1 //===-- ThreadSanitizer.cpp - race detector -------------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file is a part of ThreadSanitizer, a race detector.
11 // The tool is under development, for the details about previous versions see
12 // http://code.google.com/p/data-race-test
14 // The instrumentation phase is quite simple:
15 // - Insert calls to run-time library before every memory access.
16 // - Optimizations may apply to avoid instrumenting some of the accesses.
17 // - Insert calls at function entry/exit.
18 // The rest is handled by the run-time library.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
22 #include "llvm/ADT/SmallPtrSet.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/ADT/StringExtras.h"
27 #include "llvm/Analysis/CaptureTracking.h"
28 #include "llvm/Analysis/TargetLibraryInfo.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/Function.h"
33 #include "llvm/IR/IRBuilder.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Type.h"
40 #include "llvm/ProfileData/InstrProf.h"
41 #include "llvm/Support/CommandLine.h"
42 #include "llvm/Support/Debug.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/raw_ostream.h"
45 #include "llvm/Transforms/Instrumentation.h"
46 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
47 #include "llvm/Transforms/Utils/EscapeEnumerator.h"
48 #include "llvm/Transforms/Utils/ModuleUtils.h"
52 #define DEBUG_TYPE "tsan"
54 static cl::opt
<bool> ClInstrumentMemoryAccesses(
55 "tsan-instrument-memory-accesses", cl::init(true),
56 cl::desc("Instrument memory accesses"), cl::Hidden
);
57 static cl::opt
<bool> ClInstrumentFuncEntryExit(
58 "tsan-instrument-func-entry-exit", cl::init(true),
59 cl::desc("Instrument function entry and exit"), cl::Hidden
);
60 static cl::opt
<bool> ClHandleCxxExceptions(
61 "tsan-handle-cxx-exceptions", cl::init(true),
62 cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
64 static cl::opt
<bool> ClInstrumentAtomics(
65 "tsan-instrument-atomics", cl::init(true),
66 cl::desc("Instrument atomics"), cl::Hidden
);
67 static cl::opt
<bool> ClInstrumentMemIntrinsics(
68 "tsan-instrument-memintrinsics", cl::init(true),
69 cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden
);
71 STATISTIC(NumInstrumentedReads
, "Number of instrumented reads");
72 STATISTIC(NumInstrumentedWrites
, "Number of instrumented writes");
73 STATISTIC(NumOmittedReadsBeforeWrite
,
74 "Number of reads ignored due to following writes");
75 STATISTIC(NumAccessesWithBadSize
, "Number of accesses with bad size");
76 STATISTIC(NumInstrumentedVtableWrites
, "Number of vtable ptr writes");
77 STATISTIC(NumInstrumentedVtableReads
, "Number of vtable ptr reads");
78 STATISTIC(NumOmittedReadsFromConstantGlobals
,
79 "Number of reads from constant globals");
80 STATISTIC(NumOmittedReadsFromVtable
, "Number of vtable reads");
81 STATISTIC(NumOmittedNonCaptured
, "Number of accesses ignored due to capturing");
83 static const char *const kTsanModuleCtorName
= "tsan.module_ctor";
84 static const char *const kTsanInitName
= "__tsan_init";
88 /// ThreadSanitizer: instrument the code in module to find races.
90 /// Instantiating ThreadSanitizer inserts the tsan runtime library API function
91 /// declarations into the module if they don't exist already. Instantiating
92 /// ensures the __tsan_init function is in the list of global constructors for
94 struct ThreadSanitizer
{
95 ThreadSanitizer(Module
&M
);
96 bool sanitizeFunction(Function
&F
, const TargetLibraryInfo
&TLI
);
99 void initializeCallbacks(Module
&M
);
100 bool instrumentLoadOrStore(Instruction
*I
, const DataLayout
&DL
);
101 bool instrumentAtomic(Instruction
*I
, const DataLayout
&DL
);
102 bool instrumentMemIntrinsic(Instruction
*I
);
103 void chooseInstructionsToInstrument(SmallVectorImpl
<Instruction
*> &Local
,
104 SmallVectorImpl
<Instruction
*> &All
,
105 const DataLayout
&DL
);
106 bool addrPointsToConstantData(Value
*Addr
);
107 int getMemoryAccessFuncIndex(Value
*Addr
, const DataLayout
&DL
);
108 void InsertRuntimeIgnores(Function
&F
);
112 // Callbacks to run-time library are computed in doInitialization.
113 FunctionCallee TsanFuncEntry
;
114 FunctionCallee TsanFuncExit
;
115 FunctionCallee TsanIgnoreBegin
;
116 FunctionCallee TsanIgnoreEnd
;
117 // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
118 static const size_t kNumberOfAccessSizes
= 5;
119 FunctionCallee TsanRead
[kNumberOfAccessSizes
];
120 FunctionCallee TsanWrite
[kNumberOfAccessSizes
];
121 FunctionCallee TsanUnalignedRead
[kNumberOfAccessSizes
];
122 FunctionCallee TsanUnalignedWrite
[kNumberOfAccessSizes
];
123 FunctionCallee TsanAtomicLoad
[kNumberOfAccessSizes
];
124 FunctionCallee TsanAtomicStore
[kNumberOfAccessSizes
];
125 FunctionCallee TsanAtomicRMW
[AtomicRMWInst::LAST_BINOP
+ 1]
126 [kNumberOfAccessSizes
];
127 FunctionCallee TsanAtomicCAS
[kNumberOfAccessSizes
];
128 FunctionCallee TsanAtomicThreadFence
;
129 FunctionCallee TsanAtomicSignalFence
;
130 FunctionCallee TsanVptrUpdate
;
131 FunctionCallee TsanVptrLoad
;
132 FunctionCallee MemmoveFn
, MemcpyFn
, MemsetFn
;
133 Function
*TsanCtorFunction
;
136 struct ThreadSanitizerLegacyPass
: FunctionPass
{
137 ThreadSanitizerLegacyPass() : FunctionPass(ID
) {}
138 StringRef
getPassName() const override
;
139 void getAnalysisUsage(AnalysisUsage
&AU
) const override
;
140 bool runOnFunction(Function
&F
) override
;
141 bool doInitialization(Module
&M
) override
;
142 static char ID
; // Pass identification, replacement for typeid.
144 Optional
<ThreadSanitizer
> TSan
;
148 PreservedAnalyses
ThreadSanitizerPass::run(Function
&F
,
149 FunctionAnalysisManager
&FAM
) {
150 ThreadSanitizer
TSan(*F
.getParent());
151 if (TSan
.sanitizeFunction(F
, FAM
.getResult
<TargetLibraryAnalysis
>(F
)))
152 return PreservedAnalyses::none();
153 return PreservedAnalyses::all();
156 char ThreadSanitizerLegacyPass::ID
= 0;
157 INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass
, "tsan",
158 "ThreadSanitizer: detects data races.", false, false)
159 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
160 INITIALIZE_PASS_END(ThreadSanitizerLegacyPass
, "tsan",
161 "ThreadSanitizer: detects data races.", false, false)
163 StringRef
ThreadSanitizerLegacyPass::getPassName() const {
164 return "ThreadSanitizerLegacyPass";
167 void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage
&AU
) const {
168 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
171 bool ThreadSanitizerLegacyPass::doInitialization(Module
&M
) {
176 bool ThreadSanitizerLegacyPass::runOnFunction(Function
&F
) {
177 auto &TLI
= getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI(F
);
178 TSan
->sanitizeFunction(F
, TLI
);
182 FunctionPass
*llvm::createThreadSanitizerLegacyPassPass() {
183 return new ThreadSanitizerLegacyPass();
186 void ThreadSanitizer::initializeCallbacks(Module
&M
) {
187 IRBuilder
<> IRB(M
.getContext());
189 Attr
= Attr
.addAttribute(M
.getContext(), AttributeList::FunctionIndex
,
190 Attribute::NoUnwind
);
191 // Initialize the callbacks.
192 TsanFuncEntry
= M
.getOrInsertFunction("__tsan_func_entry", Attr
,
193 IRB
.getVoidTy(), IRB
.getInt8PtrTy());
195 M
.getOrInsertFunction("__tsan_func_exit", Attr
, IRB
.getVoidTy());
196 TsanIgnoreBegin
= M
.getOrInsertFunction("__tsan_ignore_thread_begin", Attr
,
199 M
.getOrInsertFunction("__tsan_ignore_thread_end", Attr
, IRB
.getVoidTy());
200 OrdTy
= IRB
.getInt32Ty();
201 for (size_t i
= 0; i
< kNumberOfAccessSizes
; ++i
) {
202 const unsigned ByteSize
= 1U << i
;
203 const unsigned BitSize
= ByteSize
* 8;
204 std::string ByteSizeStr
= utostr(ByteSize
);
205 std::string BitSizeStr
= utostr(BitSize
);
206 SmallString
<32> ReadName("__tsan_read" + ByteSizeStr
);
207 TsanRead
[i
] = M
.getOrInsertFunction(ReadName
, Attr
, IRB
.getVoidTy(),
210 SmallString
<32> WriteName("__tsan_write" + ByteSizeStr
);
211 TsanWrite
[i
] = M
.getOrInsertFunction(WriteName
, Attr
, IRB
.getVoidTy(),
214 SmallString
<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr
);
215 TsanUnalignedRead
[i
] = M
.getOrInsertFunction(
216 UnalignedReadName
, Attr
, IRB
.getVoidTy(), IRB
.getInt8PtrTy());
218 SmallString
<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr
);
219 TsanUnalignedWrite
[i
] = M
.getOrInsertFunction(
220 UnalignedWriteName
, Attr
, IRB
.getVoidTy(), IRB
.getInt8PtrTy());
222 Type
*Ty
= Type::getIntNTy(M
.getContext(), BitSize
);
223 Type
*PtrTy
= Ty
->getPointerTo();
224 SmallString
<32> AtomicLoadName("__tsan_atomic" + BitSizeStr
+ "_load");
226 M
.getOrInsertFunction(AtomicLoadName
, Attr
, Ty
, PtrTy
, OrdTy
);
228 SmallString
<32> AtomicStoreName("__tsan_atomic" + BitSizeStr
+ "_store");
229 TsanAtomicStore
[i
] = M
.getOrInsertFunction(
230 AtomicStoreName
, Attr
, IRB
.getVoidTy(), PtrTy
, Ty
, OrdTy
);
232 for (int op
= AtomicRMWInst::FIRST_BINOP
;
233 op
<= AtomicRMWInst::LAST_BINOP
; ++op
) {
234 TsanAtomicRMW
[op
][i
] = nullptr;
235 const char *NamePart
= nullptr;
236 if (op
== AtomicRMWInst::Xchg
)
237 NamePart
= "_exchange";
238 else if (op
== AtomicRMWInst::Add
)
239 NamePart
= "_fetch_add";
240 else if (op
== AtomicRMWInst::Sub
)
241 NamePart
= "_fetch_sub";
242 else if (op
== AtomicRMWInst::And
)
243 NamePart
= "_fetch_and";
244 else if (op
== AtomicRMWInst::Or
)
245 NamePart
= "_fetch_or";
246 else if (op
== AtomicRMWInst::Xor
)
247 NamePart
= "_fetch_xor";
248 else if (op
== AtomicRMWInst::Nand
)
249 NamePart
= "_fetch_nand";
252 SmallString
<32> RMWName("__tsan_atomic" + itostr(BitSize
) + NamePart
);
253 TsanAtomicRMW
[op
][i
] =
254 M
.getOrInsertFunction(RMWName
, Attr
, Ty
, PtrTy
, Ty
, OrdTy
);
257 SmallString
<32> AtomicCASName("__tsan_atomic" + BitSizeStr
+
258 "_compare_exchange_val");
259 TsanAtomicCAS
[i
] = M
.getOrInsertFunction(AtomicCASName
, Attr
, Ty
, PtrTy
, Ty
,
263 M
.getOrInsertFunction("__tsan_vptr_update", Attr
, IRB
.getVoidTy(),
264 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy());
265 TsanVptrLoad
= M
.getOrInsertFunction("__tsan_vptr_read", Attr
,
266 IRB
.getVoidTy(), IRB
.getInt8PtrTy());
267 TsanAtomicThreadFence
= M
.getOrInsertFunction("__tsan_atomic_thread_fence",
268 Attr
, IRB
.getVoidTy(), OrdTy
);
269 TsanAtomicSignalFence
= M
.getOrInsertFunction("__tsan_atomic_signal_fence",
270 Attr
, IRB
.getVoidTy(), OrdTy
);
273 M
.getOrInsertFunction("memmove", Attr
, IRB
.getInt8PtrTy(),
274 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(), IntptrTy
);
276 M
.getOrInsertFunction("memcpy", Attr
, IRB
.getInt8PtrTy(),
277 IRB
.getInt8PtrTy(), IRB
.getInt8PtrTy(), IntptrTy
);
279 M
.getOrInsertFunction("memset", Attr
, IRB
.getInt8PtrTy(),
280 IRB
.getInt8PtrTy(), IRB
.getInt32Ty(), IntptrTy
);
283 ThreadSanitizer::ThreadSanitizer(Module
&M
) {
284 const DataLayout
&DL
= M
.getDataLayout();
285 IntptrTy
= DL
.getIntPtrType(M
.getContext());
286 std::tie(TsanCtorFunction
, std::ignore
) =
287 getOrCreateSanitizerCtorAndInitFunctions(
288 M
, kTsanModuleCtorName
, kTsanInitName
, /*InitArgTypes=*/{},
290 // This callback is invoked when the functions are created the first
291 // time. Hook them into the global ctors list in that case:
292 [&](Function
*Ctor
, FunctionCallee
) {
293 appendToGlobalCtors(M
, Ctor
, 0);
297 static bool isVtableAccess(Instruction
*I
) {
298 if (MDNode
*Tag
= I
->getMetadata(LLVMContext::MD_tbaa
))
299 return Tag
->isTBAAVtableAccess();
303 // Do not instrument known races/"benign races" that come from compiler
304 // instrumentatin. The user has no way of suppressing them.
305 static bool shouldInstrumentReadWriteFromAddress(const Module
*M
, Value
*Addr
) {
306 // Peel off GEPs and BitCasts.
307 Addr
= Addr
->stripInBoundsOffsets();
309 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Addr
)) {
310 if (GV
->hasSection()) {
311 StringRef SectionName
= GV
->getSection();
312 // Check if the global is in the PGO counters section.
313 auto OF
= Triple(M
->getTargetTriple()).getObjectFormat();
314 if (SectionName
.endswith(
315 getInstrProfSectionName(IPSK_cnts
, OF
, /*AddSegmentInfo=*/false)))
319 // Check if the global is private gcov data.
320 if (GV
->getName().startswith("__llvm_gcov") ||
321 GV
->getName().startswith("__llvm_gcda"))
325 // Do not instrument acesses from different address spaces; we cannot deal
328 Type
*PtrTy
= cast
<PointerType
>(Addr
->getType()->getScalarType());
329 if (PtrTy
->getPointerAddressSpace() != 0)
336 bool ThreadSanitizer::addrPointsToConstantData(Value
*Addr
) {
337 // If this is a GEP, just analyze its pointer operand.
338 if (GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(Addr
))
339 Addr
= GEP
->getPointerOperand();
341 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(Addr
)) {
342 if (GV
->isConstant()) {
343 // Reads from constant globals can not race with any writes.
344 NumOmittedReadsFromConstantGlobals
++;
347 } else if (LoadInst
*L
= dyn_cast
<LoadInst
>(Addr
)) {
348 if (isVtableAccess(L
)) {
349 // Reads from a vtable pointer can not race with any writes.
350 NumOmittedReadsFromVtable
++;
357 // Instrumenting some of the accesses may be proven redundant.
358 // Currently handled:
359 // - read-before-write (within same BB, no calls between)
360 // - not captured variables
362 // We do not handle some of the patterns that should not survive
363 // after the classic compiler optimizations.
364 // E.g. two reads from the same temp should be eliminated by CSE,
365 // two writes should be eliminated by DSE, etc.
367 // 'Local' is a vector of insns within the same BB (no calls between).
368 // 'All' is a vector of insns that will be instrumented.
369 void ThreadSanitizer::chooseInstructionsToInstrument(
370 SmallVectorImpl
<Instruction
*> &Local
, SmallVectorImpl
<Instruction
*> &All
,
371 const DataLayout
&DL
) {
372 SmallPtrSet
<Value
*, 8> WriteTargets
;
373 // Iterate from the end.
374 for (Instruction
*I
: reverse(Local
)) {
375 if (StoreInst
*Store
= dyn_cast
<StoreInst
>(I
)) {
376 Value
*Addr
= Store
->getPointerOperand();
377 if (!shouldInstrumentReadWriteFromAddress(I
->getModule(), Addr
))
379 WriteTargets
.insert(Addr
);
381 LoadInst
*Load
= cast
<LoadInst
>(I
);
382 Value
*Addr
= Load
->getPointerOperand();
383 if (!shouldInstrumentReadWriteFromAddress(I
->getModule(), Addr
))
385 if (WriteTargets
.count(Addr
)) {
386 // We will write to this temp, so no reason to analyze the read.
387 NumOmittedReadsBeforeWrite
++;
390 if (addrPointsToConstantData(Addr
)) {
391 // Addr points to some constant data -- it can not race with any writes.
395 Value
*Addr
= isa
<StoreInst
>(*I
)
396 ? cast
<StoreInst
>(I
)->getPointerOperand()
397 : cast
<LoadInst
>(I
)->getPointerOperand();
398 if (isa
<AllocaInst
>(GetUnderlyingObject(Addr
, DL
)) &&
399 !PointerMayBeCaptured(Addr
, true, true)) {
400 // The variable is addressable but not captured, so it cannot be
401 // referenced from a different thread and participate in a data race
402 // (see llvm/Analysis/CaptureTracking.h for details).
403 NumOmittedNonCaptured
++;
411 static bool isAtomic(Instruction
*I
) {
412 // TODO: Ask TTI whether synchronization scope is between threads.
413 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
))
414 return LI
->isAtomic() && LI
->getSyncScopeID() != SyncScope::SingleThread
;
415 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
416 return SI
->isAtomic() && SI
->getSyncScopeID() != SyncScope::SingleThread
;
417 if (isa
<AtomicRMWInst
>(I
))
419 if (isa
<AtomicCmpXchgInst
>(I
))
421 if (isa
<FenceInst
>(I
))
426 void ThreadSanitizer::InsertRuntimeIgnores(Function
&F
) {
427 IRBuilder
<> IRB(F
.getEntryBlock().getFirstNonPHI());
428 IRB
.CreateCall(TsanIgnoreBegin
);
429 EscapeEnumerator
EE(F
, "tsan_ignore_cleanup", ClHandleCxxExceptions
);
430 while (IRBuilder
<> *AtExit
= EE
.Next()) {
431 AtExit
->CreateCall(TsanIgnoreEnd
);
435 bool ThreadSanitizer::sanitizeFunction(Function
&F
,
436 const TargetLibraryInfo
&TLI
) {
437 // This is required to prevent instrumenting call to __tsan_init from within
438 // the module constructor.
439 if (&F
== TsanCtorFunction
)
441 initializeCallbacks(*F
.getParent());
442 SmallVector
<Instruction
*, 8> AllLoadsAndStores
;
443 SmallVector
<Instruction
*, 8> LocalLoadsAndStores
;
444 SmallVector
<Instruction
*, 8> AtomicAccesses
;
445 SmallVector
<Instruction
*, 8> MemIntrinCalls
;
447 bool HasCalls
= false;
448 bool SanitizeFunction
= F
.hasFnAttribute(Attribute::SanitizeThread
);
449 const DataLayout
&DL
= F
.getParent()->getDataLayout();
451 // Traverse all instructions, collect loads/stores/returns, check for calls.
453 for (auto &Inst
: BB
) {
455 AtomicAccesses
.push_back(&Inst
);
456 else if (isa
<LoadInst
>(Inst
) || isa
<StoreInst
>(Inst
))
457 LocalLoadsAndStores
.push_back(&Inst
);
458 else if (isa
<CallInst
>(Inst
) || isa
<InvokeInst
>(Inst
)) {
459 if (CallInst
*CI
= dyn_cast
<CallInst
>(&Inst
))
460 maybeMarkSanitizerLibraryCallNoBuiltin(CI
, &TLI
);
461 if (isa
<MemIntrinsic
>(Inst
))
462 MemIntrinCalls
.push_back(&Inst
);
464 chooseInstructionsToInstrument(LocalLoadsAndStores
, AllLoadsAndStores
,
468 chooseInstructionsToInstrument(LocalLoadsAndStores
, AllLoadsAndStores
, DL
);
471 // We have collected all loads and stores.
472 // FIXME: many of these accesses do not need to be checked for races
473 // (e.g. variables that do not escape, etc).
475 // Instrument memory accesses only if we want to report bugs in the function.
476 if (ClInstrumentMemoryAccesses
&& SanitizeFunction
)
477 for (auto Inst
: AllLoadsAndStores
) {
478 Res
|= instrumentLoadOrStore(Inst
, DL
);
481 // Instrument atomic memory accesses in any case (they can be used to
482 // implement synchronization).
483 if (ClInstrumentAtomics
)
484 for (auto Inst
: AtomicAccesses
) {
485 Res
|= instrumentAtomic(Inst
, DL
);
488 if (ClInstrumentMemIntrinsics
&& SanitizeFunction
)
489 for (auto Inst
: MemIntrinCalls
) {
490 Res
|= instrumentMemIntrinsic(Inst
);
493 if (F
.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
494 assert(!F
.hasFnAttribute(Attribute::SanitizeThread
));
496 InsertRuntimeIgnores(F
);
499 // Instrument function entry/exit points if there were instrumented accesses.
500 if ((Res
|| HasCalls
) && ClInstrumentFuncEntryExit
) {
501 IRBuilder
<> IRB(F
.getEntryBlock().getFirstNonPHI());
502 Value
*ReturnAddress
= IRB
.CreateCall(
503 Intrinsic::getDeclaration(F
.getParent(), Intrinsic::returnaddress
),
505 IRB
.CreateCall(TsanFuncEntry
, ReturnAddress
);
507 EscapeEnumerator
EE(F
, "tsan_cleanup", ClHandleCxxExceptions
);
508 while (IRBuilder
<> *AtExit
= EE
.Next()) {
509 AtExit
->CreateCall(TsanFuncExit
, {});
516 bool ThreadSanitizer::instrumentLoadOrStore(Instruction
*I
,
517 const DataLayout
&DL
) {
519 bool IsWrite
= isa
<StoreInst
>(*I
);
520 Value
*Addr
= IsWrite
521 ? cast
<StoreInst
>(I
)->getPointerOperand()
522 : cast
<LoadInst
>(I
)->getPointerOperand();
524 // swifterror memory addresses are mem2reg promoted by instruction selection.
525 // As such they cannot have regular uses like an instrumentation function and
526 // it makes no sense to track them as memory.
527 if (Addr
->isSwiftError())
530 int Idx
= getMemoryAccessFuncIndex(Addr
, DL
);
533 if (IsWrite
&& isVtableAccess(I
)) {
534 LLVM_DEBUG(dbgs() << " VPTR : " << *I
<< "\n");
535 Value
*StoredValue
= cast
<StoreInst
>(I
)->getValueOperand();
536 // StoredValue may be a vector type if we are storing several vptrs at once.
537 // In this case, just take the first element of the vector since this is
538 // enough to find vptr races.
539 if (isa
<VectorType
>(StoredValue
->getType()))
540 StoredValue
= IRB
.CreateExtractElement(
541 StoredValue
, ConstantInt::get(IRB
.getInt32Ty(), 0));
542 if (StoredValue
->getType()->isIntegerTy())
543 StoredValue
= IRB
.CreateIntToPtr(StoredValue
, IRB
.getInt8PtrTy());
544 // Call TsanVptrUpdate.
545 IRB
.CreateCall(TsanVptrUpdate
,
546 {IRB
.CreatePointerCast(Addr
, IRB
.getInt8PtrTy()),
547 IRB
.CreatePointerCast(StoredValue
, IRB
.getInt8PtrTy())});
548 NumInstrumentedVtableWrites
++;
551 if (!IsWrite
&& isVtableAccess(I
)) {
552 IRB
.CreateCall(TsanVptrLoad
,
553 IRB
.CreatePointerCast(Addr
, IRB
.getInt8PtrTy()));
554 NumInstrumentedVtableReads
++;
557 const unsigned Alignment
= IsWrite
558 ? cast
<StoreInst
>(I
)->getAlignment()
559 : cast
<LoadInst
>(I
)->getAlignment();
560 Type
*OrigTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
561 const uint32_t TypeSize
= DL
.getTypeStoreSizeInBits(OrigTy
);
562 FunctionCallee OnAccessFunc
= nullptr;
563 if (Alignment
== 0 || Alignment
>= 8 || (Alignment
% (TypeSize
/ 8)) == 0)
564 OnAccessFunc
= IsWrite
? TsanWrite
[Idx
] : TsanRead
[Idx
];
566 OnAccessFunc
= IsWrite
? TsanUnalignedWrite
[Idx
] : TsanUnalignedRead
[Idx
];
567 IRB
.CreateCall(OnAccessFunc
, IRB
.CreatePointerCast(Addr
, IRB
.getInt8PtrTy()));
568 if (IsWrite
) NumInstrumentedWrites
++;
569 else NumInstrumentedReads
++;
573 static ConstantInt
*createOrdering(IRBuilder
<> *IRB
, AtomicOrdering ord
) {
576 case AtomicOrdering::NotAtomic
:
577 llvm_unreachable("unexpected atomic ordering!");
578 case AtomicOrdering::Unordered
: LLVM_FALLTHROUGH
;
579 case AtomicOrdering::Monotonic
: v
= 0; break;
580 // Not specified yet:
581 // case AtomicOrdering::Consume: v = 1; break;
582 case AtomicOrdering::Acquire
: v
= 2; break;
583 case AtomicOrdering::Release
: v
= 3; break;
584 case AtomicOrdering::AcquireRelease
: v
= 4; break;
585 case AtomicOrdering::SequentiallyConsistent
: v
= 5; break;
587 return IRB
->getInt32(v
);
590 // If a memset intrinsic gets inlined by the code gen, we will miss races on it.
591 // So, we either need to ensure the intrinsic is not inlined, or instrument it.
592 // We do not instrument memset/memmove/memcpy intrinsics (too complicated),
593 // instead we simply replace them with regular function calls, which are then
594 // intercepted by the run-time.
595 // Since tsan is running after everyone else, the calls should not be
596 // replaced back with intrinsics. If that becomes wrong at some point,
597 // we will need to call e.g. __tsan_memset to avoid the intrinsics.
598 bool ThreadSanitizer::instrumentMemIntrinsic(Instruction
*I
) {
600 if (MemSetInst
*M
= dyn_cast
<MemSetInst
>(I
)) {
603 {IRB
.CreatePointerCast(M
->getArgOperand(0), IRB
.getInt8PtrTy()),
604 IRB
.CreateIntCast(M
->getArgOperand(1), IRB
.getInt32Ty(), false),
605 IRB
.CreateIntCast(M
->getArgOperand(2), IntptrTy
, false)});
606 I
->eraseFromParent();
607 } else if (MemTransferInst
*M
= dyn_cast
<MemTransferInst
>(I
)) {
609 isa
<MemCpyInst
>(M
) ? MemcpyFn
: MemmoveFn
,
610 {IRB
.CreatePointerCast(M
->getArgOperand(0), IRB
.getInt8PtrTy()),
611 IRB
.CreatePointerCast(M
->getArgOperand(1), IRB
.getInt8PtrTy()),
612 IRB
.CreateIntCast(M
->getArgOperand(2), IntptrTy
, false)});
613 I
->eraseFromParent();
618 // Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
619 // standards. For background see C++11 standard. A slightly older, publicly
620 // available draft of the standard (not entirely up-to-date, but close enough
621 // for casual browsing) is available here:
622 // http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
623 // The following page contains more background information:
624 // http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
626 bool ThreadSanitizer::instrumentAtomic(Instruction
*I
, const DataLayout
&DL
) {
628 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(I
)) {
629 Value
*Addr
= LI
->getPointerOperand();
630 int Idx
= getMemoryAccessFuncIndex(Addr
, DL
);
633 const unsigned ByteSize
= 1U << Idx
;
634 const unsigned BitSize
= ByteSize
* 8;
635 Type
*Ty
= Type::getIntNTy(IRB
.getContext(), BitSize
);
636 Type
*PtrTy
= Ty
->getPointerTo();
637 Value
*Args
[] = {IRB
.CreatePointerCast(Addr
, PtrTy
),
638 createOrdering(&IRB
, LI
->getOrdering())};
639 Type
*OrigTy
= cast
<PointerType
>(Addr
->getType())->getElementType();
640 Value
*C
= IRB
.CreateCall(TsanAtomicLoad
[Idx
], Args
);
641 Value
*Cast
= IRB
.CreateBitOrPointerCast(C
, OrigTy
);
642 I
->replaceAllUsesWith(Cast
);
643 } else if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
)) {
644 Value
*Addr
= SI
->getPointerOperand();
645 int Idx
= getMemoryAccessFuncIndex(Addr
, DL
);
648 const unsigned ByteSize
= 1U << Idx
;
649 const unsigned BitSize
= ByteSize
* 8;
650 Type
*Ty
= Type::getIntNTy(IRB
.getContext(), BitSize
);
651 Type
*PtrTy
= Ty
->getPointerTo();
652 Value
*Args
[] = {IRB
.CreatePointerCast(Addr
, PtrTy
),
653 IRB
.CreateBitOrPointerCast(SI
->getValueOperand(), Ty
),
654 createOrdering(&IRB
, SI
->getOrdering())};
655 CallInst
*C
= CallInst::Create(TsanAtomicStore
[Idx
], Args
);
656 ReplaceInstWithInst(I
, C
);
657 } else if (AtomicRMWInst
*RMWI
= dyn_cast
<AtomicRMWInst
>(I
)) {
658 Value
*Addr
= RMWI
->getPointerOperand();
659 int Idx
= getMemoryAccessFuncIndex(Addr
, DL
);
662 FunctionCallee F
= TsanAtomicRMW
[RMWI
->getOperation()][Idx
];
665 const unsigned ByteSize
= 1U << Idx
;
666 const unsigned BitSize
= ByteSize
* 8;
667 Type
*Ty
= Type::getIntNTy(IRB
.getContext(), BitSize
);
668 Type
*PtrTy
= Ty
->getPointerTo();
669 Value
*Args
[] = {IRB
.CreatePointerCast(Addr
, PtrTy
),
670 IRB
.CreateIntCast(RMWI
->getValOperand(), Ty
, false),
671 createOrdering(&IRB
, RMWI
->getOrdering())};
672 CallInst
*C
= CallInst::Create(F
, Args
);
673 ReplaceInstWithInst(I
, C
);
674 } else if (AtomicCmpXchgInst
*CASI
= dyn_cast
<AtomicCmpXchgInst
>(I
)) {
675 Value
*Addr
= CASI
->getPointerOperand();
676 int Idx
= getMemoryAccessFuncIndex(Addr
, DL
);
679 const unsigned ByteSize
= 1U << Idx
;
680 const unsigned BitSize
= ByteSize
* 8;
681 Type
*Ty
= Type::getIntNTy(IRB
.getContext(), BitSize
);
682 Type
*PtrTy
= Ty
->getPointerTo();
684 IRB
.CreateBitOrPointerCast(CASI
->getCompareOperand(), Ty
);
686 IRB
.CreateBitOrPointerCast(CASI
->getNewValOperand(), Ty
);
687 Value
*Args
[] = {IRB
.CreatePointerCast(Addr
, PtrTy
),
690 createOrdering(&IRB
, CASI
->getSuccessOrdering()),
691 createOrdering(&IRB
, CASI
->getFailureOrdering())};
692 CallInst
*C
= IRB
.CreateCall(TsanAtomicCAS
[Idx
], Args
);
693 Value
*Success
= IRB
.CreateICmpEQ(C
, CmpOperand
);
695 Type
*OrigOldValTy
= CASI
->getNewValOperand()->getType();
696 if (Ty
!= OrigOldValTy
) {
697 // The value is a pointer, so we need to cast the return value.
698 OldVal
= IRB
.CreateIntToPtr(C
, OrigOldValTy
);
702 IRB
.CreateInsertValue(UndefValue::get(CASI
->getType()), OldVal
, 0);
703 Res
= IRB
.CreateInsertValue(Res
, Success
, 1);
705 I
->replaceAllUsesWith(Res
);
706 I
->eraseFromParent();
707 } else if (FenceInst
*FI
= dyn_cast
<FenceInst
>(I
)) {
708 Value
*Args
[] = {createOrdering(&IRB
, FI
->getOrdering())};
709 FunctionCallee F
= FI
->getSyncScopeID() == SyncScope::SingleThread
710 ? TsanAtomicSignalFence
711 : TsanAtomicThreadFence
;
712 CallInst
*C
= CallInst::Create(F
, Args
);
713 ReplaceInstWithInst(I
, C
);
718 int ThreadSanitizer::getMemoryAccessFuncIndex(Value
*Addr
,
719 const DataLayout
&DL
) {
720 Type
*OrigPtrTy
= Addr
->getType();
721 Type
*OrigTy
= cast
<PointerType
>(OrigPtrTy
)->getElementType();
722 assert(OrigTy
->isSized());
723 uint32_t TypeSize
= DL
.getTypeStoreSizeInBits(OrigTy
);
724 if (TypeSize
!= 8 && TypeSize
!= 16 &&
725 TypeSize
!= 32 && TypeSize
!= 64 && TypeSize
!= 128) {
726 NumAccessesWithBadSize
++;
727 // Ignore all unusual sizes.
730 size_t Idx
= countTrailingZeros(TypeSize
/ 8);
731 assert(Idx
< kNumberOfAccessSizes
);