1 //===-- CallingConvLower.cpp - Calling Conventions ------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements the CCState class, used for lowering and implementing
10 // calling conventions.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/CodeGen/CallingConvLower.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineRegisterInfo.h"
17 #include "llvm/CodeGen/TargetLowering.h"
18 #include "llvm/CodeGen/TargetRegisterInfo.h"
19 #include "llvm/CodeGen/TargetSubtargetInfo.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/Support/Debug.h"
22 #include "llvm/Support/ErrorHandling.h"
23 #include "llvm/Support/SaveAndRestore.h"
24 #include "llvm/Support/raw_ostream.h"
29 CCState::CCState(CallingConv::ID CC
, bool isVarArg
, MachineFunction
&mf
,
30 SmallVectorImpl
<CCValAssign
> &locs
, LLVMContext
&C
)
31 : CallingConv(CC
), IsVarArg(isVarArg
), MF(mf
),
32 TRI(*MF
.getSubtarget().getRegisterInfo()), Locs(locs
), Context(C
) {
37 UsedRegs
.resize((TRI
.getNumRegs()+31)/32);
40 /// Allocate space on the stack large enough to pass an argument by value.
41 /// The size and alignment information of the argument is encoded in
42 /// its parameter attribute.
43 void CCState::HandleByVal(unsigned ValNo
, MVT ValVT
, MVT LocVT
,
44 CCValAssign::LocInfo LocInfo
, int MinSize
,
45 int MinAlignment
, ISD::ArgFlagsTy ArgFlags
) {
46 Align
MinAlign(MinAlignment
);
47 Align
Alignment(ArgFlags
.getByValAlign());
48 unsigned Size
= ArgFlags
.getByValSize();
49 if (MinSize
> (int)Size
)
51 if (MinAlign
> Alignment
)
53 ensureMaxAlignment(Alignment
);
54 MF
.getSubtarget().getTargetLowering()->HandleByVal(this, Size
,
56 Size
= unsigned(alignTo(Size
, MinAlign
));
57 unsigned Offset
= AllocateStack(Size
, Alignment
.value());
58 addLoc(CCValAssign::getMem(ValNo
, ValVT
, Offset
, LocVT
, LocInfo
));
61 /// Mark a register and all of its aliases as allocated.
62 void CCState::MarkAllocated(unsigned Reg
) {
63 for (MCRegAliasIterator
AI(Reg
, &TRI
, true); AI
.isValid(); ++AI
)
64 UsedRegs
[*AI
/32] |= 1 << (*AI
&31);
67 bool CCState::IsShadowAllocatedReg(unsigned Reg
) const {
68 if (!isAllocated(Reg
))
71 for (auto const &ValAssign
: Locs
) {
72 if (ValAssign
.isRegLoc()) {
73 for (MCRegAliasIterator
AI(ValAssign
.getLocReg(), &TRI
, true);
83 /// Analyze an array of argument values,
84 /// incorporating info about the formals into this state.
86 CCState::AnalyzeFormalArguments(const SmallVectorImpl
<ISD::InputArg
> &Ins
,
88 unsigned NumArgs
= Ins
.size();
90 for (unsigned i
= 0; i
!= NumArgs
; ++i
) {
91 MVT ArgVT
= Ins
[i
].VT
;
92 ISD::ArgFlagsTy ArgFlags
= Ins
[i
].Flags
;
93 if (Fn(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
, *this))
94 report_fatal_error("unable to allocate function argument #" + Twine(i
));
98 /// Analyze the return values of a function, returning true if the return can
99 /// be performed without sret-demotion and false otherwise.
100 bool CCState::CheckReturn(const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
102 // Determine which register each value should be copied into.
103 for (unsigned i
= 0, e
= Outs
.size(); i
!= e
; ++i
) {
105 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
106 if (Fn(i
, VT
, VT
, CCValAssign::Full
, ArgFlags
, *this))
112 /// Analyze the returned values of a return,
113 /// incorporating info about the result values into this state.
114 void CCState::AnalyzeReturn(const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
116 // Determine which register each value should be copied into.
117 for (unsigned i
= 0, e
= Outs
.size(); i
!= e
; ++i
) {
119 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
120 if (Fn(i
, VT
, VT
, CCValAssign::Full
, ArgFlags
, *this))
121 report_fatal_error("unable to allocate function return #" + Twine(i
));
125 /// Analyze the outgoing arguments to a call,
126 /// incorporating info about the passed values into this state.
127 void CCState::AnalyzeCallOperands(const SmallVectorImpl
<ISD::OutputArg
> &Outs
,
129 unsigned NumOps
= Outs
.size();
130 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
131 MVT ArgVT
= Outs
[i
].VT
;
132 ISD::ArgFlagsTy ArgFlags
= Outs
[i
].Flags
;
133 if (Fn(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
, *this)) {
135 dbgs() << "Call operand #" << i
<< " has unhandled type "
136 << EVT(ArgVT
).getEVTString() << '\n';
138 llvm_unreachable(nullptr);
143 /// Same as above except it takes vectors of types and argument flags.
144 void CCState::AnalyzeCallOperands(SmallVectorImpl
<MVT
> &ArgVTs
,
145 SmallVectorImpl
<ISD::ArgFlagsTy
> &Flags
,
147 unsigned NumOps
= ArgVTs
.size();
148 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
149 MVT ArgVT
= ArgVTs
[i
];
150 ISD::ArgFlagsTy ArgFlags
= Flags
[i
];
151 if (Fn(i
, ArgVT
, ArgVT
, CCValAssign::Full
, ArgFlags
, *this)) {
153 dbgs() << "Call operand #" << i
<< " has unhandled type "
154 << EVT(ArgVT
).getEVTString() << '\n';
156 llvm_unreachable(nullptr);
161 /// Analyze the return values of a call, incorporating info about the passed
162 /// values into this state.
163 void CCState::AnalyzeCallResult(const SmallVectorImpl
<ISD::InputArg
> &Ins
,
165 for (unsigned i
= 0, e
= Ins
.size(); i
!= e
; ++i
) {
167 ISD::ArgFlagsTy Flags
= Ins
[i
].Flags
;
168 if (Fn(i
, VT
, VT
, CCValAssign::Full
, Flags
, *this)) {
170 dbgs() << "Call result #" << i
<< " has unhandled type "
171 << EVT(VT
).getEVTString() << '\n';
173 llvm_unreachable(nullptr);
178 /// Same as above except it's specialized for calls that produce a single value.
179 void CCState::AnalyzeCallResult(MVT VT
, CCAssignFn Fn
) {
180 if (Fn(0, VT
, VT
, CCValAssign::Full
, ISD::ArgFlagsTy(), *this)) {
182 dbgs() << "Call result has unhandled type "
183 << EVT(VT
).getEVTString() << '\n';
185 llvm_unreachable(nullptr);
189 static bool isValueTypeInRegForCC(CallingConv::ID CC
, MVT VT
) {
191 return true; // Assume -msse-regparm might be in effect.
194 if (CC
== CallingConv::X86_VectorCall
|| CC
== CallingConv::X86_FastCall
)
199 void CCState::getRemainingRegParmsForType(SmallVectorImpl
<MCPhysReg
> &Regs
,
200 MVT VT
, CCAssignFn Fn
) {
201 unsigned SavedStackOffset
= StackOffset
;
202 Align SavedMaxStackArgAlign
= MaxStackArgAlign
;
203 unsigned NumLocs
= Locs
.size();
205 // Set the 'inreg' flag if it is used for this calling convention.
206 ISD::ArgFlagsTy Flags
;
207 if (isValueTypeInRegForCC(CallingConv
, VT
))
210 // Allocate something of this value type repeatedly until we get assigned a
211 // location in memory.
212 bool HaveRegParm
= true;
213 while (HaveRegParm
) {
214 if (Fn(0, VT
, VT
, CCValAssign::Full
, Flags
, *this)) {
216 dbgs() << "Call has unhandled type " << EVT(VT
).getEVTString()
217 << " while computing remaining regparms\n";
219 llvm_unreachable(nullptr);
221 HaveRegParm
= Locs
.back().isRegLoc();
224 // Copy all the registers from the value locations we added.
225 assert(NumLocs
< Locs
.size() && "CC assignment failed to add location");
226 for (unsigned I
= NumLocs
, E
= Locs
.size(); I
!= E
; ++I
)
227 if (Locs
[I
].isRegLoc())
228 Regs
.push_back(MCPhysReg(Locs
[I
].getLocReg()));
230 // Clear the assigned values and stack memory. We leave the registers marked
231 // as allocated so that future queries don't return the same registers, i.e.
232 // when i64 and f64 are both passed in GPRs.
233 StackOffset
= SavedStackOffset
;
234 MaxStackArgAlign
= SavedMaxStackArgAlign
;
235 Locs
.resize(NumLocs
);
238 void CCState::analyzeMustTailForwardedRegisters(
239 SmallVectorImpl
<ForwardedRegister
> &Forwards
, ArrayRef
<MVT
> RegParmTypes
,
241 // Oftentimes calling conventions will not user register parameters for
242 // variadic functions, so we need to assume we're not variadic so that we get
243 // all the registers that might be used in a non-variadic call.
244 SaveAndRestore
<bool> SavedVarArg(IsVarArg
, false);
245 SaveAndRestore
<bool> SavedMustTail(AnalyzingMustTailForwardedRegs
, true);
247 for (MVT RegVT
: RegParmTypes
) {
248 SmallVector
<MCPhysReg
, 8> RemainingRegs
;
249 getRemainingRegParmsForType(RemainingRegs
, RegVT
, Fn
);
250 const TargetLowering
*TL
= MF
.getSubtarget().getTargetLowering();
251 const TargetRegisterClass
*RC
= TL
->getRegClassFor(RegVT
);
252 for (MCPhysReg PReg
: RemainingRegs
) {
253 unsigned VReg
= MF
.addLiveIn(PReg
, RC
);
254 Forwards
.push_back(ForwardedRegister(VReg
, PReg
, RegVT
));
259 bool CCState::resultsCompatible(CallingConv::ID CalleeCC
,
260 CallingConv::ID CallerCC
, MachineFunction
&MF
,
262 const SmallVectorImpl
<ISD::InputArg
> &Ins
,
263 CCAssignFn CalleeFn
, CCAssignFn CallerFn
) {
264 if (CalleeCC
== CallerCC
)
266 SmallVector
<CCValAssign
, 4> RVLocs1
;
267 CCState
CCInfo1(CalleeCC
, false, MF
, RVLocs1
, C
);
268 CCInfo1
.AnalyzeCallResult(Ins
, CalleeFn
);
270 SmallVector
<CCValAssign
, 4> RVLocs2
;
271 CCState
CCInfo2(CallerCC
, false, MF
, RVLocs2
, C
);
272 CCInfo2
.AnalyzeCallResult(Ins
, CallerFn
);
274 if (RVLocs1
.size() != RVLocs2
.size())
276 for (unsigned I
= 0, E
= RVLocs1
.size(); I
!= E
; ++I
) {
277 const CCValAssign
&Loc1
= RVLocs1
[I
];
278 const CCValAssign
&Loc2
= RVLocs2
[I
];
279 if (Loc1
.getLocInfo() != Loc2
.getLocInfo())
281 bool RegLoc1
= Loc1
.isRegLoc();
282 if (RegLoc1
!= Loc2
.isRegLoc())
285 if (Loc1
.getLocReg() != Loc2
.getLocReg())
288 if (Loc1
.getLocMemOffset() != Loc2
.getLocMemOffset())