Recommit r373598 "[yaml2obj/obj2yaml] - Add support for SHT_LLVM_ADDRSIG sections."
[llvm-complete.git] / lib / CodeGen / LiveDebugValues.cpp
blob0bdc62a345cbc2ca1c2a897d1b1cf8cc72b28969
1 //===- LiveDebugValues.cpp - Tracking Debug Value MIs ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// This pass implements a data flow analysis that propagates debug location
10 /// information by inserting additional DBG_VALUE insts into the machine
11 /// instruction stream. Before running, each DBG_VALUE inst corresponds to a
12 /// source assignment of a variable. Afterwards, a DBG_VALUE inst specifies a
13 /// variable location for the current basic block (see SourceLevelDebugging.rst).
14 ///
15 /// This is a separate pass from DbgValueHistoryCalculator to facilitate
16 /// testing and improve modularity.
17 ///
18 /// Each variable location is represented by a VarLoc object that identifies the
19 /// source variable, its current machine-location, and the DBG_VALUE inst that
20 /// specifies the location. Each VarLoc is indexed in the (function-scope)
21 /// VarLocMap, giving each VarLoc a unique index. Rather than operate directly
22 /// on machine locations, the dataflow analysis in this pass identifies
23 /// locations by their index in the VarLocMap, meaning all the variable
24 /// locations in a block can be described by a sparse vector of VarLocMap
25 /// indexes.
26 ///
27 //===----------------------------------------------------------------------===//
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/PostOrderIterator.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/SparseBitVector.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/ADT/UniqueVector.h"
37 #include "llvm/CodeGen/LexicalScopes.h"
38 #include "llvm/CodeGen/MachineBasicBlock.h"
39 #include "llvm/CodeGen/MachineFrameInfo.h"
40 #include "llvm/CodeGen/MachineFunction.h"
41 #include "llvm/CodeGen/MachineFunctionPass.h"
42 #include "llvm/CodeGen/MachineInstr.h"
43 #include "llvm/CodeGen/MachineInstrBuilder.h"
44 #include "llvm/CodeGen/MachineMemOperand.h"
45 #include "llvm/CodeGen/MachineOperand.h"
46 #include "llvm/CodeGen/PseudoSourceValue.h"
47 #include "llvm/CodeGen/RegisterScavenging.h"
48 #include "llvm/CodeGen/TargetFrameLowering.h"
49 #include "llvm/CodeGen/TargetInstrInfo.h"
50 #include "llvm/CodeGen/TargetLowering.h"
51 #include "llvm/CodeGen/TargetPassConfig.h"
52 #include "llvm/CodeGen/TargetRegisterInfo.h"
53 #include "llvm/CodeGen/TargetSubtargetInfo.h"
54 #include "llvm/Config/llvm-config.h"
55 #include "llvm/IR/DIBuilder.h"
56 #include "llvm/IR/DebugInfoMetadata.h"
57 #include "llvm/IR/DebugLoc.h"
58 #include "llvm/IR/Function.h"
59 #include "llvm/IR/Module.h"
60 #include "llvm/MC/MCRegisterInfo.h"
61 #include "llvm/Pass.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/Debug.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstdint>
69 #include <functional>
70 #include <queue>
71 #include <tuple>
72 #include <utility>
73 #include <vector>
75 using namespace llvm;
77 #define DEBUG_TYPE "livedebugvalues"
79 STATISTIC(NumInserted, "Number of DBG_VALUE instructions inserted");
80 STATISTIC(NumRemoved, "Number of DBG_VALUE instructions removed");
82 // If @MI is a DBG_VALUE with debug value described by a defined
83 // register, returns the number of this register. In the other case, returns 0.
84 static Register isDbgValueDescribedByReg(const MachineInstr &MI) {
85 assert(MI.isDebugValue() && "expected a DBG_VALUE");
86 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
87 // If location of variable is described using a register (directly
88 // or indirectly), this register is always a first operand.
89 return MI.getOperand(0).isReg() ? MI.getOperand(0).getReg() : Register();
92 namespace {
94 class LiveDebugValues : public MachineFunctionPass {
95 private:
96 const TargetRegisterInfo *TRI;
97 const TargetInstrInfo *TII;
98 const TargetFrameLowering *TFI;
99 BitVector CalleeSavedRegs;
100 LexicalScopes LS;
102 enum struct TransferKind { TransferCopy, TransferSpill, TransferRestore };
104 /// Keeps track of lexical scopes associated with a user value's source
105 /// location.
106 class UserValueScopes {
107 DebugLoc DL;
108 LexicalScopes &LS;
109 SmallPtrSet<const MachineBasicBlock *, 4> LBlocks;
111 public:
112 UserValueScopes(DebugLoc D, LexicalScopes &L) : DL(std::move(D)), LS(L) {}
114 /// Return true if current scope dominates at least one machine
115 /// instruction in a given machine basic block.
116 bool dominates(MachineBasicBlock *MBB) {
117 if (LBlocks.empty())
118 LS.getMachineBasicBlocks(DL, LBlocks);
119 return LBlocks.count(MBB) != 0 || LS.dominates(DL, MBB);
123 using FragmentInfo = DIExpression::FragmentInfo;
124 using OptFragmentInfo = Optional<DIExpression::FragmentInfo>;
126 /// Storage for identifying a potentially inlined instance of a variable,
127 /// or a fragment thereof.
128 class DebugVariable {
129 const DILocalVariable *Variable;
130 OptFragmentInfo Fragment;
131 const DILocation *InlinedAt;
133 /// Fragment that will overlap all other fragments. Used as default when
134 /// caller demands a fragment.
135 static const FragmentInfo DefaultFragment;
137 public:
138 DebugVariable(const DILocalVariable *Var, OptFragmentInfo &&FragmentInfo,
139 const DILocation *InlinedAt)
140 : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {}
142 DebugVariable(const DILocalVariable *Var, OptFragmentInfo &FragmentInfo,
143 const DILocation *InlinedAt)
144 : Variable(Var), Fragment(FragmentInfo), InlinedAt(InlinedAt) {}
146 DebugVariable(const DILocalVariable *Var, const DIExpression *DIExpr,
147 const DILocation *InlinedAt)
148 : DebugVariable(Var, DIExpr->getFragmentInfo(), InlinedAt) {}
150 DebugVariable(const MachineInstr &MI)
151 : DebugVariable(MI.getDebugVariable(),
152 MI.getDebugExpression()->getFragmentInfo(),
153 MI.getDebugLoc()->getInlinedAt()) {}
155 const DILocalVariable *getVar() const { return Variable; }
156 const OptFragmentInfo &getFragment() const { return Fragment; }
157 const DILocation *getInlinedAt() const { return InlinedAt; }
159 const FragmentInfo getFragmentDefault() const {
160 return Fragment.getValueOr(DefaultFragment);
163 static bool isFragmentDefault(FragmentInfo &F) {
164 return F == DefaultFragment;
167 bool operator==(const DebugVariable &Other) const {
168 return std::tie(Variable, Fragment, InlinedAt) ==
169 std::tie(Other.Variable, Other.Fragment, Other.InlinedAt);
172 bool operator<(const DebugVariable &Other) const {
173 return std::tie(Variable, Fragment, InlinedAt) <
174 std::tie(Other.Variable, Other.Fragment, Other.InlinedAt);
178 friend struct llvm::DenseMapInfo<DebugVariable>;
180 /// A pair of debug variable and value location.
181 struct VarLoc {
182 // The location at which a spilled variable resides. It consists of a
183 // register and an offset.
184 struct SpillLoc {
185 unsigned SpillBase;
186 int SpillOffset;
187 bool operator==(const SpillLoc &Other) const {
188 return SpillBase == Other.SpillBase && SpillOffset == Other.SpillOffset;
192 /// Identity of the variable at this location.
193 const DebugVariable Var;
195 /// The expression applied to this location.
196 const DIExpression *Expr;
198 /// DBG_VALUE to clone var/expr information from if this location
199 /// is moved.
200 const MachineInstr &MI;
202 mutable UserValueScopes UVS;
203 enum VarLocKind {
204 InvalidKind = 0,
205 RegisterKind,
206 SpillLocKind,
207 ImmediateKind,
208 EntryValueKind
209 } Kind = InvalidKind;
211 /// The value location. Stored separately to avoid repeatedly
212 /// extracting it from MI.
213 union {
214 uint64_t RegNo;
215 SpillLoc SpillLocation;
216 uint64_t Hash;
217 int64_t Immediate;
218 const ConstantFP *FPImm;
219 const ConstantInt *CImm;
220 } Loc;
222 VarLoc(const MachineInstr &MI, LexicalScopes &LS,
223 VarLocKind K = InvalidKind)
224 : Var(MI), Expr(MI.getDebugExpression()), MI(MI),
225 UVS(MI.getDebugLoc(), LS) {
226 static_assert((sizeof(Loc) == sizeof(uint64_t)),
227 "hash does not cover all members of Loc");
228 assert(MI.isDebugValue() && "not a DBG_VALUE");
229 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
230 if (int RegNo = isDbgValueDescribedByReg(MI)) {
231 Kind = MI.isDebugEntryValue() ? EntryValueKind : RegisterKind;
232 Loc.RegNo = RegNo;
233 } else if (MI.getOperand(0).isImm()) {
234 Kind = ImmediateKind;
235 Loc.Immediate = MI.getOperand(0).getImm();
236 } else if (MI.getOperand(0).isFPImm()) {
237 Kind = ImmediateKind;
238 Loc.FPImm = MI.getOperand(0).getFPImm();
239 } else if (MI.getOperand(0).isCImm()) {
240 Kind = ImmediateKind;
241 Loc.CImm = MI.getOperand(0).getCImm();
243 assert((Kind != ImmediateKind || !MI.isDebugEntryValue()) &&
244 "entry values must be register locations");
247 /// The constructor for spill locations.
248 VarLoc(const MachineInstr &MI, unsigned SpillBase, int SpillOffset,
249 LexicalScopes &LS, const MachineInstr &OrigMI)
250 : Var(MI), Expr(MI.getDebugExpression()), MI(OrigMI),
251 UVS(MI.getDebugLoc(), LS) {
252 assert(MI.isDebugValue() && "not a DBG_VALUE");
253 assert(MI.getNumOperands() == 4 && "malformed DBG_VALUE");
254 Kind = SpillLocKind;
255 Loc.SpillLocation = {SpillBase, SpillOffset};
258 // Is the Loc field a constant or constant object?
259 bool isConstant() const { return Kind == ImmediateKind; }
261 /// If this variable is described by a register, return it,
262 /// otherwise return 0.
263 unsigned isDescribedByReg() const {
264 if (Kind == RegisterKind)
265 return Loc.RegNo;
266 return 0;
269 /// Determine whether the lexical scope of this value's debug location
270 /// dominates MBB.
271 bool dominates(MachineBasicBlock &MBB) const { return UVS.dominates(&MBB); }
273 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
274 LLVM_DUMP_METHOD void dump() const { MI.dump(); }
275 #endif
277 bool operator==(const VarLoc &Other) const {
278 return Kind == Other.Kind && Var == Other.Var &&
279 Loc.Hash == Other.Loc.Hash && Expr == Other.Expr;
282 /// This operator guarantees that VarLocs are sorted by Variable first.
283 bool operator<(const VarLoc &Other) const {
284 return std::tie(Var, Kind, Loc.Hash, Expr) <
285 std::tie(Other.Var, Other.Kind, Other.Loc.Hash, Other.Expr);
289 using DebugParamMap = SmallDenseMap<const DILocalVariable *, MachineInstr *>;
290 using VarLocMap = UniqueVector<VarLoc>;
291 using VarLocSet = SparseBitVector<>;
292 using VarLocInMBB = SmallDenseMap<const MachineBasicBlock *, VarLocSet>;
293 struct TransferDebugPair {
294 MachineInstr *TransferInst;
295 MachineInstr *DebugInst;
297 using TransferMap = SmallVector<TransferDebugPair, 4>;
299 // Types for recording sets of variable fragments that overlap. For a given
300 // local variable, we record all other fragments of that variable that could
301 // overlap it, to reduce search time.
302 using FragmentOfVar =
303 std::pair<const DILocalVariable *, DIExpression::FragmentInfo>;
304 using OverlapMap =
305 DenseMap<FragmentOfVar, SmallVector<DIExpression::FragmentInfo, 1>>;
307 // Helper while building OverlapMap, a map of all fragments seen for a given
308 // DILocalVariable.
309 using VarToFragments =
310 DenseMap<const DILocalVariable *, SmallSet<FragmentInfo, 4>>;
312 /// This holds the working set of currently open ranges. For fast
313 /// access, this is done both as a set of VarLocIDs, and a map of
314 /// DebugVariable to recent VarLocID. Note that a DBG_VALUE ends all
315 /// previous open ranges for the same variable.
316 class OpenRangesSet {
317 VarLocSet VarLocs;
318 SmallDenseMap<DebugVariable, unsigned, 8> Vars;
319 OverlapMap &OverlappingFragments;
321 public:
322 OpenRangesSet(OverlapMap &_OLapMap) : OverlappingFragments(_OLapMap) {}
324 const VarLocSet &getVarLocs() const { return VarLocs; }
326 /// Terminate all open ranges for Var by removing it from the set.
327 void erase(DebugVariable Var);
329 /// Terminate all open ranges listed in \c KillSet by removing
330 /// them from the set.
331 void erase(const VarLocSet &KillSet, const VarLocMap &VarLocIDs) {
332 VarLocs.intersectWithComplement(KillSet);
333 for (unsigned ID : KillSet)
334 Vars.erase(VarLocIDs[ID].Var);
337 /// Insert a new range into the set.
338 void insert(unsigned VarLocID, DebugVariable Var) {
339 VarLocs.set(VarLocID);
340 Vars.insert({Var, VarLocID});
343 /// Insert a set of ranges.
344 void insertFromLocSet(const VarLocSet &ToLoad, const VarLocMap &Map) {
345 for (unsigned Id : ToLoad) {
346 const VarLoc &Var = Map[Id];
347 insert(Id, Var.Var);
351 /// Empty the set.
352 void clear() {
353 VarLocs.clear();
354 Vars.clear();
357 /// Return whether the set is empty or not.
358 bool empty() const {
359 assert(Vars.empty() == VarLocs.empty() && "open ranges are inconsistent");
360 return VarLocs.empty();
364 /// Tests whether this instruction is a spill to a stack location.
365 bool isSpillInstruction(const MachineInstr &MI, MachineFunction *MF);
367 /// Decide if @MI is a spill instruction and return true if it is. We use 2
368 /// criteria to make this decision:
369 /// - Is this instruction a store to a spill slot?
370 /// - Is there a register operand that is both used and killed?
371 /// TODO: Store optimization can fold spills into other stores (including
372 /// other spills). We do not handle this yet (more than one memory operand).
373 bool isLocationSpill(const MachineInstr &MI, MachineFunction *MF,
374 unsigned &Reg);
376 /// If a given instruction is identified as a spill, return the spill location
377 /// and set \p Reg to the spilled register.
378 Optional<VarLoc::SpillLoc> isRestoreInstruction(const MachineInstr &MI,
379 MachineFunction *MF,
380 unsigned &Reg);
381 /// Given a spill instruction, extract the register and offset used to
382 /// address the spill location in a target independent way.
383 VarLoc::SpillLoc extractSpillBaseRegAndOffset(const MachineInstr &MI);
384 void insertTransferDebugPair(MachineInstr &MI, OpenRangesSet &OpenRanges,
385 TransferMap &Transfers, VarLocMap &VarLocIDs,
386 unsigned OldVarID, TransferKind Kind,
387 unsigned NewReg = 0);
389 void transferDebugValue(const MachineInstr &MI, OpenRangesSet &OpenRanges,
390 VarLocMap &VarLocIDs);
391 void transferSpillOrRestoreInst(MachineInstr &MI, OpenRangesSet &OpenRanges,
392 VarLocMap &VarLocIDs, TransferMap &Transfers);
393 void emitEntryValues(MachineInstr &MI, OpenRangesSet &OpenRanges,
394 VarLocMap &VarLocIDs, TransferMap &Transfers,
395 DebugParamMap &DebugEntryVals,
396 SparseBitVector<> &KillSet);
397 void transferRegisterCopy(MachineInstr &MI, OpenRangesSet &OpenRanges,
398 VarLocMap &VarLocIDs, TransferMap &Transfers);
399 void transferRegisterDef(MachineInstr &MI, OpenRangesSet &OpenRanges,
400 VarLocMap &VarLocIDs, TransferMap &Transfers,
401 DebugParamMap &DebugEntryVals);
402 bool transferTerminator(MachineBasicBlock *MBB, OpenRangesSet &OpenRanges,
403 VarLocInMBB &OutLocs, const VarLocMap &VarLocIDs);
405 void process(MachineInstr &MI, OpenRangesSet &OpenRanges,
406 VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
407 TransferMap &Transfers, DebugParamMap &DebugEntryVals,
408 OverlapMap &OverlapFragments,
409 VarToFragments &SeenFragments);
411 void accumulateFragmentMap(MachineInstr &MI, VarToFragments &SeenFragments,
412 OverlapMap &OLapMap);
414 bool join(MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
415 const VarLocMap &VarLocIDs,
416 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
417 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks,
418 VarLocInMBB &PendingInLocs);
420 /// Create DBG_VALUE insts for inlocs that have been propagated but
421 /// had their instruction creation deferred.
422 void flushPendingLocs(VarLocInMBB &PendingInLocs, VarLocMap &VarLocIDs);
424 bool ExtendRanges(MachineFunction &MF);
426 public:
427 static char ID;
429 /// Default construct and initialize the pass.
430 LiveDebugValues();
432 /// Tell the pass manager which passes we depend on and what
433 /// information we preserve.
434 void getAnalysisUsage(AnalysisUsage &AU) const override;
436 MachineFunctionProperties getRequiredProperties() const override {
437 return MachineFunctionProperties().set(
438 MachineFunctionProperties::Property::NoVRegs);
441 /// Print to ostream with a message.
442 void printVarLocInMBB(const MachineFunction &MF, const VarLocInMBB &V,
443 const VarLocMap &VarLocIDs, const char *msg,
444 raw_ostream &Out) const;
446 /// Calculate the liveness information for the given machine function.
447 bool runOnMachineFunction(MachineFunction &MF) override;
450 } // end anonymous namespace
452 namespace llvm {
454 template <> struct DenseMapInfo<LiveDebugValues::DebugVariable> {
455 using DV = LiveDebugValues::DebugVariable;
456 using OptFragmentInfo = LiveDebugValues::OptFragmentInfo;
457 using FragmentInfo = LiveDebugValues::FragmentInfo;
459 // Empty key: no key should be generated that has no DILocalVariable.
460 static inline DV getEmptyKey() {
461 return DV(nullptr, OptFragmentInfo(), nullptr);
464 // Difference in tombstone is that the Optional is meaningful
465 static inline DV getTombstoneKey() {
466 return DV(nullptr, OptFragmentInfo({0, 0}), nullptr);
469 static unsigned getHashValue(const DV &D) {
470 unsigned HV = 0;
471 const OptFragmentInfo &Fragment = D.getFragment();
472 if (Fragment)
473 HV = DenseMapInfo<FragmentInfo>::getHashValue(*Fragment);
475 return hash_combine(D.getVar(), HV, D.getInlinedAt());
478 static bool isEqual(const DV &A, const DV &B) { return A == B; }
481 } // namespace llvm
483 //===----------------------------------------------------------------------===//
484 // Implementation
485 //===----------------------------------------------------------------------===//
487 const DIExpression::FragmentInfo
488 LiveDebugValues::DebugVariable::DefaultFragment = {
489 std::numeric_limits<uint64_t>::max(),
490 std::numeric_limits<uint64_t>::min()};
492 char LiveDebugValues::ID = 0;
494 char &llvm::LiveDebugValuesID = LiveDebugValues::ID;
496 INITIALIZE_PASS(LiveDebugValues, DEBUG_TYPE, "Live DEBUG_VALUE analysis",
497 false, false)
499 /// Default construct and initialize the pass.
500 LiveDebugValues::LiveDebugValues() : MachineFunctionPass(ID) {
501 initializeLiveDebugValuesPass(*PassRegistry::getPassRegistry());
504 /// Tell the pass manager which passes we depend on and what information we
505 /// preserve.
506 void LiveDebugValues::getAnalysisUsage(AnalysisUsage &AU) const {
507 AU.setPreservesCFG();
508 MachineFunctionPass::getAnalysisUsage(AU);
511 /// Erase a variable from the set of open ranges, and additionally erase any
512 /// fragments that may overlap it.
513 void LiveDebugValues::OpenRangesSet::erase(DebugVariable Var) {
514 // Erasure helper.
515 auto DoErase = [this](DebugVariable VarToErase) {
516 auto It = Vars.find(VarToErase);
517 if (It != Vars.end()) {
518 unsigned ID = It->second;
519 VarLocs.reset(ID);
520 Vars.erase(It);
524 // Erase the variable/fragment that ends here.
525 DoErase(Var);
527 // Extract the fragment. Interpret an empty fragment as one that covers all
528 // possible bits.
529 FragmentInfo ThisFragment = Var.getFragmentDefault();
531 // There may be fragments that overlap the designated fragment. Look them up
532 // in the pre-computed overlap map, and erase them too.
533 auto MapIt = OverlappingFragments.find({Var.getVar(), ThisFragment});
534 if (MapIt != OverlappingFragments.end()) {
535 for (auto Fragment : MapIt->second) {
536 LiveDebugValues::OptFragmentInfo FragmentHolder;
537 if (!DebugVariable::isFragmentDefault(Fragment))
538 FragmentHolder = LiveDebugValues::OptFragmentInfo(Fragment);
539 DoErase({Var.getVar(), FragmentHolder, Var.getInlinedAt()});
544 //===----------------------------------------------------------------------===//
545 // Debug Range Extension Implementation
546 //===----------------------------------------------------------------------===//
548 #ifndef NDEBUG
549 void LiveDebugValues::printVarLocInMBB(const MachineFunction &MF,
550 const VarLocInMBB &V,
551 const VarLocMap &VarLocIDs,
552 const char *msg,
553 raw_ostream &Out) const {
554 Out << '\n' << msg << '\n';
555 for (const MachineBasicBlock &BB : MF) {
556 const VarLocSet &L = V.lookup(&BB);
557 if (L.empty())
558 continue;
559 Out << "MBB: " << BB.getNumber() << ":\n";
560 for (unsigned VLL : L) {
561 const VarLoc &VL = VarLocIDs[VLL];
562 Out << " Var: " << VL.Var.getVar()->getName();
563 Out << " MI: ";
564 VL.dump();
567 Out << "\n";
569 #endif
571 LiveDebugValues::VarLoc::SpillLoc
572 LiveDebugValues::extractSpillBaseRegAndOffset(const MachineInstr &MI) {
573 assert(MI.hasOneMemOperand() &&
574 "Spill instruction does not have exactly one memory operand?");
575 auto MMOI = MI.memoperands_begin();
576 const PseudoSourceValue *PVal = (*MMOI)->getPseudoValue();
577 assert(PVal->kind() == PseudoSourceValue::FixedStack &&
578 "Inconsistent memory operand in spill instruction");
579 int FI = cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex();
580 const MachineBasicBlock *MBB = MI.getParent();
581 unsigned Reg;
582 int Offset = TFI->getFrameIndexReference(*MBB->getParent(), FI, Reg);
583 return {Reg, Offset};
586 /// End all previous ranges related to @MI and start a new range from @MI
587 /// if it is a DBG_VALUE instr.
588 void LiveDebugValues::transferDebugValue(const MachineInstr &MI,
589 OpenRangesSet &OpenRanges,
590 VarLocMap &VarLocIDs) {
591 if (!MI.isDebugValue())
592 return;
593 const DILocalVariable *Var = MI.getDebugVariable();
594 const DIExpression *Expr = MI.getDebugExpression();
595 const DILocation *DebugLoc = MI.getDebugLoc();
596 const DILocation *InlinedAt = DebugLoc->getInlinedAt();
597 assert(Var->isValidLocationForIntrinsic(DebugLoc) &&
598 "Expected inlined-at fields to agree");
600 // End all previous ranges of Var.
601 DebugVariable V(Var, Expr, InlinedAt);
602 OpenRanges.erase(V);
604 // Add the VarLoc to OpenRanges from this DBG_VALUE.
605 unsigned ID;
606 if (isDbgValueDescribedByReg(MI) || MI.getOperand(0).isImm() ||
607 MI.getOperand(0).isFPImm() || MI.getOperand(0).isCImm()) {
608 // Use normal VarLoc constructor for registers and immediates.
609 VarLoc VL(MI, LS);
610 ID = VarLocIDs.insert(VL);
611 OpenRanges.insert(ID, VL.Var);
612 } else if (MI.hasOneMemOperand()) {
613 llvm_unreachable("DBG_VALUE with mem operand encountered after regalloc?");
614 } else {
615 // This must be an undefined location. We should leave OpenRanges closed.
616 assert(MI.getOperand(0).isReg() && MI.getOperand(0).getReg() == 0 &&
617 "Unexpected non-undef DBG_VALUE encountered");
621 void LiveDebugValues::emitEntryValues(MachineInstr &MI,
622 OpenRangesSet &OpenRanges,
623 VarLocMap &VarLocIDs,
624 TransferMap &Transfers,
625 DebugParamMap &DebugEntryVals,
626 SparseBitVector<> &KillSet) {
627 MachineFunction *MF = MI.getParent()->getParent();
628 for (unsigned ID : KillSet) {
629 if (!VarLocIDs[ID].Var.getVar()->isParameter())
630 continue;
632 const MachineInstr *CurrDebugInstr = &VarLocIDs[ID].MI;
634 // If parameter's DBG_VALUE is not in the map that means we can't
635 // generate parameter's entry value.
636 if (!DebugEntryVals.count(CurrDebugInstr->getDebugVariable()))
637 continue;
639 auto ParamDebugInstr = DebugEntryVals[CurrDebugInstr->getDebugVariable()];
640 DIExpression *NewExpr = DIExpression::prepend(
641 ParamDebugInstr->getDebugExpression(), DIExpression::EntryValue);
642 MachineInstr *EntryValDbgMI =
643 BuildMI(*MF, ParamDebugInstr->getDebugLoc(), ParamDebugInstr->getDesc(),
644 ParamDebugInstr->isIndirectDebugValue(),
645 ParamDebugInstr->getOperand(0).getReg(),
646 ParamDebugInstr->getDebugVariable(), NewExpr);
648 if (ParamDebugInstr->isIndirectDebugValue())
649 EntryValDbgMI->getOperand(1).setImm(
650 ParamDebugInstr->getOperand(1).getImm());
652 Transfers.push_back({&MI, EntryValDbgMI});
653 VarLoc VL(*EntryValDbgMI, LS);
654 unsigned EntryValLocID = VarLocIDs.insert(VL);
655 OpenRanges.insert(EntryValLocID, VL.Var);
659 /// Create new TransferDebugPair and insert it in \p Transfers. The VarLoc
660 /// with \p OldVarID should be deleted form \p OpenRanges and replaced with
661 /// new VarLoc. If \p NewReg is different than default zero value then the
662 /// new location will be register location created by the copy like instruction,
663 /// otherwise it is variable's location on the stack.
664 void LiveDebugValues::insertTransferDebugPair(
665 MachineInstr &MI, OpenRangesSet &OpenRanges, TransferMap &Transfers,
666 VarLocMap &VarLocIDs, unsigned OldVarID, TransferKind Kind,
667 unsigned NewReg) {
668 const MachineInstr *DebugInstr = &VarLocIDs[OldVarID].MI;
669 MachineFunction *MF = MI.getParent()->getParent();
670 MachineInstr *NewDebugInstr;
672 auto ProcessVarLoc = [&MI, &OpenRanges, &Transfers, &DebugInstr,
673 &VarLocIDs](VarLoc &VL, MachineInstr *NewDebugInstr) {
674 unsigned LocId = VarLocIDs.insert(VL);
676 // Close this variable's previous location range.
677 DebugVariable V(*DebugInstr);
678 OpenRanges.erase(V);
680 OpenRanges.insert(LocId, VL.Var);
681 // The newly created DBG_VALUE instruction NewDebugInstr must be inserted
682 // after MI. Keep track of the pairing.
683 TransferDebugPair MIP = {&MI, NewDebugInstr};
684 Transfers.push_back(MIP);
687 // End all previous ranges of Var.
688 OpenRanges.erase(VarLocIDs[OldVarID].Var);
689 switch (Kind) {
690 case TransferKind::TransferCopy: {
691 assert(NewReg &&
692 "No register supplied when handling a copy of a debug value");
693 // Create a DBG_VALUE instruction to describe the Var in its new
694 // register location.
695 NewDebugInstr = BuildMI(
696 *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(),
697 DebugInstr->isIndirectDebugValue(), NewReg,
698 DebugInstr->getDebugVariable(), DebugInstr->getDebugExpression());
699 if (DebugInstr->isIndirectDebugValue())
700 NewDebugInstr->getOperand(1).setImm(DebugInstr->getOperand(1).getImm());
701 VarLoc VL(*NewDebugInstr, LS);
702 ProcessVarLoc(VL, NewDebugInstr);
703 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register copy: ";
704 NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
705 /*SkipOpers*/false, /*SkipDebugLoc*/false,
706 /*AddNewLine*/true, TII));
707 return;
709 case TransferKind::TransferSpill: {
710 // Create a DBG_VALUE instruction to describe the Var in its spilled
711 // location.
712 VarLoc::SpillLoc SpillLocation = extractSpillBaseRegAndOffset(MI);
713 auto *SpillExpr = DIExpression::prepend(DebugInstr->getDebugExpression(),
714 DIExpression::ApplyOffset,
715 SpillLocation.SpillOffset);
716 NewDebugInstr = BuildMI(
717 *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), true,
718 SpillLocation.SpillBase, DebugInstr->getDebugVariable(), SpillExpr);
719 VarLoc VL(*NewDebugInstr, SpillLocation.SpillBase,
720 SpillLocation.SpillOffset, LS, *DebugInstr);
721 ProcessVarLoc(VL, NewDebugInstr);
722 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for spill: ";
723 NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
724 /*SkipOpers*/false, /*SkipDebugLoc*/false,
725 /*AddNewLine*/true, TII));
726 return;
728 case TransferKind::TransferRestore: {
729 assert(NewReg &&
730 "No register supplied when handling a restore of a debug value");
731 MachineFunction *MF = MI.getMF();
732 DIBuilder DIB(*const_cast<Function &>(MF->getFunction()).getParent());
733 // DebugInstr refers to the pre-spill location, therefore we can reuse
734 // its expression.
735 NewDebugInstr = BuildMI(
736 *MF, DebugInstr->getDebugLoc(), DebugInstr->getDesc(), false, NewReg,
737 DebugInstr->getDebugVariable(), DebugInstr->getDebugExpression());
738 VarLoc VL(*NewDebugInstr, LS);
739 ProcessVarLoc(VL, NewDebugInstr);
740 LLVM_DEBUG(dbgs() << "Creating DBG_VALUE inst for register restore: ";
741 NewDebugInstr->print(dbgs(), /*IsStandalone*/false,
742 /*SkipOpers*/false, /*SkipDebugLoc*/false,
743 /*AddNewLine*/true, TII));
744 return;
747 llvm_unreachable("Invalid transfer kind");
750 /// A definition of a register may mark the end of a range.
751 void LiveDebugValues::transferRegisterDef(
752 MachineInstr &MI, OpenRangesSet &OpenRanges, VarLocMap &VarLocIDs,
753 TransferMap &Transfers, DebugParamMap &DebugEntryVals) {
754 MachineFunction *MF = MI.getMF();
755 const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();
756 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
757 SparseBitVector<> KillSet;
758 for (const MachineOperand &MO : MI.operands()) {
759 // Determine whether the operand is a register def. Assume that call
760 // instructions never clobber SP, because some backends (e.g., AArch64)
761 // never list SP in the regmask.
762 if (MO.isReg() && MO.isDef() && MO.getReg() &&
763 Register::isPhysicalRegister(MO.getReg()) &&
764 !(MI.isCall() && MO.getReg() == SP)) {
765 // Remove ranges of all aliased registers.
766 for (MCRegAliasIterator RAI(MO.getReg(), TRI, true); RAI.isValid(); ++RAI)
767 for (unsigned ID : OpenRanges.getVarLocs())
768 if (VarLocIDs[ID].isDescribedByReg() == *RAI)
769 KillSet.set(ID);
770 } else if (MO.isRegMask()) {
771 // Remove ranges of all clobbered registers. Register masks don't usually
772 // list SP as preserved. While the debug info may be off for an
773 // instruction or two around callee-cleanup calls, transferring the
774 // DEBUG_VALUE across the call is still a better user experience.
775 for (unsigned ID : OpenRanges.getVarLocs()) {
776 unsigned Reg = VarLocIDs[ID].isDescribedByReg();
777 if (Reg && Reg != SP && MO.clobbersPhysReg(Reg))
778 KillSet.set(ID);
782 OpenRanges.erase(KillSet, VarLocIDs);
784 if (auto *TPC = getAnalysisIfAvailable<TargetPassConfig>()) {
785 auto &TM = TPC->getTM<TargetMachine>();
786 if (TM.Options.EnableDebugEntryValues)
787 emitEntryValues(MI, OpenRanges, VarLocIDs, Transfers, DebugEntryVals,
788 KillSet);
792 bool LiveDebugValues::isSpillInstruction(const MachineInstr &MI,
793 MachineFunction *MF) {
794 // TODO: Handle multiple stores folded into one.
795 if (!MI.hasOneMemOperand())
796 return false;
798 if (!MI.getSpillSize(TII) && !MI.getFoldedSpillSize(TII))
799 return false; // This is not a spill instruction, since no valid size was
800 // returned from either function.
802 return true;
805 bool LiveDebugValues::isLocationSpill(const MachineInstr &MI,
806 MachineFunction *MF, unsigned &Reg) {
807 if (!isSpillInstruction(MI, MF))
808 return false;
810 auto isKilledReg = [&](const MachineOperand MO, unsigned &Reg) {
811 if (!MO.isReg() || !MO.isUse()) {
812 Reg = 0;
813 return false;
815 Reg = MO.getReg();
816 return MO.isKill();
819 for (const MachineOperand &MO : MI.operands()) {
820 // In a spill instruction generated by the InlineSpiller the spilled
821 // register has its kill flag set.
822 if (isKilledReg(MO, Reg))
823 return true;
824 if (Reg != 0) {
825 // Check whether next instruction kills the spilled register.
826 // FIXME: Current solution does not cover search for killed register in
827 // bundles and instructions further down the chain.
828 auto NextI = std::next(MI.getIterator());
829 // Skip next instruction that points to basic block end iterator.
830 if (MI.getParent()->end() == NextI)
831 continue;
832 unsigned RegNext;
833 for (const MachineOperand &MONext : NextI->operands()) {
834 // Return true if we came across the register from the
835 // previous spill instruction that is killed in NextI.
836 if (isKilledReg(MONext, RegNext) && RegNext == Reg)
837 return true;
841 // Return false if we didn't find spilled register.
842 return false;
845 Optional<LiveDebugValues::VarLoc::SpillLoc>
846 LiveDebugValues::isRestoreInstruction(const MachineInstr &MI,
847 MachineFunction *MF, unsigned &Reg) {
848 if (!MI.hasOneMemOperand())
849 return None;
851 // FIXME: Handle folded restore instructions with more than one memory
852 // operand.
853 if (MI.getRestoreSize(TII)) {
854 Reg = MI.getOperand(0).getReg();
855 return extractSpillBaseRegAndOffset(MI);
857 return None;
860 /// A spilled register may indicate that we have to end the current range of
861 /// a variable and create a new one for the spill location.
862 /// A restored register may indicate the reverse situation.
863 /// We don't want to insert any instructions in process(), so we just create
864 /// the DBG_VALUE without inserting it and keep track of it in \p Transfers.
865 /// It will be inserted into the BB when we're done iterating over the
866 /// instructions.
867 void LiveDebugValues::transferSpillOrRestoreInst(MachineInstr &MI,
868 OpenRangesSet &OpenRanges,
869 VarLocMap &VarLocIDs,
870 TransferMap &Transfers) {
871 MachineFunction *MF = MI.getMF();
872 TransferKind TKind;
873 unsigned Reg;
874 Optional<VarLoc::SpillLoc> Loc;
876 LLVM_DEBUG(dbgs() << "Examining instruction: "; MI.dump(););
878 // First, if there are any DBG_VALUEs pointing at a spill slot that is
879 // written to, then close the variable location. The value in memory
880 // will have changed.
881 VarLocSet KillSet;
882 if (isSpillInstruction(MI, MF)) {
883 Loc = extractSpillBaseRegAndOffset(MI);
884 for (unsigned ID : OpenRanges.getVarLocs()) {
885 const VarLoc &VL = VarLocIDs[ID];
886 if (VL.Kind == VarLoc::SpillLocKind && VL.Loc.SpillLocation == *Loc) {
887 // This location is overwritten by the current instruction -- terminate
888 // the open range, and insert an explicit DBG_VALUE $noreg.
890 // Doing this at a later stage would require re-interpreting all
891 // DBG_VALUes and DIExpressions to identify whether they point at
892 // memory, and then analysing all memory writes to see if they
893 // overwrite that memory, which is expensive.
895 // At this stage, we already know which DBG_VALUEs are for spills and
896 // where they are located; it's best to fix handle overwrites now.
897 KillSet.set(ID);
898 MachineInstr *NewDebugInstr =
899 BuildMI(*MF, VL.MI.getDebugLoc(), VL.MI.getDesc(),
900 VL.MI.isIndirectDebugValue(), 0, // $noreg
901 VL.MI.getDebugVariable(), VL.MI.getDebugExpression());
902 Transfers.push_back({&MI, NewDebugInstr});
905 OpenRanges.erase(KillSet, VarLocIDs);
908 // Try to recognise spill and restore instructions that may create a new
909 // variable location.
910 if (isLocationSpill(MI, MF, Reg)) {
911 TKind = TransferKind::TransferSpill;
912 LLVM_DEBUG(dbgs() << "Recognized as spill: "; MI.dump(););
913 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
914 << "\n");
915 } else {
916 if (!(Loc = isRestoreInstruction(MI, MF, Reg)))
917 return;
918 TKind = TransferKind::TransferRestore;
919 LLVM_DEBUG(dbgs() << "Recognized as restore: "; MI.dump(););
920 LLVM_DEBUG(dbgs() << "Register: " << Reg << " " << printReg(Reg, TRI)
921 << "\n");
923 // Check if the register or spill location is the location of a debug value.
924 for (unsigned ID : OpenRanges.getVarLocs()) {
925 if (TKind == TransferKind::TransferSpill &&
926 VarLocIDs[ID].isDescribedByReg() == Reg) {
927 LLVM_DEBUG(dbgs() << "Spilling Register " << printReg(Reg, TRI) << '('
928 << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
929 } else if (TKind == TransferKind::TransferRestore &&
930 VarLocIDs[ID].Kind == VarLoc::SpillLocKind &&
931 VarLocIDs[ID].Loc.SpillLocation == *Loc) {
932 LLVM_DEBUG(dbgs() << "Restoring Register " << printReg(Reg, TRI) << '('
933 << VarLocIDs[ID].Var.getVar()->getName() << ")\n");
934 } else
935 continue;
936 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID, TKind,
937 Reg);
938 return;
942 /// If \p MI is a register copy instruction, that copies a previously tracked
943 /// value from one register to another register that is callee saved, we
944 /// create new DBG_VALUE instruction described with copy destination register.
945 void LiveDebugValues::transferRegisterCopy(MachineInstr &MI,
946 OpenRangesSet &OpenRanges,
947 VarLocMap &VarLocIDs,
948 TransferMap &Transfers) {
949 const MachineOperand *SrcRegOp, *DestRegOp;
951 if (!TII->isCopyInstr(MI, SrcRegOp, DestRegOp) || !SrcRegOp->isKill() ||
952 !DestRegOp->isDef())
953 return;
955 auto isCalleSavedReg = [&](unsigned Reg) {
956 for (MCRegAliasIterator RAI(Reg, TRI, true); RAI.isValid(); ++RAI)
957 if (CalleeSavedRegs.test(*RAI))
958 return true;
959 return false;
962 Register SrcReg = SrcRegOp->getReg();
963 Register DestReg = DestRegOp->getReg();
965 // We want to recognize instructions where destination register is callee
966 // saved register. If register that could be clobbered by the call is
967 // included, there would be a great chance that it is going to be clobbered
968 // soon. It is more likely that previous register location, which is callee
969 // saved, is going to stay unclobbered longer, even if it is killed.
970 if (!isCalleSavedReg(DestReg))
971 return;
973 for (unsigned ID : OpenRanges.getVarLocs()) {
974 if (VarLocIDs[ID].isDescribedByReg() == SrcReg) {
975 insertTransferDebugPair(MI, OpenRanges, Transfers, VarLocIDs, ID,
976 TransferKind::TransferCopy, DestReg);
977 return;
982 /// Terminate all open ranges at the end of the current basic block.
983 bool LiveDebugValues::transferTerminator(MachineBasicBlock *CurMBB,
984 OpenRangesSet &OpenRanges,
985 VarLocInMBB &OutLocs,
986 const VarLocMap &VarLocIDs) {
987 bool Changed = false;
989 if (OpenRanges.empty())
990 return false;
992 LLVM_DEBUG(for (unsigned ID
993 : OpenRanges.getVarLocs()) {
994 // Copy OpenRanges to OutLocs, if not already present.
995 dbgs() << "Add to OutLocs in MBB #" << CurMBB->getNumber() << ": ";
996 VarLocIDs[ID].dump();
998 VarLocSet &VLS = OutLocs[CurMBB];
999 Changed = VLS != OpenRanges.getVarLocs();
1000 // New OutLocs set may be different due to spill, restore or register
1001 // copy instruction processing.
1002 if (Changed)
1003 VLS = OpenRanges.getVarLocs();
1004 OpenRanges.clear();
1005 return Changed;
1008 /// Accumulate a mapping between each DILocalVariable fragment and other
1009 /// fragments of that DILocalVariable which overlap. This reduces work during
1010 /// the data-flow stage from "Find any overlapping fragments" to "Check if the
1011 /// known-to-overlap fragments are present".
1012 /// \param MI A previously unprocessed DEBUG_VALUE instruction to analyze for
1013 /// fragment usage.
1014 /// \param SeenFragments Map from DILocalVariable to all fragments of that
1015 /// Variable which are known to exist.
1016 /// \param OverlappingFragments The overlap map being constructed, from one
1017 /// Var/Fragment pair to a vector of fragments known to overlap.
1018 void LiveDebugValues::accumulateFragmentMap(MachineInstr &MI,
1019 VarToFragments &SeenFragments,
1020 OverlapMap &OverlappingFragments) {
1021 DebugVariable MIVar(MI);
1022 FragmentInfo ThisFragment = MIVar.getFragmentDefault();
1024 // If this is the first sighting of this variable, then we are guaranteed
1025 // there are currently no overlapping fragments either. Initialize the set
1026 // of seen fragments, record no overlaps for the current one, and return.
1027 auto SeenIt = SeenFragments.find(MIVar.getVar());
1028 if (SeenIt == SeenFragments.end()) {
1029 SmallSet<FragmentInfo, 4> OneFragment;
1030 OneFragment.insert(ThisFragment);
1031 SeenFragments.insert({MIVar.getVar(), OneFragment});
1033 OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}});
1034 return;
1037 // If this particular Variable/Fragment pair already exists in the overlap
1038 // map, it has already been accounted for.
1039 auto IsInOLapMap =
1040 OverlappingFragments.insert({{MIVar.getVar(), ThisFragment}, {}});
1041 if (!IsInOLapMap.second)
1042 return;
1044 auto &ThisFragmentsOverlaps = IsInOLapMap.first->second;
1045 auto &AllSeenFragments = SeenIt->second;
1047 // Otherwise, examine all other seen fragments for this variable, with "this"
1048 // fragment being a previously unseen fragment. Record any pair of
1049 // overlapping fragments.
1050 for (auto &ASeenFragment : AllSeenFragments) {
1051 // Does this previously seen fragment overlap?
1052 if (DIExpression::fragmentsOverlap(ThisFragment, ASeenFragment)) {
1053 // Yes: Mark the current fragment as being overlapped.
1054 ThisFragmentsOverlaps.push_back(ASeenFragment);
1055 // Mark the previously seen fragment as being overlapped by the current
1056 // one.
1057 auto ASeenFragmentsOverlaps =
1058 OverlappingFragments.find({MIVar.getVar(), ASeenFragment});
1059 assert(ASeenFragmentsOverlaps != OverlappingFragments.end() &&
1060 "Previously seen var fragment has no vector of overlaps");
1061 ASeenFragmentsOverlaps->second.push_back(ThisFragment);
1065 AllSeenFragments.insert(ThisFragment);
1068 /// This routine creates OpenRanges and OutLocs.
1069 void LiveDebugValues::process(MachineInstr &MI, OpenRangesSet &OpenRanges,
1070 VarLocInMBB &OutLocs, VarLocMap &VarLocIDs,
1071 TransferMap &Transfers,
1072 DebugParamMap &DebugEntryVals,
1073 OverlapMap &OverlapFragments,
1074 VarToFragments &SeenFragments) {
1075 transferDebugValue(MI, OpenRanges, VarLocIDs);
1076 transferRegisterDef(MI, OpenRanges, VarLocIDs, Transfers,
1077 DebugEntryVals);
1078 transferRegisterCopy(MI, OpenRanges, VarLocIDs, Transfers);
1079 transferSpillOrRestoreInst(MI, OpenRanges, VarLocIDs, Transfers);
1082 /// This routine joins the analysis results of all incoming edges in @MBB by
1083 /// inserting a new DBG_VALUE instruction at the start of the @MBB - if the same
1084 /// source variable in all the predecessors of @MBB reside in the same location.
1085 bool LiveDebugValues::join(
1086 MachineBasicBlock &MBB, VarLocInMBB &OutLocs, VarLocInMBB &InLocs,
1087 const VarLocMap &VarLocIDs,
1088 SmallPtrSet<const MachineBasicBlock *, 16> &Visited,
1089 SmallPtrSetImpl<const MachineBasicBlock *> &ArtificialBlocks,
1090 VarLocInMBB &PendingInLocs) {
1091 LLVM_DEBUG(dbgs() << "join MBB: " << MBB.getNumber() << "\n");
1092 bool Changed = false;
1094 VarLocSet InLocsT; // Temporary incoming locations.
1096 // For all predecessors of this MBB, find the set of VarLocs that
1097 // can be joined.
1098 int NumVisited = 0;
1099 for (auto p : MBB.predecessors()) {
1100 // Ignore backedges if we have not visited the predecessor yet. As the
1101 // predecessor hasn't yet had locations propagated into it, most locations
1102 // will not yet be valid, so treat them as all being uninitialized and
1103 // potentially valid. If a location guessed to be correct here is
1104 // invalidated later, we will remove it when we revisit this block.
1105 if (!Visited.count(p)) {
1106 LLVM_DEBUG(dbgs() << " ignoring unvisited pred MBB: " << p->getNumber()
1107 << "\n");
1108 continue;
1110 auto OL = OutLocs.find(p);
1111 // Join is null in case of empty OutLocs from any of the pred.
1112 if (OL == OutLocs.end())
1113 return false;
1115 // Just copy over the Out locs to incoming locs for the first visited
1116 // predecessor, and for all other predecessors join the Out locs.
1117 if (!NumVisited)
1118 InLocsT = OL->second;
1119 else
1120 InLocsT &= OL->second;
1122 LLVM_DEBUG({
1123 if (!InLocsT.empty()) {
1124 for (auto ID : InLocsT)
1125 dbgs() << " gathered candidate incoming var: "
1126 << VarLocIDs[ID].Var.getVar()->getName() << "\n";
1130 NumVisited++;
1133 // Filter out DBG_VALUES that are out of scope.
1134 VarLocSet KillSet;
1135 bool IsArtificial = ArtificialBlocks.count(&MBB);
1136 if (!IsArtificial) {
1137 for (auto ID : InLocsT) {
1138 if (!VarLocIDs[ID].dominates(MBB)) {
1139 KillSet.set(ID);
1140 LLVM_DEBUG({
1141 auto Name = VarLocIDs[ID].Var.getVar()->getName();
1142 dbgs() << " killing " << Name << ", it doesn't dominate MBB\n";
1147 InLocsT.intersectWithComplement(KillSet);
1149 // As we are processing blocks in reverse post-order we
1150 // should have processed at least one predecessor, unless it
1151 // is the entry block which has no predecessor.
1152 assert((NumVisited || MBB.pred_empty()) &&
1153 "Should have processed at least one predecessor");
1155 VarLocSet &ILS = InLocs[&MBB];
1156 VarLocSet &Pending = PendingInLocs[&MBB];
1158 // New locations will have DBG_VALUE insts inserted at the start of the
1159 // block, after location propagation has finished. Record the insertions
1160 // that we need to perform in the Pending set.
1161 VarLocSet Diff = InLocsT;
1162 Diff.intersectWithComplement(ILS);
1163 for (auto ID : Diff) {
1164 Pending.set(ID);
1165 ILS.set(ID);
1166 ++NumInserted;
1167 Changed = true;
1170 // We may have lost locations by learning about a predecessor that either
1171 // loses or moves a variable. Find any locations in ILS that are not in the
1172 // new in-locations, and delete those.
1173 VarLocSet Removed = ILS;
1174 Removed.intersectWithComplement(InLocsT);
1175 for (auto ID : Removed) {
1176 Pending.reset(ID);
1177 ILS.reset(ID);
1178 ++NumRemoved;
1179 Changed = true;
1182 return Changed;
1185 void LiveDebugValues::flushPendingLocs(VarLocInMBB &PendingInLocs,
1186 VarLocMap &VarLocIDs) {
1187 // PendingInLocs records all locations propagated into blocks, which have
1188 // not had DBG_VALUE insts created. Go through and create those insts now.
1189 for (auto &Iter : PendingInLocs) {
1190 // Map is keyed on a constant pointer, unwrap it so we can insert insts.
1191 auto &MBB = const_cast<MachineBasicBlock &>(*Iter.first);
1192 VarLocSet &Pending = Iter.second;
1194 for (unsigned ID : Pending) {
1195 // The ID location is live-in to MBB -- work out what kind of machine
1196 // location it is and create a DBG_VALUE.
1197 const VarLoc &DiffIt = VarLocIDs[ID];
1198 const MachineInstr *DebugInstr = &DiffIt.MI;
1199 MachineInstr *MI = nullptr;
1201 if (DiffIt.isConstant()) {
1202 MachineOperand MO(DebugInstr->getOperand(0));
1203 MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(),
1204 DebugInstr->getDesc(), false, MO,
1205 DebugInstr->getDebugVariable(),
1206 DebugInstr->getDebugExpression());
1207 } else {
1208 auto *DebugExpr = DebugInstr->getDebugExpression();
1209 Register Reg = DebugInstr->getOperand(0).getReg();
1210 bool IsIndirect = DebugInstr->isIndirectDebugValue();
1212 if (DiffIt.Kind == VarLoc::SpillLocKind) {
1213 // This is is a spilt location; DebugInstr refers to the unspilt
1214 // location. We need to rebuild the spilt location expression and
1215 // point the DBG_VALUE at the frame register.
1216 DebugExpr = DIExpression::prepend(
1217 DebugInstr->getDebugExpression(), DIExpression::ApplyOffset,
1218 DiffIt.Loc.SpillLocation.SpillOffset);
1219 Reg = TRI->getFrameRegister(*DebugInstr->getMF());
1220 IsIndirect = true;
1223 MI = BuildMI(MBB, MBB.instr_begin(), DebugInstr->getDebugLoc(),
1224 DebugInstr->getDesc(), IsIndirect, Reg,
1225 DebugInstr->getDebugVariable(), DebugExpr);
1227 (void)MI;
1228 LLVM_DEBUG(dbgs() << "Inserted: "; MI->dump(););
1233 /// Calculate the liveness information for the given machine function and
1234 /// extend ranges across basic blocks.
1235 bool LiveDebugValues::ExtendRanges(MachineFunction &MF) {
1236 LLVM_DEBUG(dbgs() << "\nDebug Range Extension\n");
1238 bool Changed = false;
1239 bool OLChanged = false;
1240 bool MBBJoined = false;
1242 VarLocMap VarLocIDs; // Map VarLoc<>unique ID for use in bitvectors.
1243 OverlapMap OverlapFragments; // Map of overlapping variable fragments
1244 OpenRangesSet OpenRanges(OverlapFragments);
1245 // Ranges that are open until end of bb.
1246 VarLocInMBB OutLocs; // Ranges that exist beyond bb.
1247 VarLocInMBB InLocs; // Ranges that are incoming after joining.
1248 TransferMap Transfers; // DBG_VALUEs associated with spills.
1249 VarLocInMBB PendingInLocs; // Ranges that are incoming after joining, but
1250 // that we have deferred creating DBG_VALUE insts
1251 // for immediately.
1253 VarToFragments SeenFragments;
1255 // Blocks which are artificial, i.e. blocks which exclusively contain
1256 // instructions without locations, or with line 0 locations.
1257 SmallPtrSet<const MachineBasicBlock *, 16> ArtificialBlocks;
1259 DenseMap<unsigned int, MachineBasicBlock *> OrderToBB;
1260 DenseMap<MachineBasicBlock *, unsigned int> BBToOrder;
1261 std::priority_queue<unsigned int, std::vector<unsigned int>,
1262 std::greater<unsigned int>>
1263 Worklist;
1264 std::priority_queue<unsigned int, std::vector<unsigned int>,
1265 std::greater<unsigned int>>
1266 Pending;
1268 // Besides parameter's modification, check whether a DBG_VALUE is inlined
1269 // in order to deduce whether the variable that it tracks comes from
1270 // a different function. If that is the case we can't track its entry value.
1271 auto IsUnmodifiedFuncParam = [&](const MachineInstr &MI) {
1272 auto *DIVar = MI.getDebugVariable();
1273 return DIVar->isParameter() && DIVar->isNotModified() &&
1274 !MI.getDebugLoc()->getInlinedAt();
1277 const TargetLowering *TLI = MF.getSubtarget().getTargetLowering();
1278 unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
1279 Register FP = TRI->getFrameRegister(MF);
1280 auto IsRegOtherThanSPAndFP = [&](const MachineOperand &Op) -> bool {
1281 return Op.isReg() && Op.getReg() != SP && Op.getReg() != FP;
1284 // Working set of currently collected debug variables mapped to DBG_VALUEs
1285 // representing candidates for production of debug entry values.
1286 DebugParamMap DebugEntryVals;
1288 MachineBasicBlock &First_MBB = *(MF.begin());
1289 // Only in the case of entry MBB collect DBG_VALUEs representing
1290 // function parameters in order to generate debug entry values for them.
1291 // Currently, we generate debug entry values only for parameters that are
1292 // unmodified throughout the function and located in a register.
1293 // TODO: Add support for parameters that are described as fragments.
1294 // TODO: Add support for modified arguments that can be expressed
1295 // by using its entry value.
1296 // TODO: Add support for local variables that are expressed in terms of
1297 // parameters entry values.
1298 for (auto &MI : First_MBB)
1299 if (MI.isDebugValue() && IsUnmodifiedFuncParam(MI) &&
1300 !MI.isIndirectDebugValue() && IsRegOtherThanSPAndFP(MI.getOperand(0)) &&
1301 !DebugEntryVals.count(MI.getDebugVariable()) &&
1302 !MI.getDebugExpression()->isFragment())
1303 DebugEntryVals[MI.getDebugVariable()] = &MI;
1305 // Initialize per-block structures and scan for fragment overlaps.
1306 for (auto &MBB : MF) {
1307 PendingInLocs[&MBB] = VarLocSet();
1309 for (auto &MI : MBB) {
1310 if (MI.isDebugValue())
1311 accumulateFragmentMap(MI, SeenFragments, OverlapFragments);
1315 auto hasNonArtificialLocation = [](const MachineInstr &MI) -> bool {
1316 if (const DebugLoc &DL = MI.getDebugLoc())
1317 return DL.getLine() != 0;
1318 return false;
1320 for (auto &MBB : MF)
1321 if (none_of(MBB.instrs(), hasNonArtificialLocation))
1322 ArtificialBlocks.insert(&MBB);
1324 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
1325 "OutLocs after initialization", dbgs()));
1327 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
1328 unsigned int RPONumber = 0;
1329 for (auto RI = RPOT.begin(), RE = RPOT.end(); RI != RE; ++RI) {
1330 OrderToBB[RPONumber] = *RI;
1331 BBToOrder[*RI] = RPONumber;
1332 Worklist.push(RPONumber);
1333 ++RPONumber;
1335 // This is a standard "union of predecessor outs" dataflow problem.
1336 // To solve it, we perform join() and process() using the two worklist method
1337 // until the ranges converge.
1338 // Ranges have converged when both worklists are empty.
1339 SmallPtrSet<const MachineBasicBlock *, 16> Visited;
1340 while (!Worklist.empty() || !Pending.empty()) {
1341 // We track what is on the pending worklist to avoid inserting the same
1342 // thing twice. We could avoid this with a custom priority queue, but this
1343 // is probably not worth it.
1344 SmallPtrSet<MachineBasicBlock *, 16> OnPending;
1345 LLVM_DEBUG(dbgs() << "Processing Worklist\n");
1346 while (!Worklist.empty()) {
1347 MachineBasicBlock *MBB = OrderToBB[Worklist.top()];
1348 Worklist.pop();
1349 MBBJoined = join(*MBB, OutLocs, InLocs, VarLocIDs, Visited,
1350 ArtificialBlocks, PendingInLocs);
1351 MBBJoined |= Visited.insert(MBB).second;
1352 if (MBBJoined) {
1353 MBBJoined = false;
1354 Changed = true;
1355 // Now that we have started to extend ranges across BBs we need to
1356 // examine spill instructions to see whether they spill registers that
1357 // correspond to user variables.
1358 // First load any pending inlocs.
1359 OpenRanges.insertFromLocSet(PendingInLocs[MBB], VarLocIDs);
1360 for (auto &MI : *MBB)
1361 process(MI, OpenRanges, OutLocs, VarLocIDs, Transfers,
1362 DebugEntryVals, OverlapFragments, SeenFragments);
1363 OLChanged |= transferTerminator(MBB, OpenRanges, OutLocs, VarLocIDs);
1365 // Add any DBG_VALUE instructions necessitated by spills.
1366 for (auto &TR : Transfers)
1367 MBB->insertAfterBundle(TR.TransferInst->getIterator(), TR.DebugInst);
1368 Transfers.clear();
1370 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs,
1371 "OutLocs after propagating", dbgs()));
1372 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs,
1373 "InLocs after propagating", dbgs()));
1375 if (OLChanged) {
1376 OLChanged = false;
1377 for (auto s : MBB->successors())
1378 if (OnPending.insert(s).second) {
1379 Pending.push(BBToOrder[s]);
1384 Worklist.swap(Pending);
1385 // At this point, pending must be empty, since it was just the empty
1386 // worklist
1387 assert(Pending.empty() && "Pending should be empty");
1390 // Deferred inlocs will not have had any DBG_VALUE insts created; do
1391 // that now.
1392 flushPendingLocs(PendingInLocs, VarLocIDs);
1394 LLVM_DEBUG(printVarLocInMBB(MF, OutLocs, VarLocIDs, "Final OutLocs", dbgs()));
1395 LLVM_DEBUG(printVarLocInMBB(MF, InLocs, VarLocIDs, "Final InLocs", dbgs()));
1396 return Changed;
1399 bool LiveDebugValues::runOnMachineFunction(MachineFunction &MF) {
1400 if (!MF.getFunction().getSubprogram())
1401 // LiveDebugValues will already have removed all DBG_VALUEs.
1402 return false;
1404 // Skip functions from NoDebug compilation units.
1405 if (MF.getFunction().getSubprogram()->getUnit()->getEmissionKind() ==
1406 DICompileUnit::NoDebug)
1407 return false;
1409 TRI = MF.getSubtarget().getRegisterInfo();
1410 TII = MF.getSubtarget().getInstrInfo();
1411 TFI = MF.getSubtarget().getFrameLowering();
1412 TFI->determineCalleeSaves(MF, CalleeSavedRegs,
1413 std::make_unique<RegScavenger>().get());
1414 LS.initialize(MF);
1416 bool Changed = ExtendRanges(MF);
1417 return Changed;