
6131 TLI
.isFMAFasterThanFMulAndFAdd(VT
)) {
6132 setValue(&I
, DAG
.getNode(ISD::FMA
, sdl
,
6133 getValue(I
.getArgOperand(0)).getValueType(),
6134 getValue(I
.getArgOperand(0)),
6135 getValue(I
.getArgOperand(1)),
6136 getValue(I
.getArgOperand(2))));
6138 // TODO: Intrinsic calls should have fast-math-flags.
6139 SDValue Mul
= DAG
.getNode(ISD::FMUL
, sdl
,
6140 getValue(I
.getArgOperand(0)).getValueType(),
6141 getValue(I
.getArgOperand(0)),
6142 getValue(I
.getArgOperand(1)));
6143 SDValue Add
= DAG
.getNode(ISD::FADD
, sdl
,
6144 getValue(I
.getArgOperand(0)).getValueType(),
6146 getValue(I
.getArgOperand(2)));
6151 case Intrinsic::convert_to_fp16
:
6152 setValue(&I
, DAG
.getNode(ISD::BITCAST
, sdl
, MVT::i16
,
6153 DAG
.getNode(ISD::FP_ROUND
, sdl
, MVT::f16
,
6154 getValue(I
.getArgOperand(0)),
6155 DAG
.getTargetConstant(0, sdl
,
6158 case Intrinsic::convert_from_fp16
:
6159 setValue(&I
, DAG
.getNode(ISD::FP_EXTEND
, sdl
,
6160 TLI
.getValueType(DAG
.getDataLayout(), I
.getType()),
6161 DAG
.getNode(ISD::BITCAST
, sdl
, MVT::f16
,
6162 getValue(I
.getArgOperand(0)))));
6164 case Intrinsic::pcmarker
: {
6165 SDValue Tmp
= getValue(I
.getArgOperand(0));
6166 DAG
.setRoot(DAG
.getNode(ISD::PCMARKER
, sdl
, MVT::Other
, getRoot(), Tmp
));
6169 case Intrinsic::readcyclecounter
: {
6170 SDValue Op
= getRoot();
6171 Res
= DAG
.getNode(ISD::READCYCLECOUNTER
, sdl
,
6172 DAG
.getVTList(MVT::i64
, MVT::Other
), Op
);
6174 DAG
.setRoot(Res
.getValue(1));
6177 case Intrinsic::bitreverse
:
6178 setValue(&I
, DAG
.getNode(ISD::BITREVERSE
, sdl
,
6179 getValue(I
.getArgOperand(0)).getValueType(),
6180 getValue(I
.getArgOperand(0))));
6182 case Intrinsic::bswap
:
6183 setValue(&I
, DAG
.getNode(ISD::BSWAP
, sdl
,
6184 getValue(I
.getArgOperand(0)).getValueType(),
6185 getValue(I
.getArgOperand(0))));
6187 case Intrinsic::cttz
: {
6188 SDValue Arg
= getValue(I
.getArgOperand(0));
6189 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6190 EVT Ty
= Arg
.getValueType();
6191 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTTZ
: ISD::CTTZ_ZERO_UNDEF
,
6195 case Intrinsic::ctlz
: {
6196 SDValue Arg
= getValue(I
.getArgOperand(0));
6197 ConstantInt
*CI
= cast
<ConstantInt
>(I
.getArgOperand(1));
6198 EVT Ty
= Arg
.getValueType();
6199 setValue(&I
, DAG
.getNode(CI
->isZero() ? ISD::CTLZ
: ISD::CTLZ_ZERO_UNDEF
,
6203 case Intrinsic::ctpop
: {
6204 SDValue Arg
= getValue(I
.getArgOperand(0));
6205 EVT Ty
= Arg
.getValueType();
6206 setValue(&I
, DAG
.getNode(ISD::CTPOP
, sdl
, Ty
, Arg
));
6209 case Intrinsic::fshl
:
6210 case Intrinsic::fshr
: {
6211 bool IsFSHL
= Intrinsic
== Intrinsic::fshl
;
6212 SDValue X
= getValue(I
.getArgOperand(0));
6213 SDValue Y
= getValue(I
.getArgOperand(1));
6214 SDValue Z
= getValue(I
.getArgOperand(2));
6215 EVT VT
= X
.getValueType();
6216 SDValue BitWidthC
= DAG
.getConstant(VT
.getScalarSizeInBits(), sdl
, VT
);
6217 SDValue Zero
= DAG
.getConstant(0, sdl
, VT
);
6218 SDValue ShAmt
= DAG
.getNode(ISD::UREM
, sdl
, VT
, Z
, BitWidthC
);
6220 auto FunnelOpcode
= IsFSHL
? ISD::FSHL
: ISD::FSHR
;
6221 if (TLI
.isOperationLegalOrCustom(FunnelOpcode
, VT
)) {
6222 setValue(&I
, DAG
.getNode(FunnelOpcode
, sdl
, VT
, X
, Y
, Z
));
6226 // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6227 // avoid the select that is necessary in the general case to filter out
6228 // the 0-shift possibility that leads to UB.
6229 if (X
== Y
&& isPowerOf2_32(VT
.getScalarSizeInBits())) {
6230 auto RotateOpcode
= IsFSHL
? ISD::ROTL
: ISD::ROTR
;
6231 if (TLI
.isOperationLegalOrCustom(RotateOpcode
, VT
)) {
6232 setValue(&I
, DAG
.getNode(RotateOpcode
, sdl
, VT
, X
, Z
));
6236 // Some targets only rotate one way. Try the opposite direction.
6237 RotateOpcode
= IsFSHL
? ISD::ROTR
: ISD::ROTL
;
6238 if (TLI
.isOperationLegalOrCustom(RotateOpcode
, VT
)) {
6239 // Negate the shift amount because it is safe to ignore the high bits.
6240 SDValue NegShAmt
= DAG
.getNode(ISD::SUB
, sdl
, VT
, Zero
, Z
);
6241 setValue(&I
, DAG
.getNode(RotateOpcode
, sdl
, VT
, X
, NegShAmt
));
6245 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6246 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6247 SDValue NegZ
= DAG
.getNode(ISD::SUB
, sdl
, VT
, Zero
, Z
);
6248 SDValue NShAmt
= DAG
.getNode(ISD::UREM
, sdl
, VT
, NegZ
, BitWidthC
);
6249 SDValue ShX
= DAG
.getNode(ISD::SHL
, sdl
, VT
, X
, IsFSHL
? ShAmt
: NShAmt
);
6250 SDValue ShY
= DAG
.getNode(ISD::SRL
, sdl
, VT
, X
, IsFSHL
? NShAmt
: ShAmt
);
6251 setValue(&I
, DAG
.getNode(ISD::OR
, sdl
, VT
, ShX
, ShY
));
6255 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6256 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6257 SDValue InvShAmt
= DAG
.getNode(ISD::SUB
, sdl
, VT
, BitWidthC
, ShAmt
);
6258 SDValue ShX
= DAG
.getNode(ISD::SHL
, sdl
, VT
, X
, IsFSHL
? ShAmt
: InvShAmt
);
6259 SDValue ShY
= DAG
.getNode(ISD::SRL
, sdl
, VT
, Y
, IsFSHL
? InvShAmt
: ShAmt
);
6260 SDValue Or
= DAG
.getNode(ISD::OR
, sdl
, VT
, ShX
, ShY
);
6262 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6263 // and that is undefined. We must compare and select to avoid UB.
6266 CCVT
= EVT::getVectorVT(*Context
, CCVT
, VT
.getVectorNumElements());
6268 // For fshl, 0-shift returns the 1st arg (X).
6269 // For fshr, 0-shift returns the 2nd arg (Y).
6270 SDValue IsZeroShift
= DAG
.getSetCC(sdl
, CCVT
, ShAmt
, Zero
, ISD::SETEQ
);
6271 setValue(&I
, DAG
.getSelect(sdl
, VT
, IsZeroShift
, IsFSHL
? X
: Y
, Or
));
6274 case Intrinsic::sadd_sat
: {
6275 SDValue Op1
= getValue(I
.getArgOperand(0));
6276 SDValue Op2
= getValue(I
.getArgOperand(1));
6277 setValue(&I
, DAG
.getNode(ISD::SADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6280 case Intrinsic::uadd_sat
: {
6281 SDValue Op1
= getValue(I
.getArgOperand(0));
6282 SDValue Op2
= getValue(I
.getArgOperand(1));
6283 setValue(&I
, DAG
.getNode(ISD::UADDSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6286 case Intrinsic::ssub_sat
: {
6287 SDValue Op1
= getValue(I
.getArgOperand(0));
6288 SDValue Op2
= getValue(I
.getArgOperand(1));
6289 setValue(&I
, DAG
.getNode(ISD::SSUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6292 case Intrinsic::usub_sat
: {
6293 SDValue Op1
= getValue(I
.getArgOperand(0));
6294 SDValue Op2
= getValue(I
.getArgOperand(1));
6295 setValue(&I
, DAG
.getNode(ISD::USUBSAT
, sdl
, Op1
.getValueType(), Op1
, Op2
));
6298 case Intrinsic::smul_fix
:
6299 case Intrinsic::umul_fix
: {
6300 SDValue Op1
= getValue(I
.getArgOperand(0));
6301 SDValue Op2
= getValue(I
.getArgOperand(1));
6302 SDValue Op3
= getValue(I
.getArgOperand(2));
6303 setValue(&I
, DAG
.getNode(FixedPointIntrinsicToOpcode(Intrinsic
), sdl
,
6304 Op1
.getValueType(), Op1
, Op2
, Op3
));
6307 case Intrinsic::stacksave
: {
6308 SDValue Op
= getRoot();
6310 ISD::STACKSAVE
, sdl
,
6311 DAG
.getVTList(TLI
.getPointerTy(DAG
.getDataLayout()), MVT::Other
), Op
);
6313 DAG
.setRoot(Res
.getValue(1));
6316 case Intrinsic::stackrestore
:
6317 Res
= getValue(I
.getArgOperand(0));
6318 DAG
.setRoot(DAG
.getNode(ISD::STACKRESTORE
, sdl
, MVT::Other
, getRoot(), Res
));
6320 case Intrinsic::get_dynamic_area_offset
: {
6321 SDValue Op
= getRoot();
6322 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6323 EVT ResTy
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
6324 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6326 if (PtrTy
.getSizeInBits() < ResTy
.getSizeInBits())
6327 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6329 Res
= DAG
.getNode(ISD::GET_DYNAMIC_AREA_OFFSET
, sdl
, DAG
.getVTList(ResTy
),
6335 case Intrinsic::stackguard
: {
6336 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6337 MachineFunction
&MF
= DAG
.getMachineFunction();
6338 const Module
&M
= *MF
.getFunction().getParent();
6339 SDValue Chain
= getRoot();
6340 if (TLI
.useLoadStackGuardNode()) {
6341 Res
= getLoadStackGuard(DAG
, sdl
, Chain
);
6343 const Value
*Global
= TLI
.getSDagStackGuard(M
);
6344 unsigned Align
= DL
->getPrefTypeAlignment(Global
->getType());
6345 Res
= DAG
.getLoad(PtrTy
, sdl
, Chain
, getValue(Global
),
6346 MachinePointerInfo(Global
, 0), Align
,
6347 MachineMemOperand::MOVolatile
);
6349 if (TLI
.useStackGuardXorFP())
6350 Res
= TLI
.emitStackGuardXorFP(DAG
, Res
, sdl
);
6355 case Intrinsic::stackprotector
: {
6356 // Emit code into the DAG to store the stack guard onto the stack.
6357 MachineFunction
&MF
= DAG
.getMachineFunction();
6358 MachineFrameInfo
&MFI
= MF
.getFrameInfo();
6359 EVT PtrTy
= TLI
.getPointerTy(DAG
.getDataLayout());
6360 SDValue Src
, Chain
= getRoot();
6362 if (TLI
.useLoadStackGuardNode())
6363 Src
= getLoadStackGuard(DAG
, sdl
, Chain
);
6365 Src
= getValue(I
.getArgOperand(0)); // The guard's value.
6367 AllocaInst
*Slot
= cast
<AllocaInst
>(I
.getArgOperand(1));
6369 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6370 MFI
.setStackProtectorIndex(FI
);
6372 SDValue FIN
= DAG
.getFrameIndex(FI
, PtrTy
);
6374 // Store the stack protector onto the stack.
6375 Res
= DAG
.getStore(Chain
, sdl
, Src
, FIN
, MachinePointerInfo::getFixedStack(
6376 DAG
.getMachineFunction(), FI
),
6377 /* Alignment = */ 0, MachineMemOperand::MOVolatile
);
6382 case Intrinsic::objectsize
: {
6383 // If we don't know by now, we're never going to know.
6384 ConstantInt
*CI
= dyn_cast
<ConstantInt
>(I
.getArgOperand(1));
6386 assert(CI
&& "Non-constant type in __builtin_object_size?");
6388 SDValue Arg
= getValue(I
.getCalledValue());
6389 EVT Ty
= Arg
.getValueType();
6392 Res
= DAG
.getConstant(-1ULL, sdl
, Ty
);
6394 Res
= DAG
.getConstant(0, sdl
, Ty
);
6400 case Intrinsic::is_constant
:
6401 // If this wasn't constant-folded away by now, then it's not a
6403 setValue(&I
, DAG
.getConstant(0, sdl
, MVT::i1
));
6406 case Intrinsic::annotation
:
6407 case Intrinsic::ptr_annotation
:
6408 case Intrinsic::launder_invariant_group
:
6409 case Intrinsic::strip_invariant_group
:
6410 // Drop the intrinsic, but forward the value
6411 setValue(&I
, getValue(I
.getOperand(0)));
6413 case Intrinsic::assume
:
6414 case Intrinsic::var_annotation
:
6415 case Intrinsic::sideeffect
:
6416 // Discard annotate attributes, assumptions, and artificial side-effects.
6419 case Intrinsic::codeview_annotation
: {
6420 // Emit a label associated with this metadata.
6421 MachineFunction
&MF
= DAG
.getMachineFunction();
6423 MF
.getMMI().getContext().createTempSymbol("annotation", true);
6424 Metadata
*MD
= cast
<MetadataAsValue
>(I
.getArgOperand(0))->getMetadata();
6425 MF
.addCodeViewAnnotation(Label
, cast
<MDNode
>(MD
));
6426 Res
= DAG
.getLabelNode(ISD::ANNOTATION_LABEL
, sdl
, getRoot(), Label
);
6431 case Intrinsic::init_trampoline
: {
6432 const Function
*F
= cast
<Function
>(I
.getArgOperand(1)->stripPointerCasts());
6436 Ops
[1] = getValue(I
.getArgOperand(0));
6437 Ops
[2] = getValue(I
.getArgOperand(1));
6438 Ops
[3] = getValue(I
.getArgOperand(2));
6439 Ops
[4] = DAG
.getSrcValue(I
.getArgOperand(0));
6440 Ops
[5] = DAG
.getSrcValue(F
);
6442 Res
= DAG
.getNode(ISD::INIT_TRAMPOLINE
, sdl
, MVT::Other
, Ops
);
6447 case Intrinsic::adjust_trampoline
:
6448 setValue(&I
, DAG
.getNode(ISD::ADJUST_TRAMPOLINE
, sdl
,
6449 TLI
.getPointerTy(DAG
.getDataLayout()),
6450 getValue(I
.getArgOperand(0))));
6452 case Intrinsic::gcroot
: {
6453 assert(DAG
.getMachineFunction().getFunction().hasGC() &&
6454 "only valid in functions with gc specified, enforced by Verifier");
6455 assert(GFI
&& "implied by previous");
6456 const Value
*Alloca
= I
.getArgOperand(0)->stripPointerCasts();
6457 const Constant
*TypeMap
= cast
<Constant
>(I
.getArgOperand(1));
6459 FrameIndexSDNode
*FI
= cast
<FrameIndexSDNode
>(getValue(Alloca
).getNode());
6460 GFI
->addStackRoot(FI
->getIndex(), TypeMap
);
6463 case Intrinsic::gcread
:
6464 case Intrinsic::gcwrite
:
6465 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6466 case Intrinsic::flt_rounds
:
6467 setValue(&I
, DAG
.getNode(ISD::FLT_ROUNDS_
, sdl
, MVT::i32
));
6470 case Intrinsic::expect
:
6471 // Just replace __builtin_expect(exp, c) with EXP.
6472 setValue(&I
, getValue(I
.getArgOperand(0)));
6475 case Intrinsic::debugtrap
:
6476 case Intrinsic::trap
: {
6477 StringRef TrapFuncName
=
6479 .getAttribute(AttributeList::FunctionIndex
, "trap-func-name")
6480 .getValueAsString();
6481 if (TrapFuncName
.empty()) {
6482 ISD::NodeType Op
= (Intrinsic
== Intrinsic::trap
) ?
6483 ISD::TRAP
: ISD::DEBUGTRAP
;
6484 DAG
.setRoot(DAG
.getNode(Op
, sdl
,MVT::Other
, getRoot()));
6487 TargetLowering::ArgListTy Args
;
6489 TargetLowering::CallLoweringInfo
CLI(DAG
);
6490 CLI
.setDebugLoc(sdl
).setChain(getRoot()).setLibCallee(
6491 CallingConv::C
, I
.getType(),
6492 DAG
.getExternalSymbol(TrapFuncName
.data(),
6493 TLI
.getPointerTy(DAG
.getDataLayout())),
6496 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
6497 DAG
.setRoot(Result
.second
);
6501 case Intrinsic::uadd_with_overflow
:
6502 case Intrinsic::sadd_with_overflow
:
6503 case Intrinsic::usub_with_overflow
:
6504 case Intrinsic::ssub_with_overflow
:
6505 case Intrinsic::umul_with_overflow
:
6506 case Intrinsic::smul_with_overflow
: {
6508 switch (Intrinsic
) {
6509 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6510 case Intrinsic::uadd_with_overflow
: Op
= ISD::UADDO
; break;
6511 case Intrinsic::sadd_with_overflow
: Op
= ISD::SADDO
; break;
6512 case Intrinsic::usub_with_overflow
: Op
= ISD::USUBO
; break;
6513 case Intrinsic::ssub_with_overflow
: Op
= ISD::SSUBO
; break;
6514 case Intrinsic::umul_with_overflow
: Op
= ISD::UMULO
; break;
6515 case Intrinsic::smul_with_overflow
: Op
= ISD::SMULO
; break;
6517 SDValue Op1
= getValue(I
.getArgOperand(0));
6518 SDValue Op2
= getValue(I
.getArgOperand(1));
6520 EVT ResultVT
= Op1
.getValueType();
6521 EVT OverflowVT
= MVT::i1
;
6522 if (ResultVT
.isVector())
6523 OverflowVT
= EVT::getVectorVT(
6524 *Context
, OverflowVT
, ResultVT
.getVectorNumElements());
6526 SDVTList VTs
= DAG
.getVTList(ResultVT
, OverflowVT
);
6527 setValue(&I
, DAG
.getNode(Op
, sdl
, VTs
, Op1
, Op2
));
6530 case Intrinsic::prefetch
: {
6532 unsigned rw
= cast
<ConstantInt
>(I
.getArgOperand(1))->getZExtValue();
6533 auto Flags
= rw
== 0 ? MachineMemOperand::MOLoad
:MachineMemOperand::MOStore
;
6534 Ops
[0] = DAG
.getRoot();
6535 Ops
[1] = getValue(I
.getArgOperand(0));
6536 Ops
[2] = getValue(I
.getArgOperand(1));
6537 Ops
[3] = getValue(I
.getArgOperand(2));
6538 Ops
[4] = getValue(I
.getArgOperand(3));
6539 SDValue Result
= DAG
.getMemIntrinsicNode(ISD::PREFETCH
, sdl
,
6540 DAG
.getVTList(MVT::Other
), Ops
,
6541 EVT::getIntegerVT(*Context
, 8),
6542 MachinePointerInfo(I
.getArgOperand(0)),
6546 // Chain the prefetch in parallell with any pending loads, to stay out of
6547 // the way of later optimizations.
6548 PendingLoads
.push_back(Result
);
6550 DAG
.setRoot(Result
);
6553 case Intrinsic::lifetime_start
:
6554 case Intrinsic::lifetime_end
: {
6555 bool IsStart
= (Intrinsic
== Intrinsic::lifetime_start
);
6556 // Stack coloring is not enabled in O0, discard region information.
6557 if (TM
.getOptLevel() == CodeGenOpt::None
)
6560 const int64_t ObjectSize
=
6561 cast
<ConstantInt
>(I
.getArgOperand(0))->getSExtValue();
6562 Value
*const ObjectPtr
= I
.getArgOperand(1);
6563 SmallVector
<const Value
*, 4> Allocas
;
6564 GetUnderlyingObjects(ObjectPtr
, Allocas
, *DL
);
6566 for (SmallVectorImpl
<const Value
*>::iterator Object
= Allocas
.begin(),
6567 E
= Allocas
.end(); Object
!= E
; ++Object
) {
6568 const AllocaInst
*LifetimeObject
= dyn_cast_or_null
<AllocaInst
>(*Object
);
6570 // Could not find an Alloca.
6571 if (!LifetimeObject
)
6574 // First check that the Alloca is static, otherwise it won't have a
6575 // valid frame index.
6576 auto SI
= FuncInfo
.StaticAllocaMap
.find(LifetimeObject
);
6577 if (SI
== FuncInfo
.StaticAllocaMap
.end())
6580 const int FrameIndex
= SI
->second
;
6582 if (GetPointerBaseWithConstantOffset(
6583 ObjectPtr
, Offset
, DAG
.getDataLayout()) != LifetimeObject
)
6584 Offset
= -1; // Cannot determine offset from alloca to lifetime object.
6585 Res
= DAG
.getLifetimeNode(IsStart
, sdl
, getRoot(), FrameIndex
, ObjectSize
,
6591 case Intrinsic::invariant_start
:
6592 // Discard region information.
6593 setValue(&I
, DAG
.getUNDEF(TLI
.getPointerTy(DAG
.getDataLayout())));
6595 case Intrinsic::invariant_end
:
6596 // Discard region information.
6598 case Intrinsic::clear_cache
:
6599 /// FunctionName may be null.
6600 if (const char *FunctionName
= TLI
.getClearCacheBuiltinName())
6601 lowerCallToExternalSymbol(I
, FunctionName
);
6603 case Intrinsic::donothing
:
6606 case Intrinsic::experimental_stackmap
:
6609 case Intrinsic::experimental_patchpoint_void
:
6610 case Intrinsic::experimental_patchpoint_i64
:
6611 visitPatchpoint(&I
);
6613 case Intrinsic::experimental_gc_statepoint
:
6614 LowerStatepoint(ImmutableStatepoint(&I
));
6616 case Intrinsic::experimental_gc_result
:
6617 visitGCResult(cast
<GCResultInst
>(I
));
6619 case Intrinsic::experimental_gc_relocate
:
6620 visitGCRelocate(cast
<GCRelocateInst
>(I
));
6622 case Intrinsic::instrprof_increment
:
6623 llvm_unreachable("instrprof failed to lower an increment");
6624 case Intrinsic::instrprof_value_profile
:
6625 llvm_unreachable("instrprof failed to lower a value profiling call");
6626 case Intrinsic::localescape
: {
6627 MachineFunction
&MF
= DAG
.getMachineFunction();
6628 const TargetInstrInfo
*TII
= DAG
.getSubtarget().getInstrInfo();
6630 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6631 // is the same on all targets.
6632 for (unsigned Idx
= 0, E
= I
.getNumArgOperands(); Idx
< E
; ++Idx
) {
6633 Value
*Arg
= I
.getArgOperand(Idx
)->stripPointerCasts();
6634 if (isa
<ConstantPointerNull
>(Arg
))
6635 continue; // Skip null pointers. They represent a hole in index space.
6636 AllocaInst
*Slot
= cast
<AllocaInst
>(Arg
);
6637 assert(FuncInfo
.StaticAllocaMap
.count(Slot
) &&
6638 "can only escape static allocas");
6639 int FI
= FuncInfo
.StaticAllocaMap
[Slot
];
6640 MCSymbol
*FrameAllocSym
=
6641 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6642 GlobalValue::dropLLVMManglingEscape(MF
.getName()), Idx
);
6643 BuildMI(*FuncInfo
.MBB
, FuncInfo
.InsertPt
, dl
,
6644 TII
->get(TargetOpcode::LOCAL_ESCAPE
))
6645 .addSym(FrameAllocSym
)
6652 case Intrinsic::localrecover
: {
6653 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6654 MachineFunction
&MF
= DAG
.getMachineFunction();
6655 MVT PtrVT
= TLI
.getPointerTy(DAG
.getDataLayout(), 0);
6657 // Get the symbol that defines the frame offset.
6658 auto *Fn
= cast
<Function
>(I
.getArgOperand(0)->stripPointerCasts());
6659 auto *Idx
= cast
<ConstantInt
>(I
.getArgOperand(2));
6661 unsigned(Idx
->getLimitedValue(std::numeric_limits
<int>::max()));
6662 MCSymbol
*FrameAllocSym
=
6663 MF
.getMMI().getContext().getOrCreateFrameAllocSymbol(
6664 GlobalValue::dropLLVMManglingEscape(Fn
->getName()), IdxVal
);
6666 // Create a MCSymbol for the label to avoid any target lowering
6667 // that would make this PC relative.
6668 SDValue OffsetSym
= DAG
.getMCSymbol(FrameAllocSym
, PtrVT
);
6670 DAG
.getNode(ISD::LOCAL_RECOVER
, sdl
, PtrVT
, OffsetSym
);
6672 // Add the offset to the FP.
6673 Value
*FP
= I
.getArgOperand(1);
6674 SDValue FPVal
= getValue(FP
);
6675 SDValue Add
= DAG
.getNode(ISD::ADD
, sdl
, PtrVT
, FPVal
, OffsetVal
);
6681 case Intrinsic::eh_exceptionpointer
:
6682 case Intrinsic::eh_exceptioncode
: {
6683 // Get the exception pointer vreg, copy from it, and resize it to fit.
6684 const auto *CPI
= cast
<CatchPadInst
>(I
.getArgOperand(0));
6685 MVT PtrVT
= TLI
.getPointerTy(DAG
.getDataLayout());
6686 const TargetRegisterClass
*PtrRC
= TLI
.getRegClassFor(PtrVT
);
6687 unsigned VReg
= FuncInfo
.getCatchPadExceptionPointerVReg(CPI
, PtrRC
);
6689 DAG
.getCopyFromReg(DAG
.getEntryNode(), getCurSDLoc(), VReg
, PtrVT
);
6690 if (Intrinsic
== Intrinsic::eh_exceptioncode
)
6691 N
= DAG
.getZExtOrTrunc(N
, getCurSDLoc(), MVT::i32
);
6695 case Intrinsic::xray_customevent
: {
6696 // Here we want to make sure that the intrinsic behaves as if it has a
6697 // specific calling convention, and only for x86_64.
6698 // FIXME: Support other platforms later.
6699 const auto &Triple
= DAG
.getTarget().getTargetTriple();
6700 if (Triple
.getArch() != Triple::x86_64
|| !Triple
.isOSLinux())
6703 SDLoc DL
= getCurSDLoc();
6704 SmallVector
<SDValue
, 8> Ops
;
6706 // We want to say that we always want the arguments in registers.
6707 SDValue LogEntryVal
= getValue(I
.getArgOperand(0));
6708 SDValue StrSizeVal
= getValue(I
.getArgOperand(1));
6709 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
6710 SDValue Chain
= getRoot();
6711 Ops
.push_back(LogEntryVal
);
6712 Ops
.push_back(StrSizeVal
);
6713 Ops
.push_back(Chain
);
6715 // We need to enforce the calling convention for the callsite, so that
6716 // argument ordering is enforced correctly, and that register allocation can
6717 // see that some registers may be assumed clobbered and have to preserve
6718 // them across calls to the intrinsic.
6719 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL
,
6721 SDValue patchableNode
= SDValue(MN
, 0);
6722 DAG
.setRoot(patchableNode
);
6723 setValue(&I
, patchableNode
);
6726 case Intrinsic::xray_typedevent
: {
6727 // Here we want to make sure that the intrinsic behaves as if it has a
6728 // specific calling convention, and only for x86_64.
6729 // FIXME: Support other platforms later.
6730 const auto &Triple
= DAG
.getTarget().getTargetTriple();
6731 if (Triple
.getArch() != Triple::x86_64
|| !Triple
.isOSLinux())
6734 SDLoc DL
= getCurSDLoc();
6735 SmallVector
<SDValue
, 8> Ops
;
6737 // We want to say that we always want the arguments in registers.
6738 // It's unclear to me how manipulating the selection DAG here forces callers
6739 // to provide arguments in registers instead of on the stack.
6740 SDValue LogTypeId
= getValue(I
.getArgOperand(0));
6741 SDValue LogEntryVal
= getValue(I
.getArgOperand(1));
6742 SDValue StrSizeVal
= getValue(I
.getArgOperand(2));
6743 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
6744 SDValue Chain
= getRoot();
6745 Ops
.push_back(LogTypeId
);
6746 Ops
.push_back(LogEntryVal
);
6747 Ops
.push_back(StrSizeVal
);
6748 Ops
.push_back(Chain
);
6750 // We need to enforce the calling convention for the callsite, so that
6751 // argument ordering is enforced correctly, and that register allocation can
6752 // see that some registers may be assumed clobbered and have to preserve
6753 // them across calls to the intrinsic.
6754 MachineSDNode
*MN
= DAG
.getMachineNode(
6755 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL
, DL
, NodeTys
, Ops
);
6756 SDValue patchableNode
= SDValue(MN
, 0);
6757 DAG
.setRoot(patchableNode
);
6758 setValue(&I
, patchableNode
);
6761 case Intrinsic::experimental_deoptimize
:
6762 LowerDeoptimizeCall(&I
);
6765 case Intrinsic::experimental_vector_reduce_fadd
:
6766 case Intrinsic::experimental_vector_reduce_fmul
:
6767 case Intrinsic::experimental_vector_reduce_add
:
6768 case Intrinsic::experimental_vector_reduce_mul
:
6769 case Intrinsic::experimental_vector_reduce_and
:
6770 case Intrinsic::experimental_vector_reduce_or
:
6771 case Intrinsic::experimental_vector_reduce_xor
:
6772 case Intrinsic::experimental_vector_reduce_smax
:
6773 case Intrinsic::experimental_vector_reduce_smin
:
6774 case Intrinsic::experimental_vector_reduce_umax
:
6775 case Intrinsic::experimental_vector_reduce_umin
:
6776 case Intrinsic::experimental_vector_reduce_fmax
:
6777 case Intrinsic::experimental_vector_reduce_fmin
:
6778 visitVectorReduce(I
, Intrinsic
);
6781 case Intrinsic::icall_branch_funnel
: {
6782 SmallVector
<SDValue
, 16> Ops
;
6783 Ops
.push_back(DAG
.getRoot());
6784 Ops
.push_back(getValue(I
.getArgOperand(0)));
6787 auto *Base
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
6788 I
.getArgOperand(1), Offset
, DAG
.getDataLayout()));
6791 "llvm.icall.branch.funnel operand must be a GlobalValue");
6792 Ops
.push_back(DAG
.getTargetGlobalAddress(Base
, getCurSDLoc(), MVT::i64
, 0));
6794 struct BranchFunnelTarget
{
6798 SmallVector
<BranchFunnelTarget
, 8> Targets
;
6800 for (unsigned Op
= 1, N
= I
.getNumArgOperands(); Op
!= N
; Op
+= 2) {
6801 auto *ElemBase
= dyn_cast
<GlobalObject
>(GetPointerBaseWithConstantOffset(
6802 I
.getArgOperand(Op
), Offset
, DAG
.getDataLayout()));
6803 if (ElemBase
!= Base
)
6804 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6805 "to the same GlobalValue");
6807 SDValue Val
= getValue(I
.getArgOperand(Op
+ 1));
6808 auto *GA
= dyn_cast
<GlobalAddressSDNode
>(Val
);
6811 "llvm.icall.branch.funnel operand must be a GlobalValue");
6812 Targets
.push_back({Offset
, DAG
.getTargetGlobalAddress(
6813 GA
->getGlobal(), getCurSDLoc(),
6814 Val
.getValueType(), GA
->getOffset())});
6817 [](const BranchFunnelTarget
&T1
, const BranchFunnelTarget
&T2
) {
6818 return T1
.Offset
< T2
.Offset
;
6821 for (auto &T
: Targets
) {
6822 Ops
.push_back(DAG
.getTargetConstant(T
.Offset
, getCurSDLoc(), MVT::i32
));
6823 Ops
.push_back(T
.Target
);
6826 SDValue
N(DAG
.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL
,
6827 getCurSDLoc(), MVT::Other
, Ops
),
6835 case Intrinsic::wasm_landingpad_index
:
6836 // Information this intrinsic contained has been transferred to
6837 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6843 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6844 const ConstrainedFPIntrinsic
&FPI
) {
6845 SDLoc sdl
= getCurSDLoc();
6847 switch (FPI
.getIntrinsicID()) {
6848 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6849 case Intrinsic::experimental_constrained_fadd
:
6850 Opcode
= ISD::STRICT_FADD
;
6852 case Intrinsic::experimental_constrained_fsub
:
6853 Opcode
= ISD::STRICT_FSUB
;
6855 case Intrinsic::experimental_constrained_fmul
:
6856 Opcode
= ISD::STRICT_FMUL
;
6858 case Intrinsic::experimental_constrained_fdiv
:
6859 Opcode
= ISD::STRICT_FDIV
;
6861 case Intrinsic::experimental_constrained_frem
:
6862 Opcode
= ISD::STRICT_FREM
;
6864 case Intrinsic::experimental_constrained_fma
:
6865 Opcode
= ISD::STRICT_FMA
;
6867 case Intrinsic::experimental_constrained_fptrunc
:
6868 Opcode
= ISD::STRICT_FP_ROUND
;
6870 case Intrinsic::experimental_constrained_fpext
:
6871 Opcode
= ISD::STRICT_FP_EXTEND
;
6873 case Intrinsic::experimental_constrained_sqrt
:
6874 Opcode
= ISD::STRICT_FSQRT
;
6876 case Intrinsic::experimental_constrained_pow
:
6877 Opcode
= ISD::STRICT_FPOW
;
6879 case Intrinsic::experimental_constrained_powi
:
6880 Opcode
= ISD::STRICT_FPOWI
;
6882 case Intrinsic::experimental_constrained_sin
:
6883 Opcode
= ISD::STRICT_FSIN
;
6885 case Intrinsic::experimental_constrained_cos
:
6886 Opcode
= ISD::STRICT_FCOS
;
6888 case Intrinsic::experimental_constrained_exp
:
6889 Opcode
= ISD::STRICT_FEXP
;
6891 case Intrinsic::experimental_constrained_exp2
:
6892 Opcode
= ISD::STRICT_FEXP2
;
6894 case Intrinsic::experimental_constrained_log
:
6895 Opcode
= ISD::STRICT_FLOG
;
6897 case Intrinsic::experimental_constrained_log10
:
6898 Opcode
= ISD::STRICT_FLOG10
;
6900 case Intrinsic::experimental_constrained_log2
:
6901 Opcode
= ISD::STRICT_FLOG2
;
6903 case Intrinsic::experimental_constrained_rint
:
6904 Opcode
= ISD::STRICT_FRINT
;
6906 case Intrinsic::experimental_constrained_nearbyint
:
6907 Opcode
= ISD::STRICT_FNEARBYINT
;
6909 case Intrinsic::experimental_constrained_maxnum
:
6910 Opcode
= ISD::STRICT_FMAXNUM
;
6912 case Intrinsic::experimental_constrained_minnum
:
6913 Opcode
= ISD::STRICT_FMINNUM
;
6915 case Intrinsic::experimental_constrained_ceil
:
6916 Opcode
= ISD::STRICT_FCEIL
;
6918 case Intrinsic::experimental_constrained_floor
:
6919 Opcode
= ISD::STRICT_FFLOOR
;
6921 case Intrinsic::experimental_constrained_round
:
6922 Opcode
= ISD::STRICT_FROUND
;
6924 case Intrinsic::experimental_constrained_trunc
:
6925 Opcode
= ISD::STRICT_FTRUNC
;
6928 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6929 SDValue Chain
= getRoot();
6930 SmallVector
<EVT
, 4> ValueVTs
;
6931 ComputeValueVTs(TLI
, DAG
.getDataLayout(), FPI
.getType(), ValueVTs
);
6932 ValueVTs
.push_back(MVT::Other
); // Out chain
6934 SDVTList VTs
= DAG
.getVTList(ValueVTs
);
6936 if (Opcode
== ISD::STRICT_FP_ROUND
)
6937 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6938 { Chain
, getValue(FPI
.getArgOperand(0)),
6939 DAG
.getTargetConstant(0, sdl
,
6940 TLI
.getPointerTy(DAG
.getDataLayout())) });
6941 else if (FPI
.isUnaryOp())
6942 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6943 { Chain
, getValue(FPI
.getArgOperand(0)) });
6944 else if (FPI
.isTernaryOp())
6945 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6946 { Chain
, getValue(FPI
.getArgOperand(0)),
6947 getValue(FPI
.getArgOperand(1)),
6948 getValue(FPI
.getArgOperand(2)) });
6950 Result
= DAG
.getNode(Opcode
, sdl
, VTs
,
6951 { Chain
, getValue(FPI
.getArgOperand(0)),
6952 getValue(FPI
.getArgOperand(1)) });
6954 assert(Result
.getNode()->getNumValues() == 2);
6955 SDValue OutChain
= Result
.getValue(1);
6956 DAG
.setRoot(OutChain
);
6957 SDValue FPResult
= Result
.getValue(0);
6958 setValue(&FPI
, FPResult
);
6961 std::pair
<SDValue
, SDValue
>
6962 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo
&CLI
,
6963 const BasicBlock
*EHPadBB
) {
6964 MachineFunction
&MF
= DAG
.getMachineFunction();
6965 MachineModuleInfo
&MMI
= MF
.getMMI();
6966 MCSymbol
*BeginLabel
= nullptr;
6969 // Insert a label before the invoke call to mark the try range. This can be
6970 // used to detect deletion of the invoke via the MachineModuleInfo.
6971 BeginLabel
= MMI
.getContext().createTempSymbol();
6973 // For SjLj, keep track of which landing pads go with which invokes
6974 // so as to maintain the ordering of pads in the LSDA.
6975 unsigned CallSiteIndex
= MMI
.getCurrentCallSite();
6976 if (CallSiteIndex
) {
6977 MF
.setCallSiteBeginLabel(BeginLabel
, CallSiteIndex
);
6978 LPadToCallSiteMap
[FuncInfo
.MBBMap
[EHPadBB
]].push_back(CallSiteIndex
);
6980 // Now that the call site is handled, stop tracking it.
6981 MMI
.setCurrentCallSite(0);
6984 // Both PendingLoads and PendingExports must be flushed here;
6985 // this call might not return.
6987 DAG
.setRoot(DAG
.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel
));
6989 CLI
.setChain(getRoot());
6991 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
6992 std::pair
<SDValue
, SDValue
> Result
= TLI
.LowerCallTo(CLI
);
6994 assert((CLI
.IsTailCall
|| Result
.second
.getNode()) &&
6995 "Non-null chain expected with non-tail call!");
6996 assert((Result
.second
.getNode() || !Result
.first
.getNode()) &&
6997 "Null value expected with tail call!");
6999 if (!Result
.second
.getNode()) {
7000 // As a special case, a null chain means that a tail call has been emitted
7001 // and the DAG root is already updated.
7004 // Since there's no actual continuation from this block, nothing can be
7005 // relying on us setting vregs for them.
7006 PendingExports
.clear();
7008 DAG
.setRoot(Result
.second
);
7012 // Insert a label at the end of the invoke call to mark the try range. This
7013 // can be used to detect deletion of the invoke via the MachineModuleInfo.
7014 MCSymbol
*EndLabel
= MMI
.getContext().createTempSymbol();
7015 DAG
.setRoot(DAG
.getEHLabel(getCurSDLoc(), getRoot(), EndLabel
));
7017 // Inform MachineModuleInfo of range.
7018 auto Pers
= classifyEHPersonality(FuncInfo
.Fn
->getPersonalityFn());
7019 // There is a platform (e.g. wasm) that uses funclet style IR but does not
7020 // actually use outlined funclets and their LSDA info style.
7021 if (MF
.hasEHFunclets() && isFuncletEHPersonality(Pers
)) {
7023 WinEHFuncInfo
*EHInfo
= DAG
.getMachineFunction().getWinEHFuncInfo();
7024 EHInfo
->addIPToStateRange(cast
<InvokeInst
>(CLI
.CS
.getInstruction()),
7025 BeginLabel
, EndLabel
);
7026 } else if (!isScopedEHPersonality(Pers
)) {
7027 MF
.addInvoke(FuncInfo
.MBBMap
[EHPadBB
], BeginLabel
, EndLabel
);
7034 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS
, SDValue Callee
,
7036 const BasicBlock
*EHPadBB
) {
7037 auto &DL
= DAG
.getDataLayout();
7038 FunctionType
*FTy
= CS
.getFunctionType();
7039 Type
*RetTy
= CS
.getType();
7041 TargetLowering::ArgListTy Args
;
7042 Args
.reserve(CS
.arg_size());
7044 const Value
*SwiftErrorVal
= nullptr;
7045 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7047 // We can't tail call inside a function with a swifterror argument. Lowering
7048 // does not support this yet. It would have to move into the swifterror
7049 // register before the call.
7050 auto *Caller
= CS
.getInstruction()->getParent()->getParent();
7051 if (TLI
.supportSwiftError() &&
7052 Caller
->getAttributes().hasAttrSomewhere(Attribute::SwiftError
))
7055 for (ImmutableCallSite::arg_iterator i
= CS
.arg_begin(), e
= CS
.arg_end();
7057 TargetLowering::ArgListEntry Entry
;
7058 const Value
*V
= *i
;
7061 if (V
->getType()->isEmptyTy())
7064 SDValue ArgNode
= getValue(V
);
7065 Entry
.Node
= ArgNode
; Entry
.Ty
= V
->getType();
7067 Entry
.setAttributes(&CS
, i
- CS
.arg_begin());
7069 // Use swifterror virtual register as input to the call.
7070 if (Entry
.IsSwiftError
&& TLI
.supportSwiftError()) {
7072 // We find the virtual register for the actual swifterror argument.
7073 // Instead of using the Value, we use the virtual register instead.
7074 Entry
.Node
= DAG
.getRegister(FuncInfo
7075 .getOrCreateSwiftErrorVRegUseAt(
7076 CS
.getInstruction(), FuncInfo
.MBB
, V
)
7078 EVT(TLI
.getPointerTy(DL
)));
7081 Args
.push_back(Entry
);
7083 // If we have an explicit sret argument that is an Instruction, (i.e., it
7084 // might point to function-local memory), we can't meaningfully tail-call.
7085 if (Entry
.IsSRet
&& isa
<Instruction
>(V
))
7089 // Check if target-independent constraints permit a tail call here.
7090 // Target-dependent constraints are checked within TLI->LowerCallTo.
7091 if (isTailCall
&& !isInTailCallPosition(CS
, DAG
.getTarget()))
7094 // Disable tail calls if there is an swifterror argument. Targets have not
7095 // been updated to support tail calls.
7096 if (TLI
.supportSwiftError() && SwiftErrorVal
)
7099 TargetLowering::CallLoweringInfo
CLI(DAG
);
7100 CLI
.setDebugLoc(getCurSDLoc())
7101 .setChain(getRoot())
7102 .setCallee(RetTy
, FTy
, Callee
, std::move(Args
), CS
)
7103 .setTailCall(isTailCall
)
7104 .setConvergent(CS
.isConvergent());
7105 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
7107 if (Result
.first
.getNode()) {
7108 const Instruction
*Inst
= CS
.getInstruction();
7109 Result
.first
= lowerRangeToAssertZExt(DAG
, *Inst
, Result
.first
);
7110 setValue(Inst
, Result
.first
);
7113 // The last element of CLI.InVals has the SDValue for swifterror return.
7114 // Here we copy it to a virtual register and update SwiftErrorMap for
7116 if (SwiftErrorVal
&& TLI
.supportSwiftError()) {
7117 // Get the last element of InVals.
7118 SDValue Src
= CLI
.InVals
.back();
7119 unsigned VReg
; bool CreatedVReg
;
7120 std::tie(VReg
, CreatedVReg
) =
7121 FuncInfo
.getOrCreateSwiftErrorVRegDefAt(CS
.getInstruction());
7122 SDValue CopyNode
= CLI
.DAG
.getCopyToReg(Result
.second
, CLI
.DL
, VReg
, Src
);
7123 // We update the virtual register for the actual swifterror argument.
7125 FuncInfo
.setCurrentSwiftErrorVReg(FuncInfo
.MBB
, SwiftErrorVal
, VReg
);
7126 DAG
.setRoot(CopyNode
);
7130 static SDValue
getMemCmpLoad(const Value
*PtrVal
, MVT LoadVT
,
7131 SelectionDAGBuilder
&Builder
) {
7132 // Check to see if this load can be trivially constant folded, e.g. if the
7133 // input is from a string literal.
7134 if (const Constant
*LoadInput
= dyn_cast
<Constant
>(PtrVal
)) {
7135 // Cast pointer to the type we really want to load.
7137 Type::getIntNTy(PtrVal
->getContext(), LoadVT
.getScalarSizeInBits());
7138 if (LoadVT
.isVector())
7139 LoadTy
= VectorType::get(LoadTy
, LoadVT
.getVectorNumElements());
7141 LoadInput
= ConstantExpr::getBitCast(const_cast<Constant
*>(LoadInput
),
7142 PointerType::getUnqual(LoadTy
));
7144 if (const Constant
*LoadCst
= ConstantFoldLoadFromConstPtr(
7145 const_cast<Constant
*>(LoadInput
), LoadTy
, *Builder
.DL
))
7146 return Builder
.getValue(LoadCst
);
7149 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
7150 // still constant memory, the input chain can be the entry node.
7152 bool ConstantMemory
= false;
7154 // Do not serialize (non-volatile) loads of constant memory with anything.
7155 if (Builder
.AA
&& Builder
.AA
->pointsToConstantMemory(PtrVal
)) {
7156 Root
= Builder
.DAG
.getEntryNode();
7157 ConstantMemory
= true;
7159 // Do not serialize non-volatile loads against each other.
7160 Root
= Builder
.DAG
.getRoot();
7163 SDValue Ptr
= Builder
.getValue(PtrVal
);
7164 SDValue LoadVal
= Builder
.DAG
.getLoad(LoadVT
, Builder
.getCurSDLoc(), Root
,
7165 Ptr
, MachinePointerInfo(PtrVal
),
7166 /* Alignment = */ 1);
7168 if (!ConstantMemory
)
7169 Builder
.PendingLoads
.push_back(LoadVal
.getValue(1));
7173 /// Record the value for an instruction that produces an integer result,
7174 /// converting the type where necessary.
7175 void SelectionDAGBuilder::processIntegerCallValue(const Instruction
&I
,
7178 EVT VT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7181 Value
= DAG
.getSExtOrTrunc(Value
, getCurSDLoc(), VT
);
7183 Value
= DAG
.getZExtOrTrunc(Value
, getCurSDLoc(), VT
);
7184 setValue(&I
, Value
);
7187 /// See if we can lower a memcmp call into an optimized form. If so, return
7188 /// true and lower it. Otherwise return false, and it will be lowered like a
7190 /// The caller already checked that \p I calls the appropriate LibFunc with a
7191 /// correct prototype.
7192 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst
&I
) {
7193 const Value
*LHS
= I
.getArgOperand(0), *RHS
= I
.getArgOperand(1);
7194 const Value
*Size
= I
.getArgOperand(2);
7195 const ConstantInt
*CSize
= dyn_cast
<ConstantInt
>(Size
);
7196 if (CSize
&& CSize
->getZExtValue() == 0) {
7197 EVT CallVT
= DAG
.getTargetLoweringInfo().getValueType(DAG
.getDataLayout(),
7199 setValue(&I
, DAG
.getConstant(0, getCurSDLoc(), CallVT
));
7203 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7204 std::pair
<SDValue
, SDValue
> Res
= TSI
.EmitTargetCodeForMemcmp(
7205 DAG
, getCurSDLoc(), DAG
.getRoot(), getValue(LHS
), getValue(RHS
),
7206 getValue(Size
), MachinePointerInfo(LHS
), MachinePointerInfo(RHS
));
7207 if (Res
.first
.getNode()) {
7208 processIntegerCallValue(I
, Res
.first
, true);
7209 PendingLoads
.push_back(Res
.second
);
7213 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7214 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7215 if (!CSize
|| !isOnlyUsedInZeroEqualityComparison(&I
))
7218 // If the target has a fast compare for the given size, it will return a
7219 // preferred load type for that size. Require that the load VT is legal and
7220 // that the target supports unaligned loads of that type. Otherwise, return
7222 auto hasFastLoadsAndCompare
= [&](unsigned NumBits
) {
7223 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7224 MVT LVT
= TLI
.hasFastEqualityCompare(NumBits
);
7225 if (LVT
!= MVT::INVALID_SIMPLE_VALUE_TYPE
) {
7226 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7227 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7228 // TODO: Check alignment of src and dest ptrs.
7229 unsigned DstAS
= LHS
->getType()->getPointerAddressSpace();
7230 unsigned SrcAS
= RHS
->getType()->getPointerAddressSpace();
7231 if (!TLI
.isTypeLegal(LVT
) ||
7232 !TLI
.allowsMisalignedMemoryAccesses(LVT
, SrcAS
) ||
7233 !TLI
.allowsMisalignedMemoryAccesses(LVT
, DstAS
))
7234 LVT
= MVT::INVALID_SIMPLE_VALUE_TYPE
;
7240 // This turns into unaligned loads. We only do this if the target natively
7241 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7242 // we'll only produce a small number of byte loads.
7244 unsigned NumBitsToCompare
= CSize
->getZExtValue() * 8;
7245 switch (NumBitsToCompare
) {
7257 LoadVT
= hasFastLoadsAndCompare(NumBitsToCompare
);
7261 if (LoadVT
== MVT::INVALID_SIMPLE_VALUE_TYPE
)
7264 SDValue LoadL
= getMemCmpLoad(LHS
, LoadVT
, *this);
7265 SDValue LoadR
= getMemCmpLoad(RHS
, LoadVT
, *this);
7267 // Bitcast to a wide integer type if the loads are vectors.
7268 if (LoadVT
.isVector()) {
7269 EVT CmpVT
= EVT::getIntegerVT(LHS
->getContext(), LoadVT
.getSizeInBits());
7270 LoadL
= DAG
.getBitcast(CmpVT
, LoadL
);
7271 LoadR
= DAG
.getBitcast(CmpVT
, LoadR
);
7274 SDValue Cmp
= DAG
.getSetCC(getCurSDLoc(), MVT::i1
, LoadL
, LoadR
, ISD::SETNE
);
7275 processIntegerCallValue(I
, Cmp
, false);
7279 /// See if we can lower a memchr call into an optimized form. If so, return
7280 /// true and lower it. Otherwise return false, and it will be lowered like a
7282 /// The caller already checked that \p I calls the appropriate LibFunc with a
7283 /// correct prototype.
7284 bool SelectionDAGBuilder::visitMemChrCall(const CallInst
&I
) {
7285 const Value
*Src
= I
.getArgOperand(0);
7286 const Value
*Char
= I
.getArgOperand(1);
7287 const Value
*Length
= I
.getArgOperand(2);
7289 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7290 std::pair
<SDValue
, SDValue
> Res
=
7291 TSI
.EmitTargetCodeForMemchr(DAG
, getCurSDLoc(), DAG
.getRoot(),
7292 getValue(Src
), getValue(Char
), getValue(Length
),
7293 MachinePointerInfo(Src
));
7294 if (Res
.first
.getNode()) {
7295 setValue(&I
, Res
.first
);
7296 PendingLoads
.push_back(Res
.second
);
7303 /// See if we can lower a mempcpy call into an optimized form. If so, return
7304 /// true and lower it. Otherwise return false, and it will be lowered like a
7306 /// The caller already checked that \p I calls the appropriate LibFunc with a
7307 /// correct prototype.
7308 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst
&I
) {
7309 SDValue Dst
= getValue(I
.getArgOperand(0));
7310 SDValue Src
= getValue(I
.getArgOperand(1));
7311 SDValue Size
= getValue(I
.getArgOperand(2));
7313 unsigned DstAlign
= DAG
.InferPtrAlignment(Dst
);
7314 unsigned SrcAlign
= DAG
.InferPtrAlignment(Src
);
7315 unsigned Align
= std::min(DstAlign
, SrcAlign
);
7316 if (Align
== 0) // Alignment of one or both could not be inferred.
7317 Align
= 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7320 SDLoc sdl
= getCurSDLoc();
7322 // In the mempcpy context we need to pass in a false value for isTailCall
7323 // because the return pointer needs to be adjusted by the size of
7324 // the copied memory.
7325 SDValue MC
= DAG
.getMemcpy(getRoot(), sdl
, Dst
, Src
, Size
, Align
, isVol
,
7326 false, /*isTailCall=*/false,
7327 MachinePointerInfo(I
.getArgOperand(0)),
7328 MachinePointerInfo(I
.getArgOperand(1)));
7329 assert(MC
.getNode() != nullptr &&
7330 "** memcpy should not be lowered as TailCall in mempcpy context **");
7333 // Check if Size needs to be truncated or extended.
7334 Size
= DAG
.getSExtOrTrunc(Size
, sdl
, Dst
.getValueType());
7336 // Adjust return pointer to point just past the last dst byte.
7337 SDValue DstPlusSize
= DAG
.getNode(ISD::ADD
, sdl
, Dst
.getValueType(),
7339 setValue(&I
, DstPlusSize
);
7343 /// See if we can lower a strcpy call into an optimized form. If so, return
7344 /// true and lower it, otherwise return false and it will be lowered like a
7346 /// The caller already checked that \p I calls the appropriate LibFunc with a
7347 /// correct prototype.
7348 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst
&I
, bool isStpcpy
) {
7349 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7351 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7352 std::pair
<SDValue
, SDValue
> Res
=
7353 TSI
.EmitTargetCodeForStrcpy(DAG
, getCurSDLoc(), getRoot(),
7354 getValue(Arg0
), getValue(Arg1
),
7355 MachinePointerInfo(Arg0
),
7356 MachinePointerInfo(Arg1
), isStpcpy
);
7357 if (Res
.first
.getNode()) {
7358 setValue(&I
, Res
.first
);
7359 DAG
.setRoot(Res
.second
);
7366 /// See if we can lower a strcmp call into an optimized form. If so, return
7367 /// true and lower it, otherwise return false and it will be lowered like a
7369 /// The caller already checked that \p I calls the appropriate LibFunc with a
7370 /// correct prototype.
7371 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst
&I
) {
7372 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7374 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7375 std::pair
<SDValue
, SDValue
> Res
=
7376 TSI
.EmitTargetCodeForStrcmp(DAG
, getCurSDLoc(), DAG
.getRoot(),
7377 getValue(Arg0
), getValue(Arg1
),
7378 MachinePointerInfo(Arg0
),
7379 MachinePointerInfo(Arg1
));
7380 if (Res
.first
.getNode()) {
7381 processIntegerCallValue(I
, Res
.first
, true);
7382 PendingLoads
.push_back(Res
.second
);
7389 /// See if we can lower a strlen call into an optimized form. If so, return
7390 /// true and lower it, otherwise return false and it will be lowered like a
7392 /// The caller already checked that \p I calls the appropriate LibFunc with a
7393 /// correct prototype.
7394 bool SelectionDAGBuilder::visitStrLenCall(const CallInst
&I
) {
7395 const Value
*Arg0
= I
.getArgOperand(0);
7397 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7398 std::pair
<SDValue
, SDValue
> Res
=
7399 TSI
.EmitTargetCodeForStrlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7400 getValue(Arg0
), MachinePointerInfo(Arg0
));
7401 if (Res
.first
.getNode()) {
7402 processIntegerCallValue(I
, Res
.first
, false);
7403 PendingLoads
.push_back(Res
.second
);
7410 /// See if we can lower a strnlen call into an optimized form. If so, return
7411 /// true and lower it, otherwise return false and it will be lowered like a
7413 /// The caller already checked that \p I calls the appropriate LibFunc with a
7414 /// correct prototype.
7415 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst
&I
) {
7416 const Value
*Arg0
= I
.getArgOperand(0), *Arg1
= I
.getArgOperand(1);
7418 const SelectionDAGTargetInfo
&TSI
= DAG
.getSelectionDAGInfo();
7419 std::pair
<SDValue
, SDValue
> Res
=
7420 TSI
.EmitTargetCodeForStrnlen(DAG
, getCurSDLoc(), DAG
.getRoot(),
7421 getValue(Arg0
), getValue(Arg1
),
7422 MachinePointerInfo(Arg0
));
7423 if (Res
.first
.getNode()) {
7424 processIntegerCallValue(I
, Res
.first
, false);
7425 PendingLoads
.push_back(Res
.second
);
7432 /// See if we can lower a unary floating-point operation into an SDNode with
7433 /// the specified Opcode. If so, return true and lower it, otherwise return
7434 /// false and it will be lowered like a normal call.
7435 /// The caller already checked that \p I calls the appropriate LibFunc with a
7436 /// correct prototype.
7437 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst
&I
,
7439 // We already checked this call's prototype; verify it doesn't modify errno.
7440 if (!I
.onlyReadsMemory())
7443 SDValue Tmp
= getValue(I
.getArgOperand(0));
7444 setValue(&I
, DAG
.getNode(Opcode
, getCurSDLoc(), Tmp
.getValueType(), Tmp
));
7448 /// See if we can lower a binary floating-point operation into an SDNode with
7449 /// the specified Opcode. If so, return true and lower it. Otherwise return
7450 /// false, and it will be lowered like a normal call.
7451 /// The caller already checked that \p I calls the appropriate LibFunc with a
7452 /// correct prototype.
7453 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst
&I
,
7455 // We already checked this call's prototype; verify it doesn't modify errno.
7456 if (!I
.onlyReadsMemory())
7459 SDValue Tmp0
= getValue(I
.getArgOperand(0));
7460 SDValue Tmp1
= getValue(I
.getArgOperand(1));
7461 EVT VT
= Tmp0
.getValueType();
7462 setValue(&I
, DAG
.getNode(Opcode
, getCurSDLoc(), VT
, Tmp0
, Tmp1
));
7466 void SelectionDAGBuilder::visitCall(const CallInst
&I
) {
7467 // Handle inline assembly differently.
7468 if (isa
<InlineAsm
>(I
.getCalledValue())) {
7473 if (Function
*F
= I
.getCalledFunction()) {
7474 if (F
->isDeclaration()) {
7475 // Is this an LLVM intrinsic or a target-specific intrinsic?
7476 unsigned IID
= F
->getIntrinsicID();
7478 if (const TargetIntrinsicInfo
*II
= TM
.getIntrinsicInfo())
7479 IID
= II
->getIntrinsicID(F
);
7482 visitIntrinsicCall(I
, IID
);
7487 // Check for well-known libc/libm calls. If the function is internal, it
7488 // can't be a library call. Don't do the check if marked as nobuiltin for
7489 // some reason or the call site requires strict floating point semantics.
7491 if (!I
.isNoBuiltin() && !I
.isStrictFP() && !F
->hasLocalLinkage() &&
7492 F
->hasName() && LibInfo
->getLibFunc(*F
, Func
) &&
7493 LibInfo
->hasOptimizedCodeGen(Func
)) {
7496 case LibFunc_copysign
:
7497 case LibFunc_copysignf
:
7498 case LibFunc_copysignl
:
7499 // We already checked this call's prototype; verify it doesn't modify
7501 if (I
.onlyReadsMemory()) {
7502 SDValue LHS
= getValue(I
.getArgOperand(0));
7503 SDValue RHS
= getValue(I
.getArgOperand(1));
7504 setValue(&I
, DAG
.getNode(ISD::FCOPYSIGN
, getCurSDLoc(),
7505 LHS
.getValueType(), LHS
, RHS
));
7512 if (visitUnaryFloatCall(I
, ISD::FABS
))
7518 if (visitBinaryFloatCall(I
, ISD::FMINNUM
))
7524 if (visitBinaryFloatCall(I
, ISD::FMAXNUM
))
7530 if (visitUnaryFloatCall(I
, ISD::FSIN
))
7536 if (visitUnaryFloatCall(I
, ISD::FCOS
))
7542 case LibFunc_sqrt_finite
:
7543 case LibFunc_sqrtf_finite
:
7544 case LibFunc_sqrtl_finite
:
7545 if (visitUnaryFloatCall(I
, ISD::FSQRT
))
7549 case LibFunc_floorf
:
7550 case LibFunc_floorl
:
7551 if (visitUnaryFloatCall(I
, ISD::FFLOOR
))
7554 case LibFunc_nearbyint
:
7555 case LibFunc_nearbyintf
:
7556 case LibFunc_nearbyintl
:
7557 if (visitUnaryFloatCall(I
, ISD::FNEARBYINT
))
7563 if (visitUnaryFloatCall(I
, ISD::FCEIL
))
7569 if (visitUnaryFloatCall(I
, ISD::FRINT
))
7573 case LibFunc_roundf
:
7574 case LibFunc_roundl
:
7575 if (visitUnaryFloatCall(I
, ISD::FROUND
))
7579 case LibFunc_truncf
:
7580 case LibFunc_truncl
:
7581 if (visitUnaryFloatCall(I
, ISD::FTRUNC
))
7587 if (visitUnaryFloatCall(I
, ISD::FLOG2
))
7593 if (visitUnaryFloatCall(I
, ISD::FEXP2
))
7596 case LibFunc_memcmp
:
7597 if (visitMemCmpCall(I
))
7600 case LibFunc_mempcpy
:
7601 if (visitMemPCpyCall(I
))
7604 case LibFunc_memchr
:
7605 if (visitMemChrCall(I
))
7608 case LibFunc_strcpy
:
7609 if (visitStrCpyCall(I
, false))
7612 case LibFunc_stpcpy
:
7613 if (visitStrCpyCall(I
, true))
7616 case LibFunc_strcmp
:
7617 if (visitStrCmpCall(I
))
7620 case LibFunc_strlen
:
7621 if (visitStrLenCall(I
))
7624 case LibFunc_strnlen
:
7625 if (visitStrNLenCall(I
))
7632 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7633 // have to do anything here to lower funclet bundles.
7634 assert(!I
.hasOperandBundlesOtherThan(
7635 {LLVMContext::OB_deopt
, LLVMContext::OB_funclet
}) &&
7636 "Cannot lower calls with arbitrary operand bundles!");
7638 SDValue Callee
= getValue(I
.getCalledValue());
7640 if (I
.countOperandBundlesOfType(LLVMContext::OB_deopt
))
7641 LowerCallSiteWithDeoptBundle(&I
, Callee
, nullptr);
7643 // Check if we can potentially perform a tail call. More detailed checking
7644 // is be done within LowerCallTo, after more information about the call is
7646 LowerCallTo(&I
, Callee
, I
.isTailCall());
7651 /// AsmOperandInfo - This contains information for each constraint that we are
7653 class SDISelAsmOperandInfo
: public TargetLowering::AsmOperandInfo
{
7655 /// CallOperand - If this is the result output operand or a clobber
7656 /// this is null, otherwise it is the incoming operand to the CallInst.
7657 /// This gets modified as the asm is processed.
7658 SDValue CallOperand
;
7660 /// AssignedRegs - If this is a register or register class operand, this
7661 /// contains the set of register corresponding to the operand.
7662 RegsForValue AssignedRegs
;
7664 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo
&info
)
7665 : TargetLowering::AsmOperandInfo(info
), CallOperand(nullptr, 0) {
7668 /// Whether or not this operand accesses memory
7669 bool hasMemory(const TargetLowering
&TLI
) const {
7670 // Indirect operand accesses access memory.
7674 for (const auto &Code
: Codes
)
7675 if (TLI
.getConstraintType(Code
) == TargetLowering::C_Memory
)
7681 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7682 /// corresponds to. If there is no Value* for this operand, it returns
7684 EVT
getCallOperandValEVT(LLVMContext
&Context
, const TargetLowering
&TLI
,
7685 const DataLayout
&DL
) const {
7686 if (!CallOperandVal
) return MVT::Other
;
7688 if (isa
<BasicBlock
>(CallOperandVal
))
7689 return TLI
.getPointerTy(DL
);
7691 llvm::Type
*OpTy
= CallOperandVal
->getType();
7693 // FIXME: code duplicated from TargetLowering::ParseConstraints().
7694 // If this is an indirect operand, the operand is a pointer to the
7697 PointerType
*PtrTy
= dyn_cast
<PointerType
>(OpTy
);
7699 report_fatal_error("Indirect operand for inline asm not a pointer!");
7700 OpTy
= PtrTy
->getElementType();
7703 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7704 if (StructType
*STy
= dyn_cast
<StructType
>(OpTy
))
7705 if (STy
->getNumElements() == 1)
7706 OpTy
= STy
->getElementType(0);
7708 // If OpTy is not a single value, it may be a struct/union that we
7709 // can tile with integers.
7710 if (!OpTy
->isSingleValueType() && OpTy
->isSized()) {
7711 unsigned BitSize
= DL
.getTypeSizeInBits(OpTy
);
7720 OpTy
= IntegerType::get(Context
, BitSize
);
7725 return TLI
.getValueType(DL
, OpTy
, true);
7729 using SDISelAsmOperandInfoVector
= SmallVector
<SDISelAsmOperandInfo
, 16>;
7731 } // end anonymous namespace
7733 /// Make sure that the output operand \p OpInfo and its corresponding input
7734 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7736 static void patchMatchingInput(const SDISelAsmOperandInfo
&OpInfo
,
7737 SDISelAsmOperandInfo
&MatchingOpInfo
,
7738 SelectionDAG
&DAG
) {
7739 if (OpInfo
.ConstraintVT
== MatchingOpInfo
.ConstraintVT
)
7742 const TargetRegisterInfo
*TRI
= DAG
.getSubtarget().getRegisterInfo();
7743 const auto &TLI
= DAG
.getTargetLoweringInfo();
7745 std::pair
<unsigned, const TargetRegisterClass
*> MatchRC
=
7746 TLI
.getRegForInlineAsmConstraint(TRI
, OpInfo
.ConstraintCode
,
7747 OpInfo
.ConstraintVT
);
7748 std::pair
<unsigned, const TargetRegisterClass
*> InputRC
=
7749 TLI
.getRegForInlineAsmConstraint(TRI
, MatchingOpInfo
.ConstraintCode
,
7750 MatchingOpInfo
.ConstraintVT
);
7751 if ((OpInfo
.ConstraintVT
.isInteger() !=
7752 MatchingOpInfo
.ConstraintVT
.isInteger()) ||
7753 (MatchRC
.second
!= InputRC
.second
)) {
7754 // FIXME: error out in a more elegant fashion
7755 report_fatal_error("Unsupported asm: input constraint"
7756 " with a matching output constraint of"
7757 " incompatible type!");
7759 MatchingOpInfo
.ConstraintVT
= OpInfo
.ConstraintVT
;
7762 /// Get a direct memory input to behave well as an indirect operand.
7763 /// This may introduce stores, hence the need for a \p Chain.
7764 /// \return The (possibly updated) chain.
7765 static SDValue
getAddressForMemoryInput(SDValue Chain
, const SDLoc
&Location
,
7766 SDISelAsmOperandInfo
&OpInfo
,
7767 SelectionDAG
&DAG
) {
7768 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7770 // If we don't have an indirect input, put it in the constpool if we can,
7771 // otherwise spill it to a stack slot.
7772 // TODO: This isn't quite right. We need to handle these according to
7773 // the addressing mode that the constraint wants. Also, this may take
7774 // an additional register for the computation and we don't want that
7777 // If the operand is a float, integer, or vector constant, spill to a
7778 // constant pool entry to get its address.
7779 const Value
*OpVal
= OpInfo
.CallOperandVal
;
7780 if (isa
<ConstantFP
>(OpVal
) || isa
<ConstantInt
>(OpVal
) ||
7781 isa
<ConstantVector
>(OpVal
) || isa
<ConstantDataVector
>(OpVal
)) {
7782 OpInfo
.CallOperand
= DAG
.getConstantPool(
7783 cast
<Constant
>(OpVal
), TLI
.getPointerTy(DAG
.getDataLayout()));
7787 // Otherwise, create a stack slot and emit a store to it before the asm.
7788 Type
*Ty
= OpVal
->getType();
7789 auto &DL
= DAG
.getDataLayout();
7790 uint64_t TySize
= DL
.getTypeAllocSize(Ty
);
7791 unsigned Align
= DL
.getPrefTypeAlignment(Ty
);
7792 MachineFunction
&MF
= DAG
.getMachineFunction();
7793 int SSFI
= MF
.getFrameInfo().CreateStackObject(TySize
, Align
, false);
7794 SDValue StackSlot
= DAG
.getFrameIndex(SSFI
, TLI
.getFrameIndexTy(DL
));
7795 Chain
= DAG
.getTruncStore(Chain
, Location
, OpInfo
.CallOperand
, StackSlot
,
7796 MachinePointerInfo::getFixedStack(MF
, SSFI
),
7797 TLI
.getMemValueType(DL
, Ty
));
7798 OpInfo
.CallOperand
= StackSlot
;
7803 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7804 /// specified operand. We prefer to assign virtual registers, to allow the
7805 /// register allocator to handle the assignment process. However, if the asm
7806 /// uses features that we can't model on machineinstrs, we have SDISel do the
7807 /// allocation. This produces generally horrible, but correct, code.
7809 /// OpInfo describes the operand
7810 /// RefOpInfo describes the matching operand if any, the operand otherwise
7811 static void GetRegistersForValue(SelectionDAG
&DAG
, const SDLoc
&DL
,
7812 SDISelAsmOperandInfo
&OpInfo
,
7813 SDISelAsmOperandInfo
&RefOpInfo
) {
7814 LLVMContext
&Context
= *DAG
.getContext();
7815 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7817 MachineFunction
&MF
= DAG
.getMachineFunction();
7818 SmallVector
<unsigned, 4> Regs
;
7819 const TargetRegisterInfo
&TRI
= *MF
.getSubtarget().getRegisterInfo();
7821 // No work to do for memory operations.
7822 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
)
7825 // If this is a constraint for a single physreg, or a constraint for a
7826 // register class, find it.
7827 unsigned AssignedReg
;
7828 const TargetRegisterClass
*RC
;
7829 std::tie(AssignedReg
, RC
) = TLI
.getRegForInlineAsmConstraint(
7830 &TRI
, RefOpInfo
.ConstraintCode
, RefOpInfo
.ConstraintVT
);
7831 // RC is unset only on failure. Return immediately.
7835 // Get the actual register value type. This is important, because the user
7836 // may have asked for (e.g.) the AX register in i32 type. We need to
7837 // remember that AX is actually i16 to get the right extension.
7838 const MVT RegVT
= *TRI
.legalclasstypes_begin(*RC
);
7840 if (OpInfo
.ConstraintVT
!= MVT::Other
) {
7841 // If this is an FP operand in an integer register (or visa versa), or more
7842 // generally if the operand value disagrees with the register class we plan
7843 // to stick it in, fix the operand type.
7845 // If this is an input value, the bitcast to the new type is done now.
7846 // Bitcast for output value is done at the end of visitInlineAsm().
7847 if ((OpInfo
.Type
== InlineAsm::isOutput
||
7848 OpInfo
.Type
== InlineAsm::isInput
) &&
7849 !TRI
.isTypeLegalForClass(*RC
, OpInfo
.ConstraintVT
)) {
7850 // Try to convert to the first EVT that the reg class contains. If the
7851 // types are identical size, use a bitcast to convert (e.g. two differing
7852 // vector types). Note: output bitcast is done at the end of
7853 // visitInlineAsm().
7854 if (RegVT
.getSizeInBits() == OpInfo
.ConstraintVT
.getSizeInBits()) {
7855 // Exclude indirect inputs while they are unsupported because the code
7856 // to perform the load is missing and thus OpInfo.CallOperand still
7857 // refers to the input address rather than the pointed-to value.
7858 if (OpInfo
.Type
== InlineAsm::isInput
&& !OpInfo
.isIndirect
)
7859 OpInfo
.CallOperand
=
7860 DAG
.getNode(ISD::BITCAST
, DL
, RegVT
, OpInfo
.CallOperand
);
7861 OpInfo
.ConstraintVT
= RegVT
;
7862 // If the operand is an FP value and we want it in integer registers,
7863 // use the corresponding integer type. This turns an f64 value into
7864 // i64, which can be passed with two i32 values on a 32-bit machine.
7865 } else if (RegVT
.isInteger() && OpInfo
.ConstraintVT
.isFloatingPoint()) {
7866 MVT VT
= MVT::getIntegerVT(OpInfo
.ConstraintVT
.getSizeInBits());
7867 if (OpInfo
.Type
== InlineAsm::isInput
)
7868 OpInfo
.CallOperand
=
7869 DAG
.getNode(ISD::BITCAST
, DL
, VT
, OpInfo
.CallOperand
);
7870 OpInfo
.ConstraintVT
= VT
;
7875 // No need to allocate a matching input constraint since the constraint it's
7876 // matching to has already been allocated.
7877 if (OpInfo
.isMatchingInputConstraint())
7880 EVT ValueVT
= OpInfo
.ConstraintVT
;
7881 if (OpInfo
.ConstraintVT
== MVT::Other
)
7884 // Initialize NumRegs.
7885 unsigned NumRegs
= 1;
7886 if (OpInfo
.ConstraintVT
!= MVT::Other
)
7887 NumRegs
= TLI
.getNumRegisters(Context
, OpInfo
.ConstraintVT
);
7889 // If this is a constraint for a specific physical register, like {r17},
7892 // If this associated to a specific register, initialize iterator to correct
7893 // place. If virtual, make sure we have enough registers
7895 // Initialize iterator if necessary
7896 TargetRegisterClass::iterator I
= RC
->begin();
7897 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
7899 // Do not check for single registers.
7901 for (; *I
!= AssignedReg
; ++I
)
7902 assert(I
!= RC
->end() && "AssignedReg should be member of RC");
7905 for (; NumRegs
; --NumRegs
, ++I
) {
7906 assert(I
!= RC
->end() && "Ran out of registers to allocate!");
7907 auto R
= (AssignedReg
) ? *I
: RegInfo
.createVirtualRegister(RC
);
7911 OpInfo
.AssignedRegs
= RegsForValue(Regs
, RegVT
, ValueVT
);
7915 findMatchingInlineAsmOperand(unsigned OperandNo
,
7916 const std::vector
<SDValue
> &AsmNodeOperands
) {
7917 // Scan until we find the definition we already emitted of this operand.
7918 unsigned CurOp
= InlineAsm::Op_FirstOperand
;
7919 for (; OperandNo
; --OperandNo
) {
7920 // Advance to the next operand.
7922 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
7923 assert((InlineAsm::isRegDefKind(OpFlag
) ||
7924 InlineAsm::isRegDefEarlyClobberKind(OpFlag
) ||
7925 InlineAsm::isMemKind(OpFlag
)) &&
7926 "Skipped past definitions?");
7927 CurOp
+= InlineAsm::getNumOperandRegisters(OpFlag
) + 1;
7938 explicit ExtraFlags(ImmutableCallSite CS
) {
7939 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
7940 if (IA
->hasSideEffects())
7941 Flags
|= InlineAsm::Extra_HasSideEffects
;
7942 if (IA
->isAlignStack())
7943 Flags
|= InlineAsm::Extra_IsAlignStack
;
7944 if (CS
.isConvergent())
7945 Flags
|= InlineAsm::Extra_IsConvergent
;
7946 Flags
|= IA
->getDialect() * InlineAsm::Extra_AsmDialect
;
7949 void update(const TargetLowering::AsmOperandInfo
&OpInfo
) {
7950 // Ideally, we would only check against memory constraints. However, the
7951 // meaning of an Other constraint can be target-specific and we can't easily
7952 // reason about it. Therefore, be conservative and set MayLoad/MayStore
7953 // for Other constraints as well.
7954 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
||
7955 OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
7956 if (OpInfo
.Type
== InlineAsm::isInput
)
7957 Flags
|= InlineAsm::Extra_MayLoad
;
7958 else if (OpInfo
.Type
== InlineAsm::isOutput
)
7959 Flags
|= InlineAsm::Extra_MayStore
;
7960 else if (OpInfo
.Type
== InlineAsm::isClobber
)
7961 Flags
|= (InlineAsm::Extra_MayLoad
| InlineAsm::Extra_MayStore
);
7965 unsigned get() const { return Flags
; }
7968 } // end anonymous namespace
7970 /// visitInlineAsm - Handle a call to an InlineAsm object.
7971 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS
) {
7972 const InlineAsm
*IA
= cast
<InlineAsm
>(CS
.getCalledValue());
7974 /// ConstraintOperands - Information about all of the constraints.
7975 SDISelAsmOperandInfoVector ConstraintOperands
;
7977 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
7978 TargetLowering::AsmOperandInfoVector TargetConstraints
= TLI
.ParseConstraints(
7979 DAG
.getDataLayout(), DAG
.getSubtarget().getRegisterInfo(), CS
);
7981 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7982 // AsmDialect, MayLoad, MayStore).
7983 bool HasSideEffect
= IA
->hasSideEffects();
7984 ExtraFlags
ExtraInfo(CS
);
7986 unsigned ArgNo
= 0; // ArgNo - The argument of the CallInst.
7987 unsigned ResNo
= 0; // ResNo - The result number of the next output.
7988 for (auto &T
: TargetConstraints
) {
7989 ConstraintOperands
.push_back(SDISelAsmOperandInfo(T
));
7990 SDISelAsmOperandInfo
&OpInfo
= ConstraintOperands
.back();
7992 // Compute the value type for each operand.
7993 if (OpInfo
.Type
== InlineAsm::isInput
||
7994 (OpInfo
.Type
== InlineAsm::isOutput
&& OpInfo
.isIndirect
)) {
7995 OpInfo
.CallOperandVal
= const_cast<Value
*>(CS
.getArgument(ArgNo
++));
7997 // Process the call argument. BasicBlocks are labels, currently appearing
7999 const Instruction
*I
= CS
.getInstruction();
8000 if (isa
<CallBrInst
>(I
) &&
8001 (ArgNo
- 1) >= (cast
<CallBrInst
>(I
)->getNumArgOperands() -
8002 cast
<CallBrInst
>(I
)->getNumIndirectDests())) {
8003 const auto *BA
= cast
<BlockAddress
>(OpInfo
.CallOperandVal
);
8004 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), BA
->getType(), true);
8005 OpInfo
.CallOperand
= DAG
.getTargetBlockAddress(BA
, VT
);
8006 } else if (const auto *BB
= dyn_cast
<BasicBlock
>(OpInfo
.CallOperandVal
)) {
8007 OpInfo
.CallOperand
= DAG
.getBasicBlock(FuncInfo
.MBBMap
[BB
]);
8009 OpInfo
.CallOperand
= getValue(OpInfo
.CallOperandVal
);
8012 OpInfo
.ConstraintVT
=
8014 .getCallOperandValEVT(*DAG
.getContext(), TLI
, DAG
.getDataLayout())
8016 } else if (OpInfo
.Type
== InlineAsm::isOutput
&& !OpInfo
.isIndirect
) {
8017 // The return value of the call is this value. As such, there is no
8018 // corresponding argument.
8019 assert(!CS
.getType()->isVoidTy() && "Bad inline asm!");
8020 if (StructType
*STy
= dyn_cast
<StructType
>(CS
.getType())) {
8021 OpInfo
.ConstraintVT
= TLI
.getSimpleValueType(
8022 DAG
.getDataLayout(), STy
->getElementType(ResNo
));
8024 assert(ResNo
== 0 && "Asm only has one result!");
8025 OpInfo
.ConstraintVT
=
8026 TLI
.getSimpleValueType(DAG
.getDataLayout(), CS
.getType());
8030 OpInfo
.ConstraintVT
= MVT::Other
;
8034 HasSideEffect
= OpInfo
.hasMemory(TLI
);
8036 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8037 // FIXME: Could we compute this on OpInfo rather than T?
8039 // Compute the constraint code and ConstraintType to use.
8040 TLI
.ComputeConstraintToUse(T
, SDValue());
8042 ExtraInfo
.update(T
);
8045 // We won't need to flush pending loads if this asm doesn't touch
8046 // memory and is nonvolatile.
8047 SDValue Flag
, Chain
= (HasSideEffect
) ? getRoot() : DAG
.getRoot();
8049 // Second pass over the constraints: compute which constraint option to use.
8050 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8051 // If this is an output operand with a matching input operand, look up the
8052 // matching input. If their types mismatch, e.g. one is an integer, the
8053 // other is floating point, or their sizes are different, flag it as an
8055 if (OpInfo
.hasMatchingInput()) {
8056 SDISelAsmOperandInfo
&Input
= ConstraintOperands
[OpInfo
.MatchingInput
];
8057 patchMatchingInput(OpInfo
, Input
, DAG
);
8060 // Compute the constraint code and ConstraintType to use.
8061 TLI
.ComputeConstraintToUse(OpInfo
, OpInfo
.CallOperand
, &DAG
);
8063 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8064 OpInfo
.Type
== InlineAsm::isClobber
)
8067 // If this is a memory input, and if the operand is not indirect, do what we
8068 // need to provide an address for the memory input.
8069 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
&&
8070 !OpInfo
.isIndirect
) {
8071 assert((OpInfo
.isMultipleAlternative
||
8072 (OpInfo
.Type
== InlineAsm::isInput
)) &&
8073 "Can only indirectify direct input operands!");
8075 // Memory operands really want the address of the value.
8076 Chain
= getAddressForMemoryInput(Chain
, getCurSDLoc(), OpInfo
, DAG
);
8078 // There is no longer a Value* corresponding to this operand.
8079 OpInfo
.CallOperandVal
= nullptr;
8081 // It is now an indirect operand.
8082 OpInfo
.isIndirect
= true;
8087 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8088 std::vector
<SDValue
> AsmNodeOperands
;
8089 AsmNodeOperands
.push_back(SDValue()); // reserve space for input chain
8090 AsmNodeOperands
.push_back(DAG
.getTargetExternalSymbol(
8091 IA
->getAsmString().c_str(), TLI
.getPointerTy(DAG
.getDataLayout())));
8093 // If we have a !srcloc metadata node associated with it, we want to attach
8094 // this to the ultimately generated inline asm machineinstr. To do this, we
8095 // pass in the third operand as this (potentially null) inline asm MDNode.
8096 const MDNode
*SrcLoc
= CS
.getInstruction()->getMetadata("srcloc");
8097 AsmNodeOperands
.push_back(DAG
.getMDNode(SrcLoc
));
8099 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8100 // bits as operand 3.
8101 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8102 ExtraInfo
.get(), getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8104 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8105 // this, assign virtual and physical registers for inputs and otput.
8106 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8107 // Assign Registers.
8108 SDISelAsmOperandInfo
&RefOpInfo
=
8109 OpInfo
.isMatchingInputConstraint()
8110 ? ConstraintOperands
[OpInfo
.getMatchedOperand()]
8112 GetRegistersForValue(DAG
, getCurSDLoc(), OpInfo
, RefOpInfo
);
8114 switch (OpInfo
.Type
) {
8115 case InlineAsm::isOutput
:
8116 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
||
8117 (OpInfo
.ConstraintType
== TargetLowering::C_Other
&&
8118 OpInfo
.isIndirect
)) {
8119 unsigned ConstraintID
=
8120 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8121 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8122 "Failed to convert memory constraint code to constraint id.");
8124 // Add information to the INLINEASM node to know about this output.
8125 unsigned OpFlags
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8126 OpFlags
= InlineAsm::getFlagWordForMem(OpFlags
, ConstraintID
);
8127 AsmNodeOperands
.push_back(DAG
.getTargetConstant(OpFlags
, getCurSDLoc(),
8129 AsmNodeOperands
.push_back(OpInfo
.CallOperand
);
8131 } else if ((OpInfo
.ConstraintType
== TargetLowering::C_Other
&&
8132 !OpInfo
.isIndirect
) ||
8133 OpInfo
.ConstraintType
== TargetLowering::C_Register
||
8134 OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
) {
8135 // Otherwise, this outputs to a register (directly for C_Register /
8136 // C_RegisterClass, and a target-defined fashion for C_Other). Find a
8137 // register that we can use.
8138 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8140 CS
, "couldn't allocate output register for constraint '" +
8141 Twine(OpInfo
.ConstraintCode
) + "'");
8145 // Add information to the INLINEASM node to know that this register is
8147 OpInfo
.AssignedRegs
.AddInlineAsmOperands(
8148 OpInfo
.isEarlyClobber
? InlineAsm::Kind_RegDefEarlyClobber
8149 : InlineAsm::Kind_RegDef
,
8150 false, 0, getCurSDLoc(), DAG
, AsmNodeOperands
);
8154 case InlineAsm::isInput
: {
8155 SDValue InOperandVal
= OpInfo
.CallOperand
;
8157 if (OpInfo
.isMatchingInputConstraint()) {
8158 // If this is required to match an output register we have already set,
8159 // just use its register.
8160 auto CurOp
= findMatchingInlineAsmOperand(OpInfo
.getMatchedOperand(),
8163 cast
<ConstantSDNode
>(AsmNodeOperands
[CurOp
])->getZExtValue();
8164 if (InlineAsm::isRegDefKind(OpFlag
) ||
8165 InlineAsm::isRegDefEarlyClobberKind(OpFlag
)) {
8166 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8167 if (OpInfo
.isIndirect
) {
8168 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8169 emitInlineAsmError(CS
, "inline asm not supported yet:"
8170 " don't know how to handle tied "
8171 "indirect register inputs");
8175 MVT RegVT
= AsmNodeOperands
[CurOp
+1].getSimpleValueType();
8176 SmallVector
<unsigned, 4> Regs
;
8178 if (const TargetRegisterClass
*RC
= TLI
.getRegClassFor(RegVT
)) {
8179 unsigned NumRegs
= InlineAsm::getNumOperandRegisters(OpFlag
);
8180 MachineRegisterInfo
&RegInfo
=
8181 DAG
.getMachineFunction().getRegInfo();
8182 for (unsigned i
= 0; i
!= NumRegs
; ++i
)
8183 Regs
.push_back(RegInfo
.createVirtualRegister(RC
));
8185 emitInlineAsmError(CS
, "inline asm error: This value type register "
8186 "class is not natively supported!");
8190 RegsForValue
MatchedRegs(Regs
, RegVT
, InOperandVal
.getValueType());
8192 SDLoc dl
= getCurSDLoc();
8193 // Use the produced MatchedRegs object to
8194 MatchedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
, Chain
, &Flag
,
8195 CS
.getInstruction());
8196 MatchedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
,
8197 true, OpInfo
.getMatchedOperand(), dl
,
8198 DAG
, AsmNodeOperands
);
8202 assert(InlineAsm::isMemKind(OpFlag
) && "Unknown matching constraint!");
8203 assert(InlineAsm::getNumOperandRegisters(OpFlag
) == 1 &&
8204 "Unexpected number of operands");
8205 // Add information to the INLINEASM node to know about this input.
8206 // See InlineAsm.h isUseOperandTiedToDef.
8207 OpFlag
= InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag
);
8208 OpFlag
= InlineAsm::getFlagWordForMatchingOp(OpFlag
,
8209 OpInfo
.getMatchedOperand());
8210 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8211 OpFlag
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8212 AsmNodeOperands
.push_back(AsmNodeOperands
[CurOp
+1]);
8216 // Treat indirect 'X' constraint as memory.
8217 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
&&
8219 OpInfo
.ConstraintType
= TargetLowering::C_Memory
;
8221 if (OpInfo
.ConstraintType
== TargetLowering::C_Other
) {
8222 std::vector
<SDValue
> Ops
;
8223 TLI
.LowerAsmOperandForConstraint(InOperandVal
, OpInfo
.ConstraintCode
,
8226 emitInlineAsmError(CS
, "invalid operand for inline asm constraint '" +
8227 Twine(OpInfo
.ConstraintCode
) + "'");
8231 // Add information to the INLINEASM node to know about this input.
8232 unsigned ResOpType
=
8233 InlineAsm::getFlagWord(InlineAsm::Kind_Imm
, Ops
.size());
8234 AsmNodeOperands
.push_back(DAG
.getTargetConstant(
8235 ResOpType
, getCurSDLoc(), TLI
.getPointerTy(DAG
.getDataLayout())));
8236 AsmNodeOperands
.insert(AsmNodeOperands
.end(), Ops
.begin(), Ops
.end());
8240 if (OpInfo
.ConstraintType
== TargetLowering::C_Memory
) {
8241 assert(OpInfo
.isIndirect
&& "Operand must be indirect to be a mem!");
8242 assert(InOperandVal
.getValueType() ==
8243 TLI
.getPointerTy(DAG
.getDataLayout()) &&
8244 "Memory operands expect pointer values");
8246 unsigned ConstraintID
=
8247 TLI
.getInlineAsmMemConstraint(OpInfo
.ConstraintCode
);
8248 assert(ConstraintID
!= InlineAsm::Constraint_Unknown
&&
8249 "Failed to convert memory constraint code to constraint id.");
8251 // Add information to the INLINEASM node to know about this input.
8252 unsigned ResOpType
= InlineAsm::getFlagWord(InlineAsm::Kind_Mem
, 1);
8253 ResOpType
= InlineAsm::getFlagWordForMem(ResOpType
, ConstraintID
);
8254 AsmNodeOperands
.push_back(DAG
.getTargetConstant(ResOpType
,
8257 AsmNodeOperands
.push_back(InOperandVal
);
8261 assert((OpInfo
.ConstraintType
== TargetLowering::C_RegisterClass
||
8262 OpInfo
.ConstraintType
== TargetLowering::C_Register
) &&
8263 "Unknown constraint type!");
8265 // TODO: Support this.
8266 if (OpInfo
.isIndirect
) {
8268 CS
, "Don't know how to handle indirect register inputs yet "
8269 "for constraint '" +
8270 Twine(OpInfo
.ConstraintCode
) + "'");
8274 // Copy the input into the appropriate registers.
8275 if (OpInfo
.AssignedRegs
.Regs
.empty()) {
8276 emitInlineAsmError(CS
, "couldn't allocate input reg for constraint '" +
8277 Twine(OpInfo
.ConstraintCode
) + "'");
8281 SDLoc dl
= getCurSDLoc();
8283 OpInfo
.AssignedRegs
.getCopyToRegs(InOperandVal
, DAG
, dl
,
8284 Chain
, &Flag
, CS
.getInstruction());
8286 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_RegUse
, false, 0,
8287 dl
, DAG
, AsmNodeOperands
);
8290 case InlineAsm::isClobber
:
8291 // Add the clobbered value to the operand list, so that the register
8292 // allocator is aware that the physreg got clobbered.
8293 if (!OpInfo
.AssignedRegs
.Regs
.empty())
8294 OpInfo
.AssignedRegs
.AddInlineAsmOperands(InlineAsm::Kind_Clobber
,
8295 false, 0, getCurSDLoc(), DAG
,
8301 // Finish up input operands. Set the input chain and add the flag last.
8302 AsmNodeOperands
[InlineAsm::Op_InputChain
] = Chain
;
8303 if (Flag
.getNode()) AsmNodeOperands
.push_back(Flag
);
8305 unsigned ISDOpc
= isa
<CallBrInst
>(CS
.getInstruction()) ? ISD::INLINEASM_BR
8307 Chain
= DAG
.getNode(ISDOpc
, getCurSDLoc(),
8308 DAG
.getVTList(MVT::Other
, MVT::Glue
), AsmNodeOperands
);
8309 Flag
= Chain
.getValue(1);
8311 // Do additional work to generate outputs.
8313 SmallVector
<EVT
, 1> ResultVTs
;
8314 SmallVector
<SDValue
, 1> ResultValues
;
8315 SmallVector
<SDValue
, 8> OutChains
;
8317 llvm::Type
*CSResultType
= CS
.getType();
8318 ArrayRef
<Type
*> ResultTypes
;
8319 if (StructType
*StructResult
= dyn_cast
<StructType
>(CSResultType
))
8320 ResultTypes
= StructResult
->elements();
8321 else if (!CSResultType
->isVoidTy())
8322 ResultTypes
= makeArrayRef(CSResultType
);
8324 auto CurResultType
= ResultTypes
.begin();
8325 auto handleRegAssign
= [&](SDValue V
) {
8326 assert(CurResultType
!= ResultTypes
.end() && "Unexpected value");
8327 assert((*CurResultType
)->isSized() && "Unexpected unsized type");
8328 EVT ResultVT
= TLI
.getValueType(DAG
.getDataLayout(), *CurResultType
);
8330 // If the type of the inline asm call site return value is different but has
8331 // same size as the type of the asm output bitcast it. One example of this
8332 // is for vectors with different width / number of elements. This can
8333 // happen for register classes that can contain multiple different value
8334 // types. The preg or vreg allocated may not have the same VT as was
8337 // This can also happen for a return value that disagrees with the register
8338 // class it is put in, eg. a double in a general-purpose register on a
8340 if (ResultVT
!= V
.getValueType() &&
8341 ResultVT
.getSizeInBits() == V
.getValueSizeInBits())
8342 V
= DAG
.getNode(ISD::BITCAST
, getCurSDLoc(), ResultVT
, V
);
8343 else if (ResultVT
!= V
.getValueType() && ResultVT
.isInteger() &&
8344 V
.getValueType().isInteger()) {
8345 // If a result value was tied to an input value, the computed result
8346 // may have a wider width than the expected result. Extract the
8347 // relevant portion.
8348 V
= DAG
.getNode(ISD::TRUNCATE
, getCurSDLoc(), ResultVT
, V
);
8350 assert(ResultVT
== V
.getValueType() && "Asm result value mismatch!");
8351 ResultVTs
.push_back(ResultVT
);
8352 ResultValues
.push_back(V
);
8355 // Deal with output operands.
8356 for (SDISelAsmOperandInfo
&OpInfo
: ConstraintOperands
) {
8357 if (OpInfo
.Type
== InlineAsm::isOutput
) {
8359 // Skip trivial output operands.
8360 if (OpInfo
.AssignedRegs
.Regs
.empty())
8363 switch (OpInfo
.ConstraintType
) {
8364 case TargetLowering::C_Register
:
8365 case TargetLowering::C_RegisterClass
:
8366 Val
= OpInfo
.AssignedRegs
.getCopyFromRegs(
8367 DAG
, FuncInfo
, getCurSDLoc(), Chain
, &Flag
, CS
.getInstruction());
8369 case TargetLowering::C_Other
:
8370 Val
= TLI
.LowerAsmOutputForConstraint(Chain
, Flag
, getCurSDLoc(),
8373 case TargetLowering::C_Memory
:
8374 break; // Already handled.
8375 case TargetLowering::C_Unknown
:
8376 assert(false && "Unexpected unknown constraint");
8379 // Indirect output manifest as stores. Record output chains.
8380 if (OpInfo
.isIndirect
) {
8381 const Value
*Ptr
= OpInfo
.CallOperandVal
;
8382 assert(Ptr
&& "Expected value CallOperandVal for indirect asm operand");
8383 SDValue Store
= DAG
.getStore(Chain
, getCurSDLoc(), Val
, getValue(Ptr
),
8384 MachinePointerInfo(Ptr
));
8385 OutChains
.push_back(Store
);
8387 // generate CopyFromRegs to associated registers.
8388 assert(!CS
.getType()->isVoidTy() && "Bad inline asm!");
8389 if (Val
.getOpcode() == ISD::MERGE_VALUES
) {
8390 for (const SDValue
&V
: Val
->op_values())
8393 handleRegAssign(Val
);
8399 if (!ResultValues
.empty()) {
8400 assert(CurResultType
== ResultTypes
.end() &&
8401 "Mismatch in number of ResultTypes");
8402 assert(ResultValues
.size() == ResultTypes
.size() &&
8403 "Mismatch in number of output operands in asm result");
8405 SDValue V
= DAG
.getNode(ISD::MERGE_VALUES
, getCurSDLoc(),
8406 DAG
.getVTList(ResultVTs
), ResultValues
);
8407 setValue(CS
.getInstruction(), V
);
8410 // Collect store chains.
8411 if (!OutChains
.empty())
8412 Chain
= DAG
.getNode(ISD::TokenFactor
, getCurSDLoc(), MVT::Other
, OutChains
);
8414 // Only Update Root if inline assembly has a memory effect.
8415 if (ResultValues
.empty() || HasSideEffect
|| !OutChains
.empty())
8419 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS
,
8420 const Twine
&Message
) {
8421 LLVMContext
&Ctx
= *DAG
.getContext();
8422 Ctx
.emitError(CS
.getInstruction(), Message
);
8424 // Make sure we leave the DAG in a valid state
8425 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8426 SmallVector
<EVT
, 1> ValueVTs
;
8427 ComputeValueVTs(TLI
, DAG
.getDataLayout(), CS
->getType(), ValueVTs
);
8429 if (ValueVTs
.empty())
8432 SmallVector
<SDValue
, 1> Ops
;
8433 for (unsigned i
= 0, e
= ValueVTs
.size(); i
!= e
; ++i
)
8434 Ops
.push_back(DAG
.getUNDEF(ValueVTs
[i
]));
8436 setValue(CS
.getInstruction(), DAG
.getMergeValues(Ops
, getCurSDLoc()));
8439 void SelectionDAGBuilder::visitVAStart(const CallInst
&I
) {
8440 DAG
.setRoot(DAG
.getNode(ISD::VASTART
, getCurSDLoc(),
8441 MVT::Other
, getRoot(),
8442 getValue(I
.getArgOperand(0)),
8443 DAG
.getSrcValue(I
.getArgOperand(0))));
8446 void SelectionDAGBuilder::visitVAArg(const VAArgInst
&I
) {
8447 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8448 const DataLayout
&DL
= DAG
.getDataLayout();
8449 SDValue V
= DAG
.getVAArg(
8450 TLI
.getMemValueType(DAG
.getDataLayout(), I
.getType()), getCurSDLoc(),
8451 getRoot(), getValue(I
.getOperand(0)), DAG
.getSrcValue(I
.getOperand(0)),
8452 DL
.getABITypeAlignment(I
.getType()));
8453 DAG
.setRoot(V
.getValue(1));
8455 if (I
.getType()->isPointerTy())
8456 V
= DAG
.getPtrExtOrTrunc(
8457 V
, getCurSDLoc(), TLI
.getValueType(DAG
.getDataLayout(), I
.getType()));
8461 void SelectionDAGBuilder::visitVAEnd(const CallInst
&I
) {
8462 DAG
.setRoot(DAG
.getNode(ISD::VAEND
, getCurSDLoc(),
8463 MVT::Other
, getRoot(),
8464 getValue(I
.getArgOperand(0)),
8465 DAG
.getSrcValue(I
.getArgOperand(0))));
8468 void SelectionDAGBuilder::visitVACopy(const CallInst
&I
) {
8469 DAG
.setRoot(DAG
.getNode(ISD::VACOPY
, getCurSDLoc(),
8470 MVT::Other
, getRoot(),
8471 getValue(I
.getArgOperand(0)),
8472 getValue(I
.getArgOperand(1)),
8473 DAG
.getSrcValue(I
.getArgOperand(0)),
8474 DAG
.getSrcValue(I
.getArgOperand(1))));
8477 SDValue
SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG
&DAG
,
8478 const Instruction
&I
,
8480 const MDNode
*Range
= I
.getMetadata(LLVMContext::MD_range
);
8484 ConstantRange CR
= getConstantRangeFromMetadata(*Range
);
8485 if (CR
.isFullSet() || CR
.isEmptySet() || CR
.isUpperWrapped())
8488 APInt Lo
= CR
.getUnsignedMin();
8489 if (!Lo
.isMinValue())
8492 APInt Hi
= CR
.getUnsignedMax();
8493 unsigned Bits
= std::max(Hi
.getActiveBits(),
8494 static_cast<unsigned>(IntegerType::MIN_INT_BITS
));
8496 EVT SmallVT
= EVT::getIntegerVT(*DAG
.getContext(), Bits
);
8498 SDLoc SL
= getCurSDLoc();
8500 SDValue ZExt
= DAG
.getNode(ISD::AssertZext
, SL
, Op
.getValueType(), Op
,
8501 DAG
.getValueType(SmallVT
));
8502 unsigned NumVals
= Op
.getNode()->getNumValues();
8506 SmallVector
<SDValue
, 4> Ops
;
8508 Ops
.push_back(ZExt
);
8509 for (unsigned I
= 1; I
!= NumVals
; ++I
)
8510 Ops
.push_back(Op
.getValue(I
));
8512 return DAG
.getMergeValues(Ops
, SL
);
8515 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8516 /// the call being lowered.
8518 /// This is a helper for lowering intrinsics that follow a target calling
8519 /// convention or require stack pointer adjustment. Only a subset of the
8520 /// intrinsic's operands need to participate in the calling convention.
8521 void SelectionDAGBuilder::populateCallLoweringInfo(
8522 TargetLowering::CallLoweringInfo
&CLI
, const CallBase
*Call
,
8523 unsigned ArgIdx
, unsigned NumArgs
, SDValue Callee
, Type
*ReturnTy
,
8524 bool IsPatchPoint
) {
8525 TargetLowering::ArgListTy Args
;
8526 Args
.reserve(NumArgs
);
8528 // Populate the argument list.
8529 // Attributes for args start at offset 1, after the return attribute.
8530 for (unsigned ArgI
= ArgIdx
, ArgE
= ArgIdx
+ NumArgs
;
8531 ArgI
!= ArgE
; ++ArgI
) {
8532 const Value
*V
= Call
->getOperand(ArgI
);
8534 assert(!V
->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8536 TargetLowering::ArgListEntry Entry
;
8537 Entry
.Node
= getValue(V
);
8538 Entry
.Ty
= V
->getType();
8539 Entry
.setAttributes(Call
, ArgI
);
8540 Args
.push_back(Entry
);
8543 CLI
.setDebugLoc(getCurSDLoc())
8544 .setChain(getRoot())
8545 .setCallee(Call
->getCallingConv(), ReturnTy
, Callee
, std::move(Args
))
8546 .setDiscardResult(Call
->use_empty())
8547 .setIsPatchPoint(IsPatchPoint
);
8550 /// Add a stack map intrinsic call's live variable operands to a stackmap
8551 /// or patchpoint target node's operand list.
8553 /// Constants are converted to TargetConstants purely as an optimization to
8554 /// avoid constant materialization and register allocation.
8556 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8557 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8558 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8559 /// address materialization and register allocation, but may also be required
8560 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8561 /// alloca in the entry block, then the runtime may assume that the alloca's
8562 /// StackMap location can be read immediately after compilation and that the
8563 /// location is valid at any point during execution (this is similar to the
8564 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8565 /// only available in a register, then the runtime would need to trap when
8566 /// execution reaches the StackMap in order to read the alloca's location.
8567 static void addStackMapLiveVars(ImmutableCallSite CS
, unsigned StartIdx
,
8568 const SDLoc
&DL
, SmallVectorImpl
<SDValue
> &Ops
,
8569 SelectionDAGBuilder
&Builder
) {
8570 for (unsigned i
= StartIdx
, e
= CS
.arg_size(); i
!= e
; ++i
) {
8571 SDValue OpVal
= Builder
.getValue(CS
.getArgument(i
));
8572 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
8574 Builder
.DAG
.getTargetConstant(StackMaps::ConstantOp
, DL
, MVT::i64
));
8576 Builder
.DAG
.getTargetConstant(C
->getSExtValue(), DL
, MVT::i64
));
8577 } else if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(OpVal
)) {
8578 const TargetLowering
&TLI
= Builder
.DAG
.getTargetLoweringInfo();
8579 Ops
.push_back(Builder
.DAG
.getTargetFrameIndex(
8580 FI
->getIndex(), TLI
.getFrameIndexTy(Builder
.DAG
.getDataLayout())));
8582 Ops
.push_back(OpVal
);
8586 /// Lower llvm.experimental.stackmap directly to its target opcode.
8587 void SelectionDAGBuilder::visitStackmap(const CallInst
&CI
) {
8588 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8589 // [live variables...])
8591 assert(CI
.getType()->isVoidTy() && "Stackmap cannot return a value.");
8593 SDValue Chain
, InFlag
, Callee
, NullPtr
;
8594 SmallVector
<SDValue
, 32> Ops
;
8596 SDLoc DL
= getCurSDLoc();
8597 Callee
= getValue(CI
.getCalledValue());
8598 NullPtr
= DAG
.getIntPtrConstant(0, DL
, true);
8600 // The stackmap intrinsic only records the live variables (the arguemnts
8601 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8602 // intrinsic, this won't be lowered to a function call. This means we don't
8603 // have to worry about calling conventions and target specific lowering code.
8604 // Instead we perform the call lowering right here.
8606 // chain, flag = CALLSEQ_START(chain, 0, 0)
8607 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8608 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8610 Chain
= DAG
.getCALLSEQ_START(getRoot(), 0, 0, DL
);
8611 InFlag
= Chain
.getValue(1);
8613 // Add the <id> and <numBytes> constants.
8614 SDValue IDVal
= getValue(CI
.getOperand(PatchPointOpers::IDPos
));
8615 Ops
.push_back(DAG
.getTargetConstant(
8616 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), DL
, MVT::i64
));
8617 SDValue NBytesVal
= getValue(CI
.getOperand(PatchPointOpers::NBytesPos
));
8618 Ops
.push_back(DAG
.getTargetConstant(
8619 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), DL
,
8622 // Push live variables for the stack map.
8623 addStackMapLiveVars(&CI
, 2, DL
, Ops
, *this);
8625 // We are not pushing any register mask info here on the operands list,
8626 // because the stackmap doesn't clobber anything.
8628 // Push the chain and the glue flag.
8629 Ops
.push_back(Chain
);
8630 Ops
.push_back(InFlag
);
8632 // Create the STACKMAP node.
8633 SDVTList NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
8634 SDNode
*SM
= DAG
.getMachineNode(TargetOpcode::STACKMAP
, DL
, NodeTys
, Ops
);
8635 Chain
= SDValue(SM
, 0);
8636 InFlag
= Chain
.getValue(1);
8638 Chain
= DAG
.getCALLSEQ_END(Chain
, NullPtr
, NullPtr
, InFlag
, DL
);
8640 // Stackmaps don't generate values, so nothing goes into the NodeMap.
8642 // Set the root to the target-lowered call chain.
8645 // Inform the Frame Information that we have a stackmap in this function.
8646 FuncInfo
.MF
->getFrameInfo().setHasStackMap();
8649 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8650 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS
,
8651 const BasicBlock
*EHPadBB
) {
8652 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8657 // [live variables...])
8659 CallingConv::ID CC
= CS
.getCallingConv();
8660 bool IsAnyRegCC
= CC
== CallingConv::AnyReg
;
8661 bool HasDef
= !CS
->getType()->isVoidTy();
8662 SDLoc dl
= getCurSDLoc();
8663 SDValue Callee
= getValue(CS
->getOperand(PatchPointOpers::TargetPos
));
8665 // Handle immediate and symbolic callees.
8666 if (auto* ConstCallee
= dyn_cast
<ConstantSDNode
>(Callee
))
8667 Callee
= DAG
.getIntPtrConstant(ConstCallee
->getZExtValue(), dl
,
8669 else if (auto* SymbolicCallee
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
8670 Callee
= DAG
.getTargetGlobalAddress(SymbolicCallee
->getGlobal(),
8671 SDLoc(SymbolicCallee
),
8672 SymbolicCallee
->getValueType(0));
8674 // Get the real number of arguments participating in the call <numArgs>
8675 SDValue NArgVal
= getValue(CS
.getArgument(PatchPointOpers::NArgPos
));
8676 unsigned NumArgs
= cast
<ConstantSDNode
>(NArgVal
)->getZExtValue();
8678 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8679 // Intrinsics include all meta-operands up to but not including CC.
8680 unsigned NumMetaOpers
= PatchPointOpers::CCPos
;
8681 assert(CS
.arg_size() >= NumMetaOpers
+ NumArgs
&&
8682 "Not enough arguments provided to the patchpoint intrinsic");
8684 // For AnyRegCC the arguments are lowered later on manually.
8685 unsigned NumCallArgs
= IsAnyRegCC
? 0 : NumArgs
;
8687 IsAnyRegCC
? Type::getVoidTy(*DAG
.getContext()) : CS
->getType();
8689 TargetLowering::CallLoweringInfo
CLI(DAG
);
8690 populateCallLoweringInfo(CLI
, cast
<CallBase
>(CS
.getInstruction()),
8691 NumMetaOpers
, NumCallArgs
, Callee
, ReturnTy
, true);
8692 std::pair
<SDValue
, SDValue
> Result
= lowerInvokable(CLI
, EHPadBB
);
8694 SDNode
*CallEnd
= Result
.second
.getNode();
8695 if (HasDef
&& (CallEnd
->getOpcode() == ISD::CopyFromReg
))
8696 CallEnd
= CallEnd
->getOperand(0).getNode();
8698 /// Get a call instruction from the call sequence chain.
8699 /// Tail calls are not allowed.
8700 assert(CallEnd
->getOpcode() == ISD::CALLSEQ_END
&&
8701 "Expected a callseq node.");
8702 SDNode
*Call
= CallEnd
->getOperand(0).getNode();
8703 bool HasGlue
= Call
->getGluedNode();
8705 // Replace the target specific call node with the patchable intrinsic.
8706 SmallVector
<SDValue
, 8> Ops
;
8708 // Add the <id> and <numBytes> constants.
8709 SDValue IDVal
= getValue(CS
->getOperand(PatchPointOpers::IDPos
));
8710 Ops
.push_back(DAG
.getTargetConstant(
8711 cast
<ConstantSDNode
>(IDVal
)->getZExtValue(), dl
, MVT::i64
));
8712 SDValue NBytesVal
= getValue(CS
->getOperand(PatchPointOpers::NBytesPos
));
8713 Ops
.push_back(DAG
.getTargetConstant(
8714 cast
<ConstantSDNode
>(NBytesVal
)->getZExtValue(), dl
,
8718 Ops
.push_back(Callee
);
8720 // Adjust <numArgs> to account for any arguments that have been passed on the
8722 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8723 unsigned NumCallRegArgs
= Call
->getNumOperands() - (HasGlue
? 4 : 3);
8724 NumCallRegArgs
= IsAnyRegCC
? NumArgs
: NumCallRegArgs
;
8725 Ops
.push_back(DAG
.getTargetConstant(NumCallRegArgs
, dl
, MVT::i32
));
8727 // Add the calling convention
8728 Ops
.push_back(DAG
.getTargetConstant((unsigned)CC
, dl
, MVT::i32
));
8730 // Add the arguments we omitted previously. The register allocator should
8731 // place these in any free register.
8733 for (unsigned i
= NumMetaOpers
, e
= NumMetaOpers
+ NumArgs
; i
!= e
; ++i
)
8734 Ops
.push_back(getValue(CS
.getArgument(i
)));
8736 // Push the arguments from the call instruction up to the register mask.
8737 SDNode::op_iterator e
= HasGlue
? Call
->op_end()-2 : Call
->op_end()-1;
8738 Ops
.append(Call
->op_begin() + 2, e
);
8740 // Push live variables for the stack map.
8741 addStackMapLiveVars(CS
, NumMetaOpers
+ NumArgs
, dl
, Ops
, *this);
8743 // Push the register mask info.
8745 Ops
.push_back(*(Call
->op_end()-2));
8747 Ops
.push_back(*(Call
->op_end()-1));
8749 // Push the chain (this is originally the first operand of the call, but
8750 // becomes now the last or second to last operand).
8751 Ops
.push_back(*(Call
->op_begin()));
8753 // Push the glue flag (last operand).
8755 Ops
.push_back(*(Call
->op_end()-1));
8758 if (IsAnyRegCC
&& HasDef
) {
8759 // Create the return types based on the intrinsic definition
8760 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8761 SmallVector
<EVT
, 3> ValueVTs
;
8762 ComputeValueVTs(TLI
, DAG
.getDataLayout(), CS
->getType(), ValueVTs
);
8763 assert(ValueVTs
.size() == 1 && "Expected only one return value type.");
8765 // There is always a chain and a glue type at the end
8766 ValueVTs
.push_back(MVT::Other
);
8767 ValueVTs
.push_back(MVT::Glue
);
8768 NodeTys
= DAG
.getVTList(ValueVTs
);
8770 NodeTys
= DAG
.getVTList(MVT::Other
, MVT::Glue
);
8772 // Replace the target specific call node with a PATCHPOINT node.
8773 MachineSDNode
*MN
= DAG
.getMachineNode(TargetOpcode::PATCHPOINT
,
8776 // Update the NodeMap.
8779 setValue(CS
.getInstruction(), SDValue(MN
, 0));
8781 setValue(CS
.getInstruction(), Result
.first
);
8784 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8785 // call sequence. Furthermore the location of the chain and glue can change
8786 // when the AnyReg calling convention is used and the intrinsic returns a
8788 if (IsAnyRegCC
&& HasDef
) {
8789 SDValue From
[] = {SDValue(Call
, 0), SDValue(Call
, 1)};
8790 SDValue To
[] = {SDValue(MN
, 1), SDValue(MN
, 2)};
8791 DAG
.ReplaceAllUsesOfValuesWith(From
, To
, 2);
8793 DAG
.ReplaceAllUsesWith(Call
, MN
);
8794 DAG
.DeleteNode(Call
);
8796 // Inform the Frame Information that we have a patchpoint in this function.
8797 FuncInfo
.MF
->getFrameInfo().setHasPatchPoint();
8800 void SelectionDAGBuilder::visitVectorReduce(const CallInst
&I
,
8801 unsigned Intrinsic
) {
8802 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
8803 SDValue Op1
= getValue(I
.getArgOperand(0));
8805 if (I
.getNumArgOperands() > 1)
8806 Op2
= getValue(I
.getArgOperand(1));
8807 SDLoc dl
= getCurSDLoc();
8808 EVT VT
= TLI
.getValueType(DAG
.getDataLayout(), I
.getType());
8811 if (isa
<FPMathOperator
>(I
))
8812 FMF
= I
.getFastMathFlags();
8814 switch (Intrinsic
) {
8815 case Intrinsic::experimental_vector_reduce_fadd
:
8817 Res
= DAG
.getNode(ISD::VECREDUCE_FADD
, dl
, VT
, Op2
);
8819 Res
= DAG
.getNode(ISD::VECREDUCE_STRICT_FADD
, dl
, VT
, Op1
, Op2
);
8821 case Intrinsic::experimental_vector_reduce_fmul
:
8823 Res
= DAG
.getNode(ISD::VECREDUCE_FMUL
, dl
, VT
, Op2
);
8825 Res
= DAG
.getNode(ISD::VECREDUCE_STRICT_FMUL
, dl
, VT
, Op1
, Op2
);
8827 case Intrinsic::experimental_vector_reduce_add
:
8828 Res
= DAG
.getNode(ISD::VECREDUCE_ADD
, dl
, VT
, Op1
);
8830 case Intrinsic::experimental_vector_reduce_mul
:
8831 Res
= DAG
.getNode(ISD::VECREDUCE_MUL
, dl
, VT
, Op1
);
8833 case Intrinsic::experimental_vector_reduce_and
:
8834 Res
= DAG
.getNode(ISD::VECREDUCE_AND
, dl
, VT
, Op1
);
8836 case Intrinsic::experimental_vector_reduce_or
:
8837 Res
= DAG
.getNode(ISD::VECREDUCE_OR
, dl
, VT
, Op1
);
8839 case Intrinsic::experimental_vector_reduce_xor
:
8840 Res
= DAG
.getNode(ISD::VECREDUCE_XOR
, dl
, VT
, Op1
);
8842 case Intrinsic::experimental_vector_reduce_smax
:
8843 Res
= DAG
.getNode(ISD::VECREDUCE_SMAX
, dl
, VT
, Op1
);
8845 case Intrinsic::experimental_vector_reduce_smin
:
8846 Res
= DAG
.getNode(ISD::VECREDUCE_SMIN
, dl
, VT
, Op1
);
8848 case Intrinsic::experimental_vector_reduce_umax
:
8849 Res
= DAG
.getNode(ISD::VECREDUCE_UMAX
, dl
, VT
, Op1
);
8851 case Intrinsic::experimental_vector_reduce_umin
:
8852 Res
= DAG
.getNode(ISD::VECREDUCE_UMIN
, dl
, VT
, Op1
);
8854 case Intrinsic::experimental_vector_reduce_fmax
:
8855 Res
= DAG
.getNode(ISD::VECREDUCE_FMAX
, dl
, VT
, Op1
);
8857 case Intrinsic::experimental_vector_reduce_fmin
:
8858 Res
= DAG
.getNode(ISD::VECREDUCE_FMIN
, dl
, VT
, Op1
);
8861 llvm_unreachable("Unhandled vector reduce intrinsic");
8866 /// Returns an AttributeList representing the attributes applied to the return
8867 /// value of the given call.
8868 static AttributeList
getReturnAttrs(TargetLowering::CallLoweringInfo
&CLI
) {
8869 SmallVector
<Attribute::AttrKind
, 2> Attrs
;
8871 Attrs
.push_back(Attribute::SExt
);
8873 Attrs
.push_back(Attribute::ZExt
);
8875 Attrs
.push_back(Attribute::InReg
);
8877 return AttributeList::get(CLI
.RetTy
->getContext(), AttributeList::ReturnIndex
,
8881 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8882 /// implementation, which just calls LowerCall.
8883 /// FIXME: When all targets are
8884 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8885 std::pair
<SDValue
, SDValue
>
8886 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo
&CLI
) const {
8887 // Handle the incoming return values from the call.
8889 Type
*OrigRetTy
= CLI
.RetTy
;
8890 SmallVector
<EVT
, 4> RetTys
;
8891 SmallVector
<uint64_t, 4> Offsets
;
8892 auto &DL
= CLI
.DAG
.getDataLayout();
8893 ComputeValueVTs(*this, DL
, CLI
.RetTy
, RetTys
, &Offsets
);
8895 if (CLI
.IsPostTypeLegalization
) {
8896 // If we are lowering a libcall after legalization, split the return type.
8897 SmallVector
<EVT
, 4> OldRetTys
;
8898 SmallVector
<uint64_t, 4> OldOffsets
;
8899 RetTys
.swap(OldRetTys
);
8900 Offsets
.swap(OldOffsets
);
8902 for (size_t i
= 0, e
= OldRetTys
.size(); i
!= e
; ++i
) {
8903 EVT RetVT
= OldRetTys
[i
];
8904 uint64_t Offset
= OldOffsets
[i
];
8905 MVT RegisterVT
= getRegisterType(CLI
.RetTy
->getContext(), RetVT
);
8906 unsigned NumRegs
= getNumRegisters(CLI
.RetTy
->getContext(), RetVT
);
8907 unsigned RegisterVTByteSZ
= RegisterVT
.getSizeInBits() / 8;
8908 RetTys
.append(NumRegs
, RegisterVT
);
8909 for (unsigned j
= 0; j
!= NumRegs
; ++j
)
8910 Offsets
.push_back(Offset
+ j
* RegisterVTByteSZ
);
8914 SmallVector
<ISD::OutputArg
, 4> Outs
;
8915 GetReturnInfo(CLI
.CallConv
, CLI
.RetTy
, getReturnAttrs(CLI
), Outs
, *this, DL
);
8917 bool CanLowerReturn
=
8918 this->CanLowerReturn(CLI
.CallConv
, CLI
.DAG
.getMachineFunction(),
8919 CLI
.IsVarArg
, Outs
, CLI
.RetTy
->getContext());
8921 SDValue DemoteStackSlot
;
8922 int DemoteStackIdx
= -100;
8923 if (!CanLowerReturn
) {
8924 // FIXME: equivalent assert?
8925 // assert(!CS.hasInAllocaArgument() &&
8926 // "sret demotion is incompatible with inalloca");
8927 uint64_t TySize
= DL
.getTypeAllocSize(CLI
.RetTy
);
8928 unsigned Align
= DL
.getPrefTypeAlignment(CLI
.RetTy
);
8929 MachineFunction
&MF
= CLI
.DAG
.getMachineFunction();
8930 DemoteStackIdx
= MF
.getFrameInfo().CreateStackObject(TySize
, Align
, false);
8931 Type
*StackSlotPtrType
= PointerType::get(CLI
.RetTy
,
8932 DL
.getAllocaAddrSpace());
8934 DemoteStackSlot
= CLI
.DAG
.getFrameIndex(DemoteStackIdx
, getFrameIndexTy(DL
));
8936 Entry
.Node
= DemoteStackSlot
;
8937 Entry
.Ty
= StackSlotPtrType
;
8938 Entry
.IsSExt
= false;
8939 Entry
.IsZExt
= false;
8940 Entry
.IsInReg
= false;
8941 Entry
.IsSRet
= true;
8942 Entry
.IsNest
= false;
8943 Entry
.IsByVal
= false;
8944 Entry
.IsReturned
= false;
8945 Entry
.IsSwiftSelf
= false;
8946 Entry
.IsSwiftError
= false;
8947 Entry
.Alignment
= Align
;
8948 CLI
.getArgs().insert(CLI
.getArgs().begin(), Entry
);
8949 CLI
.NumFixedArgs
+= 1;
8950 CLI
.RetTy
= Type::getVoidTy(CLI
.RetTy
->getContext());
8952 // sret demotion isn't compatible with tail-calls, since the sret argument
8953 // points into the callers stack frame.
8954 CLI
.IsTailCall
= false;
8956 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
8957 CLI
.RetTy
, CLI
.CallConv
, CLI
.IsVarArg
);
8958 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
8959 ISD::ArgFlagsTy Flags
;
8960 if (NeedsRegBlock
) {
8961 Flags
.setInConsecutiveRegs();
8962 if (I
== RetTys
.size() - 1)
8963 Flags
.setInConsecutiveRegsLast();
8966 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
8968 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
8970 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
8971 ISD::InputArg MyFlags
;
8972 MyFlags
.Flags
= Flags
;
8973 MyFlags
.VT
= RegisterVT
;
8975 MyFlags
.Used
= CLI
.IsReturnValueUsed
;
8976 if (CLI
.RetTy
->isPointerTy()) {
8977 MyFlags
.Flags
.setPointer();
8978 MyFlags
.Flags
.setPointerAddrSpace(
8979 cast
<PointerType
>(CLI
.RetTy
)->getAddressSpace());
8982 MyFlags
.Flags
.setSExt();
8984 MyFlags
.Flags
.setZExt();
8986 MyFlags
.Flags
.setInReg();
8987 CLI
.Ins
.push_back(MyFlags
);
8992 // We push in swifterror return as the last element of CLI.Ins.
8993 ArgListTy
&Args
= CLI
.getArgs();
8994 if (supportSwiftError()) {
8995 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
8996 if (Args
[i
].IsSwiftError
) {
8997 ISD::InputArg MyFlags
;
8998 MyFlags
.VT
= getPointerTy(DL
);
8999 MyFlags
.ArgVT
= EVT(getPointerTy(DL
));
9000 MyFlags
.Flags
.setSwiftError();
9001 CLI
.Ins
.push_back(MyFlags
);
9006 // Handle all of the outgoing arguments.
9008 CLI
.OutVals
.clear();
9009 for (unsigned i
= 0, e
= Args
.size(); i
!= e
; ++i
) {
9010 SmallVector
<EVT
, 4> ValueVTs
;
9011 ComputeValueVTs(*this, DL
, Args
[i
].Ty
, ValueVTs
);
9012 // FIXME: Split arguments if CLI.IsPostTypeLegalization
9013 Type
*FinalType
= Args
[i
].Ty
;
9014 if (Args
[i
].IsByVal
)
9015 FinalType
= cast
<PointerType
>(Args
[i
].Ty
)->getElementType();
9016 bool NeedsRegBlock
= functionArgumentNeedsConsecutiveRegisters(
9017 FinalType
, CLI
.CallConv
, CLI
.IsVarArg
);
9018 for (unsigned Value
= 0, NumValues
= ValueVTs
.size(); Value
!= NumValues
;
9020 EVT VT
= ValueVTs
[Value
];
9021 Type
*ArgTy
= VT
.getTypeForEVT(CLI
.RetTy
->getContext());
9022 SDValue Op
= SDValue(Args
[i
].Node
.getNode(),
9023 Args
[i
].Node
.getResNo() + Value
);
9024 ISD::ArgFlagsTy Flags
;
9026 // Certain targets (such as MIPS), may have a different ABI alignment
9027 // for a type depending on the context. Give the target a chance to
9028 // specify the alignment it wants.
9029 unsigned OriginalAlignment
= getABIAlignmentForCallingConv(ArgTy
, DL
);
9031 if (Args
[i
].Ty
->isPointerTy()) {
9033 Flags
.setPointerAddrSpace(
9034 cast
<PointerType
>(Args
[i
].Ty
)->getAddressSpace());
9040 if (Args
[i
].IsInReg
) {
9041 // If we are using vectorcall calling convention, a structure that is
9042 // passed InReg - is surely an HVA
9043 if (CLI
.CallConv
== CallingConv::X86_VectorCall
&&
9044 isa
<StructType
>(FinalType
)) {
9045 // The first value of a structure is marked
9047 Flags
.setHvaStart();
9055 if (Args
[i
].IsSwiftSelf
)
9056 Flags
.setSwiftSelf();
9057 if (Args
[i
].IsSwiftError
)
9058 Flags
.setSwiftError();
9059 if (Args
[i
].IsByVal
)
9061 if (Args
[i
].IsInAlloca
) {
9062 Flags
.setInAlloca();
9063 // Set the byval flag for CCAssignFn callbacks that don't know about
9064 // inalloca. This way we can know how many bytes we should've allocated
9065 // and how many bytes a callee cleanup function will pop. If we port
9066 // inalloca to more targets, we'll have to add custom inalloca handling
9067 // in the various CC lowering callbacks.
9070 if (Args
[i
].IsByVal
|| Args
[i
].IsInAlloca
) {
9071 PointerType
*Ty
= cast
<PointerType
>(Args
[i
].Ty
);
9072 Type
*ElementTy
= Ty
->getElementType();
9073 Flags
.setByValSize(DL
.getTypeAllocSize(ElementTy
));
9074 // For ByVal, alignment should come from FE. BE will guess if this
9075 // info is not there but there are cases it cannot get right.
9076 unsigned FrameAlign
;
9077 if (Args
[i
].Alignment
)
9078 FrameAlign
= Args
[i
].Alignment
;
9080 FrameAlign
= getByValTypeAlignment(ElementTy
, DL
);
9081 Flags
.setByValAlign(FrameAlign
);
9086 Flags
.setInConsecutiveRegs();
9087 Flags
.setOrigAlign(OriginalAlignment
);
9089 MVT PartVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9091 unsigned NumParts
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9093 SmallVector
<SDValue
, 4> Parts(NumParts
);
9094 ISD::NodeType ExtendKind
= ISD::ANY_EXTEND
;
9097 ExtendKind
= ISD::SIGN_EXTEND
;
9098 else if (Args
[i
].IsZExt
)
9099 ExtendKind
= ISD::ZERO_EXTEND
;
9101 // Conservatively only handle 'returned' on non-vectors that can be lowered,
9103 if (Args
[i
].IsReturned
&& !Op
.getValueType().isVector() &&
9105 assert(CLI
.RetTy
== Args
[i
].Ty
&& RetTys
.size() == NumValues
&&
9106 "unexpected use of 'returned'");
9107 // Before passing 'returned' to the target lowering code, ensure that
9108 // either the register MVT and the actual EVT are the same size or that
9109 // the return value and argument are extended in the same way; in these
9110 // cases it's safe to pass the argument register value unchanged as the
9111 // return register value (although it's at the target's option whether
9113 // TODO: allow code generation to take advantage of partially preserved
9114 // registers rather than clobbering the entire register when the
9115 // parameter extension method is not compatible with the return
9117 if ((NumParts
* PartVT
.getSizeInBits() == VT
.getSizeInBits()) ||
9118 (ExtendKind
!= ISD::ANY_EXTEND
&& CLI
.RetSExt
== Args
[i
].IsSExt
&&
9119 CLI
.RetZExt
== Args
[i
].IsZExt
))
9120 Flags
.setReturned();
9123 getCopyToParts(CLI
.DAG
, CLI
.DL
, Op
, &Parts
[0], NumParts
, PartVT
,
9124 CLI
.CS
.getInstruction(), CLI
.CallConv
, ExtendKind
);
9126 for (unsigned j
= 0; j
!= NumParts
; ++j
) {
9127 // if it isn't first piece, alignment must be 1
9128 ISD::OutputArg
MyFlags(Flags
, Parts
[j
].getValueType(), VT
,
9129 i
< CLI
.NumFixedArgs
,
9130 i
, j
*Parts
[j
].getValueType().getStoreSize());
9131 if (NumParts
> 1 && j
== 0)
9132 MyFlags
.Flags
.setSplit();
9134 MyFlags
.Flags
.setOrigAlign(1);
9135 if (j
== NumParts
- 1)
9136 MyFlags
.Flags
.setSplitEnd();
9139 CLI
.Outs
.push_back(MyFlags
);
9140 CLI
.OutVals
.push_back(Parts
[j
]);
9143 if (NeedsRegBlock
&& Value
== NumValues
- 1)
9144 CLI
.Outs
[CLI
.Outs
.size() - 1].Flags
.setInConsecutiveRegsLast();
9148 SmallVector
<SDValue
, 4> InVals
;
9149 CLI
.Chain
= LowerCall(CLI
, InVals
);
9151 // Update CLI.InVals to use outside of this function.
9152 CLI
.InVals
= InVals
;
9154 // Verify that the target's LowerCall behaved as expected.
9155 assert(CLI
.Chain
.getNode() && CLI
.Chain
.getValueType() == MVT::Other
&&
9156 "LowerCall didn't return a valid chain!");
9157 assert((!CLI
.IsTailCall
|| InVals
.empty()) &&
9158 "LowerCall emitted a return value for a tail call!");
9159 assert((CLI
.IsTailCall
|| InVals
.size() == CLI
.Ins
.size()) &&
9160 "LowerCall didn't emit the correct number of values!");
9162 // For a tail call, the return value is merely live-out and there aren't
9163 // any nodes in the DAG representing it. Return a special value to
9164 // indicate that a tail call has been emitted and no more Instructions
9165 // should be processed in the current block.
9166 if (CLI
.IsTailCall
) {
9167 CLI
.DAG
.setRoot(CLI
.Chain
);
9168 return std::make_pair(SDValue(), SDValue());
9172 for (unsigned i
= 0, e
= CLI
.Ins
.size(); i
!= e
; ++i
) {
9173 assert(InVals
[i
].getNode() && "LowerCall emitted a null value!");
9174 assert(EVT(CLI
.Ins
[i
].VT
) == InVals
[i
].getValueType() &&
9175 "LowerCall emitted a value with the wrong type!");
9179 SmallVector
<SDValue
, 4> ReturnValues
;
9180 if (!CanLowerReturn
) {
9181 // The instruction result is the result of loading from the
9182 // hidden sret parameter.
9183 SmallVector
<EVT
, 1> PVTs
;
9184 Type
*PtrRetTy
= OrigRetTy
->getPointerTo(DL
.getAllocaAddrSpace());
9186 ComputeValueVTs(*this, DL
, PtrRetTy
, PVTs
);
9187 assert(PVTs
.size() == 1 && "Pointers should fit in one register");
9188 EVT PtrVT
= PVTs
[0];
9190 unsigned NumValues
= RetTys
.size();
9191 ReturnValues
.resize(NumValues
);
9192 SmallVector
<SDValue
, 4> Chains(NumValues
);
9194 // An aggregate return value cannot wrap around the address space, so
9195 // offsets to its parts don't wrap either.
9197 Flags
.setNoUnsignedWrap(true);
9199 for (unsigned i
= 0; i
< NumValues
; ++i
) {
9200 SDValue Add
= CLI
.DAG
.getNode(ISD::ADD
, CLI
.DL
, PtrVT
, DemoteStackSlot
,
9201 CLI
.DAG
.getConstant(Offsets
[i
], CLI
.DL
,
9203 SDValue L
= CLI
.DAG
.getLoad(
9204 RetTys
[i
], CLI
.DL
, CLI
.Chain
, Add
,
9205 MachinePointerInfo::getFixedStack(CLI
.DAG
.getMachineFunction(),
9206 DemoteStackIdx
, Offsets
[i
]),
9207 /* Alignment = */ 1);
9208 ReturnValues
[i
] = L
;
9209 Chains
[i
] = L
.getValue(1);
9212 CLI
.Chain
= CLI
.DAG
.getNode(ISD::TokenFactor
, CLI
.DL
, MVT::Other
, Chains
);
9214 // Collect the legal value parts into potentially illegal values
9215 // that correspond to the original function's return values.
9216 Optional
<ISD::NodeType
> AssertOp
;
9218 AssertOp
= ISD::AssertSext
;
9219 else if (CLI
.RetZExt
)
9220 AssertOp
= ISD::AssertZext
;
9221 unsigned CurReg
= 0;
9222 for (unsigned I
= 0, E
= RetTys
.size(); I
!= E
; ++I
) {
9224 MVT RegisterVT
= getRegisterTypeForCallingConv(CLI
.RetTy
->getContext(),
9226 unsigned NumRegs
= getNumRegistersForCallingConv(CLI
.RetTy
->getContext(),
9229 ReturnValues
.push_back(getCopyFromParts(CLI
.DAG
, CLI
.DL
, &InVals
[CurReg
],
9230 NumRegs
, RegisterVT
, VT
, nullptr,
9231 CLI
.CallConv
, AssertOp
));
9235 // For a function returning void, there is no return value. We can't create
9236 // such a node, so we just return a null return value in that case. In
9237 // that case, nothing will actually look at the value.
9238 if (ReturnValues
.empty())
9239 return std::make_pair(SDValue(), CLI
.Chain
);
9242 SDValue Res
= CLI
.DAG
.getNode(ISD::MERGE_VALUES
, CLI
.DL
,
9243 CLI
.DAG
.getVTList(RetTys
), ReturnValues
);
9244 return std::make_pair(Res
, CLI
.Chain
);
9247 void TargetLowering::LowerOperationWrapper(SDNode
*N
,
9248 SmallVectorImpl
<SDValue
> &Results
,
9249 SelectionDAG
&DAG
) const {
9250 if (SDValue Res
= LowerOperation(SDValue(N
, 0), DAG
))
9251 Results
.push_back(Res
);
9254 SDValue
TargetLowering::LowerOperation(SDValue Op
, SelectionDAG
&DAG
) const {
9255 llvm_unreachable("LowerOperation not implemented for this target!");
9259 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value
*V
, unsigned Reg
) {
9260 SDValue Op
= getNonRegisterValue(V
);
9261 assert((Op
.getOpcode() != ISD::CopyFromReg
||
9262 cast
<RegisterSDNode
>(Op
.getOperand(1))->getReg() != Reg
) &&
9263 "Copy from a reg to the same reg!");
9264 assert(!TargetRegisterInfo::isPhysicalRegister(Reg
) && "Is a physreg");
9266 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9267 // If this is an InlineAsm we have to match the registers required, not the
9268 // notional registers required by the type.
9270 RegsForValue
RFV(V
->getContext(), TLI
, DAG
.getDataLayout(), Reg
, V
->getType(),
9271 None
); // This is not an ABI copy.
9272 SDValue Chain
= DAG
.getEntryNode();
9274 ISD::NodeType ExtendType
= (FuncInfo
.PreferredExtendType
.find(V
) ==
9275 FuncInfo
.PreferredExtendType
.end())
9277 : FuncInfo
.PreferredExtendType
[V
];
9278 RFV
.getCopyToRegs(Op
, DAG
, getCurSDLoc(), Chain
, nullptr, V
, ExtendType
);
9279 PendingExports
.push_back(Chain
);
9282 #include "llvm/CodeGen/SelectionDAGISel.h"
9284 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9285 /// entry block, return true. This includes arguments used by switches, since
9286 /// the switch may expand into multiple basic blocks.
9287 static bool isOnlyUsedInEntryBlock(const Argument
*A
, bool FastISel
) {
9288 // With FastISel active, we may be splitting blocks, so force creation
9289 // of virtual registers for all non-dead arguments.
9291 return A
->use_empty();
9293 const BasicBlock
&Entry
= A
->getParent()->front();
9294 for (const User
*U
: A
->users())
9295 if (cast
<Instruction
>(U
)->getParent() != &Entry
|| isa
<SwitchInst
>(U
))
9296 return false; // Use not in entry block.
9301 using ArgCopyElisionMapTy
=
9302 DenseMap
<const Argument
*,
9303 std::pair
<const AllocaInst
*, const StoreInst
*>>;
9305 /// Scan the entry block of the function in FuncInfo for arguments that look
9306 /// like copies into a local alloca. Record any copied arguments in
9307 /// ArgCopyElisionCandidates.
9309 findArgumentCopyElisionCandidates(const DataLayout
&DL
,
9310 FunctionLoweringInfo
*FuncInfo
,
9311 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
) {
9312 // Record the state of every static alloca used in the entry block. Argument
9313 // allocas are all used in the entry block, so we need approximately as many
9314 // entries as we have arguments.
9315 enum StaticAllocaInfo
{ Unknown
, Clobbered
, Elidable
};
9316 SmallDenseMap
<const AllocaInst
*, StaticAllocaInfo
, 8> StaticAllocas
;
9317 unsigned NumArgs
= FuncInfo
->Fn
->arg_size();
9318 StaticAllocas
.reserve(NumArgs
* 2);
9320 auto GetInfoIfStaticAlloca
= [&](const Value
*V
) -> StaticAllocaInfo
* {
9323 V
= V
->stripPointerCasts();
9324 const auto *AI
= dyn_cast
<AllocaInst
>(V
);
9325 if (!AI
|| !AI
->isStaticAlloca() || !FuncInfo
->StaticAllocaMap
.count(AI
))
9327 auto Iter
= StaticAllocas
.insert({AI
, Unknown
});
9328 return &Iter
.first
->second
;
9331 // Look for stores of arguments to static allocas. Look through bitcasts and
9332 // GEPs to handle type coercions, as long as the alloca is fully initialized
9333 // by the store. Any non-store use of an alloca escapes it and any subsequent
9334 // unanalyzed store might write it.
9335 // FIXME: Handle structs initialized with multiple stores.
9336 for (const Instruction
&I
: FuncInfo
->Fn
->getEntryBlock()) {
9337 // Look for stores, and handle non-store uses conservatively.
9338 const auto *SI
= dyn_cast
<StoreInst
>(&I
);
9340 // We will look through cast uses, so ignore them completely.
9343 // Ignore debug info intrinsics, they don't escape or store to allocas.
9344 if (isa
<DbgInfoIntrinsic
>(I
))
9346 // This is an unknown instruction. Assume it escapes or writes to all
9347 // static alloca operands.
9348 for (const Use
&U
: I
.operands()) {
9349 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(U
))
9350 *Info
= StaticAllocaInfo::Clobbered
;
9355 // If the stored value is a static alloca, mark it as escaped.
9356 if (StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(SI
->getValueOperand()))
9357 *Info
= StaticAllocaInfo::Clobbered
;
9359 // Check if the destination is a static alloca.
9360 const Value
*Dst
= SI
->getPointerOperand()->stripPointerCasts();
9361 StaticAllocaInfo
*Info
= GetInfoIfStaticAlloca(Dst
);
9364 const AllocaInst
*AI
= cast
<AllocaInst
>(Dst
);
9366 // Skip allocas that have been initialized or clobbered.
9367 if (*Info
!= StaticAllocaInfo::Unknown
)
9370 // Check if the stored value is an argument, and that this store fully
9371 // initializes the alloca. Don't elide copies from the same argument twice.
9372 const Value
*Val
= SI
->getValueOperand()->stripPointerCasts();
9373 const auto *Arg
= dyn_cast
<Argument
>(Val
);
9374 if (!Arg
|| Arg
->hasInAllocaAttr() || Arg
->hasByValAttr() ||
9375 Arg
->getType()->isEmptyTy() ||
9376 DL
.getTypeStoreSize(Arg
->getType()) !=
9377 DL
.getTypeAllocSize(AI
->getAllocatedType()) ||
9378 ArgCopyElisionCandidates
.count(Arg
)) {
9379 *Info
= StaticAllocaInfo::Clobbered
;
9383 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9386 // Mark this alloca and store for argument copy elision.
9387 *Info
= StaticAllocaInfo::Elidable
;
9388 ArgCopyElisionCandidates
.insert({Arg
, {AI
, SI
}});
9390 // Stop scanning if we've seen all arguments. This will happen early in -O0
9391 // builds, which is useful, because -O0 builds have large entry blocks and
9393 if (ArgCopyElisionCandidates
.size() == NumArgs
)
9398 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9399 /// ArgVal is a load from a suitable fixed stack object.
9400 static void tryToElideArgumentCopy(
9401 FunctionLoweringInfo
*FuncInfo
, SmallVectorImpl
<SDValue
> &Chains
,
9402 DenseMap
<int, int> &ArgCopyElisionFrameIndexMap
,
9403 SmallPtrSetImpl
<const Instruction
*> &ElidedArgCopyInstrs
,
9404 ArgCopyElisionMapTy
&ArgCopyElisionCandidates
, const Argument
&Arg
,
9405 SDValue ArgVal
, bool &ArgHasUses
) {
9406 // Check if this is a load from a fixed stack object.
9407 auto *LNode
= dyn_cast
<LoadSDNode
>(ArgVal
);
9410 auto *FINode
= dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode());
9414 // Check that the fixed stack object is the right size and alignment.
9415 // Look at the alignment that the user wrote on the alloca instead of looking
9416 // at the stack object.
9417 auto ArgCopyIter
= ArgCopyElisionCandidates
.find(&Arg
);
9418 assert(ArgCopyIter
!= ArgCopyElisionCandidates
.end());
9419 const AllocaInst
*AI
= ArgCopyIter
->second
.first
;
9420 int FixedIndex
= FINode
->getIndex();
9421 int &AllocaIndex
= FuncInfo
->StaticAllocaMap
[AI
];
9422 int OldIndex
= AllocaIndex
;
9423 MachineFrameInfo
&MFI
= FuncInfo
->MF
->getFrameInfo();
9424 if (MFI
.getObjectSize(FixedIndex
) != MFI
.getObjectSize(OldIndex
)) {
9426 dbgs() << " argument copy elision failed due to bad fixed stack "
9430 unsigned RequiredAlignment
= AI
->getAlignment();
9431 if (!RequiredAlignment
) {
9432 RequiredAlignment
= FuncInfo
->MF
->getDataLayout().getABITypeAlignment(
9433 AI
->getAllocatedType());
9435 if (MFI
.getObjectAlignment(FixedIndex
) < RequiredAlignment
) {
9436 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
9437 "greater than stack argument alignment ("
9438 << RequiredAlignment
<< " vs "
9439 << MFI
.getObjectAlignment(FixedIndex
) << ")\n");
9443 // Perform the elision. Delete the old stack object and replace its only use
9444 // in the variable info map. Mark the stack object as mutable.
9446 dbgs() << "Eliding argument copy from " << Arg
<< " to " << *AI
<< '\n'
9447 << " Replacing frame index " << OldIndex
<< " with " << FixedIndex
9450 MFI
.RemoveStackObject(OldIndex
);
9451 MFI
.setIsImmutableObjectIndex(FixedIndex
, false);
9452 AllocaIndex
= FixedIndex
;
9453 ArgCopyElisionFrameIndexMap
.insert({OldIndex
, FixedIndex
});
9454 Chains
.push_back(ArgVal
.getValue(1));
9456 // Avoid emitting code for the store implementing the copy.
9457 const StoreInst
*SI
= ArgCopyIter
->second
.second
;
9458 ElidedArgCopyInstrs
.insert(SI
);
9460 // Check for uses of the argument again so that we can avoid exporting ArgVal
9461 // if it is't used by anything other than the store.
9462 for (const Value
*U
: Arg
.users()) {
9470 void SelectionDAGISel::LowerArguments(const Function
&F
) {
9471 SelectionDAG
&DAG
= SDB
->DAG
;
9472 SDLoc dl
= SDB
->getCurSDLoc();
9473 const DataLayout
&DL
= DAG
.getDataLayout();
9474 SmallVector
<ISD::InputArg
, 16> Ins
;
9476 if (!FuncInfo
->CanLowerReturn
) {
9477 // Put in an sret pointer parameter before all the other parameters.
9478 SmallVector
<EVT
, 1> ValueVTs
;
9479 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
9480 F
.getReturnType()->getPointerTo(
9481 DAG
.getDataLayout().getAllocaAddrSpace()),
9484 // NOTE: Assuming that a pointer will never break down to more than one VT
9486 ISD::ArgFlagsTy Flags
;
9488 MVT RegisterVT
= TLI
->getRegisterType(*DAG
.getContext(), ValueVTs
[0]);
9489 ISD::InputArg
RetArg(Flags
, RegisterVT
, ValueVTs
[0], true,
9490 ISD::InputArg::NoArgIndex
, 0);
9491 Ins
.push_back(RetArg
);
9494 // Look for stores of arguments to static allocas. Mark such arguments with a
9495 // flag to ask the target to give us the memory location of that argument if
9497 ArgCopyElisionMapTy ArgCopyElisionCandidates
;
9498 findArgumentCopyElisionCandidates(DL
, FuncInfo
, ArgCopyElisionCandidates
);
9500 // Set up the incoming argument description vector.
9501 for (const Argument
&Arg
: F
.args()) {
9502 unsigned ArgNo
= Arg
.getArgNo();
9503 SmallVector
<EVT
, 4> ValueVTs
;
9504 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
9505 bool isArgValueUsed
= !Arg
.use_empty();
9506 unsigned PartBase
= 0;
9507 Type
*FinalType
= Arg
.getType();
9508 if (Arg
.hasAttribute(Attribute::ByVal
))
9509 FinalType
= cast
<PointerType
>(FinalType
)->getElementType();
9510 bool NeedsRegBlock
= TLI
->functionArgumentNeedsConsecutiveRegisters(
9511 FinalType
, F
.getCallingConv(), F
.isVarArg());
9512 for (unsigned Value
= 0, NumValues
= ValueVTs
.size();
9513 Value
!= NumValues
; ++Value
) {
9514 EVT VT
= ValueVTs
[Value
];
9515 Type
*ArgTy
= VT
.getTypeForEVT(*DAG
.getContext());
9516 ISD::ArgFlagsTy Flags
;
9518 // Certain targets (such as MIPS), may have a different ABI alignment
9519 // for a type depending on the context. Give the target a chance to
9520 // specify the alignment it wants.
9521 unsigned OriginalAlignment
=
9522 TLI
->getABIAlignmentForCallingConv(ArgTy
, DL
);
9524 if (Arg
.getType()->isPointerTy()) {
9526 Flags
.setPointerAddrSpace(
9527 cast
<PointerType
>(Arg
.getType())->getAddressSpace());
9529 if (Arg
.hasAttribute(Attribute::ZExt
))
9531 if (Arg
.hasAttribute(Attribute::SExt
))
9533 if (Arg
.hasAttribute(Attribute::InReg
)) {
9534 // If we are using vectorcall calling convention, a structure that is
9535 // passed InReg - is surely an HVA
9536 if (F
.getCallingConv() == CallingConv::X86_VectorCall
&&
9537 isa
<StructType
>(Arg
.getType())) {
9538 // The first value of a structure is marked
9540 Flags
.setHvaStart();
9546 if (Arg
.hasAttribute(Attribute::StructRet
))
9548 if (Arg
.hasAttribute(Attribute::SwiftSelf
))
9549 Flags
.setSwiftSelf();
9550 if (Arg
.hasAttribute(Attribute::SwiftError
))
9551 Flags
.setSwiftError();
9552 if (Arg
.hasAttribute(Attribute::ByVal
))
9554 if (Arg
.hasAttribute(Attribute::InAlloca
)) {
9555 Flags
.setInAlloca();
9556 // Set the byval flag for CCAssignFn callbacks that don't know about
9557 // inalloca. This way we can know how many bytes we should've allocated
9558 // and how many bytes a callee cleanup function will pop. If we port
9559 // inalloca to more targets, we'll have to add custom inalloca handling
9560 // in the various CC lowering callbacks.
9563 if (F
.getCallingConv() == CallingConv::X86_INTR
) {
9564 // IA Interrupt passes frame (1st parameter) by value in the stack.
9568 if (Flags
.isByVal() || Flags
.isInAlloca()) {
9569 PointerType
*Ty
= cast
<PointerType
>(Arg
.getType());
9570 Type
*ElementTy
= Ty
->getElementType();
9571 Flags
.setByValSize(DL
.getTypeAllocSize(ElementTy
));
9572 // For ByVal, alignment should be passed from FE. BE will guess if
9573 // this info is not there but there are cases it cannot get right.
9574 unsigned FrameAlign
;
9575 if (Arg
.getParamAlignment())
9576 FrameAlign
= Arg
.getParamAlignment();
9578 FrameAlign
= TLI
->getByValTypeAlignment(ElementTy
, DL
);
9579 Flags
.setByValAlign(FrameAlign
);
9581 if (Arg
.hasAttribute(Attribute::Nest
))
9584 Flags
.setInConsecutiveRegs();
9585 Flags
.setOrigAlign(OriginalAlignment
);
9586 if (ArgCopyElisionCandidates
.count(&Arg
))
9587 Flags
.setCopyElisionCandidate();
9589 MVT RegisterVT
= TLI
->getRegisterTypeForCallingConv(
9590 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9591 unsigned NumRegs
= TLI
->getNumRegistersForCallingConv(
9592 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9593 for (unsigned i
= 0; i
!= NumRegs
; ++i
) {
9594 ISD::InputArg
MyFlags(Flags
, RegisterVT
, VT
, isArgValueUsed
,
9595 ArgNo
, PartBase
+i
*RegisterVT
.getStoreSize());
9596 if (NumRegs
> 1 && i
== 0)
9597 MyFlags
.Flags
.setSplit();
9598 // if it isn't first piece, alignment must be 1
9600 MyFlags
.Flags
.setOrigAlign(1);
9601 if (i
== NumRegs
- 1)
9602 MyFlags
.Flags
.setSplitEnd();
9604 Ins
.push_back(MyFlags
);
9606 if (NeedsRegBlock
&& Value
== NumValues
- 1)
9607 Ins
[Ins
.size() - 1].Flags
.setInConsecutiveRegsLast();
9608 PartBase
+= VT
.getStoreSize();
9612 // Call the target to set up the argument values.
9613 SmallVector
<SDValue
, 8> InVals
;
9614 SDValue NewRoot
= TLI
->LowerFormalArguments(
9615 DAG
.getRoot(), F
.getCallingConv(), F
.isVarArg(), Ins
, dl
, DAG
, InVals
);
9617 // Verify that the target's LowerFormalArguments behaved as expected.
9618 assert(NewRoot
.getNode() && NewRoot
.getValueType() == MVT::Other
&&
9619 "LowerFormalArguments didn't return a valid chain!");
9620 assert(InVals
.size() == Ins
.size() &&
9621 "LowerFormalArguments didn't emit the correct number of values!");
9623 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
9624 assert(InVals
[i
].getNode() &&
9625 "LowerFormalArguments emitted a null value!");
9626 assert(EVT(Ins
[i
].VT
) == InVals
[i
].getValueType() &&
9627 "LowerFormalArguments emitted a value with the wrong type!");
9631 // Update the DAG with the new chain value resulting from argument lowering.
9632 DAG
.setRoot(NewRoot
);
9634 // Set up the argument values.
9636 if (!FuncInfo
->CanLowerReturn
) {
9637 // Create a virtual register for the sret pointer, and put in a copy
9638 // from the sret argument into it.
9639 SmallVector
<EVT
, 1> ValueVTs
;
9640 ComputeValueVTs(*TLI
, DAG
.getDataLayout(),
9641 F
.getReturnType()->getPointerTo(
9642 DAG
.getDataLayout().getAllocaAddrSpace()),
9644 MVT VT
= ValueVTs
[0].getSimpleVT();
9645 MVT RegVT
= TLI
->getRegisterType(*CurDAG
->getContext(), VT
);
9646 Optional
<ISD::NodeType
> AssertOp
= None
;
9647 SDValue ArgValue
= getCopyFromParts(DAG
, dl
, &InVals
[0], 1, RegVT
, VT
,
9648 nullptr, F
.getCallingConv(), AssertOp
);
9650 MachineFunction
& MF
= SDB
->DAG
.getMachineFunction();
9651 MachineRegisterInfo
& RegInfo
= MF
.getRegInfo();
9652 unsigned SRetReg
= RegInfo
.createVirtualRegister(TLI
->getRegClassFor(RegVT
));
9653 FuncInfo
->DemoteRegister
= SRetReg
;
9655 SDB
->DAG
.getCopyToReg(NewRoot
, SDB
->getCurSDLoc(), SRetReg
, ArgValue
);
9656 DAG
.setRoot(NewRoot
);
9658 // i indexes lowered arguments. Bump it past the hidden sret argument.
9662 SmallVector
<SDValue
, 4> Chains
;
9663 DenseMap
<int, int> ArgCopyElisionFrameIndexMap
;
9664 for (const Argument
&Arg
: F
.args()) {
9665 SmallVector
<SDValue
, 4> ArgValues
;
9666 SmallVector
<EVT
, 4> ValueVTs
;
9667 ComputeValueVTs(*TLI
, DAG
.getDataLayout(), Arg
.getType(), ValueVTs
);
9668 unsigned NumValues
= ValueVTs
.size();
9672 bool ArgHasUses
= !Arg
.use_empty();
9674 // Elide the copying store if the target loaded this argument from a
9675 // suitable fixed stack object.
9676 if (Ins
[i
].Flags
.isCopyElisionCandidate()) {
9677 tryToElideArgumentCopy(FuncInfo
, Chains
, ArgCopyElisionFrameIndexMap
,
9678 ElidedArgCopyInstrs
, ArgCopyElisionCandidates
, Arg
,
9679 InVals
[i
], ArgHasUses
);
9682 // If this argument is unused then remember its value. It is used to generate
9683 // debugging information.
9684 bool isSwiftErrorArg
=
9685 TLI
->supportSwiftError() &&
9686 Arg
.hasAttribute(Attribute::SwiftError
);
9687 if (!ArgHasUses
&& !isSwiftErrorArg
) {
9688 SDB
->setUnusedArgValue(&Arg
, InVals
[i
]);
9690 // Also remember any frame index for use in FastISel.
9691 if (FrameIndexSDNode
*FI
=
9692 dyn_cast
<FrameIndexSDNode
>(InVals
[i
].getNode()))
9693 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9696 for (unsigned Val
= 0; Val
!= NumValues
; ++Val
) {
9697 EVT VT
= ValueVTs
[Val
];
9698 MVT PartVT
= TLI
->getRegisterTypeForCallingConv(*CurDAG
->getContext(),
9699 F
.getCallingConv(), VT
);
9700 unsigned NumParts
= TLI
->getNumRegistersForCallingConv(
9701 *CurDAG
->getContext(), F
.getCallingConv(), VT
);
9703 // Even an apparant 'unused' swifterror argument needs to be returned. So
9704 // we do generate a copy for it that can be used on return from the
9706 if (ArgHasUses
|| isSwiftErrorArg
) {
9707 Optional
<ISD::NodeType
> AssertOp
;
9708 if (Arg
.hasAttribute(Attribute::SExt
))
9709 AssertOp
= ISD::AssertSext
;
9710 else if (Arg
.hasAttribute(Attribute::ZExt
))
9711 AssertOp
= ISD::AssertZext
;
9713 ArgValues
.push_back(getCopyFromParts(DAG
, dl
, &InVals
[i
], NumParts
,
9714 PartVT
, VT
, nullptr,
9715 F
.getCallingConv(), AssertOp
));
9721 // We don't need to do anything else for unused arguments.
9722 if (ArgValues
.empty())
9725 // Note down frame index.
9726 if (FrameIndexSDNode
*FI
=
9727 dyn_cast
<FrameIndexSDNode
>(ArgValues
[0].getNode()))
9728 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9730 SDValue Res
= DAG
.getMergeValues(makeArrayRef(ArgValues
.data(), NumValues
),
9731 SDB
->getCurSDLoc());
9733 SDB
->setValue(&Arg
, Res
);
9734 if (!TM
.Options
.EnableFastISel
&& Res
.getOpcode() == ISD::BUILD_PAIR
) {
9735 // We want to associate the argument with the frame index, among
9736 // involved operands, that correspond to the lowest address. The
9737 // getCopyFromParts function, called earlier, is swapping the order of
9738 // the operands to BUILD_PAIR depending on endianness. The result of
9739 // that swapping is that the least significant bits of the argument will
9740 // be in the first operand of the BUILD_PAIR node, and the most
9741 // significant bits will be in the second operand.
9742 unsigned LowAddressOp
= DAG
.getDataLayout().isBigEndian() ? 1 : 0;
9743 if (LoadSDNode
*LNode
=
9744 dyn_cast
<LoadSDNode
>(Res
.getOperand(LowAddressOp
).getNode()))
9745 if (FrameIndexSDNode
*FI
=
9746 dyn_cast
<FrameIndexSDNode
>(LNode
->getBasePtr().getNode()))
9747 FuncInfo
->setArgumentFrameIndex(&Arg
, FI
->getIndex());
9750 // Update the SwiftErrorVRegDefMap.
9751 if (Res
.getOpcode() == ISD::CopyFromReg
&& isSwiftErrorArg
) {
9752 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
9753 if (TargetRegisterInfo::isVirtualRegister(Reg
))
9754 FuncInfo
->setCurrentSwiftErrorVReg(FuncInfo
->MBB
,
9755 FuncInfo
->SwiftErrorArg
, Reg
);
9758 // If this argument is live outside of the entry block, insert a copy from
9759 // wherever we got it to the vreg that other BB's will reference it as.
9760 if (!TM
.Options
.EnableFastISel
&& Res
.getOpcode() == ISD::CopyFromReg
) {
9761 // If we can, though, try to skip creating an unnecessary vreg.
9762 // FIXME: This isn't very clean... it would be nice to make this more
9763 // general. It's also subtly incompatible with the hacks FastISel
9765 unsigned Reg
= cast
<RegisterSDNode
>(Res
.getOperand(1))->getReg();
9766 if (TargetRegisterInfo::isVirtualRegister(Reg
)) {
9767 FuncInfo
->ValueMap
[&Arg
] = Reg
;
9771 if (!isOnlyUsedInEntryBlock(&Arg
, TM
.Options
.EnableFastISel
)) {
9772 FuncInfo
->InitializeRegForValue(&Arg
);
9773 SDB
->CopyToExportRegsIfNeeded(&Arg
);
9777 if (!Chains
.empty()) {
9778 Chains
.push_back(NewRoot
);
9779 NewRoot
= DAG
.getNode(ISD::TokenFactor
, dl
, MVT::Other
, Chains
);
9782 DAG
.setRoot(NewRoot
);
9784 assert(i
== InVals
.size() && "Argument register count mismatch!");
9786 // If any argument copy elisions occurred and we have debug info, update the
9787 // stale frame indices used in the dbg.declare variable info table.
9788 MachineFunction::VariableDbgInfoMapTy
&DbgDeclareInfo
= MF
->getVariableDbgInfo();
9789 if (!DbgDeclareInfo
.empty() && !ArgCopyElisionFrameIndexMap
.empty()) {
9790 for (MachineFunction::VariableDbgInfo
&VI
: DbgDeclareInfo
) {
9791 auto I
= ArgCopyElisionFrameIndexMap
.find(VI
.Slot
);
9792 if (I
!= ArgCopyElisionFrameIndexMap
.end())
9793 VI
.Slot
= I
->second
;
9797 // Finally, if the target has anything special to do, allow it to do so.
9798 EmitFunctionEntryCode();
9801 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
9802 /// ensure constants are generated when needed. Remember the virtual registers
9803 /// that need to be added to the Machine PHI nodes as input. We cannot just
9804 /// directly add them, because expansion might result in multiple MBB's for one
9805 /// BB. As such, the start of the BB might correspond to a different MBB than
9808 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock
*LLVMBB
) {
9809 const Instruction
*TI
= LLVMBB
->getTerminator();
9811 SmallPtrSet
<MachineBasicBlock
*, 4> SuccsHandled
;
9813 // Check PHI nodes in successors that expect a value to be available from this
9815 for (unsigned succ
= 0, e
= TI
->getNumSuccessors(); succ
!= e
; ++succ
) {
9816 const BasicBlock
*SuccBB
= TI
->getSuccessor(succ
);
9817 if (!isa
<PHINode
>(SuccBB
->begin())) continue;
9818 MachineBasicBlock
*SuccMBB
= FuncInfo
.MBBMap
[SuccBB
];
9820 // If this terminator has multiple identical successors (common for
9821 // switches), only handle each succ once.
9822 if (!SuccsHandled
.insert(SuccMBB
).second
)
9825 MachineBasicBlock::iterator MBBI
= SuccMBB
->begin();
9827 // At this point we know that there is a 1-1 correspondence between LLVM PHI
9828 // nodes and Machine PHI nodes, but the incoming operands have not been
9830 for (const PHINode
&PN
: SuccBB
->phis()) {
9831 // Ignore dead phi's.
9836 if (PN
.getType()->isEmptyTy())
9840 const Value
*PHIOp
= PN
.getIncomingValueForBlock(LLVMBB
);
9842 if (const Constant
*C
= dyn_cast
<Constant
>(PHIOp
)) {
9843 unsigned &RegOut
= ConstantsOut
[C
];
9845 RegOut
= FuncInfo
.CreateRegs(C
->getType());
9846 CopyValueToVirtualRegister(C
, RegOut
);
9850 DenseMap
<const Value
*, unsigned>::iterator I
=
9851 FuncInfo
.ValueMap
.find(PHIOp
);
9852 if (I
!= FuncInfo
.ValueMap
.end())
9855 assert(isa
<AllocaInst
>(PHIOp
) &&
9856 FuncInfo
.StaticAllocaMap
.count(cast
<AllocaInst
>(PHIOp
)) &&
9857 "Didn't codegen value into a register!??");
9858 Reg
= FuncInfo
.CreateRegs(PHIOp
->getType());
9859 CopyValueToVirtualRegister(PHIOp
, Reg
);
9863 // Remember that this register needs to added to the machine PHI node as
9864 // the input for this MBB.
9865 SmallVector
<EVT
, 4> ValueVTs
;
9866 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9867 ComputeValueVTs(TLI
, DAG
.getDataLayout(), PN
.getType(), ValueVTs
);
9868 for (unsigned vti
= 0, vte
= ValueVTs
.size(); vti
!= vte
; ++vti
) {
9869 EVT VT
= ValueVTs
[vti
];
9870 unsigned NumRegisters
= TLI
.getNumRegisters(*DAG
.getContext(), VT
);
9871 for (unsigned i
= 0, e
= NumRegisters
; i
!= e
; ++i
)
9872 FuncInfo
.PHINodesToUpdate
.push_back(
9873 std::make_pair(&*MBBI
++, Reg
+ i
));
9874 Reg
+= NumRegisters
;
9879 ConstantsOut
.clear();
9882 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9885 SelectionDAGBuilder::StackProtectorDescriptor::
9886 AddSuccessorMBB(const BasicBlock
*BB
,
9887 MachineBasicBlock
*ParentMBB
,
9889 MachineBasicBlock
*SuccMBB
) {
9890 // If SuccBB has not been created yet, create it.
9892 MachineFunction
*MF
= ParentMBB
->getParent();
9893 MachineFunction::iterator
BBI(ParentMBB
);
9894 SuccMBB
= MF
->CreateMachineBasicBlock(BB
);
9895 MF
->insert(++BBI
, SuccMBB
);
9897 // Add it as a successor of ParentMBB.
9898 ParentMBB
->addSuccessor(
9899 SuccMBB
, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely
));
9903 MachineBasicBlock
*SelectionDAGBuilder::NextBlock(MachineBasicBlock
*MBB
) {
9904 MachineFunction::iterator
I(MBB
);
9905 if (++I
== FuncInfo
.MF
->end())
9910 /// During lowering new call nodes can be created (such as memset, etc.).
9911 /// Those will become new roots of the current DAG, but complications arise
9912 /// when they are tail calls. In such cases, the call lowering will update
9913 /// the root, but the builder still needs to know that a tail call has been
9914 /// lowered in order to avoid generating an additional return.
9915 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC
) {
9916 // If the node is null, we do have a tail call.
9917 if (MaybeTC
.getNode() != nullptr)
9918 DAG
.setRoot(MaybeTC
);
9924 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector
&Clusters
,
9925 unsigned First
, unsigned Last
) const {
9926 assert(Last
>= First
);
9927 const APInt
&LowCase
= Clusters
[First
].Low
->getValue();
9928 const APInt
&HighCase
= Clusters
[Last
].High
->getValue();
9929 assert(LowCase
.getBitWidth() == HighCase
.getBitWidth());
9931 // FIXME: A range of consecutive cases has 100% density, but only requires one
9932 // comparison to lower. We should discriminate against such consecutive ranges
9935 return (HighCase
- LowCase
).getLimitedValue((UINT64_MAX
- 1) / 100) + 1;
9938 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9939 const SmallVectorImpl
<unsigned> &TotalCases
, unsigned First
,
9940 unsigned Last
) const {
9941 assert(Last
>= First
);
9942 assert(TotalCases
[Last
] >= TotalCases
[First
]);
9944 TotalCases
[Last
] - (First
== 0 ? 0 : TotalCases
[First
- 1]);
9948 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector
&Clusters
,
9949 unsigned First
, unsigned Last
,
9950 const SwitchInst
*SI
,
9951 MachineBasicBlock
*DefaultMBB
,
9952 CaseCluster
&JTCluster
) {
9953 assert(First
<= Last
);
9955 auto Prob
= BranchProbability::getZero();
9956 unsigned NumCmps
= 0;
9957 std::vector
<MachineBasicBlock
*> Table
;
9958 DenseMap
<MachineBasicBlock
*, BranchProbability
> JTProbs
;
9960 // Initialize probabilities in JTProbs.
9961 for (unsigned I
= First
; I
<= Last
; ++I
)
9962 JTProbs
[Clusters
[I
].MBB
] = BranchProbability::getZero();
9964 for (unsigned I
= First
; I
<= Last
; ++I
) {
9965 assert(Clusters
[I
].Kind
== CC_Range
);
9966 Prob
+= Clusters
[I
].Prob
;
9967 const APInt
&Low
= Clusters
[I
].Low
->getValue();
9968 const APInt
&High
= Clusters
[I
].High
->getValue();
9969 NumCmps
+= (Low
== High
) ? 1 : 2;
9971 // Fill the gap between this and the previous cluster.
9972 const APInt
&PreviousHigh
= Clusters
[I
- 1].High
->getValue();
9973 assert(PreviousHigh
.slt(Low
));
9974 uint64_t Gap
= (Low
- PreviousHigh
).getLimitedValue() - 1;
9975 for (uint64_t J
= 0; J
< Gap
; J
++)
9976 Table
.push_back(DefaultMBB
);
9978 uint64_t ClusterSize
= (High
- Low
).getLimitedValue() + 1;
9979 for (uint64_t J
= 0; J
< ClusterSize
; ++J
)
9980 Table
.push_back(Clusters
[I
].MBB
);
9981 JTProbs
[Clusters
[I
].MBB
] += Clusters
[I
].Prob
;
9984 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
9985 unsigned NumDests
= JTProbs
.size();
9986 if (TLI
.isSuitableForBitTests(
9987 NumDests
, NumCmps
, Clusters
[First
].Low
->getValue(),
9988 Clusters
[Last
].High
->getValue(), DAG
.getDataLayout())) {
9989 // Clusters[First..Last] should be lowered as bit tests instead.
9993 // Create the MBB that will load from and jump through the table.
9994 // Note: We create it here, but it's not inserted into the function yet.
9995 MachineFunction
*CurMF
= FuncInfo
.MF
;
9996 MachineBasicBlock
*JumpTableMBB
=
9997 CurMF
->CreateMachineBasicBlock(SI
->getParent());
9999 // Add successors. Note: use table order for determinism.
10000 SmallPtrSet
<MachineBasicBlock
*, 8> Done
;
10001 for (MachineBasicBlock
*Succ
: Table
) {
10002 if (Done
.count(Succ
))
10004 addSuccessorWithProb(JumpTableMBB
, Succ
, JTProbs
[Succ
]);
10007 JumpTableMBB
->normalizeSuccProbs();
10009 unsigned JTI
= CurMF
->getOrCreateJumpTableInfo(TLI
.getJumpTableEncoding())
10010 ->createJumpTableIndex(Table
);
10012 // Set up the jump table info.
10013 JumpTable
JT(-1U, JTI
, JumpTableMBB
, nullptr);
10014 JumpTableHeader
JTH(Clusters
[First
].Low
->getValue(),
10015 Clusters
[Last
].High
->getValue(), SI
->getCondition(),
10017 JTCases
.emplace_back(std::move(JTH
), std::move(JT
));
10019 JTCluster
= CaseCluster::jumpTable(Clusters
[First
].Low
, Clusters
[Last
].High
,
10020 JTCases
.size() - 1, Prob
);
10024 void SelectionDAGBuilder::findJumpTables(CaseClusterVector
&Clusters
,
10025 const SwitchInst
*SI
,
10026 MachineBasicBlock
*DefaultMBB
) {
10028 // Clusters must be non-empty, sorted, and only contain Range clusters.
10029 assert(!Clusters
.empty());
10030 for (CaseCluster
&C
: Clusters
)
10031 assert(C
.Kind
== CC_Range
);
10032 for (unsigned i
= 1, e
= Clusters
.size(); i
< e
; ++i
)
10033 assert(Clusters
[i
- 1].High
->getValue().slt(Clusters
[i
].Low
->getValue()));
10036 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10037 if (!TLI
.areJTsAllowed(SI
->getParent()->getParent()))
10040 const int64_t N
= Clusters
.size();
10041 const unsigned MinJumpTableEntries
= TLI
.getMinimumJumpTableEntries();
10042 const unsigned SmallNumberOfEntries
= MinJumpTableEntries
/ 2;
10044 if (N
< 2 || N
< MinJumpTableEntries
)
10047 // TotalCases[i]: Total nbr of cases in Clusters[0..i].
10048 SmallVector
<unsigned, 8> TotalCases(N
);
10049 for (unsigned i
= 0; i
< N
; ++i
) {
10050 const APInt
&Hi
= Clusters
[i
].High
->getValue();
10051 const APInt
&Lo
= Clusters
[i
].Low
->getValue();
10052 TotalCases
[i
] = (Hi
- Lo
).getLimitedValue() + 1;
10054 TotalCases
[i
] += TotalCases
[i
- 1];
10057 // Cheap case: the whole range may be suitable for jump table.
10058 uint64_t Range
= getJumpTableRange(Clusters
,0, N
- 1);
10059 uint64_t NumCases
= getJumpTableNumCases(TotalCases
, 0, N
- 1);
10060 assert(NumCases
< UINT64_MAX
/ 100);
10061 assert(Range
>= NumCases
);
10062 if (TLI
.isSuitableForJumpTable(SI
, NumCases
, Range
)) {
10063 CaseCluster JTCluster
;
10064 if (buildJumpTable(Clusters
, 0, N
- 1, SI
, DefaultMBB
, JTCluster
)) {
10065 Clusters
[0] = JTCluster
;
10066 Clusters
.resize(1);
10071 // The algorithm below is not suitable for -O0.
10072 if (TM
.getOptLevel() == CodeGenOpt::None
)
10075 // Split Clusters into minimum number of dense partitions. The algorithm uses
10076 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
10077 // for the Case Statement'" (1994), but builds the MinPartitions array in
10078 // reverse order to make it easier to reconstruct the partitions in ascending
10079 // order. In the choice between two optimal partitionings, it picks the one
10080 // which yields more jump tables.
10082 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10083 SmallVector
<unsigned, 8> MinPartitions(N
);
10084 // LastElement[i] is the last element of the partition starting at i.
10085 SmallVector
<unsigned, 8> LastElement(N
);
10086 // PartitionsScore[i] is used to break ties when choosing between two
10087 // partitionings resulting in the same number of partitions.
10088 SmallVector
<unsigned, 8> PartitionsScore(N
);
10089 // For PartitionsScore, a small number of comparisons is considered as good as
10090 // a jump table and a single comparison is considered better than a jump
10092 enum PartitionScores
: unsigned {
10099 // Base case: There is only one way to partition Clusters[N-1].
10100 MinPartitions
[N
- 1] = 1;
10101 LastElement
[N
- 1] = N
- 1;
10102 PartitionsScore
[N
- 1] = PartitionScores::SingleCase
;
10104 // Note: loop indexes are signed to avoid underflow.
10105 for (int64_t i
= N
- 2; i
>= 0; i
--) {
10106 // Find optimal partitioning of Clusters[i..N-1].
10107 // Baseline: Put Clusters[i] into a partition on its own.
10108 MinPartitions
[i
] = MinPartitions
[i
+ 1] + 1;
10109 LastElement
[i
] = i
;
10110 PartitionsScore
[i
] = PartitionsScore
[i
+ 1] + PartitionScores::SingleCase
;
10112 // Search for a solution that results in fewer partitions.
10113 for (int64_t j
= N
- 1; j
> i
; j
--) {
10114 // Try building a partition from Clusters[i..j].
10115 uint64_t Range
= getJumpTableRange(Clusters
, i
, j
);
10116 uint64_t NumCases
= getJumpTableNumCases(TotalCases
, i
, j
);
10117 assert(NumCases
< UINT64_MAX
/ 100);
10118 assert(Range
>= NumCases
);
10119 if (TLI
.isSuitableForJumpTable(SI
, NumCases
, Range
)) {
10120 unsigned NumPartitions
= 1 + (j
== N
- 1 ? 0 : MinPartitions
[j
+ 1]);
10121 unsigned Score
= j
== N
- 1 ? 0 : PartitionsScore
[j
+ 1];
10122 int64_t NumEntries
= j
- i
+ 1;
10124 if (NumEntries
== 1)
10125 Score
+= PartitionScores::SingleCase
;
10126 else if (NumEntries
<= SmallNumberOfEntries
)
10127 Score
+= PartitionScores::FewCases
;
10128 else if (NumEntries
>= MinJumpTableEntries
)
10129 Score
+= PartitionScores::Table
;
10131 // If this leads to fewer partitions, or to the same number of
10132 // partitions with better score, it is a better partitioning.
10133 if (NumPartitions
< MinPartitions
[i
] ||
10134 (NumPartitions
== MinPartitions
[i
] && Score
> PartitionsScore
[i
])) {
10135 MinPartitions
[i
] = NumPartitions
;
10136 LastElement
[i
] = j
;
10137 PartitionsScore
[i
] = Score
;
10143 // Iterate over the partitions, replacing some with jump tables in-place.
10144 unsigned DstIndex
= 0;
10145 for (unsigned First
= 0, Last
; First
< N
; First
= Last
+ 1) {
10146 Last
= LastElement
[First
];
10147 assert(Last
>= First
);
10148 assert(DstIndex
<= First
);
10149 unsigned NumClusters
= Last
- First
+ 1;
10151 CaseCluster JTCluster
;
10152 if (NumClusters
>= MinJumpTableEntries
&&
10153 buildJumpTable(Clusters
, First
, Last
, SI
, DefaultMBB
, JTCluster
)) {
10154 Clusters
[DstIndex
++] = JTCluster
;
10156 for (unsigned I
= First
; I
<= Last
; ++I
)
10157 std::memmove(&Clusters
[DstIndex
++], &Clusters
[I
], sizeof(Clusters
[I
]));
10160 Clusters
.resize(DstIndex
);
10163 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector
&Clusters
,
10164 unsigned First
, unsigned Last
,
10165 const SwitchInst
*SI
,
10166 CaseCluster
&BTCluster
) {
10167 assert(First
<= Last
);
10171 BitVector
Dests(FuncInfo
.MF
->getNumBlockIDs());
10172 unsigned NumCmps
= 0;
10173 for (int64_t I
= First
; I
<= Last
; ++I
) {
10174 assert(Clusters
[I
].Kind
== CC_Range
);
10175 Dests
.set(Clusters
[I
].MBB
->getNumber());
10176 NumCmps
+= (Clusters
[I
].Low
== Clusters
[I
].High
) ? 1 : 2;
10178 unsigned NumDests
= Dests
.count();
10180 APInt Low
= Clusters
[First
].Low
->getValue();
10181 APInt High
= Clusters
[Last
].High
->getValue();
10182 assert(Low
.slt(High
));
10184 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10185 const DataLayout
&DL
= DAG
.getDataLayout();
10186 if (!TLI
.isSuitableForBitTests(NumDests
, NumCmps
, Low
, High
, DL
))
10192 const int BitWidth
= TLI
.getPointerTy(DL
).getSizeInBits();
10193 assert(TLI
.rangeFitsInWord(Low
, High
, DL
) &&
10194 "Case range must fit in bit mask!");
10196 // Check if the clusters cover a contiguous range such that no value in the
10197 // range will jump to the default statement.
10198 bool ContiguousRange
= true;
10199 for (int64_t I
= First
+ 1; I
<= Last
; ++I
) {
10200 if (Clusters
[I
].Low
->getValue() != Clusters
[I
- 1].High
->getValue() + 1) {
10201 ContiguousRange
= false;
10206 if (Low
.isStrictlyPositive() && High
.slt(BitWidth
)) {
10207 // Optimize the case where all the case values fit in a word without having
10208 // to subtract minValue. In this case, we can optimize away the subtraction.
10209 LowBound
= APInt::getNullValue(Low
.getBitWidth());
10211 ContiguousRange
= false;
10214 CmpRange
= High
- Low
;
10217 CaseBitsVector CBV
;
10218 auto TotalProb
= BranchProbability::getZero();
10219 for (unsigned i
= First
; i
<= Last
; ++i
) {
10220 // Find the CaseBits for this destination.
10222 for (j
= 0; j
< CBV
.size(); ++j
)
10223 if (CBV
[j
].BB
== Clusters
[i
].MBB
)
10225 if (j
== CBV
.size())
10227 CaseBits(0, Clusters
[i
].MBB
, 0, BranchProbability::getZero()));
10228 CaseBits
*CB
= &CBV
[j
];
10230 // Update Mask, Bits and ExtraProb.
10231 uint64_t Lo
= (Clusters
[i
].Low
->getValue() - LowBound
).getZExtValue();
10232 uint64_t Hi
= (Clusters
[i
].High
->getValue() - LowBound
).getZExtValue();
10233 assert(Hi
>= Lo
&& Hi
< 64 && "Invalid bit case!");
10234 CB
->Mask
|= (-1ULL >> (63 - (Hi
- Lo
))) << Lo
;
10235 CB
->Bits
+= Hi
- Lo
+ 1;
10236 CB
->ExtraProb
+= Clusters
[i
].Prob
;
10237 TotalProb
+= Clusters
[i
].Prob
;
10241 llvm::sort(CBV
, [](const CaseBits
&a
, const CaseBits
&b
) {
10242 // Sort by probability first, number of bits second, bit mask third.
10243 if (a
.ExtraProb
!= b
.ExtraProb
)
10244 return a
.ExtraProb
> b
.ExtraProb
;
10245 if (a
.Bits
!= b
.Bits
)
10246 return a
.Bits
> b
.Bits
;
10247 return a
.Mask
< b
.Mask
;
10250 for (auto &CB
: CBV
) {
10251 MachineBasicBlock
*BitTestBB
=
10252 FuncInfo
.MF
->CreateMachineBasicBlock(SI
->getParent());
10253 BTI
.push_back(BitTestCase(CB
.Mask
, BitTestBB
, CB
.BB
, CB
.ExtraProb
));
10255 BitTestCases
.emplace_back(std::move(LowBound
), std::move(CmpRange
),
10256 SI
->getCondition(), -1U, MVT::Other
, false,
10257 ContiguousRange
, nullptr, nullptr, std::move(BTI
),
10260 BTCluster
= CaseCluster::bitTests(Clusters
[First
].Low
, Clusters
[Last
].High
,
10261 BitTestCases
.size() - 1, TotalProb
);
10265 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector
&Clusters
,
10266 const SwitchInst
*SI
) {
10267 // Partition Clusters into as few subsets as possible, where each subset has a
10268 // range that fits in a machine word and has <= 3 unique destinations.
10271 // Clusters must be sorted and contain Range or JumpTable clusters.
10272 assert(!Clusters
.empty());
10273 assert(Clusters
[0].Kind
== CC_Range
|| Clusters
[0].Kind
== CC_JumpTable
);
10274 for (const CaseCluster
&C
: Clusters
)
10275 assert(C
.Kind
== CC_Range
|| C
.Kind
== CC_JumpTable
);
10276 for (unsigned i
= 1; i
< Clusters
.size(); ++i
)
10277 assert(Clusters
[i
-1].High
->getValue().slt(Clusters
[i
].Low
->getValue()));
10280 // The algorithm below is not suitable for -O0.
10281 if (TM
.getOptLevel() == CodeGenOpt::None
)
10284 // If target does not have legal shift left, do not emit bit tests at all.
10285 const TargetLowering
&TLI
= DAG
.getTargetLoweringInfo();
10286 const DataLayout
&DL
= DAG
.getDataLayout();
10288 EVT PTy
= TLI
.getPointerTy(DL
);
10289 if (!TLI
.isOperationLegal(ISD::SHL
, PTy
))
10292 int BitWidth
= PTy
.getSizeInBits();
10293 const int64_t N
= Clusters
.size();
10295 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10296 SmallVector
<unsigned, 8> MinPartitions(N
);
10297 // LastElement[i] is the last element of the partition starting at i.
10298 SmallVector
<unsigned, 8> LastElement(N
);
10300 // FIXME: This might not be the best algorithm for finding bit test clusters.
10302 // Base case: There is only one way to partition Clusters[N-1].
10303 MinPartitions
[N
- 1] = 1;
10304 LastElement
[N
- 1] = N
- 1;
10306 // Note: loop indexes are signed to avoid underflow.
10307 for (int64_t i
= N
- 2; i
>= 0; --i
) {
10308 // Find optimal partitioning of Clusters[i..N-1].
10309 // Baseline: Put Clusters[i] into a partition on its own.
10310 MinPartitions
[i
] = MinPartitions
[i
+ 1] + 1;
10311 LastElement
[i
] = i
;
10313 // Search for a solution that results in fewer partitions.
10314 // Note: the search is limited by BitWidth, reducing time complexity.
10315 for (int64_t j
= std::min(N
- 1, i
+ BitWidth
- 1); j
> i
; --j
) {
10316 // Try building a partition from Clusters[i..j].
10318 // Check the range.
10319 if (!TLI
.rangeFitsInWord(Clusters
[i
].Low
->getValue(),
10320 Clusters
[j
].High
->getValue(), DL
))
10323 // Check nbr of destinations and cluster types.
10324 // FIXME: This works, but doesn't seem very efficient.
10325 bool RangesOnly
= true;
10326 BitVector
Dests(FuncInfo
.MF
->getNumBlockIDs());
10327 for (int64_t k
= i
; k
<= j
; k
++) {
10328 if (Clusters
[k
].Kind
!= CC_Range
) {
10329 RangesOnly
= false;
10332 Dests
.set(Clusters
[k
].MBB
->getNumber());
10334 if (!RangesOnly
|| Dests
.count() > 3)
10337 // Check if it's a better partition.
10338 unsigned NumPartitions
= 1 + (j
== N
- 1 ? 0 : MinPartitions
[j
+ 1]);
10339 if (NumPartitions
< MinPartitions
[i
]) {
10340 // Found a better partition.
10341 MinPartitions
[i
] = NumPartitions
;
10342 LastElement
[i
] = j
;
10347 // Iterate over the partitions, replacing with bit-test clusters in-place.
10348 unsigned DstIndex
= 0;
10349 for (unsigned First
= 0, Last
; First
< N
; First
= Last
+ 1) {
10350 Last
= LastElement
[First
];
10351 assert(First
<= Last
);
10352 assert(DstIndex
<= First
);
10354 CaseCluster BitTestCluster
;
10355 if (buildBitTests(Clusters
, First
, Last
, SI
, BitTestCluster
)) {
10356 Clusters
[DstIndex
++] = BitTestCluster
;
10358 size_t NumClusters
= Last
- First
+ 1;
10359 std::memmove(&Clusters
[DstIndex
], &Clusters
[First
],
10360 sizeof(Clusters
[0]) * NumClusters
);
10361 DstIndex
+= NumClusters
;
10364 Clusters
.resize(DstIndex
);
10367 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W
, Value
*Cond
,
10368 MachineBasicBlock
*SwitchMBB
,
10369 MachineBasicBlock
*DefaultMBB
) {
10370 MachineFunction
*CurMF
= FuncInfo
.MF
;
10371 MachineBasicBlock
*NextMBB
= nullptr;
10372 MachineFunction::iterator
BBI(W
.MBB
);
10373 if (++BBI
!= FuncInfo
.MF
->end())
10376 unsigned Size
= W
.LastCluster
- W
.FirstCluster
+ 1;
10378 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
10380 if (Size
== 2 && W
.MBB
== SwitchMBB
) {
10381 // If any two of the cases has the same destination, and if one value
10382 // is the same as the other, but has one bit unset that the other has set,
10383 // use bit manipulation to do two compares at once. For example:
10384 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10385 // TODO: This could be extended to merge any 2 cases in switches with 3
10387 // TODO: Handle cases where W.CaseBB != SwitchBB.
10388 CaseCluster
&Small
= *W
.FirstCluster
;
10389 CaseCluster
&Big
= *W
.LastCluster
;
10391 if (Small
.Low
== Small
.High
&& Big
.Low
== Big
.High
&&
10392 Small
.MBB
== Big
.MBB
) {
10393 const APInt
&SmallValue
= Small
.Low
->getValue();
10394 const APInt
&BigValue
= Big
.Low
->getValue();
10396 // Check that there is only one bit different.
10397 APInt CommonBit
= BigValue
^ SmallValue
;
10398 if (CommonBit
.isPowerOf2()) {
10399 SDValue CondLHS
= getValue(Cond
);
10400 EVT VT
= CondLHS
.getValueType();
10401 SDLoc DL
= getCurSDLoc();
10403 SDValue Or
= DAG
.getNode(ISD::OR
, DL
, VT
, CondLHS
,
10404 DAG
.getConstant(CommonBit
, DL
, VT
));
10405 SDValue Cond
= DAG
.getSetCC(
10406 DL
, MVT::i1
, Or
, DAG
.getConstant(BigValue
| SmallValue
, DL
, VT
),
10409 // Update successor info.
10410 // Both Small and Big will jump to Small.BB, so we sum up the
10412 addSuccessorWithProb(SwitchMBB
, Small
.MBB
, Small
.Prob
+ Big
.Prob
);
10414 addSuccessorWithProb(
10415 SwitchMBB
, DefaultMBB
,
10416 // The default destination is the first successor in IR.
10417 BPI
->getEdgeProbability(SwitchMBB
->getBasicBlock(), (unsigned)0));
10419 addSuccessorWithProb(SwitchMBB
, DefaultMBB
);
10421 // Insert the true branch.
10423 DAG
.getNode(ISD::BRCOND
, DL
, MVT::Other
, getControlRoot(), Cond
,
10424 DAG
.getBasicBlock(Small
.MBB
));
10425 // Insert the false branch.
10426 BrCond
= DAG
.getNode(ISD::BR
, DL
, MVT::Other
, BrCond
,
10427 DAG
.getBasicBlock(DefaultMBB
));
10429 DAG
.setRoot(BrCond
);
10435 if (TM
.getOptLevel() != CodeGenOpt::None
) {
10436 // Here, we order cases by probability so the most likely case will be
10437 // checked first. However, two clusters can have the same probability in
10438 // which case their relative ordering is non-deterministic. So we use Low
10439 // as a tie-breaker as clusters are guaranteed to never overlap.
10440 llvm::sort(W
.FirstCluster
, W
.LastCluster
+ 1,
10441 [](const CaseCluster
&a
, const CaseCluster
&b
) {
10442 return a
.Prob
!= b
.Prob
?
10444 a
.Low
->getValue().slt(b
.Low
->getValue());
10447 // Rearrange the case blocks so that the last one falls through if possible
10448 // without changing the order of probabilities.
10449 for (CaseClusterIt I
= W
.LastCluster
; I
> W
.FirstCluster
; ) {
10451 if (I
->Prob
> W
.LastCluster
->Prob
)
10453 if (I
->Kind
== CC_Range
&& I
->MBB
== NextMBB
) {
10454 std::swap(*I
, *W
.LastCluster
);
10460 // Compute total probability.
10461 BranchProbability DefaultProb
= W
.DefaultProb
;
10462 BranchProbability UnhandledProbs
= DefaultProb
;
10463 for (CaseClusterIt I
= W
.FirstCluster
; I
<= W
.LastCluster
; ++I
)
10464 UnhandledProbs
+= I
->Prob
;
10466 MachineBasicBlock
*CurMBB
= W
.MBB
;
10467 for (CaseClusterIt I
= W
.FirstCluster
, E
= W
.LastCluster
; I
<= E
; ++I
) {
10468 bool FallthroughUnreachable
= false;
10469 MachineBasicBlock
*Fallthrough
;
10470 if (I
== W
.LastCluster
) {
10471 // For the last cluster, fall through to the default destination.
10472 Fallthrough
= DefaultMBB
;
10473 FallthroughUnreachable
= isa
<UnreachableInst
>(
10474 DefaultMBB
->getBasicBlock()->getFirstNonPHIOrDbg());
10476 Fallthrough
= CurMF
->CreateMachineBasicBlock(CurMBB
->getBasicBlock());
10477 CurMF
->insert(BBI
, Fallthrough
);
10478 // Put Cond in a virtual register to make it available from the new blocks.
10479 ExportFromCurrentBlock(Cond
);
10481 UnhandledProbs
-= I
->Prob
;
10484 case CC_JumpTable
: {
10485 // FIXME: Optimize away range check based on pivot comparisons.
10486 JumpTableHeader
*JTH
= &JTCases
[I
->JTCasesIndex
].first
;
10487 JumpTable
*JT
= &JTCases
[I
->JTCasesIndex
].second
;
10489 // The jump block hasn't been inserted yet; insert it here.
10490 MachineBasicBlock
*JumpMBB
= JT
->MBB
;
10491 CurMF
->insert(BBI
, JumpMBB
);
10493 auto JumpProb
= I
->Prob
;
10494 auto FallthroughProb
= UnhandledProbs
;
10496 // If the default statement is a target of the jump table, we evenly
10497 // distribute the default probability to successors of CurMBB. Also
10498 // update the probability on the edge from JumpMBB to Fallthrough.
10499 for (MachineBasicBlock::succ_iterator SI
= JumpMBB
->succ_begin(),
10500 SE
= JumpMBB
->succ_end();
10502 if (*SI
== DefaultMBB
) {
10503 JumpProb
+= DefaultProb
/ 2;
10504 FallthroughProb
-= DefaultProb
/ 2;
10505 JumpMBB
->setSuccProbability(SI
, DefaultProb
/ 2);
10506 JumpMBB
->normalizeSuccProbs();
10511 if (FallthroughUnreachable
) {
10512 // Skip the range check if the fallthrough block is unreachable.
10513 JTH
->OmitRangeCheck
= true;
10516 if (!JTH
->OmitRangeCheck
)
10517 addSuccessorWithProb(CurMBB
, Fallthrough
, FallthroughProb
);
10518 addSuccessorWithProb(CurMBB
, JumpMBB
, JumpProb
);
10519 CurMBB
->normalizeSuccProbs();
10521 // The jump table header will be inserted in our current block, do the
10522 // range check, and fall through to our fallthrough block.
10523 JTH
->HeaderBB
= CurMBB
;
10524 JT
->Default
= Fallthrough
; // FIXME: Move Default to JumpTableHeader.
10526 // If we're in the right place, emit the jump table header right now.
10527 if (CurMBB
== SwitchMBB
) {
10528 visitJumpTableHeader(*JT
, *JTH
, SwitchMBB
);
10529 JTH
->Emitted
= true;
10533 case CC_BitTests
: {
10534 // FIXME: If Fallthrough is unreachable, skip the range check.
10536 // FIXME: Optimize away range check based on pivot comparisons.
10537 BitTestBlock
*BTB
= &BitTestCases
[I
->BTCasesIndex
];
10539 // The bit test blocks haven't been inserted yet; insert them here.
10540 for (BitTestCase
&BTC
: BTB
->Cases
)
10541 CurMF
->insert(BBI
, BTC
.ThisBB
);
10543 // Fill in fields of the BitTestBlock.
10544 BTB
->Parent
= CurMBB
;
10545 BTB
->Default
= Fallthrough
;
10547 BTB
->DefaultProb
= UnhandledProbs
;
10548 // If the cases in bit test don't form a contiguous range, we evenly
10549 // distribute the probability on the edge to Fallthrough to two
10550 // successors of CurMBB.
10551 if (!BTB
->ContiguousRange
) {
10552 BTB
->Prob
+= DefaultProb
/ 2;
10553 BTB
->DefaultProb
-= DefaultProb
/ 2;
10556 // If we're in the right place, emit the bit test header right now.
10557 if (CurMBB
== SwitchMBB
) {
10558 visitBitTestHeader(*BTB
, SwitchMBB
);
10559 BTB
->Emitted
= true;
10564 const Value
*RHS
, *LHS
, *MHS
;
10566 if (I
->Low
== I
->High
) {
10567 // Check Cond == I->Low.
10573 // Check I->Low <= Cond <= I->High.
10580 // If Fallthrough is unreachable, fold away the comparison.
10581 if (FallthroughUnreachable
)
10584 // The false probability is the sum of all unhandled cases.
10585 CaseBlock
CB(CC
, LHS
, RHS
, MHS
, I
->MBB
, Fallthrough
, CurMBB
,
10586 getCurSDLoc(), I
->Prob
, UnhandledProbs
);
10588 if (CurMBB
== SwitchMBB
)
10589 visitSwitchCase(CB
, SwitchMBB
);
10591 SwitchCases
.push_back(CB
);
10596 CurMBB
= Fallthrough
;
10600 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster
&CC
,
10601 CaseClusterIt First
,
10602 CaseClusterIt Last
) {
10603 return std::count_if(First
, Last
+ 1, [&](const CaseCluster
&X
) {
10604 if (X
.Prob
!= CC
.Prob
)
10605 return X
.Prob
> CC
.Prob
;
10607 // Ties are broken by comparing the case value.
10608 return X
.Low
->getValue().slt(CC
.Low
->getValue());
10612 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList
&WorkList
,
10613 const SwitchWorkListItem
&W
,
10615 MachineBasicBlock
*SwitchMBB
) {
10616 assert(W
.FirstCluster
->Low
->getValue().slt(W
.LastCluster
->Low
->getValue()) &&
10617 "Clusters not sorted?");
10619 assert(W
.LastCluster
- W
.FirstCluster
+ 1 >= 2 && "Too small to split!");
10621 // Balance the tree based on branch probabilities to create a near-optimal (in
10622 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10623 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10624 CaseClusterIt LastLeft
= W
.FirstCluster
;
10625 CaseClusterIt FirstRight
= W
.LastCluster
;
10626 auto LeftProb
= LastLeft
->Prob
+ W
.DefaultProb
/ 2;
10627 auto RightProb
= FirstRight
->Prob
+ W
.DefaultProb
/ 2;
10629 // Move LastLeft and FirstRight towards each other from opposite directions to
10630 // find a partitioning of the clusters which balances the probability on both
10631 // sides. If LeftProb and RightProb are equal, alternate which side is
10632 // taken to ensure 0-probability nodes are distributed evenly.
10634 while (LastLeft
+ 1 < FirstRight
) {
10635 if (LeftProb
< RightProb
|| (LeftProb
== RightProb
&& (I
& 1)))
10636 LeftProb
+= (++LastLeft
)->Prob
;
10638 RightProb
+= (--FirstRight
)->Prob
;
10643 // Our binary search tree differs from a typical BST in that ours can have up
10644 // to three values in each leaf. The pivot selection above doesn't take that
10645 // into account, which means the tree might require more nodes and be less
10646 // efficient. We compensate for this here.
10648 unsigned NumLeft
= LastLeft
- W
.FirstCluster
+ 1;
10649 unsigned NumRight
= W
.LastCluster
- FirstRight
+ 1;
10651 if (std::min(NumLeft
, NumRight
) < 3 && std::max(NumLeft
, NumRight
) > 3) {
10652 // If one side has less than 3 clusters, and the other has more than 3,
10653 // consider taking a cluster from the other side.
10655 if (NumLeft
< NumRight
) {
10656 // Consider moving the first cluster on the right to the left side.
10657 CaseCluster
&CC
= *FirstRight
;
10658 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10659 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10660 if (LeftSideRank
<= RightSideRank
) {
10661 // Moving the cluster to the left does not demote it.
10667 assert(NumRight
< NumLeft
);
10668 // Consider moving the last element on the left to the right side.
10669 CaseCluster
&CC
= *LastLeft
;
10670 unsigned LeftSideRank
= caseClusterRank(CC
, W
.FirstCluster
, LastLeft
);
10671 unsigned RightSideRank
= caseClusterRank(CC
, FirstRight
, W
.LastCluster
);
10672 if (RightSideRank
<= LeftSideRank
) {
10673 // Moving the cluster to the right does not demot it.
10683 assert(LastLeft
+ 1 == FirstRight
);
10684 assert(LastLeft
>= W
.FirstCluster
);
10685 assert(FirstRight
<= W
.LastCluster
);
10687 // Use the first element on the right as pivot since we will make less-than
10688 // comparisons against it.
10689 CaseClusterIt PivotCluster
= FirstRight
;
10690 assert(PivotCluster
> W
.FirstCluster
);
10691 assert(PivotCluster
<= W
.LastCluster
);
10693 CaseClusterIt FirstLeft
= W
.FirstCluster
;
10694 CaseClusterIt LastRight
= W
.LastCluster
;
10696 const ConstantInt
*Pivot
= PivotCluster
->Low
;
10698 // New blocks will be inserted immediately after the current one.
10699 MachineFunction::iterator
BBI(W
.MBB
);
10702 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10703 // we can branch to its destination directly if it's squeezed exactly in
10704 // between the known lower bound and Pivot - 1.
10705 MachineBasicBlock
*LeftMBB
;
10706 if (FirstLeft
== LastLeft
&& FirstLeft
->Kind
== CC_Range
&&
10707 FirstLeft
->Low
== W
.GE
&&
10708 (FirstLeft
->High
->getValue() + 1LL) == Pivot
->getValue()) {
10709 LeftMBB
= FirstLeft
->MBB
;
10711 LeftMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10712 FuncInfo
.MF
->insert(BBI
, LeftMBB
);
10713 WorkList
.push_back(
10714 {LeftMBB
, FirstLeft
, LastLeft
, W
.GE
, Pivot
, W
.DefaultProb
/ 2});
10715 // Put Cond in a virtual register to make it available from the new blocks.
10716 ExportFromCurrentBlock(Cond
);
10719 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10720 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10721 // directly if RHS.High equals the current upper bound.
10722 MachineBasicBlock
*RightMBB
;
10723 if (FirstRight
== LastRight
&& FirstRight
->Kind
== CC_Range
&&
10724 W
.LT
&& (FirstRight
->High
->getValue() + 1ULL) == W
.LT
->getValue()) {
10725 RightMBB
= FirstRight
->MBB
;
10727 RightMBB
= FuncInfo
.MF
->CreateMachineBasicBlock(W
.MBB
->getBasicBlock());
10728 FuncInfo
.MF
->insert(BBI
, RightMBB
);
10729 WorkList
.push_back(
10730 {RightMBB
, FirstRight
, LastRight
, Pivot
, W
.LT
, W
.DefaultProb
/ 2});
10731 // Put Cond in a virtual register to make it available from the new blocks.
10732 ExportFromCurrentBlock(Cond
);
10735 // Create the CaseBlock record that will be used to lower the branch.
10736 CaseBlock
CB(ISD::SETLT
, Cond
, Pivot
, nullptr, LeftMBB
, RightMBB
, W
.MBB
,
10737 getCurSDLoc(), LeftProb
, RightProb
);
10739 if (W
.MBB
== SwitchMBB
)
10740 visitSwitchCase(CB
, SwitchMBB
);
10742 SwitchCases
.push_back(CB
);
10745 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10746 // from the swith statement.
10747 static BranchProbability
scaleCaseProbality(BranchProbability CaseProb
,
10748 BranchProbability PeeledCaseProb
) {
10749 if (PeeledCaseProb
== BranchProbability::getOne())
10750 return BranchProbability::getZero();
10751 BranchProbability SwitchProb
= PeeledCaseProb
.getCompl();
10753 uint32_t Numerator
= CaseProb
.getNumerator();
10754 uint32_t Denominator
= SwitchProb
.scale(CaseProb
.getDenominator());
10755 return BranchProbability(Numerator
, std::max(Numerator
, Denominator
));
10758 // Try to peel the top probability case if it exceeds the threshold.
10759 // Return current MachineBasicBlock for the switch statement if the peeling
10761 // If the peeling is performed, return the newly created MachineBasicBlock
10762 // for the peeled switch statement. Also update Clusters to remove the peeled
10763 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10764 MachineBasicBlock
*SelectionDAGBuilder::peelDominantCaseCluster(
10765 const SwitchInst
&SI
, CaseClusterVector
&Clusters
,
10766 BranchProbability
&PeeledCaseProb
) {
10767 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
10768 // Don't perform if there is only one cluster or optimizing for size.
10769 if (SwitchPeelThreshold
> 100 || !FuncInfo
.BPI
|| Clusters
.size() < 2 ||
10770 TM
.getOptLevel() == CodeGenOpt::None
||
10771 SwitchMBB
->getParent()->getFunction().hasMinSize())
10774 BranchProbability TopCaseProb
= BranchProbability(SwitchPeelThreshold
, 100);
10775 unsigned PeeledCaseIndex
= 0;
10776 bool SwitchPeeled
= false;
10777 for (unsigned Index
= 0; Index
< Clusters
.size(); ++Index
) {
10778 CaseCluster
&CC
= Clusters
[Index
];
10779 if (CC
.Prob
< TopCaseProb
)
10781 TopCaseProb
= CC
.Prob
;
10782 PeeledCaseIndex
= Index
;
10783 SwitchPeeled
= true;
10788 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10789 << TopCaseProb
<< "\n");
10791 // Record the MBB for the peeled switch statement.
10792 MachineFunction::iterator
BBI(SwitchMBB
);
10794 MachineBasicBlock
*PeeledSwitchMBB
=
10795 FuncInfo
.MF
->CreateMachineBasicBlock(SwitchMBB
->getBasicBlock());
10796 FuncInfo
.MF
->insert(BBI
, PeeledSwitchMBB
);
10798 ExportFromCurrentBlock(SI
.getCondition());
10799 auto PeeledCaseIt
= Clusters
.begin() + PeeledCaseIndex
;
10800 SwitchWorkListItem W
= {SwitchMBB
, PeeledCaseIt
, PeeledCaseIt
,
10801 nullptr, nullptr, TopCaseProb
.getCompl()};
10802 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, PeeledSwitchMBB
);
10804 Clusters
.erase(PeeledCaseIt
);
10805 for (CaseCluster
&CC
: Clusters
) {
10807 dbgs() << "Scale the probablity for one cluster, before scaling: "
10808 << CC
.Prob
<< "\n");
10809 CC
.Prob
= scaleCaseProbality(CC
.Prob
, TopCaseProb
);
10810 LLVM_DEBUG(dbgs() << "After scaling: " << CC
.Prob
<< "\n");
10812 PeeledCaseProb
= TopCaseProb
;
10813 return PeeledSwitchMBB
;
10816 void SelectionDAGBuilder::visitSwitch(const SwitchInst
&SI
) {
10817 // Extract cases from the switch.
10818 BranchProbabilityInfo
*BPI
= FuncInfo
.BPI
;
10819 CaseClusterVector Clusters
;
10820 Clusters
.reserve(SI
.getNumCases());
10821 for (auto I
: SI
.cases()) {
10822 MachineBasicBlock
*Succ
= FuncInfo
.MBBMap
[I
.getCaseSuccessor()];
10823 const ConstantInt
*CaseVal
= I
.getCaseValue();
10824 BranchProbability Prob
=
10825 BPI
? BPI
->getEdgeProbability(SI
.getParent(), I
.getSuccessorIndex())
10826 : BranchProbability(1, SI
.getNumCases() + 1);
10827 Clusters
.push_back(CaseCluster::range(CaseVal
, CaseVal
, Succ
, Prob
));
10830 MachineBasicBlock
*DefaultMBB
= FuncInfo
.MBBMap
[SI
.getDefaultDest()];
10832 // Cluster adjacent cases with the same destination. We do this at all
10833 // optimization levels because it's cheap to do and will make codegen faster
10834 // if there are many clusters.
10835 sortAndRangeify(Clusters
);
10837 // The branch probablity of the peeled case.
10838 BranchProbability PeeledCaseProb
= BranchProbability::getZero();
10839 MachineBasicBlock
*PeeledSwitchMBB
=
10840 peelDominantCaseCluster(SI
, Clusters
, PeeledCaseProb
);
10842 // If there is only the default destination, jump there directly.
10843 MachineBasicBlock
*SwitchMBB
= FuncInfo
.MBB
;
10844 if (Clusters
.empty()) {
10845 assert(PeeledSwitchMBB
== SwitchMBB
);
10846 SwitchMBB
->addSuccessor(DefaultMBB
);
10847 if (DefaultMBB
!= NextBlock(SwitchMBB
)) {
10848 DAG
.setRoot(DAG
.getNode(ISD::BR
, getCurSDLoc(), MVT::Other
,
10849 getControlRoot(), DAG
.getBasicBlock(DefaultMBB
)));
10854 findJumpTables(Clusters
, &SI
, DefaultMBB
);
10855 findBitTestClusters(Clusters
, &SI
);
10858 dbgs() << "Case clusters: ";
10859 for (const CaseCluster
&C
: Clusters
) {
10860 if (C
.Kind
== CC_JumpTable
)
10862 if (C
.Kind
== CC_BitTests
)
10865 C
.Low
->getValue().print(dbgs(), true);
10866 if (C
.Low
!= C
.High
) {
10868 C
.High
->getValue().print(dbgs(), true);
10875 assert(!Clusters
.empty());
10876 SwitchWorkList WorkList
;
10877 CaseClusterIt First
= Clusters
.begin();
10878 CaseClusterIt Last
= Clusters
.end() - 1;
10879 auto DefaultProb
= getEdgeProbability(PeeledSwitchMBB
, DefaultMBB
);
10880 // Scale the branchprobability for DefaultMBB if the peel occurs and
10881 // DefaultMBB is not replaced.
10882 if (PeeledCaseProb
!= BranchProbability::getZero() &&
10883 DefaultMBB
== FuncInfo
.MBBMap
[SI
.getDefaultDest()])
10884 DefaultProb
= scaleCaseProbality(DefaultProb
, PeeledCaseProb
);
10885 WorkList
.push_back(
10886 {PeeledSwitchMBB
, First
, Last
, nullptr, nullptr, DefaultProb
});
10888 while (!WorkList
.empty()) {
10889 SwitchWorkListItem W
= WorkList
.back();
10890 WorkList
.pop_back();
10891 unsigned NumClusters
= W
.LastCluster
- W
.FirstCluster
+ 1;
10893 if (NumClusters
> 3 && TM
.getOptLevel() != CodeGenOpt::None
&&
10894 !DefaultMBB
->getParent()->getFunction().hasMinSize()) {
10895 // For optimized builds, lower large range as a balanced binary tree.
10896 splitWorkItem(WorkList
, W
, SI
.getCondition(), SwitchMBB
);
10900 lowerWorkItem(W
, SI
.getCondition(), SwitchMBB
, DefaultMBB
);