1 //===- MachineBlockPlacement.cpp - Basic Block Code Layout optimization ---===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implements basic block placement transformations using the CFG
10 // structure and branch probability estimates.
12 // The pass strives to preserve the structure of the CFG (that is, retain
13 // a topological ordering of basic blocks) in the absence of a *strong* signal
14 // to the contrary from probabilities. However, within the CFG structure, it
15 // attempts to choose an ordering which favors placing more likely sequences of
16 // blocks adjacent to each other.
18 // The algorithm works from the inner-most loop within a function outward, and
19 // at each stage walks through the basic blocks, trying to coalesce them into
20 // sequential chains where allowed by the CFG (or demanded by heavy
21 // probabilities). Finally, it walks the blocks in topological order, and the
22 // first time it reaches a chain of basic blocks, it schedules them in the
25 //===----------------------------------------------------------------------===//
27 #include "BranchFolding.h"
28 #include "llvm/ADT/ArrayRef.h"
29 #include "llvm/ADT/DenseMap.h"
30 #include "llvm/ADT/STLExtras.h"
31 #include "llvm/ADT/SetVector.h"
32 #include "llvm/ADT/SmallPtrSet.h"
33 #include "llvm/ADT/SmallVector.h"
34 #include "llvm/ADT/Statistic.h"
35 #include "llvm/Analysis/BlockFrequencyInfoImpl.h"
36 #include "llvm/CodeGen/MachineBasicBlock.h"
37 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
38 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
39 #include "llvm/CodeGen/MachineFunction.h"
40 #include "llvm/CodeGen/MachineFunctionPass.h"
41 #include "llvm/CodeGen/MachineJumpTableInfo.h"
42 #include "llvm/CodeGen/MachineLoopInfo.h"
43 #include "llvm/CodeGen/MachineModuleInfo.h"
44 #include "llvm/CodeGen/MachinePostDominators.h"
45 #include "llvm/CodeGen/TailDuplicator.h"
46 #include "llvm/CodeGen/TargetInstrInfo.h"
47 #include "llvm/CodeGen/TargetLowering.h"
48 #include "llvm/CodeGen/TargetPassConfig.h"
49 #include "llvm/CodeGen/TargetSubtargetInfo.h"
50 #include "llvm/IR/DebugLoc.h"
51 #include "llvm/IR/Function.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Allocator.h"
54 #include "llvm/Support/BlockFrequency.h"
55 #include "llvm/Support/BranchProbability.h"
56 #include "llvm/Support/CodeGen.h"
57 #include "llvm/Support/CommandLine.h"
58 #include "llvm/Support/Compiler.h"
59 #include "llvm/Support/Debug.h"
60 #include "llvm/Support/raw_ostream.h"
61 #include "llvm/Target/TargetMachine.h"
74 #define DEBUG_TYPE "block-placement"
76 STATISTIC(NumCondBranches
, "Number of conditional branches");
77 STATISTIC(NumUncondBranches
, "Number of unconditional branches");
78 STATISTIC(CondBranchTakenFreq
,
79 "Potential frequency of taking conditional branches");
80 STATISTIC(UncondBranchTakenFreq
,
81 "Potential frequency of taking unconditional branches");
83 static cl::opt
<unsigned> AlignAllBlock(
85 cl::desc("Force the alignment of all blocks in the function in log2 format "
86 "(e.g 4 means align on 16B boundaries)."),
87 cl::init(0), cl::Hidden
);
89 static cl::opt
<unsigned> AlignAllNonFallThruBlocks(
90 "align-all-nofallthru-blocks",
91 cl::desc("Force the alignment of all blocks that have no fall-through "
92 "predecessors (i.e. don't add nops that are executed). In log2 "
93 "format (e.g 4 means align on 16B boundaries)."),
94 cl::init(0), cl::Hidden
);
96 // FIXME: Find a good default for this flag and remove the flag.
97 static cl::opt
<unsigned> ExitBlockBias(
98 "block-placement-exit-block-bias",
99 cl::desc("Block frequency percentage a loop exit block needs "
100 "over the original exit to be considered the new exit."),
101 cl::init(0), cl::Hidden
);
104 // - Outlining: placement of a basic block outside the chain or hot path.
106 static cl::opt
<unsigned> LoopToColdBlockRatio(
107 "loop-to-cold-block-ratio",
108 cl::desc("Outline loop blocks from loop chain if (frequency of loop) / "
109 "(frequency of block) is greater than this ratio"),
110 cl::init(5), cl::Hidden
);
112 static cl::opt
<bool> ForceLoopColdBlock(
113 "force-loop-cold-block",
114 cl::desc("Force outlining cold blocks from loops."),
115 cl::init(false), cl::Hidden
);
118 PreciseRotationCost("precise-rotation-cost",
119 cl::desc("Model the cost of loop rotation more "
120 "precisely by using profile data."),
121 cl::init(false), cl::Hidden
);
124 ForcePreciseRotationCost("force-precise-rotation-cost",
125 cl::desc("Force the use of precise cost "
126 "loop rotation strategy."),
127 cl::init(false), cl::Hidden
);
129 static cl::opt
<unsigned> MisfetchCost(
131 cl::desc("Cost that models the probabilistic risk of an instruction "
132 "misfetch due to a jump comparing to falling through, whose cost "
134 cl::init(1), cl::Hidden
);
136 static cl::opt
<unsigned> JumpInstCost("jump-inst-cost",
137 cl::desc("Cost of jump instructions."),
138 cl::init(1), cl::Hidden
);
140 TailDupPlacement("tail-dup-placement",
141 cl::desc("Perform tail duplication during placement. "
142 "Creates more fallthrough opportunites in "
143 "outline branches."),
144 cl::init(true), cl::Hidden
);
147 BranchFoldPlacement("branch-fold-placement",
148 cl::desc("Perform branch folding during placement. "
149 "Reduces code size."),
150 cl::init(true), cl::Hidden
);
152 // Heuristic for tail duplication.
153 static cl::opt
<unsigned> TailDupPlacementThreshold(
154 "tail-dup-placement-threshold",
155 cl::desc("Instruction cutoff for tail duplication during layout. "
156 "Tail merging during layout is forced to have a threshold "
157 "that won't conflict."), cl::init(2),
160 // Heuristic for aggressive tail duplication.
161 static cl::opt
<unsigned> TailDupPlacementAggressiveThreshold(
162 "tail-dup-placement-aggressive-threshold",
163 cl::desc("Instruction cutoff for aggressive tail duplication during "
164 "layout. Used at -O3. Tail merging during layout is forced to "
165 "have a threshold that won't conflict."), cl::init(4),
168 // Heuristic for tail duplication.
169 static cl::opt
<unsigned> TailDupPlacementPenalty(
170 "tail-dup-placement-penalty",
171 cl::desc("Cost penalty for blocks that can avoid breaking CFG by copying. "
172 "Copying can increase fallthrough, but it also increases icache "
173 "pressure. This parameter controls the penalty to account for that. "
174 "Percent as integer."),
178 // Heuristic for triangle chains.
179 static cl::opt
<unsigned> TriangleChainCount(
180 "triangle-chain-count",
181 cl::desc("Number of triangle-shaped-CFG's that need to be in a row for the "
182 "triangle tail duplication heuristic to kick in. 0 to disable."),
186 extern cl::opt
<unsigned> StaticLikelyProb
;
187 extern cl::opt
<unsigned> ProfileLikelyProb
;
189 // Internal option used to control BFI display only after MBP pass.
190 // Defined in CodeGen/MachineBlockFrequencyInfo.cpp:
191 // -view-block-layout-with-bfi=
192 extern cl::opt
<GVDAGType
> ViewBlockLayoutWithBFI
;
194 // Command line option to specify the name of the function for CFG dump
195 // Defined in Analysis/BlockFrequencyInfo.cpp: -view-bfi-func-name=
196 extern cl::opt
<std::string
> ViewBlockFreqFuncName
;
202 /// Type for our function-wide basic block -> block chain mapping.
203 using BlockToChainMapType
= DenseMap
<const MachineBasicBlock
*, BlockChain
*>;
205 /// A chain of blocks which will be laid out contiguously.
207 /// This is the datastructure representing a chain of consecutive blocks that
208 /// are profitable to layout together in order to maximize fallthrough
209 /// probabilities and code locality. We also can use a block chain to represent
210 /// a sequence of basic blocks which have some external (correctness)
211 /// requirement for sequential layout.
213 /// Chains can be built around a single basic block and can be merged to grow
214 /// them. They participate in a block-to-chain mapping, which is updated
215 /// automatically as chains are merged together.
217 /// The sequence of blocks belonging to this chain.
219 /// This is the sequence of blocks for a particular chain. These will be laid
220 /// out in-order within the function.
221 SmallVector
<MachineBasicBlock
*, 4> Blocks
;
223 /// A handle to the function-wide basic block to block chain mapping.
225 /// This is retained in each block chain to simplify the computation of child
226 /// block chains for SCC-formation and iteration. We store the edges to child
227 /// basic blocks, and map them back to their associated chains using this
229 BlockToChainMapType
&BlockToChain
;
232 /// Construct a new BlockChain.
234 /// This builds a new block chain representing a single basic block in the
235 /// function. It also registers itself as the chain that block participates
236 /// in with the BlockToChain mapping.
237 BlockChain(BlockToChainMapType
&BlockToChain
, MachineBasicBlock
*BB
)
238 : Blocks(1, BB
), BlockToChain(BlockToChain
) {
239 assert(BB
&& "Cannot create a chain with a null basic block");
240 BlockToChain
[BB
] = this;
243 /// Iterator over blocks within the chain.
244 using iterator
= SmallVectorImpl
<MachineBasicBlock
*>::iterator
;
245 using const_iterator
= SmallVectorImpl
<MachineBasicBlock
*>::const_iterator
;
247 /// Beginning of blocks within the chain.
248 iterator
begin() { return Blocks
.begin(); }
249 const_iterator
begin() const { return Blocks
.begin(); }
251 /// End of blocks within the chain.
252 iterator
end() { return Blocks
.end(); }
253 const_iterator
end() const { return Blocks
.end(); }
255 bool remove(MachineBasicBlock
* BB
) {
256 for(iterator i
= begin(); i
!= end(); ++i
) {
265 /// Merge a block chain into this one.
267 /// This routine merges a block chain into this one. It takes care of forming
268 /// a contiguous sequence of basic blocks, updating the edge list, and
269 /// updating the block -> chain mapping. It does not free or tear down the
270 /// old chain, but the old chain's block list is no longer valid.
271 void merge(MachineBasicBlock
*BB
, BlockChain
*Chain
) {
272 assert(BB
&& "Can't merge a null block.");
273 assert(!Blocks
.empty() && "Can't merge into an empty chain.");
275 // Fast path in case we don't have a chain already.
277 assert(!BlockToChain
[BB
] &&
278 "Passed chain is null, but BB has entry in BlockToChain.");
279 Blocks
.push_back(BB
);
280 BlockToChain
[BB
] = this;
284 assert(BB
== *Chain
->begin() && "Passed BB is not head of Chain.");
285 assert(Chain
->begin() != Chain
->end());
287 // Update the incoming blocks to point to this chain, and add them to the
289 for (MachineBasicBlock
*ChainBB
: *Chain
) {
290 Blocks
.push_back(ChainBB
);
291 assert(BlockToChain
[ChainBB
] == Chain
&& "Incoming blocks not in chain.");
292 BlockToChain
[ChainBB
] = this;
297 /// Dump the blocks in this chain.
298 LLVM_DUMP_METHOD
void dump() {
299 for (MachineBasicBlock
*MBB
: *this)
304 /// Count of predecessors of any block within the chain which have not
305 /// yet been scheduled. In general, we will delay scheduling this chain
306 /// until those predecessors are scheduled (or we find a sufficiently good
307 /// reason to override this heuristic.) Note that when forming loop chains,
308 /// blocks outside the loop are ignored and treated as if they were already
311 /// Note: This field is reinitialized multiple times - once for each loop,
312 /// and then once for the function as a whole.
313 unsigned UnscheduledPredecessors
= 0;
316 class MachineBlockPlacement
: public MachineFunctionPass
{
317 /// A type for a block filter set.
318 using BlockFilterSet
= SmallSetVector
<const MachineBasicBlock
*, 16>;
320 /// Pair struct containing basic block and taildup profitability
321 struct BlockAndTailDupResult
{
322 MachineBasicBlock
*BB
;
326 /// Triple struct containing edge weight and the edge.
327 struct WeightedEdge
{
328 BlockFrequency Weight
;
329 MachineBasicBlock
*Src
;
330 MachineBasicBlock
*Dest
;
333 /// work lists of blocks that are ready to be laid out
334 SmallVector
<MachineBasicBlock
*, 16> BlockWorkList
;
335 SmallVector
<MachineBasicBlock
*, 16> EHPadWorkList
;
337 /// Edges that have already been computed as optimal.
338 DenseMap
<const MachineBasicBlock
*, BlockAndTailDupResult
> ComputedEdges
;
343 /// A handle to the branch probability pass.
344 const MachineBranchProbabilityInfo
*MBPI
;
346 /// A handle to the function-wide block frequency pass.
347 std::unique_ptr
<BranchFolder::MBFIWrapper
> MBFI
;
349 /// A handle to the loop info.
350 MachineLoopInfo
*MLI
;
352 /// Preferred loop exit.
353 /// Member variable for convenience. It may be removed by duplication deep
354 /// in the call stack.
355 MachineBasicBlock
*PreferredLoopExit
;
357 /// A handle to the target's instruction info.
358 const TargetInstrInfo
*TII
;
360 /// A handle to the target's lowering info.
361 const TargetLoweringBase
*TLI
;
363 /// A handle to the post dominator tree.
364 MachinePostDominatorTree
*MPDT
;
366 /// Duplicator used to duplicate tails during placement.
368 /// Placement decisions can open up new tail duplication opportunities, but
369 /// since tail duplication affects placement decisions of later blocks, it
370 /// must be done inline.
371 TailDuplicator TailDup
;
373 /// Allocator and owner of BlockChain structures.
375 /// We build BlockChains lazily while processing the loop structure of
376 /// a function. To reduce malloc traffic, we allocate them using this
377 /// slab-like allocator, and destroy them after the pass completes. An
378 /// important guarantee is that this allocator produces stable pointers to
380 SpecificBumpPtrAllocator
<BlockChain
> ChainAllocator
;
382 /// Function wide BasicBlock to BlockChain mapping.
384 /// This mapping allows efficiently moving from any given basic block to the
385 /// BlockChain it participates in, if any. We use it to, among other things,
386 /// allow implicitly defining edges between chains as the existing edges
387 /// between basic blocks.
388 DenseMap
<const MachineBasicBlock
*, BlockChain
*> BlockToChain
;
391 /// The set of basic blocks that have terminators that cannot be fully
392 /// analyzed. These basic blocks cannot be re-ordered safely by
393 /// MachineBlockPlacement, and we must preserve physical layout of these
394 /// blocks and their successors through the pass.
395 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksWithUnanalyzableExits
;
398 /// Decrease the UnscheduledPredecessors count for all blocks in chain, and
399 /// if the count goes to 0, add them to the appropriate work list.
400 void markChainSuccessors(
401 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
402 const BlockFilterSet
*BlockFilter
= nullptr);
404 /// Decrease the UnscheduledPredecessors count for a single block, and
405 /// if the count goes to 0, add them to the appropriate work list.
406 void markBlockSuccessors(
407 const BlockChain
&Chain
, const MachineBasicBlock
*BB
,
408 const MachineBasicBlock
*LoopHeaderBB
,
409 const BlockFilterSet
*BlockFilter
= nullptr);
412 collectViableSuccessors(
413 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
414 const BlockFilterSet
*BlockFilter
,
415 SmallVector
<MachineBasicBlock
*, 4> &Successors
);
416 bool shouldPredBlockBeOutlined(
417 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
418 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
,
419 BranchProbability SuccProb
, BranchProbability HotProb
);
420 bool repeatedlyTailDuplicateBlock(
421 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
422 const MachineBasicBlock
*LoopHeaderBB
,
423 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
424 MachineFunction::iterator
&PrevUnplacedBlockIt
);
425 bool maybeTailDuplicateBlock(
426 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
427 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
428 MachineFunction::iterator
&PrevUnplacedBlockIt
,
429 bool &DuplicatedToLPred
);
430 bool hasBetterLayoutPredecessor(
431 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
432 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
433 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
434 const BlockFilterSet
*BlockFilter
);
435 BlockAndTailDupResult
selectBestSuccessor(
436 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
437 const BlockFilterSet
*BlockFilter
);
438 MachineBasicBlock
*selectBestCandidateBlock(
439 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
);
440 MachineBasicBlock
*getFirstUnplacedBlock(
441 const BlockChain
&PlacedChain
,
442 MachineFunction::iterator
&PrevUnplacedBlockIt
,
443 const BlockFilterSet
*BlockFilter
);
445 /// Add a basic block to the work list if it is appropriate.
447 /// If the optional parameter BlockFilter is provided, only MBB
448 /// present in the set will be added to the worklist. If nullptr
449 /// is provided, no filtering occurs.
450 void fillWorkLists(const MachineBasicBlock
*MBB
,
451 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
452 const BlockFilterSet
*BlockFilter
);
454 void buildChain(const MachineBasicBlock
*BB
, BlockChain
&Chain
,
455 BlockFilterSet
*BlockFilter
= nullptr);
456 bool canMoveBottomBlockToTop(const MachineBasicBlock
*BottomBlock
,
457 const MachineBasicBlock
*OldTop
);
458 bool hasViableTopFallthrough(const MachineBasicBlock
*Top
,
459 const BlockFilterSet
&LoopBlockSet
);
460 BlockFrequency
TopFallThroughFreq(const MachineBasicBlock
*Top
,
461 const BlockFilterSet
&LoopBlockSet
);
462 BlockFrequency
FallThroughGains(const MachineBasicBlock
*NewTop
,
463 const MachineBasicBlock
*OldTop
,
464 const MachineBasicBlock
*ExitBB
,
465 const BlockFilterSet
&LoopBlockSet
);
466 MachineBasicBlock
*findBestLoopTopHelper(MachineBasicBlock
*OldTop
,
467 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
468 MachineBasicBlock
*findBestLoopTop(
469 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
);
470 MachineBasicBlock
*findBestLoopExit(
471 const MachineLoop
&L
, const BlockFilterSet
&LoopBlockSet
,
472 BlockFrequency
&ExitFreq
);
473 BlockFilterSet
collectLoopBlockSet(const MachineLoop
&L
);
474 void buildLoopChains(const MachineLoop
&L
);
476 BlockChain
&LoopChain
, const MachineBasicBlock
*ExitingBB
,
477 BlockFrequency ExitFreq
, const BlockFilterSet
&LoopBlockSet
);
478 void rotateLoopWithProfile(
479 BlockChain
&LoopChain
, const MachineLoop
&L
,
480 const BlockFilterSet
&LoopBlockSet
);
481 void buildCFGChains();
482 void optimizeBranches();
484 /// Returns true if a block should be tail-duplicated to increase fallthrough
486 bool shouldTailDuplicate(MachineBasicBlock
*BB
);
487 /// Check the edge frequencies to see if tail duplication will increase
489 bool isProfitableToTailDup(
490 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
491 BranchProbability QProb
,
492 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
494 /// Check for a trellis layout.
495 bool isTrellis(const MachineBasicBlock
*BB
,
496 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
497 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
499 /// Get the best successor given a trellis layout.
500 BlockAndTailDupResult
getBestTrellisSuccessor(
501 const MachineBasicBlock
*BB
,
502 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
503 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
504 const BlockFilterSet
*BlockFilter
);
506 /// Get the best pair of non-conflicting edges.
507 static std::pair
<WeightedEdge
, WeightedEdge
> getBestNonConflictingEdges(
508 const MachineBasicBlock
*BB
,
509 MutableArrayRef
<SmallVector
<WeightedEdge
, 8>> Edges
);
511 /// Returns true if a block can tail duplicate into all unplaced
512 /// predecessors. Filters based on loop.
513 bool canTailDuplicateUnplacedPreds(
514 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
515 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
);
517 /// Find chains of triangles to tail-duplicate where a global analysis works,
518 /// but a local analysis would not find them.
519 void precomputeTriangleChains();
522 static char ID
; // Pass identification, replacement for typeid
524 MachineBlockPlacement() : MachineFunctionPass(ID
) {
525 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
528 bool runOnMachineFunction(MachineFunction
&F
) override
;
530 bool allowTailDupPlacement() const {
532 return TailDupPlacement
&& !F
->getTarget().requiresStructuredCFG();
535 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
536 AU
.addRequired
<MachineBranchProbabilityInfo
>();
537 AU
.addRequired
<MachineBlockFrequencyInfo
>();
538 if (TailDupPlacement
)
539 AU
.addRequired
<MachinePostDominatorTree
>();
540 AU
.addRequired
<MachineLoopInfo
>();
541 AU
.addRequired
<TargetPassConfig
>();
542 MachineFunctionPass::getAnalysisUsage(AU
);
546 } // end anonymous namespace
548 char MachineBlockPlacement::ID
= 0;
550 char &llvm::MachineBlockPlacementID
= MachineBlockPlacement::ID
;
552 INITIALIZE_PASS_BEGIN(MachineBlockPlacement
, DEBUG_TYPE
,
553 "Branch Probability Basic Block Placement", false, false)
554 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
555 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
556 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree
)
557 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo
)
558 INITIALIZE_PASS_END(MachineBlockPlacement
, DEBUG_TYPE
,
559 "Branch Probability Basic Block Placement", false, false)
562 /// Helper to print the name of a MBB.
564 /// Only used by debug logging.
565 static std::string
getBlockName(const MachineBasicBlock
*BB
) {
567 raw_string_ostream
OS(Result
);
568 OS
<< printMBBReference(*BB
);
569 OS
<< " ('" << BB
->getName() << "')";
575 /// Mark a chain's successors as having one fewer preds.
577 /// When a chain is being merged into the "placed" chain, this routine will
578 /// quickly walk the successors of each block in the chain and mark them as
579 /// having one fewer active predecessor. It also adds any successors of this
580 /// chain which reach the zero-predecessor state to the appropriate worklist.
581 void MachineBlockPlacement::markChainSuccessors(
582 const BlockChain
&Chain
, const MachineBasicBlock
*LoopHeaderBB
,
583 const BlockFilterSet
*BlockFilter
) {
584 // Walk all the blocks in this chain, marking their successors as having
585 // a predecessor placed.
586 for (MachineBasicBlock
*MBB
: Chain
) {
587 markBlockSuccessors(Chain
, MBB
, LoopHeaderBB
, BlockFilter
);
591 /// Mark a single block's successors as having one fewer preds.
593 /// Under normal circumstances, this is only called by markChainSuccessors,
594 /// but if a block that was to be placed is completely tail-duplicated away,
595 /// and was duplicated into the chain end, we need to redo markBlockSuccessors
596 /// for just that block.
597 void MachineBlockPlacement::markBlockSuccessors(
598 const BlockChain
&Chain
, const MachineBasicBlock
*MBB
,
599 const MachineBasicBlock
*LoopHeaderBB
, const BlockFilterSet
*BlockFilter
) {
600 // Add any successors for which this is the only un-placed in-loop
601 // predecessor to the worklist as a viable candidate for CFG-neutral
602 // placement. No subsequent placement of this block will violate the CFG
603 // shape, so we get to use heuristics to choose a favorable placement.
604 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
605 if (BlockFilter
&& !BlockFilter
->count(Succ
))
607 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
608 // Disregard edges within a fixed chain, or edges to the loop header.
609 if (&Chain
== &SuccChain
|| Succ
== LoopHeaderBB
)
612 // This is a cross-chain edge that is within the loop, so decrement the
613 // loop predecessor count of the destination chain.
614 if (SuccChain
.UnscheduledPredecessors
== 0 ||
615 --SuccChain
.UnscheduledPredecessors
> 0)
618 auto *NewBB
= *SuccChain
.begin();
619 if (NewBB
->isEHPad())
620 EHPadWorkList
.push_back(NewBB
);
622 BlockWorkList
.push_back(NewBB
);
626 /// This helper function collects the set of successors of block
627 /// \p BB that are allowed to be its layout successors, and return
628 /// the total branch probability of edges from \p BB to those
630 BranchProbability
MachineBlockPlacement::collectViableSuccessors(
631 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
632 const BlockFilterSet
*BlockFilter
,
633 SmallVector
<MachineBasicBlock
*, 4> &Successors
) {
634 // Adjust edge probabilities by excluding edges pointing to blocks that is
635 // either not in BlockFilter or is already in the current chain. Consider the
644 // Assume A->C is very hot (>90%), and C->D has a 50% probability, then after
645 // A->C is chosen as a fall-through, D won't be selected as a successor of C
646 // due to CFG constraint (the probability of C->D is not greater than
647 // HotProb to break topo-order). If we exclude E that is not in BlockFilter
648 // when calculating the probability of C->D, D will be selected and we
649 // will get A C D B as the layout of this loop.
650 auto AdjustedSumProb
= BranchProbability::getOne();
651 for (MachineBasicBlock
*Succ
: BB
->successors()) {
652 bool SkipSucc
= false;
653 if (Succ
->isEHPad() || (BlockFilter
&& !BlockFilter
->count(Succ
))) {
656 BlockChain
*SuccChain
= BlockToChain
[Succ
];
657 if (SuccChain
== &Chain
) {
659 } else if (Succ
!= *SuccChain
->begin()) {
660 LLVM_DEBUG(dbgs() << " " << getBlockName(Succ
)
661 << " -> Mid chain!\n");
666 AdjustedSumProb
-= MBPI
->getEdgeProbability(BB
, Succ
);
668 Successors
.push_back(Succ
);
671 return AdjustedSumProb
;
674 /// The helper function returns the branch probability that is adjusted
675 /// or normalized over the new total \p AdjustedSumProb.
676 static BranchProbability
677 getAdjustedProbability(BranchProbability OrigProb
,
678 BranchProbability AdjustedSumProb
) {
679 BranchProbability SuccProb
;
680 uint32_t SuccProbN
= OrigProb
.getNumerator();
681 uint32_t SuccProbD
= AdjustedSumProb
.getNumerator();
682 if (SuccProbN
>= SuccProbD
)
683 SuccProb
= BranchProbability::getOne();
685 SuccProb
= BranchProbability(SuccProbN
, SuccProbD
);
690 /// Check if \p BB has exactly the successors in \p Successors.
692 hasSameSuccessors(MachineBasicBlock
&BB
,
693 SmallPtrSetImpl
<const MachineBasicBlock
*> &Successors
) {
694 if (BB
.succ_size() != Successors
.size())
696 // We don't want to count self-loops
697 if (Successors
.count(&BB
))
699 for (MachineBasicBlock
*Succ
: BB
.successors())
700 if (!Successors
.count(Succ
))
705 /// Check if a block should be tail duplicated to increase fallthrough
707 /// \p BB Block to check.
708 bool MachineBlockPlacement::shouldTailDuplicate(MachineBasicBlock
*BB
) {
709 // Blocks with single successors don't create additional fallthrough
710 // opportunities. Don't duplicate them. TODO: When conditional exits are
711 // analyzable, allow them to be duplicated.
712 bool IsSimple
= TailDup
.isSimpleBB(BB
);
714 if (BB
->succ_size() == 1)
716 return TailDup
.shouldTailDuplicate(IsSimple
, *BB
);
719 /// Compare 2 BlockFrequency's with a small penalty for \p A.
720 /// In order to be conservative, we apply a X% penalty to account for
721 /// increased icache pressure and static heuristics. For small frequencies
722 /// we use only the numerators to improve accuracy. For simplicity, we assume the
723 /// penalty is less than 100%
724 /// TODO(iteratee): Use 64-bit fixed point edge frequencies everywhere.
725 static bool greaterWithBias(BlockFrequency A
, BlockFrequency B
,
726 uint64_t EntryFreq
) {
727 BranchProbability
ThresholdProb(TailDupPlacementPenalty
, 100);
728 BlockFrequency Gain
= A
- B
;
729 return (Gain
/ ThresholdProb
).getFrequency() >= EntryFreq
;
732 /// Check the edge frequencies to see if tail duplication will increase
733 /// fallthroughs. It only makes sense to call this function when
734 /// \p Succ would not be chosen otherwise. Tail duplication of \p Succ is
735 /// always locally profitable if we would have picked \p Succ without
736 /// considering duplication.
737 bool MachineBlockPlacement::isProfitableToTailDup(
738 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
739 BranchProbability QProb
,
740 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
741 // We need to do a probability calculation to make sure this is profitable.
742 // First: does succ have a successor that post-dominates? This affects the
743 // calculation. The 2 relevant cases are:
758 // '=' : Branch taken for that CFG edge
759 // In the second case, Placing Succ while duplicating it into C prevents the
760 // fallthrough of Succ into either D or PDom, because they now have C as an
761 // unplaced predecessor
763 // Start by figuring out which case we fall into
764 MachineBasicBlock
*PDom
= nullptr;
765 SmallVector
<MachineBasicBlock
*, 4> SuccSuccs
;
766 // Only scan the relevant successors
767 auto AdjustedSuccSumProb
=
768 collectViableSuccessors(Succ
, Chain
, BlockFilter
, SuccSuccs
);
769 BranchProbability PProb
= MBPI
->getEdgeProbability(BB
, Succ
);
770 auto BBFreq
= MBFI
->getBlockFreq(BB
);
771 auto SuccFreq
= MBFI
->getBlockFreq(Succ
);
772 BlockFrequency P
= BBFreq
* PProb
;
773 BlockFrequency Qout
= BBFreq
* QProb
;
774 uint64_t EntryFreq
= MBFI
->getEntryFreq();
775 // If there are no more successors, it is profitable to copy, as it strictly
776 // increases fallthrough.
777 if (SuccSuccs
.size() == 0)
778 return greaterWithBias(P
, Qout
, EntryFreq
);
780 auto BestSuccSucc
= BranchProbability::getZero();
781 // Find the PDom or the best Succ if no PDom exists.
782 for (MachineBasicBlock
*SuccSucc
: SuccSuccs
) {
783 auto Prob
= MBPI
->getEdgeProbability(Succ
, SuccSucc
);
784 if (Prob
> BestSuccSucc
)
787 if (MPDT
->dominates(SuccSucc
, Succ
)) {
792 // For the comparisons, we need to know Succ's best incoming edge that isn't
794 auto SuccBestPred
= BlockFrequency(0);
795 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
796 if (SuccPred
== Succ
|| SuccPred
== BB
797 || BlockToChain
[SuccPred
] == &Chain
798 || (BlockFilter
&& !BlockFilter
->count(SuccPred
)))
800 auto Freq
= MBFI
->getBlockFreq(SuccPred
)
801 * MBPI
->getEdgeProbability(SuccPred
, Succ
);
802 if (Freq
> SuccBestPred
)
805 // Qin is Succ's best unplaced incoming edge that isn't BB
806 BlockFrequency Qin
= SuccBestPred
;
807 // If it doesn't have a post-dominating successor, here is the calculation:
819 // '=' : Branch taken for that CFG edge
820 // Cost in the first case is: P + V
821 // For this calculation, we always assume P > Qout. If Qout > P
822 // The result of this function will be ignored at the caller.
823 // Let F = SuccFreq - Qin
824 // Cost in the second case is: Qout + min(Qin, F) * U + max(Qin, F) * V
826 if (PDom
== nullptr || !Succ
->isSuccessor(PDom
)) {
827 BranchProbability UProb
= BestSuccSucc
;
828 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
829 BlockFrequency F
= SuccFreq
- Qin
;
830 BlockFrequency V
= SuccFreq
* VProb
;
831 BlockFrequency QinU
= std::min(Qin
, F
) * UProb
;
832 BlockFrequency BaseCost
= P
+ V
;
833 BlockFrequency DupCost
= Qout
+ QinU
+ std::max(Qin
, F
) * VProb
;
834 return greaterWithBias(BaseCost
, DupCost
, EntryFreq
);
836 BranchProbability UProb
= MBPI
->getEdgeProbability(Succ
, PDom
);
837 BranchProbability VProb
= AdjustedSuccSumProb
- UProb
;
838 BlockFrequency U
= SuccFreq
* UProb
;
839 BlockFrequency V
= SuccFreq
* VProb
;
840 BlockFrequency F
= SuccFreq
- Qin
;
841 // If there is a post-dominating successor, here is the calculation:
843 // | \Qout | \ | \Qout | \
845 // = C' |P C = C' |P C
846 // | /Qin | | | /Qin | |
847 // | / | C' (+Succ) | / | C' (+Succ)
848 // Succ Succ /| Succ Succ /|
849 // | \ V | \/ | | \ V | \/ |
850 // |U \ |U /\ =? |U = |U /\ |
851 // = D = = =?| | D | = =|
856 // '=' : Branch taken for that CFG edge
857 // The cost for taken branches in the first case is P + U
858 // Let F = SuccFreq - Qin
859 // The cost in the second case (assuming independence), given the layout:
860 // BB, Succ, (C+Succ), D, Dom or the layout:
861 // BB, Succ, D, Dom, (C+Succ)
862 // is Qout + max(F, Qin) * U + min(F, Qin)
863 // compare P + U vs Qout + P * U + Qin.
865 // The 3rd and 4th cases cover when Dom would be chosen to follow Succ.
867 // For the 3rd case, the cost is P + 2 * V
868 // For the 4th case, the cost is Qout + min(Qin, F) * U + max(Qin, F) * V + V
869 // We choose 4 over 3 when (P + V) > Qout + min(Qin, F) * U + max(Qin, F) * V
870 if (UProb
> AdjustedSuccSumProb
/ 2 &&
871 !hasBetterLayoutPredecessor(Succ
, PDom
, *BlockToChain
[PDom
], UProb
, UProb
,
874 return greaterWithBias(
875 (P
+ V
), (Qout
+ std::max(Qin
, F
) * VProb
+ std::min(Qin
, F
) * UProb
),
878 return greaterWithBias((P
+ U
),
879 (Qout
+ std::min(Qin
, F
) * AdjustedSuccSumProb
+
880 std::max(Qin
, F
) * UProb
),
884 /// Check for a trellis layout. \p BB is the upper part of a trellis if its
885 /// successors form the lower part of a trellis. A successor set S forms the
886 /// lower part of a trellis if all of the predecessors of S are either in S or
887 /// have all of S as successors. We ignore trellises where BB doesn't have 2
888 /// successors because for fewer than 2, it's trivial, and for 3 or greater they
889 /// are very uncommon and complex to compute optimally. Allowing edges within S
890 /// is not strictly a trellis, but the same algorithm works, so we allow it.
891 bool MachineBlockPlacement::isTrellis(
892 const MachineBasicBlock
*BB
,
893 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
894 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
895 // Technically BB could form a trellis with branching factor higher than 2.
896 // But that's extremely uncommon.
897 if (BB
->succ_size() != 2 || ViableSuccs
.size() != 2)
900 SmallPtrSet
<const MachineBasicBlock
*, 2> Successors(BB
->succ_begin(),
902 // To avoid reviewing the same predecessors twice.
903 SmallPtrSet
<const MachineBasicBlock
*, 8> SeenPreds
;
905 for (MachineBasicBlock
*Succ
: ViableSuccs
) {
907 for (auto SuccPred
: Succ
->predecessors()) {
908 // Allow triangle successors, but don't count them.
909 if (Successors
.count(SuccPred
)) {
910 // Make sure that it is actually a triangle.
911 for (MachineBasicBlock
*CheckSucc
: SuccPred
->successors())
912 if (!Successors
.count(CheckSucc
))
916 const BlockChain
*PredChain
= BlockToChain
[SuccPred
];
917 if (SuccPred
== BB
|| (BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
918 PredChain
== &Chain
|| PredChain
== BlockToChain
[Succ
])
921 // Perform the successor check only once.
922 if (!SeenPreds
.insert(SuccPred
).second
)
924 if (!hasSameSuccessors(*SuccPred
, Successors
))
927 // If one of the successors has only BB as a predecessor, it is not a
935 /// Pick the highest total weight pair of edges that can both be laid out.
936 /// The edges in \p Edges[0] are assumed to have a different destination than
937 /// the edges in \p Edges[1]. Simple counting shows that the best pair is either
938 /// the individual highest weight edges to the 2 different destinations, or in
939 /// case of a conflict, one of them should be replaced with a 2nd best edge.
940 std::pair
<MachineBlockPlacement::WeightedEdge
,
941 MachineBlockPlacement::WeightedEdge
>
942 MachineBlockPlacement::getBestNonConflictingEdges(
943 const MachineBasicBlock
*BB
,
944 MutableArrayRef
<SmallVector
<MachineBlockPlacement::WeightedEdge
, 8>>
946 // Sort the edges, and then for each successor, find the best incoming
947 // predecessor. If the best incoming predecessors aren't the same,
948 // then that is clearly the best layout. If there is a conflict, one of the
949 // successors will have to fallthrough from the second best predecessor. We
950 // compare which combination is better overall.
952 // Sort for highest frequency.
953 auto Cmp
= [](WeightedEdge A
, WeightedEdge B
) { return A
.Weight
> B
.Weight
; };
955 llvm::stable_sort(Edges
[0], Cmp
);
956 llvm::stable_sort(Edges
[1], Cmp
);
957 auto BestA
= Edges
[0].begin();
958 auto BestB
= Edges
[1].begin();
959 // Arrange for the correct answer to be in BestA and BestB
960 // If the 2 best edges don't conflict, the answer is already there.
961 if (BestA
->Src
== BestB
->Src
) {
962 // Compare the total fallthrough of (Best + Second Best) for both pairs
963 auto SecondBestA
= std::next(BestA
);
964 auto SecondBestB
= std::next(BestB
);
965 BlockFrequency BestAScore
= BestA
->Weight
+ SecondBestB
->Weight
;
966 BlockFrequency BestBScore
= BestB
->Weight
+ SecondBestA
->Weight
;
967 if (BestAScore
< BestBScore
)
972 // Arrange for the BB edge to be in BestA if it exists.
973 if (BestB
->Src
== BB
)
974 std::swap(BestA
, BestB
);
975 return std::make_pair(*BestA
, *BestB
);
978 /// Get the best successor from \p BB based on \p BB being part of a trellis.
979 /// We only handle trellises with 2 successors, so the algorithm is
980 /// straightforward: Find the best pair of edges that don't conflict. We find
981 /// the best incoming edge for each successor in the trellis. If those conflict,
982 /// we consider which of them should be replaced with the second best.
983 /// Upon return the two best edges will be in \p BestEdges. If one of the edges
984 /// comes from \p BB, it will be in \p BestEdges[0]
985 MachineBlockPlacement::BlockAndTailDupResult
986 MachineBlockPlacement::getBestTrellisSuccessor(
987 const MachineBasicBlock
*BB
,
988 const SmallVectorImpl
<MachineBasicBlock
*> &ViableSuccs
,
989 BranchProbability AdjustedSumProb
, const BlockChain
&Chain
,
990 const BlockFilterSet
*BlockFilter
) {
992 BlockAndTailDupResult Result
= {nullptr, false};
993 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
996 // We assume size 2 because it's common. For general n, we would have to do
997 // the Hungarian algorithm, but it's not worth the complexity because more
998 // than 2 successors is fairly uncommon, and a trellis even more so.
999 if (Successors
.size() != 2 || ViableSuccs
.size() != 2)
1002 // Collect the edge frequencies of all edges that form the trellis.
1003 SmallVector
<WeightedEdge
, 8> Edges
[2];
1005 for (auto Succ
: ViableSuccs
) {
1006 for (MachineBasicBlock
*SuccPred
: Succ
->predecessors()) {
1007 // Skip any placed predecessors that are not BB
1009 if ((BlockFilter
&& !BlockFilter
->count(SuccPred
)) ||
1010 BlockToChain
[SuccPred
] == &Chain
||
1011 BlockToChain
[SuccPred
] == BlockToChain
[Succ
])
1013 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(SuccPred
) *
1014 MBPI
->getEdgeProbability(SuccPred
, Succ
);
1015 Edges
[SuccIndex
].push_back({EdgeFreq
, SuccPred
, Succ
});
1020 // Pick the best combination of 2 edges from all the edges in the trellis.
1021 WeightedEdge BestA
, BestB
;
1022 std::tie(BestA
, BestB
) = getBestNonConflictingEdges(BB
, Edges
);
1024 if (BestA
.Src
!= BB
) {
1025 // If we have a trellis, and BB doesn't have the best fallthrough edges,
1026 // we shouldn't choose any successor. We've already looked and there's a
1027 // better fallthrough edge for all the successors.
1028 LLVM_DEBUG(dbgs() << "Trellis, but not one of the chosen edges.\n");
1032 // Did we pick the triangle edge? If tail-duplication is profitable, do
1033 // that instead. Otherwise merge the triangle edge now while we know it is
1035 if (BestA
.Dest
== BestB
.Src
) {
1036 // The edges are BB->Succ1->Succ2, and we're looking to see if BB->Succ2
1038 MachineBasicBlock
*Succ1
= BestA
.Dest
;
1039 MachineBasicBlock
*Succ2
= BestB
.Dest
;
1040 // Check to see if tail-duplication would be profitable.
1041 if (allowTailDupPlacement() && shouldTailDuplicate(Succ2
) &&
1042 canTailDuplicateUnplacedPreds(BB
, Succ2
, Chain
, BlockFilter
) &&
1043 isProfitableToTailDup(BB
, Succ2
, MBPI
->getEdgeProbability(BB
, Succ1
),
1044 Chain
, BlockFilter
)) {
1045 LLVM_DEBUG(BranchProbability Succ2Prob
= getAdjustedProbability(
1046 MBPI
->getEdgeProbability(BB
, Succ2
), AdjustedSumProb
);
1047 dbgs() << " Selected: " << getBlockName(Succ2
)
1048 << ", probability: " << Succ2Prob
1049 << " (Tail Duplicate)\n");
1051 Result
.ShouldTailDup
= true;
1055 // We have already computed the optimal edge for the other side of the
1057 ComputedEdges
[BestB
.Src
] = { BestB
.Dest
, false };
1059 auto TrellisSucc
= BestA
.Dest
;
1060 LLVM_DEBUG(BranchProbability SuccProb
= getAdjustedProbability(
1061 MBPI
->getEdgeProbability(BB
, TrellisSucc
), AdjustedSumProb
);
1062 dbgs() << " Selected: " << getBlockName(TrellisSucc
)
1063 << ", probability: " << SuccProb
<< " (Trellis)\n");
1064 Result
.BB
= TrellisSucc
;
1068 /// When the option allowTailDupPlacement() is on, this method checks if the
1069 /// fallthrough candidate block \p Succ (of block \p BB) can be tail-duplicated
1070 /// into all of its unplaced, unfiltered predecessors, that are not BB.
1071 bool MachineBlockPlacement::canTailDuplicateUnplacedPreds(
1072 const MachineBasicBlock
*BB
, MachineBasicBlock
*Succ
,
1073 const BlockChain
&Chain
, const BlockFilterSet
*BlockFilter
) {
1074 if (!shouldTailDuplicate(Succ
))
1077 // For CFG checking.
1078 SmallPtrSet
<const MachineBasicBlock
*, 4> Successors(BB
->succ_begin(),
1080 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1081 // Make sure all unplaced and unfiltered predecessors can be
1082 // tail-duplicated into.
1083 // Skip any blocks that are already placed or not in this loop.
1084 if (Pred
== BB
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
1085 || BlockToChain
[Pred
] == &Chain
)
1087 if (!TailDup
.canTailDuplicate(Succ
, Pred
)) {
1088 if (Successors
.size() > 1 && hasSameSuccessors(*Pred
, Successors
))
1089 // This will result in a trellis after tail duplication, so we don't
1090 // need to copy Succ into this predecessor. In the presence
1091 // of a trellis tail duplication can continue to be profitable.
1107 // After BB was duplicated into C, the layout looks like the one on the
1108 // right. BB and C now have the same successors. When considering
1109 // whether Succ can be duplicated into all its unplaced predecessors, we
1111 // We can do this because C already has a profitable fallthrough, namely
1112 // D. TODO(iteratee): ignore sufficiently cold predecessors for
1113 // duplication and for this test.
1115 // This allows trellises to be laid out in 2 separate chains
1116 // (A,B,Succ,...) and later (C,D,...) This is a reasonable heuristic
1117 // because it allows the creation of 2 fallthrough paths with links
1118 // between them, and we correctly identify the best layout for these
1119 // CFGs. We want to extend trellises that the user created in addition
1120 // to trellises created by tail-duplication, so we just look for the
1129 /// Find chains of triangles where we believe it would be profitable to
1130 /// tail-duplicate them all, but a local analysis would not find them.
1131 /// There are 3 ways this can be profitable:
1132 /// 1) The post-dominators marked 50% are actually taken 55% (This shrinks with
1134 /// 2) The chains are statically correlated. Branch probabilities have a very
1135 /// U-shaped distribution.
1136 /// [http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
1137 /// If the branches in a chain are likely to be from the same side of the
1138 /// distribution as their predecessor, but are independent at runtime, this
1139 /// transformation is profitable. (Because the cost of being wrong is a small
1140 /// fixed cost, unlike the standard triangle layout where the cost of being
1141 /// wrong scales with the # of triangles.)
1142 /// 3) The chains are dynamically correlated. If the probability that a previous
1143 /// branch was taken positively influences whether the next branch will be
1145 /// We believe that 2 and 3 are common enough to justify the small margin in 1.
1146 void MachineBlockPlacement::precomputeTriangleChains() {
1147 struct TriangleChain
{
1148 std::vector
<MachineBasicBlock
*> Edges
;
1150 TriangleChain(MachineBasicBlock
*src
, MachineBasicBlock
*dst
)
1151 : Edges({src
, dst
}) {}
1153 void append(MachineBasicBlock
*dst
) {
1154 assert(getKey()->isSuccessor(dst
) &&
1155 "Attempting to append a block that is not a successor.");
1156 Edges
.push_back(dst
);
1159 unsigned count() const { return Edges
.size() - 1; }
1161 MachineBasicBlock
*getKey() const {
1162 return Edges
.back();
1166 if (TriangleChainCount
== 0)
1169 LLVM_DEBUG(dbgs() << "Pre-computing triangle chains.\n");
1170 // Map from last block to the chain that contains it. This allows us to extend
1171 // chains as we find new triangles.
1172 DenseMap
<const MachineBasicBlock
*, TriangleChain
> TriangleChainMap
;
1173 for (MachineBasicBlock
&BB
: *F
) {
1174 // If BB doesn't have 2 successors, it doesn't start a triangle.
1175 if (BB
.succ_size() != 2)
1177 MachineBasicBlock
*PDom
= nullptr;
1178 for (MachineBasicBlock
*Succ
: BB
.successors()) {
1179 if (!MPDT
->dominates(Succ
, &BB
))
1184 // If BB doesn't have a post-dominating successor, it doesn't form a
1186 if (PDom
== nullptr)
1188 // If PDom has a hint that it is low probability, skip this triangle.
1189 if (MBPI
->getEdgeProbability(&BB
, PDom
) < BranchProbability(50, 100))
1191 // If PDom isn't eligible for duplication, this isn't the kind of triangle
1192 // we're looking for.
1193 if (!shouldTailDuplicate(PDom
))
1195 bool CanTailDuplicate
= true;
1196 // If PDom can't tail-duplicate into it's non-BB predecessors, then this
1197 // isn't the kind of triangle we're looking for.
1198 for (MachineBasicBlock
* Pred
: PDom
->predecessors()) {
1201 if (!TailDup
.canTailDuplicate(PDom
, Pred
)) {
1202 CanTailDuplicate
= false;
1206 // If we can't tail-duplicate PDom to its predecessors, then skip this
1208 if (!CanTailDuplicate
)
1211 // Now we have an interesting triangle. Insert it if it's not part of an
1213 // Note: This cannot be replaced with a call insert() or emplace() because
1214 // the find key is BB, but the insert/emplace key is PDom.
1215 auto Found
= TriangleChainMap
.find(&BB
);
1216 // If it is, remove the chain from the map, grow it, and put it back in the
1217 // map with the end as the new key.
1218 if (Found
!= TriangleChainMap
.end()) {
1219 TriangleChain Chain
= std::move(Found
->second
);
1220 TriangleChainMap
.erase(Found
);
1222 TriangleChainMap
.insert(std::make_pair(Chain
.getKey(), std::move(Chain
)));
1224 auto InsertResult
= TriangleChainMap
.try_emplace(PDom
, &BB
, PDom
);
1225 assert(InsertResult
.second
&& "Block seen twice.");
1230 // Iterating over a DenseMap is safe here, because the only thing in the body
1231 // of the loop is inserting into another DenseMap (ComputedEdges).
1232 // ComputedEdges is never iterated, so this doesn't lead to non-determinism.
1233 for (auto &ChainPair
: TriangleChainMap
) {
1234 TriangleChain
&Chain
= ChainPair
.second
;
1235 // Benchmarking has shown that due to branch correlation duplicating 2 or
1236 // more triangles is profitable, despite the calculations assuming
1238 if (Chain
.count() < TriangleChainCount
)
1240 MachineBasicBlock
*dst
= Chain
.Edges
.back();
1241 Chain
.Edges
.pop_back();
1242 for (MachineBasicBlock
*src
: reverse(Chain
.Edges
)) {
1243 LLVM_DEBUG(dbgs() << "Marking edge: " << getBlockName(src
) << "->"
1244 << getBlockName(dst
)
1245 << " as pre-computed based on triangles.\n");
1247 auto InsertResult
= ComputedEdges
.insert({src
, {dst
, true}});
1248 assert(InsertResult
.second
&& "Block seen twice.");
1256 // When profile is not present, return the StaticLikelyProb.
1257 // When profile is available, we need to handle the triangle-shape CFG.
1258 static BranchProbability
getLayoutSuccessorProbThreshold(
1259 const MachineBasicBlock
*BB
) {
1260 if (!BB
->getParent()->getFunction().hasProfileData())
1261 return BranchProbability(StaticLikelyProb
, 100);
1262 if (BB
->succ_size() == 2) {
1263 const MachineBasicBlock
*Succ1
= *BB
->succ_begin();
1264 const MachineBasicBlock
*Succ2
= *(BB
->succ_begin() + 1);
1265 if (Succ1
->isSuccessor(Succ2
) || Succ2
->isSuccessor(Succ1
)) {
1266 /* See case 1 below for the cost analysis. For BB->Succ to
1267 * be taken with smaller cost, the following needs to hold:
1268 * Prob(BB->Succ) > 2 * Prob(BB->Pred)
1269 * So the threshold T in the calculation below
1270 * (1-T) * Prob(BB->Succ) > T * Prob(BB->Pred)
1271 * So T / (1 - T) = 2, Yielding T = 2/3
1272 * Also adding user specified branch bias, we have
1273 * T = (2/3)*(ProfileLikelyProb/50)
1274 * = (2*ProfileLikelyProb)/150)
1276 return BranchProbability(2 * ProfileLikelyProb
, 150);
1279 return BranchProbability(ProfileLikelyProb
, 100);
1282 /// Checks to see if the layout candidate block \p Succ has a better layout
1283 /// predecessor than \c BB. If yes, returns true.
1284 /// \p SuccProb: The probability adjusted for only remaining blocks.
1285 /// Only used for logging
1286 /// \p RealSuccProb: The un-adjusted probability.
1287 /// \p Chain: The chain that BB belongs to and Succ is being considered for.
1288 /// \p BlockFilter: if non-null, the set of blocks that make up the loop being
1290 bool MachineBlockPlacement::hasBetterLayoutPredecessor(
1291 const MachineBasicBlock
*BB
, const MachineBasicBlock
*Succ
,
1292 const BlockChain
&SuccChain
, BranchProbability SuccProb
,
1293 BranchProbability RealSuccProb
, const BlockChain
&Chain
,
1294 const BlockFilterSet
*BlockFilter
) {
1296 // There isn't a better layout when there are no unscheduled predecessors.
1297 if (SuccChain
.UnscheduledPredecessors
== 0)
1300 // There are two basic scenarios here:
1301 // -------------------------------------
1302 // Case 1: triangular shape CFG (if-then):
1309 // In this case, we are evaluating whether to select edge -> Succ, e.g.
1310 // set Succ as the layout successor of BB. Picking Succ as BB's
1311 // successor breaks the CFG constraints (FIXME: define these constraints).
1312 // With this layout, Pred BB
1313 // is forced to be outlined, so the overall cost will be cost of the
1314 // branch taken from BB to Pred, plus the cost of back taken branch
1315 // from Pred to Succ, as well as the additional cost associated
1316 // with the needed unconditional jump instruction from Pred To Succ.
1318 // The cost of the topological order layout is the taken branch cost
1319 // from BB to Succ, so to make BB->Succ a viable candidate, the following
1321 // 2 * freq(BB->Pred) * taken_branch_cost + unconditional_jump_cost
1322 // < freq(BB->Succ) * taken_branch_cost.
1323 // Ignoring unconditional jump cost, we get
1324 // freq(BB->Succ) > 2 * freq(BB->Pred), i.e.,
1325 // prob(BB->Succ) > 2 * prob(BB->Pred)
1327 // When real profile data is available, we can precisely compute the
1328 // probability threshold that is needed for edge BB->Succ to be considered.
1329 // Without profile data, the heuristic requires the branch bias to be
1330 // a lot larger to make sure the signal is very strong (e.g. 80% default).
1331 // -----------------------------------------------------------------
1332 // Case 2: diamond like CFG (if-then-else):
1341 // The current block is BB and edge BB->Succ is now being evaluated.
1342 // Note that edge S->BB was previously already selected because
1343 // prob(S->BB) > prob(S->Pred).
1344 // At this point, 2 blocks can be placed after BB: Pred or Succ. If we
1345 // choose Pred, we will have a topological ordering as shown on the left
1346 // in the picture below. If we choose Succ, we have the solution as shown
1355 // | Pred-- | Succ--
1357 // ---Succ ---Pred--
1359 // cost = freq(S->Pred) + freq(BB->Succ) cost = 2 * freq (S->Pred)
1360 // = freq(S->Pred) + freq(S->BB)
1362 // If we have profile data (i.e, branch probabilities can be trusted), the
1363 // cost (number of taken branches) with layout S->BB->Succ->Pred is 2 *
1364 // freq(S->Pred) while the cost of topo order is freq(S->Pred) + freq(S->BB).
1365 // We know Prob(S->BB) > Prob(S->Pred), so freq(S->BB) > freq(S->Pred), which
1366 // means the cost of topological order is greater.
1367 // When profile data is not available, however, we need to be more
1368 // conservative. If the branch prediction is wrong, breaking the topo-order
1369 // will actually yield a layout with large cost. For this reason, we need
1370 // strong biased branch at block S with Prob(S->BB) in order to select
1371 // BB->Succ. This is equivalent to looking the CFG backward with backward
1372 // edge: Prob(Succ->BB) needs to >= HotProb in order to be selected (without
1374 // --------------------------------------------------------------------------
1375 // Case 3: forked diamond
1387 // The current block is BB and edge BB->S1 is now being evaluated.
1388 // As above S->BB was already selected because
1389 // prob(S->BB) > prob(S->Pred). Assume that prob(BB->S1) >= prob(BB->S2).
1397 // | Pred----| | S1----
1399 // --(S1 or S2) ---Pred--
1403 // topo-cost = freq(S->Pred) + freq(BB->S1) + freq(BB->S2)
1404 // + min(freq(Pred->S1), freq(Pred->S2))
1405 // Non-topo-order cost:
1406 // non-topo-cost = 2 * freq(S->Pred) + freq(BB->S2).
1407 // To be conservative, we can assume that min(freq(Pred->S1), freq(Pred->S2))
1408 // is 0. Then the non topo layout is better when
1409 // freq(S->Pred) < freq(BB->S1).
1410 // This is exactly what is checked below.
1411 // Note there are other shapes that apply (Pred may not be a single block,
1412 // but they all fit this general pattern.)
1413 BranchProbability HotProb
= getLayoutSuccessorProbThreshold(BB
);
1415 // Make sure that a hot successor doesn't have a globally more
1416 // important predecessor.
1417 BlockFrequency CandidateEdgeFreq
= MBFI
->getBlockFreq(BB
) * RealSuccProb
;
1418 bool BadCFGConflict
= false;
1420 for (MachineBasicBlock
*Pred
: Succ
->predecessors()) {
1421 if (Pred
== Succ
|| BlockToChain
[Pred
] == &SuccChain
||
1422 (BlockFilter
&& !BlockFilter
->count(Pred
)) ||
1423 BlockToChain
[Pred
] == &Chain
||
1424 // This check is redundant except for look ahead. This function is
1425 // called for lookahead by isProfitableToTailDup when BB hasn't been
1429 // Do backward checking.
1430 // For all cases above, we need a backward checking to filter out edges that
1431 // are not 'strongly' biased.
1435 // We select edge BB->Succ if
1436 // freq(BB->Succ) > freq(Succ) * HotProb
1437 // i.e. freq(BB->Succ) > freq(BB->Succ) * HotProb + freq(Pred->Succ) *
1439 // i.e. freq((BB->Succ) * (1 - HotProb) > freq(Pred->Succ) * HotProb
1440 // Case 1 is covered too, because the first equation reduces to:
1441 // prob(BB->Succ) > HotProb. (freq(Succ) = freq(BB) for a triangle)
1442 BlockFrequency PredEdgeFreq
=
1443 MBFI
->getBlockFreq(Pred
) * MBPI
->getEdgeProbability(Pred
, Succ
);
1444 if (PredEdgeFreq
* HotProb
>= CandidateEdgeFreq
* HotProb
.getCompl()) {
1445 BadCFGConflict
= true;
1450 if (BadCFGConflict
) {
1451 LLVM_DEBUG(dbgs() << " Not a candidate: " << getBlockName(Succ
) << " -> "
1452 << SuccProb
<< " (prob) (non-cold CFG conflict)\n");
1459 /// Select the best successor for a block.
1461 /// This looks across all successors of a particular block and attempts to
1462 /// select the "best" one to be the layout successor. It only considers direct
1463 /// successors which also pass the block filter. It will attempt to avoid
1464 /// breaking CFG structure, but cave and break such structures in the case of
1465 /// very hot successor edges.
1467 /// \returns The best successor block found, or null if none are viable, along
1468 /// with a boolean indicating if tail duplication is necessary.
1469 MachineBlockPlacement::BlockAndTailDupResult
1470 MachineBlockPlacement::selectBestSuccessor(
1471 const MachineBasicBlock
*BB
, const BlockChain
&Chain
,
1472 const BlockFilterSet
*BlockFilter
) {
1473 const BranchProbability
HotProb(StaticLikelyProb
, 100);
1475 BlockAndTailDupResult BestSucc
= { nullptr, false };
1476 auto BestProb
= BranchProbability::getZero();
1478 SmallVector
<MachineBasicBlock
*, 4> Successors
;
1479 auto AdjustedSumProb
=
1480 collectViableSuccessors(BB
, Chain
, BlockFilter
, Successors
);
1482 LLVM_DEBUG(dbgs() << "Selecting best successor for: " << getBlockName(BB
)
1485 // if we already precomputed the best successor for BB, return that if still
1487 auto FoundEdge
= ComputedEdges
.find(BB
);
1488 if (FoundEdge
!= ComputedEdges
.end()) {
1489 MachineBasicBlock
*Succ
= FoundEdge
->second
.BB
;
1490 ComputedEdges
.erase(FoundEdge
);
1491 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1492 if (BB
->isSuccessor(Succ
) && (!BlockFilter
|| BlockFilter
->count(Succ
)) &&
1493 SuccChain
!= &Chain
&& Succ
== *SuccChain
->begin())
1494 return FoundEdge
->second
;
1497 // if BB is part of a trellis, Use the trellis to determine the optimal
1498 // fallthrough edges
1499 if (isTrellis(BB
, Successors
, Chain
, BlockFilter
))
1500 return getBestTrellisSuccessor(BB
, Successors
, AdjustedSumProb
, Chain
,
1503 // For blocks with CFG violations, we may be able to lay them out anyway with
1504 // tail-duplication. We keep this vector so we can perform the probability
1505 // calculations the minimum number of times.
1506 SmallVector
<std::tuple
<BranchProbability
, MachineBasicBlock
*>, 4>
1508 for (MachineBasicBlock
*Succ
: Successors
) {
1509 auto RealSuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
1510 BranchProbability SuccProb
=
1511 getAdjustedProbability(RealSuccProb
, AdjustedSumProb
);
1513 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
1514 // Skip the edge \c BB->Succ if block \c Succ has a better layout
1515 // predecessor that yields lower global cost.
1516 if (hasBetterLayoutPredecessor(BB
, Succ
, SuccChain
, SuccProb
, RealSuccProb
,
1517 Chain
, BlockFilter
)) {
1518 // If tail duplication would make Succ profitable, place it.
1519 if (allowTailDupPlacement() && shouldTailDuplicate(Succ
))
1520 DupCandidates
.push_back(std::make_tuple(SuccProb
, Succ
));
1525 dbgs() << " Candidate: " << getBlockName(Succ
)
1526 << ", probability: " << SuccProb
1527 << (SuccChain
.UnscheduledPredecessors
!= 0 ? " (CFG break)" : "")
1530 if (BestSucc
.BB
&& BestProb
>= SuccProb
) {
1531 LLVM_DEBUG(dbgs() << " Not the best candidate, continuing\n");
1535 LLVM_DEBUG(dbgs() << " Setting it as best candidate\n");
1537 BestProb
= SuccProb
;
1539 // Handle the tail duplication candidates in order of decreasing probability.
1540 // Stop at the first one that is profitable. Also stop if they are less
1541 // profitable than BestSucc. Position is important because we preserve it and
1542 // prefer first best match. Here we aren't comparing in order, so we capture
1543 // the position instead.
1544 llvm::stable_sort(DupCandidates
,
1545 [](std::tuple
<BranchProbability
, MachineBasicBlock
*> L
,
1546 std::tuple
<BranchProbability
, MachineBasicBlock
*> R
) {
1547 return std::get
<0>(L
) > std::get
<0>(R
);
1549 for (auto &Tup
: DupCandidates
) {
1550 BranchProbability DupProb
;
1551 MachineBasicBlock
*Succ
;
1552 std::tie(DupProb
, Succ
) = Tup
;
1553 if (DupProb
< BestProb
)
1555 if (canTailDuplicateUnplacedPreds(BB
, Succ
, Chain
, BlockFilter
)
1556 && (isProfitableToTailDup(BB
, Succ
, BestProb
, Chain
, BlockFilter
))) {
1557 LLVM_DEBUG(dbgs() << " Candidate: " << getBlockName(Succ
)
1558 << ", probability: " << DupProb
1559 << " (Tail Duplicate)\n");
1561 BestSucc
.ShouldTailDup
= true;
1567 LLVM_DEBUG(dbgs() << " Selected: " << getBlockName(BestSucc
.BB
) << "\n");
1572 /// Select the best block from a worklist.
1574 /// This looks through the provided worklist as a list of candidate basic
1575 /// blocks and select the most profitable one to place. The definition of
1576 /// profitable only really makes sense in the context of a loop. This returns
1577 /// the most frequently visited block in the worklist, which in the case of
1578 /// a loop, is the one most desirable to be physically close to the rest of the
1579 /// loop body in order to improve i-cache behavior.
1581 /// \returns The best block found, or null if none are viable.
1582 MachineBasicBlock
*MachineBlockPlacement::selectBestCandidateBlock(
1583 const BlockChain
&Chain
, SmallVectorImpl
<MachineBasicBlock
*> &WorkList
) {
1584 // Once we need to walk the worklist looking for a candidate, cleanup the
1585 // worklist of already placed entries.
1586 // FIXME: If this shows up on profiles, it could be folded (at the cost of
1587 // some code complexity) into the loop below.
1588 WorkList
.erase(llvm::remove_if(WorkList
,
1589 [&](MachineBasicBlock
*BB
) {
1590 return BlockToChain
.lookup(BB
) == &Chain
;
1594 if (WorkList
.empty())
1597 bool IsEHPad
= WorkList
[0]->isEHPad();
1599 MachineBasicBlock
*BestBlock
= nullptr;
1600 BlockFrequency BestFreq
;
1601 for (MachineBasicBlock
*MBB
: WorkList
) {
1602 assert(MBB
->isEHPad() == IsEHPad
&&
1603 "EHPad mismatch between block and work list.");
1605 BlockChain
&SuccChain
= *BlockToChain
[MBB
];
1606 if (&SuccChain
== &Chain
)
1609 assert(SuccChain
.UnscheduledPredecessors
== 0 &&
1610 "Found CFG-violating block");
1612 BlockFrequency CandidateFreq
= MBFI
->getBlockFreq(MBB
);
1613 LLVM_DEBUG(dbgs() << " " << getBlockName(MBB
) << " -> ";
1614 MBFI
->printBlockFreq(dbgs(), CandidateFreq
) << " (freq)\n");
1616 // For ehpad, we layout the least probable first as to avoid jumping back
1617 // from least probable landingpads to more probable ones.
1619 // FIXME: Using probability is probably (!) not the best way to achieve
1620 // this. We should probably have a more principled approach to layout
1623 // The goal is to get:
1625 // +--------------------------+
1627 // InnerLp -> InnerCleanup OuterLp -> OuterCleanup -> Resume
1631 // +-------------------------------------+
1633 // OuterLp -> OuterCleanup -> Resume InnerLp -> InnerCleanup
1634 if (BestBlock
&& (IsEHPad
^ (BestFreq
>= CandidateFreq
)))
1638 BestFreq
= CandidateFreq
;
1644 /// Retrieve the first unplaced basic block.
1646 /// This routine is called when we are unable to use the CFG to walk through
1647 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
1648 /// We walk through the function's blocks in order, starting from the
1649 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
1650 /// re-scanning the entire sequence on repeated calls to this routine.
1651 MachineBasicBlock
*MachineBlockPlacement::getFirstUnplacedBlock(
1652 const BlockChain
&PlacedChain
,
1653 MachineFunction::iterator
&PrevUnplacedBlockIt
,
1654 const BlockFilterSet
*BlockFilter
) {
1655 for (MachineFunction::iterator I
= PrevUnplacedBlockIt
, E
= F
->end(); I
!= E
;
1657 if (BlockFilter
&& !BlockFilter
->count(&*I
))
1659 if (BlockToChain
[&*I
] != &PlacedChain
) {
1660 PrevUnplacedBlockIt
= I
;
1661 // Now select the head of the chain to which the unplaced block belongs
1662 // as the block to place. This will force the entire chain to be placed,
1663 // and satisfies the requirements of merging chains.
1664 return *BlockToChain
[&*I
]->begin();
1670 void MachineBlockPlacement::fillWorkLists(
1671 const MachineBasicBlock
*MBB
,
1672 SmallPtrSetImpl
<BlockChain
*> &UpdatedPreds
,
1673 const BlockFilterSet
*BlockFilter
= nullptr) {
1674 BlockChain
&Chain
= *BlockToChain
[MBB
];
1675 if (!UpdatedPreds
.insert(&Chain
).second
)
1679 Chain
.UnscheduledPredecessors
== 0 &&
1680 "Attempting to place block with unscheduled predecessors in worklist.");
1681 for (MachineBasicBlock
*ChainBB
: Chain
) {
1682 assert(BlockToChain
[ChainBB
] == &Chain
&&
1683 "Block in chain doesn't match BlockToChain map.");
1684 for (MachineBasicBlock
*Pred
: ChainBB
->predecessors()) {
1685 if (BlockFilter
&& !BlockFilter
->count(Pred
))
1687 if (BlockToChain
[Pred
] == &Chain
)
1689 ++Chain
.UnscheduledPredecessors
;
1693 if (Chain
.UnscheduledPredecessors
!= 0)
1696 MachineBasicBlock
*BB
= *Chain
.begin();
1698 EHPadWorkList
.push_back(BB
);
1700 BlockWorkList
.push_back(BB
);
1703 void MachineBlockPlacement::buildChain(
1704 const MachineBasicBlock
*HeadBB
, BlockChain
&Chain
,
1705 BlockFilterSet
*BlockFilter
) {
1706 assert(HeadBB
&& "BB must not be null.\n");
1707 assert(BlockToChain
[HeadBB
] == &Chain
&& "BlockToChainMap mis-match.\n");
1708 MachineFunction::iterator PrevUnplacedBlockIt
= F
->begin();
1710 const MachineBasicBlock
*LoopHeaderBB
= HeadBB
;
1711 markChainSuccessors(Chain
, LoopHeaderBB
, BlockFilter
);
1712 MachineBasicBlock
*BB
= *std::prev(Chain
.end());
1714 assert(BB
&& "null block found at end of chain in loop.");
1715 assert(BlockToChain
[BB
] == &Chain
&& "BlockToChainMap mis-match in loop.");
1716 assert(*std::prev(Chain
.end()) == BB
&& "BB Not found at end of chain.");
1719 // Look for the best viable successor if there is one to place immediately
1720 // after this block.
1721 auto Result
= selectBestSuccessor(BB
, Chain
, BlockFilter
);
1722 MachineBasicBlock
* BestSucc
= Result
.BB
;
1723 bool ShouldTailDup
= Result
.ShouldTailDup
;
1724 if (allowTailDupPlacement())
1725 ShouldTailDup
|= (BestSucc
&& shouldTailDuplicate(BestSucc
));
1727 // If an immediate successor isn't available, look for the best viable
1728 // block among those we've identified as not violating the loop's CFG at
1729 // this point. This won't be a fallthrough, but it will increase locality.
1731 BestSucc
= selectBestCandidateBlock(Chain
, BlockWorkList
);
1733 BestSucc
= selectBestCandidateBlock(Chain
, EHPadWorkList
);
1736 BestSucc
= getFirstUnplacedBlock(Chain
, PrevUnplacedBlockIt
, BlockFilter
);
1740 LLVM_DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
1741 "layout successor until the CFG reduces\n");
1744 // Placement may have changed tail duplication opportunities.
1745 // Check for that now.
1746 if (allowTailDupPlacement() && BestSucc
&& ShouldTailDup
) {
1747 // If the chosen successor was duplicated into all its predecessors,
1748 // don't bother laying it out, just go round the loop again with BB as
1750 if (repeatedlyTailDuplicateBlock(BestSucc
, BB
, LoopHeaderBB
, Chain
,
1751 BlockFilter
, PrevUnplacedBlockIt
))
1755 // Place this block, updating the datastructures to reflect its placement.
1756 BlockChain
&SuccChain
= *BlockToChain
[BestSucc
];
1757 // Zero out UnscheduledPredecessors for the successor we're about to merge in case
1758 // we selected a successor that didn't fit naturally into the CFG.
1759 SuccChain
.UnscheduledPredecessors
= 0;
1760 LLVM_DEBUG(dbgs() << "Merging from " << getBlockName(BB
) << " to "
1761 << getBlockName(BestSucc
) << "\n");
1762 markChainSuccessors(SuccChain
, LoopHeaderBB
, BlockFilter
);
1763 Chain
.merge(BestSucc
, &SuccChain
);
1764 BB
= *std::prev(Chain
.end());
1767 LLVM_DEBUG(dbgs() << "Finished forming chain for header block "
1768 << getBlockName(*Chain
.begin()) << "\n");
1771 // If bottom of block BB has only one successor OldTop, in most cases it is
1772 // profitable to move it before OldTop, except the following case:
1782 // If BB is moved before OldTop, Pred needs a taken branch to BB, and it can't
1783 // layout the other successor below it, so it can't reduce taken branch.
1784 // In this case we keep its original layout.
1786 MachineBlockPlacement::canMoveBottomBlockToTop(
1787 const MachineBasicBlock
*BottomBlock
,
1788 const MachineBasicBlock
*OldTop
) {
1789 if (BottomBlock
->pred_size() != 1)
1791 MachineBasicBlock
*Pred
= *BottomBlock
->pred_begin();
1792 if (Pred
->succ_size() != 2)
1795 MachineBasicBlock
*OtherBB
= *Pred
->succ_begin();
1796 if (OtherBB
== BottomBlock
)
1797 OtherBB
= *Pred
->succ_rbegin();
1798 if (OtherBB
== OldTop
)
1804 // Find out the possible fall through frequence to the top of a loop.
1806 MachineBlockPlacement::TopFallThroughFreq(
1807 const MachineBasicBlock
*Top
,
1808 const BlockFilterSet
&LoopBlockSet
) {
1809 BlockFrequency MaxFreq
= 0;
1810 for (MachineBasicBlock
*Pred
: Top
->predecessors()) {
1811 BlockChain
*PredChain
= BlockToChain
[Pred
];
1812 if (!LoopBlockSet
.count(Pred
) &&
1813 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
1814 // Found a Pred block can be placed before Top.
1815 // Check if Top is the best successor of Pred.
1816 auto TopProb
= MBPI
->getEdgeProbability(Pred
, Top
);
1818 for (MachineBasicBlock
*Succ
: Pred
->successors()) {
1819 auto SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
1820 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1821 // Check if Succ can be placed after Pred.
1822 // Succ should not be in any chain, or it is the head of some chain.
1823 if (!LoopBlockSet
.count(Succ
) && (SuccProb
> TopProb
) &&
1824 (!SuccChain
|| Succ
== *SuccChain
->begin())) {
1830 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
1831 MBPI
->getEdgeProbability(Pred
, Top
);
1832 if (EdgeFreq
> MaxFreq
)
1840 // Compute the fall through gains when move NewTop before OldTop.
1842 // In following diagram, edges marked as "-" are reduced fallthrough, edges
1843 // marked as "+" are increased fallthrough, this function computes
1845 // SUM(increased fallthrough) - SUM(decreased fallthrough)
1862 MachineBlockPlacement::FallThroughGains(
1863 const MachineBasicBlock
*NewTop
,
1864 const MachineBasicBlock
*OldTop
,
1865 const MachineBasicBlock
*ExitBB
,
1866 const BlockFilterSet
&LoopBlockSet
) {
1867 BlockFrequency FallThrough2Top
= TopFallThroughFreq(OldTop
, LoopBlockSet
);
1868 BlockFrequency FallThrough2Exit
= 0;
1870 FallThrough2Exit
= MBFI
->getBlockFreq(NewTop
) *
1871 MBPI
->getEdgeProbability(NewTop
, ExitBB
);
1872 BlockFrequency BackEdgeFreq
= MBFI
->getBlockFreq(NewTop
) *
1873 MBPI
->getEdgeProbability(NewTop
, OldTop
);
1875 // Find the best Pred of NewTop.
1876 MachineBasicBlock
*BestPred
= nullptr;
1877 BlockFrequency FallThroughFromPred
= 0;
1878 for (MachineBasicBlock
*Pred
: NewTop
->predecessors()) {
1879 if (!LoopBlockSet
.count(Pred
))
1881 BlockChain
*PredChain
= BlockToChain
[Pred
];
1882 if (!PredChain
|| Pred
== *std::prev(PredChain
->end())) {
1883 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
1884 MBPI
->getEdgeProbability(Pred
, NewTop
);
1885 if (EdgeFreq
> FallThroughFromPred
) {
1886 FallThroughFromPred
= EdgeFreq
;
1892 // If NewTop is not placed after Pred, another successor can be placed
1894 BlockFrequency NewFreq
= 0;
1896 for (MachineBasicBlock
*Succ
: BestPred
->successors()) {
1897 if ((Succ
== NewTop
) || (Succ
== BestPred
) || !LoopBlockSet
.count(Succ
))
1899 if (ComputedEdges
.find(Succ
) != ComputedEdges
.end())
1901 BlockChain
*SuccChain
= BlockToChain
[Succ
];
1902 if ((SuccChain
&& (Succ
!= *SuccChain
->begin())) ||
1903 (SuccChain
== BlockToChain
[BestPred
]))
1905 BlockFrequency EdgeFreq
= MBFI
->getBlockFreq(BestPred
) *
1906 MBPI
->getEdgeProbability(BestPred
, Succ
);
1907 if (EdgeFreq
> NewFreq
)
1910 BlockFrequency OrigEdgeFreq
= MBFI
->getBlockFreq(BestPred
) *
1911 MBPI
->getEdgeProbability(BestPred
, NewTop
);
1912 if (NewFreq
> OrigEdgeFreq
) {
1913 // If NewTop is not the best successor of Pred, then Pred doesn't
1914 // fallthrough to NewTop. So there is no FallThroughFromPred and
1917 FallThroughFromPred
= 0;
1921 BlockFrequency Result
= 0;
1922 BlockFrequency Gains
= BackEdgeFreq
+ NewFreq
;
1923 BlockFrequency Lost
= FallThrough2Top
+ FallThrough2Exit
+
1924 FallThroughFromPred
;
1926 Result
= Gains
- Lost
;
1930 /// Helper function of findBestLoopTop. Find the best loop top block
1931 /// from predecessors of old top.
1933 /// Look for a block which is strictly better than the old top for laying
1934 /// out before the old top of the loop. This looks for only two patterns:
1936 /// 1. a block has only one successor, the old loop top
1938 /// Because such a block will always result in an unconditional jump,
1939 /// rotating it in front of the old top is always profitable.
1941 /// 2. a block has two successors, one is old top, another is exit
1942 /// and it has more than one predecessors
1944 /// If it is below one of its predecessors P, only P can fall through to
1945 /// it, all other predecessors need a jump to it, and another conditional
1946 /// jump to loop header. If it is moved before loop header, all its
1947 /// predecessors jump to it, then fall through to loop header. So all its
1948 /// predecessors except P can reduce one taken branch.
1949 /// At the same time, move it before old top increases the taken branch
1950 /// to loop exit block, so the reduced taken branch will be compared with
1951 /// the increased taken branch to the loop exit block.
1953 MachineBlockPlacement::findBestLoopTopHelper(
1954 MachineBasicBlock
*OldTop
,
1955 const MachineLoop
&L
,
1956 const BlockFilterSet
&LoopBlockSet
) {
1957 // Check that the header hasn't been fused with a preheader block due to
1958 // crazy branches. If it has, we need to start with the header at the top to
1959 // prevent pulling the preheader into the loop body.
1960 BlockChain
&HeaderChain
= *BlockToChain
[OldTop
];
1961 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
1964 LLVM_DEBUG(dbgs() << "Finding best loop top for: " << getBlockName(OldTop
)
1967 BlockFrequency BestGains
= 0;
1968 MachineBasicBlock
*BestPred
= nullptr;
1969 for (MachineBasicBlock
*Pred
: OldTop
->predecessors()) {
1970 if (!LoopBlockSet
.count(Pred
))
1972 if (Pred
== L
.getHeader())
1974 LLVM_DEBUG(dbgs() << " old top pred: " << getBlockName(Pred
) << ", has "
1975 << Pred
->succ_size() << " successors, ";
1976 MBFI
->printBlockFreq(dbgs(), Pred
) << " freq\n");
1977 if (Pred
->succ_size() > 2)
1980 MachineBasicBlock
*OtherBB
= nullptr;
1981 if (Pred
->succ_size() == 2) {
1982 OtherBB
= *Pred
->succ_begin();
1983 if (OtherBB
== OldTop
)
1984 OtherBB
= *Pred
->succ_rbegin();
1987 if (!canMoveBottomBlockToTop(Pred
, OldTop
))
1990 BlockFrequency Gains
= FallThroughGains(Pred
, OldTop
, OtherBB
,
1992 if ((Gains
> 0) && (Gains
> BestGains
||
1993 ((Gains
== BestGains
) && Pred
->isLayoutSuccessor(OldTop
)))) {
1999 // If no direct predecessor is fine, just use the loop header.
2001 LLVM_DEBUG(dbgs() << " final top unchanged\n");
2005 // Walk backwards through any straight line of predecessors.
2006 while (BestPred
->pred_size() == 1 &&
2007 (*BestPred
->pred_begin())->succ_size() == 1 &&
2008 *BestPred
->pred_begin() != L
.getHeader())
2009 BestPred
= *BestPred
->pred_begin();
2011 LLVM_DEBUG(dbgs() << " final top: " << getBlockName(BestPred
) << "\n");
2015 /// Find the best loop top block for layout.
2017 /// This function iteratively calls findBestLoopTopHelper, until no new better
2018 /// BB can be found.
2020 MachineBlockPlacement::findBestLoopTop(const MachineLoop
&L
,
2021 const BlockFilterSet
&LoopBlockSet
) {
2022 // Placing the latch block before the header may introduce an extra branch
2023 // that skips this block the first time the loop is executed, which we want
2024 // to avoid when optimising for size.
2025 // FIXME: in theory there is a case that does not introduce a new branch,
2026 // i.e. when the layout predecessor does not fallthrough to the loop header.
2027 // In practice this never happens though: there always seems to be a preheader
2028 // that can fallthrough and that is also placed before the header.
2029 if (F
->getFunction().hasOptSize())
2030 return L
.getHeader();
2032 MachineBasicBlock
*OldTop
= nullptr;
2033 MachineBasicBlock
*NewTop
= L
.getHeader();
2034 while (NewTop
!= OldTop
) {
2036 NewTop
= findBestLoopTopHelper(OldTop
, L
, LoopBlockSet
);
2037 if (NewTop
!= OldTop
)
2038 ComputedEdges
[NewTop
] = { OldTop
, false };
2043 /// Find the best loop exiting block for layout.
2045 /// This routine implements the logic to analyze the loop looking for the best
2046 /// block to layout at the top of the loop. Typically this is done to maximize
2047 /// fallthrough opportunities.
2049 MachineBlockPlacement::findBestLoopExit(const MachineLoop
&L
,
2050 const BlockFilterSet
&LoopBlockSet
,
2051 BlockFrequency
&ExitFreq
) {
2052 // We don't want to layout the loop linearly in all cases. If the loop header
2053 // is just a normal basic block in the loop, we want to look for what block
2054 // within the loop is the best one to layout at the top. However, if the loop
2055 // header has be pre-merged into a chain due to predecessors not having
2056 // analyzable branches, *and* the predecessor it is merged with is *not* part
2057 // of the loop, rotating the header into the middle of the loop will create
2058 // a non-contiguous range of blocks which is Very Bad. So start with the
2059 // header and only rotate if safe.
2060 BlockChain
&HeaderChain
= *BlockToChain
[L
.getHeader()];
2061 if (!LoopBlockSet
.count(*HeaderChain
.begin()))
2064 BlockFrequency BestExitEdgeFreq
;
2065 unsigned BestExitLoopDepth
= 0;
2066 MachineBasicBlock
*ExitingBB
= nullptr;
2067 // If there are exits to outer loops, loop rotation can severely limit
2068 // fallthrough opportunities unless it selects such an exit. Keep a set of
2069 // blocks where rotating to exit with that block will reach an outer loop.
2070 SmallPtrSet
<MachineBasicBlock
*, 4> BlocksExitingToOuterLoop
;
2072 LLVM_DEBUG(dbgs() << "Finding best loop exit for: "
2073 << getBlockName(L
.getHeader()) << "\n");
2074 for (MachineBasicBlock
*MBB
: L
.getBlocks()) {
2075 BlockChain
&Chain
= *BlockToChain
[MBB
];
2076 // Ensure that this block is at the end of a chain; otherwise it could be
2077 // mid-way through an inner loop or a successor of an unanalyzable branch.
2078 if (MBB
!= *std::prev(Chain
.end()))
2081 // Now walk the successors. We need to establish whether this has a viable
2082 // exiting successor and whether it has a viable non-exiting successor.
2083 // We store the old exiting state and restore it if a viable looping
2084 // successor isn't found.
2085 MachineBasicBlock
*OldExitingBB
= ExitingBB
;
2086 BlockFrequency OldBestExitEdgeFreq
= BestExitEdgeFreq
;
2087 bool HasLoopingSucc
= false;
2088 for (MachineBasicBlock
*Succ
: MBB
->successors()) {
2089 if (Succ
->isEHPad())
2093 BlockChain
&SuccChain
= *BlockToChain
[Succ
];
2094 // Don't split chains, either this chain or the successor's chain.
2095 if (&Chain
== &SuccChain
) {
2096 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
2097 << getBlockName(Succ
) << " (chain conflict)\n");
2101 auto SuccProb
= MBPI
->getEdgeProbability(MBB
, Succ
);
2102 if (LoopBlockSet
.count(Succ
)) {
2103 LLVM_DEBUG(dbgs() << " looping: " << getBlockName(MBB
) << " -> "
2104 << getBlockName(Succ
) << " (" << SuccProb
<< ")\n");
2105 HasLoopingSucc
= true;
2109 unsigned SuccLoopDepth
= 0;
2110 if (MachineLoop
*ExitLoop
= MLI
->getLoopFor(Succ
)) {
2111 SuccLoopDepth
= ExitLoop
->getLoopDepth();
2112 if (ExitLoop
->contains(&L
))
2113 BlocksExitingToOuterLoop
.insert(MBB
);
2116 BlockFrequency ExitEdgeFreq
= MBFI
->getBlockFreq(MBB
) * SuccProb
;
2117 LLVM_DEBUG(dbgs() << " exiting: " << getBlockName(MBB
) << " -> "
2118 << getBlockName(Succ
) << " [L:" << SuccLoopDepth
2120 MBFI
->printBlockFreq(dbgs(), ExitEdgeFreq
) << ")\n");
2121 // Note that we bias this toward an existing layout successor to retain
2122 // incoming order in the absence of better information. The exit must have
2123 // a frequency higher than the current exit before we consider breaking
2125 BranchProbability
Bias(100 - ExitBlockBias
, 100);
2126 if (!ExitingBB
|| SuccLoopDepth
> BestExitLoopDepth
||
2127 ExitEdgeFreq
> BestExitEdgeFreq
||
2128 (MBB
->isLayoutSuccessor(Succ
) &&
2129 !(ExitEdgeFreq
< BestExitEdgeFreq
* Bias
))) {
2130 BestExitEdgeFreq
= ExitEdgeFreq
;
2135 if (!HasLoopingSucc
) {
2136 // Restore the old exiting state, no viable looping successor was found.
2137 ExitingBB
= OldExitingBB
;
2138 BestExitEdgeFreq
= OldBestExitEdgeFreq
;
2141 // Without a candidate exiting block or with only a single block in the
2142 // loop, just use the loop header to layout the loop.
2145 dbgs() << " No other candidate exit blocks, using loop header\n");
2148 if (L
.getNumBlocks() == 1) {
2149 LLVM_DEBUG(dbgs() << " Loop has 1 block, using loop header as exit\n");
2153 // Also, if we have exit blocks which lead to outer loops but didn't select
2154 // one of them as the exiting block we are rotating toward, disable loop
2155 // rotation altogether.
2156 if (!BlocksExitingToOuterLoop
.empty() &&
2157 !BlocksExitingToOuterLoop
.count(ExitingBB
))
2160 LLVM_DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB
)
2162 ExitFreq
= BestExitEdgeFreq
;
2166 /// Check if there is a fallthrough to loop header Top.
2168 /// 1. Look for a Pred that can be layout before Top.
2169 /// 2. Check if Top is the most possible successor of Pred.
2171 MachineBlockPlacement::hasViableTopFallthrough(
2172 const MachineBasicBlock
*Top
,
2173 const BlockFilterSet
&LoopBlockSet
) {
2174 for (MachineBasicBlock
*Pred
: Top
->predecessors()) {
2175 BlockChain
*PredChain
= BlockToChain
[Pred
];
2176 if (!LoopBlockSet
.count(Pred
) &&
2177 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2178 // Found a Pred block can be placed before Top.
2179 // Check if Top is the best successor of Pred.
2180 auto TopProb
= MBPI
->getEdgeProbability(Pred
, Top
);
2182 for (MachineBasicBlock
*Succ
: Pred
->successors()) {
2183 auto SuccProb
= MBPI
->getEdgeProbability(Pred
, Succ
);
2184 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2185 // Check if Succ can be placed after Pred.
2186 // Succ should not be in any chain, or it is the head of some chain.
2187 if ((!SuccChain
|| Succ
== *SuccChain
->begin()) && SuccProb
> TopProb
) {
2199 /// Attempt to rotate an exiting block to the bottom of the loop.
2201 /// Once we have built a chain, try to rotate it to line up the hot exit block
2202 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
2203 /// branches. For example, if the loop has fallthrough into its header and out
2204 /// of its bottom already, don't rotate it.
2205 void MachineBlockPlacement::rotateLoop(BlockChain
&LoopChain
,
2206 const MachineBasicBlock
*ExitingBB
,
2207 BlockFrequency ExitFreq
,
2208 const BlockFilterSet
&LoopBlockSet
) {
2212 MachineBasicBlock
*Top
= *LoopChain
.begin();
2213 MachineBasicBlock
*Bottom
= *std::prev(LoopChain
.end());
2215 // If ExitingBB is already the last one in a chain then nothing to do.
2216 if (Bottom
== ExitingBB
)
2219 bool ViableTopFallthrough
= hasViableTopFallthrough(Top
, LoopBlockSet
);
2221 // If the header has viable fallthrough, check whether the current loop
2222 // bottom is a viable exiting block. If so, bail out as rotating will
2223 // introduce an unnecessary branch.
2224 if (ViableTopFallthrough
) {
2225 for (MachineBasicBlock
*Succ
: Bottom
->successors()) {
2226 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2227 if (!LoopBlockSet
.count(Succ
) &&
2228 (!SuccChain
|| Succ
== *SuccChain
->begin()))
2232 // Rotate will destroy the top fallthrough, we need to ensure the new exit
2233 // frequency is larger than top fallthrough.
2234 BlockFrequency FallThrough2Top
= TopFallThroughFreq(Top
, LoopBlockSet
);
2235 if (FallThrough2Top
>= ExitFreq
)
2239 BlockChain::iterator ExitIt
= llvm::find(LoopChain
, ExitingBB
);
2240 if (ExitIt
== LoopChain
.end())
2243 // Rotating a loop exit to the bottom when there is a fallthrough to top
2244 // trades the entry fallthrough for an exit fallthrough.
2245 // If there is no bottom->top edge, but the chosen exit block does have
2246 // a fallthrough, we break that fallthrough for nothing in return.
2248 // Let's consider an example. We have a built chain of basic blocks
2249 // B1, B2, ..., Bn, where Bk is a ExitingBB - chosen exit block.
2250 // By doing a rotation we get
2251 // Bk+1, ..., Bn, B1, ..., Bk
2252 // Break of fallthrough to B1 is compensated by a fallthrough from Bk.
2253 // If we had a fallthrough Bk -> Bk+1 it is broken now.
2254 // It might be compensated by fallthrough Bn -> B1.
2255 // So we have a condition to avoid creation of extra branch by loop rotation.
2256 // All below must be true to avoid loop rotation:
2257 // If there is a fallthrough to top (B1)
2258 // There was fallthrough from chosen exit block (Bk) to next one (Bk+1)
2259 // There is no fallthrough from bottom (Bn) to top (B1).
2260 // Please note that there is no exit fallthrough from Bn because we checked it
2262 if (ViableTopFallthrough
) {
2263 assert(std::next(ExitIt
) != LoopChain
.end() &&
2264 "Exit should not be last BB");
2265 MachineBasicBlock
*NextBlockInChain
= *std::next(ExitIt
);
2266 if (ExitingBB
->isSuccessor(NextBlockInChain
))
2267 if (!Bottom
->isSuccessor(Top
))
2271 LLVM_DEBUG(dbgs() << "Rotating loop to put exit " << getBlockName(ExitingBB
)
2273 std::rotate(LoopChain
.begin(), std::next(ExitIt
), LoopChain
.end());
2276 /// Attempt to rotate a loop based on profile data to reduce branch cost.
2278 /// With profile data, we can determine the cost in terms of missed fall through
2279 /// opportunities when rotating a loop chain and select the best rotation.
2280 /// Basically, there are three kinds of cost to consider for each rotation:
2281 /// 1. The possibly missed fall through edge (if it exists) from BB out of
2282 /// the loop to the loop header.
2283 /// 2. The possibly missed fall through edges (if they exist) from the loop
2284 /// exits to BB out of the loop.
2285 /// 3. The missed fall through edge (if it exists) from the last BB to the
2286 /// first BB in the loop chain.
2287 /// Therefore, the cost for a given rotation is the sum of costs listed above.
2288 /// We select the best rotation with the smallest cost.
2289 void MachineBlockPlacement::rotateLoopWithProfile(
2290 BlockChain
&LoopChain
, const MachineLoop
&L
,
2291 const BlockFilterSet
&LoopBlockSet
) {
2292 auto RotationPos
= LoopChain
.end();
2294 BlockFrequency SmallestRotationCost
= BlockFrequency::getMaxFrequency();
2296 // A utility lambda that scales up a block frequency by dividing it by a
2297 // branch probability which is the reciprocal of the scale.
2298 auto ScaleBlockFrequency
= [](BlockFrequency Freq
,
2299 unsigned Scale
) -> BlockFrequency
{
2302 // Use operator / between BlockFrequency and BranchProbability to implement
2303 // saturating multiplication.
2304 return Freq
/ BranchProbability(1, Scale
);
2307 // Compute the cost of the missed fall-through edge to the loop header if the
2308 // chain head is not the loop header. As we only consider natural loops with
2309 // single header, this computation can be done only once.
2310 BlockFrequency
HeaderFallThroughCost(0);
2311 MachineBasicBlock
*ChainHeaderBB
= *LoopChain
.begin();
2312 for (auto *Pred
: ChainHeaderBB
->predecessors()) {
2313 BlockChain
*PredChain
= BlockToChain
[Pred
];
2314 if (!LoopBlockSet
.count(Pred
) &&
2315 (!PredChain
|| Pred
== *std::prev(PredChain
->end()))) {
2316 auto EdgeFreq
= MBFI
->getBlockFreq(Pred
) *
2317 MBPI
->getEdgeProbability(Pred
, ChainHeaderBB
);
2318 auto FallThruCost
= ScaleBlockFrequency(EdgeFreq
, MisfetchCost
);
2319 // If the predecessor has only an unconditional jump to the header, we
2320 // need to consider the cost of this jump.
2321 if (Pred
->succ_size() == 1)
2322 FallThruCost
+= ScaleBlockFrequency(EdgeFreq
, JumpInstCost
);
2323 HeaderFallThroughCost
= std::max(HeaderFallThroughCost
, FallThruCost
);
2327 // Here we collect all exit blocks in the loop, and for each exit we find out
2328 // its hottest exit edge. For each loop rotation, we define the loop exit cost
2329 // as the sum of frequencies of exit edges we collect here, excluding the exit
2330 // edge from the tail of the loop chain.
2331 SmallVector
<std::pair
<MachineBasicBlock
*, BlockFrequency
>, 4> ExitsWithFreq
;
2332 for (auto BB
: LoopChain
) {
2333 auto LargestExitEdgeProb
= BranchProbability::getZero();
2334 for (auto *Succ
: BB
->successors()) {
2335 BlockChain
*SuccChain
= BlockToChain
[Succ
];
2336 if (!LoopBlockSet
.count(Succ
) &&
2337 (!SuccChain
|| Succ
== *SuccChain
->begin())) {
2338 auto SuccProb
= MBPI
->getEdgeProbability(BB
, Succ
);
2339 LargestExitEdgeProb
= std::max(LargestExitEdgeProb
, SuccProb
);
2342 if (LargestExitEdgeProb
> BranchProbability::getZero()) {
2343 auto ExitFreq
= MBFI
->getBlockFreq(BB
) * LargestExitEdgeProb
;
2344 ExitsWithFreq
.emplace_back(BB
, ExitFreq
);
2348 // In this loop we iterate every block in the loop chain and calculate the
2349 // cost assuming the block is the head of the loop chain. When the loop ends,
2350 // we should have found the best candidate as the loop chain's head.
2351 for (auto Iter
= LoopChain
.begin(), TailIter
= std::prev(LoopChain
.end()),
2352 EndIter
= LoopChain
.end();
2353 Iter
!= EndIter
; Iter
++, TailIter
++) {
2354 // TailIter is used to track the tail of the loop chain if the block we are
2355 // checking (pointed by Iter) is the head of the chain.
2356 if (TailIter
== LoopChain
.end())
2357 TailIter
= LoopChain
.begin();
2359 auto TailBB
= *TailIter
;
2361 // Calculate the cost by putting this BB to the top.
2362 BlockFrequency Cost
= 0;
2364 // If the current BB is the loop header, we need to take into account the
2365 // cost of the missed fall through edge from outside of the loop to the
2367 if (Iter
!= LoopChain
.begin())
2368 Cost
+= HeaderFallThroughCost
;
2370 // Collect the loop exit cost by summing up frequencies of all exit edges
2371 // except the one from the chain tail.
2372 for (auto &ExitWithFreq
: ExitsWithFreq
)
2373 if (TailBB
!= ExitWithFreq
.first
)
2374 Cost
+= ExitWithFreq
.second
;
2376 // The cost of breaking the once fall-through edge from the tail to the top
2377 // of the loop chain. Here we need to consider three cases:
2378 // 1. If the tail node has only one successor, then we will get an
2379 // additional jmp instruction. So the cost here is (MisfetchCost +
2380 // JumpInstCost) * tail node frequency.
2381 // 2. If the tail node has two successors, then we may still get an
2382 // additional jmp instruction if the layout successor after the loop
2383 // chain is not its CFG successor. Note that the more frequently executed
2384 // jmp instruction will be put ahead of the other one. Assume the
2385 // frequency of those two branches are x and y, where x is the frequency
2386 // of the edge to the chain head, then the cost will be
2387 // (x * MisfetechCost + min(x, y) * JumpInstCost) * tail node frequency.
2388 // 3. If the tail node has more than two successors (this rarely happens),
2389 // we won't consider any additional cost.
2390 if (TailBB
->isSuccessor(*Iter
)) {
2391 auto TailBBFreq
= MBFI
->getBlockFreq(TailBB
);
2392 if (TailBB
->succ_size() == 1)
2393 Cost
+= ScaleBlockFrequency(TailBBFreq
.getFrequency(),
2394 MisfetchCost
+ JumpInstCost
);
2395 else if (TailBB
->succ_size() == 2) {
2396 auto TailToHeadProb
= MBPI
->getEdgeProbability(TailBB
, *Iter
);
2397 auto TailToHeadFreq
= TailBBFreq
* TailToHeadProb
;
2398 auto ColderEdgeFreq
= TailToHeadProb
> BranchProbability(1, 2)
2399 ? TailBBFreq
* TailToHeadProb
.getCompl()
2401 Cost
+= ScaleBlockFrequency(TailToHeadFreq
, MisfetchCost
) +
2402 ScaleBlockFrequency(ColderEdgeFreq
, JumpInstCost
);
2406 LLVM_DEBUG(dbgs() << "The cost of loop rotation by making "
2407 << getBlockName(*Iter
)
2408 << " to the top: " << Cost
.getFrequency() << "\n");
2410 if (Cost
< SmallestRotationCost
) {
2411 SmallestRotationCost
= Cost
;
2416 if (RotationPos
!= LoopChain
.end()) {
2417 LLVM_DEBUG(dbgs() << "Rotate loop by making " << getBlockName(*RotationPos
)
2418 << " to the top\n");
2419 std::rotate(LoopChain
.begin(), RotationPos
, LoopChain
.end());
2423 /// Collect blocks in the given loop that are to be placed.
2425 /// When profile data is available, exclude cold blocks from the returned set;
2426 /// otherwise, collect all blocks in the loop.
2427 MachineBlockPlacement::BlockFilterSet
2428 MachineBlockPlacement::collectLoopBlockSet(const MachineLoop
&L
) {
2429 BlockFilterSet LoopBlockSet
;
2431 // Filter cold blocks off from LoopBlockSet when profile data is available.
2432 // Collect the sum of frequencies of incoming edges to the loop header from
2433 // outside. If we treat the loop as a super block, this is the frequency of
2434 // the loop. Then for each block in the loop, we calculate the ratio between
2435 // its frequency and the frequency of the loop block. When it is too small,
2436 // don't add it to the loop chain. If there are outer loops, then this block
2437 // will be merged into the first outer loop chain for which this block is not
2438 // cold anymore. This needs precise profile data and we only do this when
2439 // profile data is available.
2440 if (F
->getFunction().hasProfileData() || ForceLoopColdBlock
) {
2441 BlockFrequency
LoopFreq(0);
2442 for (auto LoopPred
: L
.getHeader()->predecessors())
2443 if (!L
.contains(LoopPred
))
2444 LoopFreq
+= MBFI
->getBlockFreq(LoopPred
) *
2445 MBPI
->getEdgeProbability(LoopPred
, L
.getHeader());
2447 for (MachineBasicBlock
*LoopBB
: L
.getBlocks()) {
2448 auto Freq
= MBFI
->getBlockFreq(LoopBB
).getFrequency();
2449 if (Freq
== 0 || LoopFreq
.getFrequency() / Freq
> LoopToColdBlockRatio
)
2451 LoopBlockSet
.insert(LoopBB
);
2454 LoopBlockSet
.insert(L
.block_begin(), L
.block_end());
2456 return LoopBlockSet
;
2459 /// Forms basic block chains from the natural loop structures.
2461 /// These chains are designed to preserve the existing *structure* of the code
2462 /// as much as possible. We can then stitch the chains together in a way which
2463 /// both preserves the topological structure and minimizes taken conditional
2465 void MachineBlockPlacement::buildLoopChains(const MachineLoop
&L
) {
2466 // First recurse through any nested loops, building chains for those inner
2468 for (const MachineLoop
*InnerLoop
: L
)
2469 buildLoopChains(*InnerLoop
);
2471 assert(BlockWorkList
.empty() &&
2472 "BlockWorkList not empty when starting to build loop chains.");
2473 assert(EHPadWorkList
.empty() &&
2474 "EHPadWorkList not empty when starting to build loop chains.");
2475 BlockFilterSet LoopBlockSet
= collectLoopBlockSet(L
);
2477 // Check if we have profile data for this function. If yes, we will rotate
2478 // this loop by modeling costs more precisely which requires the profile data
2479 // for better layout.
2480 bool RotateLoopWithProfile
=
2481 ForcePreciseRotationCost
||
2482 (PreciseRotationCost
&& F
->getFunction().hasProfileData());
2484 // First check to see if there is an obviously preferable top block for the
2485 // loop. This will default to the header, but may end up as one of the
2486 // predecessors to the header if there is one which will result in strictly
2487 // fewer branches in the loop body.
2488 MachineBasicBlock
*LoopTop
= findBestLoopTop(L
, LoopBlockSet
);
2490 // If we selected just the header for the loop top, look for a potentially
2491 // profitable exit block in the event that rotating the loop can eliminate
2492 // branches by placing an exit edge at the bottom.
2494 // Loops are processed innermost to uttermost, make sure we clear
2495 // PreferredLoopExit before processing a new loop.
2496 PreferredLoopExit
= nullptr;
2497 BlockFrequency ExitFreq
;
2498 if (!RotateLoopWithProfile
&& LoopTop
== L
.getHeader())
2499 PreferredLoopExit
= findBestLoopExit(L
, LoopBlockSet
, ExitFreq
);
2501 BlockChain
&LoopChain
= *BlockToChain
[LoopTop
];
2503 // FIXME: This is a really lame way of walking the chains in the loop: we
2504 // walk the blocks, and use a set to prevent visiting a particular chain
2506 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2507 assert(LoopChain
.UnscheduledPredecessors
== 0 &&
2508 "LoopChain should not have unscheduled predecessors.");
2509 UpdatedPreds
.insert(&LoopChain
);
2511 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2512 fillWorkLists(LoopBB
, UpdatedPreds
, &LoopBlockSet
);
2514 buildChain(LoopTop
, LoopChain
, &LoopBlockSet
);
2516 if (RotateLoopWithProfile
)
2517 rotateLoopWithProfile(LoopChain
, L
, LoopBlockSet
);
2519 rotateLoop(LoopChain
, PreferredLoopExit
, ExitFreq
, LoopBlockSet
);
2522 // Crash at the end so we get all of the debugging output first.
2523 bool BadLoop
= false;
2524 if (LoopChain
.UnscheduledPredecessors
) {
2526 dbgs() << "Loop chain contains a block without its preds placed!\n"
2527 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2528 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n";
2530 for (MachineBasicBlock
*ChainBB
: LoopChain
) {
2531 dbgs() << " ... " << getBlockName(ChainBB
) << "\n";
2532 if (!LoopBlockSet
.remove(ChainBB
)) {
2533 // We don't mark the loop as bad here because there are real situations
2534 // where this can occur. For example, with an unanalyzable fallthrough
2535 // from a loop block to a non-loop block or vice versa.
2536 dbgs() << "Loop chain contains a block not contained by the loop!\n"
2537 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2538 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2539 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2543 if (!LoopBlockSet
.empty()) {
2545 for (const MachineBasicBlock
*LoopBB
: LoopBlockSet
)
2546 dbgs() << "Loop contains blocks never placed into a chain!\n"
2547 << " Loop header: " << getBlockName(*L
.block_begin()) << "\n"
2548 << " Chain header: " << getBlockName(*LoopChain
.begin()) << "\n"
2549 << " Bad block: " << getBlockName(LoopBB
) << "\n";
2551 assert(!BadLoop
&& "Detected problems with the placement of this loop.");
2554 BlockWorkList
.clear();
2555 EHPadWorkList
.clear();
2558 void MachineBlockPlacement::buildCFGChains() {
2559 // Ensure that every BB in the function has an associated chain to simplify
2560 // the assumptions of the remaining algorithm.
2561 SmallVector
<MachineOperand
, 4> Cond
; // For AnalyzeBranch.
2562 for (MachineFunction::iterator FI
= F
->begin(), FE
= F
->end(); FI
!= FE
;
2564 MachineBasicBlock
*BB
= &*FI
;
2566 new (ChainAllocator
.Allocate()) BlockChain(BlockToChain
, BB
);
2567 // Also, merge any blocks which we cannot reason about and must preserve
2568 // the exact fallthrough behavior for.
2571 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2572 if (!TII
->analyzeBranch(*BB
, TBB
, FBB
, Cond
) || !FI
->canFallThrough())
2575 MachineFunction::iterator NextFI
= std::next(FI
);
2576 MachineBasicBlock
*NextBB
= &*NextFI
;
2577 // Ensure that the layout successor is a viable block, as we know that
2578 // fallthrough is a possibility.
2579 assert(NextFI
!= FE
&& "Can't fallthrough past the last block.");
2580 LLVM_DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
2581 << getBlockName(BB
) << " -> " << getBlockName(NextBB
)
2583 Chain
->merge(NextBB
, nullptr);
2585 BlocksWithUnanalyzableExits
.insert(&*BB
);
2592 // Build any loop-based chains.
2593 PreferredLoopExit
= nullptr;
2594 for (MachineLoop
*L
: *MLI
)
2595 buildLoopChains(*L
);
2597 assert(BlockWorkList
.empty() &&
2598 "BlockWorkList should be empty before building final chain.");
2599 assert(EHPadWorkList
.empty() &&
2600 "EHPadWorkList should be empty before building final chain.");
2602 SmallPtrSet
<BlockChain
*, 4> UpdatedPreds
;
2603 for (MachineBasicBlock
&MBB
: *F
)
2604 fillWorkLists(&MBB
, UpdatedPreds
);
2606 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2607 buildChain(&F
->front(), FunctionChain
);
2610 using FunctionBlockSetType
= SmallPtrSet
<MachineBasicBlock
*, 16>;
2613 // Crash at the end so we get all of the debugging output first.
2614 bool BadFunc
= false;
2615 FunctionBlockSetType FunctionBlockSet
;
2616 for (MachineBasicBlock
&MBB
: *F
)
2617 FunctionBlockSet
.insert(&MBB
);
2619 for (MachineBasicBlock
*ChainBB
: FunctionChain
)
2620 if (!FunctionBlockSet
.erase(ChainBB
)) {
2622 dbgs() << "Function chain contains a block not in the function!\n"
2623 << " Bad block: " << getBlockName(ChainBB
) << "\n";
2626 if (!FunctionBlockSet
.empty()) {
2628 for (MachineBasicBlock
*RemainingBB
: FunctionBlockSet
)
2629 dbgs() << "Function contains blocks never placed into a chain!\n"
2630 << " Bad block: " << getBlockName(RemainingBB
) << "\n";
2632 assert(!BadFunc
&& "Detected problems with the block placement.");
2635 // Splice the blocks into place.
2636 MachineFunction::iterator InsertPos
= F
->begin();
2637 LLVM_DEBUG(dbgs() << "[MBP] Function: " << F
->getName() << "\n");
2638 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2639 LLVM_DEBUG(dbgs() << (ChainBB
== *FunctionChain
.begin() ? "Placing chain "
2641 << getBlockName(ChainBB
) << "\n");
2642 if (InsertPos
!= MachineFunction::iterator(ChainBB
))
2643 F
->splice(InsertPos
, ChainBB
);
2647 // Update the terminator of the previous block.
2648 if (ChainBB
== *FunctionChain
.begin())
2650 MachineBasicBlock
*PrevBB
= &*std::prev(MachineFunction::iterator(ChainBB
));
2652 // FIXME: It would be awesome of updateTerminator would just return rather
2653 // than assert when the branch cannot be analyzed in order to remove this
2656 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2659 if (!BlocksWithUnanalyzableExits
.count(PrevBB
)) {
2660 // Given the exact block placement we chose, we may actually not _need_ to
2661 // be able to edit PrevBB's terminator sequence, but not being _able_ to
2662 // do that at this point is a bug.
2663 assert((!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
) ||
2664 !PrevBB
->canFallThrough()) &&
2665 "Unexpected block with un-analyzable fallthrough!");
2667 TBB
= FBB
= nullptr;
2671 // The "PrevBB" is not yet updated to reflect current code layout, so,
2672 // o. it may fall-through to a block without explicit "goto" instruction
2673 // before layout, and no longer fall-through it after layout; or
2674 // o. just opposite.
2676 // analyzeBranch() may return erroneous value for FBB when these two
2677 // situations take place. For the first scenario FBB is mistakenly set NULL;
2678 // for the 2nd scenario, the FBB, which is expected to be NULL, is
2679 // mistakenly pointing to "*BI".
2680 // Thus, if the future change needs to use FBB before the layout is set, it
2681 // has to correct FBB first by using the code similar to the following:
2683 // if (!Cond.empty() && (!FBB || FBB == ChainBB)) {
2684 // PrevBB->updateTerminator();
2686 // TBB = FBB = nullptr;
2687 // if (TII->analyzeBranch(*PrevBB, TBB, FBB, Cond)) {
2688 // // FIXME: This should never take place.
2689 // TBB = FBB = nullptr;
2692 if (!TII
->analyzeBranch(*PrevBB
, TBB
, FBB
, Cond
))
2693 PrevBB
->updateTerminator();
2696 // Fixup the last block.
2698 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2699 if (!TII
->analyzeBranch(F
->back(), TBB
, FBB
, Cond
))
2700 F
->back().updateTerminator();
2702 BlockWorkList
.clear();
2703 EHPadWorkList
.clear();
2706 void MachineBlockPlacement::optimizeBranches() {
2707 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2708 SmallVector
<MachineOperand
, 4> Cond
; // For AnalyzeBranch.
2710 // Now that all the basic blocks in the chain have the proper layout,
2711 // make a final call to AnalyzeBranch with AllowModify set.
2712 // Indeed, the target may be able to optimize the branches in a way we
2713 // cannot because all branches may not be analyzable.
2714 // E.g., the target may be able to remove an unconditional branch to
2715 // a fallthrough when it occurs after predicated terminators.
2716 SmallVector
<MachineBasicBlock
*, 4> EmptyBB
;
2717 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2719 MachineBasicBlock
*TBB
= nullptr, *FBB
= nullptr; // For AnalyzeBranch.
2720 if (!TII
->analyzeBranch(*ChainBB
, TBB
, FBB
, Cond
, /*AllowModify*/ true)) {
2721 // If PrevBB has a two-way branch, try to re-order the branches
2722 // such that we branch to the successor with higher probability first.
2723 if (TBB
&& !Cond
.empty() && FBB
&&
2724 MBPI
->getEdgeProbability(ChainBB
, FBB
) >
2725 MBPI
->getEdgeProbability(ChainBB
, TBB
) &&
2726 !TII
->reverseBranchCondition(Cond
)) {
2727 LLVM_DEBUG(dbgs() << "Reverse order of the two branches: "
2728 << getBlockName(ChainBB
) << "\n");
2729 LLVM_DEBUG(dbgs() << " Edge probability: "
2730 << MBPI
->getEdgeProbability(ChainBB
, FBB
) << " vs "
2731 << MBPI
->getEdgeProbability(ChainBB
, TBB
) << "\n");
2732 DebugLoc dl
; // FIXME: this is nowhere
2733 TII
->removeBranch(*ChainBB
);
2734 TII
->insertBranch(*ChainBB
, FBB
, TBB
, Cond
, dl
);
2735 ChainBB
->updateTerminator();
2736 } else if (Cond
.empty() && TBB
&& ChainBB
!= TBB
&& !TBB
->empty() &&
2737 !TBB
->canFallThrough()) {
2738 // When ChainBB is unconditional branch to the TBB, and TBB has no
2739 // fallthrough predecessor and fallthrough successor, try to merge
2740 // ChainBB and TBB. This is legal under the one of following conditions:
2741 // 1. ChainBB is empty except for an unconditional branch.
2742 // 2. TBB has only one predecessor.
2743 MachineFunction::iterator
I(TBB
);
2744 if (((TBB
== &*F
->begin()) || !std::prev(I
)->canFallThrough()) &&
2745 (TailDup
.isSimpleBB(ChainBB
) || (TBB
->pred_size() == 1))) {
2746 TII
->removeBranch(*ChainBB
);
2747 ChainBB
->removeSuccessor(TBB
);
2750 while (!TBB
->pred_empty()) {
2751 MachineBasicBlock
*Pred
= *(TBB
->pred_end() - 1);
2752 Pred
->ReplaceUsesOfBlockWith(TBB
, ChainBB
);
2755 while (!TBB
->succ_empty()) {
2756 MachineBasicBlock
*Succ
= *(TBB
->succ_end() - 1);
2757 ChainBB
->addSuccessor(Succ
, MBPI
->getEdgeProbability(TBB
, Succ
));
2758 TBB
->removeSuccessor(Succ
);
2761 // Move all the instructions of TBB to ChainBB.
2762 ChainBB
->splice(ChainBB
->end(), TBB
, TBB
->begin(), TBB
->end());
2763 EmptyBB
.push_back(TBB
);
2765 // If TBB was the target of a jump table, update jump tables to go to
2766 // the ChainBB instead.
2767 if (MachineJumpTableInfo
*MJTI
= F
->getJumpTableInfo())
2768 MJTI
->ReplaceMBBInJumpTables(TBB
, ChainBB
);
2774 for (auto BB
: EmptyBB
) {
2775 MLI
->removeBlock(BB
);
2776 FunctionChain
.remove(BB
);
2777 BlockToChain
.erase(BB
);
2782 void MachineBlockPlacement::alignBlocks() {
2783 // Walk through the backedges of the function now that we have fully laid out
2784 // the basic blocks and align the destination of each backedge. We don't rely
2785 // exclusively on the loop info here so that we can align backedges in
2786 // unnatural CFGs and backedges that were introduced purely because of the
2787 // loop rotations done during this layout pass.
2788 if (F
->getFunction().hasMinSize() ||
2789 (F
->getFunction().hasOptSize() && !TLI
->alignLoopsWithOptSize()))
2791 BlockChain
&FunctionChain
= *BlockToChain
[&F
->front()];
2792 if (FunctionChain
.begin() == FunctionChain
.end())
2793 return; // Empty chain.
2795 const BranchProbability
ColdProb(1, 5); // 20%
2796 BlockFrequency EntryFreq
= MBFI
->getBlockFreq(&F
->front());
2797 BlockFrequency WeightedEntryFreq
= EntryFreq
* ColdProb
;
2798 for (MachineBasicBlock
*ChainBB
: FunctionChain
) {
2799 if (ChainBB
== *FunctionChain
.begin())
2802 // Don't align non-looping basic blocks. These are unlikely to execute
2803 // enough times to matter in practice. Note that we'll still handle
2804 // unnatural CFGs inside of a natural outer loop (the common case) and
2806 MachineLoop
*L
= MLI
->getLoopFor(ChainBB
);
2810 const Align Align
= TLI
->getPrefLoopAlignment(L
);
2812 continue; // Don't care about loop alignment.
2814 // If the block is cold relative to the function entry don't waste space
2816 BlockFrequency Freq
= MBFI
->getBlockFreq(ChainBB
);
2817 if (Freq
< WeightedEntryFreq
)
2820 // If the block is cold relative to its loop header, don't align it
2821 // regardless of what edges into the block exist.
2822 MachineBasicBlock
*LoopHeader
= L
->getHeader();
2823 BlockFrequency LoopHeaderFreq
= MBFI
->getBlockFreq(LoopHeader
);
2824 if (Freq
< (LoopHeaderFreq
* ColdProb
))
2827 // Check for the existence of a non-layout predecessor which would benefit
2828 // from aligning this block.
2829 MachineBasicBlock
*LayoutPred
=
2830 &*std::prev(MachineFunction::iterator(ChainBB
));
2832 // Force alignment if all the predecessors are jumps. We already checked
2833 // that the block isn't cold above.
2834 if (!LayoutPred
->isSuccessor(ChainBB
)) {
2835 ChainBB
->setAlignment(Align
);
2839 // Align this block if the layout predecessor's edge into this block is
2840 // cold relative to the block. When this is true, other predecessors make up
2841 // all of the hot entries into the block and thus alignment is likely to be
2843 BranchProbability LayoutProb
=
2844 MBPI
->getEdgeProbability(LayoutPred
, ChainBB
);
2845 BlockFrequency LayoutEdgeFreq
= MBFI
->getBlockFreq(LayoutPred
) * LayoutProb
;
2846 if (LayoutEdgeFreq
<= (Freq
* ColdProb
))
2847 ChainBB
->setAlignment(Align
);
2851 /// Tail duplicate \p BB into (some) predecessors if profitable, repeating if
2852 /// it was duplicated into its chain predecessor and removed.
2853 /// \p BB - Basic block that may be duplicated.
2855 /// \p LPred - Chosen layout predecessor of \p BB.
2856 /// Updated to be the chain end if LPred is removed.
2857 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2858 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2859 /// Used to identify which blocks to update predecessor
2861 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2862 /// chosen in the given order due to unnatural CFG
2863 /// only needed if \p BB is removed and
2864 /// \p PrevUnplacedBlockIt pointed to \p BB.
2865 /// @return true if \p BB was removed.
2866 bool MachineBlockPlacement::repeatedlyTailDuplicateBlock(
2867 MachineBasicBlock
*BB
, MachineBasicBlock
*&LPred
,
2868 const MachineBasicBlock
*LoopHeaderBB
,
2869 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
2870 MachineFunction::iterator
&PrevUnplacedBlockIt
) {
2871 bool Removed
, DuplicatedToLPred
;
2872 bool DuplicatedToOriginalLPred
;
2873 Removed
= maybeTailDuplicateBlock(BB
, LPred
, Chain
, BlockFilter
,
2874 PrevUnplacedBlockIt
,
2878 DuplicatedToOriginalLPred
= DuplicatedToLPred
;
2879 // Iteratively try to duplicate again. It can happen that a block that is
2880 // duplicated into is still small enough to be duplicated again.
2881 // No need to call markBlockSuccessors in this case, as the blocks being
2882 // duplicated from here on are already scheduled.
2883 // Note that DuplicatedToLPred always implies Removed.
2884 while (DuplicatedToLPred
) {
2885 assert(Removed
&& "Block must have been removed to be duplicated into its "
2886 "layout predecessor.");
2887 MachineBasicBlock
*DupBB
, *DupPred
;
2888 // The removal callback causes Chain.end() to be updated when a block is
2889 // removed. On the first pass through the loop, the chain end should be the
2890 // same as it was on function entry. On subsequent passes, because we are
2891 // duplicating the block at the end of the chain, if it is removed the
2892 // chain will have shrunk by one block.
2893 BlockChain::iterator ChainEnd
= Chain
.end();
2894 DupBB
= *(--ChainEnd
);
2895 // Now try to duplicate again.
2896 if (ChainEnd
== Chain
.begin())
2898 DupPred
= *std::prev(ChainEnd
);
2899 Removed
= maybeTailDuplicateBlock(DupBB
, DupPred
, Chain
, BlockFilter
,
2900 PrevUnplacedBlockIt
,
2903 // If BB was duplicated into LPred, it is now scheduled. But because it was
2904 // removed, markChainSuccessors won't be called for its chain. Instead we
2905 // call markBlockSuccessors for LPred to achieve the same effect. This must go
2906 // at the end because repeating the tail duplication can increase the number
2907 // of unscheduled predecessors.
2908 LPred
= *std::prev(Chain
.end());
2909 if (DuplicatedToOriginalLPred
)
2910 markBlockSuccessors(Chain
, LPred
, LoopHeaderBB
, BlockFilter
);
2914 /// Tail duplicate \p BB into (some) predecessors if profitable.
2915 /// \p BB - Basic block that may be duplicated
2916 /// \p LPred - Chosen layout predecessor of \p BB
2917 /// \p Chain - Chain to which \p LPred belongs, and \p BB will belong.
2918 /// \p BlockFilter - Set of blocks that belong to the loop being laid out.
2919 /// Used to identify which blocks to update predecessor
2921 /// \p PrevUnplacedBlockIt - Iterator pointing to the last block that was
2922 /// chosen in the given order due to unnatural CFG
2923 /// only needed if \p BB is removed and
2924 /// \p PrevUnplacedBlockIt pointed to \p BB.
2925 /// \p DuplicatedToLPred - True if the block was duplicated into LPred. Will
2926 /// only be true if the block was removed.
2927 /// \return - True if the block was duplicated into all preds and removed.
2928 bool MachineBlockPlacement::maybeTailDuplicateBlock(
2929 MachineBasicBlock
*BB
, MachineBasicBlock
*LPred
,
2930 BlockChain
&Chain
, BlockFilterSet
*BlockFilter
,
2931 MachineFunction::iterator
&PrevUnplacedBlockIt
,
2932 bool &DuplicatedToLPred
) {
2933 DuplicatedToLPred
= false;
2934 if (!shouldTailDuplicate(BB
))
2937 LLVM_DEBUG(dbgs() << "Redoing tail duplication for Succ#" << BB
->getNumber()
2940 // This has to be a callback because none of it can be done after
2942 bool Removed
= false;
2943 auto RemovalCallback
=
2944 [&](MachineBasicBlock
*RemBB
) {
2945 // Signal to outer function
2948 // Conservative default.
2949 bool InWorkList
= true;
2950 // Remove from the Chain and Chain Map
2951 if (BlockToChain
.count(RemBB
)) {
2952 BlockChain
*Chain
= BlockToChain
[RemBB
];
2953 InWorkList
= Chain
->UnscheduledPredecessors
== 0;
2954 Chain
->remove(RemBB
);
2955 BlockToChain
.erase(RemBB
);
2958 // Handle the unplaced block iterator
2959 if (&(*PrevUnplacedBlockIt
) == RemBB
) {
2960 PrevUnplacedBlockIt
++;
2963 // Handle the Work Lists
2965 SmallVectorImpl
<MachineBasicBlock
*> &RemoveList
= BlockWorkList
;
2966 if (RemBB
->isEHPad())
2967 RemoveList
= EHPadWorkList
;
2969 llvm::remove_if(RemoveList
,
2970 [RemBB
](MachineBasicBlock
*BB
) {
2976 // Handle the filter set
2978 BlockFilter
->remove(RemBB
);
2981 // Remove the block from loop info.
2982 MLI
->removeBlock(RemBB
);
2983 if (RemBB
== PreferredLoopExit
)
2984 PreferredLoopExit
= nullptr;
2986 LLVM_DEBUG(dbgs() << "TailDuplicator deleted block: "
2987 << getBlockName(RemBB
) << "\n");
2989 auto RemovalCallbackRef
=
2990 function_ref
<void(MachineBasicBlock
*)>(RemovalCallback
);
2992 SmallVector
<MachineBasicBlock
*, 8> DuplicatedPreds
;
2993 bool IsSimple
= TailDup
.isSimpleBB(BB
);
2994 TailDup
.tailDuplicateAndUpdate(IsSimple
, BB
, LPred
,
2995 &DuplicatedPreds
, &RemovalCallbackRef
);
2997 // Update UnscheduledPredecessors to reflect tail-duplication.
2998 DuplicatedToLPred
= false;
2999 for (MachineBasicBlock
*Pred
: DuplicatedPreds
) {
3000 // We're only looking for unscheduled predecessors that match the filter.
3001 BlockChain
* PredChain
= BlockToChain
[Pred
];
3003 DuplicatedToLPred
= true;
3004 if (Pred
== LPred
|| (BlockFilter
&& !BlockFilter
->count(Pred
))
3005 || PredChain
== &Chain
)
3007 for (MachineBasicBlock
*NewSucc
: Pred
->successors()) {
3008 if (BlockFilter
&& !BlockFilter
->count(NewSucc
))
3010 BlockChain
*NewChain
= BlockToChain
[NewSucc
];
3011 if (NewChain
!= &Chain
&& NewChain
!= PredChain
)
3012 NewChain
->UnscheduledPredecessors
++;
3018 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction
&MF
) {
3019 if (skipFunction(MF
.getFunction()))
3022 // Check for single-block functions and skip them.
3023 if (std::next(MF
.begin()) == MF
.end())
3027 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
3028 MBFI
= std::make_unique
<BranchFolder::MBFIWrapper
>(
3029 getAnalysis
<MachineBlockFrequencyInfo
>());
3030 MLI
= &getAnalysis
<MachineLoopInfo
>();
3031 TII
= MF
.getSubtarget().getInstrInfo();
3032 TLI
= MF
.getSubtarget().getTargetLowering();
3035 // Initialize PreferredLoopExit to nullptr here since it may never be set if
3036 // there are no MachineLoops.
3037 PreferredLoopExit
= nullptr;
3039 assert(BlockToChain
.empty() &&
3040 "BlockToChain map should be empty before starting placement.");
3041 assert(ComputedEdges
.empty() &&
3042 "Computed Edge map should be empty before starting placement.");
3044 unsigned TailDupSize
= TailDupPlacementThreshold
;
3045 // If only the aggressive threshold is explicitly set, use it.
3046 if (TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0 &&
3047 TailDupPlacementThreshold
.getNumOccurrences() == 0)
3048 TailDupSize
= TailDupPlacementAggressiveThreshold
;
3050 TargetPassConfig
*PassConfig
= &getAnalysis
<TargetPassConfig
>();
3051 // For aggressive optimization, we can adjust some thresholds to be less
3053 if (PassConfig
->getOptLevel() >= CodeGenOpt::Aggressive
) {
3054 // At O3 we should be more willing to copy blocks for tail duplication. This
3055 // increases size pressure, so we only do it at O3
3056 // Do this unless only the regular threshold is explicitly set.
3057 if (TailDupPlacementThreshold
.getNumOccurrences() == 0 ||
3058 TailDupPlacementAggressiveThreshold
.getNumOccurrences() != 0)
3059 TailDupSize
= TailDupPlacementAggressiveThreshold
;
3062 if (allowTailDupPlacement()) {
3063 MPDT
= &getAnalysis
<MachinePostDominatorTree
>();
3064 if (MF
.getFunction().hasOptSize())
3066 bool PreRegAlloc
= false;
3067 TailDup
.initMF(MF
, PreRegAlloc
, MBPI
, /* LayoutMode */ true, TailDupSize
);
3068 precomputeTriangleChains();
3073 // Changing the layout can create new tail merging opportunities.
3074 // TailMerge can create jump into if branches that make CFG irreducible for
3075 // HW that requires structured CFG.
3076 bool EnableTailMerge
= !MF
.getTarget().requiresStructuredCFG() &&
3077 PassConfig
->getEnableTailMerge() &&
3078 BranchFoldPlacement
;
3079 // No tail merging opportunities if the block number is less than four.
3080 if (MF
.size() > 3 && EnableTailMerge
) {
3081 unsigned TailMergeSize
= TailDupSize
+ 1;
3082 BranchFolder
BF(/*EnableTailMerge=*/true, /*CommonHoist=*/false, *MBFI
,
3083 *MBPI
, TailMergeSize
);
3085 auto *MMIWP
= getAnalysisIfAvailable
<MachineModuleInfoWrapperPass
>();
3086 if (BF
.OptimizeFunction(MF
, TII
, MF
.getSubtarget().getRegisterInfo(),
3087 MMIWP
? &MMIWP
->getMMI() : nullptr, MLI
,
3088 /*AfterPlacement=*/true)) {
3089 // Redo the layout if tail merging creates/removes/moves blocks.
3090 BlockToChain
.clear();
3091 ComputedEdges
.clear();
3092 // Must redo the post-dominator tree if blocks were changed.
3094 MPDT
->runOnMachineFunction(MF
);
3095 ChainAllocator
.DestroyAll();
3100 // optimizeBranches() may change the blocks, but we haven't updated the
3101 // post-dominator tree. Because the post-dominator tree won't be used after
3102 // this function and this pass don't preserve the post-dominator tree.
3106 BlockToChain
.clear();
3107 ComputedEdges
.clear();
3108 ChainAllocator
.DestroyAll();
3111 // Align all of the blocks in the function to a specific alignment.
3112 for (MachineBasicBlock
&MBB
: MF
)
3113 MBB
.setAlignment(Align(1ULL << AlignAllBlock
));
3114 else if (AlignAllNonFallThruBlocks
) {
3115 // Align all of the blocks that have no fall-through predecessors to a
3116 // specific alignment.
3117 for (auto MBI
= std::next(MF
.begin()), MBE
= MF
.end(); MBI
!= MBE
; ++MBI
) {
3118 auto LayoutPred
= std::prev(MBI
);
3119 if (!LayoutPred
->isSuccessor(&*MBI
))
3120 MBI
->setAlignment(Align(1ULL << AlignAllNonFallThruBlocks
));
3123 if (ViewBlockLayoutWithBFI
!= GVDT_None
&&
3124 (ViewBlockFreqFuncName
.empty() ||
3125 F
->getFunction().getName().equals(ViewBlockFreqFuncName
))) {
3126 MBFI
->view("MBP." + MF
.getName(), false);
3130 // We always return true as we have no way to track whether the final order
3131 // differs from the original order.
3137 /// A pass to compute block placement statistics.
3139 /// A separate pass to compute interesting statistics for evaluating block
3140 /// placement. This is separate from the actual placement pass so that they can
3141 /// be computed in the absence of any placement transformations or when using
3142 /// alternative placement strategies.
3143 class MachineBlockPlacementStats
: public MachineFunctionPass
{
3144 /// A handle to the branch probability pass.
3145 const MachineBranchProbabilityInfo
*MBPI
;
3147 /// A handle to the function-wide block frequency pass.
3148 const MachineBlockFrequencyInfo
*MBFI
;
3151 static char ID
; // Pass identification, replacement for typeid
3153 MachineBlockPlacementStats() : MachineFunctionPass(ID
) {
3154 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
3157 bool runOnMachineFunction(MachineFunction
&F
) override
;
3159 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
3160 AU
.addRequired
<MachineBranchProbabilityInfo
>();
3161 AU
.addRequired
<MachineBlockFrequencyInfo
>();
3162 AU
.setPreservesAll();
3163 MachineFunctionPass::getAnalysisUsage(AU
);
3167 } // end anonymous namespace
3169 char MachineBlockPlacementStats::ID
= 0;
3171 char &llvm::MachineBlockPlacementStatsID
= MachineBlockPlacementStats::ID
;
3173 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats
, "block-placement-stats",
3174 "Basic Block Placement Stats", false, false)
3175 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo
)
3176 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo
)
3177 INITIALIZE_PASS_END(MachineBlockPlacementStats
, "block-placement-stats",
3178 "Basic Block Placement Stats", false, false)
3180 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction
&F
) {
3181 // Check for single-block functions and skip them.
3182 if (std::next(F
.begin()) == F
.end())
3185 MBPI
= &getAnalysis
<MachineBranchProbabilityInfo
>();
3186 MBFI
= &getAnalysis
<MachineBlockFrequencyInfo
>();
3188 for (MachineBasicBlock
&MBB
: F
) {
3189 BlockFrequency BlockFreq
= MBFI
->getBlockFreq(&MBB
);
3190 Statistic
&NumBranches
=
3191 (MBB
.succ_size() > 1) ? NumCondBranches
: NumUncondBranches
;
3192 Statistic
&BranchTakenFreq
=
3193 (MBB
.succ_size() > 1) ? CondBranchTakenFreq
: UncondBranchTakenFreq
;
3194 for (MachineBasicBlock
*Succ
: MBB
.successors()) {
3195 // Skip if this successor is a fallthrough.
3196 if (MBB
.isLayoutSuccessor(Succ
))
3199 BlockFrequency EdgeFreq
=
3200 BlockFreq
* MBPI
->getEdgeProbability(&MBB
, Succ
);
3202 BranchTakenFreq
+= EdgeFreq
.getFrequency();