[NFC] Refactor visitIntrinsicCall so it doesn't return a const char*
[llvm-complete.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
blob938aeafb435457b7ddbdc3a6417cb19265f0d705
1 //===- SelectionDAGBuilder.cpp - Selection-DAG building -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //===----------------------------------------------------------------------===//
13 #include "SelectionDAGBuilder.h"
14 #include "SDNodeDbgValue.h"
15 #include "llvm/ADT/APFloat.h"
16 #include "llvm/ADT/APInt.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/BitVector.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/Analysis/AliasAnalysis.h"
30 #include "llvm/Analysis/BranchProbabilityInfo.h"
31 #include "llvm/Analysis/ConstantFolding.h"
32 #include "llvm/Analysis/EHPersonalities.h"
33 #include "llvm/Analysis/Loads.h"
34 #include "llvm/Analysis/MemoryLocation.h"
35 #include "llvm/Analysis/TargetLibraryInfo.h"
36 #include "llvm/Analysis/ValueTracking.h"
37 #include "llvm/Analysis/VectorUtils.h"
38 #include "llvm/CodeGen/Analysis.h"
39 #include "llvm/CodeGen/FunctionLoweringInfo.h"
40 #include "llvm/CodeGen/GCMetadata.h"
41 #include "llvm/CodeGen/ISDOpcodes.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineFrameInfo.h"
44 #include "llvm/CodeGen/MachineFunction.h"
45 #include "llvm/CodeGen/MachineInstr.h"
46 #include "llvm/CodeGen/MachineInstrBuilder.h"
47 #include "llvm/CodeGen/MachineJumpTableInfo.h"
48 #include "llvm/CodeGen/MachineMemOperand.h"
49 #include "llvm/CodeGen/MachineModuleInfo.h"
50 #include "llvm/CodeGen/MachineOperand.h"
51 #include "llvm/CodeGen/MachineRegisterInfo.h"
52 #include "llvm/CodeGen/RuntimeLibcalls.h"
53 #include "llvm/CodeGen/SelectionDAG.h"
54 #include "llvm/CodeGen/SelectionDAGNodes.h"
55 #include "llvm/CodeGen/SelectionDAGTargetInfo.h"
56 #include "llvm/CodeGen/StackMaps.h"
57 #include "llvm/CodeGen/TargetFrameLowering.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGen/ValueTypes.h"
64 #include "llvm/CodeGen/WinEHFuncInfo.h"
65 #include "llvm/IR/Argument.h"
66 #include "llvm/IR/Attributes.h"
67 #include "llvm/IR/BasicBlock.h"
68 #include "llvm/IR/CFG.h"
69 #include "llvm/IR/CallSite.h"
70 #include "llvm/IR/CallingConv.h"
71 #include "llvm/IR/Constant.h"
72 #include "llvm/IR/ConstantRange.h"
73 #include "llvm/IR/Constants.h"
74 #include "llvm/IR/DataLayout.h"
75 #include "llvm/IR/DebugInfoMetadata.h"
76 #include "llvm/IR/DebugLoc.h"
77 #include "llvm/IR/DerivedTypes.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GetElementPtrTypeIterator.h"
80 #include "llvm/IR/InlineAsm.h"
81 #include "llvm/IR/InstrTypes.h"
82 #include "llvm/IR/Instruction.h"
83 #include "llvm/IR/Instructions.h"
84 #include "llvm/IR/IntrinsicInst.h"
85 #include "llvm/IR/Intrinsics.h"
86 #include "llvm/IR/LLVMContext.h"
87 #include "llvm/IR/Metadata.h"
88 #include "llvm/IR/Module.h"
89 #include "llvm/IR/Operator.h"
90 #include "llvm/IR/PatternMatch.h"
91 #include "llvm/IR/Statepoint.h"
92 #include "llvm/IR/Type.h"
93 #include "llvm/IR/User.h"
94 #include "llvm/IR/Value.h"
95 #include "llvm/MC/MCContext.h"
96 #include "llvm/MC/MCSymbol.h"
97 #include "llvm/Support/AtomicOrdering.h"
98 #include "llvm/Support/BranchProbability.h"
99 #include "llvm/Support/Casting.h"
100 #include "llvm/Support/CodeGen.h"
101 #include "llvm/Support/CommandLine.h"
102 #include "llvm/Support/Compiler.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MachineValueType.h"
106 #include "llvm/Support/MathExtras.h"
107 #include "llvm/Support/raw_ostream.h"
108 #include "llvm/Target/TargetIntrinsicInfo.h"
109 #include "llvm/Target/TargetMachine.h"
110 #include "llvm/Target/TargetOptions.h"
111 #include "llvm/Transforms/Utils/Local.h"
112 #include <algorithm>
113 #include <cassert>
114 #include <cstddef>
115 #include <cstdint>
116 #include <cstring>
117 #include <iterator>
118 #include <limits>
119 #include <numeric>
120 #include <tuple>
121 #include <utility>
122 #include <vector>
124 using namespace llvm;
125 using namespace PatternMatch;
127 #define DEBUG_TYPE "isel"
129 /// LimitFloatPrecision - Generate low-precision inline sequences for
130 /// some float libcalls (6, 8 or 12 bits).
131 static unsigned LimitFloatPrecision;
133 static cl::opt<unsigned, true>
134 LimitFPPrecision("limit-float-precision",
135 cl::desc("Generate low-precision inline sequences "
136 "for some float libcalls"),
137 cl::location(LimitFloatPrecision), cl::Hidden,
138 cl::init(0));
140 static cl::opt<unsigned> SwitchPeelThreshold(
141 "switch-peel-threshold", cl::Hidden, cl::init(66),
142 cl::desc("Set the case probability threshold for peeling the case from a "
143 "switch statement. A value greater than 100 will void this "
144 "optimization"));
146 // Limit the width of DAG chains. This is important in general to prevent
147 // DAG-based analysis from blowing up. For example, alias analysis and
148 // load clustering may not complete in reasonable time. It is difficult to
149 // recognize and avoid this situation within each individual analysis, and
150 // future analyses are likely to have the same behavior. Limiting DAG width is
151 // the safe approach and will be especially important with global DAGs.
153 // MaxParallelChains default is arbitrarily high to avoid affecting
154 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
155 // sequence over this should have been converted to llvm.memcpy by the
156 // frontend. It is easy to induce this behavior with .ll code such as:
157 // %buffer = alloca [4096 x i8]
158 // %data = load [4096 x i8]* %argPtr
159 // store [4096 x i8] %data, [4096 x i8]* %buffer
160 static const unsigned MaxParallelChains = 64;
162 // Return the calling convention if the Value passed requires ABI mangling as it
163 // is a parameter to a function or a return value from a function which is not
164 // an intrinsic.
165 static Optional<CallingConv::ID> getABIRegCopyCC(const Value *V) {
166 if (auto *R = dyn_cast<ReturnInst>(V))
167 return R->getParent()->getParent()->getCallingConv();
169 if (auto *CI = dyn_cast<CallInst>(V)) {
170 const bool IsInlineAsm = CI->isInlineAsm();
171 const bool IsIndirectFunctionCall =
172 !IsInlineAsm && !CI->getCalledFunction();
174 // It is possible that the call instruction is an inline asm statement or an
175 // indirect function call in which case the return value of
176 // getCalledFunction() would be nullptr.
177 const bool IsInstrinsicCall =
178 !IsInlineAsm && !IsIndirectFunctionCall &&
179 CI->getCalledFunction()->getIntrinsicID() != Intrinsic::not_intrinsic;
181 if (!IsInlineAsm && !IsInstrinsicCall)
182 return CI->getCallingConv();
185 return None;
188 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
189 const SDValue *Parts, unsigned NumParts,
190 MVT PartVT, EVT ValueVT, const Value *V,
191 Optional<CallingConv::ID> CC);
193 /// getCopyFromParts - Create a value that contains the specified legal parts
194 /// combined into the value they represent. If the parts combine to a type
195 /// larger than ValueVT then AssertOp can be used to specify whether the extra
196 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
197 /// (ISD::AssertSext).
198 static SDValue getCopyFromParts(SelectionDAG &DAG, const SDLoc &DL,
199 const SDValue *Parts, unsigned NumParts,
200 MVT PartVT, EVT ValueVT, const Value *V,
201 Optional<CallingConv::ID> CC = None,
202 Optional<ISD::NodeType> AssertOp = None) {
203 if (ValueVT.isVector())
204 return getCopyFromPartsVector(DAG, DL, Parts, NumParts, PartVT, ValueVT, V,
205 CC);
207 assert(NumParts > 0 && "No parts to assemble!");
208 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
209 SDValue Val = Parts[0];
211 if (NumParts > 1) {
212 // Assemble the value from multiple parts.
213 if (ValueVT.isInteger()) {
214 unsigned PartBits = PartVT.getSizeInBits();
215 unsigned ValueBits = ValueVT.getSizeInBits();
217 // Assemble the power of 2 part.
218 unsigned RoundParts =
219 (NumParts & (NumParts - 1)) ? 1 << Log2_32(NumParts) : NumParts;
220 unsigned RoundBits = PartBits * RoundParts;
221 EVT RoundVT = RoundBits == ValueBits ?
222 ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
223 SDValue Lo, Hi;
225 EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
227 if (RoundParts > 2) {
228 Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
229 PartVT, HalfVT, V);
230 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
231 RoundParts / 2, PartVT, HalfVT, V);
232 } else {
233 Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
234 Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
237 if (DAG.getDataLayout().isBigEndian())
238 std::swap(Lo, Hi);
240 Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
242 if (RoundParts < NumParts) {
243 // Assemble the trailing non-power-of-2 part.
244 unsigned OddParts = NumParts - RoundParts;
245 EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
246 Hi = getCopyFromParts(DAG, DL, Parts + RoundParts, OddParts, PartVT,
247 OddVT, V, CC);
249 // Combine the round and odd parts.
250 Lo = Val;
251 if (DAG.getDataLayout().isBigEndian())
252 std::swap(Lo, Hi);
253 EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
254 Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
255 Hi =
256 DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
257 DAG.getConstant(Lo.getValueSizeInBits(), DL,
258 TLI.getPointerTy(DAG.getDataLayout())));
259 Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
260 Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
262 } else if (PartVT.isFloatingPoint()) {
263 // FP split into multiple FP parts (for ppcf128)
264 assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
265 "Unexpected split");
266 SDValue Lo, Hi;
267 Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
268 Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
269 if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
270 std::swap(Lo, Hi);
271 Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
272 } else {
273 // FP split into integer parts (soft fp)
274 assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
275 !PartVT.isVector() && "Unexpected split");
276 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
277 Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V, CC);
281 // There is now one part, held in Val. Correct it to match ValueVT.
282 // PartEVT is the type of the register class that holds the value.
283 // ValueVT is the type of the inline asm operation.
284 EVT PartEVT = Val.getValueType();
286 if (PartEVT == ValueVT)
287 return Val;
289 if (PartEVT.isInteger() && ValueVT.isFloatingPoint() &&
290 ValueVT.bitsLT(PartEVT)) {
291 // For an FP value in an integer part, we need to truncate to the right
292 // width first.
293 PartEVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
294 Val = DAG.getNode(ISD::TRUNCATE, DL, PartEVT, Val);
297 // Handle types that have the same size.
298 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
299 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
301 // Handle types with different sizes.
302 if (PartEVT.isInteger() && ValueVT.isInteger()) {
303 if (ValueVT.bitsLT(PartEVT)) {
304 // For a truncate, see if we have any information to
305 // indicate whether the truncated bits will always be
306 // zero or sign-extension.
307 if (AssertOp.hasValue())
308 Val = DAG.getNode(*AssertOp, DL, PartEVT, Val,
309 DAG.getValueType(ValueVT));
310 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
312 return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
315 if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
316 // FP_ROUND's are always exact here.
317 if (ValueVT.bitsLT(Val.getValueType()))
318 return DAG.getNode(
319 ISD::FP_ROUND, DL, ValueVT, Val,
320 DAG.getTargetConstant(1, DL, TLI.getPointerTy(DAG.getDataLayout())));
322 return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
325 // Handle MMX to a narrower integer type by bitcasting MMX to integer and
326 // then truncating.
327 if (PartEVT == MVT::x86mmx && ValueVT.isInteger() &&
328 ValueVT.bitsLT(PartEVT)) {
329 Val = DAG.getNode(ISD::BITCAST, DL, MVT::i64, Val);
330 return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
333 report_fatal_error("Unknown mismatch in getCopyFromParts!");
336 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
337 const Twine &ErrMsg) {
338 const Instruction *I = dyn_cast_or_null<Instruction>(V);
339 if (!V)
340 return Ctx.emitError(ErrMsg);
342 const char *AsmError = ", possible invalid constraint for vector type";
343 if (const CallInst *CI = dyn_cast<CallInst>(I))
344 if (isa<InlineAsm>(CI->getCalledValue()))
345 return Ctx.emitError(I, ErrMsg + AsmError);
347 return Ctx.emitError(I, ErrMsg);
350 /// getCopyFromPartsVector - Create a value that contains the specified legal
351 /// parts combined into the value they represent. If the parts combine to a
352 /// type larger than ValueVT then AssertOp can be used to specify whether the
353 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
354 /// ValueVT (ISD::AssertSext).
355 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, const SDLoc &DL,
356 const SDValue *Parts, unsigned NumParts,
357 MVT PartVT, EVT ValueVT, const Value *V,
358 Optional<CallingConv::ID> CallConv) {
359 assert(ValueVT.isVector() && "Not a vector value");
360 assert(NumParts > 0 && "No parts to assemble!");
361 const bool IsABIRegCopy = CallConv.hasValue();
363 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
364 SDValue Val = Parts[0];
366 // Handle a multi-element vector.
367 if (NumParts > 1) {
368 EVT IntermediateVT;
369 MVT RegisterVT;
370 unsigned NumIntermediates;
371 unsigned NumRegs;
373 if (IsABIRegCopy) {
374 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
375 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
376 NumIntermediates, RegisterVT);
377 } else {
378 NumRegs =
379 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
380 NumIntermediates, RegisterVT);
383 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
384 NumParts = NumRegs; // Silence a compiler warning.
385 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
386 assert(RegisterVT.getSizeInBits() ==
387 Parts[0].getSimpleValueType().getSizeInBits() &&
388 "Part type sizes don't match!");
390 // Assemble the parts into intermediate operands.
391 SmallVector<SDValue, 8> Ops(NumIntermediates);
392 if (NumIntermediates == NumParts) {
393 // If the register was not expanded, truncate or copy the value,
394 // as appropriate.
395 for (unsigned i = 0; i != NumParts; ++i)
396 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
397 PartVT, IntermediateVT, V);
398 } else if (NumParts > 0) {
399 // If the intermediate type was expanded, build the intermediate
400 // operands from the parts.
401 assert(NumParts % NumIntermediates == 0 &&
402 "Must expand into a divisible number of parts!");
403 unsigned Factor = NumParts / NumIntermediates;
404 for (unsigned i = 0; i != NumIntermediates; ++i)
405 Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
406 PartVT, IntermediateVT, V);
409 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
410 // intermediate operands.
411 EVT BuiltVectorTy =
412 EVT::getVectorVT(*DAG.getContext(), IntermediateVT.getScalarType(),
413 (IntermediateVT.isVector()
414 ? IntermediateVT.getVectorNumElements() * NumParts
415 : NumIntermediates));
416 Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
417 : ISD::BUILD_VECTOR,
418 DL, BuiltVectorTy, Ops);
421 // There is now one part, held in Val. Correct it to match ValueVT.
422 EVT PartEVT = Val.getValueType();
424 if (PartEVT == ValueVT)
425 return Val;
427 if (PartEVT.isVector()) {
428 // If the element type of the source/dest vectors are the same, but the
429 // parts vector has more elements than the value vector, then we have a
430 // vector widening case (e.g. <2 x float> -> <4 x float>). Extract the
431 // elements we want.
432 if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
433 assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
434 "Cannot narrow, it would be a lossy transformation");
435 return DAG.getNode(
436 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
437 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
440 // Vector/Vector bitcast.
441 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
442 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
444 assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
445 "Cannot handle this kind of promotion");
446 // Promoted vector extract
447 return DAG.getAnyExtOrTrunc(Val, DL, ValueVT);
451 // Trivial bitcast if the types are the same size and the destination
452 // vector type is legal.
453 if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
454 TLI.isTypeLegal(ValueVT))
455 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
457 if (ValueVT.getVectorNumElements() != 1) {
458 // Certain ABIs require that vectors are passed as integers. For vectors
459 // are the same size, this is an obvious bitcast.
460 if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits()) {
461 return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
462 } else if (ValueVT.getSizeInBits() < PartEVT.getSizeInBits()) {
463 // Bitcast Val back the original type and extract the corresponding
464 // vector we want.
465 unsigned Elts = PartEVT.getSizeInBits() / ValueVT.getScalarSizeInBits();
466 EVT WiderVecType = EVT::getVectorVT(*DAG.getContext(),
467 ValueVT.getVectorElementType(), Elts);
468 Val = DAG.getBitcast(WiderVecType, Val);
469 return DAG.getNode(
470 ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
471 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
474 diagnosePossiblyInvalidConstraint(
475 *DAG.getContext(), V, "non-trivial scalar-to-vector conversion");
476 return DAG.getUNDEF(ValueVT);
479 // Handle cases such as i8 -> <1 x i1>
480 EVT ValueSVT = ValueVT.getVectorElementType();
481 if (ValueVT.getVectorNumElements() == 1 && ValueSVT != PartEVT)
482 Val = ValueVT.isFloatingPoint() ? DAG.getFPExtendOrRound(Val, DL, ValueSVT)
483 : DAG.getAnyExtOrTrunc(Val, DL, ValueSVT);
485 return DAG.getBuildVector(ValueVT, DL, Val);
488 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &dl,
489 SDValue Val, SDValue *Parts, unsigned NumParts,
490 MVT PartVT, const Value *V,
491 Optional<CallingConv::ID> CallConv);
493 /// getCopyToParts - Create a series of nodes that contain the specified value
494 /// split into legal parts. If the parts contain more bits than Val, then, for
495 /// integers, ExtendKind can be used to specify how to generate the extra bits.
496 static void getCopyToParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val,
497 SDValue *Parts, unsigned NumParts, MVT PartVT,
498 const Value *V,
499 Optional<CallingConv::ID> CallConv = None,
500 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
501 EVT ValueVT = Val.getValueType();
503 // Handle the vector case separately.
504 if (ValueVT.isVector())
505 return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V,
506 CallConv);
508 unsigned PartBits = PartVT.getSizeInBits();
509 unsigned OrigNumParts = NumParts;
510 assert(DAG.getTargetLoweringInfo().isTypeLegal(PartVT) &&
511 "Copying to an illegal type!");
513 if (NumParts == 0)
514 return;
516 assert(!ValueVT.isVector() && "Vector case handled elsewhere");
517 EVT PartEVT = PartVT;
518 if (PartEVT == ValueVT) {
519 assert(NumParts == 1 && "No-op copy with multiple parts!");
520 Parts[0] = Val;
521 return;
524 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
525 // If the parts cover more bits than the value has, promote the value.
526 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
527 assert(NumParts == 1 && "Do not know what to promote to!");
528 Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
529 } else {
530 if (ValueVT.isFloatingPoint()) {
531 // FP values need to be bitcast, then extended if they are being put
532 // into a larger container.
533 ValueVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
534 Val = DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
536 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
537 ValueVT.isInteger() &&
538 "Unknown mismatch!");
539 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
540 Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
541 if (PartVT == MVT::x86mmx)
542 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
544 } else if (PartBits == ValueVT.getSizeInBits()) {
545 // Different types of the same size.
546 assert(NumParts == 1 && PartEVT != ValueVT);
547 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
548 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
549 // If the parts cover less bits than value has, truncate the value.
550 assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
551 ValueVT.isInteger() &&
552 "Unknown mismatch!");
553 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
554 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
555 if (PartVT == MVT::x86mmx)
556 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
559 // The value may have changed - recompute ValueVT.
560 ValueVT = Val.getValueType();
561 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
562 "Failed to tile the value with PartVT!");
564 if (NumParts == 1) {
565 if (PartEVT != ValueVT) {
566 diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
567 "scalar-to-vector conversion failed");
568 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
571 Parts[0] = Val;
572 return;
575 // Expand the value into multiple parts.
576 if (NumParts & (NumParts - 1)) {
577 // The number of parts is not a power of 2. Split off and copy the tail.
578 assert(PartVT.isInteger() && ValueVT.isInteger() &&
579 "Do not know what to expand to!");
580 unsigned RoundParts = 1 << Log2_32(NumParts);
581 unsigned RoundBits = RoundParts * PartBits;
582 unsigned OddParts = NumParts - RoundParts;
583 SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
584 DAG.getShiftAmountConstant(RoundBits, ValueVT, DL, /*LegalTypes*/false));
586 getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V,
587 CallConv);
589 if (DAG.getDataLayout().isBigEndian())
590 // The odd parts were reversed by getCopyToParts - unreverse them.
591 std::reverse(Parts + RoundParts, Parts + NumParts);
593 NumParts = RoundParts;
594 ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
595 Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
598 // The number of parts is a power of 2. Repeatedly bisect the value using
599 // EXTRACT_ELEMENT.
600 Parts[0] = DAG.getNode(ISD::BITCAST, DL,
601 EVT::getIntegerVT(*DAG.getContext(),
602 ValueVT.getSizeInBits()),
603 Val);
605 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
606 for (unsigned i = 0; i < NumParts; i += StepSize) {
607 unsigned ThisBits = StepSize * PartBits / 2;
608 EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
609 SDValue &Part0 = Parts[i];
610 SDValue &Part1 = Parts[i+StepSize/2];
612 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
613 ThisVT, Part0, DAG.getIntPtrConstant(1, DL));
614 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
615 ThisVT, Part0, DAG.getIntPtrConstant(0, DL));
617 if (ThisBits == PartBits && ThisVT != PartVT) {
618 Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
619 Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
624 if (DAG.getDataLayout().isBigEndian())
625 std::reverse(Parts, Parts + OrigNumParts);
628 static SDValue widenVectorToPartType(SelectionDAG &DAG,
629 SDValue Val, const SDLoc &DL, EVT PartVT) {
630 if (!PartVT.isVector())
631 return SDValue();
633 EVT ValueVT = Val.getValueType();
634 unsigned PartNumElts = PartVT.getVectorNumElements();
635 unsigned ValueNumElts = ValueVT.getVectorNumElements();
636 if (PartNumElts > ValueNumElts &&
637 PartVT.getVectorElementType() == ValueVT.getVectorElementType()) {
638 EVT ElementVT = PartVT.getVectorElementType();
639 // Vector widening case, e.g. <2 x float> -> <4 x float>. Shuffle in
640 // undef elements.
641 SmallVector<SDValue, 16> Ops;
642 DAG.ExtractVectorElements(Val, Ops);
643 SDValue EltUndef = DAG.getUNDEF(ElementVT);
644 for (unsigned i = ValueNumElts, e = PartNumElts; i != e; ++i)
645 Ops.push_back(EltUndef);
647 // FIXME: Use CONCAT for 2x -> 4x.
648 return DAG.getBuildVector(PartVT, DL, Ops);
651 return SDValue();
654 /// getCopyToPartsVector - Create a series of nodes that contain the specified
655 /// value split into legal parts.
656 static void getCopyToPartsVector(SelectionDAG &DAG, const SDLoc &DL,
657 SDValue Val, SDValue *Parts, unsigned NumParts,
658 MVT PartVT, const Value *V,
659 Optional<CallingConv::ID> CallConv) {
660 EVT ValueVT = Val.getValueType();
661 assert(ValueVT.isVector() && "Not a vector");
662 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
663 const bool IsABIRegCopy = CallConv.hasValue();
665 if (NumParts == 1) {
666 EVT PartEVT = PartVT;
667 if (PartEVT == ValueVT) {
668 // Nothing to do.
669 } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
670 // Bitconvert vector->vector case.
671 Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
672 } else if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, PartVT)) {
673 Val = Widened;
674 } else if (PartVT.isVector() &&
675 PartEVT.getVectorElementType().bitsGE(
676 ValueVT.getVectorElementType()) &&
677 PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
679 // Promoted vector extract
680 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
681 } else {
682 if (ValueVT.getVectorNumElements() == 1) {
683 Val = DAG.getNode(
684 ISD::EXTRACT_VECTOR_ELT, DL, PartVT, Val,
685 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
686 } else {
687 assert(PartVT.getSizeInBits() > ValueVT.getSizeInBits() &&
688 "lossy conversion of vector to scalar type");
689 EVT IntermediateType =
690 EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
691 Val = DAG.getBitcast(IntermediateType, Val);
692 Val = DAG.getAnyExtOrTrunc(Val, DL, PartVT);
696 assert(Val.getValueType() == PartVT && "Unexpected vector part value type");
697 Parts[0] = Val;
698 return;
701 // Handle a multi-element vector.
702 EVT IntermediateVT;
703 MVT RegisterVT;
704 unsigned NumIntermediates;
705 unsigned NumRegs;
706 if (IsABIRegCopy) {
707 NumRegs = TLI.getVectorTypeBreakdownForCallingConv(
708 *DAG.getContext(), CallConv.getValue(), ValueVT, IntermediateVT,
709 NumIntermediates, RegisterVT);
710 } else {
711 NumRegs =
712 TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
713 NumIntermediates, RegisterVT);
716 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
717 NumParts = NumRegs; // Silence a compiler warning.
718 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
720 unsigned IntermediateNumElts = IntermediateVT.isVector() ?
721 IntermediateVT.getVectorNumElements() : 1;
723 // Convert the vector to the appropiate type if necessary.
724 unsigned DestVectorNoElts = NumIntermediates * IntermediateNumElts;
726 EVT BuiltVectorTy = EVT::getVectorVT(
727 *DAG.getContext(), IntermediateVT.getScalarType(), DestVectorNoElts);
728 MVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
729 if (ValueVT != BuiltVectorTy) {
730 if (SDValue Widened = widenVectorToPartType(DAG, Val, DL, BuiltVectorTy))
731 Val = Widened;
733 Val = DAG.getNode(ISD::BITCAST, DL, BuiltVectorTy, Val);
736 // Split the vector into intermediate operands.
737 SmallVector<SDValue, 8> Ops(NumIntermediates);
738 for (unsigned i = 0; i != NumIntermediates; ++i) {
739 if (IntermediateVT.isVector()) {
740 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, IntermediateVT, Val,
741 DAG.getConstant(i * IntermediateNumElts, DL, IdxVT));
742 } else {
743 Ops[i] = DAG.getNode(
744 ISD::EXTRACT_VECTOR_ELT, DL, IntermediateVT, Val,
745 DAG.getConstant(i, DL, IdxVT));
749 // Split the intermediate operands into legal parts.
750 if (NumParts == NumIntermediates) {
751 // If the register was not expanded, promote or copy the value,
752 // as appropriate.
753 for (unsigned i = 0; i != NumParts; ++i)
754 getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V, CallConv);
755 } else if (NumParts > 0) {
756 // If the intermediate type was expanded, split each the value into
757 // legal parts.
758 assert(NumIntermediates != 0 && "division by zero");
759 assert(NumParts % NumIntermediates == 0 &&
760 "Must expand into a divisible number of parts!");
761 unsigned Factor = NumParts / NumIntermediates;
762 for (unsigned i = 0; i != NumIntermediates; ++i)
763 getCopyToParts(DAG, DL, Ops[i], &Parts[i * Factor], Factor, PartVT, V,
764 CallConv);
768 RegsForValue::RegsForValue(const SmallVector<unsigned, 4> &regs, MVT regvt,
769 EVT valuevt, Optional<CallingConv::ID> CC)
770 : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs),
771 RegCount(1, regs.size()), CallConv(CC) {}
773 RegsForValue::RegsForValue(LLVMContext &Context, const TargetLowering &TLI,
774 const DataLayout &DL, unsigned Reg, Type *Ty,
775 Optional<CallingConv::ID> CC) {
776 ComputeValueVTs(TLI, DL, Ty, ValueVTs);
778 CallConv = CC;
780 for (EVT ValueVT : ValueVTs) {
781 unsigned NumRegs =
782 isABIMangled()
783 ? TLI.getNumRegistersForCallingConv(Context, CC.getValue(), ValueVT)
784 : TLI.getNumRegisters(Context, ValueVT);
785 MVT RegisterVT =
786 isABIMangled()
787 ? TLI.getRegisterTypeForCallingConv(Context, CC.getValue(), ValueVT)
788 : TLI.getRegisterType(Context, ValueVT);
789 for (unsigned i = 0; i != NumRegs; ++i)
790 Regs.push_back(Reg + i);
791 RegVTs.push_back(RegisterVT);
792 RegCount.push_back(NumRegs);
793 Reg += NumRegs;
797 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
798 FunctionLoweringInfo &FuncInfo,
799 const SDLoc &dl, SDValue &Chain,
800 SDValue *Flag, const Value *V) const {
801 // A Value with type {} or [0 x %t] needs no registers.
802 if (ValueVTs.empty())
803 return SDValue();
805 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
807 // Assemble the legal parts into the final values.
808 SmallVector<SDValue, 4> Values(ValueVTs.size());
809 SmallVector<SDValue, 8> Parts;
810 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
811 // Copy the legal parts from the registers.
812 EVT ValueVT = ValueVTs[Value];
813 unsigned NumRegs = RegCount[Value];
814 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
815 *DAG.getContext(),
816 CallConv.getValue(), RegVTs[Value])
817 : RegVTs[Value];
819 Parts.resize(NumRegs);
820 for (unsigned i = 0; i != NumRegs; ++i) {
821 SDValue P;
822 if (!Flag) {
823 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
824 } else {
825 P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
826 *Flag = P.getValue(2);
829 Chain = P.getValue(1);
830 Parts[i] = P;
832 // If the source register was virtual and if we know something about it,
833 // add an assert node.
834 if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
835 !RegisterVT.isInteger())
836 continue;
838 const FunctionLoweringInfo::LiveOutInfo *LOI =
839 FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
840 if (!LOI)
841 continue;
843 unsigned RegSize = RegisterVT.getScalarSizeInBits();
844 unsigned NumSignBits = LOI->NumSignBits;
845 unsigned NumZeroBits = LOI->Known.countMinLeadingZeros();
847 if (NumZeroBits == RegSize) {
848 // The current value is a zero.
849 // Explicitly express that as it would be easier for
850 // optimizations to kick in.
851 Parts[i] = DAG.getConstant(0, dl, RegisterVT);
852 continue;
855 // FIXME: We capture more information than the dag can represent. For
856 // now, just use the tightest assertzext/assertsext possible.
857 bool isSExt;
858 EVT FromVT(MVT::Other);
859 if (NumZeroBits) {
860 FromVT = EVT::getIntegerVT(*DAG.getContext(), RegSize - NumZeroBits);
861 isSExt = false;
862 } else if (NumSignBits > 1) {
863 FromVT =
864 EVT::getIntegerVT(*DAG.getContext(), RegSize - NumSignBits + 1);
865 isSExt = true;
866 } else {
867 continue;
869 // Add an assertion node.
870 assert(FromVT != MVT::Other);
871 Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
872 RegisterVT, P, DAG.getValueType(FromVT));
875 Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(), NumRegs,
876 RegisterVT, ValueVT, V, CallConv);
877 Part += NumRegs;
878 Parts.clear();
881 return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
884 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
885 const SDLoc &dl, SDValue &Chain, SDValue *Flag,
886 const Value *V,
887 ISD::NodeType PreferredExtendType) const {
888 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
889 ISD::NodeType ExtendKind = PreferredExtendType;
891 // Get the list of the values's legal parts.
892 unsigned NumRegs = Regs.size();
893 SmallVector<SDValue, 8> Parts(NumRegs);
894 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
895 unsigned NumParts = RegCount[Value];
897 MVT RegisterVT = isABIMangled() ? TLI.getRegisterTypeForCallingConv(
898 *DAG.getContext(),
899 CallConv.getValue(), RegVTs[Value])
900 : RegVTs[Value];
902 if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
903 ExtendKind = ISD::ZERO_EXTEND;
905 getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value), &Parts[Part],
906 NumParts, RegisterVT, V, CallConv, ExtendKind);
907 Part += NumParts;
910 // Copy the parts into the registers.
911 SmallVector<SDValue, 8> Chains(NumRegs);
912 for (unsigned i = 0; i != NumRegs; ++i) {
913 SDValue Part;
914 if (!Flag) {
915 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
916 } else {
917 Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
918 *Flag = Part.getValue(1);
921 Chains[i] = Part.getValue(0);
924 if (NumRegs == 1 || Flag)
925 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
926 // flagged to it. That is the CopyToReg nodes and the user are considered
927 // a single scheduling unit. If we create a TokenFactor and return it as
928 // chain, then the TokenFactor is both a predecessor (operand) of the
929 // user as well as a successor (the TF operands are flagged to the user).
930 // c1, f1 = CopyToReg
931 // c2, f2 = CopyToReg
932 // c3 = TokenFactor c1, c2
933 // ...
934 // = op c3, ..., f2
935 Chain = Chains[NumRegs-1];
936 else
937 Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
940 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
941 unsigned MatchingIdx, const SDLoc &dl,
942 SelectionDAG &DAG,
943 std::vector<SDValue> &Ops) const {
944 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
946 unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
947 if (HasMatching)
948 Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
949 else if (!Regs.empty() &&
950 TargetRegisterInfo::isVirtualRegister(Regs.front())) {
951 // Put the register class of the virtual registers in the flag word. That
952 // way, later passes can recompute register class constraints for inline
953 // assembly as well as normal instructions.
954 // Don't do this for tied operands that can use the regclass information
955 // from the def.
956 const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
957 const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
958 Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
961 SDValue Res = DAG.getTargetConstant(Flag, dl, MVT::i32);
962 Ops.push_back(Res);
964 if (Code == InlineAsm::Kind_Clobber) {
965 // Clobbers should always have a 1:1 mapping with registers, and may
966 // reference registers that have illegal (e.g. vector) types. Hence, we
967 // shouldn't try to apply any sort of splitting logic to them.
968 assert(Regs.size() == RegVTs.size() && Regs.size() == ValueVTs.size() &&
969 "No 1:1 mapping from clobbers to regs?");
970 unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
971 (void)SP;
972 for (unsigned I = 0, E = ValueVTs.size(); I != E; ++I) {
973 Ops.push_back(DAG.getRegister(Regs[I], RegVTs[I]));
974 assert(
975 (Regs[I] != SP ||
976 DAG.getMachineFunction().getFrameInfo().hasOpaqueSPAdjustment()) &&
977 "If we clobbered the stack pointer, MFI should know about it.");
979 return;
982 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
983 unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
984 MVT RegisterVT = RegVTs[Value];
985 for (unsigned i = 0; i != NumRegs; ++i) {
986 assert(Reg < Regs.size() && "Mismatch in # registers expected");
987 unsigned TheReg = Regs[Reg++];
988 Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
993 SmallVector<std::pair<unsigned, unsigned>, 4>
994 RegsForValue::getRegsAndSizes() const {
995 SmallVector<std::pair<unsigned, unsigned>, 4> OutVec;
996 unsigned I = 0;
997 for (auto CountAndVT : zip_first(RegCount, RegVTs)) {
998 unsigned RegCount = std::get<0>(CountAndVT);
999 MVT RegisterVT = std::get<1>(CountAndVT);
1000 unsigned RegisterSize = RegisterVT.getSizeInBits();
1001 for (unsigned E = I + RegCount; I != E; ++I)
1002 OutVec.push_back(std::make_pair(Regs[I], RegisterSize));
1004 return OutVec;
1007 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis *aa,
1008 const TargetLibraryInfo *li) {
1009 AA = aa;
1010 GFI = gfi;
1011 LibInfo = li;
1012 DL = &DAG.getDataLayout();
1013 Context = DAG.getContext();
1014 LPadToCallSiteMap.clear();
1017 void SelectionDAGBuilder::clear() {
1018 NodeMap.clear();
1019 UnusedArgNodeMap.clear();
1020 PendingLoads.clear();
1021 PendingExports.clear();
1022 CurInst = nullptr;
1023 HasTailCall = false;
1024 SDNodeOrder = LowestSDNodeOrder;
1025 StatepointLowering.clear();
1028 void SelectionDAGBuilder::clearDanglingDebugInfo() {
1029 DanglingDebugInfoMap.clear();
1032 SDValue SelectionDAGBuilder::getRoot() {
1033 if (PendingLoads.empty())
1034 return DAG.getRoot();
1036 if (PendingLoads.size() == 1) {
1037 SDValue Root = PendingLoads[0];
1038 DAG.setRoot(Root);
1039 PendingLoads.clear();
1040 return Root;
1043 // Otherwise, we have to make a token factor node.
1044 SDValue Root = DAG.getTokenFactor(getCurSDLoc(), PendingLoads);
1045 PendingLoads.clear();
1046 DAG.setRoot(Root);
1047 return Root;
1050 SDValue SelectionDAGBuilder::getControlRoot() {
1051 SDValue Root = DAG.getRoot();
1053 if (PendingExports.empty())
1054 return Root;
1056 // Turn all of the CopyToReg chains into one factored node.
1057 if (Root.getOpcode() != ISD::EntryToken) {
1058 unsigned i = 0, e = PendingExports.size();
1059 for (; i != e; ++i) {
1060 assert(PendingExports[i].getNode()->getNumOperands() > 1);
1061 if (PendingExports[i].getNode()->getOperand(0) == Root)
1062 break; // Don't add the root if we already indirectly depend on it.
1065 if (i == e)
1066 PendingExports.push_back(Root);
1069 Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
1070 PendingExports);
1071 PendingExports.clear();
1072 DAG.setRoot(Root);
1073 return Root;
1076 void SelectionDAGBuilder::visit(const Instruction &I) {
1077 // Set up outgoing PHI node register values before emitting the terminator.
1078 if (I.isTerminator()) {
1079 HandlePHINodesInSuccessorBlocks(I.getParent());
1082 // Increase the SDNodeOrder if dealing with a non-debug instruction.
1083 if (!isa<DbgInfoIntrinsic>(I))
1084 ++SDNodeOrder;
1086 CurInst = &I;
1088 visit(I.getOpcode(), I);
1090 if (auto *FPMO = dyn_cast<FPMathOperator>(&I)) {
1091 // Propagate the fast-math-flags of this IR instruction to the DAG node that
1092 // maps to this instruction.
1093 // TODO: We could handle all flags (nsw, etc) here.
1094 // TODO: If an IR instruction maps to >1 node, only the final node will have
1095 // flags set.
1096 if (SDNode *Node = getNodeForIRValue(&I)) {
1097 SDNodeFlags IncomingFlags;
1098 IncomingFlags.copyFMF(*FPMO);
1099 if (!Node->getFlags().isDefined())
1100 Node->setFlags(IncomingFlags);
1101 else
1102 Node->intersectFlagsWith(IncomingFlags);
1106 if (!I.isTerminator() && !HasTailCall &&
1107 !isStatepoint(&I)) // statepoints handle their exports internally
1108 CopyToExportRegsIfNeeded(&I);
1110 CurInst = nullptr;
1113 void SelectionDAGBuilder::visitPHI(const PHINode &) {
1114 llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
1117 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
1118 // Note: this doesn't use InstVisitor, because it has to work with
1119 // ConstantExpr's in addition to instructions.
1120 switch (Opcode) {
1121 default: llvm_unreachable("Unknown instruction type encountered!");
1122 // Build the switch statement using the Instruction.def file.
1123 #define HANDLE_INST(NUM, OPCODE, CLASS) \
1124 case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
1125 #include "llvm/IR/Instruction.def"
1129 void SelectionDAGBuilder::dropDanglingDebugInfo(const DILocalVariable *Variable,
1130 const DIExpression *Expr) {
1131 auto isMatchingDbgValue = [&](DanglingDebugInfo &DDI) {
1132 const DbgValueInst *DI = DDI.getDI();
1133 DIVariable *DanglingVariable = DI->getVariable();
1134 DIExpression *DanglingExpr = DI->getExpression();
1135 if (DanglingVariable == Variable && Expr->fragmentsOverlap(DanglingExpr)) {
1136 LLVM_DEBUG(dbgs() << "Dropping dangling debug info for " << *DI << "\n");
1137 return true;
1139 return false;
1142 for (auto &DDIMI : DanglingDebugInfoMap) {
1143 DanglingDebugInfoVector &DDIV = DDIMI.second;
1145 // If debug info is to be dropped, run it through final checks to see
1146 // whether it can be salvaged.
1147 for (auto &DDI : DDIV)
1148 if (isMatchingDbgValue(DDI))
1149 salvageUnresolvedDbgValue(DDI);
1151 DDIV.erase(remove_if(DDIV, isMatchingDbgValue), DDIV.end());
1155 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
1156 // generate the debug data structures now that we've seen its definition.
1157 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
1158 SDValue Val) {
1159 auto DanglingDbgInfoIt = DanglingDebugInfoMap.find(V);
1160 if (DanglingDbgInfoIt == DanglingDebugInfoMap.end())
1161 return;
1163 DanglingDebugInfoVector &DDIV = DanglingDbgInfoIt->second;
1164 for (auto &DDI : DDIV) {
1165 const DbgValueInst *DI = DDI.getDI();
1166 assert(DI && "Ill-formed DanglingDebugInfo");
1167 DebugLoc dl = DDI.getdl();
1168 unsigned ValSDNodeOrder = Val.getNode()->getIROrder();
1169 unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1170 DILocalVariable *Variable = DI->getVariable();
1171 DIExpression *Expr = DI->getExpression();
1172 assert(Variable->isValidLocationForIntrinsic(dl) &&
1173 "Expected inlined-at fields to agree");
1174 SDDbgValue *SDV;
1175 if (Val.getNode()) {
1176 // FIXME: I doubt that it is correct to resolve a dangling DbgValue as a
1177 // FuncArgumentDbgValue (it would be hoisted to the function entry, and if
1178 // we couldn't resolve it directly when examining the DbgValue intrinsic
1179 // in the first place we should not be more successful here). Unless we
1180 // have some test case that prove this to be correct we should avoid
1181 // calling EmitFuncArgumentDbgValue here.
1182 if (!EmitFuncArgumentDbgValue(V, Variable, Expr, dl, false, Val)) {
1183 LLVM_DEBUG(dbgs() << "Resolve dangling debug info [order="
1184 << DbgSDNodeOrder << "] for:\n " << *DI << "\n");
1185 LLVM_DEBUG(dbgs() << " By mapping to:\n "; Val.dump());
1186 // Increase the SDNodeOrder for the DbgValue here to make sure it is
1187 // inserted after the definition of Val when emitting the instructions
1188 // after ISel. An alternative could be to teach
1189 // ScheduleDAGSDNodes::EmitSchedule to delay the insertion properly.
1190 LLVM_DEBUG(if (ValSDNodeOrder > DbgSDNodeOrder) dbgs()
1191 << "changing SDNodeOrder from " << DbgSDNodeOrder << " to "
1192 << ValSDNodeOrder << "\n");
1193 SDV = getDbgValue(Val, Variable, Expr, dl,
1194 std::max(DbgSDNodeOrder, ValSDNodeOrder));
1195 DAG.AddDbgValue(SDV, Val.getNode(), false);
1196 } else
1197 LLVM_DEBUG(dbgs() << "Resolved dangling debug info for " << *DI
1198 << "in EmitFuncArgumentDbgValue\n");
1199 } else {
1200 LLVM_DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1201 auto Undef =
1202 UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1203 auto SDV =
1204 DAG.getConstantDbgValue(Variable, Expr, Undef, dl, DbgSDNodeOrder);
1205 DAG.AddDbgValue(SDV, nullptr, false);
1208 DDIV.clear();
1211 void SelectionDAGBuilder::salvageUnresolvedDbgValue(DanglingDebugInfo &DDI) {
1212 Value *V = DDI.getDI()->getValue();
1213 DILocalVariable *Var = DDI.getDI()->getVariable();
1214 DIExpression *Expr = DDI.getDI()->getExpression();
1215 DebugLoc DL = DDI.getdl();
1216 DebugLoc InstDL = DDI.getDI()->getDebugLoc();
1217 unsigned SDOrder = DDI.getSDNodeOrder();
1219 // Currently we consider only dbg.value intrinsics -- we tell the salvager
1220 // that DW_OP_stack_value is desired.
1221 assert(isa<DbgValueInst>(DDI.getDI()));
1222 bool StackValue = true;
1224 // Can this Value can be encoded without any further work?
1225 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder))
1226 return;
1228 // Attempt to salvage back through as many instructions as possible. Bail if
1229 // a non-instruction is seen, such as a constant expression or global
1230 // variable. FIXME: Further work could recover those too.
1231 while (isa<Instruction>(V)) {
1232 Instruction &VAsInst = *cast<Instruction>(V);
1233 DIExpression *NewExpr = salvageDebugInfoImpl(VAsInst, Expr, StackValue);
1235 // If we cannot salvage any further, and haven't yet found a suitable debug
1236 // expression, bail out.
1237 if (!NewExpr)
1238 break;
1240 // New value and expr now represent this debuginfo.
1241 V = VAsInst.getOperand(0);
1242 Expr = NewExpr;
1244 // Some kind of simplification occurred: check whether the operand of the
1245 // salvaged debug expression can be encoded in this DAG.
1246 if (handleDebugValue(V, Var, Expr, DL, InstDL, SDOrder)) {
1247 LLVM_DEBUG(dbgs() << "Salvaged debug location info for:\n "
1248 << DDI.getDI() << "\nBy stripping back to:\n " << V);
1249 return;
1253 // This was the final opportunity to salvage this debug information, and it
1254 // couldn't be done. Place an undef DBG_VALUE at this location to terminate
1255 // any earlier variable location.
1256 auto Undef = UndefValue::get(DDI.getDI()->getVariableLocation()->getType());
1257 auto SDV = DAG.getConstantDbgValue(Var, Expr, Undef, DL, SDNodeOrder);
1258 DAG.AddDbgValue(SDV, nullptr, false);
1260 LLVM_DEBUG(dbgs() << "Dropping debug value info for:\n " << DDI.getDI()
1261 << "\n");
1262 LLVM_DEBUG(dbgs() << " Last seen at:\n " << *DDI.getDI()->getOperand(0)
1263 << "\n");
1266 bool SelectionDAGBuilder::handleDebugValue(const Value *V, DILocalVariable *Var,
1267 DIExpression *Expr, DebugLoc dl,
1268 DebugLoc InstDL, unsigned Order) {
1269 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1270 SDDbgValue *SDV;
1271 if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V) ||
1272 isa<ConstantPointerNull>(V)) {
1273 SDV = DAG.getConstantDbgValue(Var, Expr, V, dl, SDNodeOrder);
1274 DAG.AddDbgValue(SDV, nullptr, false);
1275 return true;
1278 // If the Value is a frame index, we can create a FrameIndex debug value
1279 // without relying on the DAG at all.
1280 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1281 auto SI = FuncInfo.StaticAllocaMap.find(AI);
1282 if (SI != FuncInfo.StaticAllocaMap.end()) {
1283 auto SDV =
1284 DAG.getFrameIndexDbgValue(Var, Expr, SI->second,
1285 /*IsIndirect*/ false, dl, SDNodeOrder);
1286 // Do not attach the SDNodeDbgValue to an SDNode: this variable location
1287 // is still available even if the SDNode gets optimized out.
1288 DAG.AddDbgValue(SDV, nullptr, false);
1289 return true;
1293 // Do not use getValue() in here; we don't want to generate code at
1294 // this point if it hasn't been done yet.
1295 SDValue N = NodeMap[V];
1296 if (!N.getNode() && isa<Argument>(V)) // Check unused arguments map.
1297 N = UnusedArgNodeMap[V];
1298 if (N.getNode()) {
1299 if (EmitFuncArgumentDbgValue(V, Var, Expr, dl, false, N))
1300 return true;
1301 SDV = getDbgValue(N, Var, Expr, dl, SDNodeOrder);
1302 DAG.AddDbgValue(SDV, N.getNode(), false);
1303 return true;
1306 // Special rules apply for the first dbg.values of parameter variables in a
1307 // function. Identify them by the fact they reference Argument Values, that
1308 // they're parameters, and they are parameters of the current function. We
1309 // need to let them dangle until they get an SDNode.
1310 bool IsParamOfFunc = isa<Argument>(V) && Var->isParameter() &&
1311 !InstDL.getInlinedAt();
1312 if (!IsParamOfFunc) {
1313 // The value is not used in this block yet (or it would have an SDNode).
1314 // We still want the value to appear for the user if possible -- if it has
1315 // an associated VReg, we can refer to that instead.
1316 auto VMI = FuncInfo.ValueMap.find(V);
1317 if (VMI != FuncInfo.ValueMap.end()) {
1318 unsigned Reg = VMI->second;
1319 // If this is a PHI node, it may be split up into several MI PHI nodes
1320 // (in FunctionLoweringInfo::set).
1321 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg,
1322 V->getType(), None);
1323 if (RFV.occupiesMultipleRegs()) {
1324 unsigned Offset = 0;
1325 unsigned BitsToDescribe = 0;
1326 if (auto VarSize = Var->getSizeInBits())
1327 BitsToDescribe = *VarSize;
1328 if (auto Fragment = Expr->getFragmentInfo())
1329 BitsToDescribe = Fragment->SizeInBits;
1330 for (auto RegAndSize : RFV.getRegsAndSizes()) {
1331 unsigned RegisterSize = RegAndSize.second;
1332 // Bail out if all bits are described already.
1333 if (Offset >= BitsToDescribe)
1334 break;
1335 unsigned FragmentSize = (Offset + RegisterSize > BitsToDescribe)
1336 ? BitsToDescribe - Offset
1337 : RegisterSize;
1338 auto FragmentExpr = DIExpression::createFragmentExpression(
1339 Expr, Offset, FragmentSize);
1340 if (!FragmentExpr)
1341 continue;
1342 SDV = DAG.getVRegDbgValue(Var, *FragmentExpr, RegAndSize.first,
1343 false, dl, SDNodeOrder);
1344 DAG.AddDbgValue(SDV, nullptr, false);
1345 Offset += RegisterSize;
1347 } else {
1348 SDV = DAG.getVRegDbgValue(Var, Expr, Reg, false, dl, SDNodeOrder);
1349 DAG.AddDbgValue(SDV, nullptr, false);
1351 return true;
1355 return false;
1358 void SelectionDAGBuilder::resolveOrClearDbgInfo() {
1359 // Try to fixup any remaining dangling debug info -- and drop it if we can't.
1360 for (auto &Pair : DanglingDebugInfoMap)
1361 for (auto &DDI : Pair.second)
1362 salvageUnresolvedDbgValue(DDI);
1363 clearDanglingDebugInfo();
1366 /// getCopyFromRegs - If there was virtual register allocated for the value V
1367 /// emit CopyFromReg of the specified type Ty. Return empty SDValue() otherwise.
1368 SDValue SelectionDAGBuilder::getCopyFromRegs(const Value *V, Type *Ty) {
1369 DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1370 SDValue Result;
1372 if (It != FuncInfo.ValueMap.end()) {
1373 unsigned InReg = It->second;
1375 RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(),
1376 DAG.getDataLayout(), InReg, Ty,
1377 None); // This is not an ABI copy.
1378 SDValue Chain = DAG.getEntryNode();
1379 Result = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr,
1381 resolveDanglingDebugInfo(V, Result);
1384 return Result;
1387 /// getValue - Return an SDValue for the given Value.
1388 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1389 // If we already have an SDValue for this value, use it. It's important
1390 // to do this first, so that we don't create a CopyFromReg if we already
1391 // have a regular SDValue.
1392 SDValue &N = NodeMap[V];
1393 if (N.getNode()) return N;
1395 // If there's a virtual register allocated and initialized for this
1396 // value, use it.
1397 if (SDValue copyFromReg = getCopyFromRegs(V, V->getType()))
1398 return copyFromReg;
1400 // Otherwise create a new SDValue and remember it.
1401 SDValue Val = getValueImpl(V);
1402 NodeMap[V] = Val;
1403 resolveDanglingDebugInfo(V, Val);
1404 return Val;
1407 // Return true if SDValue exists for the given Value
1408 bool SelectionDAGBuilder::findValue(const Value *V) const {
1409 return (NodeMap.find(V) != NodeMap.end()) ||
1410 (FuncInfo.ValueMap.find(V) != FuncInfo.ValueMap.end());
1413 /// getNonRegisterValue - Return an SDValue for the given Value, but
1414 /// don't look in FuncInfo.ValueMap for a virtual register.
1415 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1416 // If we already have an SDValue for this value, use it.
1417 SDValue &N = NodeMap[V];
1418 if (N.getNode()) {
1419 if (isa<ConstantSDNode>(N) || isa<ConstantFPSDNode>(N)) {
1420 // Remove the debug location from the node as the node is about to be used
1421 // in a location which may differ from the original debug location. This
1422 // is relevant to Constant and ConstantFP nodes because they can appear
1423 // as constant expressions inside PHI nodes.
1424 N->setDebugLoc(DebugLoc());
1426 return N;
1429 // Otherwise create a new SDValue and remember it.
1430 SDValue Val = getValueImpl(V);
1431 NodeMap[V] = Val;
1432 resolveDanglingDebugInfo(V, Val);
1433 return Val;
1436 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1437 /// Create an SDValue for the given value.
1438 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1439 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1441 if (const Constant *C = dyn_cast<Constant>(V)) {
1442 EVT VT = TLI.getValueType(DAG.getDataLayout(), V->getType(), true);
1444 if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1445 return DAG.getConstant(*CI, getCurSDLoc(), VT);
1447 if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1448 return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1450 if (isa<ConstantPointerNull>(C)) {
1451 unsigned AS = V->getType()->getPointerAddressSpace();
1452 return DAG.getConstant(0, getCurSDLoc(),
1453 TLI.getPointerTy(DAG.getDataLayout(), AS));
1456 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1457 return DAG.getConstantFP(*CFP, getCurSDLoc(), VT);
1459 if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1460 return DAG.getUNDEF(VT);
1462 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1463 visit(CE->getOpcode(), *CE);
1464 SDValue N1 = NodeMap[V];
1465 assert(N1.getNode() && "visit didn't populate the NodeMap!");
1466 return N1;
1469 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1470 SmallVector<SDValue, 4> Constants;
1471 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1472 OI != OE; ++OI) {
1473 SDNode *Val = getValue(*OI).getNode();
1474 // If the operand is an empty aggregate, there are no values.
1475 if (!Val) continue;
1476 // Add each leaf value from the operand to the Constants list
1477 // to form a flattened list of all the values.
1478 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1479 Constants.push_back(SDValue(Val, i));
1482 return DAG.getMergeValues(Constants, getCurSDLoc());
1485 if (const ConstantDataSequential *CDS =
1486 dyn_cast<ConstantDataSequential>(C)) {
1487 SmallVector<SDValue, 4> Ops;
1488 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1489 SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1490 // Add each leaf value from the operand to the Constants list
1491 // to form a flattened list of all the values.
1492 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1493 Ops.push_back(SDValue(Val, i));
1496 if (isa<ArrayType>(CDS->getType()))
1497 return DAG.getMergeValues(Ops, getCurSDLoc());
1498 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1501 if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1502 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1503 "Unknown struct or array constant!");
1505 SmallVector<EVT, 4> ValueVTs;
1506 ComputeValueVTs(TLI, DAG.getDataLayout(), C->getType(), ValueVTs);
1507 unsigned NumElts = ValueVTs.size();
1508 if (NumElts == 0)
1509 return SDValue(); // empty struct
1510 SmallVector<SDValue, 4> Constants(NumElts);
1511 for (unsigned i = 0; i != NumElts; ++i) {
1512 EVT EltVT = ValueVTs[i];
1513 if (isa<UndefValue>(C))
1514 Constants[i] = DAG.getUNDEF(EltVT);
1515 else if (EltVT.isFloatingPoint())
1516 Constants[i] = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1517 else
1518 Constants[i] = DAG.getConstant(0, getCurSDLoc(), EltVT);
1521 return DAG.getMergeValues(Constants, getCurSDLoc());
1524 if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1525 return DAG.getBlockAddress(BA, VT);
1527 VectorType *VecTy = cast<VectorType>(V->getType());
1528 unsigned NumElements = VecTy->getNumElements();
1530 // Now that we know the number and type of the elements, get that number of
1531 // elements into the Ops array based on what kind of constant it is.
1532 SmallVector<SDValue, 16> Ops;
1533 if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1534 for (unsigned i = 0; i != NumElements; ++i)
1535 Ops.push_back(getValue(CV->getOperand(i)));
1536 } else {
1537 assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1538 EVT EltVT =
1539 TLI.getValueType(DAG.getDataLayout(), VecTy->getElementType());
1541 SDValue Op;
1542 if (EltVT.isFloatingPoint())
1543 Op = DAG.getConstantFP(0, getCurSDLoc(), EltVT);
1544 else
1545 Op = DAG.getConstant(0, getCurSDLoc(), EltVT);
1546 Ops.assign(NumElements, Op);
1549 // Create a BUILD_VECTOR node.
1550 return NodeMap[V] = DAG.getBuildVector(VT, getCurSDLoc(), Ops);
1553 // If this is a static alloca, generate it as the frameindex instead of
1554 // computation.
1555 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1556 DenseMap<const AllocaInst*, int>::iterator SI =
1557 FuncInfo.StaticAllocaMap.find(AI);
1558 if (SI != FuncInfo.StaticAllocaMap.end())
1559 return DAG.getFrameIndex(SI->second,
1560 TLI.getFrameIndexTy(DAG.getDataLayout()));
1563 // If this is an instruction which fast-isel has deferred, select it now.
1564 if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1565 unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1567 RegsForValue RFV(*DAG.getContext(), TLI, DAG.getDataLayout(), InReg,
1568 Inst->getType(), getABIRegCopyCC(V));
1569 SDValue Chain = DAG.getEntryNode();
1570 return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1573 llvm_unreachable("Can't get register for value!");
1576 void SelectionDAGBuilder::visitCatchPad(const CatchPadInst &I) {
1577 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1578 bool IsMSVCCXX = Pers == EHPersonality::MSVC_CXX;
1579 bool IsCoreCLR = Pers == EHPersonality::CoreCLR;
1580 bool IsSEH = isAsynchronousEHPersonality(Pers);
1581 bool IsWasmCXX = Pers == EHPersonality::Wasm_CXX;
1582 MachineBasicBlock *CatchPadMBB = FuncInfo.MBB;
1583 if (!IsSEH)
1584 CatchPadMBB->setIsEHScopeEntry();
1585 // In MSVC C++ and CoreCLR, catchblocks are funclets and need prologues.
1586 if (IsMSVCCXX || IsCoreCLR)
1587 CatchPadMBB->setIsEHFuncletEntry();
1588 // Wasm does not need catchpads anymore
1589 if (!IsWasmCXX)
1590 DAG.setRoot(DAG.getNode(ISD::CATCHPAD, getCurSDLoc(), MVT::Other,
1591 getControlRoot()));
1594 void SelectionDAGBuilder::visitCatchRet(const CatchReturnInst &I) {
1595 // Update machine-CFG edge.
1596 MachineBasicBlock *TargetMBB = FuncInfo.MBBMap[I.getSuccessor()];
1597 FuncInfo.MBB->addSuccessor(TargetMBB);
1599 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1600 bool IsSEH = isAsynchronousEHPersonality(Pers);
1601 if (IsSEH) {
1602 // If this is not a fall-through branch or optimizations are switched off,
1603 // emit the branch.
1604 if (TargetMBB != NextBlock(FuncInfo.MBB) ||
1605 TM.getOptLevel() == CodeGenOpt::None)
1606 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
1607 getControlRoot(), DAG.getBasicBlock(TargetMBB)));
1608 return;
1611 // Figure out the funclet membership for the catchret's successor.
1612 // This will be used by the FuncletLayout pass to determine how to order the
1613 // BB's.
1614 // A 'catchret' returns to the outer scope's color.
1615 Value *ParentPad = I.getCatchSwitchParentPad();
1616 const BasicBlock *SuccessorColor;
1617 if (isa<ConstantTokenNone>(ParentPad))
1618 SuccessorColor = &FuncInfo.Fn->getEntryBlock();
1619 else
1620 SuccessorColor = cast<Instruction>(ParentPad)->getParent();
1621 assert(SuccessorColor && "No parent funclet for catchret!");
1622 MachineBasicBlock *SuccessorColorMBB = FuncInfo.MBBMap[SuccessorColor];
1623 assert(SuccessorColorMBB && "No MBB for SuccessorColor!");
1625 // Create the terminator node.
1626 SDValue Ret = DAG.getNode(ISD::CATCHRET, getCurSDLoc(), MVT::Other,
1627 getControlRoot(), DAG.getBasicBlock(TargetMBB),
1628 DAG.getBasicBlock(SuccessorColorMBB));
1629 DAG.setRoot(Ret);
1632 void SelectionDAGBuilder::visitCleanupPad(const CleanupPadInst &CPI) {
1633 // Don't emit any special code for the cleanuppad instruction. It just marks
1634 // the start of an EH scope/funclet.
1635 FuncInfo.MBB->setIsEHScopeEntry();
1636 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1637 if (Pers != EHPersonality::Wasm_CXX) {
1638 FuncInfo.MBB->setIsEHFuncletEntry();
1639 FuncInfo.MBB->setIsCleanupFuncletEntry();
1643 // For wasm, there's alwyas a single catch pad attached to a catchswitch, and
1644 // the control flow always stops at the single catch pad, as it does for a
1645 // cleanup pad. In case the exception caught is not of the types the catch pad
1646 // catches, it will be rethrown by a rethrow.
1647 static void findWasmUnwindDestinations(
1648 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1649 BranchProbability Prob,
1650 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1651 &UnwindDests) {
1652 while (EHPadBB) {
1653 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1654 if (isa<CleanupPadInst>(Pad)) {
1655 // Stop on cleanup pads.
1656 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1657 UnwindDests.back().first->setIsEHScopeEntry();
1658 break;
1659 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1660 // Add the catchpad handlers to the possible destinations. We don't
1661 // continue to the unwind destination of the catchswitch for wasm.
1662 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1663 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1664 UnwindDests.back().first->setIsEHScopeEntry();
1666 break;
1667 } else {
1668 continue;
1673 /// When an invoke or a cleanupret unwinds to the next EH pad, there are
1674 /// many places it could ultimately go. In the IR, we have a single unwind
1675 /// destination, but in the machine CFG, we enumerate all the possible blocks.
1676 /// This function skips over imaginary basic blocks that hold catchswitch
1677 /// instructions, and finds all the "real" machine
1678 /// basic block destinations. As those destinations may not be successors of
1679 /// EHPadBB, here we also calculate the edge probability to those destinations.
1680 /// The passed-in Prob is the edge probability to EHPadBB.
1681 static void findUnwindDestinations(
1682 FunctionLoweringInfo &FuncInfo, const BasicBlock *EHPadBB,
1683 BranchProbability Prob,
1684 SmallVectorImpl<std::pair<MachineBasicBlock *, BranchProbability>>
1685 &UnwindDests) {
1686 EHPersonality Personality =
1687 classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
1688 bool IsMSVCCXX = Personality == EHPersonality::MSVC_CXX;
1689 bool IsCoreCLR = Personality == EHPersonality::CoreCLR;
1690 bool IsWasmCXX = Personality == EHPersonality::Wasm_CXX;
1691 bool IsSEH = isAsynchronousEHPersonality(Personality);
1693 if (IsWasmCXX) {
1694 findWasmUnwindDestinations(FuncInfo, EHPadBB, Prob, UnwindDests);
1695 assert(UnwindDests.size() <= 1 &&
1696 "There should be at most one unwind destination for wasm");
1697 return;
1700 while (EHPadBB) {
1701 const Instruction *Pad = EHPadBB->getFirstNonPHI();
1702 BasicBlock *NewEHPadBB = nullptr;
1703 if (isa<LandingPadInst>(Pad)) {
1704 // Stop on landingpads. They are not funclets.
1705 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1706 break;
1707 } else if (isa<CleanupPadInst>(Pad)) {
1708 // Stop on cleanup pads. Cleanups are always funclet entries for all known
1709 // personalities.
1710 UnwindDests.emplace_back(FuncInfo.MBBMap[EHPadBB], Prob);
1711 UnwindDests.back().first->setIsEHScopeEntry();
1712 UnwindDests.back().first->setIsEHFuncletEntry();
1713 break;
1714 } else if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
1715 // Add the catchpad handlers to the possible destinations.
1716 for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
1717 UnwindDests.emplace_back(FuncInfo.MBBMap[CatchPadBB], Prob);
1718 // For MSVC++ and the CLR, catchblocks are funclets and need prologues.
1719 if (IsMSVCCXX || IsCoreCLR)
1720 UnwindDests.back().first->setIsEHFuncletEntry();
1721 if (!IsSEH)
1722 UnwindDests.back().first->setIsEHScopeEntry();
1724 NewEHPadBB = CatchSwitch->getUnwindDest();
1725 } else {
1726 continue;
1729 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1730 if (BPI && NewEHPadBB)
1731 Prob *= BPI->getEdgeProbability(EHPadBB, NewEHPadBB);
1732 EHPadBB = NewEHPadBB;
1736 void SelectionDAGBuilder::visitCleanupRet(const CleanupReturnInst &I) {
1737 // Update successor info.
1738 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
1739 auto UnwindDest = I.getUnwindDest();
1740 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1741 BranchProbability UnwindDestProb =
1742 (BPI && UnwindDest)
1743 ? BPI->getEdgeProbability(FuncInfo.MBB->getBasicBlock(), UnwindDest)
1744 : BranchProbability::getZero();
1745 findUnwindDestinations(FuncInfo, UnwindDest, UnwindDestProb, UnwindDests);
1746 for (auto &UnwindDest : UnwindDests) {
1747 UnwindDest.first->setIsEHPad();
1748 addSuccessorWithProb(FuncInfo.MBB, UnwindDest.first, UnwindDest.second);
1750 FuncInfo.MBB->normalizeSuccProbs();
1752 // Create the terminator node.
1753 SDValue Ret =
1754 DAG.getNode(ISD::CLEANUPRET, getCurSDLoc(), MVT::Other, getControlRoot());
1755 DAG.setRoot(Ret);
1758 void SelectionDAGBuilder::visitCatchSwitch(const CatchSwitchInst &CSI) {
1759 report_fatal_error("visitCatchSwitch not yet implemented!");
1762 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1763 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1764 auto &DL = DAG.getDataLayout();
1765 SDValue Chain = getControlRoot();
1766 SmallVector<ISD::OutputArg, 8> Outs;
1767 SmallVector<SDValue, 8> OutVals;
1769 // Calls to @llvm.experimental.deoptimize don't generate a return value, so
1770 // lower
1772 // %val = call <ty> @llvm.experimental.deoptimize()
1773 // ret <ty> %val
1775 // differently.
1776 if (I.getParent()->getTerminatingDeoptimizeCall()) {
1777 LowerDeoptimizingReturn();
1778 return;
1781 if (!FuncInfo.CanLowerReturn) {
1782 unsigned DemoteReg = FuncInfo.DemoteRegister;
1783 const Function *F = I.getParent()->getParent();
1785 // Emit a store of the return value through the virtual register.
1786 // Leave Outs empty so that LowerReturn won't try to load return
1787 // registers the usual way.
1788 SmallVector<EVT, 1> PtrValueVTs;
1789 ComputeValueVTs(TLI, DL,
1790 F->getReturnType()->getPointerTo(
1791 DAG.getDataLayout().getAllocaAddrSpace()),
1792 PtrValueVTs);
1794 SDValue RetPtr = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
1795 DemoteReg, PtrValueVTs[0]);
1796 SDValue RetOp = getValue(I.getOperand(0));
1798 SmallVector<EVT, 4> ValueVTs, MemVTs;
1799 SmallVector<uint64_t, 4> Offsets;
1800 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs, &MemVTs,
1801 &Offsets);
1802 unsigned NumValues = ValueVTs.size();
1804 SmallVector<SDValue, 4> Chains(NumValues);
1805 for (unsigned i = 0; i != NumValues; ++i) {
1806 // An aggregate return value cannot wrap around the address space, so
1807 // offsets to its parts don't wrap either.
1808 SDValue Ptr = DAG.getObjectPtrOffset(getCurSDLoc(), RetPtr, Offsets[i]);
1810 SDValue Val = RetOp.getValue(i);
1811 if (MemVTs[i] != ValueVTs[i])
1812 Val = DAG.getPtrExtOrTrunc(Val, getCurSDLoc(), MemVTs[i]);
1813 Chains[i] = DAG.getStore(Chain, getCurSDLoc(), Val,
1814 // FIXME: better loc info would be nice.
1815 Ptr, MachinePointerInfo::getUnknownStack(DAG.getMachineFunction()));
1818 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1819 MVT::Other, Chains);
1820 } else if (I.getNumOperands() != 0) {
1821 SmallVector<EVT, 4> ValueVTs;
1822 ComputeValueVTs(TLI, DL, I.getOperand(0)->getType(), ValueVTs);
1823 unsigned NumValues = ValueVTs.size();
1824 if (NumValues) {
1825 SDValue RetOp = getValue(I.getOperand(0));
1827 const Function *F = I.getParent()->getParent();
1829 bool NeedsRegBlock = TLI.functionArgumentNeedsConsecutiveRegisters(
1830 I.getOperand(0)->getType(), F->getCallingConv(),
1831 /*IsVarArg*/ false);
1833 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1834 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1835 Attribute::SExt))
1836 ExtendKind = ISD::SIGN_EXTEND;
1837 else if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1838 Attribute::ZExt))
1839 ExtendKind = ISD::ZERO_EXTEND;
1841 LLVMContext &Context = F->getContext();
1842 bool RetInReg = F->getAttributes().hasAttribute(
1843 AttributeList::ReturnIndex, Attribute::InReg);
1845 for (unsigned j = 0; j != NumValues; ++j) {
1846 EVT VT = ValueVTs[j];
1848 if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1849 VT = TLI.getTypeForExtReturn(Context, VT, ExtendKind);
1851 CallingConv::ID CC = F->getCallingConv();
1853 unsigned NumParts = TLI.getNumRegistersForCallingConv(Context, CC, VT);
1854 MVT PartVT = TLI.getRegisterTypeForCallingConv(Context, CC, VT);
1855 SmallVector<SDValue, 4> Parts(NumParts);
1856 getCopyToParts(DAG, getCurSDLoc(),
1857 SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1858 &Parts[0], NumParts, PartVT, &I, CC, ExtendKind);
1860 // 'inreg' on function refers to return value
1861 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1862 if (RetInReg)
1863 Flags.setInReg();
1865 if (I.getOperand(0)->getType()->isPointerTy()) {
1866 Flags.setPointer();
1867 Flags.setPointerAddrSpace(
1868 cast<PointerType>(I.getOperand(0)->getType())->getAddressSpace());
1871 if (NeedsRegBlock) {
1872 Flags.setInConsecutiveRegs();
1873 if (j == NumValues - 1)
1874 Flags.setInConsecutiveRegsLast();
1877 // Propagate extension type if any
1878 if (ExtendKind == ISD::SIGN_EXTEND)
1879 Flags.setSExt();
1880 else if (ExtendKind == ISD::ZERO_EXTEND)
1881 Flags.setZExt();
1883 for (unsigned i = 0; i < NumParts; ++i) {
1884 Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1885 VT, /*isfixed=*/true, 0, 0));
1886 OutVals.push_back(Parts[i]);
1892 // Push in swifterror virtual register as the last element of Outs. This makes
1893 // sure swifterror virtual register will be returned in the swifterror
1894 // physical register.
1895 const Function *F = I.getParent()->getParent();
1896 if (TLI.supportSwiftError() &&
1897 F->getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
1898 assert(FuncInfo.SwiftErrorArg && "Need a swift error argument");
1899 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1900 Flags.setSwiftError();
1901 Outs.push_back(ISD::OutputArg(Flags, EVT(TLI.getPointerTy(DL)) /*vt*/,
1902 EVT(TLI.getPointerTy(DL)) /*argvt*/,
1903 true /*isfixed*/, 1 /*origidx*/,
1904 0 /*partOffs*/));
1905 // Create SDNode for the swifterror virtual register.
1906 OutVals.push_back(
1907 DAG.getRegister(FuncInfo.getOrCreateSwiftErrorVRegUseAt(
1908 &I, FuncInfo.MBB, FuncInfo.SwiftErrorArg).first,
1909 EVT(TLI.getPointerTy(DL))));
1912 bool isVarArg = DAG.getMachineFunction().getFunction().isVarArg();
1913 CallingConv::ID CallConv =
1914 DAG.getMachineFunction().getFunction().getCallingConv();
1915 Chain = DAG.getTargetLoweringInfo().LowerReturn(
1916 Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1918 // Verify that the target's LowerReturn behaved as expected.
1919 assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1920 "LowerReturn didn't return a valid chain!");
1922 // Update the DAG with the new chain value resulting from return lowering.
1923 DAG.setRoot(Chain);
1926 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1927 /// created for it, emit nodes to copy the value into the virtual
1928 /// registers.
1929 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1930 // Skip empty types
1931 if (V->getType()->isEmptyTy())
1932 return;
1934 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1935 if (VMI != FuncInfo.ValueMap.end()) {
1936 assert(!V->use_empty() && "Unused value assigned virtual registers!");
1937 CopyValueToVirtualRegister(V, VMI->second);
1941 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1942 /// the current basic block, add it to ValueMap now so that we'll get a
1943 /// CopyTo/FromReg.
1944 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1945 // No need to export constants.
1946 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1948 // Already exported?
1949 if (FuncInfo.isExportedInst(V)) return;
1951 unsigned Reg = FuncInfo.InitializeRegForValue(V);
1952 CopyValueToVirtualRegister(V, Reg);
1955 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1956 const BasicBlock *FromBB) {
1957 // The operands of the setcc have to be in this block. We don't know
1958 // how to export them from some other block.
1959 if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1960 // Can export from current BB.
1961 if (VI->getParent() == FromBB)
1962 return true;
1964 // Is already exported, noop.
1965 return FuncInfo.isExportedInst(V);
1968 // If this is an argument, we can export it if the BB is the entry block or
1969 // if it is already exported.
1970 if (isa<Argument>(V)) {
1971 if (FromBB == &FromBB->getParent()->getEntryBlock())
1972 return true;
1974 // Otherwise, can only export this if it is already exported.
1975 return FuncInfo.isExportedInst(V);
1978 // Otherwise, constants can always be exported.
1979 return true;
1982 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1983 BranchProbability
1984 SelectionDAGBuilder::getEdgeProbability(const MachineBasicBlock *Src,
1985 const MachineBasicBlock *Dst) const {
1986 BranchProbabilityInfo *BPI = FuncInfo.BPI;
1987 const BasicBlock *SrcBB = Src->getBasicBlock();
1988 const BasicBlock *DstBB = Dst->getBasicBlock();
1989 if (!BPI) {
1990 // If BPI is not available, set the default probability as 1 / N, where N is
1991 // the number of successors.
1992 auto SuccSize = std::max<uint32_t>(succ_size(SrcBB), 1);
1993 return BranchProbability(1, SuccSize);
1995 return BPI->getEdgeProbability(SrcBB, DstBB);
1998 void SelectionDAGBuilder::addSuccessorWithProb(MachineBasicBlock *Src,
1999 MachineBasicBlock *Dst,
2000 BranchProbability Prob) {
2001 if (!FuncInfo.BPI)
2002 Src->addSuccessorWithoutProb(Dst);
2003 else {
2004 if (Prob.isUnknown())
2005 Prob = getEdgeProbability(Src, Dst);
2006 Src->addSuccessor(Dst, Prob);
2010 static bool InBlock(const Value *V, const BasicBlock *BB) {
2011 if (const Instruction *I = dyn_cast<Instruction>(V))
2012 return I->getParent() == BB;
2013 return true;
2016 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
2017 /// This function emits a branch and is used at the leaves of an OR or an
2018 /// AND operator tree.
2019 void
2020 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
2021 MachineBasicBlock *TBB,
2022 MachineBasicBlock *FBB,
2023 MachineBasicBlock *CurBB,
2024 MachineBasicBlock *SwitchBB,
2025 BranchProbability TProb,
2026 BranchProbability FProb,
2027 bool InvertCond) {
2028 const BasicBlock *BB = CurBB->getBasicBlock();
2030 // If the leaf of the tree is a comparison, merge the condition into
2031 // the caseblock.
2032 if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
2033 // The operands of the cmp have to be in this block. We don't know
2034 // how to export them from some other block. If this is the first block
2035 // of the sequence, no exporting is needed.
2036 if (CurBB == SwitchBB ||
2037 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
2038 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
2039 ISD::CondCode Condition;
2040 if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
2041 ICmpInst::Predicate Pred =
2042 InvertCond ? IC->getInversePredicate() : IC->getPredicate();
2043 Condition = getICmpCondCode(Pred);
2044 } else {
2045 const FCmpInst *FC = cast<FCmpInst>(Cond);
2046 FCmpInst::Predicate Pred =
2047 InvertCond ? FC->getInversePredicate() : FC->getPredicate();
2048 Condition = getFCmpCondCode(Pred);
2049 if (TM.Options.NoNaNsFPMath)
2050 Condition = getFCmpCodeWithoutNaN(Condition);
2053 CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
2054 TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2055 SwitchCases.push_back(CB);
2056 return;
2060 // Create a CaseBlock record representing this branch.
2061 ISD::CondCode Opc = InvertCond ? ISD::SETNE : ISD::SETEQ;
2062 CaseBlock CB(Opc, Cond, ConstantInt::getTrue(*DAG.getContext()),
2063 nullptr, TBB, FBB, CurBB, getCurSDLoc(), TProb, FProb);
2064 SwitchCases.push_back(CB);
2067 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
2068 MachineBasicBlock *TBB,
2069 MachineBasicBlock *FBB,
2070 MachineBasicBlock *CurBB,
2071 MachineBasicBlock *SwitchBB,
2072 Instruction::BinaryOps Opc,
2073 BranchProbability TProb,
2074 BranchProbability FProb,
2075 bool InvertCond) {
2076 // Skip over not part of the tree and remember to invert op and operands at
2077 // next level.
2078 Value *NotCond;
2079 if (match(Cond, m_OneUse(m_Not(m_Value(NotCond)))) &&
2080 InBlock(NotCond, CurBB->getBasicBlock())) {
2081 FindMergedConditions(NotCond, TBB, FBB, CurBB, SwitchBB, Opc, TProb, FProb,
2082 !InvertCond);
2083 return;
2086 const Instruction *BOp = dyn_cast<Instruction>(Cond);
2087 // Compute the effective opcode for Cond, taking into account whether it needs
2088 // to be inverted, e.g.
2089 // and (not (or A, B)), C
2090 // gets lowered as
2091 // and (and (not A, not B), C)
2092 unsigned BOpc = 0;
2093 if (BOp) {
2094 BOpc = BOp->getOpcode();
2095 if (InvertCond) {
2096 if (BOpc == Instruction::And)
2097 BOpc = Instruction::Or;
2098 else if (BOpc == Instruction::Or)
2099 BOpc = Instruction::And;
2103 // If this node is not part of the or/and tree, emit it as a branch.
2104 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
2105 BOpc != unsigned(Opc) || !BOp->hasOneUse() ||
2106 BOp->getParent() != CurBB->getBasicBlock() ||
2107 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
2108 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
2109 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
2110 TProb, FProb, InvertCond);
2111 return;
2114 // Create TmpBB after CurBB.
2115 MachineFunction::iterator BBI(CurBB);
2116 MachineFunction &MF = DAG.getMachineFunction();
2117 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
2118 CurBB->getParent()->insert(++BBI, TmpBB);
2120 if (Opc == Instruction::Or) {
2121 // Codegen X | Y as:
2122 // BB1:
2123 // jmp_if_X TBB
2124 // jmp TmpBB
2125 // TmpBB:
2126 // jmp_if_Y TBB
2127 // jmp FBB
2130 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2131 // The requirement is that
2132 // TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
2133 // = TrueProb for original BB.
2134 // Assuming the original probabilities are A and B, one choice is to set
2135 // BB1's probabilities to A/2 and A/2+B, and set TmpBB's probabilities to
2136 // A/(1+B) and 2B/(1+B). This choice assumes that
2137 // TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
2138 // Another choice is to assume TrueProb for BB1 equals to TrueProb for
2139 // TmpBB, but the math is more complicated.
2141 auto NewTrueProb = TProb / 2;
2142 auto NewFalseProb = TProb / 2 + FProb;
2143 // Emit the LHS condition.
2144 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
2145 NewTrueProb, NewFalseProb, InvertCond);
2147 // Normalize A/2 and B to get A/(1+B) and 2B/(1+B).
2148 SmallVector<BranchProbability, 2> Probs{TProb / 2, FProb};
2149 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2150 // Emit the RHS condition into TmpBB.
2151 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2152 Probs[0], Probs[1], InvertCond);
2153 } else {
2154 assert(Opc == Instruction::And && "Unknown merge op!");
2155 // Codegen X & Y as:
2156 // BB1:
2157 // jmp_if_X TmpBB
2158 // jmp FBB
2159 // TmpBB:
2160 // jmp_if_Y TBB
2161 // jmp FBB
2163 // This requires creation of TmpBB after CurBB.
2165 // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
2166 // The requirement is that
2167 // FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
2168 // = FalseProb for original BB.
2169 // Assuming the original probabilities are A and B, one choice is to set
2170 // BB1's probabilities to A+B/2 and B/2, and set TmpBB's probabilities to
2171 // 2A/(1+A) and B/(1+A). This choice assumes that FalseProb for BB1 ==
2172 // TrueProb for BB1 * FalseProb for TmpBB.
2174 auto NewTrueProb = TProb + FProb / 2;
2175 auto NewFalseProb = FProb / 2;
2176 // Emit the LHS condition.
2177 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
2178 NewTrueProb, NewFalseProb, InvertCond);
2180 // Normalize A and B/2 to get 2A/(1+A) and B/(1+A).
2181 SmallVector<BranchProbability, 2> Probs{TProb, FProb / 2};
2182 BranchProbability::normalizeProbabilities(Probs.begin(), Probs.end());
2183 // Emit the RHS condition into TmpBB.
2184 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
2185 Probs[0], Probs[1], InvertCond);
2189 /// If the set of cases should be emitted as a series of branches, return true.
2190 /// If we should emit this as a bunch of and/or'd together conditions, return
2191 /// false.
2192 bool
2193 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
2194 if (Cases.size() != 2) return true;
2196 // If this is two comparisons of the same values or'd or and'd together, they
2197 // will get folded into a single comparison, so don't emit two blocks.
2198 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
2199 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
2200 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
2201 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
2202 return false;
2205 // Handle: (X != null) | (Y != null) --> (X|Y) != 0
2206 // Handle: (X == null) & (Y == null) --> (X|Y) == 0
2207 if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
2208 Cases[0].CC == Cases[1].CC &&
2209 isa<Constant>(Cases[0].CmpRHS) &&
2210 cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
2211 if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
2212 return false;
2213 if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
2214 return false;
2217 return true;
2220 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
2221 MachineBasicBlock *BrMBB = FuncInfo.MBB;
2223 // Update machine-CFG edges.
2224 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
2226 if (I.isUnconditional()) {
2227 // Update machine-CFG edges.
2228 BrMBB->addSuccessor(Succ0MBB);
2230 // If this is not a fall-through branch or optimizations are switched off,
2231 // emit the branch.
2232 if (Succ0MBB != NextBlock(BrMBB) || TM.getOptLevel() == CodeGenOpt::None)
2233 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2234 MVT::Other, getControlRoot(),
2235 DAG.getBasicBlock(Succ0MBB)));
2237 return;
2240 // If this condition is one of the special cases we handle, do special stuff
2241 // now.
2242 const Value *CondVal = I.getCondition();
2243 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
2245 // If this is a series of conditions that are or'd or and'd together, emit
2246 // this as a sequence of branches instead of setcc's with and/or operations.
2247 // As long as jumps are not expensive, this should improve performance.
2248 // For example, instead of something like:
2249 // cmp A, B
2250 // C = seteq
2251 // cmp D, E
2252 // F = setle
2253 // or C, F
2254 // jnz foo
2255 // Emit:
2256 // cmp A, B
2257 // je foo
2258 // cmp D, E
2259 // jle foo
2260 if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
2261 Instruction::BinaryOps Opcode = BOp->getOpcode();
2262 if (!DAG.getTargetLoweringInfo().isJumpExpensive() && BOp->hasOneUse() &&
2263 !I.getMetadata(LLVMContext::MD_unpredictable) &&
2264 (Opcode == Instruction::And || Opcode == Instruction::Or)) {
2265 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
2266 Opcode,
2267 getEdgeProbability(BrMBB, Succ0MBB),
2268 getEdgeProbability(BrMBB, Succ1MBB),
2269 /*InvertCond=*/false);
2270 // If the compares in later blocks need to use values not currently
2271 // exported from this block, export them now. This block should always
2272 // be the first entry.
2273 assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
2275 // Allow some cases to be rejected.
2276 if (ShouldEmitAsBranches(SwitchCases)) {
2277 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
2278 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
2279 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
2282 // Emit the branch for this block.
2283 visitSwitchCase(SwitchCases[0], BrMBB);
2284 SwitchCases.erase(SwitchCases.begin());
2285 return;
2288 // Okay, we decided not to do this, remove any inserted MBB's and clear
2289 // SwitchCases.
2290 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
2291 FuncInfo.MF->erase(SwitchCases[i].ThisBB);
2293 SwitchCases.clear();
2297 // Create a CaseBlock record representing this branch.
2298 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
2299 nullptr, Succ0MBB, Succ1MBB, BrMBB, getCurSDLoc());
2301 // Use visitSwitchCase to actually insert the fast branch sequence for this
2302 // cond branch.
2303 visitSwitchCase(CB, BrMBB);
2306 /// visitSwitchCase - Emits the necessary code to represent a single node in
2307 /// the binary search tree resulting from lowering a switch instruction.
2308 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
2309 MachineBasicBlock *SwitchBB) {
2310 SDValue Cond;
2311 SDValue CondLHS = getValue(CB.CmpLHS);
2312 SDLoc dl = CB.DL;
2314 if (CB.CC == ISD::SETTRUE) {
2315 // Branch or fall through to TrueBB.
2316 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2317 SwitchBB->normalizeSuccProbs();
2318 if (CB.TrueBB != NextBlock(SwitchBB)) {
2319 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, getControlRoot(),
2320 DAG.getBasicBlock(CB.TrueBB)));
2322 return;
2325 auto &TLI = DAG.getTargetLoweringInfo();
2326 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), CB.CmpLHS->getType());
2328 // Build the setcc now.
2329 if (!CB.CmpMHS) {
2330 // Fold "(X == true)" to X and "(X == false)" to !X to
2331 // handle common cases produced by branch lowering.
2332 if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
2333 CB.CC == ISD::SETEQ)
2334 Cond = CondLHS;
2335 else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
2336 CB.CC == ISD::SETEQ) {
2337 SDValue True = DAG.getConstant(1, dl, CondLHS.getValueType());
2338 Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
2339 } else {
2340 SDValue CondRHS = getValue(CB.CmpRHS);
2342 // If a pointer's DAG type is larger than its memory type then the DAG
2343 // values are zero-extended. This breaks signed comparisons so truncate
2344 // back to the underlying type before doing the compare.
2345 if (CondLHS.getValueType() != MemVT) {
2346 CondLHS = DAG.getPtrExtOrTrunc(CondLHS, getCurSDLoc(), MemVT);
2347 CondRHS = DAG.getPtrExtOrTrunc(CondRHS, getCurSDLoc(), MemVT);
2349 Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, CondRHS, CB.CC);
2351 } else {
2352 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
2354 const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
2355 const APInt& High = cast<ConstantInt>(CB.CmpRHS)->getValue();
2357 SDValue CmpOp = getValue(CB.CmpMHS);
2358 EVT VT = CmpOp.getValueType();
2360 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
2361 Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, dl, VT),
2362 ISD::SETLE);
2363 } else {
2364 SDValue SUB = DAG.getNode(ISD::SUB, dl,
2365 VT, CmpOp, DAG.getConstant(Low, dl, VT));
2366 Cond = DAG.getSetCC(dl, MVT::i1, SUB,
2367 DAG.getConstant(High-Low, dl, VT), ISD::SETULE);
2371 // Update successor info
2372 addSuccessorWithProb(SwitchBB, CB.TrueBB, CB.TrueProb);
2373 // TrueBB and FalseBB are always different unless the incoming IR is
2374 // degenerate. This only happens when running llc on weird IR.
2375 if (CB.TrueBB != CB.FalseBB)
2376 addSuccessorWithProb(SwitchBB, CB.FalseBB, CB.FalseProb);
2377 SwitchBB->normalizeSuccProbs();
2379 // If the lhs block is the next block, invert the condition so that we can
2380 // fall through to the lhs instead of the rhs block.
2381 if (CB.TrueBB == NextBlock(SwitchBB)) {
2382 std::swap(CB.TrueBB, CB.FalseBB);
2383 SDValue True = DAG.getConstant(1, dl, Cond.getValueType());
2384 Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
2387 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2388 MVT::Other, getControlRoot(), Cond,
2389 DAG.getBasicBlock(CB.TrueBB));
2391 // Insert the false branch. Do this even if it's a fall through branch,
2392 // this makes it easier to do DAG optimizations which require inverting
2393 // the branch condition.
2394 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2395 DAG.getBasicBlock(CB.FalseBB));
2397 DAG.setRoot(BrCond);
2400 /// visitJumpTable - Emit JumpTable node in the current MBB
2401 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
2402 // Emit the code for the jump table
2403 assert(JT.Reg != -1U && "Should lower JT Header first!");
2404 EVT PTy = DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout());
2405 SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
2406 JT.Reg, PTy);
2407 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
2408 SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
2409 MVT::Other, Index.getValue(1),
2410 Table, Index);
2411 DAG.setRoot(BrJumpTable);
2414 /// visitJumpTableHeader - This function emits necessary code to produce index
2415 /// in the JumpTable from switch case.
2416 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
2417 JumpTableHeader &JTH,
2418 MachineBasicBlock *SwitchBB) {
2419 SDLoc dl = getCurSDLoc();
2421 // Subtract the lowest switch case value from the value being switched on.
2422 SDValue SwitchOp = getValue(JTH.SValue);
2423 EVT VT = SwitchOp.getValueType();
2424 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2425 DAG.getConstant(JTH.First, dl, VT));
2427 // The SDNode we just created, which holds the value being switched on minus
2428 // the smallest case value, needs to be copied to a virtual register so it
2429 // can be used as an index into the jump table in a subsequent basic block.
2430 // This value may be smaller or larger than the target's pointer type, and
2431 // therefore require extension or truncating.
2432 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2433 SwitchOp = DAG.getZExtOrTrunc(Sub, dl, TLI.getPointerTy(DAG.getDataLayout()));
2435 unsigned JumpTableReg =
2436 FuncInfo.CreateReg(TLI.getPointerTy(DAG.getDataLayout()));
2437 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl,
2438 JumpTableReg, SwitchOp);
2439 JT.Reg = JumpTableReg;
2441 if (!JTH.OmitRangeCheck) {
2442 // Emit the range check for the jump table, and branch to the default block
2443 // for the switch statement if the value being switched on exceeds the
2444 // largest case in the switch.
2445 SDValue CMP = DAG.getSetCC(
2446 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2447 Sub.getValueType()),
2448 Sub, DAG.getConstant(JTH.Last - JTH.First, dl, VT), ISD::SETUGT);
2450 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2451 MVT::Other, CopyTo, CMP,
2452 DAG.getBasicBlock(JT.Default));
2454 // Avoid emitting unnecessary branches to the next block.
2455 if (JT.MBB != NextBlock(SwitchBB))
2456 BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
2457 DAG.getBasicBlock(JT.MBB));
2459 DAG.setRoot(BrCond);
2460 } else {
2461 // Avoid emitting unnecessary branches to the next block.
2462 if (JT.MBB != NextBlock(SwitchBB))
2463 DAG.setRoot(DAG.getNode(ISD::BR, dl, MVT::Other, CopyTo,
2464 DAG.getBasicBlock(JT.MBB)));
2465 else
2466 DAG.setRoot(CopyTo);
2470 /// Create a LOAD_STACK_GUARD node, and let it carry the target specific global
2471 /// variable if there exists one.
2472 static SDValue getLoadStackGuard(SelectionDAG &DAG, const SDLoc &DL,
2473 SDValue &Chain) {
2474 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2475 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2476 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2477 MachineFunction &MF = DAG.getMachineFunction();
2478 Value *Global = TLI.getSDagStackGuard(*MF.getFunction().getParent());
2479 MachineSDNode *Node =
2480 DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD, DL, PtrTy, Chain);
2481 if (Global) {
2482 MachinePointerInfo MPInfo(Global);
2483 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOInvariant |
2484 MachineMemOperand::MODereferenceable;
2485 MachineMemOperand *MemRef = MF.getMachineMemOperand(
2486 MPInfo, Flags, PtrTy.getSizeInBits() / 8, DAG.getEVTAlignment(PtrTy));
2487 DAG.setNodeMemRefs(Node, {MemRef});
2489 if (PtrTy != PtrMemTy)
2490 return DAG.getPtrExtOrTrunc(SDValue(Node, 0), DL, PtrMemTy);
2491 return SDValue(Node, 0);
2494 /// Codegen a new tail for a stack protector check ParentMBB which has had its
2495 /// tail spliced into a stack protector check success bb.
2497 /// For a high level explanation of how this fits into the stack protector
2498 /// generation see the comment on the declaration of class
2499 /// StackProtectorDescriptor.
2500 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
2501 MachineBasicBlock *ParentBB) {
2503 // First create the loads to the guard/stack slot for the comparison.
2504 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2505 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
2506 EVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout());
2508 MachineFrameInfo &MFI = ParentBB->getParent()->getFrameInfo();
2509 int FI = MFI.getStackProtectorIndex();
2511 SDValue Guard;
2512 SDLoc dl = getCurSDLoc();
2513 SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
2514 const Module &M = *ParentBB->getParent()->getFunction().getParent();
2515 unsigned Align = DL->getPrefTypeAlignment(Type::getInt8PtrTy(M.getContext()));
2517 // Generate code to load the content of the guard slot.
2518 SDValue GuardVal = DAG.getLoad(
2519 PtrMemTy, dl, DAG.getEntryNode(), StackSlotPtr,
2520 MachinePointerInfo::getFixedStack(DAG.getMachineFunction(), FI), Align,
2521 MachineMemOperand::MOVolatile);
2523 if (TLI.useStackGuardXorFP())
2524 GuardVal = TLI.emitStackGuardXorFP(DAG, GuardVal, dl);
2526 // Retrieve guard check function, nullptr if instrumentation is inlined.
2527 if (const Function *GuardCheckFn = TLI.getSSPStackGuardCheck(M)) {
2528 // The target provides a guard check function to validate the guard value.
2529 // Generate a call to that function with the content of the guard slot as
2530 // argument.
2531 FunctionType *FnTy = GuardCheckFn->getFunctionType();
2532 assert(FnTy->getNumParams() == 1 && "Invalid function signature");
2534 TargetLowering::ArgListTy Args;
2535 TargetLowering::ArgListEntry Entry;
2536 Entry.Node = GuardVal;
2537 Entry.Ty = FnTy->getParamType(0);
2538 if (GuardCheckFn->hasAttribute(1, Attribute::AttrKind::InReg))
2539 Entry.IsInReg = true;
2540 Args.push_back(Entry);
2542 TargetLowering::CallLoweringInfo CLI(DAG);
2543 CLI.setDebugLoc(getCurSDLoc())
2544 .setChain(DAG.getEntryNode())
2545 .setCallee(GuardCheckFn->getCallingConv(), FnTy->getReturnType(),
2546 getValue(GuardCheckFn), std::move(Args));
2548 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
2549 DAG.setRoot(Result.second);
2550 return;
2553 // If useLoadStackGuardNode returns true, generate LOAD_STACK_GUARD.
2554 // Otherwise, emit a volatile load to retrieve the stack guard value.
2555 SDValue Chain = DAG.getEntryNode();
2556 if (TLI.useLoadStackGuardNode()) {
2557 Guard = getLoadStackGuard(DAG, dl, Chain);
2558 } else {
2559 const Value *IRGuard = TLI.getSDagStackGuard(M);
2560 SDValue GuardPtr = getValue(IRGuard);
2562 Guard = DAG.getLoad(PtrMemTy, dl, Chain, GuardPtr,
2563 MachinePointerInfo(IRGuard, 0), Align,
2564 MachineMemOperand::MOVolatile);
2567 // Perform the comparison via a subtract/getsetcc.
2568 EVT VT = Guard.getValueType();
2569 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, Guard, GuardVal);
2571 SDValue Cmp = DAG.getSetCC(dl, TLI.getSetCCResultType(DAG.getDataLayout(),
2572 *DAG.getContext(),
2573 Sub.getValueType()),
2574 Sub, DAG.getConstant(0, dl, VT), ISD::SETNE);
2576 // If the sub is not 0, then we know the guard/stackslot do not equal, so
2577 // branch to failure MBB.
2578 SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
2579 MVT::Other, GuardVal.getOperand(0),
2580 Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
2581 // Otherwise branch to success MBB.
2582 SDValue Br = DAG.getNode(ISD::BR, dl,
2583 MVT::Other, BrCond,
2584 DAG.getBasicBlock(SPD.getSuccessMBB()));
2586 DAG.setRoot(Br);
2589 /// Codegen the failure basic block for a stack protector check.
2591 /// A failure stack protector machine basic block consists simply of a call to
2592 /// __stack_chk_fail().
2594 /// For a high level explanation of how this fits into the stack protector
2595 /// generation see the comment on the declaration of class
2596 /// StackProtectorDescriptor.
2597 void
2598 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
2599 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2600 SDValue Chain =
2601 TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
2602 None, false, getCurSDLoc(), false, false).second;
2603 // On PS4, the "return address" must still be within the calling function,
2604 // even if it's at the very end, so emit an explicit TRAP here.
2605 // Passing 'true' for doesNotReturn above won't generate the trap for us.
2606 if (TM.getTargetTriple().isPS4CPU())
2607 Chain = DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, Chain);
2609 DAG.setRoot(Chain);
2612 /// visitBitTestHeader - This function emits necessary code to produce value
2613 /// suitable for "bit tests"
2614 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
2615 MachineBasicBlock *SwitchBB) {
2616 SDLoc dl = getCurSDLoc();
2618 // Subtract the minimum value
2619 SDValue SwitchOp = getValue(B.SValue);
2620 EVT VT = SwitchOp.getValueType();
2621 SDValue Sub = DAG.getNode(ISD::SUB, dl, VT, SwitchOp,
2622 DAG.getConstant(B.First, dl, VT));
2624 // Check range
2625 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2626 SDValue RangeCmp = DAG.getSetCC(
2627 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(),
2628 Sub.getValueType()),
2629 Sub, DAG.getConstant(B.Range, dl, VT), ISD::SETUGT);
2631 // Determine the type of the test operands.
2632 bool UsePtrType = false;
2633 if (!TLI.isTypeLegal(VT))
2634 UsePtrType = true;
2635 else {
2636 for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
2637 if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
2638 // Switch table case range are encoded into series of masks.
2639 // Just use pointer type, it's guaranteed to fit.
2640 UsePtrType = true;
2641 break;
2644 if (UsePtrType) {
2645 VT = TLI.getPointerTy(DAG.getDataLayout());
2646 Sub = DAG.getZExtOrTrunc(Sub, dl, VT);
2649 B.RegVT = VT.getSimpleVT();
2650 B.Reg = FuncInfo.CreateReg(B.RegVT);
2651 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), dl, B.Reg, Sub);
2653 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
2655 addSuccessorWithProb(SwitchBB, B.Default, B.DefaultProb);
2656 addSuccessorWithProb(SwitchBB, MBB, B.Prob);
2657 SwitchBB->normalizeSuccProbs();
2659 SDValue BrRange = DAG.getNode(ISD::BRCOND, dl,
2660 MVT::Other, CopyTo, RangeCmp,
2661 DAG.getBasicBlock(B.Default));
2663 // Avoid emitting unnecessary branches to the next block.
2664 if (MBB != NextBlock(SwitchBB))
2665 BrRange = DAG.getNode(ISD::BR, dl, MVT::Other, BrRange,
2666 DAG.getBasicBlock(MBB));
2668 DAG.setRoot(BrRange);
2671 /// visitBitTestCase - this function produces one "bit test"
2672 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
2673 MachineBasicBlock* NextMBB,
2674 BranchProbability BranchProbToNext,
2675 unsigned Reg,
2676 BitTestCase &B,
2677 MachineBasicBlock *SwitchBB) {
2678 SDLoc dl = getCurSDLoc();
2679 MVT VT = BB.RegVT;
2680 SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), dl, Reg, VT);
2681 SDValue Cmp;
2682 unsigned PopCount = countPopulation(B.Mask);
2683 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2684 if (PopCount == 1) {
2685 // Testing for a single bit; just compare the shift count with what it
2686 // would need to be to shift a 1 bit in that position.
2687 Cmp = DAG.getSetCC(
2688 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2689 ShiftOp, DAG.getConstant(countTrailingZeros(B.Mask), dl, VT),
2690 ISD::SETEQ);
2691 } else if (PopCount == BB.Range) {
2692 // There is only one zero bit in the range, test for it directly.
2693 Cmp = DAG.getSetCC(
2694 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2695 ShiftOp, DAG.getConstant(countTrailingOnes(B.Mask), dl, VT),
2696 ISD::SETNE);
2697 } else {
2698 // Make desired shift
2699 SDValue SwitchVal = DAG.getNode(ISD::SHL, dl, VT,
2700 DAG.getConstant(1, dl, VT), ShiftOp);
2702 // Emit bit tests and jumps
2703 SDValue AndOp = DAG.getNode(ISD::AND, dl,
2704 VT, SwitchVal, DAG.getConstant(B.Mask, dl, VT));
2705 Cmp = DAG.getSetCC(
2706 dl, TLI.getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT),
2707 AndOp, DAG.getConstant(0, dl, VT), ISD::SETNE);
2710 // The branch probability from SwitchBB to B.TargetBB is B.ExtraProb.
2711 addSuccessorWithProb(SwitchBB, B.TargetBB, B.ExtraProb);
2712 // The branch probability from SwitchBB to NextMBB is BranchProbToNext.
2713 addSuccessorWithProb(SwitchBB, NextMBB, BranchProbToNext);
2714 // It is not guaranteed that the sum of B.ExtraProb and BranchProbToNext is
2715 // one as they are relative probabilities (and thus work more like weights),
2716 // and hence we need to normalize them to let the sum of them become one.
2717 SwitchBB->normalizeSuccProbs();
2719 SDValue BrAnd = DAG.getNode(ISD::BRCOND, dl,
2720 MVT::Other, getControlRoot(),
2721 Cmp, DAG.getBasicBlock(B.TargetBB));
2723 // Avoid emitting unnecessary branches to the next block.
2724 if (NextMBB != NextBlock(SwitchBB))
2725 BrAnd = DAG.getNode(ISD::BR, dl, MVT::Other, BrAnd,
2726 DAG.getBasicBlock(NextMBB));
2728 DAG.setRoot(BrAnd);
2731 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2732 MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2734 // Retrieve successors. Look through artificial IR level blocks like
2735 // catchswitch for successors.
2736 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2737 const BasicBlock *EHPadBB = I.getSuccessor(1);
2739 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2740 // have to do anything here to lower funclet bundles.
2741 assert(!I.hasOperandBundlesOtherThan(
2742 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2743 "Cannot lower invokes with arbitrary operand bundles yet!");
2745 const Value *Callee(I.getCalledValue());
2746 const Function *Fn = dyn_cast<Function>(Callee);
2747 if (isa<InlineAsm>(Callee))
2748 visitInlineAsm(&I);
2749 else if (Fn && Fn->isIntrinsic()) {
2750 switch (Fn->getIntrinsicID()) {
2751 default:
2752 llvm_unreachable("Cannot invoke this intrinsic");
2753 case Intrinsic::donothing:
2754 // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2755 break;
2756 case Intrinsic::experimental_patchpoint_void:
2757 case Intrinsic::experimental_patchpoint_i64:
2758 visitPatchpoint(&I, EHPadBB);
2759 break;
2760 case Intrinsic::experimental_gc_statepoint:
2761 LowerStatepoint(ImmutableStatepoint(&I), EHPadBB);
2762 break;
2763 case Intrinsic::wasm_rethrow_in_catch: {
2764 // This is usually done in visitTargetIntrinsic, but this intrinsic is
2765 // special because it can be invoked, so we manually lower it to a DAG
2766 // node here.
2767 SmallVector<SDValue, 8> Ops;
2768 Ops.push_back(getRoot()); // inchain
2769 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2770 Ops.push_back(
2771 DAG.getTargetConstant(Intrinsic::wasm_rethrow_in_catch, getCurSDLoc(),
2772 TLI.getPointerTy(DAG.getDataLayout())));
2773 SDVTList VTs = DAG.getVTList(ArrayRef<EVT>({MVT::Other})); // outchain
2774 DAG.setRoot(DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops));
2775 break;
2778 } else if (I.countOperandBundlesOfType(LLVMContext::OB_deopt)) {
2779 // Currently we do not lower any intrinsic calls with deopt operand bundles.
2780 // Eventually we will support lowering the @llvm.experimental.deoptimize
2781 // intrinsic, and right now there are no plans to support other intrinsics
2782 // with deopt state.
2783 LowerCallSiteWithDeoptBundle(&I, getValue(Callee), EHPadBB);
2784 } else {
2785 LowerCallTo(&I, getValue(Callee), false, EHPadBB);
2788 // If the value of the invoke is used outside of its defining block, make it
2789 // available as a virtual register.
2790 // We already took care of the exported value for the statepoint instruction
2791 // during call to the LowerStatepoint.
2792 if (!isStatepoint(I)) {
2793 CopyToExportRegsIfNeeded(&I);
2796 SmallVector<std::pair<MachineBasicBlock *, BranchProbability>, 1> UnwindDests;
2797 BranchProbabilityInfo *BPI = FuncInfo.BPI;
2798 BranchProbability EHPadBBProb =
2799 BPI ? BPI->getEdgeProbability(InvokeMBB->getBasicBlock(), EHPadBB)
2800 : BranchProbability::getZero();
2801 findUnwindDestinations(FuncInfo, EHPadBB, EHPadBBProb, UnwindDests);
2803 // Update successor info.
2804 addSuccessorWithProb(InvokeMBB, Return);
2805 for (auto &UnwindDest : UnwindDests) {
2806 UnwindDest.first->setIsEHPad();
2807 addSuccessorWithProb(InvokeMBB, UnwindDest.first, UnwindDest.second);
2809 InvokeMBB->normalizeSuccProbs();
2811 // Drop into normal successor.
2812 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, getControlRoot(),
2813 DAG.getBasicBlock(Return)));
2816 void SelectionDAGBuilder::visitCallBr(const CallBrInst &I) {
2817 MachineBasicBlock *CallBrMBB = FuncInfo.MBB;
2819 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
2820 // have to do anything here to lower funclet bundles.
2821 assert(!I.hasOperandBundlesOtherThan(
2822 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
2823 "Cannot lower callbrs with arbitrary operand bundles yet!");
2825 assert(isa<InlineAsm>(I.getCalledValue()) &&
2826 "Only know how to handle inlineasm callbr");
2827 visitInlineAsm(&I);
2829 // Retrieve successors.
2830 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getDefaultDest()];
2832 // Update successor info.
2833 addSuccessorWithProb(CallBrMBB, Return);
2834 for (unsigned i = 0, e = I.getNumIndirectDests(); i < e; ++i) {
2835 MachineBasicBlock *Target = FuncInfo.MBBMap[I.getIndirectDest(i)];
2836 addSuccessorWithProb(CallBrMBB, Target);
2838 CallBrMBB->normalizeSuccProbs();
2840 // Drop into default successor.
2841 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2842 MVT::Other, getControlRoot(),
2843 DAG.getBasicBlock(Return)));
2846 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2847 llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2850 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2851 assert(FuncInfo.MBB->isEHPad() &&
2852 "Call to landingpad not in landing pad!");
2854 // If there aren't registers to copy the values into (e.g., during SjLj
2855 // exceptions), then don't bother to create these DAG nodes.
2856 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2857 const Constant *PersonalityFn = FuncInfo.Fn->getPersonalityFn();
2858 if (TLI.getExceptionPointerRegister(PersonalityFn) == 0 &&
2859 TLI.getExceptionSelectorRegister(PersonalityFn) == 0)
2860 return;
2862 // If landingpad's return type is token type, we don't create DAG nodes
2863 // for its exception pointer and selector value. The extraction of exception
2864 // pointer or selector value from token type landingpads is not currently
2865 // supported.
2866 if (LP.getType()->isTokenTy())
2867 return;
2869 SmallVector<EVT, 2> ValueVTs;
2870 SDLoc dl = getCurSDLoc();
2871 ComputeValueVTs(TLI, DAG.getDataLayout(), LP.getType(), ValueVTs);
2872 assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2874 // Get the two live-in registers as SDValues. The physregs have already been
2875 // copied into virtual registers.
2876 SDValue Ops[2];
2877 if (FuncInfo.ExceptionPointerVirtReg) {
2878 Ops[0] = DAG.getZExtOrTrunc(
2879 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2880 FuncInfo.ExceptionPointerVirtReg,
2881 TLI.getPointerTy(DAG.getDataLayout())),
2882 dl, ValueVTs[0]);
2883 } else {
2884 Ops[0] = DAG.getConstant(0, dl, TLI.getPointerTy(DAG.getDataLayout()));
2886 Ops[1] = DAG.getZExtOrTrunc(
2887 DAG.getCopyFromReg(DAG.getEntryNode(), dl,
2888 FuncInfo.ExceptionSelectorVirtReg,
2889 TLI.getPointerTy(DAG.getDataLayout())),
2890 dl, ValueVTs[1]);
2892 // Merge into one.
2893 SDValue Res = DAG.getNode(ISD::MERGE_VALUES, dl,
2894 DAG.getVTList(ValueVTs), Ops);
2895 setValue(&LP, Res);
2898 void SelectionDAGBuilder::sortAndRangeify(CaseClusterVector &Clusters) {
2899 #ifndef NDEBUG
2900 for (const CaseCluster &CC : Clusters)
2901 assert(CC.Low == CC.High && "Input clusters must be single-case");
2902 #endif
2904 llvm::sort(Clusters, [](const CaseCluster &a, const CaseCluster &b) {
2905 return a.Low->getValue().slt(b.Low->getValue());
2908 // Merge adjacent clusters with the same destination.
2909 const unsigned N = Clusters.size();
2910 unsigned DstIndex = 0;
2911 for (unsigned SrcIndex = 0; SrcIndex < N; ++SrcIndex) {
2912 CaseCluster &CC = Clusters[SrcIndex];
2913 const ConstantInt *CaseVal = CC.Low;
2914 MachineBasicBlock *Succ = CC.MBB;
2916 if (DstIndex != 0 && Clusters[DstIndex - 1].MBB == Succ &&
2917 (CaseVal->getValue() - Clusters[DstIndex - 1].High->getValue()) == 1) {
2918 // If this case has the same successor and is a neighbour, merge it into
2919 // the previous cluster.
2920 Clusters[DstIndex - 1].High = CaseVal;
2921 Clusters[DstIndex - 1].Prob += CC.Prob;
2922 } else {
2923 std::memmove(&Clusters[DstIndex++], &Clusters[SrcIndex],
2924 sizeof(Clusters[SrcIndex]));
2927 Clusters.resize(DstIndex);
2930 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2931 MachineBasicBlock *Last) {
2932 // Update JTCases.
2933 for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2934 if (JTCases[i].first.HeaderBB == First)
2935 JTCases[i].first.HeaderBB = Last;
2937 // Update BitTestCases.
2938 for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2939 if (BitTestCases[i].Parent == First)
2940 BitTestCases[i].Parent = Last;
2943 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2944 MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2946 // Update machine-CFG edges with unique successors.
2947 SmallSet<BasicBlock*, 32> Done;
2948 for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2949 BasicBlock *BB = I.getSuccessor(i);
2950 bool Inserted = Done.insert(BB).second;
2951 if (!Inserted)
2952 continue;
2954 MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2955 addSuccessorWithProb(IndirectBrMBB, Succ);
2957 IndirectBrMBB->normalizeSuccProbs();
2959 DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2960 MVT::Other, getControlRoot(),
2961 getValue(I.getAddress())));
2964 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2965 if (!DAG.getTarget().Options.TrapUnreachable)
2966 return;
2968 // We may be able to ignore unreachable behind a noreturn call.
2969 if (DAG.getTarget().Options.NoTrapAfterNoreturn) {
2970 const BasicBlock &BB = *I.getParent();
2971 if (&I != &BB.front()) {
2972 BasicBlock::const_iterator PredI =
2973 std::prev(BasicBlock::const_iterator(&I));
2974 if (const CallInst *Call = dyn_cast<CallInst>(&*PredI)) {
2975 if (Call->doesNotReturn())
2976 return;
2981 DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2984 void SelectionDAGBuilder::visitFSub(const User &I) {
2985 // -0.0 - X --> fneg
2986 Type *Ty = I.getType();
2987 if (isa<Constant>(I.getOperand(0)) &&
2988 I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2989 SDValue Op2 = getValue(I.getOperand(1));
2990 setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2991 Op2.getValueType(), Op2));
2992 return;
2995 visitBinary(I, ISD::FSUB);
2998 /// Checks if the given instruction performs a vector reduction, in which case
2999 /// we have the freedom to alter the elements in the result as long as the
3000 /// reduction of them stays unchanged.
3001 static bool isVectorReductionOp(const User *I) {
3002 const Instruction *Inst = dyn_cast<Instruction>(I);
3003 if (!Inst || !Inst->getType()->isVectorTy())
3004 return false;
3006 auto OpCode = Inst->getOpcode();
3007 switch (OpCode) {
3008 case Instruction::Add:
3009 case Instruction::Mul:
3010 case Instruction::And:
3011 case Instruction::Or:
3012 case Instruction::Xor:
3013 break;
3014 case Instruction::FAdd:
3015 case Instruction::FMul:
3016 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3017 if (FPOp->getFastMathFlags().isFast())
3018 break;
3019 LLVM_FALLTHROUGH;
3020 default:
3021 return false;
3024 unsigned ElemNum = Inst->getType()->getVectorNumElements();
3025 // Ensure the reduction size is a power of 2.
3026 if (!isPowerOf2_32(ElemNum))
3027 return false;
3029 unsigned ElemNumToReduce = ElemNum;
3031 // Do DFS search on the def-use chain from the given instruction. We only
3032 // allow four kinds of operations during the search until we reach the
3033 // instruction that extracts the first element from the vector:
3035 // 1. The reduction operation of the same opcode as the given instruction.
3037 // 2. PHI node.
3039 // 3. ShuffleVector instruction together with a reduction operation that
3040 // does a partial reduction.
3042 // 4. ExtractElement that extracts the first element from the vector, and we
3043 // stop searching the def-use chain here.
3045 // 3 & 4 above perform a reduction on all elements of the vector. We push defs
3046 // from 1-3 to the stack to continue the DFS. The given instruction is not
3047 // a reduction operation if we meet any other instructions other than those
3048 // listed above.
3050 SmallVector<const User *, 16> UsersToVisit{Inst};
3051 SmallPtrSet<const User *, 16> Visited;
3052 bool ReduxExtracted = false;
3054 while (!UsersToVisit.empty()) {
3055 auto User = UsersToVisit.back();
3056 UsersToVisit.pop_back();
3057 if (!Visited.insert(User).second)
3058 continue;
3060 for (const auto &U : User->users()) {
3061 auto Inst = dyn_cast<Instruction>(U);
3062 if (!Inst)
3063 return false;
3065 if (Inst->getOpcode() == OpCode || isa<PHINode>(U)) {
3066 if (const FPMathOperator *FPOp = dyn_cast<const FPMathOperator>(Inst))
3067 if (!isa<PHINode>(FPOp) && !FPOp->getFastMathFlags().isFast())
3068 return false;
3069 UsersToVisit.push_back(U);
3070 } else if (const ShuffleVectorInst *ShufInst =
3071 dyn_cast<ShuffleVectorInst>(U)) {
3072 // Detect the following pattern: A ShuffleVector instruction together
3073 // with a reduction that do partial reduction on the first and second
3074 // ElemNumToReduce / 2 elements, and store the result in
3075 // ElemNumToReduce / 2 elements in another vector.
3077 unsigned ResultElements = ShufInst->getType()->getVectorNumElements();
3078 if (ResultElements < ElemNum)
3079 return false;
3081 if (ElemNumToReduce == 1)
3082 return false;
3083 if (!isa<UndefValue>(U->getOperand(1)))
3084 return false;
3085 for (unsigned i = 0; i < ElemNumToReduce / 2; ++i)
3086 if (ShufInst->getMaskValue(i) != int(i + ElemNumToReduce / 2))
3087 return false;
3088 for (unsigned i = ElemNumToReduce / 2; i < ElemNum; ++i)
3089 if (ShufInst->getMaskValue(i) != -1)
3090 return false;
3092 // There is only one user of this ShuffleVector instruction, which
3093 // must be a reduction operation.
3094 if (!U->hasOneUse())
3095 return false;
3097 auto U2 = dyn_cast<Instruction>(*U->user_begin());
3098 if (!U2 || U2->getOpcode() != OpCode)
3099 return false;
3101 // Check operands of the reduction operation.
3102 if ((U2->getOperand(0) == U->getOperand(0) && U2->getOperand(1) == U) ||
3103 (U2->getOperand(1) == U->getOperand(0) && U2->getOperand(0) == U)) {
3104 UsersToVisit.push_back(U2);
3105 ElemNumToReduce /= 2;
3106 } else
3107 return false;
3108 } else if (isa<ExtractElementInst>(U)) {
3109 // At this moment we should have reduced all elements in the vector.
3110 if (ElemNumToReduce != 1)
3111 return false;
3113 const ConstantInt *Val = dyn_cast<ConstantInt>(U->getOperand(1));
3114 if (!Val || !Val->isZero())
3115 return false;
3117 ReduxExtracted = true;
3118 } else
3119 return false;
3122 return ReduxExtracted;
3125 void SelectionDAGBuilder::visitUnary(const User &I, unsigned Opcode) {
3126 SDNodeFlags Flags;
3128 SDValue Op = getValue(I.getOperand(0));
3129 SDValue UnNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op.getValueType(),
3130 Op, Flags);
3131 setValue(&I, UnNodeValue);
3134 void SelectionDAGBuilder::visitBinary(const User &I, unsigned Opcode) {
3135 SDNodeFlags Flags;
3136 if (auto *OFBinOp = dyn_cast<OverflowingBinaryOperator>(&I)) {
3137 Flags.setNoSignedWrap(OFBinOp->hasNoSignedWrap());
3138 Flags.setNoUnsignedWrap(OFBinOp->hasNoUnsignedWrap());
3140 if (auto *ExactOp = dyn_cast<PossiblyExactOperator>(&I)) {
3141 Flags.setExact(ExactOp->isExact());
3143 if (isVectorReductionOp(&I)) {
3144 Flags.setVectorReduction(true);
3145 LLVM_DEBUG(dbgs() << "Detected a reduction operation:" << I << "\n");
3148 SDValue Op1 = getValue(I.getOperand(0));
3149 SDValue Op2 = getValue(I.getOperand(1));
3150 SDValue BinNodeValue = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(),
3151 Op1, Op2, Flags);
3152 setValue(&I, BinNodeValue);
3155 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
3156 SDValue Op1 = getValue(I.getOperand(0));
3157 SDValue Op2 = getValue(I.getOperand(1));
3159 EVT ShiftTy = DAG.getTargetLoweringInfo().getShiftAmountTy(
3160 Op1.getValueType(), DAG.getDataLayout());
3162 // Coerce the shift amount to the right type if we can.
3163 if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
3164 unsigned ShiftSize = ShiftTy.getSizeInBits();
3165 unsigned Op2Size = Op2.getValueSizeInBits();
3166 SDLoc DL = getCurSDLoc();
3168 // If the operand is smaller than the shift count type, promote it.
3169 if (ShiftSize > Op2Size)
3170 Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
3172 // If the operand is larger than the shift count type but the shift
3173 // count type has enough bits to represent any shift value, truncate
3174 // it now. This is a common case and it exposes the truncate to
3175 // optimization early.
3176 else if (ShiftSize >= Log2_32_Ceil(Op2.getValueSizeInBits()))
3177 Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
3178 // Otherwise we'll need to temporarily settle for some other convenient
3179 // type. Type legalization will make adjustments once the shiftee is split.
3180 else
3181 Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
3184 bool nuw = false;
3185 bool nsw = false;
3186 bool exact = false;
3188 if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
3190 if (const OverflowingBinaryOperator *OFBinOp =
3191 dyn_cast<const OverflowingBinaryOperator>(&I)) {
3192 nuw = OFBinOp->hasNoUnsignedWrap();
3193 nsw = OFBinOp->hasNoSignedWrap();
3195 if (const PossiblyExactOperator *ExactOp =
3196 dyn_cast<const PossiblyExactOperator>(&I))
3197 exact = ExactOp->isExact();
3199 SDNodeFlags Flags;
3200 Flags.setExact(exact);
3201 Flags.setNoSignedWrap(nsw);
3202 Flags.setNoUnsignedWrap(nuw);
3203 SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
3204 Flags);
3205 setValue(&I, Res);
3208 void SelectionDAGBuilder::visitSDiv(const User &I) {
3209 SDValue Op1 = getValue(I.getOperand(0));
3210 SDValue Op2 = getValue(I.getOperand(1));
3212 SDNodeFlags Flags;
3213 Flags.setExact(isa<PossiblyExactOperator>(&I) &&
3214 cast<PossiblyExactOperator>(&I)->isExact());
3215 setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(), Op1,
3216 Op2, Flags));
3219 void SelectionDAGBuilder::visitICmp(const User &I) {
3220 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
3221 if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
3222 predicate = IC->getPredicate();
3223 else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
3224 predicate = ICmpInst::Predicate(IC->getPredicate());
3225 SDValue Op1 = getValue(I.getOperand(0));
3226 SDValue Op2 = getValue(I.getOperand(1));
3227 ISD::CondCode Opcode = getICmpCondCode(predicate);
3229 auto &TLI = DAG.getTargetLoweringInfo();
3230 EVT MemVT =
3231 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3233 // If a pointer's DAG type is larger than its memory type then the DAG values
3234 // are zero-extended. This breaks signed comparisons so truncate back to the
3235 // underlying type before doing the compare.
3236 if (Op1.getValueType() != MemVT) {
3237 Op1 = DAG.getPtrExtOrTrunc(Op1, getCurSDLoc(), MemVT);
3238 Op2 = DAG.getPtrExtOrTrunc(Op2, getCurSDLoc(), MemVT);
3241 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3242 I.getType());
3243 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
3246 void SelectionDAGBuilder::visitFCmp(const User &I) {
3247 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
3248 if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
3249 predicate = FC->getPredicate();
3250 else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
3251 predicate = FCmpInst::Predicate(FC->getPredicate());
3252 SDValue Op1 = getValue(I.getOperand(0));
3253 SDValue Op2 = getValue(I.getOperand(1));
3255 ISD::CondCode Condition = getFCmpCondCode(predicate);
3256 auto *FPMO = dyn_cast<FPMathOperator>(&I);
3257 if ((FPMO && FPMO->hasNoNaNs()) || TM.Options.NoNaNsFPMath)
3258 Condition = getFCmpCodeWithoutNaN(Condition);
3260 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3261 I.getType());
3262 setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
3265 // Check if the condition of the select has one use or two users that are both
3266 // selects with the same condition.
3267 static bool hasOnlySelectUsers(const Value *Cond) {
3268 return llvm::all_of(Cond->users(), [](const Value *V) {
3269 return isa<SelectInst>(V);
3273 void SelectionDAGBuilder::visitSelect(const User &I) {
3274 SmallVector<EVT, 4> ValueVTs;
3275 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), I.getType(),
3276 ValueVTs);
3277 unsigned NumValues = ValueVTs.size();
3278 if (NumValues == 0) return;
3280 SmallVector<SDValue, 4> Values(NumValues);
3281 SDValue Cond = getValue(I.getOperand(0));
3282 SDValue LHSVal = getValue(I.getOperand(1));
3283 SDValue RHSVal = getValue(I.getOperand(2));
3284 auto BaseOps = {Cond};
3285 ISD::NodeType OpCode = Cond.getValueType().isVector() ?
3286 ISD::VSELECT : ISD::SELECT;
3288 bool IsUnaryAbs = false;
3290 // Min/max matching is only viable if all output VTs are the same.
3291 if (is_splat(ValueVTs)) {
3292 EVT VT = ValueVTs[0];
3293 LLVMContext &Ctx = *DAG.getContext();
3294 auto &TLI = DAG.getTargetLoweringInfo();
3296 // We care about the legality of the operation after it has been type
3297 // legalized.
3298 while (TLI.getTypeAction(Ctx, VT) != TargetLoweringBase::TypeLegal &&
3299 VT != TLI.getTypeToTransformTo(Ctx, VT))
3300 VT = TLI.getTypeToTransformTo(Ctx, VT);
3302 // If the vselect is legal, assume we want to leave this as a vector setcc +
3303 // vselect. Otherwise, if this is going to be scalarized, we want to see if
3304 // min/max is legal on the scalar type.
3305 bool UseScalarMinMax = VT.isVector() &&
3306 !TLI.isOperationLegalOrCustom(ISD::VSELECT, VT);
3308 Value *LHS, *RHS;
3309 auto SPR = matchSelectPattern(const_cast<User*>(&I), LHS, RHS);
3310 ISD::NodeType Opc = ISD::DELETED_NODE;
3311 switch (SPR.Flavor) {
3312 case SPF_UMAX: Opc = ISD::UMAX; break;
3313 case SPF_UMIN: Opc = ISD::UMIN; break;
3314 case SPF_SMAX: Opc = ISD::SMAX; break;
3315 case SPF_SMIN: Opc = ISD::SMIN; break;
3316 case SPF_FMINNUM:
3317 switch (SPR.NaNBehavior) {
3318 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3319 case SPNB_RETURNS_NAN: Opc = ISD::FMINIMUM; break;
3320 case SPNB_RETURNS_OTHER: Opc = ISD::FMINNUM; break;
3321 case SPNB_RETURNS_ANY: {
3322 if (TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT))
3323 Opc = ISD::FMINNUM;
3324 else if (TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT))
3325 Opc = ISD::FMINIMUM;
3326 else if (UseScalarMinMax)
3327 Opc = TLI.isOperationLegalOrCustom(ISD::FMINNUM, VT.getScalarType()) ?
3328 ISD::FMINNUM : ISD::FMINIMUM;
3329 break;
3332 break;
3333 case SPF_FMAXNUM:
3334 switch (SPR.NaNBehavior) {
3335 case SPNB_NA: llvm_unreachable("No NaN behavior for FP op?");
3336 case SPNB_RETURNS_NAN: Opc = ISD::FMAXIMUM; break;
3337 case SPNB_RETURNS_OTHER: Opc = ISD::FMAXNUM; break;
3338 case SPNB_RETURNS_ANY:
3340 if (TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT))
3341 Opc = ISD::FMAXNUM;
3342 else if (TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT))
3343 Opc = ISD::FMAXIMUM;
3344 else if (UseScalarMinMax)
3345 Opc = TLI.isOperationLegalOrCustom(ISD::FMAXNUM, VT.getScalarType()) ?
3346 ISD::FMAXNUM : ISD::FMAXIMUM;
3347 break;
3349 break;
3350 case SPF_ABS:
3351 IsUnaryAbs = true;
3352 Opc = ISD::ABS;
3353 break;
3354 case SPF_NABS:
3355 // TODO: we need to produce sub(0, abs(X)).
3356 default: break;
3359 if (!IsUnaryAbs && Opc != ISD::DELETED_NODE &&
3360 (TLI.isOperationLegalOrCustom(Opc, VT) ||
3361 (UseScalarMinMax &&
3362 TLI.isOperationLegalOrCustom(Opc, VT.getScalarType()))) &&
3363 // If the underlying comparison instruction is used by any other
3364 // instruction, the consumed instructions won't be destroyed, so it is
3365 // not profitable to convert to a min/max.
3366 hasOnlySelectUsers(cast<SelectInst>(I).getCondition())) {
3367 OpCode = Opc;
3368 LHSVal = getValue(LHS);
3369 RHSVal = getValue(RHS);
3370 BaseOps = {};
3373 if (IsUnaryAbs) {
3374 OpCode = Opc;
3375 LHSVal = getValue(LHS);
3376 BaseOps = {};
3380 if (IsUnaryAbs) {
3381 for (unsigned i = 0; i != NumValues; ++i) {
3382 Values[i] =
3383 DAG.getNode(OpCode, getCurSDLoc(),
3384 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i),
3385 SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3387 } else {
3388 for (unsigned i = 0; i != NumValues; ++i) {
3389 SmallVector<SDValue, 3> Ops(BaseOps.begin(), BaseOps.end());
3390 Ops.push_back(SDValue(LHSVal.getNode(), LHSVal.getResNo() + i));
3391 Ops.push_back(SDValue(RHSVal.getNode(), RHSVal.getResNo() + i));
3392 Values[i] = DAG.getNode(
3393 OpCode, getCurSDLoc(),
3394 LHSVal.getNode()->getValueType(LHSVal.getResNo() + i), Ops);
3398 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3399 DAG.getVTList(ValueVTs), Values));
3402 void SelectionDAGBuilder::visitTrunc(const User &I) {
3403 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
3404 SDValue N = getValue(I.getOperand(0));
3405 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3406 I.getType());
3407 setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
3410 void SelectionDAGBuilder::visitZExt(const User &I) {
3411 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3412 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
3413 SDValue N = getValue(I.getOperand(0));
3414 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3415 I.getType());
3416 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
3419 void SelectionDAGBuilder::visitSExt(const User &I) {
3420 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
3421 // SExt also can't be a cast to bool for same reason. So, nothing much to do
3422 SDValue N = getValue(I.getOperand(0));
3423 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3424 I.getType());
3425 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
3428 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
3429 // FPTrunc is never a no-op cast, no need to check
3430 SDValue N = getValue(I.getOperand(0));
3431 SDLoc dl = getCurSDLoc();
3432 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3433 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3434 setValue(&I, DAG.getNode(ISD::FP_ROUND, dl, DestVT, N,
3435 DAG.getTargetConstant(
3436 0, dl, TLI.getPointerTy(DAG.getDataLayout()))));
3439 void SelectionDAGBuilder::visitFPExt(const User &I) {
3440 // FPExt is never a no-op cast, no need to check
3441 SDValue N = getValue(I.getOperand(0));
3442 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3443 I.getType());
3444 setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3447 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3448 // FPToUI is never a no-op cast, no need to check
3449 SDValue N = getValue(I.getOperand(0));
3450 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3451 I.getType());
3452 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3455 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3456 // FPToSI is never a no-op cast, no need to check
3457 SDValue N = getValue(I.getOperand(0));
3458 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3459 I.getType());
3460 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3463 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3464 // UIToFP is never a no-op cast, no need to check
3465 SDValue N = getValue(I.getOperand(0));
3466 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3467 I.getType());
3468 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3471 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3472 // SIToFP is never a no-op cast, no need to check
3473 SDValue N = getValue(I.getOperand(0));
3474 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3475 I.getType());
3476 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3479 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3480 // What to do depends on the size of the integer and the size of the pointer.
3481 // We can either truncate, zero extend, or no-op, accordingly.
3482 SDValue N = getValue(I.getOperand(0));
3483 auto &TLI = DAG.getTargetLoweringInfo();
3484 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3485 I.getType());
3486 EVT PtrMemVT =
3487 TLI.getMemValueType(DAG.getDataLayout(), I.getOperand(0)->getType());
3488 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3489 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT);
3490 setValue(&I, N);
3493 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3494 // What to do depends on the size of the integer and the size of the pointer.
3495 // We can either truncate, zero extend, or no-op, accordingly.
3496 SDValue N = getValue(I.getOperand(0));
3497 auto &TLI = DAG.getTargetLoweringInfo();
3498 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3499 EVT PtrMemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
3500 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), PtrMemVT);
3501 N = DAG.getPtrExtOrTrunc(N, getCurSDLoc(), DestVT);
3502 setValue(&I, N);
3505 void SelectionDAGBuilder::visitBitCast(const User &I) {
3506 SDValue N = getValue(I.getOperand(0));
3507 SDLoc dl = getCurSDLoc();
3508 EVT DestVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
3509 I.getType());
3511 // BitCast assures us that source and destination are the same size so this is
3512 // either a BITCAST or a no-op.
3513 if (DestVT != N.getValueType())
3514 setValue(&I, DAG.getNode(ISD::BITCAST, dl,
3515 DestVT, N)); // convert types.
3516 // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3517 // might fold any kind of constant expression to an integer constant and that
3518 // is not what we are looking for. Only recognize a bitcast of a genuine
3519 // constant integer as an opaque constant.
3520 else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3521 setValue(&I, DAG.getConstant(C->getValue(), dl, DestVT, /*isTarget=*/false,
3522 /*isOpaque*/true));
3523 else
3524 setValue(&I, N); // noop cast.
3527 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3528 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3529 const Value *SV = I.getOperand(0);
3530 SDValue N = getValue(SV);
3531 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3533 unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3534 unsigned DestAS = I.getType()->getPointerAddressSpace();
3536 if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3537 N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3539 setValue(&I, N);
3542 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3543 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3544 SDValue InVec = getValue(I.getOperand(0));
3545 SDValue InVal = getValue(I.getOperand(1));
3546 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)), getCurSDLoc(),
3547 TLI.getVectorIdxTy(DAG.getDataLayout()));
3548 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3549 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3550 InVec, InVal, InIdx));
3553 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3554 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3555 SDValue InVec = getValue(I.getOperand(0));
3556 SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)), getCurSDLoc(),
3557 TLI.getVectorIdxTy(DAG.getDataLayout()));
3558 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3559 TLI.getValueType(DAG.getDataLayout(), I.getType()),
3560 InVec, InIdx));
3563 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3564 SDValue Src1 = getValue(I.getOperand(0));
3565 SDValue Src2 = getValue(I.getOperand(1));
3566 SDLoc DL = getCurSDLoc();
3568 SmallVector<int, 8> Mask;
3569 ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3570 unsigned MaskNumElts = Mask.size();
3572 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3573 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
3574 EVT SrcVT = Src1.getValueType();
3575 unsigned SrcNumElts = SrcVT.getVectorNumElements();
3577 if (SrcNumElts == MaskNumElts) {
3578 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, Mask));
3579 return;
3582 // Normalize the shuffle vector since mask and vector length don't match.
3583 if (SrcNumElts < MaskNumElts) {
3584 // Mask is longer than the source vectors. We can use concatenate vector to
3585 // make the mask and vectors lengths match.
3587 if (MaskNumElts % SrcNumElts == 0) {
3588 // Mask length is a multiple of the source vector length.
3589 // Check if the shuffle is some kind of concatenation of the input
3590 // vectors.
3591 unsigned NumConcat = MaskNumElts / SrcNumElts;
3592 bool IsConcat = true;
3593 SmallVector<int, 8> ConcatSrcs(NumConcat, -1);
3594 for (unsigned i = 0; i != MaskNumElts; ++i) {
3595 int Idx = Mask[i];
3596 if (Idx < 0)
3597 continue;
3598 // Ensure the indices in each SrcVT sized piece are sequential and that
3599 // the same source is used for the whole piece.
3600 if ((Idx % SrcNumElts != (i % SrcNumElts)) ||
3601 (ConcatSrcs[i / SrcNumElts] >= 0 &&
3602 ConcatSrcs[i / SrcNumElts] != (int)(Idx / SrcNumElts))) {
3603 IsConcat = false;
3604 break;
3606 // Remember which source this index came from.
3607 ConcatSrcs[i / SrcNumElts] = Idx / SrcNumElts;
3610 // The shuffle is concatenating multiple vectors together. Just emit
3611 // a CONCAT_VECTORS operation.
3612 if (IsConcat) {
3613 SmallVector<SDValue, 8> ConcatOps;
3614 for (auto Src : ConcatSrcs) {
3615 if (Src < 0)
3616 ConcatOps.push_back(DAG.getUNDEF(SrcVT));
3617 else if (Src == 0)
3618 ConcatOps.push_back(Src1);
3619 else
3620 ConcatOps.push_back(Src2);
3622 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, DL, VT, ConcatOps));
3623 return;
3627 unsigned PaddedMaskNumElts = alignTo(MaskNumElts, SrcNumElts);
3628 unsigned NumConcat = PaddedMaskNumElts / SrcNumElts;
3629 EVT PaddedVT = EVT::getVectorVT(*DAG.getContext(), VT.getScalarType(),
3630 PaddedMaskNumElts);
3632 // Pad both vectors with undefs to make them the same length as the mask.
3633 SDValue UndefVal = DAG.getUNDEF(SrcVT);
3635 SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3636 SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3637 MOps1[0] = Src1;
3638 MOps2[0] = Src2;
3640 Src1 = Src1.isUndef()
3641 ? DAG.getUNDEF(PaddedVT)
3642 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps1);
3643 Src2 = Src2.isUndef()
3644 ? DAG.getUNDEF(PaddedVT)
3645 : DAG.getNode(ISD::CONCAT_VECTORS, DL, PaddedVT, MOps2);
3647 // Readjust mask for new input vector length.
3648 SmallVector<int, 8> MappedOps(PaddedMaskNumElts, -1);
3649 for (unsigned i = 0; i != MaskNumElts; ++i) {
3650 int Idx = Mask[i];
3651 if (Idx >= (int)SrcNumElts)
3652 Idx -= SrcNumElts - PaddedMaskNumElts;
3653 MappedOps[i] = Idx;
3656 SDValue Result = DAG.getVectorShuffle(PaddedVT, DL, Src1, Src2, MappedOps);
3658 // If the concatenated vector was padded, extract a subvector with the
3659 // correct number of elements.
3660 if (MaskNumElts != PaddedMaskNumElts)
3661 Result = DAG.getNode(
3662 ISD::EXTRACT_SUBVECTOR, DL, VT, Result,
3663 DAG.getConstant(0, DL, TLI.getVectorIdxTy(DAG.getDataLayout())));
3665 setValue(&I, Result);
3666 return;
3669 if (SrcNumElts > MaskNumElts) {
3670 // Analyze the access pattern of the vector to see if we can extract
3671 // two subvectors and do the shuffle.
3672 int StartIdx[2] = { -1, -1 }; // StartIdx to extract from
3673 bool CanExtract = true;
3674 for (int Idx : Mask) {
3675 unsigned Input = 0;
3676 if (Idx < 0)
3677 continue;
3679 if (Idx >= (int)SrcNumElts) {
3680 Input = 1;
3681 Idx -= SrcNumElts;
3684 // If all the indices come from the same MaskNumElts sized portion of
3685 // the sources we can use extract. Also make sure the extract wouldn't
3686 // extract past the end of the source.
3687 int NewStartIdx = alignDown(Idx, MaskNumElts);
3688 if (NewStartIdx + MaskNumElts > SrcNumElts ||
3689 (StartIdx[Input] >= 0 && StartIdx[Input] != NewStartIdx))
3690 CanExtract = false;
3691 // Make sure we always update StartIdx as we use it to track if all
3692 // elements are undef.
3693 StartIdx[Input] = NewStartIdx;
3696 if (StartIdx[0] < 0 && StartIdx[1] < 0) {
3697 setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3698 return;
3700 if (CanExtract) {
3701 // Extract appropriate subvector and generate a vector shuffle
3702 for (unsigned Input = 0; Input < 2; ++Input) {
3703 SDValue &Src = Input == 0 ? Src1 : Src2;
3704 if (StartIdx[Input] < 0)
3705 Src = DAG.getUNDEF(VT);
3706 else {
3707 Src = DAG.getNode(
3708 ISD::EXTRACT_SUBVECTOR, DL, VT, Src,
3709 DAG.getConstant(StartIdx[Input], DL,
3710 TLI.getVectorIdxTy(DAG.getDataLayout())));
3714 // Calculate new mask.
3715 SmallVector<int, 8> MappedOps(Mask.begin(), Mask.end());
3716 for (int &Idx : MappedOps) {
3717 if (Idx >= (int)SrcNumElts)
3718 Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3719 else if (Idx >= 0)
3720 Idx -= StartIdx[0];
3723 setValue(&I, DAG.getVectorShuffle(VT, DL, Src1, Src2, MappedOps));
3724 return;
3728 // We can't use either concat vectors or extract subvectors so fall back to
3729 // replacing the shuffle with extract and build vector.
3730 // to insert and build vector.
3731 EVT EltVT = VT.getVectorElementType();
3732 EVT IdxVT = TLI.getVectorIdxTy(DAG.getDataLayout());
3733 SmallVector<SDValue,8> Ops;
3734 for (int Idx : Mask) {
3735 SDValue Res;
3737 if (Idx < 0) {
3738 Res = DAG.getUNDEF(EltVT);
3739 } else {
3740 SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3741 if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3743 Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
3744 EltVT, Src, DAG.getConstant(Idx, DL, IdxVT));
3747 Ops.push_back(Res);
3750 setValue(&I, DAG.getBuildVector(VT, DL, Ops));
3753 void SelectionDAGBuilder::visitInsertValue(const User &I) {
3754 ArrayRef<unsigned> Indices;
3755 if (const InsertValueInst *IV = dyn_cast<InsertValueInst>(&I))
3756 Indices = IV->getIndices();
3757 else
3758 Indices = cast<ConstantExpr>(&I)->getIndices();
3760 const Value *Op0 = I.getOperand(0);
3761 const Value *Op1 = I.getOperand(1);
3762 Type *AggTy = I.getType();
3763 Type *ValTy = Op1->getType();
3764 bool IntoUndef = isa<UndefValue>(Op0);
3765 bool FromUndef = isa<UndefValue>(Op1);
3767 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3769 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3770 SmallVector<EVT, 4> AggValueVTs;
3771 ComputeValueVTs(TLI, DAG.getDataLayout(), AggTy, AggValueVTs);
3772 SmallVector<EVT, 4> ValValueVTs;
3773 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3775 unsigned NumAggValues = AggValueVTs.size();
3776 unsigned NumValValues = ValValueVTs.size();
3777 SmallVector<SDValue, 4> Values(NumAggValues);
3779 // Ignore an insertvalue that produces an empty object
3780 if (!NumAggValues) {
3781 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3782 return;
3785 SDValue Agg = getValue(Op0);
3786 unsigned i = 0;
3787 // Copy the beginning value(s) from the original aggregate.
3788 for (; i != LinearIndex; ++i)
3789 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3790 SDValue(Agg.getNode(), Agg.getResNo() + i);
3791 // Copy values from the inserted value(s).
3792 if (NumValValues) {
3793 SDValue Val = getValue(Op1);
3794 for (; i != LinearIndex + NumValValues; ++i)
3795 Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3796 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3798 // Copy remaining value(s) from the original aggregate.
3799 for (; i != NumAggValues; ++i)
3800 Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3801 SDValue(Agg.getNode(), Agg.getResNo() + i);
3803 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3804 DAG.getVTList(AggValueVTs), Values));
3807 void SelectionDAGBuilder::visitExtractValue(const User &I) {
3808 ArrayRef<unsigned> Indices;
3809 if (const ExtractValueInst *EV = dyn_cast<ExtractValueInst>(&I))
3810 Indices = EV->getIndices();
3811 else
3812 Indices = cast<ConstantExpr>(&I)->getIndices();
3814 const Value *Op0 = I.getOperand(0);
3815 Type *AggTy = Op0->getType();
3816 Type *ValTy = I.getType();
3817 bool OutOfUndef = isa<UndefValue>(Op0);
3819 unsigned LinearIndex = ComputeLinearIndex(AggTy, Indices);
3821 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3822 SmallVector<EVT, 4> ValValueVTs;
3823 ComputeValueVTs(TLI, DAG.getDataLayout(), ValTy, ValValueVTs);
3825 unsigned NumValValues = ValValueVTs.size();
3827 // Ignore a extractvalue that produces an empty object
3828 if (!NumValValues) {
3829 setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3830 return;
3833 SmallVector<SDValue, 4> Values(NumValValues);
3835 SDValue Agg = getValue(Op0);
3836 // Copy out the selected value(s).
3837 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3838 Values[i - LinearIndex] =
3839 OutOfUndef ?
3840 DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3841 SDValue(Agg.getNode(), Agg.getResNo() + i);
3843 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3844 DAG.getVTList(ValValueVTs), Values));
3847 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3848 Value *Op0 = I.getOperand(0);
3849 // Note that the pointer operand may be a vector of pointers. Take the scalar
3850 // element which holds a pointer.
3851 unsigned AS = Op0->getType()->getScalarType()->getPointerAddressSpace();
3852 SDValue N = getValue(Op0);
3853 SDLoc dl = getCurSDLoc();
3854 auto &TLI = DAG.getTargetLoweringInfo();
3855 MVT PtrTy = TLI.getPointerTy(DAG.getDataLayout(), AS);
3856 MVT PtrMemTy = TLI.getPointerMemTy(DAG.getDataLayout(), AS);
3858 // Normalize Vector GEP - all scalar operands should be converted to the
3859 // splat vector.
3860 unsigned VectorWidth = I.getType()->isVectorTy() ?
3861 cast<VectorType>(I.getType())->getVectorNumElements() : 0;
3863 if (VectorWidth && !N.getValueType().isVector()) {
3864 LLVMContext &Context = *DAG.getContext();
3865 EVT VT = EVT::getVectorVT(Context, N.getValueType(), VectorWidth);
3866 N = DAG.getSplatBuildVector(VT, dl, N);
3869 for (gep_type_iterator GTI = gep_type_begin(&I), E = gep_type_end(&I);
3870 GTI != E; ++GTI) {
3871 const Value *Idx = GTI.getOperand();
3872 if (StructType *StTy = GTI.getStructTypeOrNull()) {
3873 unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3874 if (Field) {
3875 // N = N + Offset
3876 uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3878 // In an inbounds GEP with an offset that is nonnegative even when
3879 // interpreted as signed, assume there is no unsigned overflow.
3880 SDNodeFlags Flags;
3881 if (int64_t(Offset) >= 0 && cast<GEPOperator>(I).isInBounds())
3882 Flags.setNoUnsignedWrap(true);
3884 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N,
3885 DAG.getConstant(Offset, dl, N.getValueType()), Flags);
3887 } else {
3888 unsigned IdxSize = DAG.getDataLayout().getIndexSizeInBits(AS);
3889 MVT IdxTy = MVT::getIntegerVT(IdxSize);
3890 APInt ElementSize(IdxSize, DL->getTypeAllocSize(GTI.getIndexedType()));
3892 // If this is a scalar constant or a splat vector of constants,
3893 // handle it quickly.
3894 const auto *CI = dyn_cast<ConstantInt>(Idx);
3895 if (!CI && isa<ConstantDataVector>(Idx) &&
3896 cast<ConstantDataVector>(Idx)->getSplatValue())
3897 CI = cast<ConstantInt>(cast<ConstantDataVector>(Idx)->getSplatValue());
3899 if (CI) {
3900 if (CI->isZero())
3901 continue;
3902 APInt Offs = ElementSize * CI->getValue().sextOrTrunc(IdxSize);
3903 LLVMContext &Context = *DAG.getContext();
3904 SDValue OffsVal = VectorWidth ?
3905 DAG.getConstant(Offs, dl, EVT::getVectorVT(Context, IdxTy, VectorWidth)) :
3906 DAG.getConstant(Offs, dl, IdxTy);
3908 // In an inbouds GEP with an offset that is nonnegative even when
3909 // interpreted as signed, assume there is no unsigned overflow.
3910 SDNodeFlags Flags;
3911 if (Offs.isNonNegative() && cast<GEPOperator>(I).isInBounds())
3912 Flags.setNoUnsignedWrap(true);
3914 OffsVal = DAG.getSExtOrTrunc(OffsVal, dl, N.getValueType());
3916 N = DAG.getNode(ISD::ADD, dl, N.getValueType(), N, OffsVal, Flags);
3917 continue;
3920 // N = N + Idx * ElementSize;
3921 SDValue IdxN = getValue(Idx);
3923 if (!IdxN.getValueType().isVector() && VectorWidth) {
3924 EVT VT = EVT::getVectorVT(*Context, IdxN.getValueType(), VectorWidth);
3925 IdxN = DAG.getSplatBuildVector(VT, dl, IdxN);
3928 // If the index is smaller or larger than intptr_t, truncate or extend
3929 // it.
3930 IdxN = DAG.getSExtOrTrunc(IdxN, dl, N.getValueType());
3932 // If this is a multiply by a power of two, turn it into a shl
3933 // immediately. This is a very common case.
3934 if (ElementSize != 1) {
3935 if (ElementSize.isPowerOf2()) {
3936 unsigned Amt = ElementSize.logBase2();
3937 IdxN = DAG.getNode(ISD::SHL, dl,
3938 N.getValueType(), IdxN,
3939 DAG.getConstant(Amt, dl, IdxN.getValueType()));
3940 } else {
3941 SDValue Scale = DAG.getConstant(ElementSize.getZExtValue(), dl,
3942 IdxN.getValueType());
3943 IdxN = DAG.getNode(ISD::MUL, dl,
3944 N.getValueType(), IdxN, Scale);
3948 N = DAG.getNode(ISD::ADD, dl,
3949 N.getValueType(), N, IdxN);
3953 if (PtrMemTy != PtrTy && !cast<GEPOperator>(I).isInBounds())
3954 N = DAG.getPtrExtendInReg(N, dl, PtrMemTy);
3956 setValue(&I, N);
3959 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3960 // If this is a fixed sized alloca in the entry block of the function,
3961 // allocate it statically on the stack.
3962 if (FuncInfo.StaticAllocaMap.count(&I))
3963 return; // getValue will auto-populate this.
3965 SDLoc dl = getCurSDLoc();
3966 Type *Ty = I.getAllocatedType();
3967 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3968 auto &DL = DAG.getDataLayout();
3969 uint64_t TySize = DL.getTypeAllocSize(Ty);
3970 unsigned Align =
3971 std::max((unsigned)DL.getPrefTypeAlignment(Ty), I.getAlignment());
3973 SDValue AllocSize = getValue(I.getArraySize());
3975 EVT IntPtr = TLI.getPointerTy(DAG.getDataLayout(), DL.getAllocaAddrSpace());
3976 if (AllocSize.getValueType() != IntPtr)
3977 AllocSize = DAG.getZExtOrTrunc(AllocSize, dl, IntPtr);
3979 AllocSize = DAG.getNode(ISD::MUL, dl, IntPtr,
3980 AllocSize,
3981 DAG.getConstant(TySize, dl, IntPtr));
3983 // Handle alignment. If the requested alignment is less than or equal to
3984 // the stack alignment, ignore it. If the size is greater than or equal to
3985 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3986 unsigned StackAlign =
3987 DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3988 if (Align <= StackAlign)
3989 Align = 0;
3991 // Round the size of the allocation up to the stack alignment size
3992 // by add SA-1 to the size. This doesn't overflow because we're computing
3993 // an address inside an alloca.
3994 SDNodeFlags Flags;
3995 Flags.setNoUnsignedWrap(true);
3996 AllocSize = DAG.getNode(ISD::ADD, dl, AllocSize.getValueType(), AllocSize,
3997 DAG.getConstant(StackAlign - 1, dl, IntPtr), Flags);
3999 // Mask out the low bits for alignment purposes.
4000 AllocSize =
4001 DAG.getNode(ISD::AND, dl, AllocSize.getValueType(), AllocSize,
4002 DAG.getConstant(~(uint64_t)(StackAlign - 1), dl, IntPtr));
4004 SDValue Ops[] = {getRoot(), AllocSize, DAG.getConstant(Align, dl, IntPtr)};
4005 SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
4006 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, dl, VTs, Ops);
4007 setValue(&I, DSA);
4008 DAG.setRoot(DSA.getValue(1));
4010 assert(FuncInfo.MF->getFrameInfo().hasVarSizedObjects());
4013 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
4014 if (I.isAtomic())
4015 return visitAtomicLoad(I);
4017 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4018 const Value *SV = I.getOperand(0);
4019 if (TLI.supportSwiftError()) {
4020 // Swifterror values can come from either a function parameter with
4021 // swifterror attribute or an alloca with swifterror attribute.
4022 if (const Argument *Arg = dyn_cast<Argument>(SV)) {
4023 if (Arg->hasSwiftErrorAttr())
4024 return visitLoadFromSwiftError(I);
4027 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(SV)) {
4028 if (Alloca->isSwiftError())
4029 return visitLoadFromSwiftError(I);
4033 SDValue Ptr = getValue(SV);
4035 Type *Ty = I.getType();
4037 bool isVolatile = I.isVolatile();
4038 bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
4039 bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
4040 bool isDereferenceable = isDereferenceablePointer(SV, DAG.getDataLayout());
4041 unsigned Alignment = I.getAlignment();
4043 AAMDNodes AAInfo;
4044 I.getAAMetadata(AAInfo);
4045 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4047 SmallVector<EVT, 4> ValueVTs, MemVTs;
4048 SmallVector<uint64_t, 4> Offsets;
4049 ComputeValueVTs(TLI, DAG.getDataLayout(), Ty, ValueVTs, &MemVTs, &Offsets);
4050 unsigned NumValues = ValueVTs.size();
4051 if (NumValues == 0)
4052 return;
4054 SDValue Root;
4055 bool ConstantMemory = false;
4056 if (isVolatile || NumValues > MaxParallelChains)
4057 // Serialize volatile loads with other side effects.
4058 Root = getRoot();
4059 else if (AA &&
4060 AA->pointsToConstantMemory(MemoryLocation(
4062 LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4063 AAInfo))) {
4064 // Do not serialize (non-volatile) loads of constant memory with anything.
4065 Root = DAG.getEntryNode();
4066 ConstantMemory = true;
4067 } else {
4068 // Do not serialize non-volatile loads against each other.
4069 Root = DAG.getRoot();
4072 SDLoc dl = getCurSDLoc();
4074 if (isVolatile)
4075 Root = TLI.prepareVolatileOrAtomicLoad(Root, dl, DAG);
4077 // An aggregate load cannot wrap around the address space, so offsets to its
4078 // parts don't wrap either.
4079 SDNodeFlags Flags;
4080 Flags.setNoUnsignedWrap(true);
4082 SmallVector<SDValue, 4> Values(NumValues);
4083 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4084 EVT PtrVT = Ptr.getValueType();
4085 unsigned ChainI = 0;
4086 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4087 // Serializing loads here may result in excessive register pressure, and
4088 // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
4089 // could recover a bit by hoisting nodes upward in the chain by recognizing
4090 // they are side-effect free or do not alias. The optimizer should really
4091 // avoid this case by converting large object/array copies to llvm.memcpy
4092 // (MaxParallelChains should always remain as failsafe).
4093 if (ChainI == MaxParallelChains) {
4094 assert(PendingLoads.empty() && "PendingLoads must be serialized first");
4095 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4096 makeArrayRef(Chains.data(), ChainI));
4097 Root = Chain;
4098 ChainI = 0;
4100 SDValue A = DAG.getNode(ISD::ADD, dl,
4101 PtrVT, Ptr,
4102 DAG.getConstant(Offsets[i], dl, PtrVT),
4103 Flags);
4104 auto MMOFlags = MachineMemOperand::MONone;
4105 if (isVolatile)
4106 MMOFlags |= MachineMemOperand::MOVolatile;
4107 if (isNonTemporal)
4108 MMOFlags |= MachineMemOperand::MONonTemporal;
4109 if (isInvariant)
4110 MMOFlags |= MachineMemOperand::MOInvariant;
4111 if (isDereferenceable)
4112 MMOFlags |= MachineMemOperand::MODereferenceable;
4113 MMOFlags |= TLI.getMMOFlags(I);
4115 SDValue L = DAG.getLoad(MemVTs[i], dl, Root, A,
4116 MachinePointerInfo(SV, Offsets[i]), Alignment,
4117 MMOFlags, AAInfo, Ranges);
4118 Chains[ChainI] = L.getValue(1);
4120 if (MemVTs[i] != ValueVTs[i])
4121 L = DAG.getZExtOrTrunc(L, dl, ValueVTs[i]);
4123 Values[i] = L;
4126 if (!ConstantMemory) {
4127 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4128 makeArrayRef(Chains.data(), ChainI));
4129 if (isVolatile)
4130 DAG.setRoot(Chain);
4131 else
4132 PendingLoads.push_back(Chain);
4135 setValue(&I, DAG.getNode(ISD::MERGE_VALUES, dl,
4136 DAG.getVTList(ValueVTs), Values));
4139 void SelectionDAGBuilder::visitStoreToSwiftError(const StoreInst &I) {
4140 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4141 "call visitStoreToSwiftError when backend supports swifterror");
4143 SmallVector<EVT, 4> ValueVTs;
4144 SmallVector<uint64_t, 4> Offsets;
4145 const Value *SrcV = I.getOperand(0);
4146 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4147 SrcV->getType(), ValueVTs, &Offsets);
4148 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4149 "expect a single EVT for swifterror");
4151 SDValue Src = getValue(SrcV);
4152 // Create a virtual register, then update the virtual register.
4153 unsigned VReg; bool CreatedVReg;
4154 std::tie(VReg, CreatedVReg) = FuncInfo.getOrCreateSwiftErrorVRegDefAt(&I);
4155 // Chain, DL, Reg, N or Chain, DL, Reg, N, Glue
4156 // Chain can be getRoot or getControlRoot.
4157 SDValue CopyNode = DAG.getCopyToReg(getRoot(), getCurSDLoc(), VReg,
4158 SDValue(Src.getNode(), Src.getResNo()));
4159 DAG.setRoot(CopyNode);
4160 if (CreatedVReg)
4161 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, I.getOperand(1), VReg);
4164 void SelectionDAGBuilder::visitLoadFromSwiftError(const LoadInst &I) {
4165 assert(DAG.getTargetLoweringInfo().supportSwiftError() &&
4166 "call visitLoadFromSwiftError when backend supports swifterror");
4168 assert(!I.isVolatile() &&
4169 I.getMetadata(LLVMContext::MD_nontemporal) == nullptr &&
4170 I.getMetadata(LLVMContext::MD_invariant_load) == nullptr &&
4171 "Support volatile, non temporal, invariant for load_from_swift_error");
4173 const Value *SV = I.getOperand(0);
4174 Type *Ty = I.getType();
4175 AAMDNodes AAInfo;
4176 I.getAAMetadata(AAInfo);
4177 assert(
4178 (!AA ||
4179 !AA->pointsToConstantMemory(MemoryLocation(
4180 SV, LocationSize::precise(DAG.getDataLayout().getTypeStoreSize(Ty)),
4181 AAInfo))) &&
4182 "load_from_swift_error should not be constant memory");
4184 SmallVector<EVT, 4> ValueVTs;
4185 SmallVector<uint64_t, 4> Offsets;
4186 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(), Ty,
4187 ValueVTs, &Offsets);
4188 assert(ValueVTs.size() == 1 && Offsets[0] == 0 &&
4189 "expect a single EVT for swifterror");
4191 // Chain, DL, Reg, VT, Glue or Chain, DL, Reg, VT
4192 SDValue L = DAG.getCopyFromReg(
4193 getRoot(), getCurSDLoc(),
4194 FuncInfo.getOrCreateSwiftErrorVRegUseAt(&I, FuncInfo.MBB, SV).first,
4195 ValueVTs[0]);
4197 setValue(&I, L);
4200 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
4201 if (I.isAtomic())
4202 return visitAtomicStore(I);
4204 const Value *SrcV = I.getOperand(0);
4205 const Value *PtrV = I.getOperand(1);
4207 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4208 if (TLI.supportSwiftError()) {
4209 // Swifterror values can come from either a function parameter with
4210 // swifterror attribute or an alloca with swifterror attribute.
4211 if (const Argument *Arg = dyn_cast<Argument>(PtrV)) {
4212 if (Arg->hasSwiftErrorAttr())
4213 return visitStoreToSwiftError(I);
4216 if (const AllocaInst *Alloca = dyn_cast<AllocaInst>(PtrV)) {
4217 if (Alloca->isSwiftError())
4218 return visitStoreToSwiftError(I);
4222 SmallVector<EVT, 4> ValueVTs, MemVTs;
4223 SmallVector<uint64_t, 4> Offsets;
4224 ComputeValueVTs(DAG.getTargetLoweringInfo(), DAG.getDataLayout(),
4225 SrcV->getType(), ValueVTs, &MemVTs, &Offsets);
4226 unsigned NumValues = ValueVTs.size();
4227 if (NumValues == 0)
4228 return;
4230 // Get the lowered operands. Note that we do this after
4231 // checking if NumResults is zero, because with zero results
4232 // the operands won't have values in the map.
4233 SDValue Src = getValue(SrcV);
4234 SDValue Ptr = getValue(PtrV);
4236 SDValue Root = getRoot();
4237 SmallVector<SDValue, 4> Chains(std::min(MaxParallelChains, NumValues));
4238 SDLoc dl = getCurSDLoc();
4239 EVT PtrVT = Ptr.getValueType();
4240 unsigned Alignment = I.getAlignment();
4241 AAMDNodes AAInfo;
4242 I.getAAMetadata(AAInfo);
4244 auto MMOFlags = MachineMemOperand::MONone;
4245 if (I.isVolatile())
4246 MMOFlags |= MachineMemOperand::MOVolatile;
4247 if (I.getMetadata(LLVMContext::MD_nontemporal) != nullptr)
4248 MMOFlags |= MachineMemOperand::MONonTemporal;
4249 MMOFlags |= TLI.getMMOFlags(I);
4251 // An aggregate load cannot wrap around the address space, so offsets to its
4252 // parts don't wrap either.
4253 SDNodeFlags Flags;
4254 Flags.setNoUnsignedWrap(true);
4256 unsigned ChainI = 0;
4257 for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
4258 // See visitLoad comments.
4259 if (ChainI == MaxParallelChains) {
4260 SDValue Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4261 makeArrayRef(Chains.data(), ChainI));
4262 Root = Chain;
4263 ChainI = 0;
4265 SDValue Add = DAG.getNode(ISD::ADD, dl, PtrVT, Ptr,
4266 DAG.getConstant(Offsets[i], dl, PtrVT), Flags);
4267 SDValue Val = SDValue(Src.getNode(), Src.getResNo() + i);
4268 if (MemVTs[i] != ValueVTs[i])
4269 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVTs[i]);
4270 SDValue St =
4271 DAG.getStore(Root, dl, Val, Add, MachinePointerInfo(PtrV, Offsets[i]),
4272 Alignment, MMOFlags, AAInfo);
4273 Chains[ChainI] = St;
4276 SDValue StoreNode = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
4277 makeArrayRef(Chains.data(), ChainI));
4278 DAG.setRoot(StoreNode);
4281 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I,
4282 bool IsCompressing) {
4283 SDLoc sdl = getCurSDLoc();
4285 auto getMaskedStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4286 unsigned& Alignment) {
4287 // llvm.masked.store.*(Src0, Ptr, alignment, Mask)
4288 Src0 = I.getArgOperand(0);
4289 Ptr = I.getArgOperand(1);
4290 Alignment = cast<ConstantInt>(I.getArgOperand(2))->getZExtValue();
4291 Mask = I.getArgOperand(3);
4293 auto getCompressingStoreOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4294 unsigned& Alignment) {
4295 // llvm.masked.compressstore.*(Src0, Ptr, Mask)
4296 Src0 = I.getArgOperand(0);
4297 Ptr = I.getArgOperand(1);
4298 Mask = I.getArgOperand(2);
4299 Alignment = 0;
4302 Value *PtrOperand, *MaskOperand, *Src0Operand;
4303 unsigned Alignment;
4304 if (IsCompressing)
4305 getCompressingStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4306 else
4307 getMaskedStoreOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4309 SDValue Ptr = getValue(PtrOperand);
4310 SDValue Src0 = getValue(Src0Operand);
4311 SDValue Mask = getValue(MaskOperand);
4313 EVT VT = Src0.getValueType();
4314 if (!Alignment)
4315 Alignment = DAG.getEVTAlignment(VT);
4317 AAMDNodes AAInfo;
4318 I.getAAMetadata(AAInfo);
4320 MachineMemOperand *MMO =
4321 DAG.getMachineFunction().
4322 getMachineMemOperand(MachinePointerInfo(PtrOperand),
4323 MachineMemOperand::MOStore, VT.getStoreSize(),
4324 Alignment, AAInfo);
4325 SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, VT,
4326 MMO, false /* Truncating */,
4327 IsCompressing);
4328 DAG.setRoot(StoreNode);
4329 setValue(&I, StoreNode);
4332 // Get a uniform base for the Gather/Scatter intrinsic.
4333 // The first argument of the Gather/Scatter intrinsic is a vector of pointers.
4334 // We try to represent it as a base pointer + vector of indices.
4335 // Usually, the vector of pointers comes from a 'getelementptr' instruction.
4336 // The first operand of the GEP may be a single pointer or a vector of pointers
4337 // Example:
4338 // %gep.ptr = getelementptr i32, <8 x i32*> %vptr, <8 x i32> %ind
4339 // or
4340 // %gep.ptr = getelementptr i32, i32* %ptr, <8 x i32> %ind
4341 // %res = call <8 x i32> @llvm.masked.gather.v8i32(<8 x i32*> %gep.ptr, ..
4343 // When the first GEP operand is a single pointer - it is the uniform base we
4344 // are looking for. If first operand of the GEP is a splat vector - we
4345 // extract the splat value and use it as a uniform base.
4346 // In all other cases the function returns 'false'.
4347 static bool getUniformBase(const Value* &Ptr, SDValue& Base, SDValue& Index,
4348 SDValue &Scale, SelectionDAGBuilder* SDB) {
4349 SelectionDAG& DAG = SDB->DAG;
4350 LLVMContext &Context = *DAG.getContext();
4352 assert(Ptr->getType()->isVectorTy() && "Uexpected pointer type");
4353 const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr);
4354 if (!GEP)
4355 return false;
4357 const Value *GEPPtr = GEP->getPointerOperand();
4358 if (!GEPPtr->getType()->isVectorTy())
4359 Ptr = GEPPtr;
4360 else if (!(Ptr = getSplatValue(GEPPtr)))
4361 return false;
4363 unsigned FinalIndex = GEP->getNumOperands() - 1;
4364 Value *IndexVal = GEP->getOperand(FinalIndex);
4366 // Ensure all the other indices are 0.
4367 for (unsigned i = 1; i < FinalIndex; ++i) {
4368 auto *C = dyn_cast<ConstantInt>(GEP->getOperand(i));
4369 if (!C || !C->isZero())
4370 return false;
4373 // The operands of the GEP may be defined in another basic block.
4374 // In this case we'll not find nodes for the operands.
4375 if (!SDB->findValue(Ptr) || !SDB->findValue(IndexVal))
4376 return false;
4378 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4379 const DataLayout &DL = DAG.getDataLayout();
4380 Scale = DAG.getTargetConstant(DL.getTypeAllocSize(GEP->getResultElementType()),
4381 SDB->getCurSDLoc(), TLI.getPointerTy(DL));
4382 Base = SDB->getValue(Ptr);
4383 Index = SDB->getValue(IndexVal);
4385 if (!Index.getValueType().isVector()) {
4386 unsigned GEPWidth = GEP->getType()->getVectorNumElements();
4387 EVT VT = EVT::getVectorVT(Context, Index.getValueType(), GEPWidth);
4388 Index = DAG.getSplatBuildVector(VT, SDLoc(Index), Index);
4390 return true;
4393 void SelectionDAGBuilder::visitMaskedScatter(const CallInst &I) {
4394 SDLoc sdl = getCurSDLoc();
4396 // llvm.masked.scatter.*(Src0, Ptrs, alignemt, Mask)
4397 const Value *Ptr = I.getArgOperand(1);
4398 SDValue Src0 = getValue(I.getArgOperand(0));
4399 SDValue Mask = getValue(I.getArgOperand(3));
4400 EVT VT = Src0.getValueType();
4401 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
4402 if (!Alignment)
4403 Alignment = DAG.getEVTAlignment(VT);
4404 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4406 AAMDNodes AAInfo;
4407 I.getAAMetadata(AAInfo);
4409 SDValue Base;
4410 SDValue Index;
4411 SDValue Scale;
4412 const Value *BasePtr = Ptr;
4413 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4415 const Value *MemOpBasePtr = UniformBase ? BasePtr : nullptr;
4416 MachineMemOperand *MMO = DAG.getMachineFunction().
4417 getMachineMemOperand(MachinePointerInfo(MemOpBasePtr),
4418 MachineMemOperand::MOStore, VT.getStoreSize(),
4419 Alignment, AAInfo);
4420 if (!UniformBase) {
4421 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4422 Index = getValue(Ptr);
4423 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4425 SDValue Ops[] = { getRoot(), Src0, Mask, Base, Index, Scale };
4426 SDValue Scatter = DAG.getMaskedScatter(DAG.getVTList(MVT::Other), VT, sdl,
4427 Ops, MMO);
4428 DAG.setRoot(Scatter);
4429 setValue(&I, Scatter);
4432 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I, bool IsExpanding) {
4433 SDLoc sdl = getCurSDLoc();
4435 auto getMaskedLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4436 unsigned& Alignment) {
4437 // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
4438 Ptr = I.getArgOperand(0);
4439 Alignment = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
4440 Mask = I.getArgOperand(2);
4441 Src0 = I.getArgOperand(3);
4443 auto getExpandingLoadOps = [&](Value* &Ptr, Value* &Mask, Value* &Src0,
4444 unsigned& Alignment) {
4445 // @llvm.masked.expandload.*(Ptr, Mask, Src0)
4446 Ptr = I.getArgOperand(0);
4447 Alignment = 0;
4448 Mask = I.getArgOperand(1);
4449 Src0 = I.getArgOperand(2);
4452 Value *PtrOperand, *MaskOperand, *Src0Operand;
4453 unsigned Alignment;
4454 if (IsExpanding)
4455 getExpandingLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4456 else
4457 getMaskedLoadOps(PtrOperand, MaskOperand, Src0Operand, Alignment);
4459 SDValue Ptr = getValue(PtrOperand);
4460 SDValue Src0 = getValue(Src0Operand);
4461 SDValue Mask = getValue(MaskOperand);
4463 EVT VT = Src0.getValueType();
4464 if (!Alignment)
4465 Alignment = DAG.getEVTAlignment(VT);
4467 AAMDNodes AAInfo;
4468 I.getAAMetadata(AAInfo);
4469 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4471 // Do not serialize masked loads of constant memory with anything.
4472 bool AddToChain =
4473 !AA || !AA->pointsToConstantMemory(MemoryLocation(
4474 PtrOperand,
4475 LocationSize::precise(
4476 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4477 AAInfo));
4478 SDValue InChain = AddToChain ? DAG.getRoot() : DAG.getEntryNode();
4480 MachineMemOperand *MMO =
4481 DAG.getMachineFunction().
4482 getMachineMemOperand(MachinePointerInfo(PtrOperand),
4483 MachineMemOperand::MOLoad, VT.getStoreSize(),
4484 Alignment, AAInfo, Ranges);
4486 SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, VT, MMO,
4487 ISD::NON_EXTLOAD, IsExpanding);
4488 if (AddToChain)
4489 PendingLoads.push_back(Load.getValue(1));
4490 setValue(&I, Load);
4493 void SelectionDAGBuilder::visitMaskedGather(const CallInst &I) {
4494 SDLoc sdl = getCurSDLoc();
4496 // @llvm.masked.gather.*(Ptrs, alignment, Mask, Src0)
4497 const Value *Ptr = I.getArgOperand(0);
4498 SDValue Src0 = getValue(I.getArgOperand(3));
4499 SDValue Mask = getValue(I.getArgOperand(2));
4501 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4502 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4503 unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
4504 if (!Alignment)
4505 Alignment = DAG.getEVTAlignment(VT);
4507 AAMDNodes AAInfo;
4508 I.getAAMetadata(AAInfo);
4509 const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
4511 SDValue Root = DAG.getRoot();
4512 SDValue Base;
4513 SDValue Index;
4514 SDValue Scale;
4515 const Value *BasePtr = Ptr;
4516 bool UniformBase = getUniformBase(BasePtr, Base, Index, Scale, this);
4517 bool ConstantMemory = false;
4518 if (UniformBase && AA &&
4519 AA->pointsToConstantMemory(
4520 MemoryLocation(BasePtr,
4521 LocationSize::precise(
4522 DAG.getDataLayout().getTypeStoreSize(I.getType())),
4523 AAInfo))) {
4524 // Do not serialize (non-volatile) loads of constant memory with anything.
4525 Root = DAG.getEntryNode();
4526 ConstantMemory = true;
4529 MachineMemOperand *MMO =
4530 DAG.getMachineFunction().
4531 getMachineMemOperand(MachinePointerInfo(UniformBase ? BasePtr : nullptr),
4532 MachineMemOperand::MOLoad, VT.getStoreSize(),
4533 Alignment, AAInfo, Ranges);
4535 if (!UniformBase) {
4536 Base = DAG.getConstant(0, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4537 Index = getValue(Ptr);
4538 Scale = DAG.getTargetConstant(1, sdl, TLI.getPointerTy(DAG.getDataLayout()));
4540 SDValue Ops[] = { Root, Src0, Mask, Base, Index, Scale };
4541 SDValue Gather = DAG.getMaskedGather(DAG.getVTList(VT, MVT::Other), VT, sdl,
4542 Ops, MMO);
4544 SDValue OutChain = Gather.getValue(1);
4545 if (!ConstantMemory)
4546 PendingLoads.push_back(OutChain);
4547 setValue(&I, Gather);
4550 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
4551 SDLoc dl = getCurSDLoc();
4552 AtomicOrdering SuccessOrdering = I.getSuccessOrdering();
4553 AtomicOrdering FailureOrdering = I.getFailureOrdering();
4554 SyncScope::ID SSID = I.getSyncScopeID();
4556 SDValue InChain = getRoot();
4558 MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
4559 SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
4561 auto Alignment = DAG.getEVTAlignment(MemVT);
4563 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4564 if (I.isVolatile())
4565 Flags |= MachineMemOperand::MOVolatile;
4566 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4568 MachineFunction &MF = DAG.getMachineFunction();
4569 MachineMemOperand *MMO =
4570 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4571 Flags, MemVT.getStoreSize(), Alignment,
4572 AAMDNodes(), nullptr, SSID, SuccessOrdering,
4573 FailureOrdering);
4575 SDValue L = DAG.getAtomicCmpSwap(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
4576 dl, MemVT, VTs, InChain,
4577 getValue(I.getPointerOperand()),
4578 getValue(I.getCompareOperand()),
4579 getValue(I.getNewValOperand()), MMO);
4581 SDValue OutChain = L.getValue(2);
4583 setValue(&I, L);
4584 DAG.setRoot(OutChain);
4587 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
4588 SDLoc dl = getCurSDLoc();
4589 ISD::NodeType NT;
4590 switch (I.getOperation()) {
4591 default: llvm_unreachable("Unknown atomicrmw operation");
4592 case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
4593 case AtomicRMWInst::Add: NT = ISD::ATOMIC_LOAD_ADD; break;
4594 case AtomicRMWInst::Sub: NT = ISD::ATOMIC_LOAD_SUB; break;
4595 case AtomicRMWInst::And: NT = ISD::ATOMIC_LOAD_AND; break;
4596 case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
4597 case AtomicRMWInst::Or: NT = ISD::ATOMIC_LOAD_OR; break;
4598 case AtomicRMWInst::Xor: NT = ISD::ATOMIC_LOAD_XOR; break;
4599 case AtomicRMWInst::Max: NT = ISD::ATOMIC_LOAD_MAX; break;
4600 case AtomicRMWInst::Min: NT = ISD::ATOMIC_LOAD_MIN; break;
4601 case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
4602 case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
4603 case AtomicRMWInst::FAdd: NT = ISD::ATOMIC_LOAD_FADD; break;
4604 case AtomicRMWInst::FSub: NT = ISD::ATOMIC_LOAD_FSUB; break;
4606 AtomicOrdering Ordering = I.getOrdering();
4607 SyncScope::ID SSID = I.getSyncScopeID();
4609 SDValue InChain = getRoot();
4611 auto MemVT = getValue(I.getValOperand()).getSimpleValueType();
4612 auto Alignment = DAG.getEVTAlignment(MemVT);
4614 auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
4615 if (I.isVolatile())
4616 Flags |= MachineMemOperand::MOVolatile;
4617 Flags |= DAG.getTargetLoweringInfo().getMMOFlags(I);
4619 MachineFunction &MF = DAG.getMachineFunction();
4620 MachineMemOperand *MMO =
4621 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4622 MemVT.getStoreSize(), Alignment, AAMDNodes(),
4623 nullptr, SSID, Ordering);
4625 SDValue L =
4626 DAG.getAtomic(NT, dl, MemVT, InChain,
4627 getValue(I.getPointerOperand()), getValue(I.getValOperand()),
4628 MMO);
4630 SDValue OutChain = L.getValue(1);
4632 setValue(&I, L);
4633 DAG.setRoot(OutChain);
4636 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
4637 SDLoc dl = getCurSDLoc();
4638 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4639 SDValue Ops[3];
4640 Ops[0] = getRoot();
4641 Ops[1] = DAG.getConstant((unsigned)I.getOrdering(), dl,
4642 TLI.getFenceOperandTy(DAG.getDataLayout()));
4643 Ops[2] = DAG.getConstant(I.getSyncScopeID(), dl,
4644 TLI.getFenceOperandTy(DAG.getDataLayout()));
4645 DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
4648 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
4649 SDLoc dl = getCurSDLoc();
4650 AtomicOrdering Order = I.getOrdering();
4651 SyncScope::ID SSID = I.getSyncScopeID();
4653 SDValue InChain = getRoot();
4655 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4656 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
4657 EVT MemVT = TLI.getMemValueType(DAG.getDataLayout(), I.getType());
4659 if (!TLI.supportsUnalignedAtomics() &&
4660 I.getAlignment() < MemVT.getSizeInBits() / 8)
4661 report_fatal_error("Cannot generate unaligned atomic load");
4663 auto Flags = MachineMemOperand::MOLoad;
4664 if (I.isVolatile())
4665 Flags |= MachineMemOperand::MOVolatile;
4666 if (I.getMetadata(LLVMContext::MD_invariant_load) != nullptr)
4667 Flags |= MachineMemOperand::MOInvariant;
4668 if (isDereferenceablePointer(I.getPointerOperand(), DAG.getDataLayout()))
4669 Flags |= MachineMemOperand::MODereferenceable;
4671 Flags |= TLI.getMMOFlags(I);
4673 MachineMemOperand *MMO =
4674 DAG.getMachineFunction().
4675 getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
4676 Flags, MemVT.getStoreSize(),
4677 I.getAlignment() ? I.getAlignment() :
4678 DAG.getEVTAlignment(MemVT),
4679 AAMDNodes(), nullptr, SSID, Order);
4681 InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
4682 SDValue L =
4683 DAG.getAtomic(ISD::ATOMIC_LOAD, dl, MemVT, MemVT, InChain,
4684 getValue(I.getPointerOperand()), MMO);
4686 SDValue OutChain = L.getValue(1);
4687 if (MemVT != VT)
4688 L = DAG.getPtrExtOrTrunc(L, dl, VT);
4690 setValue(&I, L);
4691 DAG.setRoot(OutChain);
4694 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
4695 SDLoc dl = getCurSDLoc();
4697 AtomicOrdering Ordering = I.getOrdering();
4698 SyncScope::ID SSID = I.getSyncScopeID();
4700 SDValue InChain = getRoot();
4702 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4703 EVT MemVT =
4704 TLI.getMemValueType(DAG.getDataLayout(), I.getValueOperand()->getType());
4706 if (I.getAlignment() < MemVT.getSizeInBits() / 8)
4707 report_fatal_error("Cannot generate unaligned atomic store");
4709 auto Flags = MachineMemOperand::MOStore;
4710 if (I.isVolatile())
4711 Flags |= MachineMemOperand::MOVolatile;
4712 Flags |= TLI.getMMOFlags(I);
4714 MachineFunction &MF = DAG.getMachineFunction();
4715 MachineMemOperand *MMO =
4716 MF.getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()), Flags,
4717 MemVT.getStoreSize(), I.getAlignment(), AAMDNodes(),
4718 nullptr, SSID, Ordering);
4720 SDValue Val = getValue(I.getValueOperand());
4721 if (Val.getValueType() != MemVT)
4722 Val = DAG.getPtrExtOrTrunc(Val, dl, MemVT);
4724 SDValue OutChain = DAG.getAtomic(ISD::ATOMIC_STORE, dl, MemVT, InChain,
4725 getValue(I.getPointerOperand()), Val, MMO);
4728 DAG.setRoot(OutChain);
4731 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
4732 /// node.
4733 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
4734 unsigned Intrinsic) {
4735 // Ignore the callsite's attributes. A specific call site may be marked with
4736 // readnone, but the lowering code will expect the chain based on the
4737 // definition.
4738 const Function *F = I.getCalledFunction();
4739 bool HasChain = !F->doesNotAccessMemory();
4740 bool OnlyLoad = HasChain && F->onlyReadsMemory();
4742 // Build the operand list.
4743 SmallVector<SDValue, 8> Ops;
4744 if (HasChain) { // If this intrinsic has side-effects, chainify it.
4745 if (OnlyLoad) {
4746 // We don't need to serialize loads against other loads.
4747 Ops.push_back(DAG.getRoot());
4748 } else {
4749 Ops.push_back(getRoot());
4753 // Info is set by getTgtMemInstrinsic
4754 TargetLowering::IntrinsicInfo Info;
4755 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4756 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I,
4757 DAG.getMachineFunction(),
4758 Intrinsic);
4760 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
4761 if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
4762 Info.opc == ISD::INTRINSIC_W_CHAIN)
4763 Ops.push_back(DAG.getTargetConstant(Intrinsic, getCurSDLoc(),
4764 TLI.getPointerTy(DAG.getDataLayout())));
4766 // Add all operands of the call to the operand list.
4767 for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
4768 SDValue Op = getValue(I.getArgOperand(i));
4769 Ops.push_back(Op);
4772 SmallVector<EVT, 4> ValueVTs;
4773 ComputeValueVTs(TLI, DAG.getDataLayout(), I.getType(), ValueVTs);
4775 if (HasChain)
4776 ValueVTs.push_back(MVT::Other);
4778 SDVTList VTs = DAG.getVTList(ValueVTs);
4780 // Create the node.
4781 SDValue Result;
4782 if (IsTgtIntrinsic) {
4783 // This is target intrinsic that touches memory
4784 Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(), VTs,
4785 Ops, Info.memVT,
4786 MachinePointerInfo(Info.ptrVal, Info.offset), Info.align,
4787 Info.flags, Info.size);
4788 } else if (!HasChain) {
4789 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
4790 } else if (!I.getType()->isVoidTy()) {
4791 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
4792 } else {
4793 Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
4796 if (HasChain) {
4797 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
4798 if (OnlyLoad)
4799 PendingLoads.push_back(Chain);
4800 else
4801 DAG.setRoot(Chain);
4804 if (!I.getType()->isVoidTy()) {
4805 if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
4806 EVT VT = TLI.getValueType(DAG.getDataLayout(), PTy);
4807 Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
4808 } else
4809 Result = lowerRangeToAssertZExt(DAG, I, Result);
4811 setValue(&I, Result);
4815 /// GetSignificand - Get the significand and build it into a floating-point
4816 /// number with exponent of 1:
4818 /// Op = (Op & 0x007fffff) | 0x3f800000;
4820 /// where Op is the hexadecimal representation of floating point value.
4821 static SDValue GetSignificand(SelectionDAG &DAG, SDValue Op, const SDLoc &dl) {
4822 SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4823 DAG.getConstant(0x007fffff, dl, MVT::i32));
4824 SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
4825 DAG.getConstant(0x3f800000, dl, MVT::i32));
4826 return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
4829 /// GetExponent - Get the exponent:
4831 /// (float)(int)(((Op & 0x7f800000) >> 23) - 127);
4833 /// where Op is the hexadecimal representation of floating point value.
4834 static SDValue GetExponent(SelectionDAG &DAG, SDValue Op,
4835 const TargetLowering &TLI, const SDLoc &dl) {
4836 SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
4837 DAG.getConstant(0x7f800000, dl, MVT::i32));
4838 SDValue t1 = DAG.getNode(
4839 ISD::SRL, dl, MVT::i32, t0,
4840 DAG.getConstant(23, dl, TLI.getPointerTy(DAG.getDataLayout())));
4841 SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
4842 DAG.getConstant(127, dl, MVT::i32));
4843 return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
4846 /// getF32Constant - Get 32-bit floating point constant.
4847 static SDValue getF32Constant(SelectionDAG &DAG, unsigned Flt,
4848 const SDLoc &dl) {
4849 return DAG.getConstantFP(APFloat(APFloat::IEEEsingle(), APInt(32, Flt)), dl,
4850 MVT::f32);
4853 static SDValue getLimitedPrecisionExp2(SDValue t0, const SDLoc &dl,
4854 SelectionDAG &DAG) {
4855 // TODO: What fast-math-flags should be set on the floating-point nodes?
4857 // IntegerPartOfX = ((int32_t)(t0);
4858 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4860 // FractionalPartOfX = t0 - (float)IntegerPartOfX;
4861 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4862 SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4864 // IntegerPartOfX <<= 23;
4865 IntegerPartOfX = DAG.getNode(
4866 ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4867 DAG.getConstant(23, dl, DAG.getTargetLoweringInfo().getPointerTy(
4868 DAG.getDataLayout())));
4870 SDValue TwoToFractionalPartOfX;
4871 if (LimitFloatPrecision <= 6) {
4872 // For floating-point precision of 6:
4874 // TwoToFractionalPartOfX =
4875 // 0.997535578f +
4876 // (0.735607626f + 0.252464424f * x) * x;
4878 // error 0.0144103317, which is 6 bits
4879 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4880 getF32Constant(DAG, 0x3e814304, dl));
4881 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4882 getF32Constant(DAG, 0x3f3c50c8, dl));
4883 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4884 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4885 getF32Constant(DAG, 0x3f7f5e7e, dl));
4886 } else if (LimitFloatPrecision <= 12) {
4887 // For floating-point precision of 12:
4889 // TwoToFractionalPartOfX =
4890 // 0.999892986f +
4891 // (0.696457318f +
4892 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
4894 // error 0.000107046256, which is 13 to 14 bits
4895 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4896 getF32Constant(DAG, 0x3da235e3, dl));
4897 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4898 getF32Constant(DAG, 0x3e65b8f3, dl));
4899 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4900 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4901 getF32Constant(DAG, 0x3f324b07, dl));
4902 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4903 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4904 getF32Constant(DAG, 0x3f7ff8fd, dl));
4905 } else { // LimitFloatPrecision <= 18
4906 // For floating-point precision of 18:
4908 // TwoToFractionalPartOfX =
4909 // 0.999999982f +
4910 // (0.693148872f +
4911 // (0.240227044f +
4912 // (0.554906021e-1f +
4913 // (0.961591928e-2f +
4914 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4915 // error 2.47208000*10^(-7), which is better than 18 bits
4916 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4917 getF32Constant(DAG, 0x3924b03e, dl));
4918 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4919 getF32Constant(DAG, 0x3ab24b87, dl));
4920 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4921 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4922 getF32Constant(DAG, 0x3c1d8c17, dl));
4923 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4924 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4925 getF32Constant(DAG, 0x3d634a1d, dl));
4926 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4927 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4928 getF32Constant(DAG, 0x3e75fe14, dl));
4929 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4930 SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4931 getF32Constant(DAG, 0x3f317234, dl));
4932 SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4933 TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4934 getF32Constant(DAG, 0x3f800000, dl));
4937 // Add the exponent into the result in integer domain.
4938 SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFractionalPartOfX);
4939 return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4940 DAG.getNode(ISD::ADD, dl, MVT::i32, t13, IntegerPartOfX));
4943 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
4944 /// limited-precision mode.
4945 static SDValue expandExp(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4946 const TargetLowering &TLI) {
4947 if (Op.getValueType() == MVT::f32 &&
4948 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4950 // Put the exponent in the right bit position for later addition to the
4951 // final result:
4953 // #define LOG2OFe 1.4426950f
4954 // t0 = Op * LOG2OFe
4956 // TODO: What fast-math-flags should be set here?
4957 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
4958 getF32Constant(DAG, 0x3fb8aa3b, dl));
4959 return getLimitedPrecisionExp2(t0, dl, DAG);
4962 // No special expansion.
4963 return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4966 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4967 /// limited-precision mode.
4968 static SDValue expandLog(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
4969 const TargetLowering &TLI) {
4970 // TODO: What fast-math-flags should be set on the floating-point nodes?
4972 if (Op.getValueType() == MVT::f32 &&
4973 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4974 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4976 // Scale the exponent by log(2) [0.69314718f].
4977 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4978 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4979 getF32Constant(DAG, 0x3f317218, dl));
4981 // Get the significand and build it into a floating-point number with
4982 // exponent of 1.
4983 SDValue X = GetSignificand(DAG, Op1, dl);
4985 SDValue LogOfMantissa;
4986 if (LimitFloatPrecision <= 6) {
4987 // For floating-point precision of 6:
4989 // LogofMantissa =
4990 // -1.1609546f +
4991 // (1.4034025f - 0.23903021f * x) * x;
4993 // error 0.0034276066, which is better than 8 bits
4994 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4995 getF32Constant(DAG, 0xbe74c456, dl));
4996 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4997 getF32Constant(DAG, 0x3fb3a2b1, dl));
4998 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4999 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5000 getF32Constant(DAG, 0x3f949a29, dl));
5001 } else if (LimitFloatPrecision <= 12) {
5002 // For floating-point precision of 12:
5004 // LogOfMantissa =
5005 // -1.7417939f +
5006 // (2.8212026f +
5007 // (-1.4699568f +
5008 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
5010 // error 0.000061011436, which is 14 bits
5011 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5012 getF32Constant(DAG, 0xbd67b6d6, dl));
5013 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5014 getF32Constant(DAG, 0x3ee4f4b8, dl));
5015 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5016 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5017 getF32Constant(DAG, 0x3fbc278b, dl));
5018 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5019 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5020 getF32Constant(DAG, 0x40348e95, dl));
5021 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5022 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5023 getF32Constant(DAG, 0x3fdef31a, dl));
5024 } else { // LimitFloatPrecision <= 18
5025 // For floating-point precision of 18:
5027 // LogOfMantissa =
5028 // -2.1072184f +
5029 // (4.2372794f +
5030 // (-3.7029485f +
5031 // (2.2781945f +
5032 // (-0.87823314f +
5033 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
5035 // error 0.0000023660568, which is better than 18 bits
5036 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5037 getF32Constant(DAG, 0xbc91e5ac, dl));
5038 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5039 getF32Constant(DAG, 0x3e4350aa, dl));
5040 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5041 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5042 getF32Constant(DAG, 0x3f60d3e3, dl));
5043 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5044 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5045 getF32Constant(DAG, 0x4011cdf0, dl));
5046 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5047 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5048 getF32Constant(DAG, 0x406cfd1c, dl));
5049 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5050 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5051 getF32Constant(DAG, 0x408797cb, dl));
5052 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5053 LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5054 getF32Constant(DAG, 0x4006dcab, dl));
5057 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
5060 // No special expansion.
5061 return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
5064 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
5065 /// limited-precision mode.
5066 static SDValue expandLog2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5067 const TargetLowering &TLI) {
5068 // TODO: What fast-math-flags should be set on the floating-point nodes?
5070 if (Op.getValueType() == MVT::f32 &&
5071 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5072 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5074 // Get the exponent.
5075 SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
5077 // Get the significand and build it into a floating-point number with
5078 // exponent of 1.
5079 SDValue X = GetSignificand(DAG, Op1, dl);
5081 // Different possible minimax approximations of significand in
5082 // floating-point for various degrees of accuracy over [1,2].
5083 SDValue Log2ofMantissa;
5084 if (LimitFloatPrecision <= 6) {
5085 // For floating-point precision of 6:
5087 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
5089 // error 0.0049451742, which is more than 7 bits
5090 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5091 getF32Constant(DAG, 0xbeb08fe0, dl));
5092 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5093 getF32Constant(DAG, 0x40019463, dl));
5094 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5095 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5096 getF32Constant(DAG, 0x3fd6633d, dl));
5097 } else if (LimitFloatPrecision <= 12) {
5098 // For floating-point precision of 12:
5100 // Log2ofMantissa =
5101 // -2.51285454f +
5102 // (4.07009056f +
5103 // (-2.12067489f +
5104 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
5106 // error 0.0000876136000, which is better than 13 bits
5107 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5108 getF32Constant(DAG, 0xbda7262e, dl));
5109 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5110 getF32Constant(DAG, 0x3f25280b, dl));
5111 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5112 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5113 getF32Constant(DAG, 0x4007b923, dl));
5114 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5115 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5116 getF32Constant(DAG, 0x40823e2f, dl));
5117 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5118 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5119 getF32Constant(DAG, 0x4020d29c, dl));
5120 } else { // LimitFloatPrecision <= 18
5121 // For floating-point precision of 18:
5123 // Log2ofMantissa =
5124 // -3.0400495f +
5125 // (6.1129976f +
5126 // (-5.3420409f +
5127 // (3.2865683f +
5128 // (-1.2669343f +
5129 // (0.27515199f -
5130 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
5132 // error 0.0000018516, which is better than 18 bits
5133 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5134 getF32Constant(DAG, 0xbcd2769e, dl));
5135 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5136 getF32Constant(DAG, 0x3e8ce0b9, dl));
5137 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5138 SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5139 getF32Constant(DAG, 0x3fa22ae7, dl));
5140 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5141 SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
5142 getF32Constant(DAG, 0x40525723, dl));
5143 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5144 SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
5145 getF32Constant(DAG, 0x40aaf200, dl));
5146 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5147 SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
5148 getF32Constant(DAG, 0x40c39dad, dl));
5149 SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
5150 Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
5151 getF32Constant(DAG, 0x4042902c, dl));
5154 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
5157 // No special expansion.
5158 return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
5161 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
5162 /// limited-precision mode.
5163 static SDValue expandLog10(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5164 const TargetLowering &TLI) {
5165 // TODO: What fast-math-flags should be set on the floating-point nodes?
5167 if (Op.getValueType() == MVT::f32 &&
5168 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5169 SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
5171 // Scale the exponent by log10(2) [0.30102999f].
5172 SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
5173 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
5174 getF32Constant(DAG, 0x3e9a209a, dl));
5176 // Get the significand and build it into a floating-point number with
5177 // exponent of 1.
5178 SDValue X = GetSignificand(DAG, Op1, dl);
5180 SDValue Log10ofMantissa;
5181 if (LimitFloatPrecision <= 6) {
5182 // For floating-point precision of 6:
5184 // Log10ofMantissa =
5185 // -0.50419619f +
5186 // (0.60948995f - 0.10380950f * x) * x;
5188 // error 0.0014886165, which is 6 bits
5189 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5190 getF32Constant(DAG, 0xbdd49a13, dl));
5191 SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
5192 getF32Constant(DAG, 0x3f1c0789, dl));
5193 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5194 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
5195 getF32Constant(DAG, 0x3f011300, dl));
5196 } else if (LimitFloatPrecision <= 12) {
5197 // For floating-point precision of 12:
5199 // Log10ofMantissa =
5200 // -0.64831180f +
5201 // (0.91751397f +
5202 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
5204 // error 0.00019228036, which is better than 12 bits
5205 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5206 getF32Constant(DAG, 0x3d431f31, dl));
5207 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5208 getF32Constant(DAG, 0x3ea21fb2, dl));
5209 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5210 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5211 getF32Constant(DAG, 0x3f6ae232, dl));
5212 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5213 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5214 getF32Constant(DAG, 0x3f25f7c3, dl));
5215 } else { // LimitFloatPrecision <= 18
5216 // For floating-point precision of 18:
5218 // Log10ofMantissa =
5219 // -0.84299375f +
5220 // (1.5327582f +
5221 // (-1.0688956f +
5222 // (0.49102474f +
5223 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
5225 // error 0.0000037995730, which is better than 18 bits
5226 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
5227 getF32Constant(DAG, 0x3c5d51ce, dl));
5228 SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
5229 getF32Constant(DAG, 0x3e00685a, dl));
5230 SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
5231 SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
5232 getF32Constant(DAG, 0x3efb6798, dl));
5233 SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
5234 SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
5235 getF32Constant(DAG, 0x3f88d192, dl));
5236 SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
5237 SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
5238 getF32Constant(DAG, 0x3fc4316c, dl));
5239 SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
5240 Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
5241 getF32Constant(DAG, 0x3f57ce70, dl));
5244 return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
5247 // No special expansion.
5248 return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
5251 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
5252 /// limited-precision mode.
5253 static SDValue expandExp2(const SDLoc &dl, SDValue Op, SelectionDAG &DAG,
5254 const TargetLowering &TLI) {
5255 if (Op.getValueType() == MVT::f32 &&
5256 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18)
5257 return getLimitedPrecisionExp2(Op, dl, DAG);
5259 // No special expansion.
5260 return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
5263 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
5264 /// limited-precision mode with x == 10.0f.
5265 static SDValue expandPow(const SDLoc &dl, SDValue LHS, SDValue RHS,
5266 SelectionDAG &DAG, const TargetLowering &TLI) {
5267 bool IsExp10 = false;
5268 if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
5269 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
5270 if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
5271 APFloat Ten(10.0f);
5272 IsExp10 = LHSC->isExactlyValue(Ten);
5276 // TODO: What fast-math-flags should be set on the FMUL node?
5277 if (IsExp10) {
5278 // Put the exponent in the right bit position for later addition to the
5279 // final result:
5281 // #define LOG2OF10 3.3219281f
5282 // t0 = Op * LOG2OF10;
5283 SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
5284 getF32Constant(DAG, 0x40549a78, dl));
5285 return getLimitedPrecisionExp2(t0, dl, DAG);
5288 // No special expansion.
5289 return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
5292 /// ExpandPowI - Expand a llvm.powi intrinsic.
5293 static SDValue ExpandPowI(const SDLoc &DL, SDValue LHS, SDValue RHS,
5294 SelectionDAG &DAG) {
5295 // If RHS is a constant, we can expand this out to a multiplication tree,
5296 // otherwise we end up lowering to a call to __powidf2 (for example). When
5297 // optimizing for size, we only want to do this if the expansion would produce
5298 // a small number of multiplies, otherwise we do the full expansion.
5299 if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
5300 // Get the exponent as a positive value.
5301 unsigned Val = RHSC->getSExtValue();
5302 if ((int)Val < 0) Val = -Val;
5304 // powi(x, 0) -> 1.0
5305 if (Val == 0)
5306 return DAG.getConstantFP(1.0, DL, LHS.getValueType());
5308 const Function &F = DAG.getMachineFunction().getFunction();
5309 if (!F.hasOptSize() ||
5310 // If optimizing for size, don't insert too many multiplies.
5311 // This inserts up to 5 multiplies.
5312 countPopulation(Val) + Log2_32(Val) < 7) {
5313 // We use the simple binary decomposition method to generate the multiply
5314 // sequence. There are more optimal ways to do this (for example,
5315 // powi(x,15) generates one more multiply than it should), but this has
5316 // the benefit of being both really simple and much better than a libcall.
5317 SDValue Res; // Logically starts equal to 1.0
5318 SDValue CurSquare = LHS;
5319 // TODO: Intrinsics should have fast-math-flags that propagate to these
5320 // nodes.
5321 while (Val) {
5322 if (Val & 1) {
5323 if (Res.getNode())
5324 Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
5325 else
5326 Res = CurSquare; // 1.0*CurSquare.
5329 CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
5330 CurSquare, CurSquare);
5331 Val >>= 1;
5334 // If the original was negative, invert the result, producing 1/(x*x*x).
5335 if (RHSC->getSExtValue() < 0)
5336 Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
5337 DAG.getConstantFP(1.0, DL, LHS.getValueType()), Res);
5338 return Res;
5342 // Otherwise, expand to a libcall.
5343 return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
5346 // getUnderlyingArgReg - Find underlying register used for a truncated or
5347 // bitcasted argument.
5348 static unsigned getUnderlyingArgReg(const SDValue &N) {
5349 switch (N.getOpcode()) {
5350 case ISD::CopyFromReg:
5351 return cast<RegisterSDNode>(N.getOperand(1))->getReg();
5352 case ISD::BITCAST:
5353 case ISD::AssertZext:
5354 case ISD::AssertSext:
5355 case ISD::TRUNCATE:
5356 return getUnderlyingArgReg(N.getOperand(0));
5357 default:
5358 return 0;
5362 /// If the DbgValueInst is a dbg_value of a function argument, create the
5363 /// corresponding DBG_VALUE machine instruction for it now. At the end of
5364 /// instruction selection, they will be inserted to the entry BB.
5365 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(
5366 const Value *V, DILocalVariable *Variable, DIExpression *Expr,
5367 DILocation *DL, bool IsDbgDeclare, const SDValue &N) {
5368 const Argument *Arg = dyn_cast<Argument>(V);
5369 if (!Arg)
5370 return false;
5372 if (!IsDbgDeclare) {
5373 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5374 // should only emit as ArgDbgValue if the dbg.value intrinsic is found in
5375 // the entry block.
5376 bool IsInEntryBlock = FuncInfo.MBB == &FuncInfo.MF->front();
5377 if (!IsInEntryBlock)
5378 return false;
5380 // ArgDbgValues are hoisted to the beginning of the entry block. So we
5381 // should only emit as ArgDbgValue if the dbg.value intrinsic describes a
5382 // variable that also is a param.
5384 // Although, if we are at the top of the entry block already, we can still
5385 // emit using ArgDbgValue. This might catch some situations when the
5386 // dbg.value refers to an argument that isn't used in the entry block, so
5387 // any CopyToReg node would be optimized out and the only way to express
5388 // this DBG_VALUE is by using the physical reg (or FI) as done in this
5389 // method. ArgDbgValues are hoisted to the beginning of the entry block. So
5390 // we should only emit as ArgDbgValue if the Variable is an argument to the
5391 // current function, and the dbg.value intrinsic is found in the entry
5392 // block.
5393 bool VariableIsFunctionInputArg = Variable->isParameter() &&
5394 !DL->getInlinedAt();
5395 bool IsInPrologue = SDNodeOrder == LowestSDNodeOrder;
5396 if (!IsInPrologue && !VariableIsFunctionInputArg)
5397 return false;
5399 // Here we assume that a function argument on IR level only can be used to
5400 // describe one input parameter on source level. If we for example have
5401 // source code like this
5403 // struct A { long x, y; };
5404 // void foo(struct A a, long b) {
5405 // ...
5406 // b = a.x;
5407 // ...
5408 // }
5410 // and IR like this
5412 // define void @foo(i32 %a1, i32 %a2, i32 %b) {
5413 // entry:
5414 // call void @llvm.dbg.value(metadata i32 %a1, "a", DW_OP_LLVM_fragment
5415 // call void @llvm.dbg.value(metadata i32 %a2, "a", DW_OP_LLVM_fragment
5416 // call void @llvm.dbg.value(metadata i32 %b, "b",
5417 // ...
5418 // call void @llvm.dbg.value(metadata i32 %a1, "b"
5419 // ...
5421 // then the last dbg.value is describing a parameter "b" using a value that
5422 // is an argument. But since we already has used %a1 to describe a parameter
5423 // we should not handle that last dbg.value here (that would result in an
5424 // incorrect hoisting of the DBG_VALUE to the function entry).
5425 // Notice that we allow one dbg.value per IR level argument, to accomodate
5426 // for the situation with fragments above.
5427 if (VariableIsFunctionInputArg) {
5428 unsigned ArgNo = Arg->getArgNo();
5429 if (ArgNo >= FuncInfo.DescribedArgs.size())
5430 FuncInfo.DescribedArgs.resize(ArgNo + 1, false);
5431 else if (!IsInPrologue && FuncInfo.DescribedArgs.test(ArgNo))
5432 return false;
5433 FuncInfo.DescribedArgs.set(ArgNo);
5437 MachineFunction &MF = DAG.getMachineFunction();
5438 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5440 bool IsIndirect = false;
5441 Optional<MachineOperand> Op;
5442 // Some arguments' frame index is recorded during argument lowering.
5443 int FI = FuncInfo.getArgumentFrameIndex(Arg);
5444 if (FI != std::numeric_limits<int>::max())
5445 Op = MachineOperand::CreateFI(FI);
5447 if (!Op && N.getNode()) {
5448 unsigned Reg = getUnderlyingArgReg(N);
5449 if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
5450 MachineRegisterInfo &RegInfo = MF.getRegInfo();
5451 unsigned PR = RegInfo.getLiveInPhysReg(Reg);
5452 if (PR)
5453 Reg = PR;
5455 if (Reg) {
5456 Op = MachineOperand::CreateReg(Reg, false);
5457 IsIndirect = IsDbgDeclare;
5461 if (!Op && N.getNode()) {
5462 // Check if frame index is available.
5463 SDValue LCandidate = peekThroughBitcasts(N);
5464 if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(LCandidate.getNode()))
5465 if (FrameIndexSDNode *FINode =
5466 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
5467 Op = MachineOperand::CreateFI(FINode->getIndex());
5470 if (!Op) {
5471 // Check if ValueMap has reg number.
5472 DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
5473 if (VMI != FuncInfo.ValueMap.end()) {
5474 const auto &TLI = DAG.getTargetLoweringInfo();
5475 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), VMI->second,
5476 V->getType(), getABIRegCopyCC(V));
5477 if (RFV.occupiesMultipleRegs()) {
5478 unsigned Offset = 0;
5479 for (auto RegAndSize : RFV.getRegsAndSizes()) {
5480 Op = MachineOperand::CreateReg(RegAndSize.first, false);
5481 auto FragmentExpr = DIExpression::createFragmentExpression(
5482 Expr, Offset, RegAndSize.second);
5483 if (!FragmentExpr)
5484 continue;
5485 FuncInfo.ArgDbgValues.push_back(
5486 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsDbgDeclare,
5487 Op->getReg(), Variable, *FragmentExpr));
5488 Offset += RegAndSize.second;
5490 return true;
5492 Op = MachineOperand::CreateReg(VMI->second, false);
5493 IsIndirect = IsDbgDeclare;
5497 if (!Op)
5498 return false;
5500 assert(Variable->isValidLocationForIntrinsic(DL) &&
5501 "Expected inlined-at fields to agree");
5502 IsIndirect = (Op->isReg()) ? IsIndirect : true;
5503 FuncInfo.ArgDbgValues.push_back(
5504 BuildMI(MF, DL, TII->get(TargetOpcode::DBG_VALUE), IsIndirect,
5505 *Op, Variable, Expr));
5507 return true;
5510 /// Return the appropriate SDDbgValue based on N.
5511 SDDbgValue *SelectionDAGBuilder::getDbgValue(SDValue N,
5512 DILocalVariable *Variable,
5513 DIExpression *Expr,
5514 const DebugLoc &dl,
5515 unsigned DbgSDNodeOrder) {
5516 if (auto *FISDN = dyn_cast<FrameIndexSDNode>(N.getNode())) {
5517 // Construct a FrameIndexDbgValue for FrameIndexSDNodes so we can describe
5518 // stack slot locations.
5520 // Consider "int x = 0; int *px = &x;". There are two kinds of interesting
5521 // debug values here after optimization:
5523 // dbg.value(i32* %px, !"int *px", !DIExpression()), and
5524 // dbg.value(i32* %px, !"int x", !DIExpression(DW_OP_deref))
5526 // Both describe the direct values of their associated variables.
5527 return DAG.getFrameIndexDbgValue(Variable, Expr, FISDN->getIndex(),
5528 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5530 return DAG.getDbgValue(Variable, Expr, N.getNode(), N.getResNo(),
5531 /*IsIndirect*/ false, dl, DbgSDNodeOrder);
5534 // VisualStudio defines setjmp as _setjmp
5535 #if defined(_MSC_VER) && defined(setjmp) && \
5536 !defined(setjmp_undefined_for_msvc)
5537 # pragma push_macro("setjmp")
5538 # undef setjmp
5539 # define setjmp_undefined_for_msvc
5540 #endif
5542 static unsigned FixedPointIntrinsicToOpcode(unsigned Intrinsic) {
5543 switch (Intrinsic) {
5544 case Intrinsic::smul_fix:
5545 return ISD::SMULFIX;
5546 case Intrinsic::umul_fix:
5547 return ISD::UMULFIX;
5548 default:
5549 llvm_unreachable("Unhandled fixed point intrinsic");
5553 void SelectionDAGBuilder::lowerCallToExternalSymbol(const CallInst &I,
5554 const char *FunctionName) {
5555 assert(FunctionName && "FunctionName must not be nullptr");
5556 SDValue Callee = DAG.getExternalSymbol(
5557 FunctionName,
5558 DAG.getTargetLoweringInfo().getPointerTy(DAG.getDataLayout()));
5559 LowerCallTo(&I, Callee, I.isTailCall());
5562 /// Lower the call to the specified intrinsic function.
5563 void SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I,
5564 unsigned Intrinsic) {
5565 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5566 SDLoc sdl = getCurSDLoc();
5567 DebugLoc dl = getCurDebugLoc();
5568 SDValue Res;
5570 switch (Intrinsic) {
5571 default:
5572 // By default, turn this into a target intrinsic node.
5573 visitTargetIntrinsic(I, Intrinsic);
5574 return;
5575 case Intrinsic::vastart: visitVAStart(I); return;
5576 case Intrinsic::vaend: visitVAEnd(I); return;
5577 case Intrinsic::vacopy: visitVACopy(I); return;
5578 case Intrinsic::returnaddress:
5579 setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl,
5580 TLI.getPointerTy(DAG.getDataLayout()),
5581 getValue(I.getArgOperand(0))));
5582 return;
5583 case Intrinsic::addressofreturnaddress:
5584 setValue(&I, DAG.getNode(ISD::ADDROFRETURNADDR, sdl,
5585 TLI.getPointerTy(DAG.getDataLayout())));
5586 return;
5587 case Intrinsic::sponentry:
5588 setValue(&I, DAG.getNode(ISD::SPONENTRY, sdl,
5589 TLI.getPointerTy(DAG.getDataLayout())));
5590 return;
5591 case Intrinsic::frameaddress:
5592 setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl,
5593 TLI.getPointerTy(DAG.getDataLayout()),
5594 getValue(I.getArgOperand(0))));
5595 return;
5596 case Intrinsic::read_register: {
5597 Value *Reg = I.getArgOperand(0);
5598 SDValue Chain = getRoot();
5599 SDValue RegName =
5600 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5601 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5602 Res = DAG.getNode(ISD::READ_REGISTER, sdl,
5603 DAG.getVTList(VT, MVT::Other), Chain, RegName);
5604 setValue(&I, Res);
5605 DAG.setRoot(Res.getValue(1));
5606 return;
5608 case Intrinsic::write_register: {
5609 Value *Reg = I.getArgOperand(0);
5610 Value *RegValue = I.getArgOperand(1);
5611 SDValue Chain = getRoot();
5612 SDValue RegName =
5613 DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
5614 DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
5615 RegName, getValue(RegValue)));
5616 return;
5618 case Intrinsic::setjmp:
5619 lowerCallToExternalSymbol(I, &"_setjmp"[!TLI.usesUnderscoreSetJmp()]);
5620 return;
5621 case Intrinsic::longjmp:
5622 lowerCallToExternalSymbol(I, &"_longjmp"[!TLI.usesUnderscoreLongJmp()]);
5623 return;
5624 case Intrinsic::memcpy: {
5625 const auto &MCI = cast<MemCpyInst>(I);
5626 SDValue Op1 = getValue(I.getArgOperand(0));
5627 SDValue Op2 = getValue(I.getArgOperand(1));
5628 SDValue Op3 = getValue(I.getArgOperand(2));
5629 // @llvm.memcpy defines 0 and 1 to both mean no alignment.
5630 unsigned DstAlign = std::max<unsigned>(MCI.getDestAlignment(), 1);
5631 unsigned SrcAlign = std::max<unsigned>(MCI.getSourceAlignment(), 1);
5632 unsigned Align = MinAlign(DstAlign, SrcAlign);
5633 bool isVol = MCI.isVolatile();
5634 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5635 // FIXME: Support passing different dest/src alignments to the memcpy DAG
5636 // node.
5637 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5638 false, isTC,
5639 MachinePointerInfo(I.getArgOperand(0)),
5640 MachinePointerInfo(I.getArgOperand(1)));
5641 updateDAGForMaybeTailCall(MC);
5642 return;
5644 case Intrinsic::memset: {
5645 const auto &MSI = cast<MemSetInst>(I);
5646 SDValue Op1 = getValue(I.getArgOperand(0));
5647 SDValue Op2 = getValue(I.getArgOperand(1));
5648 SDValue Op3 = getValue(I.getArgOperand(2));
5649 // @llvm.memset defines 0 and 1 to both mean no alignment.
5650 unsigned Align = std::max<unsigned>(MSI.getDestAlignment(), 1);
5651 bool isVol = MSI.isVolatile();
5652 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5653 SDValue MS = DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5654 isTC, MachinePointerInfo(I.getArgOperand(0)));
5655 updateDAGForMaybeTailCall(MS);
5656 return;
5658 case Intrinsic::memmove: {
5659 const auto &MMI = cast<MemMoveInst>(I);
5660 SDValue Op1 = getValue(I.getArgOperand(0));
5661 SDValue Op2 = getValue(I.getArgOperand(1));
5662 SDValue Op3 = getValue(I.getArgOperand(2));
5663 // @llvm.memmove defines 0 and 1 to both mean no alignment.
5664 unsigned DstAlign = std::max<unsigned>(MMI.getDestAlignment(), 1);
5665 unsigned SrcAlign = std::max<unsigned>(MMI.getSourceAlignment(), 1);
5666 unsigned Align = MinAlign(DstAlign, SrcAlign);
5667 bool isVol = MMI.isVolatile();
5668 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5669 // FIXME: Support passing different dest/src alignments to the memmove DAG
5670 // node.
5671 SDValue MM = DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
5672 isTC, MachinePointerInfo(I.getArgOperand(0)),
5673 MachinePointerInfo(I.getArgOperand(1)));
5674 updateDAGForMaybeTailCall(MM);
5675 return;
5677 case Intrinsic::memcpy_element_unordered_atomic: {
5678 const AtomicMemCpyInst &MI = cast<AtomicMemCpyInst>(I);
5679 SDValue Dst = getValue(MI.getRawDest());
5680 SDValue Src = getValue(MI.getRawSource());
5681 SDValue Length = getValue(MI.getLength());
5683 unsigned DstAlign = MI.getDestAlignment();
5684 unsigned SrcAlign = MI.getSourceAlignment();
5685 Type *LengthTy = MI.getLength()->getType();
5686 unsigned ElemSz = MI.getElementSizeInBytes();
5687 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5688 SDValue MC = DAG.getAtomicMemcpy(getRoot(), sdl, Dst, DstAlign, Src,
5689 SrcAlign, Length, LengthTy, ElemSz, isTC,
5690 MachinePointerInfo(MI.getRawDest()),
5691 MachinePointerInfo(MI.getRawSource()));
5692 updateDAGForMaybeTailCall(MC);
5693 return;
5695 case Intrinsic::memmove_element_unordered_atomic: {
5696 auto &MI = cast<AtomicMemMoveInst>(I);
5697 SDValue Dst = getValue(MI.getRawDest());
5698 SDValue Src = getValue(MI.getRawSource());
5699 SDValue Length = getValue(MI.getLength());
5701 unsigned DstAlign = MI.getDestAlignment();
5702 unsigned SrcAlign = MI.getSourceAlignment();
5703 Type *LengthTy = MI.getLength()->getType();
5704 unsigned ElemSz = MI.getElementSizeInBytes();
5705 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5706 SDValue MC = DAG.getAtomicMemmove(getRoot(), sdl, Dst, DstAlign, Src,
5707 SrcAlign, Length, LengthTy, ElemSz, isTC,
5708 MachinePointerInfo(MI.getRawDest()),
5709 MachinePointerInfo(MI.getRawSource()));
5710 updateDAGForMaybeTailCall(MC);
5711 return;
5713 case Intrinsic::memset_element_unordered_atomic: {
5714 auto &MI = cast<AtomicMemSetInst>(I);
5715 SDValue Dst = getValue(MI.getRawDest());
5716 SDValue Val = getValue(MI.getValue());
5717 SDValue Length = getValue(MI.getLength());
5719 unsigned DstAlign = MI.getDestAlignment();
5720 Type *LengthTy = MI.getLength()->getType();
5721 unsigned ElemSz = MI.getElementSizeInBytes();
5722 bool isTC = I.isTailCall() && isInTailCallPosition(&I, DAG.getTarget());
5723 SDValue MC = DAG.getAtomicMemset(getRoot(), sdl, Dst, DstAlign, Val, Length,
5724 LengthTy, ElemSz, isTC,
5725 MachinePointerInfo(MI.getRawDest()));
5726 updateDAGForMaybeTailCall(MC);
5727 return;
5729 case Intrinsic::dbg_addr:
5730 case Intrinsic::dbg_declare: {
5731 const auto &DI = cast<DbgVariableIntrinsic>(I);
5732 DILocalVariable *Variable = DI.getVariable();
5733 DIExpression *Expression = DI.getExpression();
5734 dropDanglingDebugInfo(Variable, Expression);
5735 assert(Variable && "Missing variable");
5737 // Check if address has undef value.
5738 const Value *Address = DI.getVariableLocation();
5739 if (!Address || isa<UndefValue>(Address) ||
5740 (Address->use_empty() && !isa<Argument>(Address))) {
5741 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5742 return;
5745 bool isParameter = Variable->isParameter() || isa<Argument>(Address);
5747 // Check if this variable can be described by a frame index, typically
5748 // either as a static alloca or a byval parameter.
5749 int FI = std::numeric_limits<int>::max();
5750 if (const auto *AI =
5751 dyn_cast<AllocaInst>(Address->stripInBoundsConstantOffsets())) {
5752 if (AI->isStaticAlloca()) {
5753 auto I = FuncInfo.StaticAllocaMap.find(AI);
5754 if (I != FuncInfo.StaticAllocaMap.end())
5755 FI = I->second;
5757 } else if (const auto *Arg = dyn_cast<Argument>(
5758 Address->stripInBoundsConstantOffsets())) {
5759 FI = FuncInfo.getArgumentFrameIndex(Arg);
5762 // llvm.dbg.addr is control dependent and always generates indirect
5763 // DBG_VALUE instructions. llvm.dbg.declare is handled as a frame index in
5764 // the MachineFunction variable table.
5765 if (FI != std::numeric_limits<int>::max()) {
5766 if (Intrinsic == Intrinsic::dbg_addr) {
5767 SDDbgValue *SDV = DAG.getFrameIndexDbgValue(
5768 Variable, Expression, FI, /*IsIndirect*/ true, dl, SDNodeOrder);
5769 DAG.AddDbgValue(SDV, getRoot().getNode(), isParameter);
5771 return;
5774 SDValue &N = NodeMap[Address];
5775 if (!N.getNode() && isa<Argument>(Address))
5776 // Check unused arguments map.
5777 N = UnusedArgNodeMap[Address];
5778 SDDbgValue *SDV;
5779 if (N.getNode()) {
5780 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
5781 Address = BCI->getOperand(0);
5782 // Parameters are handled specially.
5783 auto FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
5784 if (isParameter && FINode) {
5785 // Byval parameter. We have a frame index at this point.
5786 SDV =
5787 DAG.getFrameIndexDbgValue(Variable, Expression, FINode->getIndex(),
5788 /*IsIndirect*/ true, dl, SDNodeOrder);
5789 } else if (isa<Argument>(Address)) {
5790 // Address is an argument, so try to emit its dbg value using
5791 // virtual register info from the FuncInfo.ValueMap.
5792 EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true, N);
5793 return;
5794 } else {
5795 SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
5796 true, dl, SDNodeOrder);
5798 DAG.AddDbgValue(SDV, N.getNode(), isParameter);
5799 } else {
5800 // If Address is an argument then try to emit its dbg value using
5801 // virtual register info from the FuncInfo.ValueMap.
5802 if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, dl, true,
5803 N)) {
5804 LLVM_DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
5807 return;
5809 case Intrinsic::dbg_label: {
5810 const DbgLabelInst &DI = cast<DbgLabelInst>(I);
5811 DILabel *Label = DI.getLabel();
5812 assert(Label && "Missing label");
5814 SDDbgLabel *SDV;
5815 SDV = DAG.getDbgLabel(Label, dl, SDNodeOrder);
5816 DAG.AddDbgLabel(SDV);
5817 return;
5819 case Intrinsic::dbg_value: {
5820 const DbgValueInst &DI = cast<DbgValueInst>(I);
5821 assert(DI.getVariable() && "Missing variable");
5823 DILocalVariable *Variable = DI.getVariable();
5824 DIExpression *Expression = DI.getExpression();
5825 dropDanglingDebugInfo(Variable, Expression);
5826 const Value *V = DI.getValue();
5827 if (!V)
5828 return;
5830 if (handleDebugValue(V, Variable, Expression, dl, DI.getDebugLoc(),
5831 SDNodeOrder))
5832 return;
5834 // TODO: Dangling debug info will eventually either be resolved or produce
5835 // an Undef DBG_VALUE. However in the resolution case, a gap may appear
5836 // between the original dbg.value location and its resolved DBG_VALUE, which
5837 // we should ideally fill with an extra Undef DBG_VALUE.
5839 DanglingDebugInfoMap[V].emplace_back(&DI, dl, SDNodeOrder);
5840 return;
5843 case Intrinsic::eh_typeid_for: {
5844 // Find the type id for the given typeinfo.
5845 GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
5846 unsigned TypeID = DAG.getMachineFunction().getTypeIDFor(GV);
5847 Res = DAG.getConstant(TypeID, sdl, MVT::i32);
5848 setValue(&I, Res);
5849 return;
5852 case Intrinsic::eh_return_i32:
5853 case Intrinsic::eh_return_i64:
5854 DAG.getMachineFunction().setCallsEHReturn(true);
5855 DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
5856 MVT::Other,
5857 getControlRoot(),
5858 getValue(I.getArgOperand(0)),
5859 getValue(I.getArgOperand(1))));
5860 return;
5861 case Intrinsic::eh_unwind_init:
5862 DAG.getMachineFunction().setCallsUnwindInit(true);
5863 return;
5864 case Intrinsic::eh_dwarf_cfa:
5865 setValue(&I, DAG.getNode(ISD::EH_DWARF_CFA, sdl,
5866 TLI.getPointerTy(DAG.getDataLayout()),
5867 getValue(I.getArgOperand(0))));
5868 return;
5869 case Intrinsic::eh_sjlj_callsite: {
5870 MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5871 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
5872 assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
5873 assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
5875 MMI.setCurrentCallSite(CI->getZExtValue());
5876 return;
5878 case Intrinsic::eh_sjlj_functioncontext: {
5879 // Get and store the index of the function context.
5880 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
5881 AllocaInst *FnCtx =
5882 cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
5883 int FI = FuncInfo.StaticAllocaMap[FnCtx];
5884 MFI.setFunctionContextIndex(FI);
5885 return;
5887 case Intrinsic::eh_sjlj_setjmp: {
5888 SDValue Ops[2];
5889 Ops[0] = getRoot();
5890 Ops[1] = getValue(I.getArgOperand(0));
5891 SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5892 DAG.getVTList(MVT::i32, MVT::Other), Ops);
5893 setValue(&I, Op.getValue(0));
5894 DAG.setRoot(Op.getValue(1));
5895 return;
5897 case Intrinsic::eh_sjlj_longjmp:
5898 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5899 getRoot(), getValue(I.getArgOperand(0))));
5900 return;
5901 case Intrinsic::eh_sjlj_setup_dispatch:
5902 DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_SETUP_DISPATCH, sdl, MVT::Other,
5903 getRoot()));
5904 return;
5905 case Intrinsic::masked_gather:
5906 visitMaskedGather(I);
5907 return;
5908 case Intrinsic::masked_load:
5909 visitMaskedLoad(I);
5910 return;
5911 case Intrinsic::masked_scatter:
5912 visitMaskedScatter(I);
5913 return;
5914 case Intrinsic::masked_store:
5915 visitMaskedStore(I);
5916 return;
5917 case Intrinsic::masked_expandload:
5918 visitMaskedLoad(I, true /* IsExpanding */);
5919 return;
5920 case Intrinsic::masked_compressstore:
5921 visitMaskedStore(I, true /* IsCompressing */);
5922 return;
5923 case Intrinsic::x86_mmx_pslli_w:
5924 case Intrinsic::x86_mmx_pslli_d:
5925 case Intrinsic::x86_mmx_pslli_q:
5926 case Intrinsic::x86_mmx_psrli_w:
5927 case Intrinsic::x86_mmx_psrli_d:
5928 case Intrinsic::x86_mmx_psrli_q:
5929 case Intrinsic::x86_mmx_psrai_w:
5930 case Intrinsic::x86_mmx_psrai_d: {
5931 SDValue ShAmt = getValue(I.getArgOperand(1));
5932 if (isa<ConstantSDNode>(ShAmt)) {
5933 visitTargetIntrinsic(I, Intrinsic);
5934 return;
5936 unsigned NewIntrinsic = 0;
5937 EVT ShAmtVT = MVT::v2i32;
5938 switch (Intrinsic) {
5939 case Intrinsic::x86_mmx_pslli_w:
5940 NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5941 break;
5942 case Intrinsic::x86_mmx_pslli_d:
5943 NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5944 break;
5945 case Intrinsic::x86_mmx_pslli_q:
5946 NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5947 break;
5948 case Intrinsic::x86_mmx_psrli_w:
5949 NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5950 break;
5951 case Intrinsic::x86_mmx_psrli_d:
5952 NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5953 break;
5954 case Intrinsic::x86_mmx_psrli_q:
5955 NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5956 break;
5957 case Intrinsic::x86_mmx_psrai_w:
5958 NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5959 break;
5960 case Intrinsic::x86_mmx_psrai_d:
5961 NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5962 break;
5963 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
5966 // The vector shift intrinsics with scalars uses 32b shift amounts but
5967 // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5968 // to be zero.
5969 // We must do this early because v2i32 is not a legal type.
5970 SDValue ShOps[2];
5971 ShOps[0] = ShAmt;
5972 ShOps[1] = DAG.getConstant(0, sdl, MVT::i32);
5973 ShAmt = DAG.getBuildVector(ShAmtVT, sdl, ShOps);
5974 EVT DestVT = TLI.getValueType(DAG.getDataLayout(), I.getType());
5975 ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5976 Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5977 DAG.getConstant(NewIntrinsic, sdl, MVT::i32),
5978 getValue(I.getArgOperand(0)), ShAmt);
5979 setValue(&I, Res);
5980 return;
5982 case Intrinsic::powi:
5983 setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5984 getValue(I.getArgOperand(1)), DAG));
5985 return;
5986 case Intrinsic::log:
5987 setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5988 return;
5989 case Intrinsic::log2:
5990 setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5991 return;
5992 case Intrinsic::log10:
5993 setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5994 return;
5995 case Intrinsic::exp:
5996 setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5997 return;
5998 case Intrinsic::exp2:
5999 setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
6000 return;
6001 case Intrinsic::pow:
6002 setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
6003 getValue(I.getArgOperand(1)), DAG, TLI));
6004 return;
6005 case Intrinsic::sqrt:
6006 case Intrinsic::fabs:
6007 case Intrinsic::sin:
6008 case Intrinsic::cos:
6009 case Intrinsic::floor:
6010 case Intrinsic::ceil:
6011 case Intrinsic::trunc:
6012 case Intrinsic::rint:
6013 case Intrinsic::nearbyint:
6014 case Intrinsic::round:
6015 case Intrinsic::canonicalize: {
6016 unsigned Opcode;
6017 switch (Intrinsic) {
6018 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6019 case Intrinsic::sqrt: Opcode = ISD::FSQRT; break;
6020 case Intrinsic::fabs: Opcode = ISD::FABS; break;
6021 case Intrinsic::sin: Opcode = ISD::FSIN; break;
6022 case Intrinsic::cos: Opcode = ISD::FCOS; break;
6023 case Intrinsic::floor: Opcode = ISD::FFLOOR; break;
6024 case Intrinsic::ceil: Opcode = ISD::FCEIL; break;
6025 case Intrinsic::trunc: Opcode = ISD::FTRUNC; break;
6026 case Intrinsic::rint: Opcode = ISD::FRINT; break;
6027 case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
6028 case Intrinsic::round: Opcode = ISD::FROUND; break;
6029 case Intrinsic::canonicalize: Opcode = ISD::FCANONICALIZE; break;
6032 setValue(&I, DAG.getNode(Opcode, sdl,
6033 getValue(I.getArgOperand(0)).getValueType(),
6034 getValue(I.getArgOperand(0))));
6035 return;
6037 case Intrinsic::lround_i32:
6038 case Intrinsic::lround_i64:
6039 case Intrinsic::llround: {
6040 unsigned Opcode;
6041 MVT RetVT;
6042 switch (Intrinsic) {
6043 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6044 case Intrinsic::lround_i32: Opcode = ISD::LROUND; RetVT = MVT::i32; break;
6045 case Intrinsic::lround_i64: Opcode = ISD::LROUND; RetVT = MVT::i64; break;
6046 case Intrinsic::llround: Opcode = ISD::LLROUND; RetVT = MVT::i64; break;
6049 setValue(&I, DAG.getNode(Opcode, sdl, RetVT,
6050 getValue(I.getArgOperand(0))));
6051 return;
6053 case Intrinsic::minnum: {
6054 auto VT = getValue(I.getArgOperand(0)).getValueType();
6055 unsigned Opc =
6056 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMINIMUM, VT)
6057 ? ISD::FMINIMUM
6058 : ISD::FMINNUM;
6059 setValue(&I, DAG.getNode(Opc, sdl, VT,
6060 getValue(I.getArgOperand(0)),
6061 getValue(I.getArgOperand(1))));
6062 return;
6064 case Intrinsic::maxnum: {
6065 auto VT = getValue(I.getArgOperand(0)).getValueType();
6066 unsigned Opc =
6067 I.hasNoNaNs() && TLI.isOperationLegalOrCustom(ISD::FMAXIMUM, VT)
6068 ? ISD::FMAXIMUM
6069 : ISD::FMAXNUM;
6070 setValue(&I, DAG.getNode(Opc, sdl, VT,
6071 getValue(I.getArgOperand(0)),
6072 getValue(I.getArgOperand(1))));
6073 return;
6075 case Intrinsic::minimum:
6076 setValue(&I, DAG.getNode(ISD::FMINIMUM, sdl,
6077 getValue(I.getArgOperand(0)).getValueType(),
6078 getValue(I.getArgOperand(0)),
6079 getValue(I.getArgOperand(1))));
6080 return;
6081 case Intrinsic::maximum:
6082 setValue(&I, DAG.getNode(ISD::FMAXIMUM, sdl,
6083 getValue(I.getArgOperand(0)).getValueType(),
6084 getValue(I.getArgOperand(0)),
6085 getValue(I.getArgOperand(1))));
6086 return;
6087 case Intrinsic::copysign:
6088 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
6089 getValue(I.getArgOperand(0)).getValueType(),
6090 getValue(I.getArgOperand(0)),
6091 getValue(I.getArgOperand(1))));
6092 return;
6093 case Intrinsic::fma:
6094 setValue(&I, DAG.getNode(ISD::FMA, sdl,
6095 getValue(I.getArgOperand(0)).getValueType(),
6096 getValue(I.getArgOperand(0)),
6097 getValue(I.getArgOperand(1)),
6098 getValue(I.getArgOperand(2))));
6099 return;
6100 case Intrinsic::experimental_constrained_fadd:
6101 case Intrinsic::experimental_constrained_fsub:
6102 case Intrinsic::experimental_constrained_fmul:
6103 case Intrinsic::experimental_constrained_fdiv:
6104 case Intrinsic::experimental_constrained_frem:
6105 case Intrinsic::experimental_constrained_fma:
6106 case Intrinsic::experimental_constrained_fptrunc:
6107 case Intrinsic::experimental_constrained_fpext:
6108 case Intrinsic::experimental_constrained_sqrt:
6109 case Intrinsic::experimental_constrained_pow:
6110 case Intrinsic::experimental_constrained_powi:
6111 case Intrinsic::experimental_constrained_sin:
6112 case Intrinsic::experimental_constrained_cos:
6113 case Intrinsic::experimental_constrained_exp:
6114 case Intrinsic::experimental_constrained_exp2:
6115 case Intrinsic::experimental_constrained_log:
6116 case Intrinsic::experimental_constrained_log10:
6117 case Intrinsic::experimental_constrained_log2:
6118 case Intrinsic::experimental_constrained_rint:
6119 case Intrinsic::experimental_constrained_nearbyint:
6120 case Intrinsic::experimental_constrained_maxnum:
6121 case Intrinsic::experimental_constrained_minnum:
6122 case Intrinsic::experimental_constrained_ceil:
6123 case Intrinsic::experimental_constrained_floor:
6124 case Intrinsic::experimental_constrained_round:
6125 case Intrinsic::experimental_constrained_trunc:
6126 visitConstrainedFPIntrinsic(cast<ConstrainedFPIntrinsic>(I));
6127 return;
6128 case Intrinsic::fmuladd: {
6129 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
6130 if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
6131 TLI.isFMAFasterThanFMulAndFAdd(VT)) {
6132 setValue(&I, DAG.getNode(ISD::FMA, sdl,
6133 getValue(I.getArgOperand(0)).getValueType(),
6134 getValue(I.getArgOperand(0)),
6135 getValue(I.getArgOperand(1)),
6136 getValue(I.getArgOperand(2))));
6137 } else {
6138 // TODO: Intrinsic calls should have fast-math-flags.
6139 SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
6140 getValue(I.getArgOperand(0)).getValueType(),
6141 getValue(I.getArgOperand(0)),
6142 getValue(I.getArgOperand(1)));
6143 SDValue Add = DAG.getNode(ISD::FADD, sdl,
6144 getValue(I.getArgOperand(0)).getValueType(),
6145 Mul,
6146 getValue(I.getArgOperand(2)));
6147 setValue(&I, Add);
6149 return;
6151 case Intrinsic::convert_to_fp16:
6152 setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
6153 DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
6154 getValue(I.getArgOperand(0)),
6155 DAG.getTargetConstant(0, sdl,
6156 MVT::i32))));
6157 return;
6158 case Intrinsic::convert_from_fp16:
6159 setValue(&I, DAG.getNode(ISD::FP_EXTEND, sdl,
6160 TLI.getValueType(DAG.getDataLayout(), I.getType()),
6161 DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
6162 getValue(I.getArgOperand(0)))));
6163 return;
6164 case Intrinsic::pcmarker: {
6165 SDValue Tmp = getValue(I.getArgOperand(0));
6166 DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
6167 return;
6169 case Intrinsic::readcyclecounter: {
6170 SDValue Op = getRoot();
6171 Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
6172 DAG.getVTList(MVT::i64, MVT::Other), Op);
6173 setValue(&I, Res);
6174 DAG.setRoot(Res.getValue(1));
6175 return;
6177 case Intrinsic::bitreverse:
6178 setValue(&I, DAG.getNode(ISD::BITREVERSE, sdl,
6179 getValue(I.getArgOperand(0)).getValueType(),
6180 getValue(I.getArgOperand(0))));
6181 return;
6182 case Intrinsic::bswap:
6183 setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
6184 getValue(I.getArgOperand(0)).getValueType(),
6185 getValue(I.getArgOperand(0))));
6186 return;
6187 case Intrinsic::cttz: {
6188 SDValue Arg = getValue(I.getArgOperand(0));
6189 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6190 EVT Ty = Arg.getValueType();
6191 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
6192 sdl, Ty, Arg));
6193 return;
6195 case Intrinsic::ctlz: {
6196 SDValue Arg = getValue(I.getArgOperand(0));
6197 ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
6198 EVT Ty = Arg.getValueType();
6199 setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
6200 sdl, Ty, Arg));
6201 return;
6203 case Intrinsic::ctpop: {
6204 SDValue Arg = getValue(I.getArgOperand(0));
6205 EVT Ty = Arg.getValueType();
6206 setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
6207 return;
6209 case Intrinsic::fshl:
6210 case Intrinsic::fshr: {
6211 bool IsFSHL = Intrinsic == Intrinsic::fshl;
6212 SDValue X = getValue(I.getArgOperand(0));
6213 SDValue Y = getValue(I.getArgOperand(1));
6214 SDValue Z = getValue(I.getArgOperand(2));
6215 EVT VT = X.getValueType();
6216 SDValue BitWidthC = DAG.getConstant(VT.getScalarSizeInBits(), sdl, VT);
6217 SDValue Zero = DAG.getConstant(0, sdl, VT);
6218 SDValue ShAmt = DAG.getNode(ISD::UREM, sdl, VT, Z, BitWidthC);
6220 auto FunnelOpcode = IsFSHL ? ISD::FSHL : ISD::FSHR;
6221 if (TLI.isOperationLegalOrCustom(FunnelOpcode, VT)) {
6222 setValue(&I, DAG.getNode(FunnelOpcode, sdl, VT, X, Y, Z));
6223 return;
6226 // When X == Y, this is rotate. If the data type has a power-of-2 size, we
6227 // avoid the select that is necessary in the general case to filter out
6228 // the 0-shift possibility that leads to UB.
6229 if (X == Y && isPowerOf2_32(VT.getScalarSizeInBits())) {
6230 auto RotateOpcode = IsFSHL ? ISD::ROTL : ISD::ROTR;
6231 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6232 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, Z));
6233 return;
6236 // Some targets only rotate one way. Try the opposite direction.
6237 RotateOpcode = IsFSHL ? ISD::ROTR : ISD::ROTL;
6238 if (TLI.isOperationLegalOrCustom(RotateOpcode, VT)) {
6239 // Negate the shift amount because it is safe to ignore the high bits.
6240 SDValue NegShAmt = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6241 setValue(&I, DAG.getNode(RotateOpcode, sdl, VT, X, NegShAmt));
6242 return;
6245 // fshl (rotl): (X << (Z % BW)) | (X >> ((0 - Z) % BW))
6246 // fshr (rotr): (X << ((0 - Z) % BW)) | (X >> (Z % BW))
6247 SDValue NegZ = DAG.getNode(ISD::SUB, sdl, VT, Zero, Z);
6248 SDValue NShAmt = DAG.getNode(ISD::UREM, sdl, VT, NegZ, BitWidthC);
6249 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : NShAmt);
6250 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, X, IsFSHL ? NShAmt : ShAmt);
6251 setValue(&I, DAG.getNode(ISD::OR, sdl, VT, ShX, ShY));
6252 return;
6255 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
6256 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
6257 SDValue InvShAmt = DAG.getNode(ISD::SUB, sdl, VT, BitWidthC, ShAmt);
6258 SDValue ShX = DAG.getNode(ISD::SHL, sdl, VT, X, IsFSHL ? ShAmt : InvShAmt);
6259 SDValue ShY = DAG.getNode(ISD::SRL, sdl, VT, Y, IsFSHL ? InvShAmt : ShAmt);
6260 SDValue Or = DAG.getNode(ISD::OR, sdl, VT, ShX, ShY);
6262 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
6263 // and that is undefined. We must compare and select to avoid UB.
6264 EVT CCVT = MVT::i1;
6265 if (VT.isVector())
6266 CCVT = EVT::getVectorVT(*Context, CCVT, VT.getVectorNumElements());
6268 // For fshl, 0-shift returns the 1st arg (X).
6269 // For fshr, 0-shift returns the 2nd arg (Y).
6270 SDValue IsZeroShift = DAG.getSetCC(sdl, CCVT, ShAmt, Zero, ISD::SETEQ);
6271 setValue(&I, DAG.getSelect(sdl, VT, IsZeroShift, IsFSHL ? X : Y, Or));
6272 return;
6274 case Intrinsic::sadd_sat: {
6275 SDValue Op1 = getValue(I.getArgOperand(0));
6276 SDValue Op2 = getValue(I.getArgOperand(1));
6277 setValue(&I, DAG.getNode(ISD::SADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6278 return;
6280 case Intrinsic::uadd_sat: {
6281 SDValue Op1 = getValue(I.getArgOperand(0));
6282 SDValue Op2 = getValue(I.getArgOperand(1));
6283 setValue(&I, DAG.getNode(ISD::UADDSAT, sdl, Op1.getValueType(), Op1, Op2));
6284 return;
6286 case Intrinsic::ssub_sat: {
6287 SDValue Op1 = getValue(I.getArgOperand(0));
6288 SDValue Op2 = getValue(I.getArgOperand(1));
6289 setValue(&I, DAG.getNode(ISD::SSUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6290 return;
6292 case Intrinsic::usub_sat: {
6293 SDValue Op1 = getValue(I.getArgOperand(0));
6294 SDValue Op2 = getValue(I.getArgOperand(1));
6295 setValue(&I, DAG.getNode(ISD::USUBSAT, sdl, Op1.getValueType(), Op1, Op2));
6296 return;
6298 case Intrinsic::smul_fix:
6299 case Intrinsic::umul_fix: {
6300 SDValue Op1 = getValue(I.getArgOperand(0));
6301 SDValue Op2 = getValue(I.getArgOperand(1));
6302 SDValue Op3 = getValue(I.getArgOperand(2));
6303 setValue(&I, DAG.getNode(FixedPointIntrinsicToOpcode(Intrinsic), sdl,
6304 Op1.getValueType(), Op1, Op2, Op3));
6305 return;
6307 case Intrinsic::stacksave: {
6308 SDValue Op = getRoot();
6309 Res = DAG.getNode(
6310 ISD::STACKSAVE, sdl,
6311 DAG.getVTList(TLI.getPointerTy(DAG.getDataLayout()), MVT::Other), Op);
6312 setValue(&I, Res);
6313 DAG.setRoot(Res.getValue(1));
6314 return;
6316 case Intrinsic::stackrestore:
6317 Res = getValue(I.getArgOperand(0));
6318 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
6319 return;
6320 case Intrinsic::get_dynamic_area_offset: {
6321 SDValue Op = getRoot();
6322 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6323 EVT ResTy = TLI.getValueType(DAG.getDataLayout(), I.getType());
6324 // Result type for @llvm.get.dynamic.area.offset should match PtrTy for
6325 // target.
6326 if (PtrTy.getSizeInBits() < ResTy.getSizeInBits())
6327 report_fatal_error("Wrong result type for @llvm.get.dynamic.area.offset"
6328 " intrinsic!");
6329 Res = DAG.getNode(ISD::GET_DYNAMIC_AREA_OFFSET, sdl, DAG.getVTList(ResTy),
6330 Op);
6331 DAG.setRoot(Op);
6332 setValue(&I, Res);
6333 return;
6335 case Intrinsic::stackguard: {
6336 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6337 MachineFunction &MF = DAG.getMachineFunction();
6338 const Module &M = *MF.getFunction().getParent();
6339 SDValue Chain = getRoot();
6340 if (TLI.useLoadStackGuardNode()) {
6341 Res = getLoadStackGuard(DAG, sdl, Chain);
6342 } else {
6343 const Value *Global = TLI.getSDagStackGuard(M);
6344 unsigned Align = DL->getPrefTypeAlignment(Global->getType());
6345 Res = DAG.getLoad(PtrTy, sdl, Chain, getValue(Global),
6346 MachinePointerInfo(Global, 0), Align,
6347 MachineMemOperand::MOVolatile);
6349 if (TLI.useStackGuardXorFP())
6350 Res = TLI.emitStackGuardXorFP(DAG, Res, sdl);
6351 DAG.setRoot(Chain);
6352 setValue(&I, Res);
6353 return;
6355 case Intrinsic::stackprotector: {
6356 // Emit code into the DAG to store the stack guard onto the stack.
6357 MachineFunction &MF = DAG.getMachineFunction();
6358 MachineFrameInfo &MFI = MF.getFrameInfo();
6359 EVT PtrTy = TLI.getPointerTy(DAG.getDataLayout());
6360 SDValue Src, Chain = getRoot();
6362 if (TLI.useLoadStackGuardNode())
6363 Src = getLoadStackGuard(DAG, sdl, Chain);
6364 else
6365 Src = getValue(I.getArgOperand(0)); // The guard's value.
6367 AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
6369 int FI = FuncInfo.StaticAllocaMap[Slot];
6370 MFI.setStackProtectorIndex(FI);
6372 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
6374 // Store the stack protector onto the stack.
6375 Res = DAG.getStore(Chain, sdl, Src, FIN, MachinePointerInfo::getFixedStack(
6376 DAG.getMachineFunction(), FI),
6377 /* Alignment = */ 0, MachineMemOperand::MOVolatile);
6378 setValue(&I, Res);
6379 DAG.setRoot(Res);
6380 return;
6382 case Intrinsic::objectsize: {
6383 // If we don't know by now, we're never going to know.
6384 ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
6386 assert(CI && "Non-constant type in __builtin_object_size?");
6388 SDValue Arg = getValue(I.getCalledValue());
6389 EVT Ty = Arg.getValueType();
6391 if (CI->isZero())
6392 Res = DAG.getConstant(-1ULL, sdl, Ty);
6393 else
6394 Res = DAG.getConstant(0, sdl, Ty);
6396 setValue(&I, Res);
6397 return;
6400 case Intrinsic::is_constant:
6401 // If this wasn't constant-folded away by now, then it's not a
6402 // constant.
6403 setValue(&I, DAG.getConstant(0, sdl, MVT::i1));
6404 return;
6406 case Intrinsic::annotation:
6407 case Intrinsic::ptr_annotation:
6408 case Intrinsic::launder_invariant_group:
6409 case Intrinsic::strip_invariant_group:
6410 // Drop the intrinsic, but forward the value
6411 setValue(&I, getValue(I.getOperand(0)));
6412 return;
6413 case Intrinsic::assume:
6414 case Intrinsic::var_annotation:
6415 case Intrinsic::sideeffect:
6416 // Discard annotate attributes, assumptions, and artificial side-effects.
6417 return;
6419 case Intrinsic::codeview_annotation: {
6420 // Emit a label associated with this metadata.
6421 MachineFunction &MF = DAG.getMachineFunction();
6422 MCSymbol *Label =
6423 MF.getMMI().getContext().createTempSymbol("annotation", true);
6424 Metadata *MD = cast<MetadataAsValue>(I.getArgOperand(0))->getMetadata();
6425 MF.addCodeViewAnnotation(Label, cast<MDNode>(MD));
6426 Res = DAG.getLabelNode(ISD::ANNOTATION_LABEL, sdl, getRoot(), Label);
6427 DAG.setRoot(Res);
6428 return;
6431 case Intrinsic::init_trampoline: {
6432 const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
6434 SDValue Ops[6];
6435 Ops[0] = getRoot();
6436 Ops[1] = getValue(I.getArgOperand(0));
6437 Ops[2] = getValue(I.getArgOperand(1));
6438 Ops[3] = getValue(I.getArgOperand(2));
6439 Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
6440 Ops[5] = DAG.getSrcValue(F);
6442 Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
6444 DAG.setRoot(Res);
6445 return;
6447 case Intrinsic::adjust_trampoline:
6448 setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
6449 TLI.getPointerTy(DAG.getDataLayout()),
6450 getValue(I.getArgOperand(0))));
6451 return;
6452 case Intrinsic::gcroot: {
6453 assert(DAG.getMachineFunction().getFunction().hasGC() &&
6454 "only valid in functions with gc specified, enforced by Verifier");
6455 assert(GFI && "implied by previous");
6456 const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
6457 const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
6459 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
6460 GFI->addStackRoot(FI->getIndex(), TypeMap);
6461 return;
6463 case Intrinsic::gcread:
6464 case Intrinsic::gcwrite:
6465 llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
6466 case Intrinsic::flt_rounds:
6467 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
6468 return;
6470 case Intrinsic::expect:
6471 // Just replace __builtin_expect(exp, c) with EXP.
6472 setValue(&I, getValue(I.getArgOperand(0)));
6473 return;
6475 case Intrinsic::debugtrap:
6476 case Intrinsic::trap: {
6477 StringRef TrapFuncName =
6478 I.getAttributes()
6479 .getAttribute(AttributeList::FunctionIndex, "trap-func-name")
6480 .getValueAsString();
6481 if (TrapFuncName.empty()) {
6482 ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
6483 ISD::TRAP : ISD::DEBUGTRAP;
6484 DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
6485 return;
6487 TargetLowering::ArgListTy Args;
6489 TargetLowering::CallLoweringInfo CLI(DAG);
6490 CLI.setDebugLoc(sdl).setChain(getRoot()).setLibCallee(
6491 CallingConv::C, I.getType(),
6492 DAG.getExternalSymbol(TrapFuncName.data(),
6493 TLI.getPointerTy(DAG.getDataLayout())),
6494 std::move(Args));
6496 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6497 DAG.setRoot(Result.second);
6498 return;
6501 case Intrinsic::uadd_with_overflow:
6502 case Intrinsic::sadd_with_overflow:
6503 case Intrinsic::usub_with_overflow:
6504 case Intrinsic::ssub_with_overflow:
6505 case Intrinsic::umul_with_overflow:
6506 case Intrinsic::smul_with_overflow: {
6507 ISD::NodeType Op;
6508 switch (Intrinsic) {
6509 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6510 case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
6511 case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
6512 case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
6513 case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
6514 case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
6515 case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
6517 SDValue Op1 = getValue(I.getArgOperand(0));
6518 SDValue Op2 = getValue(I.getArgOperand(1));
6520 EVT ResultVT = Op1.getValueType();
6521 EVT OverflowVT = MVT::i1;
6522 if (ResultVT.isVector())
6523 OverflowVT = EVT::getVectorVT(
6524 *Context, OverflowVT, ResultVT.getVectorNumElements());
6526 SDVTList VTs = DAG.getVTList(ResultVT, OverflowVT);
6527 setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
6528 return;
6530 case Intrinsic::prefetch: {
6531 SDValue Ops[5];
6532 unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
6533 auto Flags = rw == 0 ? MachineMemOperand::MOLoad :MachineMemOperand::MOStore;
6534 Ops[0] = DAG.getRoot();
6535 Ops[1] = getValue(I.getArgOperand(0));
6536 Ops[2] = getValue(I.getArgOperand(1));
6537 Ops[3] = getValue(I.getArgOperand(2));
6538 Ops[4] = getValue(I.getArgOperand(3));
6539 SDValue Result = DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
6540 DAG.getVTList(MVT::Other), Ops,
6541 EVT::getIntegerVT(*Context, 8),
6542 MachinePointerInfo(I.getArgOperand(0)),
6543 0, /* align */
6544 Flags);
6546 // Chain the prefetch in parallell with any pending loads, to stay out of
6547 // the way of later optimizations.
6548 PendingLoads.push_back(Result);
6549 Result = getRoot();
6550 DAG.setRoot(Result);
6551 return;
6553 case Intrinsic::lifetime_start:
6554 case Intrinsic::lifetime_end: {
6555 bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
6556 // Stack coloring is not enabled in O0, discard region information.
6557 if (TM.getOptLevel() == CodeGenOpt::None)
6558 return;
6560 const int64_t ObjectSize =
6561 cast<ConstantInt>(I.getArgOperand(0))->getSExtValue();
6562 Value *const ObjectPtr = I.getArgOperand(1);
6563 SmallVector<const Value *, 4> Allocas;
6564 GetUnderlyingObjects(ObjectPtr, Allocas, *DL);
6566 for (SmallVectorImpl<const Value*>::iterator Object = Allocas.begin(),
6567 E = Allocas.end(); Object != E; ++Object) {
6568 const AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
6570 // Could not find an Alloca.
6571 if (!LifetimeObject)
6572 continue;
6574 // First check that the Alloca is static, otherwise it won't have a
6575 // valid frame index.
6576 auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
6577 if (SI == FuncInfo.StaticAllocaMap.end())
6578 return;
6580 const int FrameIndex = SI->second;
6581 int64_t Offset;
6582 if (GetPointerBaseWithConstantOffset(
6583 ObjectPtr, Offset, DAG.getDataLayout()) != LifetimeObject)
6584 Offset = -1; // Cannot determine offset from alloca to lifetime object.
6585 Res = DAG.getLifetimeNode(IsStart, sdl, getRoot(), FrameIndex, ObjectSize,
6586 Offset);
6587 DAG.setRoot(Res);
6589 return;
6591 case Intrinsic::invariant_start:
6592 // Discard region information.
6593 setValue(&I, DAG.getUNDEF(TLI.getPointerTy(DAG.getDataLayout())));
6594 return;
6595 case Intrinsic::invariant_end:
6596 // Discard region information.
6597 return;
6598 case Intrinsic::clear_cache:
6599 /// FunctionName may be null.
6600 if (const char *FunctionName = TLI.getClearCacheBuiltinName())
6601 lowerCallToExternalSymbol(I, FunctionName);
6602 return;
6603 case Intrinsic::donothing:
6604 // ignore
6605 return;
6606 case Intrinsic::experimental_stackmap:
6607 visitStackmap(I);
6608 return;
6609 case Intrinsic::experimental_patchpoint_void:
6610 case Intrinsic::experimental_patchpoint_i64:
6611 visitPatchpoint(&I);
6612 return;
6613 case Intrinsic::experimental_gc_statepoint:
6614 LowerStatepoint(ImmutableStatepoint(&I));
6615 return;
6616 case Intrinsic::experimental_gc_result:
6617 visitGCResult(cast<GCResultInst>(I));
6618 return;
6619 case Intrinsic::experimental_gc_relocate:
6620 visitGCRelocate(cast<GCRelocateInst>(I));
6621 return;
6622 case Intrinsic::instrprof_increment:
6623 llvm_unreachable("instrprof failed to lower an increment");
6624 case Intrinsic::instrprof_value_profile:
6625 llvm_unreachable("instrprof failed to lower a value profiling call");
6626 case Intrinsic::localescape: {
6627 MachineFunction &MF = DAG.getMachineFunction();
6628 const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
6630 // Directly emit some LOCAL_ESCAPE machine instrs. Label assignment emission
6631 // is the same on all targets.
6632 for (unsigned Idx = 0, E = I.getNumArgOperands(); Idx < E; ++Idx) {
6633 Value *Arg = I.getArgOperand(Idx)->stripPointerCasts();
6634 if (isa<ConstantPointerNull>(Arg))
6635 continue; // Skip null pointers. They represent a hole in index space.
6636 AllocaInst *Slot = cast<AllocaInst>(Arg);
6637 assert(FuncInfo.StaticAllocaMap.count(Slot) &&
6638 "can only escape static allocas");
6639 int FI = FuncInfo.StaticAllocaMap[Slot];
6640 MCSymbol *FrameAllocSym =
6641 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6642 GlobalValue::dropLLVMManglingEscape(MF.getName()), Idx);
6643 BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
6644 TII->get(TargetOpcode::LOCAL_ESCAPE))
6645 .addSym(FrameAllocSym)
6646 .addFrameIndex(FI);
6649 return;
6652 case Intrinsic::localrecover: {
6653 // i8* @llvm.localrecover(i8* %fn, i8* %fp, i32 %idx)
6654 MachineFunction &MF = DAG.getMachineFunction();
6655 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout(), 0);
6657 // Get the symbol that defines the frame offset.
6658 auto *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
6659 auto *Idx = cast<ConstantInt>(I.getArgOperand(2));
6660 unsigned IdxVal =
6661 unsigned(Idx->getLimitedValue(std::numeric_limits<int>::max()));
6662 MCSymbol *FrameAllocSym =
6663 MF.getMMI().getContext().getOrCreateFrameAllocSymbol(
6664 GlobalValue::dropLLVMManglingEscape(Fn->getName()), IdxVal);
6666 // Create a MCSymbol for the label to avoid any target lowering
6667 // that would make this PC relative.
6668 SDValue OffsetSym = DAG.getMCSymbol(FrameAllocSym, PtrVT);
6669 SDValue OffsetVal =
6670 DAG.getNode(ISD::LOCAL_RECOVER, sdl, PtrVT, OffsetSym);
6672 // Add the offset to the FP.
6673 Value *FP = I.getArgOperand(1);
6674 SDValue FPVal = getValue(FP);
6675 SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
6676 setValue(&I, Add);
6678 return;
6681 case Intrinsic::eh_exceptionpointer:
6682 case Intrinsic::eh_exceptioncode: {
6683 // Get the exception pointer vreg, copy from it, and resize it to fit.
6684 const auto *CPI = cast<CatchPadInst>(I.getArgOperand(0));
6685 MVT PtrVT = TLI.getPointerTy(DAG.getDataLayout());
6686 const TargetRegisterClass *PtrRC = TLI.getRegClassFor(PtrVT);
6687 unsigned VReg = FuncInfo.getCatchPadExceptionPointerVReg(CPI, PtrRC);
6688 SDValue N =
6689 DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), VReg, PtrVT);
6690 if (Intrinsic == Intrinsic::eh_exceptioncode)
6691 N = DAG.getZExtOrTrunc(N, getCurSDLoc(), MVT::i32);
6692 setValue(&I, N);
6693 return;
6695 case Intrinsic::xray_customevent: {
6696 // Here we want to make sure that the intrinsic behaves as if it has a
6697 // specific calling convention, and only for x86_64.
6698 // FIXME: Support other platforms later.
6699 const auto &Triple = DAG.getTarget().getTargetTriple();
6700 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6701 return;
6703 SDLoc DL = getCurSDLoc();
6704 SmallVector<SDValue, 8> Ops;
6706 // We want to say that we always want the arguments in registers.
6707 SDValue LogEntryVal = getValue(I.getArgOperand(0));
6708 SDValue StrSizeVal = getValue(I.getArgOperand(1));
6709 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6710 SDValue Chain = getRoot();
6711 Ops.push_back(LogEntryVal);
6712 Ops.push_back(StrSizeVal);
6713 Ops.push_back(Chain);
6715 // We need to enforce the calling convention for the callsite, so that
6716 // argument ordering is enforced correctly, and that register allocation can
6717 // see that some registers may be assumed clobbered and have to preserve
6718 // them across calls to the intrinsic.
6719 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHABLE_EVENT_CALL,
6720 DL, NodeTys, Ops);
6721 SDValue patchableNode = SDValue(MN, 0);
6722 DAG.setRoot(patchableNode);
6723 setValue(&I, patchableNode);
6724 return;
6726 case Intrinsic::xray_typedevent: {
6727 // Here we want to make sure that the intrinsic behaves as if it has a
6728 // specific calling convention, and only for x86_64.
6729 // FIXME: Support other platforms later.
6730 const auto &Triple = DAG.getTarget().getTargetTriple();
6731 if (Triple.getArch() != Triple::x86_64 || !Triple.isOSLinux())
6732 return;
6734 SDLoc DL = getCurSDLoc();
6735 SmallVector<SDValue, 8> Ops;
6737 // We want to say that we always want the arguments in registers.
6738 // It's unclear to me how manipulating the selection DAG here forces callers
6739 // to provide arguments in registers instead of on the stack.
6740 SDValue LogTypeId = getValue(I.getArgOperand(0));
6741 SDValue LogEntryVal = getValue(I.getArgOperand(1));
6742 SDValue StrSizeVal = getValue(I.getArgOperand(2));
6743 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
6744 SDValue Chain = getRoot();
6745 Ops.push_back(LogTypeId);
6746 Ops.push_back(LogEntryVal);
6747 Ops.push_back(StrSizeVal);
6748 Ops.push_back(Chain);
6750 // We need to enforce the calling convention for the callsite, so that
6751 // argument ordering is enforced correctly, and that register allocation can
6752 // see that some registers may be assumed clobbered and have to preserve
6753 // them across calls to the intrinsic.
6754 MachineSDNode *MN = DAG.getMachineNode(
6755 TargetOpcode::PATCHABLE_TYPED_EVENT_CALL, DL, NodeTys, Ops);
6756 SDValue patchableNode = SDValue(MN, 0);
6757 DAG.setRoot(patchableNode);
6758 setValue(&I, patchableNode);
6759 return;
6761 case Intrinsic::experimental_deoptimize:
6762 LowerDeoptimizeCall(&I);
6763 return;
6765 case Intrinsic::experimental_vector_reduce_fadd:
6766 case Intrinsic::experimental_vector_reduce_fmul:
6767 case Intrinsic::experimental_vector_reduce_add:
6768 case Intrinsic::experimental_vector_reduce_mul:
6769 case Intrinsic::experimental_vector_reduce_and:
6770 case Intrinsic::experimental_vector_reduce_or:
6771 case Intrinsic::experimental_vector_reduce_xor:
6772 case Intrinsic::experimental_vector_reduce_smax:
6773 case Intrinsic::experimental_vector_reduce_smin:
6774 case Intrinsic::experimental_vector_reduce_umax:
6775 case Intrinsic::experimental_vector_reduce_umin:
6776 case Intrinsic::experimental_vector_reduce_fmax:
6777 case Intrinsic::experimental_vector_reduce_fmin:
6778 visitVectorReduce(I, Intrinsic);
6779 return;
6781 case Intrinsic::icall_branch_funnel: {
6782 SmallVector<SDValue, 16> Ops;
6783 Ops.push_back(DAG.getRoot());
6784 Ops.push_back(getValue(I.getArgOperand(0)));
6786 int64_t Offset;
6787 auto *Base = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6788 I.getArgOperand(1), Offset, DAG.getDataLayout()));
6789 if (!Base)
6790 report_fatal_error(
6791 "llvm.icall.branch.funnel operand must be a GlobalValue");
6792 Ops.push_back(DAG.getTargetGlobalAddress(Base, getCurSDLoc(), MVT::i64, 0));
6794 struct BranchFunnelTarget {
6795 int64_t Offset;
6796 SDValue Target;
6798 SmallVector<BranchFunnelTarget, 8> Targets;
6800 for (unsigned Op = 1, N = I.getNumArgOperands(); Op != N; Op += 2) {
6801 auto *ElemBase = dyn_cast<GlobalObject>(GetPointerBaseWithConstantOffset(
6802 I.getArgOperand(Op), Offset, DAG.getDataLayout()));
6803 if (ElemBase != Base)
6804 report_fatal_error("all llvm.icall.branch.funnel operands must refer "
6805 "to the same GlobalValue");
6807 SDValue Val = getValue(I.getArgOperand(Op + 1));
6808 auto *GA = dyn_cast<GlobalAddressSDNode>(Val);
6809 if (!GA)
6810 report_fatal_error(
6811 "llvm.icall.branch.funnel operand must be a GlobalValue");
6812 Targets.push_back({Offset, DAG.getTargetGlobalAddress(
6813 GA->getGlobal(), getCurSDLoc(),
6814 Val.getValueType(), GA->getOffset())});
6816 llvm::sort(Targets,
6817 [](const BranchFunnelTarget &T1, const BranchFunnelTarget &T2) {
6818 return T1.Offset < T2.Offset;
6821 for (auto &T : Targets) {
6822 Ops.push_back(DAG.getTargetConstant(T.Offset, getCurSDLoc(), MVT::i32));
6823 Ops.push_back(T.Target);
6826 SDValue N(DAG.getMachineNode(TargetOpcode::ICALL_BRANCH_FUNNEL,
6827 getCurSDLoc(), MVT::Other, Ops),
6829 DAG.setRoot(N);
6830 setValue(&I, N);
6831 HasTailCall = true;
6832 return;
6835 case Intrinsic::wasm_landingpad_index:
6836 // Information this intrinsic contained has been transferred to
6837 // MachineFunction in SelectionDAGISel::PrepareEHLandingPad. We can safely
6838 // delete it now.
6839 return;
6843 void SelectionDAGBuilder::visitConstrainedFPIntrinsic(
6844 const ConstrainedFPIntrinsic &FPI) {
6845 SDLoc sdl = getCurSDLoc();
6846 unsigned Opcode;
6847 switch (FPI.getIntrinsicID()) {
6848 default: llvm_unreachable("Impossible intrinsic"); // Can't reach here.
6849 case Intrinsic::experimental_constrained_fadd:
6850 Opcode = ISD::STRICT_FADD;
6851 break;
6852 case Intrinsic::experimental_constrained_fsub:
6853 Opcode = ISD::STRICT_FSUB;
6854 break;
6855 case Intrinsic::experimental_constrained_fmul:
6856 Opcode = ISD::STRICT_FMUL;
6857 break;
6858 case Intrinsic::experimental_constrained_fdiv:
6859 Opcode = ISD::STRICT_FDIV;
6860 break;
6861 case Intrinsic::experimental_constrained_frem:
6862 Opcode = ISD::STRICT_FREM;
6863 break;
6864 case Intrinsic::experimental_constrained_fma:
6865 Opcode = ISD::STRICT_FMA;
6866 break;
6867 case Intrinsic::experimental_constrained_fptrunc:
6868 Opcode = ISD::STRICT_FP_ROUND;
6869 break;
6870 case Intrinsic::experimental_constrained_fpext:
6871 Opcode = ISD::STRICT_FP_EXTEND;
6872 break;
6873 case Intrinsic::experimental_constrained_sqrt:
6874 Opcode = ISD::STRICT_FSQRT;
6875 break;
6876 case Intrinsic::experimental_constrained_pow:
6877 Opcode = ISD::STRICT_FPOW;
6878 break;
6879 case Intrinsic::experimental_constrained_powi:
6880 Opcode = ISD::STRICT_FPOWI;
6881 break;
6882 case Intrinsic::experimental_constrained_sin:
6883 Opcode = ISD::STRICT_FSIN;
6884 break;
6885 case Intrinsic::experimental_constrained_cos:
6886 Opcode = ISD::STRICT_FCOS;
6887 break;
6888 case Intrinsic::experimental_constrained_exp:
6889 Opcode = ISD::STRICT_FEXP;
6890 break;
6891 case Intrinsic::experimental_constrained_exp2:
6892 Opcode = ISD::STRICT_FEXP2;
6893 break;
6894 case Intrinsic::experimental_constrained_log:
6895 Opcode = ISD::STRICT_FLOG;
6896 break;
6897 case Intrinsic::experimental_constrained_log10:
6898 Opcode = ISD::STRICT_FLOG10;
6899 break;
6900 case Intrinsic::experimental_constrained_log2:
6901 Opcode = ISD::STRICT_FLOG2;
6902 break;
6903 case Intrinsic::experimental_constrained_rint:
6904 Opcode = ISD::STRICT_FRINT;
6905 break;
6906 case Intrinsic::experimental_constrained_nearbyint:
6907 Opcode = ISD::STRICT_FNEARBYINT;
6908 break;
6909 case Intrinsic::experimental_constrained_maxnum:
6910 Opcode = ISD::STRICT_FMAXNUM;
6911 break;
6912 case Intrinsic::experimental_constrained_minnum:
6913 Opcode = ISD::STRICT_FMINNUM;
6914 break;
6915 case Intrinsic::experimental_constrained_ceil:
6916 Opcode = ISD::STRICT_FCEIL;
6917 break;
6918 case Intrinsic::experimental_constrained_floor:
6919 Opcode = ISD::STRICT_FFLOOR;
6920 break;
6921 case Intrinsic::experimental_constrained_round:
6922 Opcode = ISD::STRICT_FROUND;
6923 break;
6924 case Intrinsic::experimental_constrained_trunc:
6925 Opcode = ISD::STRICT_FTRUNC;
6926 break;
6928 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6929 SDValue Chain = getRoot();
6930 SmallVector<EVT, 4> ValueVTs;
6931 ComputeValueVTs(TLI, DAG.getDataLayout(), FPI.getType(), ValueVTs);
6932 ValueVTs.push_back(MVT::Other); // Out chain
6934 SDVTList VTs = DAG.getVTList(ValueVTs);
6935 SDValue Result;
6936 if (Opcode == ISD::STRICT_FP_ROUND)
6937 Result = DAG.getNode(Opcode, sdl, VTs,
6938 { Chain, getValue(FPI.getArgOperand(0)),
6939 DAG.getTargetConstant(0, sdl,
6940 TLI.getPointerTy(DAG.getDataLayout())) });
6941 else if (FPI.isUnaryOp())
6942 Result = DAG.getNode(Opcode, sdl, VTs,
6943 { Chain, getValue(FPI.getArgOperand(0)) });
6944 else if (FPI.isTernaryOp())
6945 Result = DAG.getNode(Opcode, sdl, VTs,
6946 { Chain, getValue(FPI.getArgOperand(0)),
6947 getValue(FPI.getArgOperand(1)),
6948 getValue(FPI.getArgOperand(2)) });
6949 else
6950 Result = DAG.getNode(Opcode, sdl, VTs,
6951 { Chain, getValue(FPI.getArgOperand(0)),
6952 getValue(FPI.getArgOperand(1)) });
6954 assert(Result.getNode()->getNumValues() == 2);
6955 SDValue OutChain = Result.getValue(1);
6956 DAG.setRoot(OutChain);
6957 SDValue FPResult = Result.getValue(0);
6958 setValue(&FPI, FPResult);
6961 std::pair<SDValue, SDValue>
6962 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
6963 const BasicBlock *EHPadBB) {
6964 MachineFunction &MF = DAG.getMachineFunction();
6965 MachineModuleInfo &MMI = MF.getMMI();
6966 MCSymbol *BeginLabel = nullptr;
6968 if (EHPadBB) {
6969 // Insert a label before the invoke call to mark the try range. This can be
6970 // used to detect deletion of the invoke via the MachineModuleInfo.
6971 BeginLabel = MMI.getContext().createTempSymbol();
6973 // For SjLj, keep track of which landing pads go with which invokes
6974 // so as to maintain the ordering of pads in the LSDA.
6975 unsigned CallSiteIndex = MMI.getCurrentCallSite();
6976 if (CallSiteIndex) {
6977 MF.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
6978 LPadToCallSiteMap[FuncInfo.MBBMap[EHPadBB]].push_back(CallSiteIndex);
6980 // Now that the call site is handled, stop tracking it.
6981 MMI.setCurrentCallSite(0);
6984 // Both PendingLoads and PendingExports must be flushed here;
6985 // this call might not return.
6986 (void)getRoot();
6987 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
6989 CLI.setChain(getRoot());
6991 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6992 std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
6994 assert((CLI.IsTailCall || Result.second.getNode()) &&
6995 "Non-null chain expected with non-tail call!");
6996 assert((Result.second.getNode() || !Result.first.getNode()) &&
6997 "Null value expected with tail call!");
6999 if (!Result.second.getNode()) {
7000 // As a special case, a null chain means that a tail call has been emitted
7001 // and the DAG root is already updated.
7002 HasTailCall = true;
7004 // Since there's no actual continuation from this block, nothing can be
7005 // relying on us setting vregs for them.
7006 PendingExports.clear();
7007 } else {
7008 DAG.setRoot(Result.second);
7011 if (EHPadBB) {
7012 // Insert a label at the end of the invoke call to mark the try range. This
7013 // can be used to detect deletion of the invoke via the MachineModuleInfo.
7014 MCSymbol *EndLabel = MMI.getContext().createTempSymbol();
7015 DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
7017 // Inform MachineModuleInfo of range.
7018 auto Pers = classifyEHPersonality(FuncInfo.Fn->getPersonalityFn());
7019 // There is a platform (e.g. wasm) that uses funclet style IR but does not
7020 // actually use outlined funclets and their LSDA info style.
7021 if (MF.hasEHFunclets() && isFuncletEHPersonality(Pers)) {
7022 assert(CLI.CS);
7023 WinEHFuncInfo *EHInfo = DAG.getMachineFunction().getWinEHFuncInfo();
7024 EHInfo->addIPToStateRange(cast<InvokeInst>(CLI.CS.getInstruction()),
7025 BeginLabel, EndLabel);
7026 } else if (!isScopedEHPersonality(Pers)) {
7027 MF.addInvoke(FuncInfo.MBBMap[EHPadBB], BeginLabel, EndLabel);
7031 return Result;
7034 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
7035 bool isTailCall,
7036 const BasicBlock *EHPadBB) {
7037 auto &DL = DAG.getDataLayout();
7038 FunctionType *FTy = CS.getFunctionType();
7039 Type *RetTy = CS.getType();
7041 TargetLowering::ArgListTy Args;
7042 Args.reserve(CS.arg_size());
7044 const Value *SwiftErrorVal = nullptr;
7045 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7047 // We can't tail call inside a function with a swifterror argument. Lowering
7048 // does not support this yet. It would have to move into the swifterror
7049 // register before the call.
7050 auto *Caller = CS.getInstruction()->getParent()->getParent();
7051 if (TLI.supportSwiftError() &&
7052 Caller->getAttributes().hasAttrSomewhere(Attribute::SwiftError))
7053 isTailCall = false;
7055 for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
7056 i != e; ++i) {
7057 TargetLowering::ArgListEntry Entry;
7058 const Value *V = *i;
7060 // Skip empty types
7061 if (V->getType()->isEmptyTy())
7062 continue;
7064 SDValue ArgNode = getValue(V);
7065 Entry.Node = ArgNode; Entry.Ty = V->getType();
7067 Entry.setAttributes(&CS, i - CS.arg_begin());
7069 // Use swifterror virtual register as input to the call.
7070 if (Entry.IsSwiftError && TLI.supportSwiftError()) {
7071 SwiftErrorVal = V;
7072 // We find the virtual register for the actual swifterror argument.
7073 // Instead of using the Value, we use the virtual register instead.
7074 Entry.Node = DAG.getRegister(FuncInfo
7075 .getOrCreateSwiftErrorVRegUseAt(
7076 CS.getInstruction(), FuncInfo.MBB, V)
7077 .first,
7078 EVT(TLI.getPointerTy(DL)));
7081 Args.push_back(Entry);
7083 // If we have an explicit sret argument that is an Instruction, (i.e., it
7084 // might point to function-local memory), we can't meaningfully tail-call.
7085 if (Entry.IsSRet && isa<Instruction>(V))
7086 isTailCall = false;
7089 // Check if target-independent constraints permit a tail call here.
7090 // Target-dependent constraints are checked within TLI->LowerCallTo.
7091 if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
7092 isTailCall = false;
7094 // Disable tail calls if there is an swifterror argument. Targets have not
7095 // been updated to support tail calls.
7096 if (TLI.supportSwiftError() && SwiftErrorVal)
7097 isTailCall = false;
7099 TargetLowering::CallLoweringInfo CLI(DAG);
7100 CLI.setDebugLoc(getCurSDLoc())
7101 .setChain(getRoot())
7102 .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
7103 .setTailCall(isTailCall)
7104 .setConvergent(CS.isConvergent());
7105 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
7107 if (Result.first.getNode()) {
7108 const Instruction *Inst = CS.getInstruction();
7109 Result.first = lowerRangeToAssertZExt(DAG, *Inst, Result.first);
7110 setValue(Inst, Result.first);
7113 // The last element of CLI.InVals has the SDValue for swifterror return.
7114 // Here we copy it to a virtual register and update SwiftErrorMap for
7115 // book-keeping.
7116 if (SwiftErrorVal && TLI.supportSwiftError()) {
7117 // Get the last element of InVals.
7118 SDValue Src = CLI.InVals.back();
7119 unsigned VReg; bool CreatedVReg;
7120 std::tie(VReg, CreatedVReg) =
7121 FuncInfo.getOrCreateSwiftErrorVRegDefAt(CS.getInstruction());
7122 SDValue CopyNode = CLI.DAG.getCopyToReg(Result.second, CLI.DL, VReg, Src);
7123 // We update the virtual register for the actual swifterror argument.
7124 if (CreatedVReg)
7125 FuncInfo.setCurrentSwiftErrorVReg(FuncInfo.MBB, SwiftErrorVal, VReg);
7126 DAG.setRoot(CopyNode);
7130 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
7131 SelectionDAGBuilder &Builder) {
7132 // Check to see if this load can be trivially constant folded, e.g. if the
7133 // input is from a string literal.
7134 if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
7135 // Cast pointer to the type we really want to load.
7136 Type *LoadTy =
7137 Type::getIntNTy(PtrVal->getContext(), LoadVT.getScalarSizeInBits());
7138 if (LoadVT.isVector())
7139 LoadTy = VectorType::get(LoadTy, LoadVT.getVectorNumElements());
7141 LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
7142 PointerType::getUnqual(LoadTy));
7144 if (const Constant *LoadCst = ConstantFoldLoadFromConstPtr(
7145 const_cast<Constant *>(LoadInput), LoadTy, *Builder.DL))
7146 return Builder.getValue(LoadCst);
7149 // Otherwise, we have to emit the load. If the pointer is to unfoldable but
7150 // still constant memory, the input chain can be the entry node.
7151 SDValue Root;
7152 bool ConstantMemory = false;
7154 // Do not serialize (non-volatile) loads of constant memory with anything.
7155 if (Builder.AA && Builder.AA->pointsToConstantMemory(PtrVal)) {
7156 Root = Builder.DAG.getEntryNode();
7157 ConstantMemory = true;
7158 } else {
7159 // Do not serialize non-volatile loads against each other.
7160 Root = Builder.DAG.getRoot();
7163 SDValue Ptr = Builder.getValue(PtrVal);
7164 SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
7165 Ptr, MachinePointerInfo(PtrVal),
7166 /* Alignment = */ 1);
7168 if (!ConstantMemory)
7169 Builder.PendingLoads.push_back(LoadVal.getValue(1));
7170 return LoadVal;
7173 /// Record the value for an instruction that produces an integer result,
7174 /// converting the type where necessary.
7175 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
7176 SDValue Value,
7177 bool IsSigned) {
7178 EVT VT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7179 I.getType(), true);
7180 if (IsSigned)
7181 Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
7182 else
7183 Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
7184 setValue(&I, Value);
7187 /// See if we can lower a memcmp call into an optimized form. If so, return
7188 /// true and lower it. Otherwise return false, and it will be lowered like a
7189 /// normal call.
7190 /// The caller already checked that \p I calls the appropriate LibFunc with a
7191 /// correct prototype.
7192 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
7193 const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
7194 const Value *Size = I.getArgOperand(2);
7195 const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
7196 if (CSize && CSize->getZExtValue() == 0) {
7197 EVT CallVT = DAG.getTargetLoweringInfo().getValueType(DAG.getDataLayout(),
7198 I.getType(), true);
7199 setValue(&I, DAG.getConstant(0, getCurSDLoc(), CallVT));
7200 return true;
7203 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7204 std::pair<SDValue, SDValue> Res = TSI.EmitTargetCodeForMemcmp(
7205 DAG, getCurSDLoc(), DAG.getRoot(), getValue(LHS), getValue(RHS),
7206 getValue(Size), MachinePointerInfo(LHS), MachinePointerInfo(RHS));
7207 if (Res.first.getNode()) {
7208 processIntegerCallValue(I, Res.first, true);
7209 PendingLoads.push_back(Res.second);
7210 return true;
7213 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS) != 0
7214 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS) != 0
7215 if (!CSize || !isOnlyUsedInZeroEqualityComparison(&I))
7216 return false;
7218 // If the target has a fast compare for the given size, it will return a
7219 // preferred load type for that size. Require that the load VT is legal and
7220 // that the target supports unaligned loads of that type. Otherwise, return
7221 // INVALID.
7222 auto hasFastLoadsAndCompare = [&](unsigned NumBits) {
7223 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7224 MVT LVT = TLI.hasFastEqualityCompare(NumBits);
7225 if (LVT != MVT::INVALID_SIMPLE_VALUE_TYPE) {
7226 // TODO: Handle 5 byte compare as 4-byte + 1 byte.
7227 // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
7228 // TODO: Check alignment of src and dest ptrs.
7229 unsigned DstAS = LHS->getType()->getPointerAddressSpace();
7230 unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
7231 if (!TLI.isTypeLegal(LVT) ||
7232 !TLI.allowsMisalignedMemoryAccesses(LVT, SrcAS) ||
7233 !TLI.allowsMisalignedMemoryAccesses(LVT, DstAS))
7234 LVT = MVT::INVALID_SIMPLE_VALUE_TYPE;
7237 return LVT;
7240 // This turns into unaligned loads. We only do this if the target natively
7241 // supports the MVT we'll be loading or if it is small enough (<= 4) that
7242 // we'll only produce a small number of byte loads.
7243 MVT LoadVT;
7244 unsigned NumBitsToCompare = CSize->getZExtValue() * 8;
7245 switch (NumBitsToCompare) {
7246 default:
7247 return false;
7248 case 16:
7249 LoadVT = MVT::i16;
7250 break;
7251 case 32:
7252 LoadVT = MVT::i32;
7253 break;
7254 case 64:
7255 case 128:
7256 case 256:
7257 LoadVT = hasFastLoadsAndCompare(NumBitsToCompare);
7258 break;
7261 if (LoadVT == MVT::INVALID_SIMPLE_VALUE_TYPE)
7262 return false;
7264 SDValue LoadL = getMemCmpLoad(LHS, LoadVT, *this);
7265 SDValue LoadR = getMemCmpLoad(RHS, LoadVT, *this);
7267 // Bitcast to a wide integer type if the loads are vectors.
7268 if (LoadVT.isVector()) {
7269 EVT CmpVT = EVT::getIntegerVT(LHS->getContext(), LoadVT.getSizeInBits());
7270 LoadL = DAG.getBitcast(CmpVT, LoadL);
7271 LoadR = DAG.getBitcast(CmpVT, LoadR);
7274 SDValue Cmp = DAG.getSetCC(getCurSDLoc(), MVT::i1, LoadL, LoadR, ISD::SETNE);
7275 processIntegerCallValue(I, Cmp, false);
7276 return true;
7279 /// See if we can lower a memchr call into an optimized form. If so, return
7280 /// true and lower it. Otherwise return false, and it will be lowered like a
7281 /// normal call.
7282 /// The caller already checked that \p I calls the appropriate LibFunc with a
7283 /// correct prototype.
7284 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
7285 const Value *Src = I.getArgOperand(0);
7286 const Value *Char = I.getArgOperand(1);
7287 const Value *Length = I.getArgOperand(2);
7289 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7290 std::pair<SDValue, SDValue> Res =
7291 TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
7292 getValue(Src), getValue(Char), getValue(Length),
7293 MachinePointerInfo(Src));
7294 if (Res.first.getNode()) {
7295 setValue(&I, Res.first);
7296 PendingLoads.push_back(Res.second);
7297 return true;
7300 return false;
7303 /// See if we can lower a mempcpy call into an optimized form. If so, return
7304 /// true and lower it. Otherwise return false, and it will be lowered like a
7305 /// normal call.
7306 /// The caller already checked that \p I calls the appropriate LibFunc with a
7307 /// correct prototype.
7308 bool SelectionDAGBuilder::visitMemPCpyCall(const CallInst &I) {
7309 SDValue Dst = getValue(I.getArgOperand(0));
7310 SDValue Src = getValue(I.getArgOperand(1));
7311 SDValue Size = getValue(I.getArgOperand(2));
7313 unsigned DstAlign = DAG.InferPtrAlignment(Dst);
7314 unsigned SrcAlign = DAG.InferPtrAlignment(Src);
7315 unsigned Align = std::min(DstAlign, SrcAlign);
7316 if (Align == 0) // Alignment of one or both could not be inferred.
7317 Align = 1; // 0 and 1 both specify no alignment, but 0 is reserved.
7319 bool isVol = false;
7320 SDLoc sdl = getCurSDLoc();
7322 // In the mempcpy context we need to pass in a false value for isTailCall
7323 // because the return pointer needs to be adjusted by the size of
7324 // the copied memory.
7325 SDValue MC = DAG.getMemcpy(getRoot(), sdl, Dst, Src, Size, Align, isVol,
7326 false, /*isTailCall=*/false,
7327 MachinePointerInfo(I.getArgOperand(0)),
7328 MachinePointerInfo(I.getArgOperand(1)));
7329 assert(MC.getNode() != nullptr &&
7330 "** memcpy should not be lowered as TailCall in mempcpy context **");
7331 DAG.setRoot(MC);
7333 // Check if Size needs to be truncated or extended.
7334 Size = DAG.getSExtOrTrunc(Size, sdl, Dst.getValueType());
7336 // Adjust return pointer to point just past the last dst byte.
7337 SDValue DstPlusSize = DAG.getNode(ISD::ADD, sdl, Dst.getValueType(),
7338 Dst, Size);
7339 setValue(&I, DstPlusSize);
7340 return true;
7343 /// See if we can lower a strcpy call into an optimized form. If so, return
7344 /// true and lower it, otherwise return false and it will be lowered like a
7345 /// normal call.
7346 /// The caller already checked that \p I calls the appropriate LibFunc with a
7347 /// correct prototype.
7348 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
7349 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7351 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7352 std::pair<SDValue, SDValue> Res =
7353 TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
7354 getValue(Arg0), getValue(Arg1),
7355 MachinePointerInfo(Arg0),
7356 MachinePointerInfo(Arg1), isStpcpy);
7357 if (Res.first.getNode()) {
7358 setValue(&I, Res.first);
7359 DAG.setRoot(Res.second);
7360 return true;
7363 return false;
7366 /// See if we can lower a strcmp call into an optimized form. If so, return
7367 /// true and lower it, otherwise return false and it will be lowered like a
7368 /// normal call.
7369 /// The caller already checked that \p I calls the appropriate LibFunc with a
7370 /// correct prototype.
7371 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
7372 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7374 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7375 std::pair<SDValue, SDValue> Res =
7376 TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
7377 getValue(Arg0), getValue(Arg1),
7378 MachinePointerInfo(Arg0),
7379 MachinePointerInfo(Arg1));
7380 if (Res.first.getNode()) {
7381 processIntegerCallValue(I, Res.first, true);
7382 PendingLoads.push_back(Res.second);
7383 return true;
7386 return false;
7389 /// See if we can lower a strlen call into an optimized form. If so, return
7390 /// true and lower it, otherwise return false and it will be lowered like a
7391 /// normal call.
7392 /// The caller already checked that \p I calls the appropriate LibFunc with a
7393 /// correct prototype.
7394 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
7395 const Value *Arg0 = I.getArgOperand(0);
7397 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7398 std::pair<SDValue, SDValue> Res =
7399 TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
7400 getValue(Arg0), MachinePointerInfo(Arg0));
7401 if (Res.first.getNode()) {
7402 processIntegerCallValue(I, Res.first, false);
7403 PendingLoads.push_back(Res.second);
7404 return true;
7407 return false;
7410 /// See if we can lower a strnlen call into an optimized form. If so, return
7411 /// true and lower it, otherwise return false and it will be lowered like a
7412 /// normal call.
7413 /// The caller already checked that \p I calls the appropriate LibFunc with a
7414 /// correct prototype.
7415 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
7416 const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
7418 const SelectionDAGTargetInfo &TSI = DAG.getSelectionDAGInfo();
7419 std::pair<SDValue, SDValue> Res =
7420 TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
7421 getValue(Arg0), getValue(Arg1),
7422 MachinePointerInfo(Arg0));
7423 if (Res.first.getNode()) {
7424 processIntegerCallValue(I, Res.first, false);
7425 PendingLoads.push_back(Res.second);
7426 return true;
7429 return false;
7432 /// See if we can lower a unary floating-point operation into an SDNode with
7433 /// the specified Opcode. If so, return true and lower it, otherwise return
7434 /// false and it will be lowered like a normal call.
7435 /// The caller already checked that \p I calls the appropriate LibFunc with a
7436 /// correct prototype.
7437 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
7438 unsigned Opcode) {
7439 // We already checked this call's prototype; verify it doesn't modify errno.
7440 if (!I.onlyReadsMemory())
7441 return false;
7443 SDValue Tmp = getValue(I.getArgOperand(0));
7444 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
7445 return true;
7448 /// See if we can lower a binary floating-point operation into an SDNode with
7449 /// the specified Opcode. If so, return true and lower it. Otherwise return
7450 /// false, and it will be lowered like a normal call.
7451 /// The caller already checked that \p I calls the appropriate LibFunc with a
7452 /// correct prototype.
7453 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
7454 unsigned Opcode) {
7455 // We already checked this call's prototype; verify it doesn't modify errno.
7456 if (!I.onlyReadsMemory())
7457 return false;
7459 SDValue Tmp0 = getValue(I.getArgOperand(0));
7460 SDValue Tmp1 = getValue(I.getArgOperand(1));
7461 EVT VT = Tmp0.getValueType();
7462 setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
7463 return true;
7466 void SelectionDAGBuilder::visitCall(const CallInst &I) {
7467 // Handle inline assembly differently.
7468 if (isa<InlineAsm>(I.getCalledValue())) {
7469 visitInlineAsm(&I);
7470 return;
7473 if (Function *F = I.getCalledFunction()) {
7474 if (F->isDeclaration()) {
7475 // Is this an LLVM intrinsic or a target-specific intrinsic?
7476 unsigned IID = F->getIntrinsicID();
7477 if (!IID)
7478 if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo())
7479 IID = II->getIntrinsicID(F);
7481 if (IID) {
7482 visitIntrinsicCall(I, IID);
7483 return;
7487 // Check for well-known libc/libm calls. If the function is internal, it
7488 // can't be a library call. Don't do the check if marked as nobuiltin for
7489 // some reason or the call site requires strict floating point semantics.
7490 LibFunc Func;
7491 if (!I.isNoBuiltin() && !I.isStrictFP() && !F->hasLocalLinkage() &&
7492 F->hasName() && LibInfo->getLibFunc(*F, Func) &&
7493 LibInfo->hasOptimizedCodeGen(Func)) {
7494 switch (Func) {
7495 default: break;
7496 case LibFunc_copysign:
7497 case LibFunc_copysignf:
7498 case LibFunc_copysignl:
7499 // We already checked this call's prototype; verify it doesn't modify
7500 // errno.
7501 if (I.onlyReadsMemory()) {
7502 SDValue LHS = getValue(I.getArgOperand(0));
7503 SDValue RHS = getValue(I.getArgOperand(1));
7504 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
7505 LHS.getValueType(), LHS, RHS));
7506 return;
7508 break;
7509 case LibFunc_fabs:
7510 case LibFunc_fabsf:
7511 case LibFunc_fabsl:
7512 if (visitUnaryFloatCall(I, ISD::FABS))
7513 return;
7514 break;
7515 case LibFunc_fmin:
7516 case LibFunc_fminf:
7517 case LibFunc_fminl:
7518 if (visitBinaryFloatCall(I, ISD::FMINNUM))
7519 return;
7520 break;
7521 case LibFunc_fmax:
7522 case LibFunc_fmaxf:
7523 case LibFunc_fmaxl:
7524 if (visitBinaryFloatCall(I, ISD::FMAXNUM))
7525 return;
7526 break;
7527 case LibFunc_sin:
7528 case LibFunc_sinf:
7529 case LibFunc_sinl:
7530 if (visitUnaryFloatCall(I, ISD::FSIN))
7531 return;
7532 break;
7533 case LibFunc_cos:
7534 case LibFunc_cosf:
7535 case LibFunc_cosl:
7536 if (visitUnaryFloatCall(I, ISD::FCOS))
7537 return;
7538 break;
7539 case LibFunc_sqrt:
7540 case LibFunc_sqrtf:
7541 case LibFunc_sqrtl:
7542 case LibFunc_sqrt_finite:
7543 case LibFunc_sqrtf_finite:
7544 case LibFunc_sqrtl_finite:
7545 if (visitUnaryFloatCall(I, ISD::FSQRT))
7546 return;
7547 break;
7548 case LibFunc_floor:
7549 case LibFunc_floorf:
7550 case LibFunc_floorl:
7551 if (visitUnaryFloatCall(I, ISD::FFLOOR))
7552 return;
7553 break;
7554 case LibFunc_nearbyint:
7555 case LibFunc_nearbyintf:
7556 case LibFunc_nearbyintl:
7557 if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
7558 return;
7559 break;
7560 case LibFunc_ceil:
7561 case LibFunc_ceilf:
7562 case LibFunc_ceill:
7563 if (visitUnaryFloatCall(I, ISD::FCEIL))
7564 return;
7565 break;
7566 case LibFunc_rint:
7567 case LibFunc_rintf:
7568 case LibFunc_rintl:
7569 if (visitUnaryFloatCall(I, ISD::FRINT))
7570 return;
7571 break;
7572 case LibFunc_round:
7573 case LibFunc_roundf:
7574 case LibFunc_roundl:
7575 if (visitUnaryFloatCall(I, ISD::FROUND))
7576 return;
7577 break;
7578 case LibFunc_trunc:
7579 case LibFunc_truncf:
7580 case LibFunc_truncl:
7581 if (visitUnaryFloatCall(I, ISD::FTRUNC))
7582 return;
7583 break;
7584 case LibFunc_log2:
7585 case LibFunc_log2f:
7586 case LibFunc_log2l:
7587 if (visitUnaryFloatCall(I, ISD::FLOG2))
7588 return;
7589 break;
7590 case LibFunc_exp2:
7591 case LibFunc_exp2f:
7592 case LibFunc_exp2l:
7593 if (visitUnaryFloatCall(I, ISD::FEXP2))
7594 return;
7595 break;
7596 case LibFunc_memcmp:
7597 if (visitMemCmpCall(I))
7598 return;
7599 break;
7600 case LibFunc_mempcpy:
7601 if (visitMemPCpyCall(I))
7602 return;
7603 break;
7604 case LibFunc_memchr:
7605 if (visitMemChrCall(I))
7606 return;
7607 break;
7608 case LibFunc_strcpy:
7609 if (visitStrCpyCall(I, false))
7610 return;
7611 break;
7612 case LibFunc_stpcpy:
7613 if (visitStrCpyCall(I, true))
7614 return;
7615 break;
7616 case LibFunc_strcmp:
7617 if (visitStrCmpCall(I))
7618 return;
7619 break;
7620 case LibFunc_strlen:
7621 if (visitStrLenCall(I))
7622 return;
7623 break;
7624 case LibFunc_strnlen:
7625 if (visitStrNLenCall(I))
7626 return;
7627 break;
7632 // Deopt bundles are lowered in LowerCallSiteWithDeoptBundle, and we don't
7633 // have to do anything here to lower funclet bundles.
7634 assert(!I.hasOperandBundlesOtherThan(
7635 {LLVMContext::OB_deopt, LLVMContext::OB_funclet}) &&
7636 "Cannot lower calls with arbitrary operand bundles!");
7638 SDValue Callee = getValue(I.getCalledValue());
7640 if (I.countOperandBundlesOfType(LLVMContext::OB_deopt))
7641 LowerCallSiteWithDeoptBundle(&I, Callee, nullptr);
7642 else
7643 // Check if we can potentially perform a tail call. More detailed checking
7644 // is be done within LowerCallTo, after more information about the call is
7645 // known.
7646 LowerCallTo(&I, Callee, I.isTailCall());
7649 namespace {
7651 /// AsmOperandInfo - This contains information for each constraint that we are
7652 /// lowering.
7653 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
7654 public:
7655 /// CallOperand - If this is the result output operand or a clobber
7656 /// this is null, otherwise it is the incoming operand to the CallInst.
7657 /// This gets modified as the asm is processed.
7658 SDValue CallOperand;
7660 /// AssignedRegs - If this is a register or register class operand, this
7661 /// contains the set of register corresponding to the operand.
7662 RegsForValue AssignedRegs;
7664 explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
7665 : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr, 0) {
7668 /// Whether or not this operand accesses memory
7669 bool hasMemory(const TargetLowering &TLI) const {
7670 // Indirect operand accesses access memory.
7671 if (isIndirect)
7672 return true;
7674 for (const auto &Code : Codes)
7675 if (TLI.getConstraintType(Code) == TargetLowering::C_Memory)
7676 return true;
7678 return false;
7681 /// getCallOperandValEVT - Return the EVT of the Value* that this operand
7682 /// corresponds to. If there is no Value* for this operand, it returns
7683 /// MVT::Other.
7684 EVT getCallOperandValEVT(LLVMContext &Context, const TargetLowering &TLI,
7685 const DataLayout &DL) const {
7686 if (!CallOperandVal) return MVT::Other;
7688 if (isa<BasicBlock>(CallOperandVal))
7689 return TLI.getPointerTy(DL);
7691 llvm::Type *OpTy = CallOperandVal->getType();
7693 // FIXME: code duplicated from TargetLowering::ParseConstraints().
7694 // If this is an indirect operand, the operand is a pointer to the
7695 // accessed type.
7696 if (isIndirect) {
7697 PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
7698 if (!PtrTy)
7699 report_fatal_error("Indirect operand for inline asm not a pointer!");
7700 OpTy = PtrTy->getElementType();
7703 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
7704 if (StructType *STy = dyn_cast<StructType>(OpTy))
7705 if (STy->getNumElements() == 1)
7706 OpTy = STy->getElementType(0);
7708 // If OpTy is not a single value, it may be a struct/union that we
7709 // can tile with integers.
7710 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
7711 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
7712 switch (BitSize) {
7713 default: break;
7714 case 1:
7715 case 8:
7716 case 16:
7717 case 32:
7718 case 64:
7719 case 128:
7720 OpTy = IntegerType::get(Context, BitSize);
7721 break;
7725 return TLI.getValueType(DL, OpTy, true);
7729 using SDISelAsmOperandInfoVector = SmallVector<SDISelAsmOperandInfo, 16>;
7731 } // end anonymous namespace
7733 /// Make sure that the output operand \p OpInfo and its corresponding input
7734 /// operand \p MatchingOpInfo have compatible constraint types (otherwise error
7735 /// out).
7736 static void patchMatchingInput(const SDISelAsmOperandInfo &OpInfo,
7737 SDISelAsmOperandInfo &MatchingOpInfo,
7738 SelectionDAG &DAG) {
7739 if (OpInfo.ConstraintVT == MatchingOpInfo.ConstraintVT)
7740 return;
7742 const TargetRegisterInfo *TRI = DAG.getSubtarget().getRegisterInfo();
7743 const auto &TLI = DAG.getTargetLoweringInfo();
7745 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
7746 TLI.getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
7747 OpInfo.ConstraintVT);
7748 std::pair<unsigned, const TargetRegisterClass *> InputRC =
7749 TLI.getRegForInlineAsmConstraint(TRI, MatchingOpInfo.ConstraintCode,
7750 MatchingOpInfo.ConstraintVT);
7751 if ((OpInfo.ConstraintVT.isInteger() !=
7752 MatchingOpInfo.ConstraintVT.isInteger()) ||
7753 (MatchRC.second != InputRC.second)) {
7754 // FIXME: error out in a more elegant fashion
7755 report_fatal_error("Unsupported asm: input constraint"
7756 " with a matching output constraint of"
7757 " incompatible type!");
7759 MatchingOpInfo.ConstraintVT = OpInfo.ConstraintVT;
7762 /// Get a direct memory input to behave well as an indirect operand.
7763 /// This may introduce stores, hence the need for a \p Chain.
7764 /// \return The (possibly updated) chain.
7765 static SDValue getAddressForMemoryInput(SDValue Chain, const SDLoc &Location,
7766 SDISelAsmOperandInfo &OpInfo,
7767 SelectionDAG &DAG) {
7768 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7770 // If we don't have an indirect input, put it in the constpool if we can,
7771 // otherwise spill it to a stack slot.
7772 // TODO: This isn't quite right. We need to handle these according to
7773 // the addressing mode that the constraint wants. Also, this may take
7774 // an additional register for the computation and we don't want that
7775 // either.
7777 // If the operand is a float, integer, or vector constant, spill to a
7778 // constant pool entry to get its address.
7779 const Value *OpVal = OpInfo.CallOperandVal;
7780 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
7781 isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
7782 OpInfo.CallOperand = DAG.getConstantPool(
7783 cast<Constant>(OpVal), TLI.getPointerTy(DAG.getDataLayout()));
7784 return Chain;
7787 // Otherwise, create a stack slot and emit a store to it before the asm.
7788 Type *Ty = OpVal->getType();
7789 auto &DL = DAG.getDataLayout();
7790 uint64_t TySize = DL.getTypeAllocSize(Ty);
7791 unsigned Align = DL.getPrefTypeAlignment(Ty);
7792 MachineFunction &MF = DAG.getMachineFunction();
7793 int SSFI = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
7794 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getFrameIndexTy(DL));
7795 Chain = DAG.getTruncStore(Chain, Location, OpInfo.CallOperand, StackSlot,
7796 MachinePointerInfo::getFixedStack(MF, SSFI),
7797 TLI.getMemValueType(DL, Ty));
7798 OpInfo.CallOperand = StackSlot;
7800 return Chain;
7803 /// GetRegistersForValue - Assign registers (virtual or physical) for the
7804 /// specified operand. We prefer to assign virtual registers, to allow the
7805 /// register allocator to handle the assignment process. However, if the asm
7806 /// uses features that we can't model on machineinstrs, we have SDISel do the
7807 /// allocation. This produces generally horrible, but correct, code.
7809 /// OpInfo describes the operand
7810 /// RefOpInfo describes the matching operand if any, the operand otherwise
7811 static void GetRegistersForValue(SelectionDAG &DAG, const SDLoc &DL,
7812 SDISelAsmOperandInfo &OpInfo,
7813 SDISelAsmOperandInfo &RefOpInfo) {
7814 LLVMContext &Context = *DAG.getContext();
7815 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7817 MachineFunction &MF = DAG.getMachineFunction();
7818 SmallVector<unsigned, 4> Regs;
7819 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
7821 // No work to do for memory operations.
7822 if (OpInfo.ConstraintType == TargetLowering::C_Memory)
7823 return;
7825 // If this is a constraint for a single physreg, or a constraint for a
7826 // register class, find it.
7827 unsigned AssignedReg;
7828 const TargetRegisterClass *RC;
7829 std::tie(AssignedReg, RC) = TLI.getRegForInlineAsmConstraint(
7830 &TRI, RefOpInfo.ConstraintCode, RefOpInfo.ConstraintVT);
7831 // RC is unset only on failure. Return immediately.
7832 if (!RC)
7833 return;
7835 // Get the actual register value type. This is important, because the user
7836 // may have asked for (e.g.) the AX register in i32 type. We need to
7837 // remember that AX is actually i16 to get the right extension.
7838 const MVT RegVT = *TRI.legalclasstypes_begin(*RC);
7840 if (OpInfo.ConstraintVT != MVT::Other) {
7841 // If this is an FP operand in an integer register (or visa versa), or more
7842 // generally if the operand value disagrees with the register class we plan
7843 // to stick it in, fix the operand type.
7845 // If this is an input value, the bitcast to the new type is done now.
7846 // Bitcast for output value is done at the end of visitInlineAsm().
7847 if ((OpInfo.Type == InlineAsm::isOutput ||
7848 OpInfo.Type == InlineAsm::isInput) &&
7849 !TRI.isTypeLegalForClass(*RC, OpInfo.ConstraintVT)) {
7850 // Try to convert to the first EVT that the reg class contains. If the
7851 // types are identical size, use a bitcast to convert (e.g. two differing
7852 // vector types). Note: output bitcast is done at the end of
7853 // visitInlineAsm().
7854 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
7855 // Exclude indirect inputs while they are unsupported because the code
7856 // to perform the load is missing and thus OpInfo.CallOperand still
7857 // refers to the input address rather than the pointed-to value.
7858 if (OpInfo.Type == InlineAsm::isInput && !OpInfo.isIndirect)
7859 OpInfo.CallOperand =
7860 DAG.getNode(ISD::BITCAST, DL, RegVT, OpInfo.CallOperand);
7861 OpInfo.ConstraintVT = RegVT;
7862 // If the operand is an FP value and we want it in integer registers,
7863 // use the corresponding integer type. This turns an f64 value into
7864 // i64, which can be passed with two i32 values on a 32-bit machine.
7865 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
7866 MVT VT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
7867 if (OpInfo.Type == InlineAsm::isInput)
7868 OpInfo.CallOperand =
7869 DAG.getNode(ISD::BITCAST, DL, VT, OpInfo.CallOperand);
7870 OpInfo.ConstraintVT = VT;
7875 // No need to allocate a matching input constraint since the constraint it's
7876 // matching to has already been allocated.
7877 if (OpInfo.isMatchingInputConstraint())
7878 return;
7880 EVT ValueVT = OpInfo.ConstraintVT;
7881 if (OpInfo.ConstraintVT == MVT::Other)
7882 ValueVT = RegVT;
7884 // Initialize NumRegs.
7885 unsigned NumRegs = 1;
7886 if (OpInfo.ConstraintVT != MVT::Other)
7887 NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
7889 // If this is a constraint for a specific physical register, like {r17},
7890 // assign it now.
7892 // If this associated to a specific register, initialize iterator to correct
7893 // place. If virtual, make sure we have enough registers
7895 // Initialize iterator if necessary
7896 TargetRegisterClass::iterator I = RC->begin();
7897 MachineRegisterInfo &RegInfo = MF.getRegInfo();
7899 // Do not check for single registers.
7900 if (AssignedReg) {
7901 for (; *I != AssignedReg; ++I)
7902 assert(I != RC->end() && "AssignedReg should be member of RC");
7905 for (; NumRegs; --NumRegs, ++I) {
7906 assert(I != RC->end() && "Ran out of registers to allocate!");
7907 auto R = (AssignedReg) ? *I : RegInfo.createVirtualRegister(RC);
7908 Regs.push_back(R);
7911 OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
7914 static unsigned
7915 findMatchingInlineAsmOperand(unsigned OperandNo,
7916 const std::vector<SDValue> &AsmNodeOperands) {
7917 // Scan until we find the definition we already emitted of this operand.
7918 unsigned CurOp = InlineAsm::Op_FirstOperand;
7919 for (; OperandNo; --OperandNo) {
7920 // Advance to the next operand.
7921 unsigned OpFlag =
7922 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
7923 assert((InlineAsm::isRegDefKind(OpFlag) ||
7924 InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
7925 InlineAsm::isMemKind(OpFlag)) &&
7926 "Skipped past definitions?");
7927 CurOp += InlineAsm::getNumOperandRegisters(OpFlag) + 1;
7929 return CurOp;
7932 namespace {
7934 class ExtraFlags {
7935 unsigned Flags = 0;
7937 public:
7938 explicit ExtraFlags(ImmutableCallSite CS) {
7939 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7940 if (IA->hasSideEffects())
7941 Flags |= InlineAsm::Extra_HasSideEffects;
7942 if (IA->isAlignStack())
7943 Flags |= InlineAsm::Extra_IsAlignStack;
7944 if (CS.isConvergent())
7945 Flags |= InlineAsm::Extra_IsConvergent;
7946 Flags |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
7949 void update(const TargetLowering::AsmOperandInfo &OpInfo) {
7950 // Ideally, we would only check against memory constraints. However, the
7951 // meaning of an Other constraint can be target-specific and we can't easily
7952 // reason about it. Therefore, be conservative and set MayLoad/MayStore
7953 // for Other constraints as well.
7954 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
7955 OpInfo.ConstraintType == TargetLowering::C_Other) {
7956 if (OpInfo.Type == InlineAsm::isInput)
7957 Flags |= InlineAsm::Extra_MayLoad;
7958 else if (OpInfo.Type == InlineAsm::isOutput)
7959 Flags |= InlineAsm::Extra_MayStore;
7960 else if (OpInfo.Type == InlineAsm::isClobber)
7961 Flags |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
7965 unsigned get() const { return Flags; }
7968 } // end anonymous namespace
7970 /// visitInlineAsm - Handle a call to an InlineAsm object.
7971 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
7972 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
7974 /// ConstraintOperands - Information about all of the constraints.
7975 SDISelAsmOperandInfoVector ConstraintOperands;
7977 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7978 TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(
7979 DAG.getDataLayout(), DAG.getSubtarget().getRegisterInfo(), CS);
7981 // First Pass: Calculate HasSideEffects and ExtraFlags (AlignStack,
7982 // AsmDialect, MayLoad, MayStore).
7983 bool HasSideEffect = IA->hasSideEffects();
7984 ExtraFlags ExtraInfo(CS);
7986 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
7987 unsigned ResNo = 0; // ResNo - The result number of the next output.
7988 for (auto &T : TargetConstraints) {
7989 ConstraintOperands.push_back(SDISelAsmOperandInfo(T));
7990 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
7992 // Compute the value type for each operand.
7993 if (OpInfo.Type == InlineAsm::isInput ||
7994 (OpInfo.Type == InlineAsm::isOutput && OpInfo.isIndirect)) {
7995 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
7997 // Process the call argument. BasicBlocks are labels, currently appearing
7998 // only in asm's.
7999 const Instruction *I = CS.getInstruction();
8000 if (isa<CallBrInst>(I) &&
8001 (ArgNo - 1) >= (cast<CallBrInst>(I)->getNumArgOperands() -
8002 cast<CallBrInst>(I)->getNumIndirectDests())) {
8003 const auto *BA = cast<BlockAddress>(OpInfo.CallOperandVal);
8004 EVT VT = TLI.getValueType(DAG.getDataLayout(), BA->getType(), true);
8005 OpInfo.CallOperand = DAG.getTargetBlockAddress(BA, VT);
8006 } else if (const auto *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
8007 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
8008 } else {
8009 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
8012 OpInfo.ConstraintVT =
8013 OpInfo
8014 .getCallOperandValEVT(*DAG.getContext(), TLI, DAG.getDataLayout())
8015 .getSimpleVT();
8016 } else if (OpInfo.Type == InlineAsm::isOutput && !OpInfo.isIndirect) {
8017 // The return value of the call is this value. As such, there is no
8018 // corresponding argument.
8019 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8020 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
8021 OpInfo.ConstraintVT = TLI.getSimpleValueType(
8022 DAG.getDataLayout(), STy->getElementType(ResNo));
8023 } else {
8024 assert(ResNo == 0 && "Asm only has one result!");
8025 OpInfo.ConstraintVT =
8026 TLI.getSimpleValueType(DAG.getDataLayout(), CS.getType());
8028 ++ResNo;
8029 } else {
8030 OpInfo.ConstraintVT = MVT::Other;
8033 if (!HasSideEffect)
8034 HasSideEffect = OpInfo.hasMemory(TLI);
8036 // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
8037 // FIXME: Could we compute this on OpInfo rather than T?
8039 // Compute the constraint code and ConstraintType to use.
8040 TLI.ComputeConstraintToUse(T, SDValue());
8042 ExtraInfo.update(T);
8045 // We won't need to flush pending loads if this asm doesn't touch
8046 // memory and is nonvolatile.
8047 SDValue Flag, Chain = (HasSideEffect) ? getRoot() : DAG.getRoot();
8049 // Second pass over the constraints: compute which constraint option to use.
8050 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8051 // If this is an output operand with a matching input operand, look up the
8052 // matching input. If their types mismatch, e.g. one is an integer, the
8053 // other is floating point, or their sizes are different, flag it as an
8054 // error.
8055 if (OpInfo.hasMatchingInput()) {
8056 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
8057 patchMatchingInput(OpInfo, Input, DAG);
8060 // Compute the constraint code and ConstraintType to use.
8061 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
8063 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8064 OpInfo.Type == InlineAsm::isClobber)
8065 continue;
8067 // If this is a memory input, and if the operand is not indirect, do what we
8068 // need to provide an address for the memory input.
8069 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
8070 !OpInfo.isIndirect) {
8071 assert((OpInfo.isMultipleAlternative ||
8072 (OpInfo.Type == InlineAsm::isInput)) &&
8073 "Can only indirectify direct input operands!");
8075 // Memory operands really want the address of the value.
8076 Chain = getAddressForMemoryInput(Chain, getCurSDLoc(), OpInfo, DAG);
8078 // There is no longer a Value* corresponding to this operand.
8079 OpInfo.CallOperandVal = nullptr;
8081 // It is now an indirect operand.
8082 OpInfo.isIndirect = true;
8087 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
8088 std::vector<SDValue> AsmNodeOperands;
8089 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
8090 AsmNodeOperands.push_back(DAG.getTargetExternalSymbol(
8091 IA->getAsmString().c_str(), TLI.getPointerTy(DAG.getDataLayout())));
8093 // If we have a !srcloc metadata node associated with it, we want to attach
8094 // this to the ultimately generated inline asm machineinstr. To do this, we
8095 // pass in the third operand as this (potentially null) inline asm MDNode.
8096 const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
8097 AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
8099 // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
8100 // bits as operand 3.
8101 AsmNodeOperands.push_back(DAG.getTargetConstant(
8102 ExtraInfo.get(), getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8104 // Third pass: Loop over operands to prepare DAG-level operands.. As part of
8105 // this, assign virtual and physical registers for inputs and otput.
8106 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8107 // Assign Registers.
8108 SDISelAsmOperandInfo &RefOpInfo =
8109 OpInfo.isMatchingInputConstraint()
8110 ? ConstraintOperands[OpInfo.getMatchedOperand()]
8111 : OpInfo;
8112 GetRegistersForValue(DAG, getCurSDLoc(), OpInfo, RefOpInfo);
8114 switch (OpInfo.Type) {
8115 case InlineAsm::isOutput:
8116 if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
8117 (OpInfo.ConstraintType == TargetLowering::C_Other &&
8118 OpInfo.isIndirect)) {
8119 unsigned ConstraintID =
8120 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8121 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8122 "Failed to convert memory constraint code to constraint id.");
8124 // Add information to the INLINEASM node to know about this output.
8125 unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8126 OpFlags = InlineAsm::getFlagWordForMem(OpFlags, ConstraintID);
8127 AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags, getCurSDLoc(),
8128 MVT::i32));
8129 AsmNodeOperands.push_back(OpInfo.CallOperand);
8130 break;
8131 } else if ((OpInfo.ConstraintType == TargetLowering::C_Other &&
8132 !OpInfo.isIndirect) ||
8133 OpInfo.ConstraintType == TargetLowering::C_Register ||
8134 OpInfo.ConstraintType == TargetLowering::C_RegisterClass) {
8135 // Otherwise, this outputs to a register (directly for C_Register /
8136 // C_RegisterClass, and a target-defined fashion for C_Other). Find a
8137 // register that we can use.
8138 if (OpInfo.AssignedRegs.Regs.empty()) {
8139 emitInlineAsmError(
8140 CS, "couldn't allocate output register for constraint '" +
8141 Twine(OpInfo.ConstraintCode) + "'");
8142 return;
8145 // Add information to the INLINEASM node to know that this register is
8146 // set.
8147 OpInfo.AssignedRegs.AddInlineAsmOperands(
8148 OpInfo.isEarlyClobber ? InlineAsm::Kind_RegDefEarlyClobber
8149 : InlineAsm::Kind_RegDef,
8150 false, 0, getCurSDLoc(), DAG, AsmNodeOperands);
8152 break;
8154 case InlineAsm::isInput: {
8155 SDValue InOperandVal = OpInfo.CallOperand;
8157 if (OpInfo.isMatchingInputConstraint()) {
8158 // If this is required to match an output register we have already set,
8159 // just use its register.
8160 auto CurOp = findMatchingInlineAsmOperand(OpInfo.getMatchedOperand(),
8161 AsmNodeOperands);
8162 unsigned OpFlag =
8163 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
8164 if (InlineAsm::isRegDefKind(OpFlag) ||
8165 InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
8166 // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
8167 if (OpInfo.isIndirect) {
8168 // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
8169 emitInlineAsmError(CS, "inline asm not supported yet:"
8170 " don't know how to handle tied "
8171 "indirect register inputs");
8172 return;
8175 MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
8176 SmallVector<unsigned, 4> Regs;
8178 if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT)) {
8179 unsigned NumRegs = InlineAsm::getNumOperandRegisters(OpFlag);
8180 MachineRegisterInfo &RegInfo =
8181 DAG.getMachineFunction().getRegInfo();
8182 for (unsigned i = 0; i != NumRegs; ++i)
8183 Regs.push_back(RegInfo.createVirtualRegister(RC));
8184 } else {
8185 emitInlineAsmError(CS, "inline asm error: This value type register "
8186 "class is not natively supported!");
8187 return;
8190 RegsForValue MatchedRegs(Regs, RegVT, InOperandVal.getValueType());
8192 SDLoc dl = getCurSDLoc();
8193 // Use the produced MatchedRegs object to
8194 MatchedRegs.getCopyToRegs(InOperandVal, DAG, dl, Chain, &Flag,
8195 CS.getInstruction());
8196 MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
8197 true, OpInfo.getMatchedOperand(), dl,
8198 DAG, AsmNodeOperands);
8199 break;
8202 assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
8203 assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
8204 "Unexpected number of operands");
8205 // Add information to the INLINEASM node to know about this input.
8206 // See InlineAsm.h isUseOperandTiedToDef.
8207 OpFlag = InlineAsm::convertMemFlagWordToMatchingFlagWord(OpFlag);
8208 OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
8209 OpInfo.getMatchedOperand());
8210 AsmNodeOperands.push_back(DAG.getTargetConstant(
8211 OpFlag, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8212 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
8213 break;
8216 // Treat indirect 'X' constraint as memory.
8217 if (OpInfo.ConstraintType == TargetLowering::C_Other &&
8218 OpInfo.isIndirect)
8219 OpInfo.ConstraintType = TargetLowering::C_Memory;
8221 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
8222 std::vector<SDValue> Ops;
8223 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
8224 Ops, DAG);
8225 if (Ops.empty()) {
8226 emitInlineAsmError(CS, "invalid operand for inline asm constraint '" +
8227 Twine(OpInfo.ConstraintCode) + "'");
8228 return;
8231 // Add information to the INLINEASM node to know about this input.
8232 unsigned ResOpType =
8233 InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
8234 AsmNodeOperands.push_back(DAG.getTargetConstant(
8235 ResOpType, getCurSDLoc(), TLI.getPointerTy(DAG.getDataLayout())));
8236 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
8237 break;
8240 if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
8241 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
8242 assert(InOperandVal.getValueType() ==
8243 TLI.getPointerTy(DAG.getDataLayout()) &&
8244 "Memory operands expect pointer values");
8246 unsigned ConstraintID =
8247 TLI.getInlineAsmMemConstraint(OpInfo.ConstraintCode);
8248 assert(ConstraintID != InlineAsm::Constraint_Unknown &&
8249 "Failed to convert memory constraint code to constraint id.");
8251 // Add information to the INLINEASM node to know about this input.
8252 unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
8253 ResOpType = InlineAsm::getFlagWordForMem(ResOpType, ConstraintID);
8254 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
8255 getCurSDLoc(),
8256 MVT::i32));
8257 AsmNodeOperands.push_back(InOperandVal);
8258 break;
8261 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
8262 OpInfo.ConstraintType == TargetLowering::C_Register) &&
8263 "Unknown constraint type!");
8265 // TODO: Support this.
8266 if (OpInfo.isIndirect) {
8267 emitInlineAsmError(
8268 CS, "Don't know how to handle indirect register inputs yet "
8269 "for constraint '" +
8270 Twine(OpInfo.ConstraintCode) + "'");
8271 return;
8274 // Copy the input into the appropriate registers.
8275 if (OpInfo.AssignedRegs.Regs.empty()) {
8276 emitInlineAsmError(CS, "couldn't allocate input reg for constraint '" +
8277 Twine(OpInfo.ConstraintCode) + "'");
8278 return;
8281 SDLoc dl = getCurSDLoc();
8283 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, dl,
8284 Chain, &Flag, CS.getInstruction());
8286 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
8287 dl, DAG, AsmNodeOperands);
8288 break;
8290 case InlineAsm::isClobber:
8291 // Add the clobbered value to the operand list, so that the register
8292 // allocator is aware that the physreg got clobbered.
8293 if (!OpInfo.AssignedRegs.Regs.empty())
8294 OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
8295 false, 0, getCurSDLoc(), DAG,
8296 AsmNodeOperands);
8297 break;
8301 // Finish up input operands. Set the input chain and add the flag last.
8302 AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
8303 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
8305 unsigned ISDOpc = isa<CallBrInst>(CS.getInstruction()) ? ISD::INLINEASM_BR
8306 : ISD::INLINEASM;
8307 Chain = DAG.getNode(ISDOpc, getCurSDLoc(),
8308 DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
8309 Flag = Chain.getValue(1);
8311 // Do additional work to generate outputs.
8313 SmallVector<EVT, 1> ResultVTs;
8314 SmallVector<SDValue, 1> ResultValues;
8315 SmallVector<SDValue, 8> OutChains;
8317 llvm::Type *CSResultType = CS.getType();
8318 ArrayRef<Type *> ResultTypes;
8319 if (StructType *StructResult = dyn_cast<StructType>(CSResultType))
8320 ResultTypes = StructResult->elements();
8321 else if (!CSResultType->isVoidTy())
8322 ResultTypes = makeArrayRef(CSResultType);
8324 auto CurResultType = ResultTypes.begin();
8325 auto handleRegAssign = [&](SDValue V) {
8326 assert(CurResultType != ResultTypes.end() && "Unexpected value");
8327 assert((*CurResultType)->isSized() && "Unexpected unsized type");
8328 EVT ResultVT = TLI.getValueType(DAG.getDataLayout(), *CurResultType);
8329 ++CurResultType;
8330 // If the type of the inline asm call site return value is different but has
8331 // same size as the type of the asm output bitcast it. One example of this
8332 // is for vectors with different width / number of elements. This can
8333 // happen for register classes that can contain multiple different value
8334 // types. The preg or vreg allocated may not have the same VT as was
8335 // expected.
8337 // This can also happen for a return value that disagrees with the register
8338 // class it is put in, eg. a double in a general-purpose register on a
8339 // 32-bit machine.
8340 if (ResultVT != V.getValueType() &&
8341 ResultVT.getSizeInBits() == V.getValueSizeInBits())
8342 V = DAG.getNode(ISD::BITCAST, getCurSDLoc(), ResultVT, V);
8343 else if (ResultVT != V.getValueType() && ResultVT.isInteger() &&
8344 V.getValueType().isInteger()) {
8345 // If a result value was tied to an input value, the computed result
8346 // may have a wider width than the expected result. Extract the
8347 // relevant portion.
8348 V = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultVT, V);
8350 assert(ResultVT == V.getValueType() && "Asm result value mismatch!");
8351 ResultVTs.push_back(ResultVT);
8352 ResultValues.push_back(V);
8355 // Deal with output operands.
8356 for (SDISelAsmOperandInfo &OpInfo : ConstraintOperands) {
8357 if (OpInfo.Type == InlineAsm::isOutput) {
8358 SDValue Val;
8359 // Skip trivial output operands.
8360 if (OpInfo.AssignedRegs.Regs.empty())
8361 continue;
8363 switch (OpInfo.ConstraintType) {
8364 case TargetLowering::C_Register:
8365 case TargetLowering::C_RegisterClass:
8366 Val = OpInfo.AssignedRegs.getCopyFromRegs(
8367 DAG, FuncInfo, getCurSDLoc(), Chain, &Flag, CS.getInstruction());
8368 break;
8369 case TargetLowering::C_Other:
8370 Val = TLI.LowerAsmOutputForConstraint(Chain, Flag, getCurSDLoc(),
8371 OpInfo, DAG);
8372 break;
8373 case TargetLowering::C_Memory:
8374 break; // Already handled.
8375 case TargetLowering::C_Unknown:
8376 assert(false && "Unexpected unknown constraint");
8379 // Indirect output manifest as stores. Record output chains.
8380 if (OpInfo.isIndirect) {
8381 const Value *Ptr = OpInfo.CallOperandVal;
8382 assert(Ptr && "Expected value CallOperandVal for indirect asm operand");
8383 SDValue Store = DAG.getStore(Chain, getCurSDLoc(), Val, getValue(Ptr),
8384 MachinePointerInfo(Ptr));
8385 OutChains.push_back(Store);
8386 } else {
8387 // generate CopyFromRegs to associated registers.
8388 assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
8389 if (Val.getOpcode() == ISD::MERGE_VALUES) {
8390 for (const SDValue &V : Val->op_values())
8391 handleRegAssign(V);
8392 } else
8393 handleRegAssign(Val);
8398 // Set results.
8399 if (!ResultValues.empty()) {
8400 assert(CurResultType == ResultTypes.end() &&
8401 "Mismatch in number of ResultTypes");
8402 assert(ResultValues.size() == ResultTypes.size() &&
8403 "Mismatch in number of output operands in asm result");
8405 SDValue V = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
8406 DAG.getVTList(ResultVTs), ResultValues);
8407 setValue(CS.getInstruction(), V);
8410 // Collect store chains.
8411 if (!OutChains.empty())
8412 Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
8414 // Only Update Root if inline assembly has a memory effect.
8415 if (ResultValues.empty() || HasSideEffect || !OutChains.empty())
8416 DAG.setRoot(Chain);
8419 void SelectionDAGBuilder::emitInlineAsmError(ImmutableCallSite CS,
8420 const Twine &Message) {
8421 LLVMContext &Ctx = *DAG.getContext();
8422 Ctx.emitError(CS.getInstruction(), Message);
8424 // Make sure we leave the DAG in a valid state
8425 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8426 SmallVector<EVT, 1> ValueVTs;
8427 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8429 if (ValueVTs.empty())
8430 return;
8432 SmallVector<SDValue, 1> Ops;
8433 for (unsigned i = 0, e = ValueVTs.size(); i != e; ++i)
8434 Ops.push_back(DAG.getUNDEF(ValueVTs[i]));
8436 setValue(CS.getInstruction(), DAG.getMergeValues(Ops, getCurSDLoc()));
8439 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
8440 DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
8441 MVT::Other, getRoot(),
8442 getValue(I.getArgOperand(0)),
8443 DAG.getSrcValue(I.getArgOperand(0))));
8446 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
8447 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8448 const DataLayout &DL = DAG.getDataLayout();
8449 SDValue V = DAG.getVAArg(
8450 TLI.getMemValueType(DAG.getDataLayout(), I.getType()), getCurSDLoc(),
8451 getRoot(), getValue(I.getOperand(0)), DAG.getSrcValue(I.getOperand(0)),
8452 DL.getABITypeAlignment(I.getType()));
8453 DAG.setRoot(V.getValue(1));
8455 if (I.getType()->isPointerTy())
8456 V = DAG.getPtrExtOrTrunc(
8457 V, getCurSDLoc(), TLI.getValueType(DAG.getDataLayout(), I.getType()));
8458 setValue(&I, V);
8461 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
8462 DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
8463 MVT::Other, getRoot(),
8464 getValue(I.getArgOperand(0)),
8465 DAG.getSrcValue(I.getArgOperand(0))));
8468 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
8469 DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
8470 MVT::Other, getRoot(),
8471 getValue(I.getArgOperand(0)),
8472 getValue(I.getArgOperand(1)),
8473 DAG.getSrcValue(I.getArgOperand(0)),
8474 DAG.getSrcValue(I.getArgOperand(1))));
8477 SDValue SelectionDAGBuilder::lowerRangeToAssertZExt(SelectionDAG &DAG,
8478 const Instruction &I,
8479 SDValue Op) {
8480 const MDNode *Range = I.getMetadata(LLVMContext::MD_range);
8481 if (!Range)
8482 return Op;
8484 ConstantRange CR = getConstantRangeFromMetadata(*Range);
8485 if (CR.isFullSet() || CR.isEmptySet() || CR.isUpperWrapped())
8486 return Op;
8488 APInt Lo = CR.getUnsignedMin();
8489 if (!Lo.isMinValue())
8490 return Op;
8492 APInt Hi = CR.getUnsignedMax();
8493 unsigned Bits = std::max(Hi.getActiveBits(),
8494 static_cast<unsigned>(IntegerType::MIN_INT_BITS));
8496 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), Bits);
8498 SDLoc SL = getCurSDLoc();
8500 SDValue ZExt = DAG.getNode(ISD::AssertZext, SL, Op.getValueType(), Op,
8501 DAG.getValueType(SmallVT));
8502 unsigned NumVals = Op.getNode()->getNumValues();
8503 if (NumVals == 1)
8504 return ZExt;
8506 SmallVector<SDValue, 4> Ops;
8508 Ops.push_back(ZExt);
8509 for (unsigned I = 1; I != NumVals; ++I)
8510 Ops.push_back(Op.getValue(I));
8512 return DAG.getMergeValues(Ops, SL);
8515 /// Populate a CallLowerinInfo (into \p CLI) based on the properties of
8516 /// the call being lowered.
8518 /// This is a helper for lowering intrinsics that follow a target calling
8519 /// convention or require stack pointer adjustment. Only a subset of the
8520 /// intrinsic's operands need to participate in the calling convention.
8521 void SelectionDAGBuilder::populateCallLoweringInfo(
8522 TargetLowering::CallLoweringInfo &CLI, const CallBase *Call,
8523 unsigned ArgIdx, unsigned NumArgs, SDValue Callee, Type *ReturnTy,
8524 bool IsPatchPoint) {
8525 TargetLowering::ArgListTy Args;
8526 Args.reserve(NumArgs);
8528 // Populate the argument list.
8529 // Attributes for args start at offset 1, after the return attribute.
8530 for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs;
8531 ArgI != ArgE; ++ArgI) {
8532 const Value *V = Call->getOperand(ArgI);
8534 assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
8536 TargetLowering::ArgListEntry Entry;
8537 Entry.Node = getValue(V);
8538 Entry.Ty = V->getType();
8539 Entry.setAttributes(Call, ArgI);
8540 Args.push_back(Entry);
8543 CLI.setDebugLoc(getCurSDLoc())
8544 .setChain(getRoot())
8545 .setCallee(Call->getCallingConv(), ReturnTy, Callee, std::move(Args))
8546 .setDiscardResult(Call->use_empty())
8547 .setIsPatchPoint(IsPatchPoint);
8550 /// Add a stack map intrinsic call's live variable operands to a stackmap
8551 /// or patchpoint target node's operand list.
8553 /// Constants are converted to TargetConstants purely as an optimization to
8554 /// avoid constant materialization and register allocation.
8556 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
8557 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
8558 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
8559 /// address materialization and register allocation, but may also be required
8560 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
8561 /// alloca in the entry block, then the runtime may assume that the alloca's
8562 /// StackMap location can be read immediately after compilation and that the
8563 /// location is valid at any point during execution (this is similar to the
8564 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
8565 /// only available in a register, then the runtime would need to trap when
8566 /// execution reaches the StackMap in order to read the alloca's location.
8567 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
8568 const SDLoc &DL, SmallVectorImpl<SDValue> &Ops,
8569 SelectionDAGBuilder &Builder) {
8570 for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
8571 SDValue OpVal = Builder.getValue(CS.getArgument(i));
8572 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
8573 Ops.push_back(
8574 Builder.DAG.getTargetConstant(StackMaps::ConstantOp, DL, MVT::i64));
8575 Ops.push_back(
8576 Builder.DAG.getTargetConstant(C->getSExtValue(), DL, MVT::i64));
8577 } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
8578 const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
8579 Ops.push_back(Builder.DAG.getTargetFrameIndex(
8580 FI->getIndex(), TLI.getFrameIndexTy(Builder.DAG.getDataLayout())));
8581 } else
8582 Ops.push_back(OpVal);
8586 /// Lower llvm.experimental.stackmap directly to its target opcode.
8587 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
8588 // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
8589 // [live variables...])
8591 assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
8593 SDValue Chain, InFlag, Callee, NullPtr;
8594 SmallVector<SDValue, 32> Ops;
8596 SDLoc DL = getCurSDLoc();
8597 Callee = getValue(CI.getCalledValue());
8598 NullPtr = DAG.getIntPtrConstant(0, DL, true);
8600 // The stackmap intrinsic only records the live variables (the arguemnts
8601 // passed to it) and emits NOPS (if requested). Unlike the patchpoint
8602 // intrinsic, this won't be lowered to a function call. This means we don't
8603 // have to worry about calling conventions and target specific lowering code.
8604 // Instead we perform the call lowering right here.
8606 // chain, flag = CALLSEQ_START(chain, 0, 0)
8607 // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
8608 // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
8610 Chain = DAG.getCALLSEQ_START(getRoot(), 0, 0, DL);
8611 InFlag = Chain.getValue(1);
8613 // Add the <id> and <numBytes> constants.
8614 SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
8615 Ops.push_back(DAG.getTargetConstant(
8616 cast<ConstantSDNode>(IDVal)->getZExtValue(), DL, MVT::i64));
8617 SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
8618 Ops.push_back(DAG.getTargetConstant(
8619 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), DL,
8620 MVT::i32));
8622 // Push live variables for the stack map.
8623 addStackMapLiveVars(&CI, 2, DL, Ops, *this);
8625 // We are not pushing any register mask info here on the operands list,
8626 // because the stackmap doesn't clobber anything.
8628 // Push the chain and the glue flag.
8629 Ops.push_back(Chain);
8630 Ops.push_back(InFlag);
8632 // Create the STACKMAP node.
8633 SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8634 SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
8635 Chain = SDValue(SM, 0);
8636 InFlag = Chain.getValue(1);
8638 Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
8640 // Stackmaps don't generate values, so nothing goes into the NodeMap.
8642 // Set the root to the target-lowered call chain.
8643 DAG.setRoot(Chain);
8645 // Inform the Frame Information that we have a stackmap in this function.
8646 FuncInfo.MF->getFrameInfo().setHasStackMap();
8649 /// Lower llvm.experimental.patchpoint directly to its target opcode.
8650 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
8651 const BasicBlock *EHPadBB) {
8652 // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
8653 // i32 <numBytes>,
8654 // i8* <target>,
8655 // i32 <numArgs>,
8656 // [Args...],
8657 // [live variables...])
8659 CallingConv::ID CC = CS.getCallingConv();
8660 bool IsAnyRegCC = CC == CallingConv::AnyReg;
8661 bool HasDef = !CS->getType()->isVoidTy();
8662 SDLoc dl = getCurSDLoc();
8663 SDValue Callee = getValue(CS->getOperand(PatchPointOpers::TargetPos));
8665 // Handle immediate and symbolic callees.
8666 if (auto* ConstCallee = dyn_cast<ConstantSDNode>(Callee))
8667 Callee = DAG.getIntPtrConstant(ConstCallee->getZExtValue(), dl,
8668 /*isTarget=*/true);
8669 else if (auto* SymbolicCallee = dyn_cast<GlobalAddressSDNode>(Callee))
8670 Callee = DAG.getTargetGlobalAddress(SymbolicCallee->getGlobal(),
8671 SDLoc(SymbolicCallee),
8672 SymbolicCallee->getValueType(0));
8674 // Get the real number of arguments participating in the call <numArgs>
8675 SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
8676 unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
8678 // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
8679 // Intrinsics include all meta-operands up to but not including CC.
8680 unsigned NumMetaOpers = PatchPointOpers::CCPos;
8681 assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
8682 "Not enough arguments provided to the patchpoint intrinsic");
8684 // For AnyRegCC the arguments are lowered later on manually.
8685 unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
8686 Type *ReturnTy =
8687 IsAnyRegCC ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
8689 TargetLowering::CallLoweringInfo CLI(DAG);
8690 populateCallLoweringInfo(CLI, cast<CallBase>(CS.getInstruction()),
8691 NumMetaOpers, NumCallArgs, Callee, ReturnTy, true);
8692 std::pair<SDValue, SDValue> Result = lowerInvokable(CLI, EHPadBB);
8694 SDNode *CallEnd = Result.second.getNode();
8695 if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
8696 CallEnd = CallEnd->getOperand(0).getNode();
8698 /// Get a call instruction from the call sequence chain.
8699 /// Tail calls are not allowed.
8700 assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
8701 "Expected a callseq node.");
8702 SDNode *Call = CallEnd->getOperand(0).getNode();
8703 bool HasGlue = Call->getGluedNode();
8705 // Replace the target specific call node with the patchable intrinsic.
8706 SmallVector<SDValue, 8> Ops;
8708 // Add the <id> and <numBytes> constants.
8709 SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
8710 Ops.push_back(DAG.getTargetConstant(
8711 cast<ConstantSDNode>(IDVal)->getZExtValue(), dl, MVT::i64));
8712 SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
8713 Ops.push_back(DAG.getTargetConstant(
8714 cast<ConstantSDNode>(NBytesVal)->getZExtValue(), dl,
8715 MVT::i32));
8717 // Add the callee.
8718 Ops.push_back(Callee);
8720 // Adjust <numArgs> to account for any arguments that have been passed on the
8721 // stack instead.
8722 // Call Node: Chain, Target, {Args}, RegMask, [Glue]
8723 unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
8724 NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
8725 Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, dl, MVT::i32));
8727 // Add the calling convention
8728 Ops.push_back(DAG.getTargetConstant((unsigned)CC, dl, MVT::i32));
8730 // Add the arguments we omitted previously. The register allocator should
8731 // place these in any free register.
8732 if (IsAnyRegCC)
8733 for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
8734 Ops.push_back(getValue(CS.getArgument(i)));
8736 // Push the arguments from the call instruction up to the register mask.
8737 SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
8738 Ops.append(Call->op_begin() + 2, e);
8740 // Push live variables for the stack map.
8741 addStackMapLiveVars(CS, NumMetaOpers + NumArgs, dl, Ops, *this);
8743 // Push the register mask info.
8744 if (HasGlue)
8745 Ops.push_back(*(Call->op_end()-2));
8746 else
8747 Ops.push_back(*(Call->op_end()-1));
8749 // Push the chain (this is originally the first operand of the call, but
8750 // becomes now the last or second to last operand).
8751 Ops.push_back(*(Call->op_begin()));
8753 // Push the glue flag (last operand).
8754 if (HasGlue)
8755 Ops.push_back(*(Call->op_end()-1));
8757 SDVTList NodeTys;
8758 if (IsAnyRegCC && HasDef) {
8759 // Create the return types based on the intrinsic definition
8760 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8761 SmallVector<EVT, 3> ValueVTs;
8762 ComputeValueVTs(TLI, DAG.getDataLayout(), CS->getType(), ValueVTs);
8763 assert(ValueVTs.size() == 1 && "Expected only one return value type.");
8765 // There is always a chain and a glue type at the end
8766 ValueVTs.push_back(MVT::Other);
8767 ValueVTs.push_back(MVT::Glue);
8768 NodeTys = DAG.getVTList(ValueVTs);
8769 } else
8770 NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
8772 // Replace the target specific call node with a PATCHPOINT node.
8773 MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
8774 dl, NodeTys, Ops);
8776 // Update the NodeMap.
8777 if (HasDef) {
8778 if (IsAnyRegCC)
8779 setValue(CS.getInstruction(), SDValue(MN, 0));
8780 else
8781 setValue(CS.getInstruction(), Result.first);
8784 // Fixup the consumers of the intrinsic. The chain and glue may be used in the
8785 // call sequence. Furthermore the location of the chain and glue can change
8786 // when the AnyReg calling convention is used and the intrinsic returns a
8787 // value.
8788 if (IsAnyRegCC && HasDef) {
8789 SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
8790 SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
8791 DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
8792 } else
8793 DAG.ReplaceAllUsesWith(Call, MN);
8794 DAG.DeleteNode(Call);
8796 // Inform the Frame Information that we have a patchpoint in this function.
8797 FuncInfo.MF->getFrameInfo().setHasPatchPoint();
8800 void SelectionDAGBuilder::visitVectorReduce(const CallInst &I,
8801 unsigned Intrinsic) {
8802 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
8803 SDValue Op1 = getValue(I.getArgOperand(0));
8804 SDValue Op2;
8805 if (I.getNumArgOperands() > 1)
8806 Op2 = getValue(I.getArgOperand(1));
8807 SDLoc dl = getCurSDLoc();
8808 EVT VT = TLI.getValueType(DAG.getDataLayout(), I.getType());
8809 SDValue Res;
8810 FastMathFlags FMF;
8811 if (isa<FPMathOperator>(I))
8812 FMF = I.getFastMathFlags();
8814 switch (Intrinsic) {
8815 case Intrinsic::experimental_vector_reduce_fadd:
8816 if (FMF.isFast())
8817 Res = DAG.getNode(ISD::VECREDUCE_FADD, dl, VT, Op2);
8818 else
8819 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FADD, dl, VT, Op1, Op2);
8820 break;
8821 case Intrinsic::experimental_vector_reduce_fmul:
8822 if (FMF.isFast())
8823 Res = DAG.getNode(ISD::VECREDUCE_FMUL, dl, VT, Op2);
8824 else
8825 Res = DAG.getNode(ISD::VECREDUCE_STRICT_FMUL, dl, VT, Op1, Op2);
8826 break;
8827 case Intrinsic::experimental_vector_reduce_add:
8828 Res = DAG.getNode(ISD::VECREDUCE_ADD, dl, VT, Op1);
8829 break;
8830 case Intrinsic::experimental_vector_reduce_mul:
8831 Res = DAG.getNode(ISD::VECREDUCE_MUL, dl, VT, Op1);
8832 break;
8833 case Intrinsic::experimental_vector_reduce_and:
8834 Res = DAG.getNode(ISD::VECREDUCE_AND, dl, VT, Op1);
8835 break;
8836 case Intrinsic::experimental_vector_reduce_or:
8837 Res = DAG.getNode(ISD::VECREDUCE_OR, dl, VT, Op1);
8838 break;
8839 case Intrinsic::experimental_vector_reduce_xor:
8840 Res = DAG.getNode(ISD::VECREDUCE_XOR, dl, VT, Op1);
8841 break;
8842 case Intrinsic::experimental_vector_reduce_smax:
8843 Res = DAG.getNode(ISD::VECREDUCE_SMAX, dl, VT, Op1);
8844 break;
8845 case Intrinsic::experimental_vector_reduce_smin:
8846 Res = DAG.getNode(ISD::VECREDUCE_SMIN, dl, VT, Op1);
8847 break;
8848 case Intrinsic::experimental_vector_reduce_umax:
8849 Res = DAG.getNode(ISD::VECREDUCE_UMAX, dl, VT, Op1);
8850 break;
8851 case Intrinsic::experimental_vector_reduce_umin:
8852 Res = DAG.getNode(ISD::VECREDUCE_UMIN, dl, VT, Op1);
8853 break;
8854 case Intrinsic::experimental_vector_reduce_fmax:
8855 Res = DAG.getNode(ISD::VECREDUCE_FMAX, dl, VT, Op1);
8856 break;
8857 case Intrinsic::experimental_vector_reduce_fmin:
8858 Res = DAG.getNode(ISD::VECREDUCE_FMIN, dl, VT, Op1);
8859 break;
8860 default:
8861 llvm_unreachable("Unhandled vector reduce intrinsic");
8863 setValue(&I, Res);
8866 /// Returns an AttributeList representing the attributes applied to the return
8867 /// value of the given call.
8868 static AttributeList getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
8869 SmallVector<Attribute::AttrKind, 2> Attrs;
8870 if (CLI.RetSExt)
8871 Attrs.push_back(Attribute::SExt);
8872 if (CLI.RetZExt)
8873 Attrs.push_back(Attribute::ZExt);
8874 if (CLI.IsInReg)
8875 Attrs.push_back(Attribute::InReg);
8877 return AttributeList::get(CLI.RetTy->getContext(), AttributeList::ReturnIndex,
8878 Attrs);
8881 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
8882 /// implementation, which just calls LowerCall.
8883 /// FIXME: When all targets are
8884 /// migrated to using LowerCall, this hook should be integrated into SDISel.
8885 std::pair<SDValue, SDValue>
8886 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
8887 // Handle the incoming return values from the call.
8888 CLI.Ins.clear();
8889 Type *OrigRetTy = CLI.RetTy;
8890 SmallVector<EVT, 4> RetTys;
8891 SmallVector<uint64_t, 4> Offsets;
8892 auto &DL = CLI.DAG.getDataLayout();
8893 ComputeValueVTs(*this, DL, CLI.RetTy, RetTys, &Offsets);
8895 if (CLI.IsPostTypeLegalization) {
8896 // If we are lowering a libcall after legalization, split the return type.
8897 SmallVector<EVT, 4> OldRetTys;
8898 SmallVector<uint64_t, 4> OldOffsets;
8899 RetTys.swap(OldRetTys);
8900 Offsets.swap(OldOffsets);
8902 for (size_t i = 0, e = OldRetTys.size(); i != e; ++i) {
8903 EVT RetVT = OldRetTys[i];
8904 uint64_t Offset = OldOffsets[i];
8905 MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), RetVT);
8906 unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), RetVT);
8907 unsigned RegisterVTByteSZ = RegisterVT.getSizeInBits() / 8;
8908 RetTys.append(NumRegs, RegisterVT);
8909 for (unsigned j = 0; j != NumRegs; ++j)
8910 Offsets.push_back(Offset + j * RegisterVTByteSZ);
8914 SmallVector<ISD::OutputArg, 4> Outs;
8915 GetReturnInfo(CLI.CallConv, CLI.RetTy, getReturnAttrs(CLI), Outs, *this, DL);
8917 bool CanLowerReturn =
8918 this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
8919 CLI.IsVarArg, Outs, CLI.RetTy->getContext());
8921 SDValue DemoteStackSlot;
8922 int DemoteStackIdx = -100;
8923 if (!CanLowerReturn) {
8924 // FIXME: equivalent assert?
8925 // assert(!CS.hasInAllocaArgument() &&
8926 // "sret demotion is incompatible with inalloca");
8927 uint64_t TySize = DL.getTypeAllocSize(CLI.RetTy);
8928 unsigned Align = DL.getPrefTypeAlignment(CLI.RetTy);
8929 MachineFunction &MF = CLI.DAG.getMachineFunction();
8930 DemoteStackIdx = MF.getFrameInfo().CreateStackObject(TySize, Align, false);
8931 Type *StackSlotPtrType = PointerType::get(CLI.RetTy,
8932 DL.getAllocaAddrSpace());
8934 DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getFrameIndexTy(DL));
8935 ArgListEntry Entry;
8936 Entry.Node = DemoteStackSlot;
8937 Entry.Ty = StackSlotPtrType;
8938 Entry.IsSExt = false;
8939 Entry.IsZExt = false;
8940 Entry.IsInReg = false;
8941 Entry.IsSRet = true;
8942 Entry.IsNest = false;
8943 Entry.IsByVal = false;
8944 Entry.IsReturned = false;
8945 Entry.IsSwiftSelf = false;
8946 Entry.IsSwiftError = false;
8947 Entry.Alignment = Align;
8948 CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
8949 CLI.NumFixedArgs += 1;
8950 CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
8952 // sret demotion isn't compatible with tail-calls, since the sret argument
8953 // points into the callers stack frame.
8954 CLI.IsTailCall = false;
8955 } else {
8956 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
8957 CLI.RetTy, CLI.CallConv, CLI.IsVarArg);
8958 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
8959 ISD::ArgFlagsTy Flags;
8960 if (NeedsRegBlock) {
8961 Flags.setInConsecutiveRegs();
8962 if (I == RetTys.size() - 1)
8963 Flags.setInConsecutiveRegsLast();
8965 EVT VT = RetTys[I];
8966 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
8967 CLI.CallConv, VT);
8968 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
8969 CLI.CallConv, VT);
8970 for (unsigned i = 0; i != NumRegs; ++i) {
8971 ISD::InputArg MyFlags;
8972 MyFlags.Flags = Flags;
8973 MyFlags.VT = RegisterVT;
8974 MyFlags.ArgVT = VT;
8975 MyFlags.Used = CLI.IsReturnValueUsed;
8976 if (CLI.RetTy->isPointerTy()) {
8977 MyFlags.Flags.setPointer();
8978 MyFlags.Flags.setPointerAddrSpace(
8979 cast<PointerType>(CLI.RetTy)->getAddressSpace());
8981 if (CLI.RetSExt)
8982 MyFlags.Flags.setSExt();
8983 if (CLI.RetZExt)
8984 MyFlags.Flags.setZExt();
8985 if (CLI.IsInReg)
8986 MyFlags.Flags.setInReg();
8987 CLI.Ins.push_back(MyFlags);
8992 // We push in swifterror return as the last element of CLI.Ins.
8993 ArgListTy &Args = CLI.getArgs();
8994 if (supportSwiftError()) {
8995 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
8996 if (Args[i].IsSwiftError) {
8997 ISD::InputArg MyFlags;
8998 MyFlags.VT = getPointerTy(DL);
8999 MyFlags.ArgVT = EVT(getPointerTy(DL));
9000 MyFlags.Flags.setSwiftError();
9001 CLI.Ins.push_back(MyFlags);
9006 // Handle all of the outgoing arguments.
9007 CLI.Outs.clear();
9008 CLI.OutVals.clear();
9009 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
9010 SmallVector<EVT, 4> ValueVTs;
9011 ComputeValueVTs(*this, DL, Args[i].Ty, ValueVTs);
9012 // FIXME: Split arguments if CLI.IsPostTypeLegalization
9013 Type *FinalType = Args[i].Ty;
9014 if (Args[i].IsByVal)
9015 FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
9016 bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
9017 FinalType, CLI.CallConv, CLI.IsVarArg);
9018 for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
9019 ++Value) {
9020 EVT VT = ValueVTs[Value];
9021 Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
9022 SDValue Op = SDValue(Args[i].Node.getNode(),
9023 Args[i].Node.getResNo() + Value);
9024 ISD::ArgFlagsTy Flags;
9026 // Certain targets (such as MIPS), may have a different ABI alignment
9027 // for a type depending on the context. Give the target a chance to
9028 // specify the alignment it wants.
9029 unsigned OriginalAlignment = getABIAlignmentForCallingConv(ArgTy, DL);
9031 if (Args[i].Ty->isPointerTy()) {
9032 Flags.setPointer();
9033 Flags.setPointerAddrSpace(
9034 cast<PointerType>(Args[i].Ty)->getAddressSpace());
9036 if (Args[i].IsZExt)
9037 Flags.setZExt();
9038 if (Args[i].IsSExt)
9039 Flags.setSExt();
9040 if (Args[i].IsInReg) {
9041 // If we are using vectorcall calling convention, a structure that is
9042 // passed InReg - is surely an HVA
9043 if (CLI.CallConv == CallingConv::X86_VectorCall &&
9044 isa<StructType>(FinalType)) {
9045 // The first value of a structure is marked
9046 if (0 == Value)
9047 Flags.setHvaStart();
9048 Flags.setHva();
9050 // Set InReg Flag
9051 Flags.setInReg();
9053 if (Args[i].IsSRet)
9054 Flags.setSRet();
9055 if (Args[i].IsSwiftSelf)
9056 Flags.setSwiftSelf();
9057 if (Args[i].IsSwiftError)
9058 Flags.setSwiftError();
9059 if (Args[i].IsByVal)
9060 Flags.setByVal();
9061 if (Args[i].IsInAlloca) {
9062 Flags.setInAlloca();
9063 // Set the byval flag for CCAssignFn callbacks that don't know about
9064 // inalloca. This way we can know how many bytes we should've allocated
9065 // and how many bytes a callee cleanup function will pop. If we port
9066 // inalloca to more targets, we'll have to add custom inalloca handling
9067 // in the various CC lowering callbacks.
9068 Flags.setByVal();
9070 if (Args[i].IsByVal || Args[i].IsInAlloca) {
9071 PointerType *Ty = cast<PointerType>(Args[i].Ty);
9072 Type *ElementTy = Ty->getElementType();
9073 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9074 // For ByVal, alignment should come from FE. BE will guess if this
9075 // info is not there but there are cases it cannot get right.
9076 unsigned FrameAlign;
9077 if (Args[i].Alignment)
9078 FrameAlign = Args[i].Alignment;
9079 else
9080 FrameAlign = getByValTypeAlignment(ElementTy, DL);
9081 Flags.setByValAlign(FrameAlign);
9083 if (Args[i].IsNest)
9084 Flags.setNest();
9085 if (NeedsRegBlock)
9086 Flags.setInConsecutiveRegs();
9087 Flags.setOrigAlign(OriginalAlignment);
9089 MVT PartVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9090 CLI.CallConv, VT);
9091 unsigned NumParts = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9092 CLI.CallConv, VT);
9093 SmallVector<SDValue, 4> Parts(NumParts);
9094 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
9096 if (Args[i].IsSExt)
9097 ExtendKind = ISD::SIGN_EXTEND;
9098 else if (Args[i].IsZExt)
9099 ExtendKind = ISD::ZERO_EXTEND;
9101 // Conservatively only handle 'returned' on non-vectors that can be lowered,
9102 // for now.
9103 if (Args[i].IsReturned && !Op.getValueType().isVector() &&
9104 CanLowerReturn) {
9105 assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
9106 "unexpected use of 'returned'");
9107 // Before passing 'returned' to the target lowering code, ensure that
9108 // either the register MVT and the actual EVT are the same size or that
9109 // the return value and argument are extended in the same way; in these
9110 // cases it's safe to pass the argument register value unchanged as the
9111 // return register value (although it's at the target's option whether
9112 // to do so)
9113 // TODO: allow code generation to take advantage of partially preserved
9114 // registers rather than clobbering the entire register when the
9115 // parameter extension method is not compatible with the return
9116 // extension method
9117 if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
9118 (ExtendKind != ISD::ANY_EXTEND && CLI.RetSExt == Args[i].IsSExt &&
9119 CLI.RetZExt == Args[i].IsZExt))
9120 Flags.setReturned();
9123 getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
9124 CLI.CS.getInstruction(), CLI.CallConv, ExtendKind);
9126 for (unsigned j = 0; j != NumParts; ++j) {
9127 // if it isn't first piece, alignment must be 1
9128 ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
9129 i < CLI.NumFixedArgs,
9130 i, j*Parts[j].getValueType().getStoreSize());
9131 if (NumParts > 1 && j == 0)
9132 MyFlags.Flags.setSplit();
9133 else if (j != 0) {
9134 MyFlags.Flags.setOrigAlign(1);
9135 if (j == NumParts - 1)
9136 MyFlags.Flags.setSplitEnd();
9139 CLI.Outs.push_back(MyFlags);
9140 CLI.OutVals.push_back(Parts[j]);
9143 if (NeedsRegBlock && Value == NumValues - 1)
9144 CLI.Outs[CLI.Outs.size() - 1].Flags.setInConsecutiveRegsLast();
9148 SmallVector<SDValue, 4> InVals;
9149 CLI.Chain = LowerCall(CLI, InVals);
9151 // Update CLI.InVals to use outside of this function.
9152 CLI.InVals = InVals;
9154 // Verify that the target's LowerCall behaved as expected.
9155 assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
9156 "LowerCall didn't return a valid chain!");
9157 assert((!CLI.IsTailCall || InVals.empty()) &&
9158 "LowerCall emitted a return value for a tail call!");
9159 assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
9160 "LowerCall didn't emit the correct number of values!");
9162 // For a tail call, the return value is merely live-out and there aren't
9163 // any nodes in the DAG representing it. Return a special value to
9164 // indicate that a tail call has been emitted and no more Instructions
9165 // should be processed in the current block.
9166 if (CLI.IsTailCall) {
9167 CLI.DAG.setRoot(CLI.Chain);
9168 return std::make_pair(SDValue(), SDValue());
9171 #ifndef NDEBUG
9172 for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
9173 assert(InVals[i].getNode() && "LowerCall emitted a null value!");
9174 assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
9175 "LowerCall emitted a value with the wrong type!");
9177 #endif
9179 SmallVector<SDValue, 4> ReturnValues;
9180 if (!CanLowerReturn) {
9181 // The instruction result is the result of loading from the
9182 // hidden sret parameter.
9183 SmallVector<EVT, 1> PVTs;
9184 Type *PtrRetTy = OrigRetTy->getPointerTo(DL.getAllocaAddrSpace());
9186 ComputeValueVTs(*this, DL, PtrRetTy, PVTs);
9187 assert(PVTs.size() == 1 && "Pointers should fit in one register");
9188 EVT PtrVT = PVTs[0];
9190 unsigned NumValues = RetTys.size();
9191 ReturnValues.resize(NumValues);
9192 SmallVector<SDValue, 4> Chains(NumValues);
9194 // An aggregate return value cannot wrap around the address space, so
9195 // offsets to its parts don't wrap either.
9196 SDNodeFlags Flags;
9197 Flags.setNoUnsignedWrap(true);
9199 for (unsigned i = 0; i < NumValues; ++i) {
9200 SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
9201 CLI.DAG.getConstant(Offsets[i], CLI.DL,
9202 PtrVT), Flags);
9203 SDValue L = CLI.DAG.getLoad(
9204 RetTys[i], CLI.DL, CLI.Chain, Add,
9205 MachinePointerInfo::getFixedStack(CLI.DAG.getMachineFunction(),
9206 DemoteStackIdx, Offsets[i]),
9207 /* Alignment = */ 1);
9208 ReturnValues[i] = L;
9209 Chains[i] = L.getValue(1);
9212 CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
9213 } else {
9214 // Collect the legal value parts into potentially illegal values
9215 // that correspond to the original function's return values.
9216 Optional<ISD::NodeType> AssertOp;
9217 if (CLI.RetSExt)
9218 AssertOp = ISD::AssertSext;
9219 else if (CLI.RetZExt)
9220 AssertOp = ISD::AssertZext;
9221 unsigned CurReg = 0;
9222 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
9223 EVT VT = RetTys[I];
9224 MVT RegisterVT = getRegisterTypeForCallingConv(CLI.RetTy->getContext(),
9225 CLI.CallConv, VT);
9226 unsigned NumRegs = getNumRegistersForCallingConv(CLI.RetTy->getContext(),
9227 CLI.CallConv, VT);
9229 ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
9230 NumRegs, RegisterVT, VT, nullptr,
9231 CLI.CallConv, AssertOp));
9232 CurReg += NumRegs;
9235 // For a function returning void, there is no return value. We can't create
9236 // such a node, so we just return a null return value in that case. In
9237 // that case, nothing will actually look at the value.
9238 if (ReturnValues.empty())
9239 return std::make_pair(SDValue(), CLI.Chain);
9242 SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
9243 CLI.DAG.getVTList(RetTys), ReturnValues);
9244 return std::make_pair(Res, CLI.Chain);
9247 void TargetLowering::LowerOperationWrapper(SDNode *N,
9248 SmallVectorImpl<SDValue> &Results,
9249 SelectionDAG &DAG) const {
9250 if (SDValue Res = LowerOperation(SDValue(N, 0), DAG))
9251 Results.push_back(Res);
9254 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
9255 llvm_unreachable("LowerOperation not implemented for this target!");
9258 void
9259 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
9260 SDValue Op = getNonRegisterValue(V);
9261 assert((Op.getOpcode() != ISD::CopyFromReg ||
9262 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
9263 "Copy from a reg to the same reg!");
9264 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
9266 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9267 // If this is an InlineAsm we have to match the registers required, not the
9268 // notional registers required by the type.
9270 RegsForValue RFV(V->getContext(), TLI, DAG.getDataLayout(), Reg, V->getType(),
9271 None); // This is not an ABI copy.
9272 SDValue Chain = DAG.getEntryNode();
9274 ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
9275 FuncInfo.PreferredExtendType.end())
9276 ? ISD::ANY_EXTEND
9277 : FuncInfo.PreferredExtendType[V];
9278 RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
9279 PendingExports.push_back(Chain);
9282 #include "llvm/CodeGen/SelectionDAGISel.h"
9284 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
9285 /// entry block, return true. This includes arguments used by switches, since
9286 /// the switch may expand into multiple basic blocks.
9287 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
9288 // With FastISel active, we may be splitting blocks, so force creation
9289 // of virtual registers for all non-dead arguments.
9290 if (FastISel)
9291 return A->use_empty();
9293 const BasicBlock &Entry = A->getParent()->front();
9294 for (const User *U : A->users())
9295 if (cast<Instruction>(U)->getParent() != &Entry || isa<SwitchInst>(U))
9296 return false; // Use not in entry block.
9298 return true;
9301 using ArgCopyElisionMapTy =
9302 DenseMap<const Argument *,
9303 std::pair<const AllocaInst *, const StoreInst *>>;
9305 /// Scan the entry block of the function in FuncInfo for arguments that look
9306 /// like copies into a local alloca. Record any copied arguments in
9307 /// ArgCopyElisionCandidates.
9308 static void
9309 findArgumentCopyElisionCandidates(const DataLayout &DL,
9310 FunctionLoweringInfo *FuncInfo,
9311 ArgCopyElisionMapTy &ArgCopyElisionCandidates) {
9312 // Record the state of every static alloca used in the entry block. Argument
9313 // allocas are all used in the entry block, so we need approximately as many
9314 // entries as we have arguments.
9315 enum StaticAllocaInfo { Unknown, Clobbered, Elidable };
9316 SmallDenseMap<const AllocaInst *, StaticAllocaInfo, 8> StaticAllocas;
9317 unsigned NumArgs = FuncInfo->Fn->arg_size();
9318 StaticAllocas.reserve(NumArgs * 2);
9320 auto GetInfoIfStaticAlloca = [&](const Value *V) -> StaticAllocaInfo * {
9321 if (!V)
9322 return nullptr;
9323 V = V->stripPointerCasts();
9324 const auto *AI = dyn_cast<AllocaInst>(V);
9325 if (!AI || !AI->isStaticAlloca() || !FuncInfo->StaticAllocaMap.count(AI))
9326 return nullptr;
9327 auto Iter = StaticAllocas.insert({AI, Unknown});
9328 return &Iter.first->second;
9331 // Look for stores of arguments to static allocas. Look through bitcasts and
9332 // GEPs to handle type coercions, as long as the alloca is fully initialized
9333 // by the store. Any non-store use of an alloca escapes it and any subsequent
9334 // unanalyzed store might write it.
9335 // FIXME: Handle structs initialized with multiple stores.
9336 for (const Instruction &I : FuncInfo->Fn->getEntryBlock()) {
9337 // Look for stores, and handle non-store uses conservatively.
9338 const auto *SI = dyn_cast<StoreInst>(&I);
9339 if (!SI) {
9340 // We will look through cast uses, so ignore them completely.
9341 if (I.isCast())
9342 continue;
9343 // Ignore debug info intrinsics, they don't escape or store to allocas.
9344 if (isa<DbgInfoIntrinsic>(I))
9345 continue;
9346 // This is an unknown instruction. Assume it escapes or writes to all
9347 // static alloca operands.
9348 for (const Use &U : I.operands()) {
9349 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(U))
9350 *Info = StaticAllocaInfo::Clobbered;
9352 continue;
9355 // If the stored value is a static alloca, mark it as escaped.
9356 if (StaticAllocaInfo *Info = GetInfoIfStaticAlloca(SI->getValueOperand()))
9357 *Info = StaticAllocaInfo::Clobbered;
9359 // Check if the destination is a static alloca.
9360 const Value *Dst = SI->getPointerOperand()->stripPointerCasts();
9361 StaticAllocaInfo *Info = GetInfoIfStaticAlloca(Dst);
9362 if (!Info)
9363 continue;
9364 const AllocaInst *AI = cast<AllocaInst>(Dst);
9366 // Skip allocas that have been initialized or clobbered.
9367 if (*Info != StaticAllocaInfo::Unknown)
9368 continue;
9370 // Check if the stored value is an argument, and that this store fully
9371 // initializes the alloca. Don't elide copies from the same argument twice.
9372 const Value *Val = SI->getValueOperand()->stripPointerCasts();
9373 const auto *Arg = dyn_cast<Argument>(Val);
9374 if (!Arg || Arg->hasInAllocaAttr() || Arg->hasByValAttr() ||
9375 Arg->getType()->isEmptyTy() ||
9376 DL.getTypeStoreSize(Arg->getType()) !=
9377 DL.getTypeAllocSize(AI->getAllocatedType()) ||
9378 ArgCopyElisionCandidates.count(Arg)) {
9379 *Info = StaticAllocaInfo::Clobbered;
9380 continue;
9383 LLVM_DEBUG(dbgs() << "Found argument copy elision candidate: " << *AI
9384 << '\n');
9386 // Mark this alloca and store for argument copy elision.
9387 *Info = StaticAllocaInfo::Elidable;
9388 ArgCopyElisionCandidates.insert({Arg, {AI, SI}});
9390 // Stop scanning if we've seen all arguments. This will happen early in -O0
9391 // builds, which is useful, because -O0 builds have large entry blocks and
9392 // many allocas.
9393 if (ArgCopyElisionCandidates.size() == NumArgs)
9394 break;
9398 /// Try to elide argument copies from memory into a local alloca. Succeeds if
9399 /// ArgVal is a load from a suitable fixed stack object.
9400 static void tryToElideArgumentCopy(
9401 FunctionLoweringInfo *FuncInfo, SmallVectorImpl<SDValue> &Chains,
9402 DenseMap<int, int> &ArgCopyElisionFrameIndexMap,
9403 SmallPtrSetImpl<const Instruction *> &ElidedArgCopyInstrs,
9404 ArgCopyElisionMapTy &ArgCopyElisionCandidates, const Argument &Arg,
9405 SDValue ArgVal, bool &ArgHasUses) {
9406 // Check if this is a load from a fixed stack object.
9407 auto *LNode = dyn_cast<LoadSDNode>(ArgVal);
9408 if (!LNode)
9409 return;
9410 auto *FINode = dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode());
9411 if (!FINode)
9412 return;
9414 // Check that the fixed stack object is the right size and alignment.
9415 // Look at the alignment that the user wrote on the alloca instead of looking
9416 // at the stack object.
9417 auto ArgCopyIter = ArgCopyElisionCandidates.find(&Arg);
9418 assert(ArgCopyIter != ArgCopyElisionCandidates.end());
9419 const AllocaInst *AI = ArgCopyIter->second.first;
9420 int FixedIndex = FINode->getIndex();
9421 int &AllocaIndex = FuncInfo->StaticAllocaMap[AI];
9422 int OldIndex = AllocaIndex;
9423 MachineFrameInfo &MFI = FuncInfo->MF->getFrameInfo();
9424 if (MFI.getObjectSize(FixedIndex) != MFI.getObjectSize(OldIndex)) {
9425 LLVM_DEBUG(
9426 dbgs() << " argument copy elision failed due to bad fixed stack "
9427 "object size\n");
9428 return;
9430 unsigned RequiredAlignment = AI->getAlignment();
9431 if (!RequiredAlignment) {
9432 RequiredAlignment = FuncInfo->MF->getDataLayout().getABITypeAlignment(
9433 AI->getAllocatedType());
9435 if (MFI.getObjectAlignment(FixedIndex) < RequiredAlignment) {
9436 LLVM_DEBUG(dbgs() << " argument copy elision failed: alignment of alloca "
9437 "greater than stack argument alignment ("
9438 << RequiredAlignment << " vs "
9439 << MFI.getObjectAlignment(FixedIndex) << ")\n");
9440 return;
9443 // Perform the elision. Delete the old stack object and replace its only use
9444 // in the variable info map. Mark the stack object as mutable.
9445 LLVM_DEBUG({
9446 dbgs() << "Eliding argument copy from " << Arg << " to " << *AI << '\n'
9447 << " Replacing frame index " << OldIndex << " with " << FixedIndex
9448 << '\n';
9450 MFI.RemoveStackObject(OldIndex);
9451 MFI.setIsImmutableObjectIndex(FixedIndex, false);
9452 AllocaIndex = FixedIndex;
9453 ArgCopyElisionFrameIndexMap.insert({OldIndex, FixedIndex});
9454 Chains.push_back(ArgVal.getValue(1));
9456 // Avoid emitting code for the store implementing the copy.
9457 const StoreInst *SI = ArgCopyIter->second.second;
9458 ElidedArgCopyInstrs.insert(SI);
9460 // Check for uses of the argument again so that we can avoid exporting ArgVal
9461 // if it is't used by anything other than the store.
9462 for (const Value *U : Arg.users()) {
9463 if (U != SI) {
9464 ArgHasUses = true;
9465 break;
9470 void SelectionDAGISel::LowerArguments(const Function &F) {
9471 SelectionDAG &DAG = SDB->DAG;
9472 SDLoc dl = SDB->getCurSDLoc();
9473 const DataLayout &DL = DAG.getDataLayout();
9474 SmallVector<ISD::InputArg, 16> Ins;
9476 if (!FuncInfo->CanLowerReturn) {
9477 // Put in an sret pointer parameter before all the other parameters.
9478 SmallVector<EVT, 1> ValueVTs;
9479 ComputeValueVTs(*TLI, DAG.getDataLayout(),
9480 F.getReturnType()->getPointerTo(
9481 DAG.getDataLayout().getAllocaAddrSpace()),
9482 ValueVTs);
9484 // NOTE: Assuming that a pointer will never break down to more than one VT
9485 // or one register.
9486 ISD::ArgFlagsTy Flags;
9487 Flags.setSRet();
9488 MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
9489 ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true,
9490 ISD::InputArg::NoArgIndex, 0);
9491 Ins.push_back(RetArg);
9494 // Look for stores of arguments to static allocas. Mark such arguments with a
9495 // flag to ask the target to give us the memory location of that argument if
9496 // available.
9497 ArgCopyElisionMapTy ArgCopyElisionCandidates;
9498 findArgumentCopyElisionCandidates(DL, FuncInfo, ArgCopyElisionCandidates);
9500 // Set up the incoming argument description vector.
9501 for (const Argument &Arg : F.args()) {
9502 unsigned ArgNo = Arg.getArgNo();
9503 SmallVector<EVT, 4> ValueVTs;
9504 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9505 bool isArgValueUsed = !Arg.use_empty();
9506 unsigned PartBase = 0;
9507 Type *FinalType = Arg.getType();
9508 if (Arg.hasAttribute(Attribute::ByVal))
9509 FinalType = cast<PointerType>(FinalType)->getElementType();
9510 bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
9511 FinalType, F.getCallingConv(), F.isVarArg());
9512 for (unsigned Value = 0, NumValues = ValueVTs.size();
9513 Value != NumValues; ++Value) {
9514 EVT VT = ValueVTs[Value];
9515 Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
9516 ISD::ArgFlagsTy Flags;
9518 // Certain targets (such as MIPS), may have a different ABI alignment
9519 // for a type depending on the context. Give the target a chance to
9520 // specify the alignment it wants.
9521 unsigned OriginalAlignment =
9522 TLI->getABIAlignmentForCallingConv(ArgTy, DL);
9524 if (Arg.getType()->isPointerTy()) {
9525 Flags.setPointer();
9526 Flags.setPointerAddrSpace(
9527 cast<PointerType>(Arg.getType())->getAddressSpace());
9529 if (Arg.hasAttribute(Attribute::ZExt))
9530 Flags.setZExt();
9531 if (Arg.hasAttribute(Attribute::SExt))
9532 Flags.setSExt();
9533 if (Arg.hasAttribute(Attribute::InReg)) {
9534 // If we are using vectorcall calling convention, a structure that is
9535 // passed InReg - is surely an HVA
9536 if (F.getCallingConv() == CallingConv::X86_VectorCall &&
9537 isa<StructType>(Arg.getType())) {
9538 // The first value of a structure is marked
9539 if (0 == Value)
9540 Flags.setHvaStart();
9541 Flags.setHva();
9543 // Set InReg Flag
9544 Flags.setInReg();
9546 if (Arg.hasAttribute(Attribute::StructRet))
9547 Flags.setSRet();
9548 if (Arg.hasAttribute(Attribute::SwiftSelf))
9549 Flags.setSwiftSelf();
9550 if (Arg.hasAttribute(Attribute::SwiftError))
9551 Flags.setSwiftError();
9552 if (Arg.hasAttribute(Attribute::ByVal))
9553 Flags.setByVal();
9554 if (Arg.hasAttribute(Attribute::InAlloca)) {
9555 Flags.setInAlloca();
9556 // Set the byval flag for CCAssignFn callbacks that don't know about
9557 // inalloca. This way we can know how many bytes we should've allocated
9558 // and how many bytes a callee cleanup function will pop. If we port
9559 // inalloca to more targets, we'll have to add custom inalloca handling
9560 // in the various CC lowering callbacks.
9561 Flags.setByVal();
9563 if (F.getCallingConv() == CallingConv::X86_INTR) {
9564 // IA Interrupt passes frame (1st parameter) by value in the stack.
9565 if (ArgNo == 0)
9566 Flags.setByVal();
9568 if (Flags.isByVal() || Flags.isInAlloca()) {
9569 PointerType *Ty = cast<PointerType>(Arg.getType());
9570 Type *ElementTy = Ty->getElementType();
9571 Flags.setByValSize(DL.getTypeAllocSize(ElementTy));
9572 // For ByVal, alignment should be passed from FE. BE will guess if
9573 // this info is not there but there are cases it cannot get right.
9574 unsigned FrameAlign;
9575 if (Arg.getParamAlignment())
9576 FrameAlign = Arg.getParamAlignment();
9577 else
9578 FrameAlign = TLI->getByValTypeAlignment(ElementTy, DL);
9579 Flags.setByValAlign(FrameAlign);
9581 if (Arg.hasAttribute(Attribute::Nest))
9582 Flags.setNest();
9583 if (NeedsRegBlock)
9584 Flags.setInConsecutiveRegs();
9585 Flags.setOrigAlign(OriginalAlignment);
9586 if (ArgCopyElisionCandidates.count(&Arg))
9587 Flags.setCopyElisionCandidate();
9589 MVT RegisterVT = TLI->getRegisterTypeForCallingConv(
9590 *CurDAG->getContext(), F.getCallingConv(), VT);
9591 unsigned NumRegs = TLI->getNumRegistersForCallingConv(
9592 *CurDAG->getContext(), F.getCallingConv(), VT);
9593 for (unsigned i = 0; i != NumRegs; ++i) {
9594 ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
9595 ArgNo, PartBase+i*RegisterVT.getStoreSize());
9596 if (NumRegs > 1 && i == 0)
9597 MyFlags.Flags.setSplit();
9598 // if it isn't first piece, alignment must be 1
9599 else if (i > 0) {
9600 MyFlags.Flags.setOrigAlign(1);
9601 if (i == NumRegs - 1)
9602 MyFlags.Flags.setSplitEnd();
9604 Ins.push_back(MyFlags);
9606 if (NeedsRegBlock && Value == NumValues - 1)
9607 Ins[Ins.size() - 1].Flags.setInConsecutiveRegsLast();
9608 PartBase += VT.getStoreSize();
9612 // Call the target to set up the argument values.
9613 SmallVector<SDValue, 8> InVals;
9614 SDValue NewRoot = TLI->LowerFormalArguments(
9615 DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
9617 // Verify that the target's LowerFormalArguments behaved as expected.
9618 assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
9619 "LowerFormalArguments didn't return a valid chain!");
9620 assert(InVals.size() == Ins.size() &&
9621 "LowerFormalArguments didn't emit the correct number of values!");
9622 LLVM_DEBUG({
9623 for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
9624 assert(InVals[i].getNode() &&
9625 "LowerFormalArguments emitted a null value!");
9626 assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
9627 "LowerFormalArguments emitted a value with the wrong type!");
9631 // Update the DAG with the new chain value resulting from argument lowering.
9632 DAG.setRoot(NewRoot);
9634 // Set up the argument values.
9635 unsigned i = 0;
9636 if (!FuncInfo->CanLowerReturn) {
9637 // Create a virtual register for the sret pointer, and put in a copy
9638 // from the sret argument into it.
9639 SmallVector<EVT, 1> ValueVTs;
9640 ComputeValueVTs(*TLI, DAG.getDataLayout(),
9641 F.getReturnType()->getPointerTo(
9642 DAG.getDataLayout().getAllocaAddrSpace()),
9643 ValueVTs);
9644 MVT VT = ValueVTs[0].getSimpleVT();
9645 MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
9646 Optional<ISD::NodeType> AssertOp = None;
9647 SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1, RegVT, VT,
9648 nullptr, F.getCallingConv(), AssertOp);
9650 MachineFunction& MF = SDB->DAG.getMachineFunction();
9651 MachineRegisterInfo& RegInfo = MF.getRegInfo();
9652 unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
9653 FuncInfo->DemoteRegister = SRetReg;
9654 NewRoot =
9655 SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
9656 DAG.setRoot(NewRoot);
9658 // i indexes lowered arguments. Bump it past the hidden sret argument.
9659 ++i;
9662 SmallVector<SDValue, 4> Chains;
9663 DenseMap<int, int> ArgCopyElisionFrameIndexMap;
9664 for (const Argument &Arg : F.args()) {
9665 SmallVector<SDValue, 4> ArgValues;
9666 SmallVector<EVT, 4> ValueVTs;
9667 ComputeValueVTs(*TLI, DAG.getDataLayout(), Arg.getType(), ValueVTs);
9668 unsigned NumValues = ValueVTs.size();
9669 if (NumValues == 0)
9670 continue;
9672 bool ArgHasUses = !Arg.use_empty();
9674 // Elide the copying store if the target loaded this argument from a
9675 // suitable fixed stack object.
9676 if (Ins[i].Flags.isCopyElisionCandidate()) {
9677 tryToElideArgumentCopy(FuncInfo, Chains, ArgCopyElisionFrameIndexMap,
9678 ElidedArgCopyInstrs, ArgCopyElisionCandidates, Arg,
9679 InVals[i], ArgHasUses);
9682 // If this argument is unused then remember its value. It is used to generate
9683 // debugging information.
9684 bool isSwiftErrorArg =
9685 TLI->supportSwiftError() &&
9686 Arg.hasAttribute(Attribute::SwiftError);
9687 if (!ArgHasUses && !isSwiftErrorArg) {
9688 SDB->setUnusedArgValue(&Arg, InVals[i]);
9690 // Also remember any frame index for use in FastISel.
9691 if (FrameIndexSDNode *FI =
9692 dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
9693 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9696 for (unsigned Val = 0; Val != NumValues; ++Val) {
9697 EVT VT = ValueVTs[Val];
9698 MVT PartVT = TLI->getRegisterTypeForCallingConv(*CurDAG->getContext(),
9699 F.getCallingConv(), VT);
9700 unsigned NumParts = TLI->getNumRegistersForCallingConv(
9701 *CurDAG->getContext(), F.getCallingConv(), VT);
9703 // Even an apparant 'unused' swifterror argument needs to be returned. So
9704 // we do generate a copy for it that can be used on return from the
9705 // function.
9706 if (ArgHasUses || isSwiftErrorArg) {
9707 Optional<ISD::NodeType> AssertOp;
9708 if (Arg.hasAttribute(Attribute::SExt))
9709 AssertOp = ISD::AssertSext;
9710 else if (Arg.hasAttribute(Attribute::ZExt))
9711 AssertOp = ISD::AssertZext;
9713 ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i], NumParts,
9714 PartVT, VT, nullptr,
9715 F.getCallingConv(), AssertOp));
9718 i += NumParts;
9721 // We don't need to do anything else for unused arguments.
9722 if (ArgValues.empty())
9723 continue;
9725 // Note down frame index.
9726 if (FrameIndexSDNode *FI =
9727 dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
9728 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9730 SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
9731 SDB->getCurSDLoc());
9733 SDB->setValue(&Arg, Res);
9734 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
9735 // We want to associate the argument with the frame index, among
9736 // involved operands, that correspond to the lowest address. The
9737 // getCopyFromParts function, called earlier, is swapping the order of
9738 // the operands to BUILD_PAIR depending on endianness. The result of
9739 // that swapping is that the least significant bits of the argument will
9740 // be in the first operand of the BUILD_PAIR node, and the most
9741 // significant bits will be in the second operand.
9742 unsigned LowAddressOp = DAG.getDataLayout().isBigEndian() ? 1 : 0;
9743 if (LoadSDNode *LNode =
9744 dyn_cast<LoadSDNode>(Res.getOperand(LowAddressOp).getNode()))
9745 if (FrameIndexSDNode *FI =
9746 dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
9747 FuncInfo->setArgumentFrameIndex(&Arg, FI->getIndex());
9750 // Update the SwiftErrorVRegDefMap.
9751 if (Res.getOpcode() == ISD::CopyFromReg && isSwiftErrorArg) {
9752 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9753 if (TargetRegisterInfo::isVirtualRegister(Reg))
9754 FuncInfo->setCurrentSwiftErrorVReg(FuncInfo->MBB,
9755 FuncInfo->SwiftErrorArg, Reg);
9758 // If this argument is live outside of the entry block, insert a copy from
9759 // wherever we got it to the vreg that other BB's will reference it as.
9760 if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
9761 // If we can, though, try to skip creating an unnecessary vreg.
9762 // FIXME: This isn't very clean... it would be nice to make this more
9763 // general. It's also subtly incompatible with the hacks FastISel
9764 // uses with vregs.
9765 unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
9766 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
9767 FuncInfo->ValueMap[&Arg] = Reg;
9768 continue;
9771 if (!isOnlyUsedInEntryBlock(&Arg, TM.Options.EnableFastISel)) {
9772 FuncInfo->InitializeRegForValue(&Arg);
9773 SDB->CopyToExportRegsIfNeeded(&Arg);
9777 if (!Chains.empty()) {
9778 Chains.push_back(NewRoot);
9779 NewRoot = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
9782 DAG.setRoot(NewRoot);
9784 assert(i == InVals.size() && "Argument register count mismatch!");
9786 // If any argument copy elisions occurred and we have debug info, update the
9787 // stale frame indices used in the dbg.declare variable info table.
9788 MachineFunction::VariableDbgInfoMapTy &DbgDeclareInfo = MF->getVariableDbgInfo();
9789 if (!DbgDeclareInfo.empty() && !ArgCopyElisionFrameIndexMap.empty()) {
9790 for (MachineFunction::VariableDbgInfo &VI : DbgDeclareInfo) {
9791 auto I = ArgCopyElisionFrameIndexMap.find(VI.Slot);
9792 if (I != ArgCopyElisionFrameIndexMap.end())
9793 VI.Slot = I->second;
9797 // Finally, if the target has anything special to do, allow it to do so.
9798 EmitFunctionEntryCode();
9801 /// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
9802 /// ensure constants are generated when needed. Remember the virtual registers
9803 /// that need to be added to the Machine PHI nodes as input. We cannot just
9804 /// directly add them, because expansion might result in multiple MBB's for one
9805 /// BB. As such, the start of the BB might correspond to a different MBB than
9806 /// the end.
9807 void
9808 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
9809 const Instruction *TI = LLVMBB->getTerminator();
9811 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
9813 // Check PHI nodes in successors that expect a value to be available from this
9814 // block.
9815 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
9816 const BasicBlock *SuccBB = TI->getSuccessor(succ);
9817 if (!isa<PHINode>(SuccBB->begin())) continue;
9818 MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
9820 // If this terminator has multiple identical successors (common for
9821 // switches), only handle each succ once.
9822 if (!SuccsHandled.insert(SuccMBB).second)
9823 continue;
9825 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
9827 // At this point we know that there is a 1-1 correspondence between LLVM PHI
9828 // nodes and Machine PHI nodes, but the incoming operands have not been
9829 // emitted yet.
9830 for (const PHINode &PN : SuccBB->phis()) {
9831 // Ignore dead phi's.
9832 if (PN.use_empty())
9833 continue;
9835 // Skip empty types
9836 if (PN.getType()->isEmptyTy())
9837 continue;
9839 unsigned Reg;
9840 const Value *PHIOp = PN.getIncomingValueForBlock(LLVMBB);
9842 if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
9843 unsigned &RegOut = ConstantsOut[C];
9844 if (RegOut == 0) {
9845 RegOut = FuncInfo.CreateRegs(C->getType());
9846 CopyValueToVirtualRegister(C, RegOut);
9848 Reg = RegOut;
9849 } else {
9850 DenseMap<const Value *, unsigned>::iterator I =
9851 FuncInfo.ValueMap.find(PHIOp);
9852 if (I != FuncInfo.ValueMap.end())
9853 Reg = I->second;
9854 else {
9855 assert(isa<AllocaInst>(PHIOp) &&
9856 FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
9857 "Didn't codegen value into a register!??");
9858 Reg = FuncInfo.CreateRegs(PHIOp->getType());
9859 CopyValueToVirtualRegister(PHIOp, Reg);
9863 // Remember that this register needs to added to the machine PHI node as
9864 // the input for this MBB.
9865 SmallVector<EVT, 4> ValueVTs;
9866 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9867 ComputeValueVTs(TLI, DAG.getDataLayout(), PN.getType(), ValueVTs);
9868 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
9869 EVT VT = ValueVTs[vti];
9870 unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
9871 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
9872 FuncInfo.PHINodesToUpdate.push_back(
9873 std::make_pair(&*MBBI++, Reg + i));
9874 Reg += NumRegisters;
9879 ConstantsOut.clear();
9882 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
9883 /// is 0.
9884 MachineBasicBlock *
9885 SelectionDAGBuilder::StackProtectorDescriptor::
9886 AddSuccessorMBB(const BasicBlock *BB,
9887 MachineBasicBlock *ParentMBB,
9888 bool IsLikely,
9889 MachineBasicBlock *SuccMBB) {
9890 // If SuccBB has not been created yet, create it.
9891 if (!SuccMBB) {
9892 MachineFunction *MF = ParentMBB->getParent();
9893 MachineFunction::iterator BBI(ParentMBB);
9894 SuccMBB = MF->CreateMachineBasicBlock(BB);
9895 MF->insert(++BBI, SuccMBB);
9897 // Add it as a successor of ParentMBB.
9898 ParentMBB->addSuccessor(
9899 SuccMBB, BranchProbabilityInfo::getBranchProbStackProtector(IsLikely));
9900 return SuccMBB;
9903 MachineBasicBlock *SelectionDAGBuilder::NextBlock(MachineBasicBlock *MBB) {
9904 MachineFunction::iterator I(MBB);
9905 if (++I == FuncInfo.MF->end())
9906 return nullptr;
9907 return &*I;
9910 /// During lowering new call nodes can be created (such as memset, etc.).
9911 /// Those will become new roots of the current DAG, but complications arise
9912 /// when they are tail calls. In such cases, the call lowering will update
9913 /// the root, but the builder still needs to know that a tail call has been
9914 /// lowered in order to avoid generating an additional return.
9915 void SelectionDAGBuilder::updateDAGForMaybeTailCall(SDValue MaybeTC) {
9916 // If the node is null, we do have a tail call.
9917 if (MaybeTC.getNode() != nullptr)
9918 DAG.setRoot(MaybeTC);
9919 else
9920 HasTailCall = true;
9923 uint64_t
9924 SelectionDAGBuilder::getJumpTableRange(const CaseClusterVector &Clusters,
9925 unsigned First, unsigned Last) const {
9926 assert(Last >= First);
9927 const APInt &LowCase = Clusters[First].Low->getValue();
9928 const APInt &HighCase = Clusters[Last].High->getValue();
9929 assert(LowCase.getBitWidth() == HighCase.getBitWidth());
9931 // FIXME: A range of consecutive cases has 100% density, but only requires one
9932 // comparison to lower. We should discriminate against such consecutive ranges
9933 // in jump tables.
9935 return (HighCase - LowCase).getLimitedValue((UINT64_MAX - 1) / 100) + 1;
9938 uint64_t SelectionDAGBuilder::getJumpTableNumCases(
9939 const SmallVectorImpl<unsigned> &TotalCases, unsigned First,
9940 unsigned Last) const {
9941 assert(Last >= First);
9942 assert(TotalCases[Last] >= TotalCases[First]);
9943 uint64_t NumCases =
9944 TotalCases[Last] - (First == 0 ? 0 : TotalCases[First - 1]);
9945 return NumCases;
9948 bool SelectionDAGBuilder::buildJumpTable(const CaseClusterVector &Clusters,
9949 unsigned First, unsigned Last,
9950 const SwitchInst *SI,
9951 MachineBasicBlock *DefaultMBB,
9952 CaseCluster &JTCluster) {
9953 assert(First <= Last);
9955 auto Prob = BranchProbability::getZero();
9956 unsigned NumCmps = 0;
9957 std::vector<MachineBasicBlock*> Table;
9958 DenseMap<MachineBasicBlock*, BranchProbability> JTProbs;
9960 // Initialize probabilities in JTProbs.
9961 for (unsigned I = First; I <= Last; ++I)
9962 JTProbs[Clusters[I].MBB] = BranchProbability::getZero();
9964 for (unsigned I = First; I <= Last; ++I) {
9965 assert(Clusters[I].Kind == CC_Range);
9966 Prob += Clusters[I].Prob;
9967 const APInt &Low = Clusters[I].Low->getValue();
9968 const APInt &High = Clusters[I].High->getValue();
9969 NumCmps += (Low == High) ? 1 : 2;
9970 if (I != First) {
9971 // Fill the gap between this and the previous cluster.
9972 const APInt &PreviousHigh = Clusters[I - 1].High->getValue();
9973 assert(PreviousHigh.slt(Low));
9974 uint64_t Gap = (Low - PreviousHigh).getLimitedValue() - 1;
9975 for (uint64_t J = 0; J < Gap; J++)
9976 Table.push_back(DefaultMBB);
9978 uint64_t ClusterSize = (High - Low).getLimitedValue() + 1;
9979 for (uint64_t J = 0; J < ClusterSize; ++J)
9980 Table.push_back(Clusters[I].MBB);
9981 JTProbs[Clusters[I].MBB] += Clusters[I].Prob;
9984 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
9985 unsigned NumDests = JTProbs.size();
9986 if (TLI.isSuitableForBitTests(
9987 NumDests, NumCmps, Clusters[First].Low->getValue(),
9988 Clusters[Last].High->getValue(), DAG.getDataLayout())) {
9989 // Clusters[First..Last] should be lowered as bit tests instead.
9990 return false;
9993 // Create the MBB that will load from and jump through the table.
9994 // Note: We create it here, but it's not inserted into the function yet.
9995 MachineFunction *CurMF = FuncInfo.MF;
9996 MachineBasicBlock *JumpTableMBB =
9997 CurMF->CreateMachineBasicBlock(SI->getParent());
9999 // Add successors. Note: use table order for determinism.
10000 SmallPtrSet<MachineBasicBlock *, 8> Done;
10001 for (MachineBasicBlock *Succ : Table) {
10002 if (Done.count(Succ))
10003 continue;
10004 addSuccessorWithProb(JumpTableMBB, Succ, JTProbs[Succ]);
10005 Done.insert(Succ);
10007 JumpTableMBB->normalizeSuccProbs();
10009 unsigned JTI = CurMF->getOrCreateJumpTableInfo(TLI.getJumpTableEncoding())
10010 ->createJumpTableIndex(Table);
10012 // Set up the jump table info.
10013 JumpTable JT(-1U, JTI, JumpTableMBB, nullptr);
10014 JumpTableHeader JTH(Clusters[First].Low->getValue(),
10015 Clusters[Last].High->getValue(), SI->getCondition(),
10016 nullptr, false);
10017 JTCases.emplace_back(std::move(JTH), std::move(JT));
10019 JTCluster = CaseCluster::jumpTable(Clusters[First].Low, Clusters[Last].High,
10020 JTCases.size() - 1, Prob);
10021 return true;
10024 void SelectionDAGBuilder::findJumpTables(CaseClusterVector &Clusters,
10025 const SwitchInst *SI,
10026 MachineBasicBlock *DefaultMBB) {
10027 #ifndef NDEBUG
10028 // Clusters must be non-empty, sorted, and only contain Range clusters.
10029 assert(!Clusters.empty());
10030 for (CaseCluster &C : Clusters)
10031 assert(C.Kind == CC_Range);
10032 for (unsigned i = 1, e = Clusters.size(); i < e; ++i)
10033 assert(Clusters[i - 1].High->getValue().slt(Clusters[i].Low->getValue()));
10034 #endif
10036 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10037 if (!TLI.areJTsAllowed(SI->getParent()->getParent()))
10038 return;
10040 const int64_t N = Clusters.size();
10041 const unsigned MinJumpTableEntries = TLI.getMinimumJumpTableEntries();
10042 const unsigned SmallNumberOfEntries = MinJumpTableEntries / 2;
10044 if (N < 2 || N < MinJumpTableEntries)
10045 return;
10047 // TotalCases[i]: Total nbr of cases in Clusters[0..i].
10048 SmallVector<unsigned, 8> TotalCases(N);
10049 for (unsigned i = 0; i < N; ++i) {
10050 const APInt &Hi = Clusters[i].High->getValue();
10051 const APInt &Lo = Clusters[i].Low->getValue();
10052 TotalCases[i] = (Hi - Lo).getLimitedValue() + 1;
10053 if (i != 0)
10054 TotalCases[i] += TotalCases[i - 1];
10057 // Cheap case: the whole range may be suitable for jump table.
10058 uint64_t Range = getJumpTableRange(Clusters,0, N - 1);
10059 uint64_t NumCases = getJumpTableNumCases(TotalCases, 0, N - 1);
10060 assert(NumCases < UINT64_MAX / 100);
10061 assert(Range >= NumCases);
10062 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
10063 CaseCluster JTCluster;
10064 if (buildJumpTable(Clusters, 0, N - 1, SI, DefaultMBB, JTCluster)) {
10065 Clusters[0] = JTCluster;
10066 Clusters.resize(1);
10067 return;
10071 // The algorithm below is not suitable for -O0.
10072 if (TM.getOptLevel() == CodeGenOpt::None)
10073 return;
10075 // Split Clusters into minimum number of dense partitions. The algorithm uses
10076 // the same idea as Kannan & Proebsting "Correction to 'Producing Good Code
10077 // for the Case Statement'" (1994), but builds the MinPartitions array in
10078 // reverse order to make it easier to reconstruct the partitions in ascending
10079 // order. In the choice between two optimal partitionings, it picks the one
10080 // which yields more jump tables.
10082 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10083 SmallVector<unsigned, 8> MinPartitions(N);
10084 // LastElement[i] is the last element of the partition starting at i.
10085 SmallVector<unsigned, 8> LastElement(N);
10086 // PartitionsScore[i] is used to break ties when choosing between two
10087 // partitionings resulting in the same number of partitions.
10088 SmallVector<unsigned, 8> PartitionsScore(N);
10089 // For PartitionsScore, a small number of comparisons is considered as good as
10090 // a jump table and a single comparison is considered better than a jump
10091 // table.
10092 enum PartitionScores : unsigned {
10093 NoTable = 0,
10094 Table = 1,
10095 FewCases = 1,
10096 SingleCase = 2
10099 // Base case: There is only one way to partition Clusters[N-1].
10100 MinPartitions[N - 1] = 1;
10101 LastElement[N - 1] = N - 1;
10102 PartitionsScore[N - 1] = PartitionScores::SingleCase;
10104 // Note: loop indexes are signed to avoid underflow.
10105 for (int64_t i = N - 2; i >= 0; i--) {
10106 // Find optimal partitioning of Clusters[i..N-1].
10107 // Baseline: Put Clusters[i] into a partition on its own.
10108 MinPartitions[i] = MinPartitions[i + 1] + 1;
10109 LastElement[i] = i;
10110 PartitionsScore[i] = PartitionsScore[i + 1] + PartitionScores::SingleCase;
10112 // Search for a solution that results in fewer partitions.
10113 for (int64_t j = N - 1; j > i; j--) {
10114 // Try building a partition from Clusters[i..j].
10115 uint64_t Range = getJumpTableRange(Clusters, i, j);
10116 uint64_t NumCases = getJumpTableNumCases(TotalCases, i, j);
10117 assert(NumCases < UINT64_MAX / 100);
10118 assert(Range >= NumCases);
10119 if (TLI.isSuitableForJumpTable(SI, NumCases, Range)) {
10120 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10121 unsigned Score = j == N - 1 ? 0 : PartitionsScore[j + 1];
10122 int64_t NumEntries = j - i + 1;
10124 if (NumEntries == 1)
10125 Score += PartitionScores::SingleCase;
10126 else if (NumEntries <= SmallNumberOfEntries)
10127 Score += PartitionScores::FewCases;
10128 else if (NumEntries >= MinJumpTableEntries)
10129 Score += PartitionScores::Table;
10131 // If this leads to fewer partitions, or to the same number of
10132 // partitions with better score, it is a better partitioning.
10133 if (NumPartitions < MinPartitions[i] ||
10134 (NumPartitions == MinPartitions[i] && Score > PartitionsScore[i])) {
10135 MinPartitions[i] = NumPartitions;
10136 LastElement[i] = j;
10137 PartitionsScore[i] = Score;
10143 // Iterate over the partitions, replacing some with jump tables in-place.
10144 unsigned DstIndex = 0;
10145 for (unsigned First = 0, Last; First < N; First = Last + 1) {
10146 Last = LastElement[First];
10147 assert(Last >= First);
10148 assert(DstIndex <= First);
10149 unsigned NumClusters = Last - First + 1;
10151 CaseCluster JTCluster;
10152 if (NumClusters >= MinJumpTableEntries &&
10153 buildJumpTable(Clusters, First, Last, SI, DefaultMBB, JTCluster)) {
10154 Clusters[DstIndex++] = JTCluster;
10155 } else {
10156 for (unsigned I = First; I <= Last; ++I)
10157 std::memmove(&Clusters[DstIndex++], &Clusters[I], sizeof(Clusters[I]));
10160 Clusters.resize(DstIndex);
10163 bool SelectionDAGBuilder::buildBitTests(CaseClusterVector &Clusters,
10164 unsigned First, unsigned Last,
10165 const SwitchInst *SI,
10166 CaseCluster &BTCluster) {
10167 assert(First <= Last);
10168 if (First == Last)
10169 return false;
10171 BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10172 unsigned NumCmps = 0;
10173 for (int64_t I = First; I <= Last; ++I) {
10174 assert(Clusters[I].Kind == CC_Range);
10175 Dests.set(Clusters[I].MBB->getNumber());
10176 NumCmps += (Clusters[I].Low == Clusters[I].High) ? 1 : 2;
10178 unsigned NumDests = Dests.count();
10180 APInt Low = Clusters[First].Low->getValue();
10181 APInt High = Clusters[Last].High->getValue();
10182 assert(Low.slt(High));
10184 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10185 const DataLayout &DL = DAG.getDataLayout();
10186 if (!TLI.isSuitableForBitTests(NumDests, NumCmps, Low, High, DL))
10187 return false;
10189 APInt LowBound;
10190 APInt CmpRange;
10192 const int BitWidth = TLI.getPointerTy(DL).getSizeInBits();
10193 assert(TLI.rangeFitsInWord(Low, High, DL) &&
10194 "Case range must fit in bit mask!");
10196 // Check if the clusters cover a contiguous range such that no value in the
10197 // range will jump to the default statement.
10198 bool ContiguousRange = true;
10199 for (int64_t I = First + 1; I <= Last; ++I) {
10200 if (Clusters[I].Low->getValue() != Clusters[I - 1].High->getValue() + 1) {
10201 ContiguousRange = false;
10202 break;
10206 if (Low.isStrictlyPositive() && High.slt(BitWidth)) {
10207 // Optimize the case where all the case values fit in a word without having
10208 // to subtract minValue. In this case, we can optimize away the subtraction.
10209 LowBound = APInt::getNullValue(Low.getBitWidth());
10210 CmpRange = High;
10211 ContiguousRange = false;
10212 } else {
10213 LowBound = Low;
10214 CmpRange = High - Low;
10217 CaseBitsVector CBV;
10218 auto TotalProb = BranchProbability::getZero();
10219 for (unsigned i = First; i <= Last; ++i) {
10220 // Find the CaseBits for this destination.
10221 unsigned j;
10222 for (j = 0; j < CBV.size(); ++j)
10223 if (CBV[j].BB == Clusters[i].MBB)
10224 break;
10225 if (j == CBV.size())
10226 CBV.push_back(
10227 CaseBits(0, Clusters[i].MBB, 0, BranchProbability::getZero()));
10228 CaseBits *CB = &CBV[j];
10230 // Update Mask, Bits and ExtraProb.
10231 uint64_t Lo = (Clusters[i].Low->getValue() - LowBound).getZExtValue();
10232 uint64_t Hi = (Clusters[i].High->getValue() - LowBound).getZExtValue();
10233 assert(Hi >= Lo && Hi < 64 && "Invalid bit case!");
10234 CB->Mask |= (-1ULL >> (63 - (Hi - Lo))) << Lo;
10235 CB->Bits += Hi - Lo + 1;
10236 CB->ExtraProb += Clusters[i].Prob;
10237 TotalProb += Clusters[i].Prob;
10240 BitTestInfo BTI;
10241 llvm::sort(CBV, [](const CaseBits &a, const CaseBits &b) {
10242 // Sort by probability first, number of bits second, bit mask third.
10243 if (a.ExtraProb != b.ExtraProb)
10244 return a.ExtraProb > b.ExtraProb;
10245 if (a.Bits != b.Bits)
10246 return a.Bits > b.Bits;
10247 return a.Mask < b.Mask;
10250 for (auto &CB : CBV) {
10251 MachineBasicBlock *BitTestBB =
10252 FuncInfo.MF->CreateMachineBasicBlock(SI->getParent());
10253 BTI.push_back(BitTestCase(CB.Mask, BitTestBB, CB.BB, CB.ExtraProb));
10255 BitTestCases.emplace_back(std::move(LowBound), std::move(CmpRange),
10256 SI->getCondition(), -1U, MVT::Other, false,
10257 ContiguousRange, nullptr, nullptr, std::move(BTI),
10258 TotalProb);
10260 BTCluster = CaseCluster::bitTests(Clusters[First].Low, Clusters[Last].High,
10261 BitTestCases.size() - 1, TotalProb);
10262 return true;
10265 void SelectionDAGBuilder::findBitTestClusters(CaseClusterVector &Clusters,
10266 const SwitchInst *SI) {
10267 // Partition Clusters into as few subsets as possible, where each subset has a
10268 // range that fits in a machine word and has <= 3 unique destinations.
10270 #ifndef NDEBUG
10271 // Clusters must be sorted and contain Range or JumpTable clusters.
10272 assert(!Clusters.empty());
10273 assert(Clusters[0].Kind == CC_Range || Clusters[0].Kind == CC_JumpTable);
10274 for (const CaseCluster &C : Clusters)
10275 assert(C.Kind == CC_Range || C.Kind == CC_JumpTable);
10276 for (unsigned i = 1; i < Clusters.size(); ++i)
10277 assert(Clusters[i-1].High->getValue().slt(Clusters[i].Low->getValue()));
10278 #endif
10280 // The algorithm below is not suitable for -O0.
10281 if (TM.getOptLevel() == CodeGenOpt::None)
10282 return;
10284 // If target does not have legal shift left, do not emit bit tests at all.
10285 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
10286 const DataLayout &DL = DAG.getDataLayout();
10288 EVT PTy = TLI.getPointerTy(DL);
10289 if (!TLI.isOperationLegal(ISD::SHL, PTy))
10290 return;
10292 int BitWidth = PTy.getSizeInBits();
10293 const int64_t N = Clusters.size();
10295 // MinPartitions[i] is the minimum nbr of partitions of Clusters[i..N-1].
10296 SmallVector<unsigned, 8> MinPartitions(N);
10297 // LastElement[i] is the last element of the partition starting at i.
10298 SmallVector<unsigned, 8> LastElement(N);
10300 // FIXME: This might not be the best algorithm for finding bit test clusters.
10302 // Base case: There is only one way to partition Clusters[N-1].
10303 MinPartitions[N - 1] = 1;
10304 LastElement[N - 1] = N - 1;
10306 // Note: loop indexes are signed to avoid underflow.
10307 for (int64_t i = N - 2; i >= 0; --i) {
10308 // Find optimal partitioning of Clusters[i..N-1].
10309 // Baseline: Put Clusters[i] into a partition on its own.
10310 MinPartitions[i] = MinPartitions[i + 1] + 1;
10311 LastElement[i] = i;
10313 // Search for a solution that results in fewer partitions.
10314 // Note: the search is limited by BitWidth, reducing time complexity.
10315 for (int64_t j = std::min(N - 1, i + BitWidth - 1); j > i; --j) {
10316 // Try building a partition from Clusters[i..j].
10318 // Check the range.
10319 if (!TLI.rangeFitsInWord(Clusters[i].Low->getValue(),
10320 Clusters[j].High->getValue(), DL))
10321 continue;
10323 // Check nbr of destinations and cluster types.
10324 // FIXME: This works, but doesn't seem very efficient.
10325 bool RangesOnly = true;
10326 BitVector Dests(FuncInfo.MF->getNumBlockIDs());
10327 for (int64_t k = i; k <= j; k++) {
10328 if (Clusters[k].Kind != CC_Range) {
10329 RangesOnly = false;
10330 break;
10332 Dests.set(Clusters[k].MBB->getNumber());
10334 if (!RangesOnly || Dests.count() > 3)
10335 break;
10337 // Check if it's a better partition.
10338 unsigned NumPartitions = 1 + (j == N - 1 ? 0 : MinPartitions[j + 1]);
10339 if (NumPartitions < MinPartitions[i]) {
10340 // Found a better partition.
10341 MinPartitions[i] = NumPartitions;
10342 LastElement[i] = j;
10347 // Iterate over the partitions, replacing with bit-test clusters in-place.
10348 unsigned DstIndex = 0;
10349 for (unsigned First = 0, Last; First < N; First = Last + 1) {
10350 Last = LastElement[First];
10351 assert(First <= Last);
10352 assert(DstIndex <= First);
10354 CaseCluster BitTestCluster;
10355 if (buildBitTests(Clusters, First, Last, SI, BitTestCluster)) {
10356 Clusters[DstIndex++] = BitTestCluster;
10357 } else {
10358 size_t NumClusters = Last - First + 1;
10359 std::memmove(&Clusters[DstIndex], &Clusters[First],
10360 sizeof(Clusters[0]) * NumClusters);
10361 DstIndex += NumClusters;
10364 Clusters.resize(DstIndex);
10367 void SelectionDAGBuilder::lowerWorkItem(SwitchWorkListItem W, Value *Cond,
10368 MachineBasicBlock *SwitchMBB,
10369 MachineBasicBlock *DefaultMBB) {
10370 MachineFunction *CurMF = FuncInfo.MF;
10371 MachineBasicBlock *NextMBB = nullptr;
10372 MachineFunction::iterator BBI(W.MBB);
10373 if (++BBI != FuncInfo.MF->end())
10374 NextMBB = &*BBI;
10376 unsigned Size = W.LastCluster - W.FirstCluster + 1;
10378 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10380 if (Size == 2 && W.MBB == SwitchMBB) {
10381 // If any two of the cases has the same destination, and if one value
10382 // is the same as the other, but has one bit unset that the other has set,
10383 // use bit manipulation to do two compares at once. For example:
10384 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
10385 // TODO: This could be extended to merge any 2 cases in switches with 3
10386 // cases.
10387 // TODO: Handle cases where W.CaseBB != SwitchBB.
10388 CaseCluster &Small = *W.FirstCluster;
10389 CaseCluster &Big = *W.LastCluster;
10391 if (Small.Low == Small.High && Big.Low == Big.High &&
10392 Small.MBB == Big.MBB) {
10393 const APInt &SmallValue = Small.Low->getValue();
10394 const APInt &BigValue = Big.Low->getValue();
10396 // Check that there is only one bit different.
10397 APInt CommonBit = BigValue ^ SmallValue;
10398 if (CommonBit.isPowerOf2()) {
10399 SDValue CondLHS = getValue(Cond);
10400 EVT VT = CondLHS.getValueType();
10401 SDLoc DL = getCurSDLoc();
10403 SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
10404 DAG.getConstant(CommonBit, DL, VT));
10405 SDValue Cond = DAG.getSetCC(
10406 DL, MVT::i1, Or, DAG.getConstant(BigValue | SmallValue, DL, VT),
10407 ISD::SETEQ);
10409 // Update successor info.
10410 // Both Small and Big will jump to Small.BB, so we sum up the
10411 // probabilities.
10412 addSuccessorWithProb(SwitchMBB, Small.MBB, Small.Prob + Big.Prob);
10413 if (BPI)
10414 addSuccessorWithProb(
10415 SwitchMBB, DefaultMBB,
10416 // The default destination is the first successor in IR.
10417 BPI->getEdgeProbability(SwitchMBB->getBasicBlock(), (unsigned)0));
10418 else
10419 addSuccessorWithProb(SwitchMBB, DefaultMBB);
10421 // Insert the true branch.
10422 SDValue BrCond =
10423 DAG.getNode(ISD::BRCOND, DL, MVT::Other, getControlRoot(), Cond,
10424 DAG.getBasicBlock(Small.MBB));
10425 // Insert the false branch.
10426 BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
10427 DAG.getBasicBlock(DefaultMBB));
10429 DAG.setRoot(BrCond);
10430 return;
10435 if (TM.getOptLevel() != CodeGenOpt::None) {
10436 // Here, we order cases by probability so the most likely case will be
10437 // checked first. However, two clusters can have the same probability in
10438 // which case their relative ordering is non-deterministic. So we use Low
10439 // as a tie-breaker as clusters are guaranteed to never overlap.
10440 llvm::sort(W.FirstCluster, W.LastCluster + 1,
10441 [](const CaseCluster &a, const CaseCluster &b) {
10442 return a.Prob != b.Prob ?
10443 a.Prob > b.Prob :
10444 a.Low->getValue().slt(b.Low->getValue());
10447 // Rearrange the case blocks so that the last one falls through if possible
10448 // without changing the order of probabilities.
10449 for (CaseClusterIt I = W.LastCluster; I > W.FirstCluster; ) {
10450 --I;
10451 if (I->Prob > W.LastCluster->Prob)
10452 break;
10453 if (I->Kind == CC_Range && I->MBB == NextMBB) {
10454 std::swap(*I, *W.LastCluster);
10455 break;
10460 // Compute total probability.
10461 BranchProbability DefaultProb = W.DefaultProb;
10462 BranchProbability UnhandledProbs = DefaultProb;
10463 for (CaseClusterIt I = W.FirstCluster; I <= W.LastCluster; ++I)
10464 UnhandledProbs += I->Prob;
10466 MachineBasicBlock *CurMBB = W.MBB;
10467 for (CaseClusterIt I = W.FirstCluster, E = W.LastCluster; I <= E; ++I) {
10468 bool FallthroughUnreachable = false;
10469 MachineBasicBlock *Fallthrough;
10470 if (I == W.LastCluster) {
10471 // For the last cluster, fall through to the default destination.
10472 Fallthrough = DefaultMBB;
10473 FallthroughUnreachable = isa<UnreachableInst>(
10474 DefaultMBB->getBasicBlock()->getFirstNonPHIOrDbg());
10475 } else {
10476 Fallthrough = CurMF->CreateMachineBasicBlock(CurMBB->getBasicBlock());
10477 CurMF->insert(BBI, Fallthrough);
10478 // Put Cond in a virtual register to make it available from the new blocks.
10479 ExportFromCurrentBlock(Cond);
10481 UnhandledProbs -= I->Prob;
10483 switch (I->Kind) {
10484 case CC_JumpTable: {
10485 // FIXME: Optimize away range check based on pivot comparisons.
10486 JumpTableHeader *JTH = &JTCases[I->JTCasesIndex].first;
10487 JumpTable *JT = &JTCases[I->JTCasesIndex].second;
10489 // The jump block hasn't been inserted yet; insert it here.
10490 MachineBasicBlock *JumpMBB = JT->MBB;
10491 CurMF->insert(BBI, JumpMBB);
10493 auto JumpProb = I->Prob;
10494 auto FallthroughProb = UnhandledProbs;
10496 // If the default statement is a target of the jump table, we evenly
10497 // distribute the default probability to successors of CurMBB. Also
10498 // update the probability on the edge from JumpMBB to Fallthrough.
10499 for (MachineBasicBlock::succ_iterator SI = JumpMBB->succ_begin(),
10500 SE = JumpMBB->succ_end();
10501 SI != SE; ++SI) {
10502 if (*SI == DefaultMBB) {
10503 JumpProb += DefaultProb / 2;
10504 FallthroughProb -= DefaultProb / 2;
10505 JumpMBB->setSuccProbability(SI, DefaultProb / 2);
10506 JumpMBB->normalizeSuccProbs();
10507 break;
10511 if (FallthroughUnreachable) {
10512 // Skip the range check if the fallthrough block is unreachable.
10513 JTH->OmitRangeCheck = true;
10516 if (!JTH->OmitRangeCheck)
10517 addSuccessorWithProb(CurMBB, Fallthrough, FallthroughProb);
10518 addSuccessorWithProb(CurMBB, JumpMBB, JumpProb);
10519 CurMBB->normalizeSuccProbs();
10521 // The jump table header will be inserted in our current block, do the
10522 // range check, and fall through to our fallthrough block.
10523 JTH->HeaderBB = CurMBB;
10524 JT->Default = Fallthrough; // FIXME: Move Default to JumpTableHeader.
10526 // If we're in the right place, emit the jump table header right now.
10527 if (CurMBB == SwitchMBB) {
10528 visitJumpTableHeader(*JT, *JTH, SwitchMBB);
10529 JTH->Emitted = true;
10531 break;
10533 case CC_BitTests: {
10534 // FIXME: If Fallthrough is unreachable, skip the range check.
10536 // FIXME: Optimize away range check based on pivot comparisons.
10537 BitTestBlock *BTB = &BitTestCases[I->BTCasesIndex];
10539 // The bit test blocks haven't been inserted yet; insert them here.
10540 for (BitTestCase &BTC : BTB->Cases)
10541 CurMF->insert(BBI, BTC.ThisBB);
10543 // Fill in fields of the BitTestBlock.
10544 BTB->Parent = CurMBB;
10545 BTB->Default = Fallthrough;
10547 BTB->DefaultProb = UnhandledProbs;
10548 // If the cases in bit test don't form a contiguous range, we evenly
10549 // distribute the probability on the edge to Fallthrough to two
10550 // successors of CurMBB.
10551 if (!BTB->ContiguousRange) {
10552 BTB->Prob += DefaultProb / 2;
10553 BTB->DefaultProb -= DefaultProb / 2;
10556 // If we're in the right place, emit the bit test header right now.
10557 if (CurMBB == SwitchMBB) {
10558 visitBitTestHeader(*BTB, SwitchMBB);
10559 BTB->Emitted = true;
10561 break;
10563 case CC_Range: {
10564 const Value *RHS, *LHS, *MHS;
10565 ISD::CondCode CC;
10566 if (I->Low == I->High) {
10567 // Check Cond == I->Low.
10568 CC = ISD::SETEQ;
10569 LHS = Cond;
10570 RHS=I->Low;
10571 MHS = nullptr;
10572 } else {
10573 // Check I->Low <= Cond <= I->High.
10574 CC = ISD::SETLE;
10575 LHS = I->Low;
10576 MHS = Cond;
10577 RHS = I->High;
10580 // If Fallthrough is unreachable, fold away the comparison.
10581 if (FallthroughUnreachable)
10582 CC = ISD::SETTRUE;
10584 // The false probability is the sum of all unhandled cases.
10585 CaseBlock CB(CC, LHS, RHS, MHS, I->MBB, Fallthrough, CurMBB,
10586 getCurSDLoc(), I->Prob, UnhandledProbs);
10588 if (CurMBB == SwitchMBB)
10589 visitSwitchCase(CB, SwitchMBB);
10590 else
10591 SwitchCases.push_back(CB);
10593 break;
10596 CurMBB = Fallthrough;
10600 unsigned SelectionDAGBuilder::caseClusterRank(const CaseCluster &CC,
10601 CaseClusterIt First,
10602 CaseClusterIt Last) {
10603 return std::count_if(First, Last + 1, [&](const CaseCluster &X) {
10604 if (X.Prob != CC.Prob)
10605 return X.Prob > CC.Prob;
10607 // Ties are broken by comparing the case value.
10608 return X.Low->getValue().slt(CC.Low->getValue());
10612 void SelectionDAGBuilder::splitWorkItem(SwitchWorkList &WorkList,
10613 const SwitchWorkListItem &W,
10614 Value *Cond,
10615 MachineBasicBlock *SwitchMBB) {
10616 assert(W.FirstCluster->Low->getValue().slt(W.LastCluster->Low->getValue()) &&
10617 "Clusters not sorted?");
10619 assert(W.LastCluster - W.FirstCluster + 1 >= 2 && "Too small to split!");
10621 // Balance the tree based on branch probabilities to create a near-optimal (in
10622 // terms of search time given key frequency) binary search tree. See e.g. Kurt
10623 // Mehlhorn "Nearly Optimal Binary Search Trees" (1975).
10624 CaseClusterIt LastLeft = W.FirstCluster;
10625 CaseClusterIt FirstRight = W.LastCluster;
10626 auto LeftProb = LastLeft->Prob + W.DefaultProb / 2;
10627 auto RightProb = FirstRight->Prob + W.DefaultProb / 2;
10629 // Move LastLeft and FirstRight towards each other from opposite directions to
10630 // find a partitioning of the clusters which balances the probability on both
10631 // sides. If LeftProb and RightProb are equal, alternate which side is
10632 // taken to ensure 0-probability nodes are distributed evenly.
10633 unsigned I = 0;
10634 while (LastLeft + 1 < FirstRight) {
10635 if (LeftProb < RightProb || (LeftProb == RightProb && (I & 1)))
10636 LeftProb += (++LastLeft)->Prob;
10637 else
10638 RightProb += (--FirstRight)->Prob;
10639 I++;
10642 while (true) {
10643 // Our binary search tree differs from a typical BST in that ours can have up
10644 // to three values in each leaf. The pivot selection above doesn't take that
10645 // into account, which means the tree might require more nodes and be less
10646 // efficient. We compensate for this here.
10648 unsigned NumLeft = LastLeft - W.FirstCluster + 1;
10649 unsigned NumRight = W.LastCluster - FirstRight + 1;
10651 if (std::min(NumLeft, NumRight) < 3 && std::max(NumLeft, NumRight) > 3) {
10652 // If one side has less than 3 clusters, and the other has more than 3,
10653 // consider taking a cluster from the other side.
10655 if (NumLeft < NumRight) {
10656 // Consider moving the first cluster on the right to the left side.
10657 CaseCluster &CC = *FirstRight;
10658 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10659 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10660 if (LeftSideRank <= RightSideRank) {
10661 // Moving the cluster to the left does not demote it.
10662 ++LastLeft;
10663 ++FirstRight;
10664 continue;
10666 } else {
10667 assert(NumRight < NumLeft);
10668 // Consider moving the last element on the left to the right side.
10669 CaseCluster &CC = *LastLeft;
10670 unsigned LeftSideRank = caseClusterRank(CC, W.FirstCluster, LastLeft);
10671 unsigned RightSideRank = caseClusterRank(CC, FirstRight, W.LastCluster);
10672 if (RightSideRank <= LeftSideRank) {
10673 // Moving the cluster to the right does not demot it.
10674 --LastLeft;
10675 --FirstRight;
10676 continue;
10680 break;
10683 assert(LastLeft + 1 == FirstRight);
10684 assert(LastLeft >= W.FirstCluster);
10685 assert(FirstRight <= W.LastCluster);
10687 // Use the first element on the right as pivot since we will make less-than
10688 // comparisons against it.
10689 CaseClusterIt PivotCluster = FirstRight;
10690 assert(PivotCluster > W.FirstCluster);
10691 assert(PivotCluster <= W.LastCluster);
10693 CaseClusterIt FirstLeft = W.FirstCluster;
10694 CaseClusterIt LastRight = W.LastCluster;
10696 const ConstantInt *Pivot = PivotCluster->Low;
10698 // New blocks will be inserted immediately after the current one.
10699 MachineFunction::iterator BBI(W.MBB);
10700 ++BBI;
10702 // We will branch to the LHS if Value < Pivot. If LHS is a single cluster,
10703 // we can branch to its destination directly if it's squeezed exactly in
10704 // between the known lower bound and Pivot - 1.
10705 MachineBasicBlock *LeftMBB;
10706 if (FirstLeft == LastLeft && FirstLeft->Kind == CC_Range &&
10707 FirstLeft->Low == W.GE &&
10708 (FirstLeft->High->getValue() + 1LL) == Pivot->getValue()) {
10709 LeftMBB = FirstLeft->MBB;
10710 } else {
10711 LeftMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10712 FuncInfo.MF->insert(BBI, LeftMBB);
10713 WorkList.push_back(
10714 {LeftMBB, FirstLeft, LastLeft, W.GE, Pivot, W.DefaultProb / 2});
10715 // Put Cond in a virtual register to make it available from the new blocks.
10716 ExportFromCurrentBlock(Cond);
10719 // Similarly, we will branch to the RHS if Value >= Pivot. If RHS is a
10720 // single cluster, RHS.Low == Pivot, and we can branch to its destination
10721 // directly if RHS.High equals the current upper bound.
10722 MachineBasicBlock *RightMBB;
10723 if (FirstRight == LastRight && FirstRight->Kind == CC_Range &&
10724 W.LT && (FirstRight->High->getValue() + 1ULL) == W.LT->getValue()) {
10725 RightMBB = FirstRight->MBB;
10726 } else {
10727 RightMBB = FuncInfo.MF->CreateMachineBasicBlock(W.MBB->getBasicBlock());
10728 FuncInfo.MF->insert(BBI, RightMBB);
10729 WorkList.push_back(
10730 {RightMBB, FirstRight, LastRight, Pivot, W.LT, W.DefaultProb / 2});
10731 // Put Cond in a virtual register to make it available from the new blocks.
10732 ExportFromCurrentBlock(Cond);
10735 // Create the CaseBlock record that will be used to lower the branch.
10736 CaseBlock CB(ISD::SETLT, Cond, Pivot, nullptr, LeftMBB, RightMBB, W.MBB,
10737 getCurSDLoc(), LeftProb, RightProb);
10739 if (W.MBB == SwitchMBB)
10740 visitSwitchCase(CB, SwitchMBB);
10741 else
10742 SwitchCases.push_back(CB);
10745 // Scale CaseProb after peeling a case with the probablity of PeeledCaseProb
10746 // from the swith statement.
10747 static BranchProbability scaleCaseProbality(BranchProbability CaseProb,
10748 BranchProbability PeeledCaseProb) {
10749 if (PeeledCaseProb == BranchProbability::getOne())
10750 return BranchProbability::getZero();
10751 BranchProbability SwitchProb = PeeledCaseProb.getCompl();
10753 uint32_t Numerator = CaseProb.getNumerator();
10754 uint32_t Denominator = SwitchProb.scale(CaseProb.getDenominator());
10755 return BranchProbability(Numerator, std::max(Numerator, Denominator));
10758 // Try to peel the top probability case if it exceeds the threshold.
10759 // Return current MachineBasicBlock for the switch statement if the peeling
10760 // does not occur.
10761 // If the peeling is performed, return the newly created MachineBasicBlock
10762 // for the peeled switch statement. Also update Clusters to remove the peeled
10763 // case. PeeledCaseProb is the BranchProbability for the peeled case.
10764 MachineBasicBlock *SelectionDAGBuilder::peelDominantCaseCluster(
10765 const SwitchInst &SI, CaseClusterVector &Clusters,
10766 BranchProbability &PeeledCaseProb) {
10767 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10768 // Don't perform if there is only one cluster or optimizing for size.
10769 if (SwitchPeelThreshold > 100 || !FuncInfo.BPI || Clusters.size() < 2 ||
10770 TM.getOptLevel() == CodeGenOpt::None ||
10771 SwitchMBB->getParent()->getFunction().hasMinSize())
10772 return SwitchMBB;
10774 BranchProbability TopCaseProb = BranchProbability(SwitchPeelThreshold, 100);
10775 unsigned PeeledCaseIndex = 0;
10776 bool SwitchPeeled = false;
10777 for (unsigned Index = 0; Index < Clusters.size(); ++Index) {
10778 CaseCluster &CC = Clusters[Index];
10779 if (CC.Prob < TopCaseProb)
10780 continue;
10781 TopCaseProb = CC.Prob;
10782 PeeledCaseIndex = Index;
10783 SwitchPeeled = true;
10785 if (!SwitchPeeled)
10786 return SwitchMBB;
10788 LLVM_DEBUG(dbgs() << "Peeled one top case in switch stmt, prob: "
10789 << TopCaseProb << "\n");
10791 // Record the MBB for the peeled switch statement.
10792 MachineFunction::iterator BBI(SwitchMBB);
10793 ++BBI;
10794 MachineBasicBlock *PeeledSwitchMBB =
10795 FuncInfo.MF->CreateMachineBasicBlock(SwitchMBB->getBasicBlock());
10796 FuncInfo.MF->insert(BBI, PeeledSwitchMBB);
10798 ExportFromCurrentBlock(SI.getCondition());
10799 auto PeeledCaseIt = Clusters.begin() + PeeledCaseIndex;
10800 SwitchWorkListItem W = {SwitchMBB, PeeledCaseIt, PeeledCaseIt,
10801 nullptr, nullptr, TopCaseProb.getCompl()};
10802 lowerWorkItem(W, SI.getCondition(), SwitchMBB, PeeledSwitchMBB);
10804 Clusters.erase(PeeledCaseIt);
10805 for (CaseCluster &CC : Clusters) {
10806 LLVM_DEBUG(
10807 dbgs() << "Scale the probablity for one cluster, before scaling: "
10808 << CC.Prob << "\n");
10809 CC.Prob = scaleCaseProbality(CC.Prob, TopCaseProb);
10810 LLVM_DEBUG(dbgs() << "After scaling: " << CC.Prob << "\n");
10812 PeeledCaseProb = TopCaseProb;
10813 return PeeledSwitchMBB;
10816 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
10817 // Extract cases from the switch.
10818 BranchProbabilityInfo *BPI = FuncInfo.BPI;
10819 CaseClusterVector Clusters;
10820 Clusters.reserve(SI.getNumCases());
10821 for (auto I : SI.cases()) {
10822 MachineBasicBlock *Succ = FuncInfo.MBBMap[I.getCaseSuccessor()];
10823 const ConstantInt *CaseVal = I.getCaseValue();
10824 BranchProbability Prob =
10825 BPI ? BPI->getEdgeProbability(SI.getParent(), I.getSuccessorIndex())
10826 : BranchProbability(1, SI.getNumCases() + 1);
10827 Clusters.push_back(CaseCluster::range(CaseVal, CaseVal, Succ, Prob));
10830 MachineBasicBlock *DefaultMBB = FuncInfo.MBBMap[SI.getDefaultDest()];
10832 // Cluster adjacent cases with the same destination. We do this at all
10833 // optimization levels because it's cheap to do and will make codegen faster
10834 // if there are many clusters.
10835 sortAndRangeify(Clusters);
10837 // The branch probablity of the peeled case.
10838 BranchProbability PeeledCaseProb = BranchProbability::getZero();
10839 MachineBasicBlock *PeeledSwitchMBB =
10840 peelDominantCaseCluster(SI, Clusters, PeeledCaseProb);
10842 // If there is only the default destination, jump there directly.
10843 MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
10844 if (Clusters.empty()) {
10845 assert(PeeledSwitchMBB == SwitchMBB);
10846 SwitchMBB->addSuccessor(DefaultMBB);
10847 if (DefaultMBB != NextBlock(SwitchMBB)) {
10848 DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
10849 getControlRoot(), DAG.getBasicBlock(DefaultMBB)));
10851 return;
10854 findJumpTables(Clusters, &SI, DefaultMBB);
10855 findBitTestClusters(Clusters, &SI);
10857 LLVM_DEBUG({
10858 dbgs() << "Case clusters: ";
10859 for (const CaseCluster &C : Clusters) {
10860 if (C.Kind == CC_JumpTable)
10861 dbgs() << "JT:";
10862 if (C.Kind == CC_BitTests)
10863 dbgs() << "BT:";
10865 C.Low->getValue().print(dbgs(), true);
10866 if (C.Low != C.High) {
10867 dbgs() << '-';
10868 C.High->getValue().print(dbgs(), true);
10870 dbgs() << ' ';
10872 dbgs() << '\n';
10875 assert(!Clusters.empty());
10876 SwitchWorkList WorkList;
10877 CaseClusterIt First = Clusters.begin();
10878 CaseClusterIt Last = Clusters.end() - 1;
10879 auto DefaultProb = getEdgeProbability(PeeledSwitchMBB, DefaultMBB);
10880 // Scale the branchprobability for DefaultMBB if the peel occurs and
10881 // DefaultMBB is not replaced.
10882 if (PeeledCaseProb != BranchProbability::getZero() &&
10883 DefaultMBB == FuncInfo.MBBMap[SI.getDefaultDest()])
10884 DefaultProb = scaleCaseProbality(DefaultProb, PeeledCaseProb);
10885 WorkList.push_back(
10886 {PeeledSwitchMBB, First, Last, nullptr, nullptr, DefaultProb});
10888 while (!WorkList.empty()) {
10889 SwitchWorkListItem W = WorkList.back();
10890 WorkList.pop_back();
10891 unsigned NumClusters = W.LastCluster - W.FirstCluster + 1;
10893 if (NumClusters > 3 && TM.getOptLevel() != CodeGenOpt::None &&
10894 !DefaultMBB->getParent()->getFunction().hasMinSize()) {
10895 // For optimized builds, lower large range as a balanced binary tree.
10896 splitWorkItem(WorkList, W, SI.getCondition(), SwitchMBB);
10897 continue;
10900 lowerWorkItem(W, SI.getCondition(), SwitchMBB, DefaultMBB);