Recommit r373598 "[yaml2obj/obj2yaml] - Add support for SHT_LLVM_ADDRSIG sections."
[llvm-complete.git] / lib / Transforms / Vectorize / SLPVectorizer.cpp
blob99428c6c5dee384ad2ec64204c3bf1798ee0ec96
1 //===- SLPVectorizer.cpp - A bottom up SLP Vectorizer ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements the Bottom Up SLP vectorizer. It detects consecutive
10 // stores that can be put together into vector-stores. Next, it attempts to
11 // construct vectorizable tree using the use-def chains. If a profitable tree
12 // was found, the SLP vectorizer performs vectorization on the tree.
14 // The pass is inspired by the work described in the paper:
15 // "Loop-Aware SLP in GCC" by Ira Rosen, Dorit Nuzman, Ayal Zaks.
17 //===----------------------------------------------------------------------===//
19 #include "llvm/Transforms/Vectorize/SLPVectorizer.h"
20 #include "llvm/ADT/ArrayRef.h"
21 #include "llvm/ADT/DenseMap.h"
22 #include "llvm/ADT/DenseSet.h"
23 #include "llvm/ADT/MapVector.h"
24 #include "llvm/ADT/None.h"
25 #include "llvm/ADT/Optional.h"
26 #include "llvm/ADT/PostOrderIterator.h"
27 #include "llvm/ADT/STLExtras.h"
28 #include "llvm/ADT/SetVector.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallVector.h"
32 #include "llvm/ADT/Statistic.h"
33 #include "llvm/ADT/iterator.h"
34 #include "llvm/ADT/iterator_range.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/CodeMetrics.h"
37 #include "llvm/Analysis/DemandedBits.h"
38 #include "llvm/Analysis/GlobalsModRef.h"
39 #include "llvm/Analysis/LoopAccessAnalysis.h"
40 #include "llvm/Analysis/LoopInfo.h"
41 #include "llvm/Analysis/MemoryLocation.h"
42 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
43 #include "llvm/Analysis/ScalarEvolution.h"
44 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
45 #include "llvm/Analysis/TargetLibraryInfo.h"
46 #include "llvm/Analysis/TargetTransformInfo.h"
47 #include "llvm/Analysis/ValueTracking.h"
48 #include "llvm/Analysis/VectorUtils.h"
49 #include "llvm/IR/Attributes.h"
50 #include "llvm/IR/BasicBlock.h"
51 #include "llvm/IR/Constant.h"
52 #include "llvm/IR/Constants.h"
53 #include "llvm/IR/DataLayout.h"
54 #include "llvm/IR/DebugLoc.h"
55 #include "llvm/IR/DerivedTypes.h"
56 #include "llvm/IR/Dominators.h"
57 #include "llvm/IR/Function.h"
58 #include "llvm/IR/IRBuilder.h"
59 #include "llvm/IR/InstrTypes.h"
60 #include "llvm/IR/Instruction.h"
61 #include "llvm/IR/Instructions.h"
62 #include "llvm/IR/IntrinsicInst.h"
63 #include "llvm/IR/Intrinsics.h"
64 #include "llvm/IR/Module.h"
65 #include "llvm/IR/NoFolder.h"
66 #include "llvm/IR/Operator.h"
67 #include "llvm/IR/PassManager.h"
68 #include "llvm/IR/PatternMatch.h"
69 #include "llvm/IR/Type.h"
70 #include "llvm/IR/Use.h"
71 #include "llvm/IR/User.h"
72 #include "llvm/IR/Value.h"
73 #include "llvm/IR/ValueHandle.h"
74 #include "llvm/IR/Verifier.h"
75 #include "llvm/Pass.h"
76 #include "llvm/Support/Casting.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Compiler.h"
79 #include "llvm/Support/DOTGraphTraits.h"
80 #include "llvm/Support/Debug.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/GraphWriter.h"
83 #include "llvm/Support/KnownBits.h"
84 #include "llvm/Support/MathExtras.h"
85 #include "llvm/Support/raw_ostream.h"
86 #include "llvm/Transforms/Utils/LoopUtils.h"
87 #include "llvm/Transforms/Vectorize.h"
88 #include <algorithm>
89 #include <cassert>
90 #include <cstdint>
91 #include <iterator>
92 #include <memory>
93 #include <set>
94 #include <string>
95 #include <tuple>
96 #include <utility>
97 #include <vector>
99 using namespace llvm;
100 using namespace llvm::PatternMatch;
101 using namespace slpvectorizer;
103 #define SV_NAME "slp-vectorizer"
104 #define DEBUG_TYPE "SLP"
106 STATISTIC(NumVectorInstructions, "Number of vector instructions generated");
108 cl::opt<bool>
109 llvm::RunSLPVectorization("vectorize-slp", cl::init(false), cl::Hidden,
110 cl::desc("Run the SLP vectorization passes"));
112 static cl::opt<int>
113 SLPCostThreshold("slp-threshold", cl::init(0), cl::Hidden,
114 cl::desc("Only vectorize if you gain more than this "
115 "number "));
117 static cl::opt<bool>
118 ShouldVectorizeHor("slp-vectorize-hor", cl::init(true), cl::Hidden,
119 cl::desc("Attempt to vectorize horizontal reductions"));
121 static cl::opt<bool> ShouldStartVectorizeHorAtStore(
122 "slp-vectorize-hor-store", cl::init(false), cl::Hidden,
123 cl::desc(
124 "Attempt to vectorize horizontal reductions feeding into a store"));
126 static cl::opt<int>
127 MaxVectorRegSizeOption("slp-max-reg-size", cl::init(128), cl::Hidden,
128 cl::desc("Attempt to vectorize for this register size in bits"));
130 /// Limits the size of scheduling regions in a block.
131 /// It avoid long compile times for _very_ large blocks where vector
132 /// instructions are spread over a wide range.
133 /// This limit is way higher than needed by real-world functions.
134 static cl::opt<int>
135 ScheduleRegionSizeBudget("slp-schedule-budget", cl::init(100000), cl::Hidden,
136 cl::desc("Limit the size of the SLP scheduling region per block"));
138 static cl::opt<int> MinVectorRegSizeOption(
139 "slp-min-reg-size", cl::init(128), cl::Hidden,
140 cl::desc("Attempt to vectorize for this register size in bits"));
142 static cl::opt<unsigned> RecursionMaxDepth(
143 "slp-recursion-max-depth", cl::init(12), cl::Hidden,
144 cl::desc("Limit the recursion depth when building a vectorizable tree"));
146 static cl::opt<unsigned> MinTreeSize(
147 "slp-min-tree-size", cl::init(3), cl::Hidden,
148 cl::desc("Only vectorize small trees if they are fully vectorizable"));
150 static cl::opt<bool>
151 ViewSLPTree("view-slp-tree", cl::Hidden,
152 cl::desc("Display the SLP trees with Graphviz"));
154 // Limit the number of alias checks. The limit is chosen so that
155 // it has no negative effect on the llvm benchmarks.
156 static const unsigned AliasedCheckLimit = 10;
158 // Another limit for the alias checks: The maximum distance between load/store
159 // instructions where alias checks are done.
160 // This limit is useful for very large basic blocks.
161 static const unsigned MaxMemDepDistance = 160;
163 /// If the ScheduleRegionSizeBudget is exhausted, we allow small scheduling
164 /// regions to be handled.
165 static const int MinScheduleRegionSize = 16;
167 /// Predicate for the element types that the SLP vectorizer supports.
169 /// The most important thing to filter here are types which are invalid in LLVM
170 /// vectors. We also filter target specific types which have absolutely no
171 /// meaningful vectorization path such as x86_fp80 and ppc_f128. This just
172 /// avoids spending time checking the cost model and realizing that they will
173 /// be inevitably scalarized.
174 static bool isValidElementType(Type *Ty) {
175 return VectorType::isValidElementType(Ty) && !Ty->isX86_FP80Ty() &&
176 !Ty->isPPC_FP128Ty();
179 /// \returns true if all of the instructions in \p VL are in the same block or
180 /// false otherwise.
181 static bool allSameBlock(ArrayRef<Value *> VL) {
182 Instruction *I0 = dyn_cast<Instruction>(VL[0]);
183 if (!I0)
184 return false;
185 BasicBlock *BB = I0->getParent();
186 for (int i = 1, e = VL.size(); i < e; i++) {
187 Instruction *I = dyn_cast<Instruction>(VL[i]);
188 if (!I)
189 return false;
191 if (BB != I->getParent())
192 return false;
194 return true;
197 /// \returns True if all of the values in \p VL are constants (but not
198 /// globals/constant expressions).
199 static bool allConstant(ArrayRef<Value *> VL) {
200 // Constant expressions and globals can't be vectorized like normal integer/FP
201 // constants.
202 for (Value *i : VL)
203 if (!isa<Constant>(i) || isa<ConstantExpr>(i) || isa<GlobalValue>(i))
204 return false;
205 return true;
208 /// \returns True if all of the values in \p VL are identical.
209 static bool isSplat(ArrayRef<Value *> VL) {
210 for (unsigned i = 1, e = VL.size(); i < e; ++i)
211 if (VL[i] != VL[0])
212 return false;
213 return true;
216 /// \returns True if \p I is commutative, handles CmpInst as well as Instruction.
217 static bool isCommutative(Instruction *I) {
218 if (auto *IC = dyn_cast<CmpInst>(I))
219 return IC->isCommutative();
220 return I->isCommutative();
223 /// Checks if the vector of instructions can be represented as a shuffle, like:
224 /// %x0 = extractelement <4 x i8> %x, i32 0
225 /// %x3 = extractelement <4 x i8> %x, i32 3
226 /// %y1 = extractelement <4 x i8> %y, i32 1
227 /// %y2 = extractelement <4 x i8> %y, i32 2
228 /// %x0x0 = mul i8 %x0, %x0
229 /// %x3x3 = mul i8 %x3, %x3
230 /// %y1y1 = mul i8 %y1, %y1
231 /// %y2y2 = mul i8 %y2, %y2
232 /// %ins1 = insertelement <4 x i8> undef, i8 %x0x0, i32 0
233 /// %ins2 = insertelement <4 x i8> %ins1, i8 %x3x3, i32 1
234 /// %ins3 = insertelement <4 x i8> %ins2, i8 %y1y1, i32 2
235 /// %ins4 = insertelement <4 x i8> %ins3, i8 %y2y2, i32 3
236 /// ret <4 x i8> %ins4
237 /// can be transformed into:
238 /// %1 = shufflevector <4 x i8> %x, <4 x i8> %y, <4 x i32> <i32 0, i32 3, i32 5,
239 /// i32 6>
240 /// %2 = mul <4 x i8> %1, %1
241 /// ret <4 x i8> %2
242 /// We convert this initially to something like:
243 /// %x0 = extractelement <4 x i8> %x, i32 0
244 /// %x3 = extractelement <4 x i8> %x, i32 3
245 /// %y1 = extractelement <4 x i8> %y, i32 1
246 /// %y2 = extractelement <4 x i8> %y, i32 2
247 /// %1 = insertelement <4 x i8> undef, i8 %x0, i32 0
248 /// %2 = insertelement <4 x i8> %1, i8 %x3, i32 1
249 /// %3 = insertelement <4 x i8> %2, i8 %y1, i32 2
250 /// %4 = insertelement <4 x i8> %3, i8 %y2, i32 3
251 /// %5 = mul <4 x i8> %4, %4
252 /// %6 = extractelement <4 x i8> %5, i32 0
253 /// %ins1 = insertelement <4 x i8> undef, i8 %6, i32 0
254 /// %7 = extractelement <4 x i8> %5, i32 1
255 /// %ins2 = insertelement <4 x i8> %ins1, i8 %7, i32 1
256 /// %8 = extractelement <4 x i8> %5, i32 2
257 /// %ins3 = insertelement <4 x i8> %ins2, i8 %8, i32 2
258 /// %9 = extractelement <4 x i8> %5, i32 3
259 /// %ins4 = insertelement <4 x i8> %ins3, i8 %9, i32 3
260 /// ret <4 x i8> %ins4
261 /// InstCombiner transforms this into a shuffle and vector mul
262 /// TODO: Can we split off and reuse the shuffle mask detection from
263 /// TargetTransformInfo::getInstructionThroughput?
264 static Optional<TargetTransformInfo::ShuffleKind>
265 isShuffle(ArrayRef<Value *> VL) {
266 auto *EI0 = cast<ExtractElementInst>(VL[0]);
267 unsigned Size = EI0->getVectorOperandType()->getVectorNumElements();
268 Value *Vec1 = nullptr;
269 Value *Vec2 = nullptr;
270 enum ShuffleMode { Unknown, Select, Permute };
271 ShuffleMode CommonShuffleMode = Unknown;
272 for (unsigned I = 0, E = VL.size(); I < E; ++I) {
273 auto *EI = cast<ExtractElementInst>(VL[I]);
274 auto *Vec = EI->getVectorOperand();
275 // All vector operands must have the same number of vector elements.
276 if (Vec->getType()->getVectorNumElements() != Size)
277 return None;
278 auto *Idx = dyn_cast<ConstantInt>(EI->getIndexOperand());
279 if (!Idx)
280 return None;
281 // Undefined behavior if Idx is negative or >= Size.
282 if (Idx->getValue().uge(Size))
283 continue;
284 unsigned IntIdx = Idx->getValue().getZExtValue();
285 // We can extractelement from undef vector.
286 if (isa<UndefValue>(Vec))
287 continue;
288 // For correct shuffling we have to have at most 2 different vector operands
289 // in all extractelement instructions.
290 if (!Vec1 || Vec1 == Vec)
291 Vec1 = Vec;
292 else if (!Vec2 || Vec2 == Vec)
293 Vec2 = Vec;
294 else
295 return None;
296 if (CommonShuffleMode == Permute)
297 continue;
298 // If the extract index is not the same as the operation number, it is a
299 // permutation.
300 if (IntIdx != I) {
301 CommonShuffleMode = Permute;
302 continue;
304 CommonShuffleMode = Select;
306 // If we're not crossing lanes in different vectors, consider it as blending.
307 if (CommonShuffleMode == Select && Vec2)
308 return TargetTransformInfo::SK_Select;
309 // If Vec2 was never used, we have a permutation of a single vector, otherwise
310 // we have permutation of 2 vectors.
311 return Vec2 ? TargetTransformInfo::SK_PermuteTwoSrc
312 : TargetTransformInfo::SK_PermuteSingleSrc;
315 namespace {
317 /// Main data required for vectorization of instructions.
318 struct InstructionsState {
319 /// The very first instruction in the list with the main opcode.
320 Value *OpValue = nullptr;
322 /// The main/alternate instruction.
323 Instruction *MainOp = nullptr;
324 Instruction *AltOp = nullptr;
326 /// The main/alternate opcodes for the list of instructions.
327 unsigned getOpcode() const {
328 return MainOp ? MainOp->getOpcode() : 0;
331 unsigned getAltOpcode() const {
332 return AltOp ? AltOp->getOpcode() : 0;
335 /// Some of the instructions in the list have alternate opcodes.
336 bool isAltShuffle() const { return getOpcode() != getAltOpcode(); }
338 bool isOpcodeOrAlt(Instruction *I) const {
339 unsigned CheckedOpcode = I->getOpcode();
340 return getOpcode() == CheckedOpcode || getAltOpcode() == CheckedOpcode;
343 InstructionsState() = delete;
344 InstructionsState(Value *OpValue, Instruction *MainOp, Instruction *AltOp)
345 : OpValue(OpValue), MainOp(MainOp), AltOp(AltOp) {}
348 } // end anonymous namespace
350 /// Chooses the correct key for scheduling data. If \p Op has the same (or
351 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is \p
352 /// OpValue.
353 static Value *isOneOf(const InstructionsState &S, Value *Op) {
354 auto *I = dyn_cast<Instruction>(Op);
355 if (I && S.isOpcodeOrAlt(I))
356 return Op;
357 return S.OpValue;
360 /// \returns analysis of the Instructions in \p VL described in
361 /// InstructionsState, the Opcode that we suppose the whole list
362 /// could be vectorized even if its structure is diverse.
363 static InstructionsState getSameOpcode(ArrayRef<Value *> VL,
364 unsigned BaseIndex = 0) {
365 // Make sure these are all Instructions.
366 if (llvm::any_of(VL, [](Value *V) { return !isa<Instruction>(V); }))
367 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
369 bool IsCastOp = isa<CastInst>(VL[BaseIndex]);
370 bool IsBinOp = isa<BinaryOperator>(VL[BaseIndex]);
371 unsigned Opcode = cast<Instruction>(VL[BaseIndex])->getOpcode();
372 unsigned AltOpcode = Opcode;
373 unsigned AltIndex = BaseIndex;
375 // Check for one alternate opcode from another BinaryOperator.
376 // TODO - generalize to support all operators (types, calls etc.).
377 for (int Cnt = 0, E = VL.size(); Cnt < E; Cnt++) {
378 unsigned InstOpcode = cast<Instruction>(VL[Cnt])->getOpcode();
379 if (IsBinOp && isa<BinaryOperator>(VL[Cnt])) {
380 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
381 continue;
382 if (Opcode == AltOpcode) {
383 AltOpcode = InstOpcode;
384 AltIndex = Cnt;
385 continue;
387 } else if (IsCastOp && isa<CastInst>(VL[Cnt])) {
388 Type *Ty0 = cast<Instruction>(VL[BaseIndex])->getOperand(0)->getType();
389 Type *Ty1 = cast<Instruction>(VL[Cnt])->getOperand(0)->getType();
390 if (Ty0 == Ty1) {
391 if (InstOpcode == Opcode || InstOpcode == AltOpcode)
392 continue;
393 if (Opcode == AltOpcode) {
394 AltOpcode = InstOpcode;
395 AltIndex = Cnt;
396 continue;
399 } else if (InstOpcode == Opcode || InstOpcode == AltOpcode)
400 continue;
401 return InstructionsState(VL[BaseIndex], nullptr, nullptr);
404 return InstructionsState(VL[BaseIndex], cast<Instruction>(VL[BaseIndex]),
405 cast<Instruction>(VL[AltIndex]));
408 /// \returns true if all of the values in \p VL have the same type or false
409 /// otherwise.
410 static bool allSameType(ArrayRef<Value *> VL) {
411 Type *Ty = VL[0]->getType();
412 for (int i = 1, e = VL.size(); i < e; i++)
413 if (VL[i]->getType() != Ty)
414 return false;
416 return true;
419 /// \returns True if Extract{Value,Element} instruction extracts element Idx.
420 static Optional<unsigned> getExtractIndex(Instruction *E) {
421 unsigned Opcode = E->getOpcode();
422 assert((Opcode == Instruction::ExtractElement ||
423 Opcode == Instruction::ExtractValue) &&
424 "Expected extractelement or extractvalue instruction.");
425 if (Opcode == Instruction::ExtractElement) {
426 auto *CI = dyn_cast<ConstantInt>(E->getOperand(1));
427 if (!CI)
428 return None;
429 return CI->getZExtValue();
431 ExtractValueInst *EI = cast<ExtractValueInst>(E);
432 if (EI->getNumIndices() != 1)
433 return None;
434 return *EI->idx_begin();
437 /// \returns True if in-tree use also needs extract. This refers to
438 /// possible scalar operand in vectorized instruction.
439 static bool InTreeUserNeedToExtract(Value *Scalar, Instruction *UserInst,
440 TargetLibraryInfo *TLI) {
441 unsigned Opcode = UserInst->getOpcode();
442 switch (Opcode) {
443 case Instruction::Load: {
444 LoadInst *LI = cast<LoadInst>(UserInst);
445 return (LI->getPointerOperand() == Scalar);
447 case Instruction::Store: {
448 StoreInst *SI = cast<StoreInst>(UserInst);
449 return (SI->getPointerOperand() == Scalar);
451 case Instruction::Call: {
452 CallInst *CI = cast<CallInst>(UserInst);
453 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
454 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
455 if (hasVectorInstrinsicScalarOpd(ID, i))
456 return (CI->getArgOperand(i) == Scalar);
458 LLVM_FALLTHROUGH;
460 default:
461 return false;
465 /// \returns the AA location that is being access by the instruction.
466 static MemoryLocation getLocation(Instruction *I, AliasAnalysis *AA) {
467 if (StoreInst *SI = dyn_cast<StoreInst>(I))
468 return MemoryLocation::get(SI);
469 if (LoadInst *LI = dyn_cast<LoadInst>(I))
470 return MemoryLocation::get(LI);
471 return MemoryLocation();
474 /// \returns True if the instruction is not a volatile or atomic load/store.
475 static bool isSimple(Instruction *I) {
476 if (LoadInst *LI = dyn_cast<LoadInst>(I))
477 return LI->isSimple();
478 if (StoreInst *SI = dyn_cast<StoreInst>(I))
479 return SI->isSimple();
480 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I))
481 return !MI->isVolatile();
482 return true;
485 namespace llvm {
487 namespace slpvectorizer {
489 /// Bottom Up SLP Vectorizer.
490 class BoUpSLP {
491 struct TreeEntry;
492 struct ScheduleData;
494 public:
495 using ValueList = SmallVector<Value *, 8>;
496 using InstrList = SmallVector<Instruction *, 16>;
497 using ValueSet = SmallPtrSet<Value *, 16>;
498 using StoreList = SmallVector<StoreInst *, 8>;
499 using ExtraValueToDebugLocsMap =
500 MapVector<Value *, SmallVector<Instruction *, 2>>;
502 BoUpSLP(Function *Func, ScalarEvolution *Se, TargetTransformInfo *Tti,
503 TargetLibraryInfo *TLi, AliasAnalysis *Aa, LoopInfo *Li,
504 DominatorTree *Dt, AssumptionCache *AC, DemandedBits *DB,
505 const DataLayout *DL, OptimizationRemarkEmitter *ORE)
506 : F(Func), SE(Se), TTI(Tti), TLI(TLi), AA(Aa), LI(Li), DT(Dt), AC(AC),
507 DB(DB), DL(DL), ORE(ORE), Builder(Se->getContext()) {
508 CodeMetrics::collectEphemeralValues(F, AC, EphValues);
509 // Use the vector register size specified by the target unless overridden
510 // by a command-line option.
511 // TODO: It would be better to limit the vectorization factor based on
512 // data type rather than just register size. For example, x86 AVX has
513 // 256-bit registers, but it does not support integer operations
514 // at that width (that requires AVX2).
515 if (MaxVectorRegSizeOption.getNumOccurrences())
516 MaxVecRegSize = MaxVectorRegSizeOption;
517 else
518 MaxVecRegSize = TTI->getRegisterBitWidth(true);
520 if (MinVectorRegSizeOption.getNumOccurrences())
521 MinVecRegSize = MinVectorRegSizeOption;
522 else
523 MinVecRegSize = TTI->getMinVectorRegisterBitWidth();
526 /// Vectorize the tree that starts with the elements in \p VL.
527 /// Returns the vectorized root.
528 Value *vectorizeTree();
530 /// Vectorize the tree but with the list of externally used values \p
531 /// ExternallyUsedValues. Values in this MapVector can be replaced but the
532 /// generated extractvalue instructions.
533 Value *vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues);
535 /// \returns the cost incurred by unwanted spills and fills, caused by
536 /// holding live values over call sites.
537 int getSpillCost() const;
539 /// \returns the vectorization cost of the subtree that starts at \p VL.
540 /// A negative number means that this is profitable.
541 int getTreeCost();
543 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
544 /// the purpose of scheduling and extraction in the \p UserIgnoreLst.
545 void buildTree(ArrayRef<Value *> Roots,
546 ArrayRef<Value *> UserIgnoreLst = None);
548 /// Construct a vectorizable tree that starts at \p Roots, ignoring users for
549 /// the purpose of scheduling and extraction in the \p UserIgnoreLst taking
550 /// into account (anf updating it, if required) list of externally used
551 /// values stored in \p ExternallyUsedValues.
552 void buildTree(ArrayRef<Value *> Roots,
553 ExtraValueToDebugLocsMap &ExternallyUsedValues,
554 ArrayRef<Value *> UserIgnoreLst = None);
556 /// Clear the internal data structures that are created by 'buildTree'.
557 void deleteTree() {
558 VectorizableTree.clear();
559 ScalarToTreeEntry.clear();
560 MustGather.clear();
561 ExternalUses.clear();
562 NumOpsWantToKeepOrder.clear();
563 NumOpsWantToKeepOriginalOrder = 0;
564 for (auto &Iter : BlocksSchedules) {
565 BlockScheduling *BS = Iter.second.get();
566 BS->clear();
568 MinBWs.clear();
571 unsigned getTreeSize() const { return VectorizableTree.size(); }
573 /// Perform LICM and CSE on the newly generated gather sequences.
574 void optimizeGatherSequence();
576 /// \returns The best order of instructions for vectorization.
577 Optional<ArrayRef<unsigned>> bestOrder() const {
578 auto I = std::max_element(
579 NumOpsWantToKeepOrder.begin(), NumOpsWantToKeepOrder.end(),
580 [](const decltype(NumOpsWantToKeepOrder)::value_type &D1,
581 const decltype(NumOpsWantToKeepOrder)::value_type &D2) {
582 return D1.second < D2.second;
584 if (I == NumOpsWantToKeepOrder.end() ||
585 I->getSecond() <= NumOpsWantToKeepOriginalOrder)
586 return None;
588 return makeArrayRef(I->getFirst());
591 /// \return The vector element size in bits to use when vectorizing the
592 /// expression tree ending at \p V. If V is a store, the size is the width of
593 /// the stored value. Otherwise, the size is the width of the largest loaded
594 /// value reaching V. This method is used by the vectorizer to calculate
595 /// vectorization factors.
596 unsigned getVectorElementSize(Value *V) const;
598 /// Compute the minimum type sizes required to represent the entries in a
599 /// vectorizable tree.
600 void computeMinimumValueSizes();
602 // \returns maximum vector register size as set by TTI or overridden by cl::opt.
603 unsigned getMaxVecRegSize() const {
604 return MaxVecRegSize;
607 // \returns minimum vector register size as set by cl::opt.
608 unsigned getMinVecRegSize() const {
609 return MinVecRegSize;
612 /// Check if ArrayType or StructType is isomorphic to some VectorType.
614 /// \returns number of elements in vector if isomorphism exists, 0 otherwise.
615 unsigned canMapToVector(Type *T, const DataLayout &DL) const;
617 /// \returns True if the VectorizableTree is both tiny and not fully
618 /// vectorizable. We do not vectorize such trees.
619 bool isTreeTinyAndNotFullyVectorizable() const;
621 OptimizationRemarkEmitter *getORE() { return ORE; }
623 /// This structure holds any data we need about the edges being traversed
624 /// during buildTree_rec(). We keep track of:
625 /// (i) the user TreeEntry index, and
626 /// (ii) the index of the edge.
627 struct EdgeInfo {
628 EdgeInfo() = default;
629 EdgeInfo(TreeEntry *UserTE, unsigned EdgeIdx)
630 : UserTE(UserTE), EdgeIdx(EdgeIdx) {}
631 /// The user TreeEntry.
632 TreeEntry *UserTE = nullptr;
633 /// The operand index of the use.
634 unsigned EdgeIdx = UINT_MAX;
635 #ifndef NDEBUG
636 friend inline raw_ostream &operator<<(raw_ostream &OS,
637 const BoUpSLP::EdgeInfo &EI) {
638 EI.dump(OS);
639 return OS;
641 /// Debug print.
642 void dump(raw_ostream &OS) const {
643 OS << "{User:" << (UserTE ? std::to_string(UserTE->Idx) : "null")
644 << " EdgeIdx:" << EdgeIdx << "}";
646 LLVM_DUMP_METHOD void dump() const { dump(dbgs()); }
647 #endif
650 /// A helper data structure to hold the operands of a vector of instructions.
651 /// This supports a fixed vector length for all operand vectors.
652 class VLOperands {
653 /// For each operand we need (i) the value, and (ii) the opcode that it
654 /// would be attached to if the expression was in a left-linearized form.
655 /// This is required to avoid illegal operand reordering.
656 /// For example:
657 /// \verbatim
658 /// 0 Op1
659 /// |/
660 /// Op1 Op2 Linearized + Op2
661 /// \ / ----------> |/
662 /// - -
664 /// Op1 - Op2 (0 + Op1) - Op2
665 /// \endverbatim
667 /// Value Op1 is attached to a '+' operation, and Op2 to a '-'.
669 /// Another way to think of this is to track all the operations across the
670 /// path from the operand all the way to the root of the tree and to
671 /// calculate the operation that corresponds to this path. For example, the
672 /// path from Op2 to the root crosses the RHS of the '-', therefore the
673 /// corresponding operation is a '-' (which matches the one in the
674 /// linearized tree, as shown above).
676 /// For lack of a better term, we refer to this operation as Accumulated
677 /// Path Operation (APO).
678 struct OperandData {
679 OperandData() = default;
680 OperandData(Value *V, bool APO, bool IsUsed)
681 : V(V), APO(APO), IsUsed(IsUsed) {}
682 /// The operand value.
683 Value *V = nullptr;
684 /// TreeEntries only allow a single opcode, or an alternate sequence of
685 /// them (e.g, +, -). Therefore, we can safely use a boolean value for the
686 /// APO. It is set to 'true' if 'V' is attached to an inverse operation
687 /// in the left-linearized form (e.g., Sub/Div), and 'false' otherwise
688 /// (e.g., Add/Mul)
689 bool APO = false;
690 /// Helper data for the reordering function.
691 bool IsUsed = false;
694 /// During operand reordering, we are trying to select the operand at lane
695 /// that matches best with the operand at the neighboring lane. Our
696 /// selection is based on the type of value we are looking for. For example,
697 /// if the neighboring lane has a load, we need to look for a load that is
698 /// accessing a consecutive address. These strategies are summarized in the
699 /// 'ReorderingMode' enumerator.
700 enum class ReorderingMode {
701 Load, ///< Matching loads to consecutive memory addresses
702 Opcode, ///< Matching instructions based on opcode (same or alternate)
703 Constant, ///< Matching constants
704 Splat, ///< Matching the same instruction multiple times (broadcast)
705 Failed, ///< We failed to create a vectorizable group
708 using OperandDataVec = SmallVector<OperandData, 2>;
710 /// A vector of operand vectors.
711 SmallVector<OperandDataVec, 4> OpsVec;
713 const DataLayout &DL;
714 ScalarEvolution &SE;
716 /// \returns the operand data at \p OpIdx and \p Lane.
717 OperandData &getData(unsigned OpIdx, unsigned Lane) {
718 return OpsVec[OpIdx][Lane];
721 /// \returns the operand data at \p OpIdx and \p Lane. Const version.
722 const OperandData &getData(unsigned OpIdx, unsigned Lane) const {
723 return OpsVec[OpIdx][Lane];
726 /// Clears the used flag for all entries.
727 void clearUsed() {
728 for (unsigned OpIdx = 0, NumOperands = getNumOperands();
729 OpIdx != NumOperands; ++OpIdx)
730 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
731 ++Lane)
732 OpsVec[OpIdx][Lane].IsUsed = false;
735 /// Swap the operand at \p OpIdx1 with that one at \p OpIdx2.
736 void swap(unsigned OpIdx1, unsigned OpIdx2, unsigned Lane) {
737 std::swap(OpsVec[OpIdx1][Lane], OpsVec[OpIdx2][Lane]);
740 // Search all operands in Ops[*][Lane] for the one that matches best
741 // Ops[OpIdx][LastLane] and return its opreand index.
742 // If no good match can be found, return None.
743 Optional<unsigned>
744 getBestOperand(unsigned OpIdx, int Lane, int LastLane,
745 ArrayRef<ReorderingMode> ReorderingModes) {
746 unsigned NumOperands = getNumOperands();
748 // The operand of the previous lane at OpIdx.
749 Value *OpLastLane = getData(OpIdx, LastLane).V;
751 // Our strategy mode for OpIdx.
752 ReorderingMode RMode = ReorderingModes[OpIdx];
754 // The linearized opcode of the operand at OpIdx, Lane.
755 bool OpIdxAPO = getData(OpIdx, Lane).APO;
757 const unsigned BestScore = 2;
758 const unsigned GoodScore = 1;
760 // The best operand index and its score.
761 // Sometimes we have more than one option (e.g., Opcode and Undefs), so we
762 // are using the score to differentiate between the two.
763 struct BestOpData {
764 Optional<unsigned> Idx = None;
765 unsigned Score = 0;
766 } BestOp;
768 // Iterate through all unused operands and look for the best.
769 for (unsigned Idx = 0; Idx != NumOperands; ++Idx) {
770 // Get the operand at Idx and Lane.
771 OperandData &OpData = getData(Idx, Lane);
772 Value *Op = OpData.V;
773 bool OpAPO = OpData.APO;
775 // Skip already selected operands.
776 if (OpData.IsUsed)
777 continue;
779 // Skip if we are trying to move the operand to a position with a
780 // different opcode in the linearized tree form. This would break the
781 // semantics.
782 if (OpAPO != OpIdxAPO)
783 continue;
785 // Look for an operand that matches the current mode.
786 switch (RMode) {
787 case ReorderingMode::Load:
788 if (isa<LoadInst>(Op)) {
789 // Figure out which is left and right, so that we can check for
790 // consecutive loads
791 bool LeftToRight = Lane > LastLane;
792 Value *OpLeft = (LeftToRight) ? OpLastLane : Op;
793 Value *OpRight = (LeftToRight) ? Op : OpLastLane;
794 if (isConsecutiveAccess(cast<LoadInst>(OpLeft),
795 cast<LoadInst>(OpRight), DL, SE))
796 BestOp.Idx = Idx;
798 break;
799 case ReorderingMode::Opcode:
800 // We accept both Instructions and Undefs, but with different scores.
801 if ((isa<Instruction>(Op) && isa<Instruction>(OpLastLane) &&
802 cast<Instruction>(Op)->getOpcode() ==
803 cast<Instruction>(OpLastLane)->getOpcode()) ||
804 (isa<UndefValue>(OpLastLane) && isa<Instruction>(Op)) ||
805 isa<UndefValue>(Op)) {
806 // An instruction has a higher score than an undef.
807 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
808 if (Score > BestOp.Score) {
809 BestOp.Idx = Idx;
810 BestOp.Score = Score;
813 break;
814 case ReorderingMode::Constant:
815 if (isa<Constant>(Op)) {
816 unsigned Score = (isa<UndefValue>(Op)) ? GoodScore : BestScore;
817 if (Score > BestOp.Score) {
818 BestOp.Idx = Idx;
819 BestOp.Score = Score;
822 break;
823 case ReorderingMode::Splat:
824 if (Op == OpLastLane)
825 BestOp.Idx = Idx;
826 break;
827 case ReorderingMode::Failed:
828 return None;
832 if (BestOp.Idx) {
833 getData(BestOp.Idx.getValue(), Lane).IsUsed = true;
834 return BestOp.Idx;
836 // If we could not find a good match return None.
837 return None;
840 /// Helper for reorderOperandVecs. \Returns the lane that we should start
841 /// reordering from. This is the one which has the least number of operands
842 /// that can freely move about.
843 unsigned getBestLaneToStartReordering() const {
844 unsigned BestLane = 0;
845 unsigned Min = UINT_MAX;
846 for (unsigned Lane = 0, NumLanes = getNumLanes(); Lane != NumLanes;
847 ++Lane) {
848 unsigned NumFreeOps = getMaxNumOperandsThatCanBeReordered(Lane);
849 if (NumFreeOps < Min) {
850 Min = NumFreeOps;
851 BestLane = Lane;
854 return BestLane;
857 /// \Returns the maximum number of operands that are allowed to be reordered
858 /// for \p Lane. This is used as a heuristic for selecting the first lane to
859 /// start operand reordering.
860 unsigned getMaxNumOperandsThatCanBeReordered(unsigned Lane) const {
861 unsigned CntTrue = 0;
862 unsigned NumOperands = getNumOperands();
863 // Operands with the same APO can be reordered. We therefore need to count
864 // how many of them we have for each APO, like this: Cnt[APO] = x.
865 // Since we only have two APOs, namely true and false, we can avoid using
866 // a map. Instead we can simply count the number of operands that
867 // correspond to one of them (in this case the 'true' APO), and calculate
868 // the other by subtracting it from the total number of operands.
869 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx)
870 if (getData(OpIdx, Lane).APO)
871 ++CntTrue;
872 unsigned CntFalse = NumOperands - CntTrue;
873 return std::max(CntTrue, CntFalse);
876 /// Go through the instructions in VL and append their operands.
877 void appendOperandsOfVL(ArrayRef<Value *> VL) {
878 assert(!VL.empty() && "Bad VL");
879 assert((empty() || VL.size() == getNumLanes()) &&
880 "Expected same number of lanes");
881 assert(isa<Instruction>(VL[0]) && "Expected instruction");
882 unsigned NumOperands = cast<Instruction>(VL[0])->getNumOperands();
883 OpsVec.resize(NumOperands);
884 unsigned NumLanes = VL.size();
885 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
886 OpsVec[OpIdx].resize(NumLanes);
887 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
888 assert(isa<Instruction>(VL[Lane]) && "Expected instruction");
889 // Our tree has just 3 nodes: the root and two operands.
890 // It is therefore trivial to get the APO. We only need to check the
891 // opcode of VL[Lane] and whether the operand at OpIdx is the LHS or
892 // RHS operand. The LHS operand of both add and sub is never attached
893 // to an inversese operation in the linearized form, therefore its APO
894 // is false. The RHS is true only if VL[Lane] is an inverse operation.
896 // Since operand reordering is performed on groups of commutative
897 // operations or alternating sequences (e.g., +, -), we can safely
898 // tell the inverse operations by checking commutativity.
899 bool IsInverseOperation = !isCommutative(cast<Instruction>(VL[Lane]));
900 bool APO = (OpIdx == 0) ? false : IsInverseOperation;
901 OpsVec[OpIdx][Lane] = {cast<Instruction>(VL[Lane])->getOperand(OpIdx),
902 APO, false};
907 /// \returns the number of operands.
908 unsigned getNumOperands() const { return OpsVec.size(); }
910 /// \returns the number of lanes.
911 unsigned getNumLanes() const { return OpsVec[0].size(); }
913 /// \returns the operand value at \p OpIdx and \p Lane.
914 Value *getValue(unsigned OpIdx, unsigned Lane) const {
915 return getData(OpIdx, Lane).V;
918 /// \returns true if the data structure is empty.
919 bool empty() const { return OpsVec.empty(); }
921 /// Clears the data.
922 void clear() { OpsVec.clear(); }
924 /// \Returns true if there are enough operands identical to \p Op to fill
925 /// the whole vector.
926 /// Note: This modifies the 'IsUsed' flag, so a cleanUsed() must follow.
927 bool shouldBroadcast(Value *Op, unsigned OpIdx, unsigned Lane) {
928 bool OpAPO = getData(OpIdx, Lane).APO;
929 for (unsigned Ln = 0, Lns = getNumLanes(); Ln != Lns; ++Ln) {
930 if (Ln == Lane)
931 continue;
932 // This is set to true if we found a candidate for broadcast at Lane.
933 bool FoundCandidate = false;
934 for (unsigned OpI = 0, OpE = getNumOperands(); OpI != OpE; ++OpI) {
935 OperandData &Data = getData(OpI, Ln);
936 if (Data.APO != OpAPO || Data.IsUsed)
937 continue;
938 if (Data.V == Op) {
939 FoundCandidate = true;
940 Data.IsUsed = true;
941 break;
944 if (!FoundCandidate)
945 return false;
947 return true;
950 public:
951 /// Initialize with all the operands of the instruction vector \p RootVL.
952 VLOperands(ArrayRef<Value *> RootVL, const DataLayout &DL,
953 ScalarEvolution &SE)
954 : DL(DL), SE(SE) {
955 // Append all the operands of RootVL.
956 appendOperandsOfVL(RootVL);
959 /// \Returns a value vector with the operands across all lanes for the
960 /// opearnd at \p OpIdx.
961 ValueList getVL(unsigned OpIdx) const {
962 ValueList OpVL(OpsVec[OpIdx].size());
963 assert(OpsVec[OpIdx].size() == getNumLanes() &&
964 "Expected same num of lanes across all operands");
965 for (unsigned Lane = 0, Lanes = getNumLanes(); Lane != Lanes; ++Lane)
966 OpVL[Lane] = OpsVec[OpIdx][Lane].V;
967 return OpVL;
970 // Performs operand reordering for 2 or more operands.
971 // The original operands are in OrigOps[OpIdx][Lane].
972 // The reordered operands are returned in 'SortedOps[OpIdx][Lane]'.
973 void reorder() {
974 unsigned NumOperands = getNumOperands();
975 unsigned NumLanes = getNumLanes();
976 // Each operand has its own mode. We are using this mode to help us select
977 // the instructions for each lane, so that they match best with the ones
978 // we have selected so far.
979 SmallVector<ReorderingMode, 2> ReorderingModes(NumOperands);
981 // This is a greedy single-pass algorithm. We are going over each lane
982 // once and deciding on the best order right away with no back-tracking.
983 // However, in order to increase its effectiveness, we start with the lane
984 // that has operands that can move the least. For example, given the
985 // following lanes:
986 // Lane 0 : A[0] = B[0] + C[0] // Visited 3rd
987 // Lane 1 : A[1] = C[1] - B[1] // Visited 1st
988 // Lane 2 : A[2] = B[2] + C[2] // Visited 2nd
989 // Lane 3 : A[3] = C[3] - B[3] // Visited 4th
990 // we will start at Lane 1, since the operands of the subtraction cannot
991 // be reordered. Then we will visit the rest of the lanes in a circular
992 // fashion. That is, Lanes 2, then Lane 0, and finally Lane 3.
994 // Find the first lane that we will start our search from.
995 unsigned FirstLane = getBestLaneToStartReordering();
997 // Initialize the modes.
998 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
999 Value *OpLane0 = getValue(OpIdx, FirstLane);
1000 // Keep track if we have instructions with all the same opcode on one
1001 // side.
1002 if (isa<LoadInst>(OpLane0))
1003 ReorderingModes[OpIdx] = ReorderingMode::Load;
1004 else if (isa<Instruction>(OpLane0)) {
1005 // Check if OpLane0 should be broadcast.
1006 if (shouldBroadcast(OpLane0, OpIdx, FirstLane))
1007 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1008 else
1009 ReorderingModes[OpIdx] = ReorderingMode::Opcode;
1011 else if (isa<Constant>(OpLane0))
1012 ReorderingModes[OpIdx] = ReorderingMode::Constant;
1013 else if (isa<Argument>(OpLane0))
1014 // Our best hope is a Splat. It may save some cost in some cases.
1015 ReorderingModes[OpIdx] = ReorderingMode::Splat;
1016 else
1017 // NOTE: This should be unreachable.
1018 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1021 // If the initial strategy fails for any of the operand indexes, then we
1022 // perform reordering again in a second pass. This helps avoid assigning
1023 // high priority to the failed strategy, and should improve reordering for
1024 // the non-failed operand indexes.
1025 for (int Pass = 0; Pass != 2; ++Pass) {
1026 // Skip the second pass if the first pass did not fail.
1027 bool StrategyFailed = false;
1028 // Mark all operand data as free to use.
1029 clearUsed();
1030 // We keep the original operand order for the FirstLane, so reorder the
1031 // rest of the lanes. We are visiting the nodes in a circular fashion,
1032 // using FirstLane as the center point and increasing the radius
1033 // distance.
1034 for (unsigned Distance = 1; Distance != NumLanes; ++Distance) {
1035 // Visit the lane on the right and then the lane on the left.
1036 for (int Direction : {+1, -1}) {
1037 int Lane = FirstLane + Direction * Distance;
1038 if (Lane < 0 || Lane >= (int)NumLanes)
1039 continue;
1040 int LastLane = Lane - Direction;
1041 assert(LastLane >= 0 && LastLane < (int)NumLanes &&
1042 "Out of bounds");
1043 // Look for a good match for each operand.
1044 for (unsigned OpIdx = 0; OpIdx != NumOperands; ++OpIdx) {
1045 // Search for the operand that matches SortedOps[OpIdx][Lane-1].
1046 Optional<unsigned> BestIdx =
1047 getBestOperand(OpIdx, Lane, LastLane, ReorderingModes);
1048 // By not selecting a value, we allow the operands that follow to
1049 // select a better matching value. We will get a non-null value in
1050 // the next run of getBestOperand().
1051 if (BestIdx) {
1052 // Swap the current operand with the one returned by
1053 // getBestOperand().
1054 swap(OpIdx, BestIdx.getValue(), Lane);
1055 } else {
1056 // We failed to find a best operand, set mode to 'Failed'.
1057 ReorderingModes[OpIdx] = ReorderingMode::Failed;
1058 // Enable the second pass.
1059 StrategyFailed = true;
1064 // Skip second pass if the strategy did not fail.
1065 if (!StrategyFailed)
1066 break;
1070 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1071 LLVM_DUMP_METHOD static StringRef getModeStr(ReorderingMode RMode) {
1072 switch (RMode) {
1073 case ReorderingMode::Load:
1074 return "Load";
1075 case ReorderingMode::Opcode:
1076 return "Opcode";
1077 case ReorderingMode::Constant:
1078 return "Constant";
1079 case ReorderingMode::Splat:
1080 return "Splat";
1081 case ReorderingMode::Failed:
1082 return "Failed";
1084 llvm_unreachable("Unimplemented Reordering Type");
1087 LLVM_DUMP_METHOD static raw_ostream &printMode(ReorderingMode RMode,
1088 raw_ostream &OS) {
1089 return OS << getModeStr(RMode);
1092 /// Debug print.
1093 LLVM_DUMP_METHOD static void dumpMode(ReorderingMode RMode) {
1094 printMode(RMode, dbgs());
1097 friend raw_ostream &operator<<(raw_ostream &OS, ReorderingMode RMode) {
1098 return printMode(RMode, OS);
1101 LLVM_DUMP_METHOD raw_ostream &print(raw_ostream &OS) const {
1102 const unsigned Indent = 2;
1103 unsigned Cnt = 0;
1104 for (const OperandDataVec &OpDataVec : OpsVec) {
1105 OS << "Operand " << Cnt++ << "\n";
1106 for (const OperandData &OpData : OpDataVec) {
1107 OS.indent(Indent) << "{";
1108 if (Value *V = OpData.V)
1109 OS << *V;
1110 else
1111 OS << "null";
1112 OS << ", APO:" << OpData.APO << "}\n";
1114 OS << "\n";
1116 return OS;
1119 /// Debug print.
1120 LLVM_DUMP_METHOD void dump() const { print(dbgs()); }
1121 #endif
1124 /// Checks if the instruction is marked for deletion.
1125 bool isDeleted(Instruction *I) const { return DeletedInstructions.count(I); }
1127 /// Marks values operands for later deletion by replacing them with Undefs.
1128 void eraseInstructions(ArrayRef<Value *> AV);
1130 ~BoUpSLP();
1132 private:
1133 /// Checks if all users of \p I are the part of the vectorization tree.
1134 bool areAllUsersVectorized(Instruction *I) const;
1136 /// \returns the cost of the vectorizable entry.
1137 int getEntryCost(TreeEntry *E);
1139 /// This is the recursive part of buildTree.
1140 void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth,
1141 const EdgeInfo &EI);
1143 /// \returns true if the ExtractElement/ExtractValue instructions in \p VL can
1144 /// be vectorized to use the original vector (or aggregate "bitcast" to a
1145 /// vector) and sets \p CurrentOrder to the identity permutation; otherwise
1146 /// returns false, setting \p CurrentOrder to either an empty vector or a
1147 /// non-identity permutation that allows to reuse extract instructions.
1148 bool canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
1149 SmallVectorImpl<unsigned> &CurrentOrder) const;
1151 /// Vectorize a single entry in the tree.
1152 Value *vectorizeTree(TreeEntry *E);
1154 /// Vectorize a single entry in the tree, starting in \p VL.
1155 Value *vectorizeTree(ArrayRef<Value *> VL);
1157 /// \returns the scalarization cost for this type. Scalarization in this
1158 /// context means the creation of vectors from a group of scalars.
1159 int getGatherCost(Type *Ty, const DenseSet<unsigned> &ShuffledIndices) const;
1161 /// \returns the scalarization cost for this list of values. Assuming that
1162 /// this subtree gets vectorized, we may need to extract the values from the
1163 /// roots. This method calculates the cost of extracting the values.
1164 int getGatherCost(ArrayRef<Value *> VL) const;
1166 /// Set the Builder insert point to one after the last instruction in
1167 /// the bundle
1168 void setInsertPointAfterBundle(TreeEntry *E);
1170 /// \returns a vector from a collection of scalars in \p VL.
1171 Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
1173 /// \returns whether the VectorizableTree is fully vectorizable and will
1174 /// be beneficial even the tree height is tiny.
1175 bool isFullyVectorizableTinyTree() const;
1177 /// Reorder commutative or alt operands to get better probability of
1178 /// generating vectorized code.
1179 static void reorderInputsAccordingToOpcode(ArrayRef<Value *> VL,
1180 SmallVectorImpl<Value *> &Left,
1181 SmallVectorImpl<Value *> &Right,
1182 const DataLayout &DL,
1183 ScalarEvolution &SE);
1184 struct TreeEntry {
1185 using VecTreeTy = SmallVector<std::unique_ptr<TreeEntry>, 8>;
1186 TreeEntry(VecTreeTy &Container) : Container(Container) {}
1188 /// \returns true if the scalars in VL are equal to this entry.
1189 bool isSame(ArrayRef<Value *> VL) const {
1190 if (VL.size() == Scalars.size())
1191 return std::equal(VL.begin(), VL.end(), Scalars.begin());
1192 return VL.size() == ReuseShuffleIndices.size() &&
1193 std::equal(
1194 VL.begin(), VL.end(), ReuseShuffleIndices.begin(),
1195 [this](Value *V, unsigned Idx) { return V == Scalars[Idx]; });
1198 /// A vector of scalars.
1199 ValueList Scalars;
1201 /// The Scalars are vectorized into this value. It is initialized to Null.
1202 Value *VectorizedValue = nullptr;
1204 /// Do we need to gather this sequence ?
1205 bool NeedToGather = false;
1207 /// Does this sequence require some shuffling?
1208 SmallVector<unsigned, 4> ReuseShuffleIndices;
1210 /// Does this entry require reordering?
1211 ArrayRef<unsigned> ReorderIndices;
1213 /// Points back to the VectorizableTree.
1215 /// Only used for Graphviz right now. Unfortunately GraphTrait::NodeRef has
1216 /// to be a pointer and needs to be able to initialize the child iterator.
1217 /// Thus we need a reference back to the container to translate the indices
1218 /// to entries.
1219 VecTreeTy &Container;
1221 /// The TreeEntry index containing the user of this entry. We can actually
1222 /// have multiple users so the data structure is not truly a tree.
1223 SmallVector<EdgeInfo, 1> UserTreeIndices;
1225 /// The index of this treeEntry in VectorizableTree.
1226 int Idx = -1;
1228 private:
1229 /// The operands of each instruction in each lane Operands[op_index][lane].
1230 /// Note: This helps avoid the replication of the code that performs the
1231 /// reordering of operands during buildTree_rec() and vectorizeTree().
1232 SmallVector<ValueList, 2> Operands;
1234 /// The main/alternate instruction.
1235 Instruction *MainOp = nullptr;
1236 Instruction *AltOp = nullptr;
1238 public:
1239 /// Set this bundle's \p OpIdx'th operand to \p OpVL.
1240 void setOperand(unsigned OpIdx, ArrayRef<Value *> OpVL) {
1241 if (Operands.size() < OpIdx + 1)
1242 Operands.resize(OpIdx + 1);
1243 assert(Operands[OpIdx].size() == 0 && "Already resized?");
1244 Operands[OpIdx].resize(Scalars.size());
1245 for (unsigned Lane = 0, E = Scalars.size(); Lane != E; ++Lane)
1246 Operands[OpIdx][Lane] = OpVL[Lane];
1249 /// Set the operands of this bundle in their original order.
1250 void setOperandsInOrder() {
1251 assert(Operands.empty() && "Already initialized?");
1252 auto *I0 = cast<Instruction>(Scalars[0]);
1253 Operands.resize(I0->getNumOperands());
1254 unsigned NumLanes = Scalars.size();
1255 for (unsigned OpIdx = 0, NumOperands = I0->getNumOperands();
1256 OpIdx != NumOperands; ++OpIdx) {
1257 Operands[OpIdx].resize(NumLanes);
1258 for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
1259 auto *I = cast<Instruction>(Scalars[Lane]);
1260 assert(I->getNumOperands() == NumOperands &&
1261 "Expected same number of operands");
1262 Operands[OpIdx][Lane] = I->getOperand(OpIdx);
1267 /// \returns the \p OpIdx operand of this TreeEntry.
1268 ValueList &getOperand(unsigned OpIdx) {
1269 assert(OpIdx < Operands.size() && "Off bounds");
1270 return Operands[OpIdx];
1273 /// \returns the number of operands.
1274 unsigned getNumOperands() const { return Operands.size(); }
1276 /// \return the single \p OpIdx operand.
1277 Value *getSingleOperand(unsigned OpIdx) const {
1278 assert(OpIdx < Operands.size() && "Off bounds");
1279 assert(!Operands[OpIdx].empty() && "No operand available");
1280 return Operands[OpIdx][0];
1283 /// Some of the instructions in the list have alternate opcodes.
1284 bool isAltShuffle() const {
1285 return getOpcode() != getAltOpcode();
1288 bool isOpcodeOrAlt(Instruction *I) const {
1289 unsigned CheckedOpcode = I->getOpcode();
1290 return (getOpcode() == CheckedOpcode ||
1291 getAltOpcode() == CheckedOpcode);
1294 /// Chooses the correct key for scheduling data. If \p Op has the same (or
1295 /// alternate) opcode as \p OpValue, the key is \p Op. Otherwise the key is
1296 /// \p OpValue.
1297 Value *isOneOf(Value *Op) const {
1298 auto *I = dyn_cast<Instruction>(Op);
1299 if (I && isOpcodeOrAlt(I))
1300 return Op;
1301 return MainOp;
1304 void setOperations(const InstructionsState &S) {
1305 MainOp = S.MainOp;
1306 AltOp = S.AltOp;
1309 Instruction *getMainOp() const {
1310 return MainOp;
1313 Instruction *getAltOp() const {
1314 return AltOp;
1317 /// The main/alternate opcodes for the list of instructions.
1318 unsigned getOpcode() const {
1319 return MainOp ? MainOp->getOpcode() : 0;
1322 unsigned getAltOpcode() const {
1323 return AltOp ? AltOp->getOpcode() : 0;
1326 /// Update operations state of this entry if reorder occurred.
1327 bool updateStateIfReorder() {
1328 if (ReorderIndices.empty())
1329 return false;
1330 InstructionsState S = getSameOpcode(Scalars, ReorderIndices.front());
1331 setOperations(S);
1332 return true;
1335 #ifndef NDEBUG
1336 /// Debug printer.
1337 LLVM_DUMP_METHOD void dump() const {
1338 dbgs() << Idx << ".\n";
1339 for (unsigned OpI = 0, OpE = Operands.size(); OpI != OpE; ++OpI) {
1340 dbgs() << "Operand " << OpI << ":\n";
1341 for (const Value *V : Operands[OpI])
1342 dbgs().indent(2) << *V << "\n";
1344 dbgs() << "Scalars: \n";
1345 for (Value *V : Scalars)
1346 dbgs().indent(2) << *V << "\n";
1347 dbgs() << "NeedToGather: " << NeedToGather << "\n";
1348 dbgs() << "MainOp: " << *MainOp << "\n";
1349 dbgs() << "AltOp: " << *AltOp << "\n";
1350 dbgs() << "VectorizedValue: ";
1351 if (VectorizedValue)
1352 dbgs() << *VectorizedValue;
1353 else
1354 dbgs() << "NULL";
1355 dbgs() << "\n";
1356 dbgs() << "ReuseShuffleIndices: ";
1357 if (ReuseShuffleIndices.empty())
1358 dbgs() << "Emtpy";
1359 else
1360 for (unsigned ReuseIdx : ReuseShuffleIndices)
1361 dbgs() << ReuseIdx << ", ";
1362 dbgs() << "\n";
1363 dbgs() << "ReorderIndices: ";
1364 for (unsigned ReorderIdx : ReorderIndices)
1365 dbgs() << ReorderIdx << ", ";
1366 dbgs() << "\n";
1367 dbgs() << "UserTreeIndices: ";
1368 for (const auto &EInfo : UserTreeIndices)
1369 dbgs() << EInfo << ", ";
1370 dbgs() << "\n";
1372 #endif
1375 /// Create a new VectorizableTree entry.
1376 TreeEntry *newTreeEntry(ArrayRef<Value *> VL, Optional<ScheduleData *> Bundle,
1377 const InstructionsState &S,
1378 const EdgeInfo &UserTreeIdx,
1379 ArrayRef<unsigned> ReuseShuffleIndices = None,
1380 ArrayRef<unsigned> ReorderIndices = None) {
1381 bool Vectorized = (bool)Bundle;
1382 VectorizableTree.push_back(std::make_unique<TreeEntry>(VectorizableTree));
1383 TreeEntry *Last = VectorizableTree.back().get();
1384 Last->Idx = VectorizableTree.size() - 1;
1385 Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
1386 Last->NeedToGather = !Vectorized;
1387 Last->ReuseShuffleIndices.append(ReuseShuffleIndices.begin(),
1388 ReuseShuffleIndices.end());
1389 Last->ReorderIndices = ReorderIndices;
1390 Last->setOperations(S);
1391 if (Vectorized) {
1392 for (int i = 0, e = VL.size(); i != e; ++i) {
1393 assert(!getTreeEntry(VL[i]) && "Scalar already in tree!");
1394 ScalarToTreeEntry[VL[i]] = Last;
1396 // Update the scheduler bundle to point to this TreeEntry.
1397 unsigned Lane = 0;
1398 for (ScheduleData *BundleMember = Bundle.getValue(); BundleMember;
1399 BundleMember = BundleMember->NextInBundle) {
1400 BundleMember->TE = Last;
1401 BundleMember->Lane = Lane;
1402 ++Lane;
1404 assert((!Bundle.getValue() || Lane == VL.size()) &&
1405 "Bundle and VL out of sync");
1406 } else {
1407 MustGather.insert(VL.begin(), VL.end());
1410 if (UserTreeIdx.UserTE)
1411 Last->UserTreeIndices.push_back(UserTreeIdx);
1413 return Last;
1416 /// -- Vectorization State --
1417 /// Holds all of the tree entries.
1418 TreeEntry::VecTreeTy VectorizableTree;
1420 #ifndef NDEBUG
1421 /// Debug printer.
1422 LLVM_DUMP_METHOD void dumpVectorizableTree() const {
1423 for (unsigned Id = 0, IdE = VectorizableTree.size(); Id != IdE; ++Id) {
1424 VectorizableTree[Id]->dump();
1425 dbgs() << "\n";
1428 #endif
1430 TreeEntry *getTreeEntry(Value *V) {
1431 auto I = ScalarToTreeEntry.find(V);
1432 if (I != ScalarToTreeEntry.end())
1433 return I->second;
1434 return nullptr;
1437 const TreeEntry *getTreeEntry(Value *V) const {
1438 auto I = ScalarToTreeEntry.find(V);
1439 if (I != ScalarToTreeEntry.end())
1440 return I->second;
1441 return nullptr;
1444 /// Maps a specific scalar to its tree entry.
1445 SmallDenseMap<Value*, TreeEntry *> ScalarToTreeEntry;
1447 /// A list of scalars that we found that we need to keep as scalars.
1448 ValueSet MustGather;
1450 /// This POD struct describes one external user in the vectorized tree.
1451 struct ExternalUser {
1452 ExternalUser(Value *S, llvm::User *U, int L)
1453 : Scalar(S), User(U), Lane(L) {}
1455 // Which scalar in our function.
1456 Value *Scalar;
1458 // Which user that uses the scalar.
1459 llvm::User *User;
1461 // Which lane does the scalar belong to.
1462 int Lane;
1464 using UserList = SmallVector<ExternalUser, 16>;
1466 /// Checks if two instructions may access the same memory.
1468 /// \p Loc1 is the location of \p Inst1. It is passed explicitly because it
1469 /// is invariant in the calling loop.
1470 bool isAliased(const MemoryLocation &Loc1, Instruction *Inst1,
1471 Instruction *Inst2) {
1472 // First check if the result is already in the cache.
1473 AliasCacheKey key = std::make_pair(Inst1, Inst2);
1474 Optional<bool> &result = AliasCache[key];
1475 if (result.hasValue()) {
1476 return result.getValue();
1478 MemoryLocation Loc2 = getLocation(Inst2, AA);
1479 bool aliased = true;
1480 if (Loc1.Ptr && Loc2.Ptr && isSimple(Inst1) && isSimple(Inst2)) {
1481 // Do the alias check.
1482 aliased = AA->alias(Loc1, Loc2);
1484 // Store the result in the cache.
1485 result = aliased;
1486 return aliased;
1489 using AliasCacheKey = std::pair<Instruction *, Instruction *>;
1491 /// Cache for alias results.
1492 /// TODO: consider moving this to the AliasAnalysis itself.
1493 DenseMap<AliasCacheKey, Optional<bool>> AliasCache;
1495 /// Removes an instruction from its block and eventually deletes it.
1496 /// It's like Instruction::eraseFromParent() except that the actual deletion
1497 /// is delayed until BoUpSLP is destructed.
1498 /// This is required to ensure that there are no incorrect collisions in the
1499 /// AliasCache, which can happen if a new instruction is allocated at the
1500 /// same address as a previously deleted instruction.
1501 void eraseInstruction(Instruction *I, bool ReplaceOpsWithUndef = false) {
1502 auto It = DeletedInstructions.try_emplace(I, ReplaceOpsWithUndef).first;
1503 It->getSecond() = It->getSecond() && ReplaceOpsWithUndef;
1506 /// Temporary store for deleted instructions. Instructions will be deleted
1507 /// eventually when the BoUpSLP is destructed.
1508 DenseMap<Instruction *, bool> DeletedInstructions;
1510 /// A list of values that need to extracted out of the tree.
1511 /// This list holds pairs of (Internal Scalar : External User). External User
1512 /// can be nullptr, it means that this Internal Scalar will be used later,
1513 /// after vectorization.
1514 UserList ExternalUses;
1516 /// Values used only by @llvm.assume calls.
1517 SmallPtrSet<const Value *, 32> EphValues;
1519 /// Holds all of the instructions that we gathered.
1520 SetVector<Instruction *> GatherSeq;
1522 /// A list of blocks that we are going to CSE.
1523 SetVector<BasicBlock *> CSEBlocks;
1525 /// Contains all scheduling relevant data for an instruction.
1526 /// A ScheduleData either represents a single instruction or a member of an
1527 /// instruction bundle (= a group of instructions which is combined into a
1528 /// vector instruction).
1529 struct ScheduleData {
1530 // The initial value for the dependency counters. It means that the
1531 // dependencies are not calculated yet.
1532 enum { InvalidDeps = -1 };
1534 ScheduleData() = default;
1536 void init(int BlockSchedulingRegionID, Value *OpVal) {
1537 FirstInBundle = this;
1538 NextInBundle = nullptr;
1539 NextLoadStore = nullptr;
1540 IsScheduled = false;
1541 SchedulingRegionID = BlockSchedulingRegionID;
1542 UnscheduledDepsInBundle = UnscheduledDeps;
1543 clearDependencies();
1544 OpValue = OpVal;
1545 TE = nullptr;
1546 Lane = -1;
1549 /// Returns true if the dependency information has been calculated.
1550 bool hasValidDependencies() const { return Dependencies != InvalidDeps; }
1552 /// Returns true for single instructions and for bundle representatives
1553 /// (= the head of a bundle).
1554 bool isSchedulingEntity() const { return FirstInBundle == this; }
1556 /// Returns true if it represents an instruction bundle and not only a
1557 /// single instruction.
1558 bool isPartOfBundle() const {
1559 return NextInBundle != nullptr || FirstInBundle != this;
1562 /// Returns true if it is ready for scheduling, i.e. it has no more
1563 /// unscheduled depending instructions/bundles.
1564 bool isReady() const {
1565 assert(isSchedulingEntity() &&
1566 "can't consider non-scheduling entity for ready list");
1567 return UnscheduledDepsInBundle == 0 && !IsScheduled;
1570 /// Modifies the number of unscheduled dependencies, also updating it for
1571 /// the whole bundle.
1572 int incrementUnscheduledDeps(int Incr) {
1573 UnscheduledDeps += Incr;
1574 return FirstInBundle->UnscheduledDepsInBundle += Incr;
1577 /// Sets the number of unscheduled dependencies to the number of
1578 /// dependencies.
1579 void resetUnscheduledDeps() {
1580 incrementUnscheduledDeps(Dependencies - UnscheduledDeps);
1583 /// Clears all dependency information.
1584 void clearDependencies() {
1585 Dependencies = InvalidDeps;
1586 resetUnscheduledDeps();
1587 MemoryDependencies.clear();
1590 void dump(raw_ostream &os) const {
1591 if (!isSchedulingEntity()) {
1592 os << "/ " << *Inst;
1593 } else if (NextInBundle) {
1594 os << '[' << *Inst;
1595 ScheduleData *SD = NextInBundle;
1596 while (SD) {
1597 os << ';' << *SD->Inst;
1598 SD = SD->NextInBundle;
1600 os << ']';
1601 } else {
1602 os << *Inst;
1606 Instruction *Inst = nullptr;
1608 /// Points to the head in an instruction bundle (and always to this for
1609 /// single instructions).
1610 ScheduleData *FirstInBundle = nullptr;
1612 /// Single linked list of all instructions in a bundle. Null if it is a
1613 /// single instruction.
1614 ScheduleData *NextInBundle = nullptr;
1616 /// Single linked list of all memory instructions (e.g. load, store, call)
1617 /// in the block - until the end of the scheduling region.
1618 ScheduleData *NextLoadStore = nullptr;
1620 /// The dependent memory instructions.
1621 /// This list is derived on demand in calculateDependencies().
1622 SmallVector<ScheduleData *, 4> MemoryDependencies;
1624 /// This ScheduleData is in the current scheduling region if this matches
1625 /// the current SchedulingRegionID of BlockScheduling.
1626 int SchedulingRegionID = 0;
1628 /// Used for getting a "good" final ordering of instructions.
1629 int SchedulingPriority = 0;
1631 /// The number of dependencies. Constitutes of the number of users of the
1632 /// instruction plus the number of dependent memory instructions (if any).
1633 /// This value is calculated on demand.
1634 /// If InvalidDeps, the number of dependencies is not calculated yet.
1635 int Dependencies = InvalidDeps;
1637 /// The number of dependencies minus the number of dependencies of scheduled
1638 /// instructions. As soon as this is zero, the instruction/bundle gets ready
1639 /// for scheduling.
1640 /// Note that this is negative as long as Dependencies is not calculated.
1641 int UnscheduledDeps = InvalidDeps;
1643 /// The sum of UnscheduledDeps in a bundle. Equals to UnscheduledDeps for
1644 /// single instructions.
1645 int UnscheduledDepsInBundle = InvalidDeps;
1647 /// True if this instruction is scheduled (or considered as scheduled in the
1648 /// dry-run).
1649 bool IsScheduled = false;
1651 /// Opcode of the current instruction in the schedule data.
1652 Value *OpValue = nullptr;
1654 /// The TreeEntry that this instruction corresponds to.
1655 TreeEntry *TE = nullptr;
1657 /// The lane of this node in the TreeEntry.
1658 int Lane = -1;
1661 #ifndef NDEBUG
1662 friend inline raw_ostream &operator<<(raw_ostream &os,
1663 const BoUpSLP::ScheduleData &SD) {
1664 SD.dump(os);
1665 return os;
1667 #endif
1669 friend struct GraphTraits<BoUpSLP *>;
1670 friend struct DOTGraphTraits<BoUpSLP *>;
1672 /// Contains all scheduling data for a basic block.
1673 struct BlockScheduling {
1674 BlockScheduling(BasicBlock *BB)
1675 : BB(BB), ChunkSize(BB->size()), ChunkPos(ChunkSize) {}
1677 void clear() {
1678 ReadyInsts.clear();
1679 ScheduleStart = nullptr;
1680 ScheduleEnd = nullptr;
1681 FirstLoadStoreInRegion = nullptr;
1682 LastLoadStoreInRegion = nullptr;
1684 // Reduce the maximum schedule region size by the size of the
1685 // previous scheduling run.
1686 ScheduleRegionSizeLimit -= ScheduleRegionSize;
1687 if (ScheduleRegionSizeLimit < MinScheduleRegionSize)
1688 ScheduleRegionSizeLimit = MinScheduleRegionSize;
1689 ScheduleRegionSize = 0;
1691 // Make a new scheduling region, i.e. all existing ScheduleData is not
1692 // in the new region yet.
1693 ++SchedulingRegionID;
1696 ScheduleData *getScheduleData(Value *V) {
1697 ScheduleData *SD = ScheduleDataMap[V];
1698 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1699 return SD;
1700 return nullptr;
1703 ScheduleData *getScheduleData(Value *V, Value *Key) {
1704 if (V == Key)
1705 return getScheduleData(V);
1706 auto I = ExtraScheduleDataMap.find(V);
1707 if (I != ExtraScheduleDataMap.end()) {
1708 ScheduleData *SD = I->second[Key];
1709 if (SD && SD->SchedulingRegionID == SchedulingRegionID)
1710 return SD;
1712 return nullptr;
1715 bool isInSchedulingRegion(ScheduleData *SD) {
1716 return SD->SchedulingRegionID == SchedulingRegionID;
1719 /// Marks an instruction as scheduled and puts all dependent ready
1720 /// instructions into the ready-list.
1721 template <typename ReadyListType>
1722 void schedule(ScheduleData *SD, ReadyListType &ReadyList) {
1723 SD->IsScheduled = true;
1724 LLVM_DEBUG(dbgs() << "SLP: schedule " << *SD << "\n");
1726 ScheduleData *BundleMember = SD;
1727 while (BundleMember) {
1728 if (BundleMember->Inst != BundleMember->OpValue) {
1729 BundleMember = BundleMember->NextInBundle;
1730 continue;
1732 // Handle the def-use chain dependencies.
1734 // Decrement the unscheduled counter and insert to ready list if ready.
1735 auto &&DecrUnsched = [this, &ReadyList](Instruction *I) {
1736 doForAllOpcodes(I, [&ReadyList](ScheduleData *OpDef) {
1737 if (OpDef && OpDef->hasValidDependencies() &&
1738 OpDef->incrementUnscheduledDeps(-1) == 0) {
1739 // There are no more unscheduled dependencies after
1740 // decrementing, so we can put the dependent instruction
1741 // into the ready list.
1742 ScheduleData *DepBundle = OpDef->FirstInBundle;
1743 assert(!DepBundle->IsScheduled &&
1744 "already scheduled bundle gets ready");
1745 ReadyList.insert(DepBundle);
1746 LLVM_DEBUG(dbgs()
1747 << "SLP: gets ready (def): " << *DepBundle << "\n");
1752 // If BundleMember is a vector bundle, its operands may have been
1753 // reordered duiring buildTree(). We therefore need to get its operands
1754 // through the TreeEntry.
1755 if (TreeEntry *TE = BundleMember->TE) {
1756 int Lane = BundleMember->Lane;
1757 assert(Lane >= 0 && "Lane not set");
1758 for (unsigned OpIdx = 0, NumOperands = TE->getNumOperands();
1759 OpIdx != NumOperands; ++OpIdx)
1760 if (auto *I = dyn_cast<Instruction>(TE->getOperand(OpIdx)[Lane]))
1761 DecrUnsched(I);
1762 } else {
1763 // If BundleMember is a stand-alone instruction, no operand reordering
1764 // has taken place, so we directly access its operands.
1765 for (Use &U : BundleMember->Inst->operands())
1766 if (auto *I = dyn_cast<Instruction>(U.get()))
1767 DecrUnsched(I);
1769 // Handle the memory dependencies.
1770 for (ScheduleData *MemoryDepSD : BundleMember->MemoryDependencies) {
1771 if (MemoryDepSD->incrementUnscheduledDeps(-1) == 0) {
1772 // There are no more unscheduled dependencies after decrementing,
1773 // so we can put the dependent instruction into the ready list.
1774 ScheduleData *DepBundle = MemoryDepSD->FirstInBundle;
1775 assert(!DepBundle->IsScheduled &&
1776 "already scheduled bundle gets ready");
1777 ReadyList.insert(DepBundle);
1778 LLVM_DEBUG(dbgs()
1779 << "SLP: gets ready (mem): " << *DepBundle << "\n");
1782 BundleMember = BundleMember->NextInBundle;
1786 void doForAllOpcodes(Value *V,
1787 function_ref<void(ScheduleData *SD)> Action) {
1788 if (ScheduleData *SD = getScheduleData(V))
1789 Action(SD);
1790 auto I = ExtraScheduleDataMap.find(V);
1791 if (I != ExtraScheduleDataMap.end())
1792 for (auto &P : I->second)
1793 if (P.second->SchedulingRegionID == SchedulingRegionID)
1794 Action(P.second);
1797 /// Put all instructions into the ReadyList which are ready for scheduling.
1798 template <typename ReadyListType>
1799 void initialFillReadyList(ReadyListType &ReadyList) {
1800 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
1801 doForAllOpcodes(I, [&](ScheduleData *SD) {
1802 if (SD->isSchedulingEntity() && SD->isReady()) {
1803 ReadyList.insert(SD);
1804 LLVM_DEBUG(dbgs()
1805 << "SLP: initially in ready list: " << *I << "\n");
1811 /// Checks if a bundle of instructions can be scheduled, i.e. has no
1812 /// cyclic dependencies. This is only a dry-run, no instructions are
1813 /// actually moved at this stage.
1814 /// \returns the scheduling bundle. The returned Optional value is non-None
1815 /// if \p VL is allowed to be scheduled.
1816 Optional<ScheduleData *>
1817 tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
1818 const InstructionsState &S);
1820 /// Un-bundles a group of instructions.
1821 void cancelScheduling(ArrayRef<Value *> VL, Value *OpValue);
1823 /// Allocates schedule data chunk.
1824 ScheduleData *allocateScheduleDataChunks();
1826 /// Extends the scheduling region so that V is inside the region.
1827 /// \returns true if the region size is within the limit.
1828 bool extendSchedulingRegion(Value *V, const InstructionsState &S);
1830 /// Initialize the ScheduleData structures for new instructions in the
1831 /// scheduling region.
1832 void initScheduleData(Instruction *FromI, Instruction *ToI,
1833 ScheduleData *PrevLoadStore,
1834 ScheduleData *NextLoadStore);
1836 /// Updates the dependency information of a bundle and of all instructions/
1837 /// bundles which depend on the original bundle.
1838 void calculateDependencies(ScheduleData *SD, bool InsertInReadyList,
1839 BoUpSLP *SLP);
1841 /// Sets all instruction in the scheduling region to un-scheduled.
1842 void resetSchedule();
1844 BasicBlock *BB;
1846 /// Simple memory allocation for ScheduleData.
1847 std::vector<std::unique_ptr<ScheduleData[]>> ScheduleDataChunks;
1849 /// The size of a ScheduleData array in ScheduleDataChunks.
1850 int ChunkSize;
1852 /// The allocator position in the current chunk, which is the last entry
1853 /// of ScheduleDataChunks.
1854 int ChunkPos;
1856 /// Attaches ScheduleData to Instruction.
1857 /// Note that the mapping survives during all vectorization iterations, i.e.
1858 /// ScheduleData structures are recycled.
1859 DenseMap<Value *, ScheduleData *> ScheduleDataMap;
1861 /// Attaches ScheduleData to Instruction with the leading key.
1862 DenseMap<Value *, SmallDenseMap<Value *, ScheduleData *>>
1863 ExtraScheduleDataMap;
1865 struct ReadyList : SmallVector<ScheduleData *, 8> {
1866 void insert(ScheduleData *SD) { push_back(SD); }
1869 /// The ready-list for scheduling (only used for the dry-run).
1870 ReadyList ReadyInsts;
1872 /// The first instruction of the scheduling region.
1873 Instruction *ScheduleStart = nullptr;
1875 /// The first instruction _after_ the scheduling region.
1876 Instruction *ScheduleEnd = nullptr;
1878 /// The first memory accessing instruction in the scheduling region
1879 /// (can be null).
1880 ScheduleData *FirstLoadStoreInRegion = nullptr;
1882 /// The last memory accessing instruction in the scheduling region
1883 /// (can be null).
1884 ScheduleData *LastLoadStoreInRegion = nullptr;
1886 /// The current size of the scheduling region.
1887 int ScheduleRegionSize = 0;
1889 /// The maximum size allowed for the scheduling region.
1890 int ScheduleRegionSizeLimit = ScheduleRegionSizeBudget;
1892 /// The ID of the scheduling region. For a new vectorization iteration this
1893 /// is incremented which "removes" all ScheduleData from the region.
1894 // Make sure that the initial SchedulingRegionID is greater than the
1895 // initial SchedulingRegionID in ScheduleData (which is 0).
1896 int SchedulingRegionID = 1;
1899 /// Attaches the BlockScheduling structures to basic blocks.
1900 MapVector<BasicBlock *, std::unique_ptr<BlockScheduling>> BlocksSchedules;
1902 /// Performs the "real" scheduling. Done before vectorization is actually
1903 /// performed in a basic block.
1904 void scheduleBlock(BlockScheduling *BS);
1906 /// List of users to ignore during scheduling and that don't need extracting.
1907 ArrayRef<Value *> UserIgnoreList;
1909 using OrdersType = SmallVector<unsigned, 4>;
1910 /// A DenseMapInfo implementation for holding DenseMaps and DenseSets of
1911 /// sorted SmallVectors of unsigned.
1912 struct OrdersTypeDenseMapInfo {
1913 static OrdersType getEmptyKey() {
1914 OrdersType V;
1915 V.push_back(~1U);
1916 return V;
1919 static OrdersType getTombstoneKey() {
1920 OrdersType V;
1921 V.push_back(~2U);
1922 return V;
1925 static unsigned getHashValue(const OrdersType &V) {
1926 return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
1929 static bool isEqual(const OrdersType &LHS, const OrdersType &RHS) {
1930 return LHS == RHS;
1934 /// Contains orders of operations along with the number of bundles that have
1935 /// operations in this order. It stores only those orders that require
1936 /// reordering, if reordering is not required it is counted using \a
1937 /// NumOpsWantToKeepOriginalOrder.
1938 DenseMap<OrdersType, unsigned, OrdersTypeDenseMapInfo> NumOpsWantToKeepOrder;
1939 /// Number of bundles that do not require reordering.
1940 unsigned NumOpsWantToKeepOriginalOrder = 0;
1942 // Analysis and block reference.
1943 Function *F;
1944 ScalarEvolution *SE;
1945 TargetTransformInfo *TTI;
1946 TargetLibraryInfo *TLI;
1947 AliasAnalysis *AA;
1948 LoopInfo *LI;
1949 DominatorTree *DT;
1950 AssumptionCache *AC;
1951 DemandedBits *DB;
1952 const DataLayout *DL;
1953 OptimizationRemarkEmitter *ORE;
1955 unsigned MaxVecRegSize; // This is set by TTI or overridden by cl::opt.
1956 unsigned MinVecRegSize; // Set by cl::opt (default: 128).
1958 /// Instruction builder to construct the vectorized tree.
1959 IRBuilder<> Builder;
1961 /// A map of scalar integer values to the smallest bit width with which they
1962 /// can legally be represented. The values map to (width, signed) pairs,
1963 /// where "width" indicates the minimum bit width and "signed" is True if the
1964 /// value must be signed-extended, rather than zero-extended, back to its
1965 /// original width.
1966 MapVector<Value *, std::pair<uint64_t, bool>> MinBWs;
1969 } // end namespace slpvectorizer
1971 template <> struct GraphTraits<BoUpSLP *> {
1972 using TreeEntry = BoUpSLP::TreeEntry;
1974 /// NodeRef has to be a pointer per the GraphWriter.
1975 using NodeRef = TreeEntry *;
1977 using ContainerTy = BoUpSLP::TreeEntry::VecTreeTy;
1979 /// Add the VectorizableTree to the index iterator to be able to return
1980 /// TreeEntry pointers.
1981 struct ChildIteratorType
1982 : public iterator_adaptor_base<
1983 ChildIteratorType, SmallVector<BoUpSLP::EdgeInfo, 1>::iterator> {
1984 ContainerTy &VectorizableTree;
1986 ChildIteratorType(SmallVector<BoUpSLP::EdgeInfo, 1>::iterator W,
1987 ContainerTy &VT)
1988 : ChildIteratorType::iterator_adaptor_base(W), VectorizableTree(VT) {}
1990 NodeRef operator*() { return I->UserTE; }
1993 static NodeRef getEntryNode(BoUpSLP &R) {
1994 return R.VectorizableTree[0].get();
1997 static ChildIteratorType child_begin(NodeRef N) {
1998 return {N->UserTreeIndices.begin(), N->Container};
2001 static ChildIteratorType child_end(NodeRef N) {
2002 return {N->UserTreeIndices.end(), N->Container};
2005 /// For the node iterator we just need to turn the TreeEntry iterator into a
2006 /// TreeEntry* iterator so that it dereferences to NodeRef.
2007 class nodes_iterator {
2008 using ItTy = ContainerTy::iterator;
2009 ItTy It;
2011 public:
2012 nodes_iterator(const ItTy &It2) : It(It2) {}
2013 NodeRef operator*() { return It->get(); }
2014 nodes_iterator operator++() {
2015 ++It;
2016 return *this;
2018 bool operator!=(const nodes_iterator &N2) const { return N2.It != It; }
2021 static nodes_iterator nodes_begin(BoUpSLP *R) {
2022 return nodes_iterator(R->VectorizableTree.begin());
2025 static nodes_iterator nodes_end(BoUpSLP *R) {
2026 return nodes_iterator(R->VectorizableTree.end());
2029 static unsigned size(BoUpSLP *R) { return R->VectorizableTree.size(); }
2032 template <> struct DOTGraphTraits<BoUpSLP *> : public DefaultDOTGraphTraits {
2033 using TreeEntry = BoUpSLP::TreeEntry;
2035 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
2037 std::string getNodeLabel(const TreeEntry *Entry, const BoUpSLP *R) {
2038 std::string Str;
2039 raw_string_ostream OS(Str);
2040 if (isSplat(Entry->Scalars)) {
2041 OS << "<splat> " << *Entry->Scalars[0];
2042 return Str;
2044 for (auto V : Entry->Scalars) {
2045 OS << *V;
2046 if (std::any_of(
2047 R->ExternalUses.begin(), R->ExternalUses.end(),
2048 [&](const BoUpSLP::ExternalUser &EU) { return EU.Scalar == V; }))
2049 OS << " <extract>";
2050 OS << "\n";
2052 return Str;
2055 static std::string getNodeAttributes(const TreeEntry *Entry,
2056 const BoUpSLP *) {
2057 if (Entry->NeedToGather)
2058 return "color=red";
2059 return "";
2063 } // end namespace llvm
2065 BoUpSLP::~BoUpSLP() {
2066 for (const auto &Pair : DeletedInstructions) {
2067 // Replace operands of ignored instructions with Undefs in case if they were
2068 // marked for deletion.
2069 if (Pair.getSecond()) {
2070 Value *Undef = UndefValue::get(Pair.getFirst()->getType());
2071 Pair.getFirst()->replaceAllUsesWith(Undef);
2073 Pair.getFirst()->dropAllReferences();
2075 for (const auto &Pair : DeletedInstructions) {
2076 assert(Pair.getFirst()->use_empty() &&
2077 "trying to erase instruction with users.");
2078 Pair.getFirst()->eraseFromParent();
2082 void BoUpSLP::eraseInstructions(ArrayRef<Value *> AV) {
2083 for (auto *V : AV) {
2084 if (auto *I = dyn_cast<Instruction>(V))
2085 eraseInstruction(I, /*ReplaceWithUndef=*/true);
2089 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2090 ArrayRef<Value *> UserIgnoreLst) {
2091 ExtraValueToDebugLocsMap ExternallyUsedValues;
2092 buildTree(Roots, ExternallyUsedValues, UserIgnoreLst);
2095 void BoUpSLP::buildTree(ArrayRef<Value *> Roots,
2096 ExtraValueToDebugLocsMap &ExternallyUsedValues,
2097 ArrayRef<Value *> UserIgnoreLst) {
2098 deleteTree();
2099 UserIgnoreList = UserIgnoreLst;
2100 if (!allSameType(Roots))
2101 return;
2102 buildTree_rec(Roots, 0, EdgeInfo());
2104 // Collect the values that we need to extract from the tree.
2105 for (auto &TEPtr : VectorizableTree) {
2106 TreeEntry *Entry = TEPtr.get();
2108 // No need to handle users of gathered values.
2109 if (Entry->NeedToGather)
2110 continue;
2112 // For each lane:
2113 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
2114 Value *Scalar = Entry->Scalars[Lane];
2115 int FoundLane = Lane;
2116 if (!Entry->ReuseShuffleIndices.empty()) {
2117 FoundLane =
2118 std::distance(Entry->ReuseShuffleIndices.begin(),
2119 llvm::find(Entry->ReuseShuffleIndices, FoundLane));
2122 // Check if the scalar is externally used as an extra arg.
2123 auto ExtI = ExternallyUsedValues.find(Scalar);
2124 if (ExtI != ExternallyUsedValues.end()) {
2125 LLVM_DEBUG(dbgs() << "SLP: Need to extract: Extra arg from lane "
2126 << Lane << " from " << *Scalar << ".\n");
2127 ExternalUses.emplace_back(Scalar, nullptr, FoundLane);
2129 for (User *U : Scalar->users()) {
2130 LLVM_DEBUG(dbgs() << "SLP: Checking user:" << *U << ".\n");
2132 Instruction *UserInst = dyn_cast<Instruction>(U);
2133 if (!UserInst)
2134 continue;
2136 // Skip in-tree scalars that become vectors
2137 if (TreeEntry *UseEntry = getTreeEntry(U)) {
2138 Value *UseScalar = UseEntry->Scalars[0];
2139 // Some in-tree scalars will remain as scalar in vectorized
2140 // instructions. If that is the case, the one in Lane 0 will
2141 // be used.
2142 if (UseScalar != U ||
2143 !InTreeUserNeedToExtract(Scalar, UserInst, TLI)) {
2144 LLVM_DEBUG(dbgs() << "SLP: \tInternal user will be removed:" << *U
2145 << ".\n");
2146 assert(!UseEntry->NeedToGather && "Bad state");
2147 continue;
2151 // Ignore users in the user ignore list.
2152 if (is_contained(UserIgnoreList, UserInst))
2153 continue;
2155 LLVM_DEBUG(dbgs() << "SLP: Need to extract:" << *U << " from lane "
2156 << Lane << " from " << *Scalar << ".\n");
2157 ExternalUses.push_back(ExternalUser(Scalar, U, FoundLane));
2163 void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth,
2164 const EdgeInfo &UserTreeIdx) {
2165 assert((allConstant(VL) || allSameType(VL)) && "Invalid types!");
2167 InstructionsState S = getSameOpcode(VL);
2168 if (Depth == RecursionMaxDepth) {
2169 LLVM_DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
2170 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2171 return;
2174 // Don't handle vectors.
2175 if (S.OpValue->getType()->isVectorTy()) {
2176 LLVM_DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
2177 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2178 return;
2181 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
2182 if (SI->getValueOperand()->getType()->isVectorTy()) {
2183 LLVM_DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
2184 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2185 return;
2188 // If all of the operands are identical or constant we have a simple solution.
2189 if (allConstant(VL) || isSplat(VL) || !allSameBlock(VL) || !S.getOpcode()) {
2190 LLVM_DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
2191 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2192 return;
2195 // We now know that this is a vector of instructions of the same type from
2196 // the same block.
2198 // Don't vectorize ephemeral values.
2199 for (Value *V : VL) {
2200 if (EphValues.count(V)) {
2201 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2202 << ") is ephemeral.\n");
2203 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2204 return;
2208 // Check if this is a duplicate of another entry.
2209 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
2210 LLVM_DEBUG(dbgs() << "SLP: \tChecking bundle: " << *S.OpValue << ".\n");
2211 if (!E->isSame(VL)) {
2212 LLVM_DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
2213 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2214 return;
2216 // Record the reuse of the tree node. FIXME, currently this is only used to
2217 // properly draw the graph rather than for the actual vectorization.
2218 E->UserTreeIndices.push_back(UserTreeIdx);
2219 LLVM_DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *S.OpValue
2220 << ".\n");
2221 return;
2224 // Check that none of the instructions in the bundle are already in the tree.
2225 for (Value *V : VL) {
2226 auto *I = dyn_cast<Instruction>(V);
2227 if (!I)
2228 continue;
2229 if (getTreeEntry(I)) {
2230 LLVM_DEBUG(dbgs() << "SLP: The instruction (" << *V
2231 << ") is already in tree.\n");
2232 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2233 return;
2237 // If any of the scalars is marked as a value that needs to stay scalar, then
2238 // we need to gather the scalars.
2239 // The reduction nodes (stored in UserIgnoreList) also should stay scalar.
2240 for (Value *V : VL) {
2241 if (MustGather.count(V) || is_contained(UserIgnoreList, V)) {
2242 LLVM_DEBUG(dbgs() << "SLP: Gathering due to gathered scalar.\n");
2243 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2244 return;
2248 // Check that all of the users of the scalars that we want to vectorize are
2249 // schedulable.
2250 auto *VL0 = cast<Instruction>(S.OpValue);
2251 BasicBlock *BB = VL0->getParent();
2253 if (!DT->isReachableFromEntry(BB)) {
2254 // Don't go into unreachable blocks. They may contain instructions with
2255 // dependency cycles which confuse the final scheduling.
2256 LLVM_DEBUG(dbgs() << "SLP: bundle in unreachable block.\n");
2257 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2258 return;
2261 // Check that every instruction appears once in this bundle.
2262 SmallVector<unsigned, 4> ReuseShuffleIndicies;
2263 SmallVector<Value *, 4> UniqueValues;
2264 DenseMap<Value *, unsigned> UniquePositions;
2265 for (Value *V : VL) {
2266 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
2267 ReuseShuffleIndicies.emplace_back(Res.first->second);
2268 if (Res.second)
2269 UniqueValues.emplace_back(V);
2271 size_t NumUniqueScalarValues = UniqueValues.size();
2272 if (NumUniqueScalarValues == VL.size()) {
2273 ReuseShuffleIndicies.clear();
2274 } else {
2275 LLVM_DEBUG(dbgs() << "SLP: Shuffle for reused scalars.\n");
2276 if (NumUniqueScalarValues <= 1 ||
2277 !llvm::isPowerOf2_32(NumUniqueScalarValues)) {
2278 LLVM_DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
2279 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx);
2280 return;
2282 VL = UniqueValues;
2285 auto &BSRef = BlocksSchedules[BB];
2286 if (!BSRef)
2287 BSRef = std::make_unique<BlockScheduling>(BB);
2289 BlockScheduling &BS = *BSRef.get();
2291 Optional<ScheduleData *> Bundle = BS.tryScheduleBundle(VL, this, S);
2292 if (!Bundle) {
2293 LLVM_DEBUG(dbgs() << "SLP: We are not able to schedule this bundle!\n");
2294 assert((!BS.getScheduleData(VL0) ||
2295 !BS.getScheduleData(VL0)->isPartOfBundle()) &&
2296 "tryScheduleBundle should cancelScheduling on failure");
2297 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2298 ReuseShuffleIndicies);
2299 return;
2301 LLVM_DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
2303 unsigned ShuffleOrOp = S.isAltShuffle() ?
2304 (unsigned) Instruction::ShuffleVector : S.getOpcode();
2305 switch (ShuffleOrOp) {
2306 case Instruction::PHI: {
2307 auto *PH = cast<PHINode>(VL0);
2309 // Check for terminator values (e.g. invoke).
2310 for (unsigned j = 0; j < VL.size(); ++j)
2311 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2312 Instruction *Term = dyn_cast<Instruction>(
2313 cast<PHINode>(VL[j])->getIncomingValueForBlock(
2314 PH->getIncomingBlock(i)));
2315 if (Term && Term->isTerminator()) {
2316 LLVM_DEBUG(dbgs()
2317 << "SLP: Need to swizzle PHINodes (terminator use).\n");
2318 BS.cancelScheduling(VL, VL0);
2319 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2320 ReuseShuffleIndicies);
2321 return;
2325 TreeEntry *TE =
2326 newTreeEntry(VL, Bundle, S, UserTreeIdx, ReuseShuffleIndicies);
2327 LLVM_DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
2329 // Keeps the reordered operands to avoid code duplication.
2330 SmallVector<ValueList, 2> OperandsVec;
2331 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
2332 ValueList Operands;
2333 // Prepare the operand vector.
2334 for (Value *j : VL)
2335 Operands.push_back(cast<PHINode>(j)->getIncomingValueForBlock(
2336 PH->getIncomingBlock(i)));
2337 TE->setOperand(i, Operands);
2338 OperandsVec.push_back(Operands);
2340 for (unsigned OpIdx = 0, OpE = OperandsVec.size(); OpIdx != OpE; ++OpIdx)
2341 buildTree_rec(OperandsVec[OpIdx], Depth + 1, {TE, OpIdx});
2342 return;
2344 case Instruction::ExtractValue:
2345 case Instruction::ExtractElement: {
2346 OrdersType CurrentOrder;
2347 bool Reuse = canReuseExtract(VL, VL0, CurrentOrder);
2348 if (Reuse) {
2349 LLVM_DEBUG(dbgs() << "SLP: Reusing or shuffling extract sequence.\n");
2350 ++NumOpsWantToKeepOriginalOrder;
2351 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2352 ReuseShuffleIndicies);
2353 // This is a special case, as it does not gather, but at the same time
2354 // we are not extending buildTree_rec() towards the operands.
2355 ValueList Op0;
2356 Op0.assign(VL.size(), VL0->getOperand(0));
2357 VectorizableTree.back()->setOperand(0, Op0);
2358 return;
2360 if (!CurrentOrder.empty()) {
2361 LLVM_DEBUG({
2362 dbgs() << "SLP: Reusing or shuffling of reordered extract sequence "
2363 "with order";
2364 for (unsigned Idx : CurrentOrder)
2365 dbgs() << " " << Idx;
2366 dbgs() << "\n";
2368 // Insert new order with initial value 0, if it does not exist,
2369 // otherwise return the iterator to the existing one.
2370 auto StoredCurrentOrderAndNum =
2371 NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2372 ++StoredCurrentOrderAndNum->getSecond();
2373 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2374 ReuseShuffleIndicies,
2375 StoredCurrentOrderAndNum->getFirst());
2376 // This is a special case, as it does not gather, but at the same time
2377 // we are not extending buildTree_rec() towards the operands.
2378 ValueList Op0;
2379 Op0.assign(VL.size(), VL0->getOperand(0));
2380 VectorizableTree.back()->setOperand(0, Op0);
2381 return;
2383 LLVM_DEBUG(dbgs() << "SLP: Gather extract sequence.\n");
2384 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2385 ReuseShuffleIndicies);
2386 BS.cancelScheduling(VL, VL0);
2387 return;
2389 case Instruction::Load: {
2390 // Check that a vectorized load would load the same memory as a scalar
2391 // load. For example, we don't want to vectorize loads that are smaller
2392 // than 8-bit. Even though we have a packed struct {<i2, i2, i2, i2>} LLVM
2393 // treats loading/storing it as an i8 struct. If we vectorize loads/stores
2394 // from such a struct, we read/write packed bits disagreeing with the
2395 // unvectorized version.
2396 Type *ScalarTy = VL0->getType();
2398 if (DL->getTypeSizeInBits(ScalarTy) !=
2399 DL->getTypeAllocSizeInBits(ScalarTy)) {
2400 BS.cancelScheduling(VL, VL0);
2401 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2402 ReuseShuffleIndicies);
2403 LLVM_DEBUG(dbgs() << "SLP: Gathering loads of non-packed type.\n");
2404 return;
2407 // Make sure all loads in the bundle are simple - we can't vectorize
2408 // atomic or volatile loads.
2409 SmallVector<Value *, 4> PointerOps(VL.size());
2410 auto POIter = PointerOps.begin();
2411 for (Value *V : VL) {
2412 auto *L = cast<LoadInst>(V);
2413 if (!L->isSimple()) {
2414 BS.cancelScheduling(VL, VL0);
2415 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2416 ReuseShuffleIndicies);
2417 LLVM_DEBUG(dbgs() << "SLP: Gathering non-simple loads.\n");
2418 return;
2420 *POIter = L->getPointerOperand();
2421 ++POIter;
2424 OrdersType CurrentOrder;
2425 // Check the order of pointer operands.
2426 if (llvm::sortPtrAccesses(PointerOps, *DL, *SE, CurrentOrder)) {
2427 Value *Ptr0;
2428 Value *PtrN;
2429 if (CurrentOrder.empty()) {
2430 Ptr0 = PointerOps.front();
2431 PtrN = PointerOps.back();
2432 } else {
2433 Ptr0 = PointerOps[CurrentOrder.front()];
2434 PtrN = PointerOps[CurrentOrder.back()];
2436 const SCEV *Scev0 = SE->getSCEV(Ptr0);
2437 const SCEV *ScevN = SE->getSCEV(PtrN);
2438 const auto *Diff =
2439 dyn_cast<SCEVConstant>(SE->getMinusSCEV(ScevN, Scev0));
2440 uint64_t Size = DL->getTypeAllocSize(ScalarTy);
2441 // Check that the sorted loads are consecutive.
2442 if (Diff && Diff->getAPInt().getZExtValue() == (VL.size() - 1) * Size) {
2443 if (CurrentOrder.empty()) {
2444 // Original loads are consecutive and does not require reordering.
2445 ++NumOpsWantToKeepOriginalOrder;
2446 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S,
2447 UserTreeIdx, ReuseShuffleIndicies);
2448 TE->setOperandsInOrder();
2449 LLVM_DEBUG(dbgs() << "SLP: added a vector of loads.\n");
2450 } else {
2451 // Need to reorder.
2452 auto I = NumOpsWantToKeepOrder.try_emplace(CurrentOrder).first;
2453 ++I->getSecond();
2454 TreeEntry *TE =
2455 newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2456 ReuseShuffleIndicies, I->getFirst());
2457 TE->setOperandsInOrder();
2458 LLVM_DEBUG(dbgs() << "SLP: added a vector of jumbled loads.\n");
2460 return;
2464 LLVM_DEBUG(dbgs() << "SLP: Gathering non-consecutive loads.\n");
2465 BS.cancelScheduling(VL, VL0);
2466 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2467 ReuseShuffleIndicies);
2468 return;
2470 case Instruction::ZExt:
2471 case Instruction::SExt:
2472 case Instruction::FPToUI:
2473 case Instruction::FPToSI:
2474 case Instruction::FPExt:
2475 case Instruction::PtrToInt:
2476 case Instruction::IntToPtr:
2477 case Instruction::SIToFP:
2478 case Instruction::UIToFP:
2479 case Instruction::Trunc:
2480 case Instruction::FPTrunc:
2481 case Instruction::BitCast: {
2482 Type *SrcTy = VL0->getOperand(0)->getType();
2483 for (Value *V : VL) {
2484 Type *Ty = cast<Instruction>(V)->getOperand(0)->getType();
2485 if (Ty != SrcTy || !isValidElementType(Ty)) {
2486 BS.cancelScheduling(VL, VL0);
2487 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2488 ReuseShuffleIndicies);
2489 LLVM_DEBUG(dbgs()
2490 << "SLP: Gathering casts with different src types.\n");
2491 return;
2494 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2495 ReuseShuffleIndicies);
2496 LLVM_DEBUG(dbgs() << "SLP: added a vector of casts.\n");
2498 TE->setOperandsInOrder();
2499 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2500 ValueList Operands;
2501 // Prepare the operand vector.
2502 for (Value *V : VL)
2503 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2505 buildTree_rec(Operands, Depth + 1, {TE, i});
2507 return;
2509 case Instruction::ICmp:
2510 case Instruction::FCmp: {
2511 // Check that all of the compares have the same predicate.
2512 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
2513 CmpInst::Predicate SwapP0 = CmpInst::getSwappedPredicate(P0);
2514 Type *ComparedTy = VL0->getOperand(0)->getType();
2515 for (Value *V : VL) {
2516 CmpInst *Cmp = cast<CmpInst>(V);
2517 if ((Cmp->getPredicate() != P0 && Cmp->getPredicate() != SwapP0) ||
2518 Cmp->getOperand(0)->getType() != ComparedTy) {
2519 BS.cancelScheduling(VL, VL0);
2520 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2521 ReuseShuffleIndicies);
2522 LLVM_DEBUG(dbgs()
2523 << "SLP: Gathering cmp with different predicate.\n");
2524 return;
2528 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2529 ReuseShuffleIndicies);
2530 LLVM_DEBUG(dbgs() << "SLP: added a vector of compares.\n");
2532 ValueList Left, Right;
2533 if (cast<CmpInst>(VL0)->isCommutative()) {
2534 // Commutative predicate - collect + sort operands of the instructions
2535 // so that each side is more likely to have the same opcode.
2536 assert(P0 == SwapP0 && "Commutative Predicate mismatch");
2537 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2538 } else {
2539 // Collect operands - commute if it uses the swapped predicate.
2540 for (Value *V : VL) {
2541 auto *Cmp = cast<CmpInst>(V);
2542 Value *LHS = Cmp->getOperand(0);
2543 Value *RHS = Cmp->getOperand(1);
2544 if (Cmp->getPredicate() != P0)
2545 std::swap(LHS, RHS);
2546 Left.push_back(LHS);
2547 Right.push_back(RHS);
2550 TE->setOperand(0, Left);
2551 TE->setOperand(1, Right);
2552 buildTree_rec(Left, Depth + 1, {TE, 0});
2553 buildTree_rec(Right, Depth + 1, {TE, 1});
2554 return;
2556 case Instruction::Select:
2557 case Instruction::FNeg:
2558 case Instruction::Add:
2559 case Instruction::FAdd:
2560 case Instruction::Sub:
2561 case Instruction::FSub:
2562 case Instruction::Mul:
2563 case Instruction::FMul:
2564 case Instruction::UDiv:
2565 case Instruction::SDiv:
2566 case Instruction::FDiv:
2567 case Instruction::URem:
2568 case Instruction::SRem:
2569 case Instruction::FRem:
2570 case Instruction::Shl:
2571 case Instruction::LShr:
2572 case Instruction::AShr:
2573 case Instruction::And:
2574 case Instruction::Or:
2575 case Instruction::Xor: {
2576 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2577 ReuseShuffleIndicies);
2578 LLVM_DEBUG(dbgs() << "SLP: added a vector of un/bin op.\n");
2580 // Sort operands of the instructions so that each side is more likely to
2581 // have the same opcode.
2582 if (isa<BinaryOperator>(VL0) && VL0->isCommutative()) {
2583 ValueList Left, Right;
2584 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2585 TE->setOperand(0, Left);
2586 TE->setOperand(1, Right);
2587 buildTree_rec(Left, Depth + 1, {TE, 0});
2588 buildTree_rec(Right, Depth + 1, {TE, 1});
2589 return;
2592 TE->setOperandsInOrder();
2593 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2594 ValueList Operands;
2595 // Prepare the operand vector.
2596 for (Value *j : VL)
2597 Operands.push_back(cast<Instruction>(j)->getOperand(i));
2599 buildTree_rec(Operands, Depth + 1, {TE, i});
2601 return;
2603 case Instruction::GetElementPtr: {
2604 // We don't combine GEPs with complicated (nested) indexing.
2605 for (Value *V : VL) {
2606 if (cast<Instruction>(V)->getNumOperands() != 2) {
2607 LLVM_DEBUG(dbgs() << "SLP: not-vectorizable GEP (nested indexes).\n");
2608 BS.cancelScheduling(VL, VL0);
2609 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2610 ReuseShuffleIndicies);
2611 return;
2615 // We can't combine several GEPs into one vector if they operate on
2616 // different types.
2617 Type *Ty0 = VL0->getOperand(0)->getType();
2618 for (Value *V : VL) {
2619 Type *CurTy = cast<Instruction>(V)->getOperand(0)->getType();
2620 if (Ty0 != CurTy) {
2621 LLVM_DEBUG(dbgs()
2622 << "SLP: not-vectorizable GEP (different types).\n");
2623 BS.cancelScheduling(VL, VL0);
2624 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2625 ReuseShuffleIndicies);
2626 return;
2630 // We don't combine GEPs with non-constant indexes.
2631 for (Value *V : VL) {
2632 auto Op = cast<Instruction>(V)->getOperand(1);
2633 if (!isa<ConstantInt>(Op)) {
2634 LLVM_DEBUG(dbgs()
2635 << "SLP: not-vectorizable GEP (non-constant indexes).\n");
2636 BS.cancelScheduling(VL, VL0);
2637 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2638 ReuseShuffleIndicies);
2639 return;
2643 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2644 ReuseShuffleIndicies);
2645 LLVM_DEBUG(dbgs() << "SLP: added a vector of GEPs.\n");
2646 TE->setOperandsInOrder();
2647 for (unsigned i = 0, e = 2; i < e; ++i) {
2648 ValueList Operands;
2649 // Prepare the operand vector.
2650 for (Value *V : VL)
2651 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2653 buildTree_rec(Operands, Depth + 1, {TE, i});
2655 return;
2657 case Instruction::Store: {
2658 // Check if the stores are consecutive or if we need to swizzle them.
2659 for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
2660 if (!isConsecutiveAccess(VL[i], VL[i + 1], *DL, *SE)) {
2661 BS.cancelScheduling(VL, VL0);
2662 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2663 ReuseShuffleIndicies);
2664 LLVM_DEBUG(dbgs() << "SLP: Non-consecutive store.\n");
2665 return;
2668 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2669 ReuseShuffleIndicies);
2670 LLVM_DEBUG(dbgs() << "SLP: added a vector of stores.\n");
2672 ValueList Operands;
2673 for (Value *V : VL)
2674 Operands.push_back(cast<Instruction>(V)->getOperand(0));
2675 TE->setOperandsInOrder();
2676 buildTree_rec(Operands, Depth + 1, {TE, 0});
2677 return;
2679 case Instruction::Call: {
2680 // Check if the calls are all to the same vectorizable intrinsic.
2681 CallInst *CI = cast<CallInst>(VL0);
2682 // Check if this is an Intrinsic call or something that can be
2683 // represented by an intrinsic call
2684 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
2685 if (!isTriviallyVectorizable(ID)) {
2686 BS.cancelScheduling(VL, VL0);
2687 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2688 ReuseShuffleIndicies);
2689 LLVM_DEBUG(dbgs() << "SLP: Non-vectorizable call.\n");
2690 return;
2692 Function *Int = CI->getCalledFunction();
2693 unsigned NumArgs = CI->getNumArgOperands();
2694 SmallVector<Value*, 4> ScalarArgs(NumArgs, nullptr);
2695 for (unsigned j = 0; j != NumArgs; ++j)
2696 if (hasVectorInstrinsicScalarOpd(ID, j))
2697 ScalarArgs[j] = CI->getArgOperand(j);
2698 for (Value *V : VL) {
2699 CallInst *CI2 = dyn_cast<CallInst>(V);
2700 if (!CI2 || CI2->getCalledFunction() != Int ||
2701 getVectorIntrinsicIDForCall(CI2, TLI) != ID ||
2702 !CI->hasIdenticalOperandBundleSchema(*CI2)) {
2703 BS.cancelScheduling(VL, VL0);
2704 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2705 ReuseShuffleIndicies);
2706 LLVM_DEBUG(dbgs() << "SLP: mismatched calls:" << *CI << "!=" << *V
2707 << "\n");
2708 return;
2710 // Some intrinsics have scalar arguments and should be same in order for
2711 // them to be vectorized.
2712 for (unsigned j = 0; j != NumArgs; ++j) {
2713 if (hasVectorInstrinsicScalarOpd(ID, j)) {
2714 Value *A1J = CI2->getArgOperand(j);
2715 if (ScalarArgs[j] != A1J) {
2716 BS.cancelScheduling(VL, VL0);
2717 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2718 ReuseShuffleIndicies);
2719 LLVM_DEBUG(dbgs() << "SLP: mismatched arguments in call:" << *CI
2720 << " argument " << ScalarArgs[j] << "!=" << A1J
2721 << "\n");
2722 return;
2726 // Verify that the bundle operands are identical between the two calls.
2727 if (CI->hasOperandBundles() &&
2728 !std::equal(CI->op_begin() + CI->getBundleOperandsStartIndex(),
2729 CI->op_begin() + CI->getBundleOperandsEndIndex(),
2730 CI2->op_begin() + CI2->getBundleOperandsStartIndex())) {
2731 BS.cancelScheduling(VL, VL0);
2732 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2733 ReuseShuffleIndicies);
2734 LLVM_DEBUG(dbgs() << "SLP: mismatched bundle operands in calls:"
2735 << *CI << "!=" << *V << '\n');
2736 return;
2740 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2741 ReuseShuffleIndicies);
2742 TE->setOperandsInOrder();
2743 for (unsigned i = 0, e = CI->getNumArgOperands(); i != e; ++i) {
2744 ValueList Operands;
2745 // Prepare the operand vector.
2746 for (Value *V : VL) {
2747 auto *CI2 = cast<CallInst>(V);
2748 Operands.push_back(CI2->getArgOperand(i));
2750 buildTree_rec(Operands, Depth + 1, {TE, i});
2752 return;
2754 case Instruction::ShuffleVector: {
2755 // If this is not an alternate sequence of opcode like add-sub
2756 // then do not vectorize this instruction.
2757 if (!S.isAltShuffle()) {
2758 BS.cancelScheduling(VL, VL0);
2759 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2760 ReuseShuffleIndicies);
2761 LLVM_DEBUG(dbgs() << "SLP: ShuffleVector are not vectorized.\n");
2762 return;
2764 TreeEntry *TE = newTreeEntry(VL, Bundle /*vectorized*/, S, UserTreeIdx,
2765 ReuseShuffleIndicies);
2766 LLVM_DEBUG(dbgs() << "SLP: added a ShuffleVector op.\n");
2768 // Reorder operands if reordering would enable vectorization.
2769 if (isa<BinaryOperator>(VL0)) {
2770 ValueList Left, Right;
2771 reorderInputsAccordingToOpcode(VL, Left, Right, *DL, *SE);
2772 TE->setOperand(0, Left);
2773 TE->setOperand(1, Right);
2774 buildTree_rec(Left, Depth + 1, {TE, 0});
2775 buildTree_rec(Right, Depth + 1, {TE, 1});
2776 return;
2779 TE->setOperandsInOrder();
2780 for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
2781 ValueList Operands;
2782 // Prepare the operand vector.
2783 for (Value *V : VL)
2784 Operands.push_back(cast<Instruction>(V)->getOperand(i));
2786 buildTree_rec(Operands, Depth + 1, {TE, i});
2788 return;
2790 default:
2791 BS.cancelScheduling(VL, VL0);
2792 newTreeEntry(VL, None /*not vectorized*/, S, UserTreeIdx,
2793 ReuseShuffleIndicies);
2794 LLVM_DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
2795 return;
2799 unsigned BoUpSLP::canMapToVector(Type *T, const DataLayout &DL) const {
2800 unsigned N;
2801 Type *EltTy;
2802 auto *ST = dyn_cast<StructType>(T);
2803 if (ST) {
2804 N = ST->getNumElements();
2805 EltTy = *ST->element_begin();
2806 } else {
2807 N = cast<ArrayType>(T)->getNumElements();
2808 EltTy = cast<ArrayType>(T)->getElementType();
2810 if (!isValidElementType(EltTy))
2811 return 0;
2812 uint64_t VTSize = DL.getTypeStoreSizeInBits(VectorType::get(EltTy, N));
2813 if (VTSize < MinVecRegSize || VTSize > MaxVecRegSize || VTSize != DL.getTypeStoreSizeInBits(T))
2814 return 0;
2815 if (ST) {
2816 // Check that struct is homogeneous.
2817 for (const auto *Ty : ST->elements())
2818 if (Ty != EltTy)
2819 return 0;
2821 return N;
2824 bool BoUpSLP::canReuseExtract(ArrayRef<Value *> VL, Value *OpValue,
2825 SmallVectorImpl<unsigned> &CurrentOrder) const {
2826 Instruction *E0 = cast<Instruction>(OpValue);
2827 assert(E0->getOpcode() == Instruction::ExtractElement ||
2828 E0->getOpcode() == Instruction::ExtractValue);
2829 assert(E0->getOpcode() == getSameOpcode(VL).getOpcode() && "Invalid opcode");
2830 // Check if all of the extracts come from the same vector and from the
2831 // correct offset.
2832 Value *Vec = E0->getOperand(0);
2834 CurrentOrder.clear();
2836 // We have to extract from a vector/aggregate with the same number of elements.
2837 unsigned NElts;
2838 if (E0->getOpcode() == Instruction::ExtractValue) {
2839 const DataLayout &DL = E0->getModule()->getDataLayout();
2840 NElts = canMapToVector(Vec->getType(), DL);
2841 if (!NElts)
2842 return false;
2843 // Check if load can be rewritten as load of vector.
2844 LoadInst *LI = dyn_cast<LoadInst>(Vec);
2845 if (!LI || !LI->isSimple() || !LI->hasNUses(VL.size()))
2846 return false;
2847 } else {
2848 NElts = Vec->getType()->getVectorNumElements();
2851 if (NElts != VL.size())
2852 return false;
2854 // Check that all of the indices extract from the correct offset.
2855 bool ShouldKeepOrder = true;
2856 unsigned E = VL.size();
2857 // Assign to all items the initial value E + 1 so we can check if the extract
2858 // instruction index was used already.
2859 // Also, later we can check that all the indices are used and we have a
2860 // consecutive access in the extract instructions, by checking that no
2861 // element of CurrentOrder still has value E + 1.
2862 CurrentOrder.assign(E, E + 1);
2863 unsigned I = 0;
2864 for (; I < E; ++I) {
2865 auto *Inst = cast<Instruction>(VL[I]);
2866 if (Inst->getOperand(0) != Vec)
2867 break;
2868 Optional<unsigned> Idx = getExtractIndex(Inst);
2869 if (!Idx)
2870 break;
2871 const unsigned ExtIdx = *Idx;
2872 if (ExtIdx != I) {
2873 if (ExtIdx >= E || CurrentOrder[ExtIdx] != E + 1)
2874 break;
2875 ShouldKeepOrder = false;
2876 CurrentOrder[ExtIdx] = I;
2877 } else {
2878 if (CurrentOrder[I] != E + 1)
2879 break;
2880 CurrentOrder[I] = I;
2883 if (I < E) {
2884 CurrentOrder.clear();
2885 return false;
2888 return ShouldKeepOrder;
2891 bool BoUpSLP::areAllUsersVectorized(Instruction *I) const {
2892 return I->hasOneUse() ||
2893 std::all_of(I->user_begin(), I->user_end(), [this](User *U) {
2894 return ScalarToTreeEntry.count(U) > 0;
2898 int BoUpSLP::getEntryCost(TreeEntry *E) {
2899 ArrayRef<Value*> VL = E->Scalars;
2901 Type *ScalarTy = VL[0]->getType();
2902 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
2903 ScalarTy = SI->getValueOperand()->getType();
2904 else if (CmpInst *CI = dyn_cast<CmpInst>(VL[0]))
2905 ScalarTy = CI->getOperand(0)->getType();
2906 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
2908 // If we have computed a smaller type for the expression, update VecTy so
2909 // that the costs will be accurate.
2910 if (MinBWs.count(VL[0]))
2911 VecTy = VectorType::get(
2912 IntegerType::get(F->getContext(), MinBWs[VL[0]].first), VL.size());
2914 unsigned ReuseShuffleNumbers = E->ReuseShuffleIndices.size();
2915 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
2916 int ReuseShuffleCost = 0;
2917 if (NeedToShuffleReuses) {
2918 ReuseShuffleCost =
2919 TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2921 if (E->NeedToGather) {
2922 if (allConstant(VL))
2923 return 0;
2924 if (isSplat(VL)) {
2925 return ReuseShuffleCost +
2926 TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
2928 if (E->getOpcode() == Instruction::ExtractElement &&
2929 allSameType(VL) && allSameBlock(VL)) {
2930 Optional<TargetTransformInfo::ShuffleKind> ShuffleKind = isShuffle(VL);
2931 if (ShuffleKind.hasValue()) {
2932 int Cost = TTI->getShuffleCost(ShuffleKind.getValue(), VecTy);
2933 for (auto *V : VL) {
2934 // If all users of instruction are going to be vectorized and this
2935 // instruction itself is not going to be vectorized, consider this
2936 // instruction as dead and remove its cost from the final cost of the
2937 // vectorized tree.
2938 if (areAllUsersVectorized(cast<Instruction>(V)) &&
2939 !ScalarToTreeEntry.count(V)) {
2940 auto *IO = cast<ConstantInt>(
2941 cast<ExtractElementInst>(V)->getIndexOperand());
2942 Cost -= TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy,
2943 IO->getZExtValue());
2946 return ReuseShuffleCost + Cost;
2949 return ReuseShuffleCost + getGatherCost(VL);
2951 assert(E->getOpcode() && allSameType(VL) && allSameBlock(VL) && "Invalid VL");
2952 Instruction *VL0 = E->getMainOp();
2953 unsigned ShuffleOrOp =
2954 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
2955 switch (ShuffleOrOp) {
2956 case Instruction::PHI:
2957 return 0;
2959 case Instruction::ExtractValue:
2960 case Instruction::ExtractElement:
2961 if (NeedToShuffleReuses) {
2962 unsigned Idx = 0;
2963 for (unsigned I : E->ReuseShuffleIndices) {
2964 if (ShuffleOrOp == Instruction::ExtractElement) {
2965 auto *IO = cast<ConstantInt>(
2966 cast<ExtractElementInst>(VL[I])->getIndexOperand());
2967 Idx = IO->getZExtValue();
2968 ReuseShuffleCost -= TTI->getVectorInstrCost(
2969 Instruction::ExtractElement, VecTy, Idx);
2970 } else {
2971 ReuseShuffleCost -= TTI->getVectorInstrCost(
2972 Instruction::ExtractElement, VecTy, Idx);
2973 ++Idx;
2976 Idx = ReuseShuffleNumbers;
2977 for (Value *V : VL) {
2978 if (ShuffleOrOp == Instruction::ExtractElement) {
2979 auto *IO = cast<ConstantInt>(
2980 cast<ExtractElementInst>(V)->getIndexOperand());
2981 Idx = IO->getZExtValue();
2982 } else {
2983 --Idx;
2985 ReuseShuffleCost +=
2986 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, Idx);
2989 if (!E->NeedToGather) {
2990 int DeadCost = ReuseShuffleCost;
2991 if (!E->ReorderIndices.empty()) {
2992 // TODO: Merge this shuffle with the ReuseShuffleCost.
2993 DeadCost += TTI->getShuffleCost(
2994 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
2996 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
2997 Instruction *E = cast<Instruction>(VL[i]);
2998 // If all users are going to be vectorized, instruction can be
2999 // considered as dead.
3000 // The same, if have only one user, it will be vectorized for sure.
3001 if (areAllUsersVectorized(E)) {
3002 // Take credit for instruction that will become dead.
3003 if (E->hasOneUse()) {
3004 Instruction *Ext = E->user_back();
3005 if ((isa<SExtInst>(Ext) || isa<ZExtInst>(Ext)) &&
3006 all_of(Ext->users(),
3007 [](User *U) { return isa<GetElementPtrInst>(U); })) {
3008 // Use getExtractWithExtendCost() to calculate the cost of
3009 // extractelement/ext pair.
3010 DeadCost -= TTI->getExtractWithExtendCost(
3011 Ext->getOpcode(), Ext->getType(), VecTy, i);
3012 // Add back the cost of s|zext which is subtracted separately.
3013 DeadCost += TTI->getCastInstrCost(
3014 Ext->getOpcode(), Ext->getType(), E->getType(), Ext);
3015 continue;
3018 DeadCost -=
3019 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
3022 return DeadCost;
3024 return ReuseShuffleCost + getGatherCost(VL);
3026 case Instruction::ZExt:
3027 case Instruction::SExt:
3028 case Instruction::FPToUI:
3029 case Instruction::FPToSI:
3030 case Instruction::FPExt:
3031 case Instruction::PtrToInt:
3032 case Instruction::IntToPtr:
3033 case Instruction::SIToFP:
3034 case Instruction::UIToFP:
3035 case Instruction::Trunc:
3036 case Instruction::FPTrunc:
3037 case Instruction::BitCast: {
3038 Type *SrcTy = VL0->getOperand(0)->getType();
3039 int ScalarEltCost =
3040 TTI->getCastInstrCost(E->getOpcode(), ScalarTy, SrcTy, VL0);
3041 if (NeedToShuffleReuses) {
3042 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3045 // Calculate the cost of this instruction.
3046 int ScalarCost = VL.size() * ScalarEltCost;
3048 VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
3049 int VecCost = 0;
3050 // Check if the values are candidates to demote.
3051 if (!MinBWs.count(VL0) || VecTy != SrcVecTy) {
3052 VecCost = ReuseShuffleCost +
3053 TTI->getCastInstrCost(E->getOpcode(), VecTy, SrcVecTy, VL0);
3055 return VecCost - ScalarCost;
3057 case Instruction::FCmp:
3058 case Instruction::ICmp:
3059 case Instruction::Select: {
3060 // Calculate the cost of this instruction.
3061 int ScalarEltCost = TTI->getCmpSelInstrCost(E->getOpcode(), ScalarTy,
3062 Builder.getInt1Ty(), VL0);
3063 if (NeedToShuffleReuses) {
3064 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3066 VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
3067 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3068 int VecCost = TTI->getCmpSelInstrCost(E->getOpcode(), VecTy, MaskTy, VL0);
3069 return ReuseShuffleCost + VecCost - ScalarCost;
3071 case Instruction::FNeg:
3072 case Instruction::Add:
3073 case Instruction::FAdd:
3074 case Instruction::Sub:
3075 case Instruction::FSub:
3076 case Instruction::Mul:
3077 case Instruction::FMul:
3078 case Instruction::UDiv:
3079 case Instruction::SDiv:
3080 case Instruction::FDiv:
3081 case Instruction::URem:
3082 case Instruction::SRem:
3083 case Instruction::FRem:
3084 case Instruction::Shl:
3085 case Instruction::LShr:
3086 case Instruction::AShr:
3087 case Instruction::And:
3088 case Instruction::Or:
3089 case Instruction::Xor: {
3090 // Certain instructions can be cheaper to vectorize if they have a
3091 // constant second vector operand.
3092 TargetTransformInfo::OperandValueKind Op1VK =
3093 TargetTransformInfo::OK_AnyValue;
3094 TargetTransformInfo::OperandValueKind Op2VK =
3095 TargetTransformInfo::OK_UniformConstantValue;
3096 TargetTransformInfo::OperandValueProperties Op1VP =
3097 TargetTransformInfo::OP_None;
3098 TargetTransformInfo::OperandValueProperties Op2VP =
3099 TargetTransformInfo::OP_PowerOf2;
3101 // If all operands are exactly the same ConstantInt then set the
3102 // operand kind to OK_UniformConstantValue.
3103 // If instead not all operands are constants, then set the operand kind
3104 // to OK_AnyValue. If all operands are constants but not the same,
3105 // then set the operand kind to OK_NonUniformConstantValue.
3106 ConstantInt *CInt0 = nullptr;
3107 for (unsigned i = 0, e = VL.size(); i < e; ++i) {
3108 const Instruction *I = cast<Instruction>(VL[i]);
3109 unsigned OpIdx = isa<BinaryOperator>(I) ? 1 : 0;
3110 ConstantInt *CInt = dyn_cast<ConstantInt>(I->getOperand(OpIdx));
3111 if (!CInt) {
3112 Op2VK = TargetTransformInfo::OK_AnyValue;
3113 Op2VP = TargetTransformInfo::OP_None;
3114 break;
3116 if (Op2VP == TargetTransformInfo::OP_PowerOf2 &&
3117 !CInt->getValue().isPowerOf2())
3118 Op2VP = TargetTransformInfo::OP_None;
3119 if (i == 0) {
3120 CInt0 = CInt;
3121 continue;
3123 if (CInt0 != CInt)
3124 Op2VK = TargetTransformInfo::OK_NonUniformConstantValue;
3127 SmallVector<const Value *, 4> Operands(VL0->operand_values());
3128 int ScalarEltCost = TTI->getArithmeticInstrCost(
3129 E->getOpcode(), ScalarTy, Op1VK, Op2VK, Op1VP, Op2VP, Operands);
3130 if (NeedToShuffleReuses) {
3131 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3133 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3134 int VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy, Op1VK,
3135 Op2VK, Op1VP, Op2VP, Operands);
3136 return ReuseShuffleCost + VecCost - ScalarCost;
3138 case Instruction::GetElementPtr: {
3139 TargetTransformInfo::OperandValueKind Op1VK =
3140 TargetTransformInfo::OK_AnyValue;
3141 TargetTransformInfo::OperandValueKind Op2VK =
3142 TargetTransformInfo::OK_UniformConstantValue;
3144 int ScalarEltCost =
3145 TTI->getArithmeticInstrCost(Instruction::Add, ScalarTy, Op1VK, Op2VK);
3146 if (NeedToShuffleReuses) {
3147 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3149 int ScalarCost = VecTy->getNumElements() * ScalarEltCost;
3150 int VecCost =
3151 TTI->getArithmeticInstrCost(Instruction::Add, VecTy, Op1VK, Op2VK);
3152 return ReuseShuffleCost + VecCost - ScalarCost;
3154 case Instruction::Load: {
3155 // Cost of wide load - cost of scalar loads.
3156 unsigned alignment = cast<LoadInst>(VL0)->getAlignment();
3157 int ScalarEltCost =
3158 TTI->getMemoryOpCost(Instruction::Load, ScalarTy, alignment, 0, VL0);
3159 if (NeedToShuffleReuses) {
3160 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3162 int ScalarLdCost = VecTy->getNumElements() * ScalarEltCost;
3163 int VecLdCost =
3164 TTI->getMemoryOpCost(Instruction::Load, VecTy, alignment, 0, VL0);
3165 if (!E->ReorderIndices.empty()) {
3166 // TODO: Merge this shuffle with the ReuseShuffleCost.
3167 VecLdCost += TTI->getShuffleCost(
3168 TargetTransformInfo::SK_PermuteSingleSrc, VecTy);
3170 return ReuseShuffleCost + VecLdCost - ScalarLdCost;
3172 case Instruction::Store: {
3173 // We know that we can merge the stores. Calculate the cost.
3174 unsigned alignment = cast<StoreInst>(VL0)->getAlignment();
3175 int ScalarEltCost =
3176 TTI->getMemoryOpCost(Instruction::Store, ScalarTy, alignment, 0, VL0);
3177 if (NeedToShuffleReuses) {
3178 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3180 int ScalarStCost = VecTy->getNumElements() * ScalarEltCost;
3181 int VecStCost =
3182 TTI->getMemoryOpCost(Instruction::Store, VecTy, alignment, 0, VL0);
3183 return ReuseShuffleCost + VecStCost - ScalarStCost;
3185 case Instruction::Call: {
3186 CallInst *CI = cast<CallInst>(VL0);
3187 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
3189 // Calculate the cost of the scalar and vector calls.
3190 SmallVector<Type *, 4> ScalarTys;
3191 for (unsigned op = 0, opc = CI->getNumArgOperands(); op != opc; ++op)
3192 ScalarTys.push_back(CI->getArgOperand(op)->getType());
3194 FastMathFlags FMF;
3195 if (auto *FPMO = dyn_cast<FPMathOperator>(CI))
3196 FMF = FPMO->getFastMathFlags();
3198 int ScalarEltCost =
3199 TTI->getIntrinsicInstrCost(ID, ScalarTy, ScalarTys, FMF);
3200 if (NeedToShuffleReuses) {
3201 ReuseShuffleCost -= (ReuseShuffleNumbers - VL.size()) * ScalarEltCost;
3203 int ScalarCallCost = VecTy->getNumElements() * ScalarEltCost;
3205 SmallVector<Value *, 4> Args(CI->arg_operands());
3206 int VecCallCost = TTI->getIntrinsicInstrCost(ID, CI->getType(), Args, FMF,
3207 VecTy->getNumElements());
3209 LLVM_DEBUG(dbgs() << "SLP: Call cost " << VecCallCost - ScalarCallCost
3210 << " (" << VecCallCost << "-" << ScalarCallCost << ")"
3211 << " for " << *CI << "\n");
3213 return ReuseShuffleCost + VecCallCost - ScalarCallCost;
3215 case Instruction::ShuffleVector: {
3216 assert(E->isAltShuffle() &&
3217 ((Instruction::isBinaryOp(E->getOpcode()) &&
3218 Instruction::isBinaryOp(E->getAltOpcode())) ||
3219 (Instruction::isCast(E->getOpcode()) &&
3220 Instruction::isCast(E->getAltOpcode()))) &&
3221 "Invalid Shuffle Vector Operand");
3222 int ScalarCost = 0;
3223 if (NeedToShuffleReuses) {
3224 for (unsigned Idx : E->ReuseShuffleIndices) {
3225 Instruction *I = cast<Instruction>(VL[Idx]);
3226 ReuseShuffleCost -= TTI->getInstructionCost(
3227 I, TargetTransformInfo::TCK_RecipThroughput);
3229 for (Value *V : VL) {
3230 Instruction *I = cast<Instruction>(V);
3231 ReuseShuffleCost += TTI->getInstructionCost(
3232 I, TargetTransformInfo::TCK_RecipThroughput);
3235 for (Value *V : VL) {
3236 Instruction *I = cast<Instruction>(V);
3237 assert(E->isOpcodeOrAlt(I) && "Unexpected main/alternate opcode");
3238 ScalarCost += TTI->getInstructionCost(
3239 I, TargetTransformInfo::TCK_RecipThroughput);
3241 // VecCost is equal to sum of the cost of creating 2 vectors
3242 // and the cost of creating shuffle.
3243 int VecCost = 0;
3244 if (Instruction::isBinaryOp(E->getOpcode())) {
3245 VecCost = TTI->getArithmeticInstrCost(E->getOpcode(), VecTy);
3246 VecCost += TTI->getArithmeticInstrCost(E->getAltOpcode(), VecTy);
3247 } else {
3248 Type *Src0SclTy = E->getMainOp()->getOperand(0)->getType();
3249 Type *Src1SclTy = E->getAltOp()->getOperand(0)->getType();
3250 VectorType *Src0Ty = VectorType::get(Src0SclTy, VL.size());
3251 VectorType *Src1Ty = VectorType::get(Src1SclTy, VL.size());
3252 VecCost = TTI->getCastInstrCost(E->getOpcode(), VecTy, Src0Ty);
3253 VecCost += TTI->getCastInstrCost(E->getAltOpcode(), VecTy, Src1Ty);
3255 VecCost += TTI->getShuffleCost(TargetTransformInfo::SK_Select, VecTy, 0);
3256 return ReuseShuffleCost + VecCost - ScalarCost;
3258 default:
3259 llvm_unreachable("Unknown instruction");
3263 bool BoUpSLP::isFullyVectorizableTinyTree() const {
3264 LLVM_DEBUG(dbgs() << "SLP: Check whether the tree with height "
3265 << VectorizableTree.size() << " is fully vectorizable .\n");
3267 // We only handle trees of heights 1 and 2.
3268 if (VectorizableTree.size() == 1 && !VectorizableTree[0]->NeedToGather)
3269 return true;
3271 if (VectorizableTree.size() != 2)
3272 return false;
3274 // Handle splat and all-constants stores.
3275 if (!VectorizableTree[0]->NeedToGather &&
3276 (allConstant(VectorizableTree[1]->Scalars) ||
3277 isSplat(VectorizableTree[1]->Scalars)))
3278 return true;
3280 // Gathering cost would be too much for tiny trees.
3281 if (VectorizableTree[0]->NeedToGather || VectorizableTree[1]->NeedToGather)
3282 return false;
3284 return true;
3287 bool BoUpSLP::isTreeTinyAndNotFullyVectorizable() const {
3288 // We can vectorize the tree if its size is greater than or equal to the
3289 // minimum size specified by the MinTreeSize command line option.
3290 if (VectorizableTree.size() >= MinTreeSize)
3291 return false;
3293 // If we have a tiny tree (a tree whose size is less than MinTreeSize), we
3294 // can vectorize it if we can prove it fully vectorizable.
3295 if (isFullyVectorizableTinyTree())
3296 return false;
3298 assert(VectorizableTree.empty()
3299 ? ExternalUses.empty()
3300 : true && "We shouldn't have any external users");
3302 // Otherwise, we can't vectorize the tree. It is both tiny and not fully
3303 // vectorizable.
3304 return true;
3307 int BoUpSLP::getSpillCost() const {
3308 // Walk from the bottom of the tree to the top, tracking which values are
3309 // live. When we see a call instruction that is not part of our tree,
3310 // query TTI to see if there is a cost to keeping values live over it
3311 // (for example, if spills and fills are required).
3312 unsigned BundleWidth = VectorizableTree.front()->Scalars.size();
3313 int Cost = 0;
3315 SmallPtrSet<Instruction*, 4> LiveValues;
3316 Instruction *PrevInst = nullptr;
3318 for (const auto &TEPtr : VectorizableTree) {
3319 Instruction *Inst = dyn_cast<Instruction>(TEPtr->Scalars[0]);
3320 if (!Inst)
3321 continue;
3323 if (!PrevInst) {
3324 PrevInst = Inst;
3325 continue;
3328 // Update LiveValues.
3329 LiveValues.erase(PrevInst);
3330 for (auto &J : PrevInst->operands()) {
3331 if (isa<Instruction>(&*J) && getTreeEntry(&*J))
3332 LiveValues.insert(cast<Instruction>(&*J));
3335 LLVM_DEBUG({
3336 dbgs() << "SLP: #LV: " << LiveValues.size();
3337 for (auto *X : LiveValues)
3338 dbgs() << " " << X->getName();
3339 dbgs() << ", Looking at ";
3340 Inst->dump();
3343 // Now find the sequence of instructions between PrevInst and Inst.
3344 unsigned NumCalls = 0;
3345 BasicBlock::reverse_iterator InstIt = ++Inst->getIterator().getReverse(),
3346 PrevInstIt =
3347 PrevInst->getIterator().getReverse();
3348 while (InstIt != PrevInstIt) {
3349 if (PrevInstIt == PrevInst->getParent()->rend()) {
3350 PrevInstIt = Inst->getParent()->rbegin();
3351 continue;
3354 // Debug informations don't impact spill cost.
3355 if ((isa<CallInst>(&*PrevInstIt) &&
3356 !isa<DbgInfoIntrinsic>(&*PrevInstIt)) &&
3357 &*PrevInstIt != PrevInst)
3358 NumCalls++;
3360 ++PrevInstIt;
3363 if (NumCalls) {
3364 SmallVector<Type*, 4> V;
3365 for (auto *II : LiveValues)
3366 V.push_back(VectorType::get(II->getType(), BundleWidth));
3367 Cost += NumCalls * TTI->getCostOfKeepingLiveOverCall(V);
3370 PrevInst = Inst;
3373 return Cost;
3376 int BoUpSLP::getTreeCost() {
3377 int Cost = 0;
3378 LLVM_DEBUG(dbgs() << "SLP: Calculating cost for tree of size "
3379 << VectorizableTree.size() << ".\n");
3381 unsigned BundleWidth = VectorizableTree[0]->Scalars.size();
3383 for (unsigned I = 0, E = VectorizableTree.size(); I < E; ++I) {
3384 TreeEntry &TE = *VectorizableTree[I].get();
3386 // We create duplicate tree entries for gather sequences that have multiple
3387 // uses. However, we should not compute the cost of duplicate sequences.
3388 // For example, if we have a build vector (i.e., insertelement sequence)
3389 // that is used by more than one vector instruction, we only need to
3390 // compute the cost of the insertelement instructions once. The redundant
3391 // instructions will be eliminated by CSE.
3393 // We should consider not creating duplicate tree entries for gather
3394 // sequences, and instead add additional edges to the tree representing
3395 // their uses. Since such an approach results in fewer total entries,
3396 // existing heuristics based on tree size may yield different results.
3398 if (TE.NeedToGather &&
3399 std::any_of(
3400 std::next(VectorizableTree.begin(), I + 1), VectorizableTree.end(),
3401 [TE](const std::unique_ptr<TreeEntry> &EntryPtr) {
3402 return EntryPtr->NeedToGather && EntryPtr->isSame(TE.Scalars);
3404 continue;
3406 int C = getEntryCost(&TE);
3407 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << C
3408 << " for bundle that starts with " << *TE.Scalars[0]
3409 << ".\n");
3410 Cost += C;
3413 SmallPtrSet<Value *, 16> ExtractCostCalculated;
3414 int ExtractCost = 0;
3415 for (ExternalUser &EU : ExternalUses) {
3416 // We only add extract cost once for the same scalar.
3417 if (!ExtractCostCalculated.insert(EU.Scalar).second)
3418 continue;
3420 // Uses by ephemeral values are free (because the ephemeral value will be
3421 // removed prior to code generation, and so the extraction will be
3422 // removed as well).
3423 if (EphValues.count(EU.User))
3424 continue;
3426 // If we plan to rewrite the tree in a smaller type, we will need to sign
3427 // extend the extracted value back to the original type. Here, we account
3428 // for the extract and the added cost of the sign extend if needed.
3429 auto *VecTy = VectorType::get(EU.Scalar->getType(), BundleWidth);
3430 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
3431 if (MinBWs.count(ScalarRoot)) {
3432 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
3433 auto Extend =
3434 MinBWs[ScalarRoot].second ? Instruction::SExt : Instruction::ZExt;
3435 VecTy = VectorType::get(MinTy, BundleWidth);
3436 ExtractCost += TTI->getExtractWithExtendCost(Extend, EU.Scalar->getType(),
3437 VecTy, EU.Lane);
3438 } else {
3439 ExtractCost +=
3440 TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, EU.Lane);
3444 int SpillCost = getSpillCost();
3445 Cost += SpillCost + ExtractCost;
3447 std::string Str;
3449 raw_string_ostream OS(Str);
3450 OS << "SLP: Spill Cost = " << SpillCost << ".\n"
3451 << "SLP: Extract Cost = " << ExtractCost << ".\n"
3452 << "SLP: Total Cost = " << Cost << ".\n";
3454 LLVM_DEBUG(dbgs() << Str);
3456 if (ViewSLPTree)
3457 ViewGraph(this, "SLP" + F->getName(), false, Str);
3459 return Cost;
3462 int BoUpSLP::getGatherCost(Type *Ty,
3463 const DenseSet<unsigned> &ShuffledIndices) const {
3464 int Cost = 0;
3465 for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
3466 if (!ShuffledIndices.count(i))
3467 Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
3468 if (!ShuffledIndices.empty())
3469 Cost += TTI->getShuffleCost(TargetTransformInfo::SK_PermuteSingleSrc, Ty);
3470 return Cost;
3473 int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) const {
3474 // Find the type of the operands in VL.
3475 Type *ScalarTy = VL[0]->getType();
3476 if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
3477 ScalarTy = SI->getValueOperand()->getType();
3478 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3479 // Find the cost of inserting/extracting values from the vector.
3480 // Check if the same elements are inserted several times and count them as
3481 // shuffle candidates.
3482 DenseSet<unsigned> ShuffledElements;
3483 DenseSet<Value *> UniqueElements;
3484 // Iterate in reverse order to consider insert elements with the high cost.
3485 for (unsigned I = VL.size(); I > 0; --I) {
3486 unsigned Idx = I - 1;
3487 if (!UniqueElements.insert(VL[Idx]).second)
3488 ShuffledElements.insert(Idx);
3490 return getGatherCost(VecTy, ShuffledElements);
3493 // Perform operand reordering on the instructions in VL and return the reordered
3494 // operands in Left and Right.
3495 void BoUpSLP::reorderInputsAccordingToOpcode(
3496 ArrayRef<Value *> VL, SmallVectorImpl<Value *> &Left,
3497 SmallVectorImpl<Value *> &Right, const DataLayout &DL,
3498 ScalarEvolution &SE) {
3499 if (VL.empty())
3500 return;
3501 VLOperands Ops(VL, DL, SE);
3502 // Reorder the operands in place.
3503 Ops.reorder();
3504 Left = Ops.getVL(0);
3505 Right = Ops.getVL(1);
3508 void BoUpSLP::setInsertPointAfterBundle(TreeEntry *E) {
3509 // Get the basic block this bundle is in. All instructions in the bundle
3510 // should be in this block.
3511 auto *Front = E->getMainOp();
3512 auto *BB = Front->getParent();
3513 assert(llvm::all_of(make_range(E->Scalars.begin(), E->Scalars.end()),
3514 [=](Value *V) -> bool {
3515 auto *I = cast<Instruction>(V);
3516 return !E->isOpcodeOrAlt(I) || I->getParent() == BB;
3517 }));
3519 // The last instruction in the bundle in program order.
3520 Instruction *LastInst = nullptr;
3522 // Find the last instruction. The common case should be that BB has been
3523 // scheduled, and the last instruction is VL.back(). So we start with
3524 // VL.back() and iterate over schedule data until we reach the end of the
3525 // bundle. The end of the bundle is marked by null ScheduleData.
3526 if (BlocksSchedules.count(BB)) {
3527 auto *Bundle =
3528 BlocksSchedules[BB]->getScheduleData(E->isOneOf(E->Scalars.back()));
3529 if (Bundle && Bundle->isPartOfBundle())
3530 for (; Bundle; Bundle = Bundle->NextInBundle)
3531 if (Bundle->OpValue == Bundle->Inst)
3532 LastInst = Bundle->Inst;
3535 // LastInst can still be null at this point if there's either not an entry
3536 // for BB in BlocksSchedules or there's no ScheduleData available for
3537 // VL.back(). This can be the case if buildTree_rec aborts for various
3538 // reasons (e.g., the maximum recursion depth is reached, the maximum region
3539 // size is reached, etc.). ScheduleData is initialized in the scheduling
3540 // "dry-run".
3542 // If this happens, we can still find the last instruction by brute force. We
3543 // iterate forwards from Front (inclusive) until we either see all
3544 // instructions in the bundle or reach the end of the block. If Front is the
3545 // last instruction in program order, LastInst will be set to Front, and we
3546 // will visit all the remaining instructions in the block.
3548 // One of the reasons we exit early from buildTree_rec is to place an upper
3549 // bound on compile-time. Thus, taking an additional compile-time hit here is
3550 // not ideal. However, this should be exceedingly rare since it requires that
3551 // we both exit early from buildTree_rec and that the bundle be out-of-order
3552 // (causing us to iterate all the way to the end of the block).
3553 if (!LastInst) {
3554 SmallPtrSet<Value *, 16> Bundle(E->Scalars.begin(), E->Scalars.end());
3555 for (auto &I : make_range(BasicBlock::iterator(Front), BB->end())) {
3556 if (Bundle.erase(&I) && E->isOpcodeOrAlt(&I))
3557 LastInst = &I;
3558 if (Bundle.empty())
3559 break;
3562 assert(LastInst && "Failed to find last instruction in bundle");
3564 // Set the insertion point after the last instruction in the bundle. Set the
3565 // debug location to Front.
3566 Builder.SetInsertPoint(BB, ++LastInst->getIterator());
3567 Builder.SetCurrentDebugLocation(Front->getDebugLoc());
3570 Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
3571 Value *Vec = UndefValue::get(Ty);
3572 // Generate the 'InsertElement' instruction.
3573 for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
3574 Vec = Builder.CreateInsertElement(Vec, VL[i], Builder.getInt32(i));
3575 if (auto *Insrt = dyn_cast<InsertElementInst>(Vec)) {
3576 GatherSeq.insert(Insrt);
3577 CSEBlocks.insert(Insrt->getParent());
3579 // Add to our 'need-to-extract' list.
3580 if (TreeEntry *E = getTreeEntry(VL[i])) {
3581 // Find which lane we need to extract.
3582 int FoundLane = -1;
3583 for (unsigned Lane = 0, LE = E->Scalars.size(); Lane != LE; ++Lane) {
3584 // Is this the lane of the scalar that we are looking for ?
3585 if (E->Scalars[Lane] == VL[i]) {
3586 FoundLane = Lane;
3587 break;
3590 assert(FoundLane >= 0 && "Could not find the correct lane");
3591 if (!E->ReuseShuffleIndices.empty()) {
3592 FoundLane =
3593 std::distance(E->ReuseShuffleIndices.begin(),
3594 llvm::find(E->ReuseShuffleIndices, FoundLane));
3596 ExternalUses.push_back(ExternalUser(VL[i], Insrt, FoundLane));
3601 return Vec;
3604 Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
3605 InstructionsState S = getSameOpcode(VL);
3606 if (S.getOpcode()) {
3607 if (TreeEntry *E = getTreeEntry(S.OpValue)) {
3608 if (E->isSame(VL)) {
3609 Value *V = vectorizeTree(E);
3610 if (VL.size() == E->Scalars.size() && !E->ReuseShuffleIndices.empty()) {
3611 // We need to get the vectorized value but without shuffle.
3612 if (auto *SV = dyn_cast<ShuffleVectorInst>(V)) {
3613 V = SV->getOperand(0);
3614 } else {
3615 // Reshuffle to get only unique values.
3616 SmallVector<unsigned, 4> UniqueIdxs;
3617 SmallSet<unsigned, 4> UsedIdxs;
3618 for(unsigned Idx : E->ReuseShuffleIndices)
3619 if (UsedIdxs.insert(Idx).second)
3620 UniqueIdxs.emplace_back(Idx);
3621 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3622 UniqueIdxs);
3625 return V;
3630 Type *ScalarTy = S.OpValue->getType();
3631 if (StoreInst *SI = dyn_cast<StoreInst>(S.OpValue))
3632 ScalarTy = SI->getValueOperand()->getType();
3634 // Check that every instruction appears once in this bundle.
3635 SmallVector<unsigned, 4> ReuseShuffleIndicies;
3636 SmallVector<Value *, 4> UniqueValues;
3637 if (VL.size() > 2) {
3638 DenseMap<Value *, unsigned> UniquePositions;
3639 for (Value *V : VL) {
3640 auto Res = UniquePositions.try_emplace(V, UniqueValues.size());
3641 ReuseShuffleIndicies.emplace_back(Res.first->second);
3642 if (Res.second || isa<Constant>(V))
3643 UniqueValues.emplace_back(V);
3645 // Do not shuffle single element or if number of unique values is not power
3646 // of 2.
3647 if (UniqueValues.size() == VL.size() || UniqueValues.size() <= 1 ||
3648 !llvm::isPowerOf2_32(UniqueValues.size()))
3649 ReuseShuffleIndicies.clear();
3650 else
3651 VL = UniqueValues;
3653 VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
3655 Value *V = Gather(VL, VecTy);
3656 if (!ReuseShuffleIndicies.empty()) {
3657 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3658 ReuseShuffleIndicies, "shuffle");
3659 if (auto *I = dyn_cast<Instruction>(V)) {
3660 GatherSeq.insert(I);
3661 CSEBlocks.insert(I->getParent());
3664 return V;
3667 static void inversePermutation(ArrayRef<unsigned> Indices,
3668 SmallVectorImpl<unsigned> &Mask) {
3669 Mask.clear();
3670 const unsigned E = Indices.size();
3671 Mask.resize(E);
3672 for (unsigned I = 0; I < E; ++I)
3673 Mask[Indices[I]] = I;
3676 Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
3677 IRBuilder<>::InsertPointGuard Guard(Builder);
3679 if (E->VectorizedValue) {
3680 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
3681 return E->VectorizedValue;
3684 Instruction *VL0 = E->getMainOp();
3685 Type *ScalarTy = VL0->getType();
3686 if (StoreInst *SI = dyn_cast<StoreInst>(VL0))
3687 ScalarTy = SI->getValueOperand()->getType();
3688 VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
3690 bool NeedToShuffleReuses = !E->ReuseShuffleIndices.empty();
3692 if (E->NeedToGather) {
3693 setInsertPointAfterBundle(E);
3694 auto *V = Gather(E->Scalars, VecTy);
3695 if (NeedToShuffleReuses) {
3696 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3697 E->ReuseShuffleIndices, "shuffle");
3698 if (auto *I = dyn_cast<Instruction>(V)) {
3699 GatherSeq.insert(I);
3700 CSEBlocks.insert(I->getParent());
3703 E->VectorizedValue = V;
3704 return V;
3707 unsigned ShuffleOrOp =
3708 E->isAltShuffle() ? (unsigned)Instruction::ShuffleVector : E->getOpcode();
3709 switch (ShuffleOrOp) {
3710 case Instruction::PHI: {
3711 auto *PH = cast<PHINode>(VL0);
3712 Builder.SetInsertPoint(PH->getParent()->getFirstNonPHI());
3713 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3714 PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
3715 Value *V = NewPhi;
3716 if (NeedToShuffleReuses) {
3717 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3718 E->ReuseShuffleIndices, "shuffle");
3720 E->VectorizedValue = V;
3722 // PHINodes may have multiple entries from the same block. We want to
3723 // visit every block once.
3724 SmallPtrSet<BasicBlock*, 4> VisitedBBs;
3726 for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
3727 ValueList Operands;
3728 BasicBlock *IBB = PH->getIncomingBlock(i);
3730 if (!VisitedBBs.insert(IBB).second) {
3731 NewPhi->addIncoming(NewPhi->getIncomingValueForBlock(IBB), IBB);
3732 continue;
3735 Builder.SetInsertPoint(IBB->getTerminator());
3736 Builder.SetCurrentDebugLocation(PH->getDebugLoc());
3737 Value *Vec = vectorizeTree(E->getOperand(i));
3738 NewPhi->addIncoming(Vec, IBB);
3741 assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
3742 "Invalid number of incoming values");
3743 return V;
3746 case Instruction::ExtractElement: {
3747 if (!E->NeedToGather) {
3748 Value *V = E->getSingleOperand(0);
3749 if (!E->ReorderIndices.empty()) {
3750 OrdersType Mask;
3751 inversePermutation(E->ReorderIndices, Mask);
3752 Builder.SetInsertPoint(VL0);
3753 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy), Mask,
3754 "reorder_shuffle");
3756 if (NeedToShuffleReuses) {
3757 // TODO: Merge this shuffle with the ReorderShuffleMask.
3758 if (E->ReorderIndices.empty())
3759 Builder.SetInsertPoint(VL0);
3760 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3761 E->ReuseShuffleIndices, "shuffle");
3763 E->VectorizedValue = V;
3764 return V;
3766 setInsertPointAfterBundle(E);
3767 auto *V = Gather(E->Scalars, VecTy);
3768 if (NeedToShuffleReuses) {
3769 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3770 E->ReuseShuffleIndices, "shuffle");
3771 if (auto *I = dyn_cast<Instruction>(V)) {
3772 GatherSeq.insert(I);
3773 CSEBlocks.insert(I->getParent());
3776 E->VectorizedValue = V;
3777 return V;
3779 case Instruction::ExtractValue: {
3780 if (!E->NeedToGather) {
3781 LoadInst *LI = cast<LoadInst>(E->getSingleOperand(0));
3782 Builder.SetInsertPoint(LI);
3783 PointerType *PtrTy = PointerType::get(VecTy, LI->getPointerAddressSpace());
3784 Value *Ptr = Builder.CreateBitCast(LI->getOperand(0), PtrTy);
3785 LoadInst *V = Builder.CreateAlignedLoad(VecTy, Ptr, LI->getAlignment());
3786 Value *NewV = propagateMetadata(V, E->Scalars);
3787 if (!E->ReorderIndices.empty()) {
3788 OrdersType Mask;
3789 inversePermutation(E->ReorderIndices, Mask);
3790 NewV = Builder.CreateShuffleVector(NewV, UndefValue::get(VecTy), Mask,
3791 "reorder_shuffle");
3793 if (NeedToShuffleReuses) {
3794 // TODO: Merge this shuffle with the ReorderShuffleMask.
3795 NewV = Builder.CreateShuffleVector(
3796 NewV, UndefValue::get(VecTy), E->ReuseShuffleIndices, "shuffle");
3798 E->VectorizedValue = NewV;
3799 return NewV;
3801 setInsertPointAfterBundle(E);
3802 auto *V = Gather(E->Scalars, VecTy);
3803 if (NeedToShuffleReuses) {
3804 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3805 E->ReuseShuffleIndices, "shuffle");
3806 if (auto *I = dyn_cast<Instruction>(V)) {
3807 GatherSeq.insert(I);
3808 CSEBlocks.insert(I->getParent());
3811 E->VectorizedValue = V;
3812 return V;
3814 case Instruction::ZExt:
3815 case Instruction::SExt:
3816 case Instruction::FPToUI:
3817 case Instruction::FPToSI:
3818 case Instruction::FPExt:
3819 case Instruction::PtrToInt:
3820 case Instruction::IntToPtr:
3821 case Instruction::SIToFP:
3822 case Instruction::UIToFP:
3823 case Instruction::Trunc:
3824 case Instruction::FPTrunc:
3825 case Instruction::BitCast: {
3826 setInsertPointAfterBundle(E);
3828 Value *InVec = vectorizeTree(E->getOperand(0));
3830 if (E->VectorizedValue) {
3831 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3832 return E->VectorizedValue;
3835 auto *CI = cast<CastInst>(VL0);
3836 Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
3837 if (NeedToShuffleReuses) {
3838 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3839 E->ReuseShuffleIndices, "shuffle");
3841 E->VectorizedValue = V;
3842 ++NumVectorInstructions;
3843 return V;
3845 case Instruction::FCmp:
3846 case Instruction::ICmp: {
3847 setInsertPointAfterBundle(E);
3849 Value *L = vectorizeTree(E->getOperand(0));
3850 Value *R = vectorizeTree(E->getOperand(1));
3852 if (E->VectorizedValue) {
3853 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3854 return E->VectorizedValue;
3857 CmpInst::Predicate P0 = cast<CmpInst>(VL0)->getPredicate();
3858 Value *V;
3859 if (E->getOpcode() == Instruction::FCmp)
3860 V = Builder.CreateFCmp(P0, L, R);
3861 else
3862 V = Builder.CreateICmp(P0, L, R);
3864 propagateIRFlags(V, E->Scalars, VL0);
3865 if (NeedToShuffleReuses) {
3866 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3867 E->ReuseShuffleIndices, "shuffle");
3869 E->VectorizedValue = V;
3870 ++NumVectorInstructions;
3871 return V;
3873 case Instruction::Select: {
3874 setInsertPointAfterBundle(E);
3876 Value *Cond = vectorizeTree(E->getOperand(0));
3877 Value *True = vectorizeTree(E->getOperand(1));
3878 Value *False = vectorizeTree(E->getOperand(2));
3880 if (E->VectorizedValue) {
3881 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3882 return E->VectorizedValue;
3885 Value *V = Builder.CreateSelect(Cond, True, False);
3886 if (NeedToShuffleReuses) {
3887 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3888 E->ReuseShuffleIndices, "shuffle");
3890 E->VectorizedValue = V;
3891 ++NumVectorInstructions;
3892 return V;
3894 case Instruction::FNeg: {
3895 setInsertPointAfterBundle(E);
3897 Value *Op = vectorizeTree(E->getOperand(0));
3899 if (E->VectorizedValue) {
3900 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3901 return E->VectorizedValue;
3904 Value *V = Builder.CreateUnOp(
3905 static_cast<Instruction::UnaryOps>(E->getOpcode()), Op);
3906 propagateIRFlags(V, E->Scalars, VL0);
3907 if (auto *I = dyn_cast<Instruction>(V))
3908 V = propagateMetadata(I, E->Scalars);
3910 if (NeedToShuffleReuses) {
3911 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3912 E->ReuseShuffleIndices, "shuffle");
3914 E->VectorizedValue = V;
3915 ++NumVectorInstructions;
3917 return V;
3919 case Instruction::Add:
3920 case Instruction::FAdd:
3921 case Instruction::Sub:
3922 case Instruction::FSub:
3923 case Instruction::Mul:
3924 case Instruction::FMul:
3925 case Instruction::UDiv:
3926 case Instruction::SDiv:
3927 case Instruction::FDiv:
3928 case Instruction::URem:
3929 case Instruction::SRem:
3930 case Instruction::FRem:
3931 case Instruction::Shl:
3932 case Instruction::LShr:
3933 case Instruction::AShr:
3934 case Instruction::And:
3935 case Instruction::Or:
3936 case Instruction::Xor: {
3937 setInsertPointAfterBundle(E);
3939 Value *LHS = vectorizeTree(E->getOperand(0));
3940 Value *RHS = vectorizeTree(E->getOperand(1));
3942 if (E->VectorizedValue) {
3943 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
3944 return E->VectorizedValue;
3947 Value *V = Builder.CreateBinOp(
3948 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS,
3949 RHS);
3950 propagateIRFlags(V, E->Scalars, VL0);
3951 if (auto *I = dyn_cast<Instruction>(V))
3952 V = propagateMetadata(I, E->Scalars);
3954 if (NeedToShuffleReuses) {
3955 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
3956 E->ReuseShuffleIndices, "shuffle");
3958 E->VectorizedValue = V;
3959 ++NumVectorInstructions;
3961 return V;
3963 case Instruction::Load: {
3964 // Loads are inserted at the head of the tree because we don't want to
3965 // sink them all the way down past store instructions.
3966 bool IsReorder = E->updateStateIfReorder();
3967 if (IsReorder)
3968 VL0 = E->getMainOp();
3969 setInsertPointAfterBundle(E);
3971 LoadInst *LI = cast<LoadInst>(VL0);
3972 Type *ScalarLoadTy = LI->getType();
3973 unsigned AS = LI->getPointerAddressSpace();
3975 Value *VecPtr = Builder.CreateBitCast(LI->getPointerOperand(),
3976 VecTy->getPointerTo(AS));
3978 // The pointer operand uses an in-tree scalar so we add the new BitCast to
3979 // ExternalUses list to make sure that an extract will be generated in the
3980 // future.
3981 Value *PO = LI->getPointerOperand();
3982 if (getTreeEntry(PO))
3983 ExternalUses.push_back(ExternalUser(PO, cast<User>(VecPtr), 0));
3985 MaybeAlign Alignment = MaybeAlign(LI->getAlignment());
3986 LI = Builder.CreateLoad(VecTy, VecPtr);
3987 if (!Alignment)
3988 Alignment = MaybeAlign(DL->getABITypeAlignment(ScalarLoadTy));
3989 LI->setAlignment(Alignment);
3990 Value *V = propagateMetadata(LI, E->Scalars);
3991 if (IsReorder) {
3992 OrdersType Mask;
3993 inversePermutation(E->ReorderIndices, Mask);
3994 V = Builder.CreateShuffleVector(V, UndefValue::get(V->getType()),
3995 Mask, "reorder_shuffle");
3997 if (NeedToShuffleReuses) {
3998 // TODO: Merge this shuffle with the ReorderShuffleMask.
3999 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4000 E->ReuseShuffleIndices, "shuffle");
4002 E->VectorizedValue = V;
4003 ++NumVectorInstructions;
4004 return V;
4006 case Instruction::Store: {
4007 StoreInst *SI = cast<StoreInst>(VL0);
4008 unsigned Alignment = SI->getAlignment();
4009 unsigned AS = SI->getPointerAddressSpace();
4011 setInsertPointAfterBundle(E);
4013 Value *VecValue = vectorizeTree(E->getOperand(0));
4014 Value *ScalarPtr = SI->getPointerOperand();
4015 Value *VecPtr = Builder.CreateBitCast(ScalarPtr, VecTy->getPointerTo(AS));
4016 StoreInst *ST = Builder.CreateStore(VecValue, VecPtr);
4018 // The pointer operand uses an in-tree scalar, so add the new BitCast to
4019 // ExternalUses to make sure that an extract will be generated in the
4020 // future.
4021 if (getTreeEntry(ScalarPtr))
4022 ExternalUses.push_back(ExternalUser(ScalarPtr, cast<User>(VecPtr), 0));
4024 if (!Alignment)
4025 Alignment = DL->getABITypeAlignment(SI->getValueOperand()->getType());
4027 ST->setAlignment(Align(Alignment));
4028 Value *V = propagateMetadata(ST, E->Scalars);
4029 if (NeedToShuffleReuses) {
4030 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4031 E->ReuseShuffleIndices, "shuffle");
4033 E->VectorizedValue = V;
4034 ++NumVectorInstructions;
4035 return V;
4037 case Instruction::GetElementPtr: {
4038 setInsertPointAfterBundle(E);
4040 Value *Op0 = vectorizeTree(E->getOperand(0));
4042 std::vector<Value *> OpVecs;
4043 for (int j = 1, e = cast<GetElementPtrInst>(VL0)->getNumOperands(); j < e;
4044 ++j) {
4045 Value *OpVec = vectorizeTree(E->getOperand(j));
4046 OpVecs.push_back(OpVec);
4049 Value *V = Builder.CreateGEP(
4050 cast<GetElementPtrInst>(VL0)->getSourceElementType(), Op0, OpVecs);
4051 if (Instruction *I = dyn_cast<Instruction>(V))
4052 V = propagateMetadata(I, E->Scalars);
4054 if (NeedToShuffleReuses) {
4055 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4056 E->ReuseShuffleIndices, "shuffle");
4058 E->VectorizedValue = V;
4059 ++NumVectorInstructions;
4061 return V;
4063 case Instruction::Call: {
4064 CallInst *CI = cast<CallInst>(VL0);
4065 setInsertPointAfterBundle(E);
4067 Intrinsic::ID IID = Intrinsic::not_intrinsic;
4068 if (Function *FI = CI->getCalledFunction())
4069 IID = FI->getIntrinsicID();
4071 Value *ScalarArg = nullptr;
4072 std::vector<Value *> OpVecs;
4073 for (int j = 0, e = CI->getNumArgOperands(); j < e; ++j) {
4074 ValueList OpVL;
4075 // Some intrinsics have scalar arguments. This argument should not be
4076 // vectorized.
4077 if (hasVectorInstrinsicScalarOpd(IID, j)) {
4078 CallInst *CEI = cast<CallInst>(VL0);
4079 ScalarArg = CEI->getArgOperand(j);
4080 OpVecs.push_back(CEI->getArgOperand(j));
4081 continue;
4084 Value *OpVec = vectorizeTree(E->getOperand(j));
4085 LLVM_DEBUG(dbgs() << "SLP: OpVec[" << j << "]: " << *OpVec << "\n");
4086 OpVecs.push_back(OpVec);
4089 Module *M = F->getParent();
4090 Intrinsic::ID ID = getVectorIntrinsicIDForCall(CI, TLI);
4091 Type *Tys[] = { VectorType::get(CI->getType(), E->Scalars.size()) };
4092 Function *CF = Intrinsic::getDeclaration(M, ID, Tys);
4093 SmallVector<OperandBundleDef, 1> OpBundles;
4094 CI->getOperandBundlesAsDefs(OpBundles);
4095 Value *V = Builder.CreateCall(CF, OpVecs, OpBundles);
4097 // The scalar argument uses an in-tree scalar so we add the new vectorized
4098 // call to ExternalUses list to make sure that an extract will be
4099 // generated in the future.
4100 if (ScalarArg && getTreeEntry(ScalarArg))
4101 ExternalUses.push_back(ExternalUser(ScalarArg, cast<User>(V), 0));
4103 propagateIRFlags(V, E->Scalars, VL0);
4104 if (NeedToShuffleReuses) {
4105 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4106 E->ReuseShuffleIndices, "shuffle");
4108 E->VectorizedValue = V;
4109 ++NumVectorInstructions;
4110 return V;
4112 case Instruction::ShuffleVector: {
4113 assert(E->isAltShuffle() &&
4114 ((Instruction::isBinaryOp(E->getOpcode()) &&
4115 Instruction::isBinaryOp(E->getAltOpcode())) ||
4116 (Instruction::isCast(E->getOpcode()) &&
4117 Instruction::isCast(E->getAltOpcode()))) &&
4118 "Invalid Shuffle Vector Operand");
4120 Value *LHS = nullptr, *RHS = nullptr;
4121 if (Instruction::isBinaryOp(E->getOpcode())) {
4122 setInsertPointAfterBundle(E);
4123 LHS = vectorizeTree(E->getOperand(0));
4124 RHS = vectorizeTree(E->getOperand(1));
4125 } else {
4126 setInsertPointAfterBundle(E);
4127 LHS = vectorizeTree(E->getOperand(0));
4130 if (E->VectorizedValue) {
4131 LLVM_DEBUG(dbgs() << "SLP: Diamond merged for " << *VL0 << ".\n");
4132 return E->VectorizedValue;
4135 Value *V0, *V1;
4136 if (Instruction::isBinaryOp(E->getOpcode())) {
4137 V0 = Builder.CreateBinOp(
4138 static_cast<Instruction::BinaryOps>(E->getOpcode()), LHS, RHS);
4139 V1 = Builder.CreateBinOp(
4140 static_cast<Instruction::BinaryOps>(E->getAltOpcode()), LHS, RHS);
4141 } else {
4142 V0 = Builder.CreateCast(
4143 static_cast<Instruction::CastOps>(E->getOpcode()), LHS, VecTy);
4144 V1 = Builder.CreateCast(
4145 static_cast<Instruction::CastOps>(E->getAltOpcode()), LHS, VecTy);
4148 // Create shuffle to take alternate operations from the vector.
4149 // Also, gather up main and alt scalar ops to propagate IR flags to
4150 // each vector operation.
4151 ValueList OpScalars, AltScalars;
4152 unsigned e = E->Scalars.size();
4153 SmallVector<Constant *, 8> Mask(e);
4154 for (unsigned i = 0; i < e; ++i) {
4155 auto *OpInst = cast<Instruction>(E->Scalars[i]);
4156 assert(E->isOpcodeOrAlt(OpInst) && "Unexpected main/alternate opcode");
4157 if (OpInst->getOpcode() == E->getAltOpcode()) {
4158 Mask[i] = Builder.getInt32(e + i);
4159 AltScalars.push_back(E->Scalars[i]);
4160 } else {
4161 Mask[i] = Builder.getInt32(i);
4162 OpScalars.push_back(E->Scalars[i]);
4166 Value *ShuffleMask = ConstantVector::get(Mask);
4167 propagateIRFlags(V0, OpScalars);
4168 propagateIRFlags(V1, AltScalars);
4170 Value *V = Builder.CreateShuffleVector(V0, V1, ShuffleMask);
4171 if (Instruction *I = dyn_cast<Instruction>(V))
4172 V = propagateMetadata(I, E->Scalars);
4173 if (NeedToShuffleReuses) {
4174 V = Builder.CreateShuffleVector(V, UndefValue::get(VecTy),
4175 E->ReuseShuffleIndices, "shuffle");
4177 E->VectorizedValue = V;
4178 ++NumVectorInstructions;
4180 return V;
4182 default:
4183 llvm_unreachable("unknown inst");
4185 return nullptr;
4188 Value *BoUpSLP::vectorizeTree() {
4189 ExtraValueToDebugLocsMap ExternallyUsedValues;
4190 return vectorizeTree(ExternallyUsedValues);
4193 Value *
4194 BoUpSLP::vectorizeTree(ExtraValueToDebugLocsMap &ExternallyUsedValues) {
4195 // All blocks must be scheduled before any instructions are inserted.
4196 for (auto &BSIter : BlocksSchedules) {
4197 scheduleBlock(BSIter.second.get());
4200 Builder.SetInsertPoint(&F->getEntryBlock().front());
4201 auto *VectorRoot = vectorizeTree(VectorizableTree[0].get());
4203 // If the vectorized tree can be rewritten in a smaller type, we truncate the
4204 // vectorized root. InstCombine will then rewrite the entire expression. We
4205 // sign extend the extracted values below.
4206 auto *ScalarRoot = VectorizableTree[0]->Scalars[0];
4207 if (MinBWs.count(ScalarRoot)) {
4208 if (auto *I = dyn_cast<Instruction>(VectorRoot))
4209 Builder.SetInsertPoint(&*++BasicBlock::iterator(I));
4210 auto BundleWidth = VectorizableTree[0]->Scalars.size();
4211 auto *MinTy = IntegerType::get(F->getContext(), MinBWs[ScalarRoot].first);
4212 auto *VecTy = VectorType::get(MinTy, BundleWidth);
4213 auto *Trunc = Builder.CreateTrunc(VectorRoot, VecTy);
4214 VectorizableTree[0]->VectorizedValue = Trunc;
4217 LLVM_DEBUG(dbgs() << "SLP: Extracting " << ExternalUses.size()
4218 << " values .\n");
4220 // If necessary, sign-extend or zero-extend ScalarRoot to the larger type
4221 // specified by ScalarType.
4222 auto extend = [&](Value *ScalarRoot, Value *Ex, Type *ScalarType) {
4223 if (!MinBWs.count(ScalarRoot))
4224 return Ex;
4225 if (MinBWs[ScalarRoot].second)
4226 return Builder.CreateSExt(Ex, ScalarType);
4227 return Builder.CreateZExt(Ex, ScalarType);
4230 // Extract all of the elements with the external uses.
4231 for (const auto &ExternalUse : ExternalUses) {
4232 Value *Scalar = ExternalUse.Scalar;
4233 llvm::User *User = ExternalUse.User;
4235 // Skip users that we already RAUW. This happens when one instruction
4236 // has multiple uses of the same value.
4237 if (User && !is_contained(Scalar->users(), User))
4238 continue;
4239 TreeEntry *E = getTreeEntry(Scalar);
4240 assert(E && "Invalid scalar");
4241 assert(!E->NeedToGather && "Extracting from a gather list");
4243 Value *Vec = E->VectorizedValue;
4244 assert(Vec && "Can't find vectorizable value");
4246 Value *Lane = Builder.getInt32(ExternalUse.Lane);
4247 // If User == nullptr, the Scalar is used as extra arg. Generate
4248 // ExtractElement instruction and update the record for this scalar in
4249 // ExternallyUsedValues.
4250 if (!User) {
4251 assert(ExternallyUsedValues.count(Scalar) &&
4252 "Scalar with nullptr as an external user must be registered in "
4253 "ExternallyUsedValues map");
4254 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4255 Builder.SetInsertPoint(VecI->getParent(),
4256 std::next(VecI->getIterator()));
4257 } else {
4258 Builder.SetInsertPoint(&F->getEntryBlock().front());
4260 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4261 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4262 CSEBlocks.insert(cast<Instruction>(Scalar)->getParent());
4263 auto &Locs = ExternallyUsedValues[Scalar];
4264 ExternallyUsedValues.insert({Ex, Locs});
4265 ExternallyUsedValues.erase(Scalar);
4266 // Required to update internally referenced instructions.
4267 Scalar->replaceAllUsesWith(Ex);
4268 continue;
4271 // Generate extracts for out-of-tree users.
4272 // Find the insertion point for the extractelement lane.
4273 if (auto *VecI = dyn_cast<Instruction>(Vec)) {
4274 if (PHINode *PH = dyn_cast<PHINode>(User)) {
4275 for (int i = 0, e = PH->getNumIncomingValues(); i != e; ++i) {
4276 if (PH->getIncomingValue(i) == Scalar) {
4277 Instruction *IncomingTerminator =
4278 PH->getIncomingBlock(i)->getTerminator();
4279 if (isa<CatchSwitchInst>(IncomingTerminator)) {
4280 Builder.SetInsertPoint(VecI->getParent(),
4281 std::next(VecI->getIterator()));
4282 } else {
4283 Builder.SetInsertPoint(PH->getIncomingBlock(i)->getTerminator());
4285 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4286 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4287 CSEBlocks.insert(PH->getIncomingBlock(i));
4288 PH->setOperand(i, Ex);
4291 } else {
4292 Builder.SetInsertPoint(cast<Instruction>(User));
4293 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4294 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4295 CSEBlocks.insert(cast<Instruction>(User)->getParent());
4296 User->replaceUsesOfWith(Scalar, Ex);
4298 } else {
4299 Builder.SetInsertPoint(&F->getEntryBlock().front());
4300 Value *Ex = Builder.CreateExtractElement(Vec, Lane);
4301 Ex = extend(ScalarRoot, Ex, Scalar->getType());
4302 CSEBlocks.insert(&F->getEntryBlock());
4303 User->replaceUsesOfWith(Scalar, Ex);
4306 LLVM_DEBUG(dbgs() << "SLP: Replaced:" << *User << ".\n");
4309 // For each vectorized value:
4310 for (auto &TEPtr : VectorizableTree) {
4311 TreeEntry *Entry = TEPtr.get();
4313 // No need to handle users of gathered values.
4314 if (Entry->NeedToGather)
4315 continue;
4317 assert(Entry->VectorizedValue && "Can't find vectorizable value");
4319 // For each lane:
4320 for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
4321 Value *Scalar = Entry->Scalars[Lane];
4323 #ifndef NDEBUG
4324 Type *Ty = Scalar->getType();
4325 if (!Ty->isVoidTy()) {
4326 for (User *U : Scalar->users()) {
4327 LLVM_DEBUG(dbgs() << "SLP: \tvalidating user:" << *U << ".\n");
4329 // It is legal to delete users in the ignorelist.
4330 assert((getTreeEntry(U) || is_contained(UserIgnoreList, U)) &&
4331 "Deleting out-of-tree value");
4334 #endif
4335 LLVM_DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
4336 eraseInstruction(cast<Instruction>(Scalar));
4340 Builder.ClearInsertionPoint();
4342 return VectorizableTree[0]->VectorizedValue;
4345 void BoUpSLP::optimizeGatherSequence() {
4346 LLVM_DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
4347 << " gather sequences instructions.\n");
4348 // LICM InsertElementInst sequences.
4349 for (Instruction *I : GatherSeq) {
4350 if (isDeleted(I))
4351 continue;
4353 // Check if this block is inside a loop.
4354 Loop *L = LI->getLoopFor(I->getParent());
4355 if (!L)
4356 continue;
4358 // Check if it has a preheader.
4359 BasicBlock *PreHeader = L->getLoopPreheader();
4360 if (!PreHeader)
4361 continue;
4363 // If the vector or the element that we insert into it are
4364 // instructions that are defined in this basic block then we can't
4365 // hoist this instruction.
4366 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
4367 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
4368 if (Op0 && L->contains(Op0))
4369 continue;
4370 if (Op1 && L->contains(Op1))
4371 continue;
4373 // We can hoist this instruction. Move it to the pre-header.
4374 I->moveBefore(PreHeader->getTerminator());
4377 // Make a list of all reachable blocks in our CSE queue.
4378 SmallVector<const DomTreeNode *, 8> CSEWorkList;
4379 CSEWorkList.reserve(CSEBlocks.size());
4380 for (BasicBlock *BB : CSEBlocks)
4381 if (DomTreeNode *N = DT->getNode(BB)) {
4382 assert(DT->isReachableFromEntry(N));
4383 CSEWorkList.push_back(N);
4386 // Sort blocks by domination. This ensures we visit a block after all blocks
4387 // dominating it are visited.
4388 llvm::stable_sort(CSEWorkList,
4389 [this](const DomTreeNode *A, const DomTreeNode *B) {
4390 return DT->properlyDominates(A, B);
4393 // Perform O(N^2) search over the gather sequences and merge identical
4394 // instructions. TODO: We can further optimize this scan if we split the
4395 // instructions into different buckets based on the insert lane.
4396 SmallVector<Instruction *, 16> Visited;
4397 for (auto I = CSEWorkList.begin(), E = CSEWorkList.end(); I != E; ++I) {
4398 assert((I == CSEWorkList.begin() || !DT->dominates(*I, *std::prev(I))) &&
4399 "Worklist not sorted properly!");
4400 BasicBlock *BB = (*I)->getBlock();
4401 // For all instructions in blocks containing gather sequences:
4402 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e;) {
4403 Instruction *In = &*it++;
4404 if (isDeleted(In))
4405 continue;
4406 if (!isa<InsertElementInst>(In) && !isa<ExtractElementInst>(In))
4407 continue;
4409 // Check if we can replace this instruction with any of the
4410 // visited instructions.
4411 for (Instruction *v : Visited) {
4412 if (In->isIdenticalTo(v) &&
4413 DT->dominates(v->getParent(), In->getParent())) {
4414 In->replaceAllUsesWith(v);
4415 eraseInstruction(In);
4416 In = nullptr;
4417 break;
4420 if (In) {
4421 assert(!is_contained(Visited, In));
4422 Visited.push_back(In);
4426 CSEBlocks.clear();
4427 GatherSeq.clear();
4430 // Groups the instructions to a bundle (which is then a single scheduling entity)
4431 // and schedules instructions until the bundle gets ready.
4432 Optional<BoUpSLP::ScheduleData *>
4433 BoUpSLP::BlockScheduling::tryScheduleBundle(ArrayRef<Value *> VL, BoUpSLP *SLP,
4434 const InstructionsState &S) {
4435 if (isa<PHINode>(S.OpValue))
4436 return nullptr;
4438 // Initialize the instruction bundle.
4439 Instruction *OldScheduleEnd = ScheduleEnd;
4440 ScheduleData *PrevInBundle = nullptr;
4441 ScheduleData *Bundle = nullptr;
4442 bool ReSchedule = false;
4443 LLVM_DEBUG(dbgs() << "SLP: bundle: " << *S.OpValue << "\n");
4445 // Make sure that the scheduling region contains all
4446 // instructions of the bundle.
4447 for (Value *V : VL) {
4448 if (!extendSchedulingRegion(V, S))
4449 return None;
4452 for (Value *V : VL) {
4453 ScheduleData *BundleMember = getScheduleData(V);
4454 assert(BundleMember &&
4455 "no ScheduleData for bundle member (maybe not in same basic block)");
4456 if (BundleMember->IsScheduled) {
4457 // A bundle member was scheduled as single instruction before and now
4458 // needs to be scheduled as part of the bundle. We just get rid of the
4459 // existing schedule.
4460 LLVM_DEBUG(dbgs() << "SLP: reset schedule because " << *BundleMember
4461 << " was already scheduled\n");
4462 ReSchedule = true;
4464 assert(BundleMember->isSchedulingEntity() &&
4465 "bundle member already part of other bundle");
4466 if (PrevInBundle) {
4467 PrevInBundle->NextInBundle = BundleMember;
4468 } else {
4469 Bundle = BundleMember;
4471 BundleMember->UnscheduledDepsInBundle = 0;
4472 Bundle->UnscheduledDepsInBundle += BundleMember->UnscheduledDeps;
4474 // Group the instructions to a bundle.
4475 BundleMember->FirstInBundle = Bundle;
4476 PrevInBundle = BundleMember;
4478 if (ScheduleEnd != OldScheduleEnd) {
4479 // The scheduling region got new instructions at the lower end (or it is a
4480 // new region for the first bundle). This makes it necessary to
4481 // recalculate all dependencies.
4482 // It is seldom that this needs to be done a second time after adding the
4483 // initial bundle to the region.
4484 for (auto *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4485 doForAllOpcodes(I, [](ScheduleData *SD) {
4486 SD->clearDependencies();
4489 ReSchedule = true;
4491 if (ReSchedule) {
4492 resetSchedule();
4493 initialFillReadyList(ReadyInsts);
4495 assert(Bundle && "Failed to find schedule bundle");
4497 LLVM_DEBUG(dbgs() << "SLP: try schedule bundle " << *Bundle << " in block "
4498 << BB->getName() << "\n");
4500 calculateDependencies(Bundle, true, SLP);
4502 // Now try to schedule the new bundle. As soon as the bundle is "ready" it
4503 // means that there are no cyclic dependencies and we can schedule it.
4504 // Note that's important that we don't "schedule" the bundle yet (see
4505 // cancelScheduling).
4506 while (!Bundle->isReady() && !ReadyInsts.empty()) {
4508 ScheduleData *pickedSD = ReadyInsts.back();
4509 ReadyInsts.pop_back();
4511 if (pickedSD->isSchedulingEntity() && pickedSD->isReady()) {
4512 schedule(pickedSD, ReadyInsts);
4515 if (!Bundle->isReady()) {
4516 cancelScheduling(VL, S.OpValue);
4517 return None;
4519 return Bundle;
4522 void BoUpSLP::BlockScheduling::cancelScheduling(ArrayRef<Value *> VL,
4523 Value *OpValue) {
4524 if (isa<PHINode>(OpValue))
4525 return;
4527 ScheduleData *Bundle = getScheduleData(OpValue);
4528 LLVM_DEBUG(dbgs() << "SLP: cancel scheduling of " << *Bundle << "\n");
4529 assert(!Bundle->IsScheduled &&
4530 "Can't cancel bundle which is already scheduled");
4531 assert(Bundle->isSchedulingEntity() && Bundle->isPartOfBundle() &&
4532 "tried to unbundle something which is not a bundle");
4534 // Un-bundle: make single instructions out of the bundle.
4535 ScheduleData *BundleMember = Bundle;
4536 while (BundleMember) {
4537 assert(BundleMember->FirstInBundle == Bundle && "corrupt bundle links");
4538 BundleMember->FirstInBundle = BundleMember;
4539 ScheduleData *Next = BundleMember->NextInBundle;
4540 BundleMember->NextInBundle = nullptr;
4541 BundleMember->UnscheduledDepsInBundle = BundleMember->UnscheduledDeps;
4542 if (BundleMember->UnscheduledDepsInBundle == 0) {
4543 ReadyInsts.insert(BundleMember);
4545 BundleMember = Next;
4549 BoUpSLP::ScheduleData *BoUpSLP::BlockScheduling::allocateScheduleDataChunks() {
4550 // Allocate a new ScheduleData for the instruction.
4551 if (ChunkPos >= ChunkSize) {
4552 ScheduleDataChunks.push_back(std::make_unique<ScheduleData[]>(ChunkSize));
4553 ChunkPos = 0;
4555 return &(ScheduleDataChunks.back()[ChunkPos++]);
4558 bool BoUpSLP::BlockScheduling::extendSchedulingRegion(Value *V,
4559 const InstructionsState &S) {
4560 if (getScheduleData(V, isOneOf(S, V)))
4561 return true;
4562 Instruction *I = dyn_cast<Instruction>(V);
4563 assert(I && "bundle member must be an instruction");
4564 assert(!isa<PHINode>(I) && "phi nodes don't need to be scheduled");
4565 auto &&CheckSheduleForI = [this, &S](Instruction *I) -> bool {
4566 ScheduleData *ISD = getScheduleData(I);
4567 if (!ISD)
4568 return false;
4569 assert(isInSchedulingRegion(ISD) &&
4570 "ScheduleData not in scheduling region");
4571 ScheduleData *SD = allocateScheduleDataChunks();
4572 SD->Inst = I;
4573 SD->init(SchedulingRegionID, S.OpValue);
4574 ExtraScheduleDataMap[I][S.OpValue] = SD;
4575 return true;
4577 if (CheckSheduleForI(I))
4578 return true;
4579 if (!ScheduleStart) {
4580 // It's the first instruction in the new region.
4581 initScheduleData(I, I->getNextNode(), nullptr, nullptr);
4582 ScheduleStart = I;
4583 ScheduleEnd = I->getNextNode();
4584 if (isOneOf(S, I) != I)
4585 CheckSheduleForI(I);
4586 assert(ScheduleEnd && "tried to vectorize a terminator?");
4587 LLVM_DEBUG(dbgs() << "SLP: initialize schedule region to " << *I << "\n");
4588 return true;
4590 // Search up and down at the same time, because we don't know if the new
4591 // instruction is above or below the existing scheduling region.
4592 BasicBlock::reverse_iterator UpIter =
4593 ++ScheduleStart->getIterator().getReverse();
4594 BasicBlock::reverse_iterator UpperEnd = BB->rend();
4595 BasicBlock::iterator DownIter = ScheduleEnd->getIterator();
4596 BasicBlock::iterator LowerEnd = BB->end();
4597 while (true) {
4598 if (++ScheduleRegionSize > ScheduleRegionSizeLimit) {
4599 LLVM_DEBUG(dbgs() << "SLP: exceeded schedule region size limit\n");
4600 return false;
4603 if (UpIter != UpperEnd) {
4604 if (&*UpIter == I) {
4605 initScheduleData(I, ScheduleStart, nullptr, FirstLoadStoreInRegion);
4606 ScheduleStart = I;
4607 if (isOneOf(S, I) != I)
4608 CheckSheduleForI(I);
4609 LLVM_DEBUG(dbgs() << "SLP: extend schedule region start to " << *I
4610 << "\n");
4611 return true;
4613 ++UpIter;
4615 if (DownIter != LowerEnd) {
4616 if (&*DownIter == I) {
4617 initScheduleData(ScheduleEnd, I->getNextNode(), LastLoadStoreInRegion,
4618 nullptr);
4619 ScheduleEnd = I->getNextNode();
4620 if (isOneOf(S, I) != I)
4621 CheckSheduleForI(I);
4622 assert(ScheduleEnd && "tried to vectorize a terminator?");
4623 LLVM_DEBUG(dbgs() << "SLP: extend schedule region end to " << *I
4624 << "\n");
4625 return true;
4627 ++DownIter;
4629 assert((UpIter != UpperEnd || DownIter != LowerEnd) &&
4630 "instruction not found in block");
4632 return true;
4635 void BoUpSLP::BlockScheduling::initScheduleData(Instruction *FromI,
4636 Instruction *ToI,
4637 ScheduleData *PrevLoadStore,
4638 ScheduleData *NextLoadStore) {
4639 ScheduleData *CurrentLoadStore = PrevLoadStore;
4640 for (Instruction *I = FromI; I != ToI; I = I->getNextNode()) {
4641 ScheduleData *SD = ScheduleDataMap[I];
4642 if (!SD) {
4643 SD = allocateScheduleDataChunks();
4644 ScheduleDataMap[I] = SD;
4645 SD->Inst = I;
4647 assert(!isInSchedulingRegion(SD) &&
4648 "new ScheduleData already in scheduling region");
4649 SD->init(SchedulingRegionID, I);
4651 if (I->mayReadOrWriteMemory() &&
4652 (!isa<IntrinsicInst>(I) ||
4653 cast<IntrinsicInst>(I)->getIntrinsicID() != Intrinsic::sideeffect)) {
4654 // Update the linked list of memory accessing instructions.
4655 if (CurrentLoadStore) {
4656 CurrentLoadStore->NextLoadStore = SD;
4657 } else {
4658 FirstLoadStoreInRegion = SD;
4660 CurrentLoadStore = SD;
4663 if (NextLoadStore) {
4664 if (CurrentLoadStore)
4665 CurrentLoadStore->NextLoadStore = NextLoadStore;
4666 } else {
4667 LastLoadStoreInRegion = CurrentLoadStore;
4671 void BoUpSLP::BlockScheduling::calculateDependencies(ScheduleData *SD,
4672 bool InsertInReadyList,
4673 BoUpSLP *SLP) {
4674 assert(SD->isSchedulingEntity());
4676 SmallVector<ScheduleData *, 10> WorkList;
4677 WorkList.push_back(SD);
4679 while (!WorkList.empty()) {
4680 ScheduleData *SD = WorkList.back();
4681 WorkList.pop_back();
4683 ScheduleData *BundleMember = SD;
4684 while (BundleMember) {
4685 assert(isInSchedulingRegion(BundleMember));
4686 if (!BundleMember->hasValidDependencies()) {
4688 LLVM_DEBUG(dbgs() << "SLP: update deps of " << *BundleMember
4689 << "\n");
4690 BundleMember->Dependencies = 0;
4691 BundleMember->resetUnscheduledDeps();
4693 // Handle def-use chain dependencies.
4694 if (BundleMember->OpValue != BundleMember->Inst) {
4695 ScheduleData *UseSD = getScheduleData(BundleMember->Inst);
4696 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4697 BundleMember->Dependencies++;
4698 ScheduleData *DestBundle = UseSD->FirstInBundle;
4699 if (!DestBundle->IsScheduled)
4700 BundleMember->incrementUnscheduledDeps(1);
4701 if (!DestBundle->hasValidDependencies())
4702 WorkList.push_back(DestBundle);
4704 } else {
4705 for (User *U : BundleMember->Inst->users()) {
4706 if (isa<Instruction>(U)) {
4707 ScheduleData *UseSD = getScheduleData(U);
4708 if (UseSD && isInSchedulingRegion(UseSD->FirstInBundle)) {
4709 BundleMember->Dependencies++;
4710 ScheduleData *DestBundle = UseSD->FirstInBundle;
4711 if (!DestBundle->IsScheduled)
4712 BundleMember->incrementUnscheduledDeps(1);
4713 if (!DestBundle->hasValidDependencies())
4714 WorkList.push_back(DestBundle);
4716 } else {
4717 // I'm not sure if this can ever happen. But we need to be safe.
4718 // This lets the instruction/bundle never be scheduled and
4719 // eventually disable vectorization.
4720 BundleMember->Dependencies++;
4721 BundleMember->incrementUnscheduledDeps(1);
4726 // Handle the memory dependencies.
4727 ScheduleData *DepDest = BundleMember->NextLoadStore;
4728 if (DepDest) {
4729 Instruction *SrcInst = BundleMember->Inst;
4730 MemoryLocation SrcLoc = getLocation(SrcInst, SLP->AA);
4731 bool SrcMayWrite = BundleMember->Inst->mayWriteToMemory();
4732 unsigned numAliased = 0;
4733 unsigned DistToSrc = 1;
4735 while (DepDest) {
4736 assert(isInSchedulingRegion(DepDest));
4738 // We have two limits to reduce the complexity:
4739 // 1) AliasedCheckLimit: It's a small limit to reduce calls to
4740 // SLP->isAliased (which is the expensive part in this loop).
4741 // 2) MaxMemDepDistance: It's for very large blocks and it aborts
4742 // the whole loop (even if the loop is fast, it's quadratic).
4743 // It's important for the loop break condition (see below) to
4744 // check this limit even between two read-only instructions.
4745 if (DistToSrc >= MaxMemDepDistance ||
4746 ((SrcMayWrite || DepDest->Inst->mayWriteToMemory()) &&
4747 (numAliased >= AliasedCheckLimit ||
4748 SLP->isAliased(SrcLoc, SrcInst, DepDest->Inst)))) {
4750 // We increment the counter only if the locations are aliased
4751 // (instead of counting all alias checks). This gives a better
4752 // balance between reduced runtime and accurate dependencies.
4753 numAliased++;
4755 DepDest->MemoryDependencies.push_back(BundleMember);
4756 BundleMember->Dependencies++;
4757 ScheduleData *DestBundle = DepDest->FirstInBundle;
4758 if (!DestBundle->IsScheduled) {
4759 BundleMember->incrementUnscheduledDeps(1);
4761 if (!DestBundle->hasValidDependencies()) {
4762 WorkList.push_back(DestBundle);
4765 DepDest = DepDest->NextLoadStore;
4767 // Example, explaining the loop break condition: Let's assume our
4768 // starting instruction is i0 and MaxMemDepDistance = 3.
4770 // +--------v--v--v
4771 // i0,i1,i2,i3,i4,i5,i6,i7,i8
4772 // +--------^--^--^
4774 // MaxMemDepDistance let us stop alias-checking at i3 and we add
4775 // dependencies from i0 to i3,i4,.. (even if they are not aliased).
4776 // Previously we already added dependencies from i3 to i6,i7,i8
4777 // (because of MaxMemDepDistance). As we added a dependency from
4778 // i0 to i3, we have transitive dependencies from i0 to i6,i7,i8
4779 // and we can abort this loop at i6.
4780 if (DistToSrc >= 2 * MaxMemDepDistance)
4781 break;
4782 DistToSrc++;
4786 BundleMember = BundleMember->NextInBundle;
4788 if (InsertInReadyList && SD->isReady()) {
4789 ReadyInsts.push_back(SD);
4790 LLVM_DEBUG(dbgs() << "SLP: gets ready on update: " << *SD->Inst
4791 << "\n");
4796 void BoUpSLP::BlockScheduling::resetSchedule() {
4797 assert(ScheduleStart &&
4798 "tried to reset schedule on block which has not been scheduled");
4799 for (Instruction *I = ScheduleStart; I != ScheduleEnd; I = I->getNextNode()) {
4800 doForAllOpcodes(I, [&](ScheduleData *SD) {
4801 assert(isInSchedulingRegion(SD) &&
4802 "ScheduleData not in scheduling region");
4803 SD->IsScheduled = false;
4804 SD->resetUnscheduledDeps();
4807 ReadyInsts.clear();
4810 void BoUpSLP::scheduleBlock(BlockScheduling *BS) {
4811 if (!BS->ScheduleStart)
4812 return;
4814 LLVM_DEBUG(dbgs() << "SLP: schedule block " << BS->BB->getName() << "\n");
4816 BS->resetSchedule();
4818 // For the real scheduling we use a more sophisticated ready-list: it is
4819 // sorted by the original instruction location. This lets the final schedule
4820 // be as close as possible to the original instruction order.
4821 struct ScheduleDataCompare {
4822 bool operator()(ScheduleData *SD1, ScheduleData *SD2) const {
4823 return SD2->SchedulingPriority < SD1->SchedulingPriority;
4826 std::set<ScheduleData *, ScheduleDataCompare> ReadyInsts;
4828 // Ensure that all dependency data is updated and fill the ready-list with
4829 // initial instructions.
4830 int Idx = 0;
4831 int NumToSchedule = 0;
4832 for (auto *I = BS->ScheduleStart; I != BS->ScheduleEnd;
4833 I = I->getNextNode()) {
4834 BS->doForAllOpcodes(I, [this, &Idx, &NumToSchedule, BS](ScheduleData *SD) {
4835 assert(SD->isPartOfBundle() ==
4836 (getTreeEntry(SD->Inst) != nullptr) &&
4837 "scheduler and vectorizer bundle mismatch");
4838 SD->FirstInBundle->SchedulingPriority = Idx++;
4839 if (SD->isSchedulingEntity()) {
4840 BS->calculateDependencies(SD, false, this);
4841 NumToSchedule++;
4845 BS->initialFillReadyList(ReadyInsts);
4847 Instruction *LastScheduledInst = BS->ScheduleEnd;
4849 // Do the "real" scheduling.
4850 while (!ReadyInsts.empty()) {
4851 ScheduleData *picked = *ReadyInsts.begin();
4852 ReadyInsts.erase(ReadyInsts.begin());
4854 // Move the scheduled instruction(s) to their dedicated places, if not
4855 // there yet.
4856 ScheduleData *BundleMember = picked;
4857 while (BundleMember) {
4858 Instruction *pickedInst = BundleMember->Inst;
4859 if (LastScheduledInst->getNextNode() != pickedInst) {
4860 BS->BB->getInstList().remove(pickedInst);
4861 BS->BB->getInstList().insert(LastScheduledInst->getIterator(),
4862 pickedInst);
4864 LastScheduledInst = pickedInst;
4865 BundleMember = BundleMember->NextInBundle;
4868 BS->schedule(picked, ReadyInsts);
4869 NumToSchedule--;
4871 assert(NumToSchedule == 0 && "could not schedule all instructions");
4873 // Avoid duplicate scheduling of the block.
4874 BS->ScheduleStart = nullptr;
4877 unsigned BoUpSLP::getVectorElementSize(Value *V) const {
4878 // If V is a store, just return the width of the stored value without
4879 // traversing the expression tree. This is the common case.
4880 if (auto *Store = dyn_cast<StoreInst>(V))
4881 return DL->getTypeSizeInBits(Store->getValueOperand()->getType());
4883 // If V is not a store, we can traverse the expression tree to find loads
4884 // that feed it. The type of the loaded value may indicate a more suitable
4885 // width than V's type. We want to base the vector element size on the width
4886 // of memory operations where possible.
4887 SmallVector<Instruction *, 16> Worklist;
4888 SmallPtrSet<Instruction *, 16> Visited;
4889 if (auto *I = dyn_cast<Instruction>(V))
4890 Worklist.push_back(I);
4892 // Traverse the expression tree in bottom-up order looking for loads. If we
4893 // encounter an instruction we don't yet handle, we give up.
4894 auto MaxWidth = 0u;
4895 auto FoundUnknownInst = false;
4896 while (!Worklist.empty() && !FoundUnknownInst) {
4897 auto *I = Worklist.pop_back_val();
4898 Visited.insert(I);
4900 // We should only be looking at scalar instructions here. If the current
4901 // instruction has a vector type, give up.
4902 auto *Ty = I->getType();
4903 if (isa<VectorType>(Ty))
4904 FoundUnknownInst = true;
4906 // If the current instruction is a load, update MaxWidth to reflect the
4907 // width of the loaded value.
4908 else if (isa<LoadInst>(I))
4909 MaxWidth = std::max<unsigned>(MaxWidth, DL->getTypeSizeInBits(Ty));
4911 // Otherwise, we need to visit the operands of the instruction. We only
4912 // handle the interesting cases from buildTree here. If an operand is an
4913 // instruction we haven't yet visited, we add it to the worklist.
4914 else if (isa<PHINode>(I) || isa<CastInst>(I) || isa<GetElementPtrInst>(I) ||
4915 isa<CmpInst>(I) || isa<SelectInst>(I) || isa<BinaryOperator>(I)) {
4916 for (Use &U : I->operands())
4917 if (auto *J = dyn_cast<Instruction>(U.get()))
4918 if (!Visited.count(J))
4919 Worklist.push_back(J);
4922 // If we don't yet handle the instruction, give up.
4923 else
4924 FoundUnknownInst = true;
4927 // If we didn't encounter a memory access in the expression tree, or if we
4928 // gave up for some reason, just return the width of V.
4929 if (!MaxWidth || FoundUnknownInst)
4930 return DL->getTypeSizeInBits(V->getType());
4932 // Otherwise, return the maximum width we found.
4933 return MaxWidth;
4936 // Determine if a value V in a vectorizable expression Expr can be demoted to a
4937 // smaller type with a truncation. We collect the values that will be demoted
4938 // in ToDemote and additional roots that require investigating in Roots.
4939 static bool collectValuesToDemote(Value *V, SmallPtrSetImpl<Value *> &Expr,
4940 SmallVectorImpl<Value *> &ToDemote,
4941 SmallVectorImpl<Value *> &Roots) {
4942 // We can always demote constants.
4943 if (isa<Constant>(V)) {
4944 ToDemote.push_back(V);
4945 return true;
4948 // If the value is not an instruction in the expression with only one use, it
4949 // cannot be demoted.
4950 auto *I = dyn_cast<Instruction>(V);
4951 if (!I || !I->hasOneUse() || !Expr.count(I))
4952 return false;
4954 switch (I->getOpcode()) {
4956 // We can always demote truncations and extensions. Since truncations can
4957 // seed additional demotion, we save the truncated value.
4958 case Instruction::Trunc:
4959 Roots.push_back(I->getOperand(0));
4960 break;
4961 case Instruction::ZExt:
4962 case Instruction::SExt:
4963 break;
4965 // We can demote certain binary operations if we can demote both of their
4966 // operands.
4967 case Instruction::Add:
4968 case Instruction::Sub:
4969 case Instruction::Mul:
4970 case Instruction::And:
4971 case Instruction::Or:
4972 case Instruction::Xor:
4973 if (!collectValuesToDemote(I->getOperand(0), Expr, ToDemote, Roots) ||
4974 !collectValuesToDemote(I->getOperand(1), Expr, ToDemote, Roots))
4975 return false;
4976 break;
4978 // We can demote selects if we can demote their true and false values.
4979 case Instruction::Select: {
4980 SelectInst *SI = cast<SelectInst>(I);
4981 if (!collectValuesToDemote(SI->getTrueValue(), Expr, ToDemote, Roots) ||
4982 !collectValuesToDemote(SI->getFalseValue(), Expr, ToDemote, Roots))
4983 return false;
4984 break;
4987 // We can demote phis if we can demote all their incoming operands. Note that
4988 // we don't need to worry about cycles since we ensure single use above.
4989 case Instruction::PHI: {
4990 PHINode *PN = cast<PHINode>(I);
4991 for (Value *IncValue : PN->incoming_values())
4992 if (!collectValuesToDemote(IncValue, Expr, ToDemote, Roots))
4993 return false;
4994 break;
4997 // Otherwise, conservatively give up.
4998 default:
4999 return false;
5002 // Record the value that we can demote.
5003 ToDemote.push_back(V);
5004 return true;
5007 void BoUpSLP::computeMinimumValueSizes() {
5008 // If there are no external uses, the expression tree must be rooted by a
5009 // store. We can't demote in-memory values, so there is nothing to do here.
5010 if (ExternalUses.empty())
5011 return;
5013 // We only attempt to truncate integer expressions.
5014 auto &TreeRoot = VectorizableTree[0]->Scalars;
5015 auto *TreeRootIT = dyn_cast<IntegerType>(TreeRoot[0]->getType());
5016 if (!TreeRootIT)
5017 return;
5019 // If the expression is not rooted by a store, these roots should have
5020 // external uses. We will rely on InstCombine to rewrite the expression in
5021 // the narrower type. However, InstCombine only rewrites single-use values.
5022 // This means that if a tree entry other than a root is used externally, it
5023 // must have multiple uses and InstCombine will not rewrite it. The code
5024 // below ensures that only the roots are used externally.
5025 SmallPtrSet<Value *, 32> Expr(TreeRoot.begin(), TreeRoot.end());
5026 for (auto &EU : ExternalUses)
5027 if (!Expr.erase(EU.Scalar))
5028 return;
5029 if (!Expr.empty())
5030 return;
5032 // Collect the scalar values of the vectorizable expression. We will use this
5033 // context to determine which values can be demoted. If we see a truncation,
5034 // we mark it as seeding another demotion.
5035 for (auto &EntryPtr : VectorizableTree)
5036 Expr.insert(EntryPtr->Scalars.begin(), EntryPtr->Scalars.end());
5038 // Ensure the roots of the vectorizable tree don't form a cycle. They must
5039 // have a single external user that is not in the vectorizable tree.
5040 for (auto *Root : TreeRoot)
5041 if (!Root->hasOneUse() || Expr.count(*Root->user_begin()))
5042 return;
5044 // Conservatively determine if we can actually truncate the roots of the
5045 // expression. Collect the values that can be demoted in ToDemote and
5046 // additional roots that require investigating in Roots.
5047 SmallVector<Value *, 32> ToDemote;
5048 SmallVector<Value *, 4> Roots;
5049 for (auto *Root : TreeRoot)
5050 if (!collectValuesToDemote(Root, Expr, ToDemote, Roots))
5051 return;
5053 // The maximum bit width required to represent all the values that can be
5054 // demoted without loss of precision. It would be safe to truncate the roots
5055 // of the expression to this width.
5056 auto MaxBitWidth = 8u;
5058 // We first check if all the bits of the roots are demanded. If they're not,
5059 // we can truncate the roots to this narrower type.
5060 for (auto *Root : TreeRoot) {
5061 auto Mask = DB->getDemandedBits(cast<Instruction>(Root));
5062 MaxBitWidth = std::max<unsigned>(
5063 Mask.getBitWidth() - Mask.countLeadingZeros(), MaxBitWidth);
5066 // True if the roots can be zero-extended back to their original type, rather
5067 // than sign-extended. We know that if the leading bits are not demanded, we
5068 // can safely zero-extend. So we initialize IsKnownPositive to True.
5069 bool IsKnownPositive = true;
5071 // If all the bits of the roots are demanded, we can try a little harder to
5072 // compute a narrower type. This can happen, for example, if the roots are
5073 // getelementptr indices. InstCombine promotes these indices to the pointer
5074 // width. Thus, all their bits are technically demanded even though the
5075 // address computation might be vectorized in a smaller type.
5077 // We start by looking at each entry that can be demoted. We compute the
5078 // maximum bit width required to store the scalar by using ValueTracking to
5079 // compute the number of high-order bits we can truncate.
5080 if (MaxBitWidth == DL->getTypeSizeInBits(TreeRoot[0]->getType()) &&
5081 llvm::all_of(TreeRoot, [](Value *R) {
5082 assert(R->hasOneUse() && "Root should have only one use!");
5083 return isa<GetElementPtrInst>(R->user_back());
5084 })) {
5085 MaxBitWidth = 8u;
5087 // Determine if the sign bit of all the roots is known to be zero. If not,
5088 // IsKnownPositive is set to False.
5089 IsKnownPositive = llvm::all_of(TreeRoot, [&](Value *R) {
5090 KnownBits Known = computeKnownBits(R, *DL);
5091 return Known.isNonNegative();
5094 // Determine the maximum number of bits required to store the scalar
5095 // values.
5096 for (auto *Scalar : ToDemote) {
5097 auto NumSignBits = ComputeNumSignBits(Scalar, *DL, 0, AC, nullptr, DT);
5098 auto NumTypeBits = DL->getTypeSizeInBits(Scalar->getType());
5099 MaxBitWidth = std::max<unsigned>(NumTypeBits - NumSignBits, MaxBitWidth);
5102 // If we can't prove that the sign bit is zero, we must add one to the
5103 // maximum bit width to account for the unknown sign bit. This preserves
5104 // the existing sign bit so we can safely sign-extend the root back to the
5105 // original type. Otherwise, if we know the sign bit is zero, we will
5106 // zero-extend the root instead.
5108 // FIXME: This is somewhat suboptimal, as there will be cases where adding
5109 // one to the maximum bit width will yield a larger-than-necessary
5110 // type. In general, we need to add an extra bit only if we can't
5111 // prove that the upper bit of the original type is equal to the
5112 // upper bit of the proposed smaller type. If these two bits are the
5113 // same (either zero or one) we know that sign-extending from the
5114 // smaller type will result in the same value. Here, since we can't
5115 // yet prove this, we are just making the proposed smaller type
5116 // larger to ensure correctness.
5117 if (!IsKnownPositive)
5118 ++MaxBitWidth;
5121 // Round MaxBitWidth up to the next power-of-two.
5122 if (!isPowerOf2_64(MaxBitWidth))
5123 MaxBitWidth = NextPowerOf2(MaxBitWidth);
5125 // If the maximum bit width we compute is less than the with of the roots'
5126 // type, we can proceed with the narrowing. Otherwise, do nothing.
5127 if (MaxBitWidth >= TreeRootIT->getBitWidth())
5128 return;
5130 // If we can truncate the root, we must collect additional values that might
5131 // be demoted as a result. That is, those seeded by truncations we will
5132 // modify.
5133 while (!Roots.empty())
5134 collectValuesToDemote(Roots.pop_back_val(), Expr, ToDemote, Roots);
5136 // Finally, map the values we can demote to the maximum bit with we computed.
5137 for (auto *Scalar : ToDemote)
5138 MinBWs[Scalar] = std::make_pair(MaxBitWidth, !IsKnownPositive);
5141 namespace {
5143 /// The SLPVectorizer Pass.
5144 struct SLPVectorizer : public FunctionPass {
5145 SLPVectorizerPass Impl;
5147 /// Pass identification, replacement for typeid
5148 static char ID;
5150 explicit SLPVectorizer() : FunctionPass(ID) {
5151 initializeSLPVectorizerPass(*PassRegistry::getPassRegistry());
5154 bool doInitialization(Module &M) override {
5155 return false;
5158 bool runOnFunction(Function &F) override {
5159 if (skipFunction(F))
5160 return false;
5162 auto *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
5163 auto *TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
5164 auto *TLIP = getAnalysisIfAvailable<TargetLibraryInfoWrapperPass>();
5165 auto *TLI = TLIP ? &TLIP->getTLI(F) : nullptr;
5166 auto *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
5167 auto *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
5168 auto *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
5169 auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
5170 auto *DB = &getAnalysis<DemandedBitsWrapperPass>().getDemandedBits();
5171 auto *ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
5173 return Impl.runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5176 void getAnalysisUsage(AnalysisUsage &AU) const override {
5177 FunctionPass::getAnalysisUsage(AU);
5178 AU.addRequired<AssumptionCacheTracker>();
5179 AU.addRequired<ScalarEvolutionWrapperPass>();
5180 AU.addRequired<AAResultsWrapperPass>();
5181 AU.addRequired<TargetTransformInfoWrapperPass>();
5182 AU.addRequired<LoopInfoWrapperPass>();
5183 AU.addRequired<DominatorTreeWrapperPass>();
5184 AU.addRequired<DemandedBitsWrapperPass>();
5185 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
5186 AU.addPreserved<LoopInfoWrapperPass>();
5187 AU.addPreserved<DominatorTreeWrapperPass>();
5188 AU.addPreserved<AAResultsWrapperPass>();
5189 AU.addPreserved<GlobalsAAWrapperPass>();
5190 AU.setPreservesCFG();
5194 } // end anonymous namespace
5196 PreservedAnalyses SLPVectorizerPass::run(Function &F, FunctionAnalysisManager &AM) {
5197 auto *SE = &AM.getResult<ScalarEvolutionAnalysis>(F);
5198 auto *TTI = &AM.getResult<TargetIRAnalysis>(F);
5199 auto *TLI = AM.getCachedResult<TargetLibraryAnalysis>(F);
5200 auto *AA = &AM.getResult<AAManager>(F);
5201 auto *LI = &AM.getResult<LoopAnalysis>(F);
5202 auto *DT = &AM.getResult<DominatorTreeAnalysis>(F);
5203 auto *AC = &AM.getResult<AssumptionAnalysis>(F);
5204 auto *DB = &AM.getResult<DemandedBitsAnalysis>(F);
5205 auto *ORE = &AM.getResult<OptimizationRemarkEmitterAnalysis>(F);
5207 bool Changed = runImpl(F, SE, TTI, TLI, AA, LI, DT, AC, DB, ORE);
5208 if (!Changed)
5209 return PreservedAnalyses::all();
5211 PreservedAnalyses PA;
5212 PA.preserveSet<CFGAnalyses>();
5213 PA.preserve<AAManager>();
5214 PA.preserve<GlobalsAA>();
5215 return PA;
5218 bool SLPVectorizerPass::runImpl(Function &F, ScalarEvolution *SE_,
5219 TargetTransformInfo *TTI_,
5220 TargetLibraryInfo *TLI_, AliasAnalysis *AA_,
5221 LoopInfo *LI_, DominatorTree *DT_,
5222 AssumptionCache *AC_, DemandedBits *DB_,
5223 OptimizationRemarkEmitter *ORE_) {
5224 SE = SE_;
5225 TTI = TTI_;
5226 TLI = TLI_;
5227 AA = AA_;
5228 LI = LI_;
5229 DT = DT_;
5230 AC = AC_;
5231 DB = DB_;
5232 DL = &F.getParent()->getDataLayout();
5234 Stores.clear();
5235 GEPs.clear();
5236 bool Changed = false;
5238 // If the target claims to have no vector registers don't attempt
5239 // vectorization.
5240 if (!TTI->getNumberOfRegisters(true))
5241 return false;
5243 // Don't vectorize when the attribute NoImplicitFloat is used.
5244 if (F.hasFnAttribute(Attribute::NoImplicitFloat))
5245 return false;
5247 LLVM_DEBUG(dbgs() << "SLP: Analyzing blocks in " << F.getName() << ".\n");
5249 // Use the bottom up slp vectorizer to construct chains that start with
5250 // store instructions.
5251 BoUpSLP R(&F, SE, TTI, TLI, AA, LI, DT, AC, DB, DL, ORE_);
5253 // A general note: the vectorizer must use BoUpSLP::eraseInstruction() to
5254 // delete instructions.
5256 // Scan the blocks in the function in post order.
5257 for (auto BB : post_order(&F.getEntryBlock())) {
5258 collectSeedInstructions(BB);
5260 // Vectorize trees that end at stores.
5261 if (!Stores.empty()) {
5262 LLVM_DEBUG(dbgs() << "SLP: Found stores for " << Stores.size()
5263 << " underlying objects.\n");
5264 Changed |= vectorizeStoreChains(R);
5267 // Vectorize trees that end at reductions.
5268 Changed |= vectorizeChainsInBlock(BB, R);
5270 // Vectorize the index computations of getelementptr instructions. This
5271 // is primarily intended to catch gather-like idioms ending at
5272 // non-consecutive loads.
5273 if (!GEPs.empty()) {
5274 LLVM_DEBUG(dbgs() << "SLP: Found GEPs for " << GEPs.size()
5275 << " underlying objects.\n");
5276 Changed |= vectorizeGEPIndices(BB, R);
5280 if (Changed) {
5281 R.optimizeGatherSequence();
5282 LLVM_DEBUG(dbgs() << "SLP: vectorized \"" << F.getName() << "\"\n");
5283 LLVM_DEBUG(verifyFunction(F));
5285 return Changed;
5288 bool SLPVectorizerPass::vectorizeStoreChain(ArrayRef<Value *> Chain, BoUpSLP &R,
5289 unsigned VecRegSize) {
5290 const unsigned ChainLen = Chain.size();
5291 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
5292 << "\n");
5293 const unsigned Sz = R.getVectorElementSize(Chain[0]);
5294 const unsigned VF = VecRegSize / Sz;
5296 if (!isPowerOf2_32(Sz) || VF < 2)
5297 return false;
5299 bool Changed = false;
5300 // Look for profitable vectorizable trees at all offsets, starting at zero.
5301 for (unsigned i = 0, e = ChainLen; i + VF <= e; ++i) {
5303 ArrayRef<Value *> Operands = Chain.slice(i, VF);
5304 // Check that a previous iteration of this loop did not delete the Value.
5305 if (llvm::any_of(Operands, [&R](Value *V) {
5306 auto *I = dyn_cast<Instruction>(V);
5307 return I && R.isDeleted(I);
5309 continue;
5311 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
5312 << "\n");
5314 R.buildTree(Operands);
5315 if (R.isTreeTinyAndNotFullyVectorizable())
5316 continue;
5318 R.computeMinimumValueSizes();
5320 int Cost = R.getTreeCost();
5322 LLVM_DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF
5323 << "\n");
5324 if (Cost < -SLPCostThreshold) {
5325 LLVM_DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
5327 using namespace ore;
5329 R.getORE()->emit(OptimizationRemark(SV_NAME, "StoresVectorized",
5330 cast<StoreInst>(Chain[i]))
5331 << "Stores SLP vectorized with cost " << NV("Cost", Cost)
5332 << " and with tree size "
5333 << NV("TreeSize", R.getTreeSize()));
5335 R.vectorizeTree();
5337 // Move to the next bundle.
5338 i += VF - 1;
5339 Changed = true;
5343 return Changed;
5346 bool SLPVectorizerPass::vectorizeStores(ArrayRef<StoreInst *> Stores,
5347 BoUpSLP &R) {
5348 SetVector<StoreInst *> Heads;
5349 SmallDenseSet<StoreInst *> Tails;
5350 SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;
5352 // We may run into multiple chains that merge into a single chain. We mark the
5353 // stores that we vectorized so that we don't visit the same store twice.
5354 BoUpSLP::ValueSet VectorizedStores;
5355 bool Changed = false;
5357 auto &&FindConsecutiveAccess =
5358 [this, &Stores, &Heads, &Tails, &ConsecutiveChain] (int K, int Idx) {
5359 if (!isConsecutiveAccess(Stores[K], Stores[Idx], *DL, *SE))
5360 return false;
5362 Tails.insert(Stores[Idx]);
5363 Heads.insert(Stores[K]);
5364 ConsecutiveChain[Stores[K]] = Stores[Idx];
5365 return true;
5368 // Do a quadratic search on all of the given stores in reverse order and find
5369 // all of the pairs of stores that follow each other.
5370 int E = Stores.size();
5371 for (int Idx = E - 1; Idx >= 0; --Idx) {
5372 // If a store has multiple consecutive store candidates, search according
5373 // to the sequence: Idx-1, Idx+1, Idx-2, Idx+2, ...
5374 // This is because usually pairing with immediate succeeding or preceding
5375 // candidate create the best chance to find slp vectorization opportunity.
5376 for (int Offset = 1, F = std::max(E - Idx, Idx + 1); Offset < F; ++Offset)
5377 if ((Idx >= Offset && FindConsecutiveAccess(Idx - Offset, Idx)) ||
5378 (Idx + Offset < E && FindConsecutiveAccess(Idx + Offset, Idx)))
5379 break;
5382 // For stores that start but don't end a link in the chain:
5383 for (auto *SI : llvm::reverse(Heads)) {
5384 if (Tails.count(SI))
5385 continue;
5387 // We found a store instr that starts a chain. Now follow the chain and try
5388 // to vectorize it.
5389 BoUpSLP::ValueList Operands;
5390 StoreInst *I = SI;
5391 // Collect the chain into a list.
5392 while ((Tails.count(I) || Heads.count(I)) && !VectorizedStores.count(I)) {
5393 Operands.push_back(I);
5394 // Move to the next value in the chain.
5395 I = ConsecutiveChain[I];
5398 // FIXME: Is division-by-2 the correct step? Should we assert that the
5399 // register size is a power-of-2?
5400 for (unsigned Size = R.getMaxVecRegSize(); Size >= R.getMinVecRegSize();
5401 Size /= 2) {
5402 if (vectorizeStoreChain(Operands, R, Size)) {
5403 // Mark the vectorized stores so that we don't vectorize them again.
5404 VectorizedStores.insert(Operands.begin(), Operands.end());
5405 Changed = true;
5406 break;
5411 return Changed;
5414 void SLPVectorizerPass::collectSeedInstructions(BasicBlock *BB) {
5415 // Initialize the collections. We will make a single pass over the block.
5416 Stores.clear();
5417 GEPs.clear();
5419 // Visit the store and getelementptr instructions in BB and organize them in
5420 // Stores and GEPs according to the underlying objects of their pointer
5421 // operands.
5422 for (Instruction &I : *BB) {
5423 // Ignore store instructions that are volatile or have a pointer operand
5424 // that doesn't point to a scalar type.
5425 if (auto *SI = dyn_cast<StoreInst>(&I)) {
5426 if (!SI->isSimple())
5427 continue;
5428 if (!isValidElementType(SI->getValueOperand()->getType()))
5429 continue;
5430 Stores[GetUnderlyingObject(SI->getPointerOperand(), *DL)].push_back(SI);
5433 // Ignore getelementptr instructions that have more than one index, a
5434 // constant index, or a pointer operand that doesn't point to a scalar
5435 // type.
5436 else if (auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
5437 auto Idx = GEP->idx_begin()->get();
5438 if (GEP->getNumIndices() > 1 || isa<Constant>(Idx))
5439 continue;
5440 if (!isValidElementType(Idx->getType()))
5441 continue;
5442 if (GEP->getType()->isVectorTy())
5443 continue;
5444 GEPs[GEP->getPointerOperand()].push_back(GEP);
5449 bool SLPVectorizerPass::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
5450 if (!A || !B)
5451 return false;
5452 Value *VL[] = { A, B };
5453 return tryToVectorizeList(VL, R, /*UserCost=*/0, true);
5456 bool SLPVectorizerPass::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
5457 int UserCost, bool AllowReorder) {
5458 if (VL.size() < 2)
5459 return false;
5461 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize a list of length = "
5462 << VL.size() << ".\n");
5464 // Check that all of the parts are scalar instructions of the same type,
5465 // we permit an alternate opcode via InstructionsState.
5466 InstructionsState S = getSameOpcode(VL);
5467 if (!S.getOpcode())
5468 return false;
5470 Instruction *I0 = cast<Instruction>(S.OpValue);
5471 unsigned Sz = R.getVectorElementSize(I0);
5472 unsigned MinVF = std::max(2U, R.getMinVecRegSize() / Sz);
5473 unsigned MaxVF = std::max<unsigned>(PowerOf2Floor(VL.size()), MinVF);
5474 if (MaxVF < 2) {
5475 R.getORE()->emit([&]() {
5476 return OptimizationRemarkMissed(SV_NAME, "SmallVF", I0)
5477 << "Cannot SLP vectorize list: vectorization factor "
5478 << "less than 2 is not supported";
5480 return false;
5483 for (Value *V : VL) {
5484 Type *Ty = V->getType();
5485 if (!isValidElementType(Ty)) {
5486 // NOTE: the following will give user internal llvm type name, which may
5487 // not be useful.
5488 R.getORE()->emit([&]() {
5489 std::string type_str;
5490 llvm::raw_string_ostream rso(type_str);
5491 Ty->print(rso);
5492 return OptimizationRemarkMissed(SV_NAME, "UnsupportedType", I0)
5493 << "Cannot SLP vectorize list: type "
5494 << rso.str() + " is unsupported by vectorizer";
5496 return false;
5500 bool Changed = false;
5501 bool CandidateFound = false;
5502 int MinCost = SLPCostThreshold;
5504 unsigned NextInst = 0, MaxInst = VL.size();
5505 for (unsigned VF = MaxVF; NextInst + 1 < MaxInst && VF >= MinVF; VF /= 2) {
5506 // No actual vectorization should happen, if number of parts is the same as
5507 // provided vectorization factor (i.e. the scalar type is used for vector
5508 // code during codegen).
5509 auto *VecTy = VectorType::get(VL[0]->getType(), VF);
5510 if (TTI->getNumberOfParts(VecTy) == VF)
5511 continue;
5512 for (unsigned I = NextInst; I < MaxInst; ++I) {
5513 unsigned OpsWidth = 0;
5515 if (I + VF > MaxInst)
5516 OpsWidth = MaxInst - I;
5517 else
5518 OpsWidth = VF;
5520 if (!isPowerOf2_32(OpsWidth) || OpsWidth < 2)
5521 break;
5523 ArrayRef<Value *> Ops = VL.slice(I, OpsWidth);
5524 // Check that a previous iteration of this loop did not delete the Value.
5525 if (llvm::any_of(Ops, [&R](Value *V) {
5526 auto *I = dyn_cast<Instruction>(V);
5527 return I && R.isDeleted(I);
5529 continue;
5531 LLVM_DEBUG(dbgs() << "SLP: Analyzing " << OpsWidth << " operations "
5532 << "\n");
5534 R.buildTree(Ops);
5535 Optional<ArrayRef<unsigned>> Order = R.bestOrder();
5536 // TODO: check if we can allow reordering for more cases.
5537 if (AllowReorder && Order) {
5538 // TODO: reorder tree nodes without tree rebuilding.
5539 // Conceptually, there is nothing actually preventing us from trying to
5540 // reorder a larger list. In fact, we do exactly this when vectorizing
5541 // reductions. However, at this point, we only expect to get here when
5542 // there are exactly two operations.
5543 assert(Ops.size() == 2);
5544 Value *ReorderedOps[] = {Ops[1], Ops[0]};
5545 R.buildTree(ReorderedOps, None);
5547 if (R.isTreeTinyAndNotFullyVectorizable())
5548 continue;
5550 R.computeMinimumValueSizes();
5551 int Cost = R.getTreeCost() - UserCost;
5552 CandidateFound = true;
5553 MinCost = std::min(MinCost, Cost);
5555 if (Cost < -SLPCostThreshold) {
5556 LLVM_DEBUG(dbgs() << "SLP: Vectorizing list at cost:" << Cost << ".\n");
5557 R.getORE()->emit(OptimizationRemark(SV_NAME, "VectorizedList",
5558 cast<Instruction>(Ops[0]))
5559 << "SLP vectorized with cost " << ore::NV("Cost", Cost)
5560 << " and with tree size "
5561 << ore::NV("TreeSize", R.getTreeSize()));
5563 R.vectorizeTree();
5564 // Move to the next bundle.
5565 I += VF - 1;
5566 NextInst = I + 1;
5567 Changed = true;
5572 if (!Changed && CandidateFound) {
5573 R.getORE()->emit([&]() {
5574 return OptimizationRemarkMissed(SV_NAME, "NotBeneficial", I0)
5575 << "List vectorization was possible but not beneficial with cost "
5576 << ore::NV("Cost", MinCost) << " >= "
5577 << ore::NV("Treshold", -SLPCostThreshold);
5579 } else if (!Changed) {
5580 R.getORE()->emit([&]() {
5581 return OptimizationRemarkMissed(SV_NAME, "NotPossible", I0)
5582 << "Cannot SLP vectorize list: vectorization was impossible"
5583 << " with available vectorization factors";
5586 return Changed;
5589 bool SLPVectorizerPass::tryToVectorize(Instruction *I, BoUpSLP &R) {
5590 if (!I)
5591 return false;
5593 if (!isa<BinaryOperator>(I) && !isa<CmpInst>(I))
5594 return false;
5596 Value *P = I->getParent();
5598 // Vectorize in current basic block only.
5599 auto *Op0 = dyn_cast<Instruction>(I->getOperand(0));
5600 auto *Op1 = dyn_cast<Instruction>(I->getOperand(1));
5601 if (!Op0 || !Op1 || Op0->getParent() != P || Op1->getParent() != P)
5602 return false;
5604 // Try to vectorize V.
5605 if (tryToVectorizePair(Op0, Op1, R))
5606 return true;
5608 auto *A = dyn_cast<BinaryOperator>(Op0);
5609 auto *B = dyn_cast<BinaryOperator>(Op1);
5610 // Try to skip B.
5611 if (B && B->hasOneUse()) {
5612 auto *B0 = dyn_cast<BinaryOperator>(B->getOperand(0));
5613 auto *B1 = dyn_cast<BinaryOperator>(B->getOperand(1));
5614 if (B0 && B0->getParent() == P && tryToVectorizePair(A, B0, R))
5615 return true;
5616 if (B1 && B1->getParent() == P && tryToVectorizePair(A, B1, R))
5617 return true;
5620 // Try to skip A.
5621 if (A && A->hasOneUse()) {
5622 auto *A0 = dyn_cast<BinaryOperator>(A->getOperand(0));
5623 auto *A1 = dyn_cast<BinaryOperator>(A->getOperand(1));
5624 if (A0 && A0->getParent() == P && tryToVectorizePair(A0, B, R))
5625 return true;
5626 if (A1 && A1->getParent() == P && tryToVectorizePair(A1, B, R))
5627 return true;
5629 return false;
5632 /// Generate a shuffle mask to be used in a reduction tree.
5634 /// \param VecLen The length of the vector to be reduced.
5635 /// \param NumEltsToRdx The number of elements that should be reduced in the
5636 /// vector.
5637 /// \param IsPairwise Whether the reduction is a pairwise or splitting
5638 /// reduction. A pairwise reduction will generate a mask of
5639 /// <0,2,...> or <1,3,..> while a splitting reduction will generate
5640 /// <2,3, undef,undef> for a vector of 4 and NumElts = 2.
5641 /// \param IsLeft True will generate a mask of even elements, odd otherwise.
5642 static Value *createRdxShuffleMask(unsigned VecLen, unsigned NumEltsToRdx,
5643 bool IsPairwise, bool IsLeft,
5644 IRBuilder<> &Builder) {
5645 assert((IsPairwise || !IsLeft) && "Don't support a <0,1,undef,...> mask");
5647 SmallVector<Constant *, 32> ShuffleMask(
5648 VecLen, UndefValue::get(Builder.getInt32Ty()));
5650 if (IsPairwise)
5651 // Build a mask of 0, 2, ... (left) or 1, 3, ... (right).
5652 for (unsigned i = 0; i != NumEltsToRdx; ++i)
5653 ShuffleMask[i] = Builder.getInt32(2 * i + !IsLeft);
5654 else
5655 // Move the upper half of the vector to the lower half.
5656 for (unsigned i = 0; i != NumEltsToRdx; ++i)
5657 ShuffleMask[i] = Builder.getInt32(NumEltsToRdx + i);
5659 return ConstantVector::get(ShuffleMask);
5662 namespace {
5664 /// Model horizontal reductions.
5666 /// A horizontal reduction is a tree of reduction operations (currently add and
5667 /// fadd) that has operations that can be put into a vector as its leaf.
5668 /// For example, this tree:
5670 /// mul mul mul mul
5671 /// \ / \ /
5672 /// + +
5673 /// \ /
5674 /// +
5675 /// This tree has "mul" as its reduced values and "+" as its reduction
5676 /// operations. A reduction might be feeding into a store or a binary operation
5677 /// feeding a phi.
5678 /// ...
5679 /// \ /
5680 /// +
5681 /// |
5682 /// phi +=
5684 /// Or:
5685 /// ...
5686 /// \ /
5687 /// +
5688 /// |
5689 /// *p =
5691 class HorizontalReduction {
5692 using ReductionOpsType = SmallVector<Value *, 16>;
5693 using ReductionOpsListType = SmallVector<ReductionOpsType, 2>;
5694 ReductionOpsListType ReductionOps;
5695 SmallVector<Value *, 32> ReducedVals;
5696 // Use map vector to make stable output.
5697 MapVector<Instruction *, Value *> ExtraArgs;
5699 /// Kind of the reduction data.
5700 enum ReductionKind {
5701 RK_None, /// Not a reduction.
5702 RK_Arithmetic, /// Binary reduction data.
5703 RK_Min, /// Minimum reduction data.
5704 RK_UMin, /// Unsigned minimum reduction data.
5705 RK_Max, /// Maximum reduction data.
5706 RK_UMax, /// Unsigned maximum reduction data.
5709 /// Contains info about operation, like its opcode, left and right operands.
5710 class OperationData {
5711 /// Opcode of the instruction.
5712 unsigned Opcode = 0;
5714 /// Left operand of the reduction operation.
5715 Value *LHS = nullptr;
5717 /// Right operand of the reduction operation.
5718 Value *RHS = nullptr;
5720 /// Kind of the reduction operation.
5721 ReductionKind Kind = RK_None;
5723 /// True if float point min/max reduction has no NaNs.
5724 bool NoNaN = false;
5726 /// Checks if the reduction operation can be vectorized.
5727 bool isVectorizable() const {
5728 return LHS && RHS &&
5729 // We currently only support add/mul/logical && min/max reductions.
5730 ((Kind == RK_Arithmetic &&
5731 (Opcode == Instruction::Add || Opcode == Instruction::FAdd ||
5732 Opcode == Instruction::Mul || Opcode == Instruction::FMul ||
5733 Opcode == Instruction::And || Opcode == Instruction::Or ||
5734 Opcode == Instruction::Xor)) ||
5735 ((Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) &&
5736 (Kind == RK_Min || Kind == RK_Max)) ||
5737 (Opcode == Instruction::ICmp &&
5738 (Kind == RK_UMin || Kind == RK_UMax)));
5741 /// Creates reduction operation with the current opcode.
5742 Value *createOp(IRBuilder<> &Builder, const Twine &Name) const {
5743 assert(isVectorizable() &&
5744 "Expected add|fadd or min/max reduction operation.");
5745 Value *Cmp = nullptr;
5746 switch (Kind) {
5747 case RK_Arithmetic:
5748 return Builder.CreateBinOp((Instruction::BinaryOps)Opcode, LHS, RHS,
5749 Name);
5750 case RK_Min:
5751 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSLT(LHS, RHS)
5752 : Builder.CreateFCmpOLT(LHS, RHS);
5753 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5754 case RK_Max:
5755 Cmp = Opcode == Instruction::ICmp ? Builder.CreateICmpSGT(LHS, RHS)
5756 : Builder.CreateFCmpOGT(LHS, RHS);
5757 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5758 case RK_UMin:
5759 assert(Opcode == Instruction::ICmp && "Expected integer types.");
5760 Cmp = Builder.CreateICmpULT(LHS, RHS);
5761 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5762 case RK_UMax:
5763 assert(Opcode == Instruction::ICmp && "Expected integer types.");
5764 Cmp = Builder.CreateICmpUGT(LHS, RHS);
5765 return Builder.CreateSelect(Cmp, LHS, RHS, Name);
5766 case RK_None:
5767 break;
5769 llvm_unreachable("Unknown reduction operation.");
5772 public:
5773 explicit OperationData() = default;
5775 /// Construction for reduced values. They are identified by opcode only and
5776 /// don't have associated LHS/RHS values.
5777 explicit OperationData(Value *V) {
5778 if (auto *I = dyn_cast<Instruction>(V))
5779 Opcode = I->getOpcode();
5782 /// Constructor for reduction operations with opcode and its left and
5783 /// right operands.
5784 OperationData(unsigned Opcode, Value *LHS, Value *RHS, ReductionKind Kind,
5785 bool NoNaN = false)
5786 : Opcode(Opcode), LHS(LHS), RHS(RHS), Kind(Kind), NoNaN(NoNaN) {
5787 assert(Kind != RK_None && "One of the reduction operations is expected.");
5790 explicit operator bool() const { return Opcode; }
5792 /// Get the index of the first operand.
5793 unsigned getFirstOperandIndex() const {
5794 assert(!!*this && "The opcode is not set.");
5795 switch (Kind) {
5796 case RK_Min:
5797 case RK_UMin:
5798 case RK_Max:
5799 case RK_UMax:
5800 return 1;
5801 case RK_Arithmetic:
5802 case RK_None:
5803 break;
5805 return 0;
5808 /// Total number of operands in the reduction operation.
5809 unsigned getNumberOfOperands() const {
5810 assert(Kind != RK_None && !!*this && LHS && RHS &&
5811 "Expected reduction operation.");
5812 switch (Kind) {
5813 case RK_Arithmetic:
5814 return 2;
5815 case RK_Min:
5816 case RK_UMin:
5817 case RK_Max:
5818 case RK_UMax:
5819 return 3;
5820 case RK_None:
5821 break;
5823 llvm_unreachable("Reduction kind is not set");
5826 /// Checks if the operation has the same parent as \p P.
5827 bool hasSameParent(Instruction *I, Value *P, bool IsRedOp) const {
5828 assert(Kind != RK_None && !!*this && LHS && RHS &&
5829 "Expected reduction operation.");
5830 if (!IsRedOp)
5831 return I->getParent() == P;
5832 switch (Kind) {
5833 case RK_Arithmetic:
5834 // Arithmetic reduction operation must be used once only.
5835 return I->getParent() == P;
5836 case RK_Min:
5837 case RK_UMin:
5838 case RK_Max:
5839 case RK_UMax: {
5840 // SelectInst must be used twice while the condition op must have single
5841 // use only.
5842 auto *Cmp = cast<Instruction>(cast<SelectInst>(I)->getCondition());
5843 return I->getParent() == P && Cmp && Cmp->getParent() == P;
5845 case RK_None:
5846 break;
5848 llvm_unreachable("Reduction kind is not set");
5850 /// Expected number of uses for reduction operations/reduced values.
5851 bool hasRequiredNumberOfUses(Instruction *I, bool IsReductionOp) const {
5852 assert(Kind != RK_None && !!*this && LHS && RHS &&
5853 "Expected reduction operation.");
5854 switch (Kind) {
5855 case RK_Arithmetic:
5856 return I->hasOneUse();
5857 case RK_Min:
5858 case RK_UMin:
5859 case RK_Max:
5860 case RK_UMax:
5861 return I->hasNUses(2) &&
5862 (!IsReductionOp ||
5863 cast<SelectInst>(I)->getCondition()->hasOneUse());
5864 case RK_None:
5865 break;
5867 llvm_unreachable("Reduction kind is not set");
5870 /// Initializes the list of reduction operations.
5871 void initReductionOps(ReductionOpsListType &ReductionOps) {
5872 assert(Kind != RK_None && !!*this && LHS && RHS &&
5873 "Expected reduction operation.");
5874 switch (Kind) {
5875 case RK_Arithmetic:
5876 ReductionOps.assign(1, ReductionOpsType());
5877 break;
5878 case RK_Min:
5879 case RK_UMin:
5880 case RK_Max:
5881 case RK_UMax:
5882 ReductionOps.assign(2, ReductionOpsType());
5883 break;
5884 case RK_None:
5885 llvm_unreachable("Reduction kind is not set");
5888 /// Add all reduction operations for the reduction instruction \p I.
5889 void addReductionOps(Instruction *I, ReductionOpsListType &ReductionOps) {
5890 assert(Kind != RK_None && !!*this && LHS && RHS &&
5891 "Expected reduction operation.");
5892 switch (Kind) {
5893 case RK_Arithmetic:
5894 ReductionOps[0].emplace_back(I);
5895 break;
5896 case RK_Min:
5897 case RK_UMin:
5898 case RK_Max:
5899 case RK_UMax:
5900 ReductionOps[0].emplace_back(cast<SelectInst>(I)->getCondition());
5901 ReductionOps[1].emplace_back(I);
5902 break;
5903 case RK_None:
5904 llvm_unreachable("Reduction kind is not set");
5908 /// Checks if instruction is associative and can be vectorized.
5909 bool isAssociative(Instruction *I) const {
5910 assert(Kind != RK_None && *this && LHS && RHS &&
5911 "Expected reduction operation.");
5912 switch (Kind) {
5913 case RK_Arithmetic:
5914 return I->isAssociative();
5915 case RK_Min:
5916 case RK_Max:
5917 return Opcode == Instruction::ICmp ||
5918 cast<Instruction>(I->getOperand(0))->isFast();
5919 case RK_UMin:
5920 case RK_UMax:
5921 assert(Opcode == Instruction::ICmp &&
5922 "Only integer compare operation is expected.");
5923 return true;
5924 case RK_None:
5925 break;
5927 llvm_unreachable("Reduction kind is not set");
5930 /// Checks if the reduction operation can be vectorized.
5931 bool isVectorizable(Instruction *I) const {
5932 return isVectorizable() && isAssociative(I);
5935 /// Checks if two operation data are both a reduction op or both a reduced
5936 /// value.
5937 bool operator==(const OperationData &OD) {
5938 assert(((Kind != OD.Kind) || ((!LHS == !OD.LHS) && (!RHS == !OD.RHS))) &&
5939 "One of the comparing operations is incorrect.");
5940 return this == &OD || (Kind == OD.Kind && Opcode == OD.Opcode);
5942 bool operator!=(const OperationData &OD) { return !(*this == OD); }
5943 void clear() {
5944 Opcode = 0;
5945 LHS = nullptr;
5946 RHS = nullptr;
5947 Kind = RK_None;
5948 NoNaN = false;
5951 /// Get the opcode of the reduction operation.
5952 unsigned getOpcode() const {
5953 assert(isVectorizable() && "Expected vectorizable operation.");
5954 return Opcode;
5957 /// Get kind of reduction data.
5958 ReductionKind getKind() const { return Kind; }
5959 Value *getLHS() const { return LHS; }
5960 Value *getRHS() const { return RHS; }
5961 Type *getConditionType() const {
5962 switch (Kind) {
5963 case RK_Arithmetic:
5964 return nullptr;
5965 case RK_Min:
5966 case RK_Max:
5967 case RK_UMin:
5968 case RK_UMax:
5969 return CmpInst::makeCmpResultType(LHS->getType());
5970 case RK_None:
5971 break;
5973 llvm_unreachable("Reduction kind is not set");
5976 /// Creates reduction operation with the current opcode with the IR flags
5977 /// from \p ReductionOps.
5978 Value *createOp(IRBuilder<> &Builder, const Twine &Name,
5979 const ReductionOpsListType &ReductionOps) const {
5980 assert(isVectorizable() &&
5981 "Expected add|fadd or min/max reduction operation.");
5982 auto *Op = createOp(Builder, Name);
5983 switch (Kind) {
5984 case RK_Arithmetic:
5985 propagateIRFlags(Op, ReductionOps[0]);
5986 return Op;
5987 case RK_Min:
5988 case RK_Max:
5989 case RK_UMin:
5990 case RK_UMax:
5991 if (auto *SI = dyn_cast<SelectInst>(Op))
5992 propagateIRFlags(SI->getCondition(), ReductionOps[0]);
5993 propagateIRFlags(Op, ReductionOps[1]);
5994 return Op;
5995 case RK_None:
5996 break;
5998 llvm_unreachable("Unknown reduction operation.");
6000 /// Creates reduction operation with the current opcode with the IR flags
6001 /// from \p I.
6002 Value *createOp(IRBuilder<> &Builder, const Twine &Name,
6003 Instruction *I) const {
6004 assert(isVectorizable() &&
6005 "Expected add|fadd or min/max reduction operation.");
6006 auto *Op = createOp(Builder, Name);
6007 switch (Kind) {
6008 case RK_Arithmetic:
6009 propagateIRFlags(Op, I);
6010 return Op;
6011 case RK_Min:
6012 case RK_Max:
6013 case RK_UMin:
6014 case RK_UMax:
6015 if (auto *SI = dyn_cast<SelectInst>(Op)) {
6016 propagateIRFlags(SI->getCondition(),
6017 cast<SelectInst>(I)->getCondition());
6019 propagateIRFlags(Op, I);
6020 return Op;
6021 case RK_None:
6022 break;
6024 llvm_unreachable("Unknown reduction operation.");
6027 TargetTransformInfo::ReductionFlags getFlags() const {
6028 TargetTransformInfo::ReductionFlags Flags;
6029 Flags.NoNaN = NoNaN;
6030 switch (Kind) {
6031 case RK_Arithmetic:
6032 break;
6033 case RK_Min:
6034 Flags.IsSigned = Opcode == Instruction::ICmp;
6035 Flags.IsMaxOp = false;
6036 break;
6037 case RK_Max:
6038 Flags.IsSigned = Opcode == Instruction::ICmp;
6039 Flags.IsMaxOp = true;
6040 break;
6041 case RK_UMin:
6042 Flags.IsSigned = false;
6043 Flags.IsMaxOp = false;
6044 break;
6045 case RK_UMax:
6046 Flags.IsSigned = false;
6047 Flags.IsMaxOp = true;
6048 break;
6049 case RK_None:
6050 llvm_unreachable("Reduction kind is not set");
6052 return Flags;
6056 WeakTrackingVH ReductionRoot;
6058 /// The operation data of the reduction operation.
6059 OperationData ReductionData;
6061 /// The operation data of the values we perform a reduction on.
6062 OperationData ReducedValueData;
6064 /// Should we model this reduction as a pairwise reduction tree or a tree that
6065 /// splits the vector in halves and adds those halves.
6066 bool IsPairwiseReduction = false;
6068 /// Checks if the ParentStackElem.first should be marked as a reduction
6069 /// operation with an extra argument or as extra argument itself.
6070 void markExtraArg(std::pair<Instruction *, unsigned> &ParentStackElem,
6071 Value *ExtraArg) {
6072 if (ExtraArgs.count(ParentStackElem.first)) {
6073 ExtraArgs[ParentStackElem.first] = nullptr;
6074 // We ran into something like:
6075 // ParentStackElem.first = ExtraArgs[ParentStackElem.first] + ExtraArg.
6076 // The whole ParentStackElem.first should be considered as an extra value
6077 // in this case.
6078 // Do not perform analysis of remaining operands of ParentStackElem.first
6079 // instruction, this whole instruction is an extra argument.
6080 ParentStackElem.second = ParentStackElem.first->getNumOperands();
6081 } else {
6082 // We ran into something like:
6083 // ParentStackElem.first += ... + ExtraArg + ...
6084 ExtraArgs[ParentStackElem.first] = ExtraArg;
6088 static OperationData getOperationData(Value *V) {
6089 if (!V)
6090 return OperationData();
6092 Value *LHS;
6093 Value *RHS;
6094 if (m_BinOp(m_Value(LHS), m_Value(RHS)).match(V)) {
6095 return OperationData(cast<BinaryOperator>(V)->getOpcode(), LHS, RHS,
6096 RK_Arithmetic);
6098 if (auto *Select = dyn_cast<SelectInst>(V)) {
6099 // Look for a min/max pattern.
6100 if (m_UMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6101 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6102 } else if (m_SMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6103 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6104 } else if (m_OrdFMin(m_Value(LHS), m_Value(RHS)).match(Select) ||
6105 m_UnordFMin(m_Value(LHS), m_Value(RHS)).match(Select)) {
6106 return OperationData(
6107 Instruction::FCmp, LHS, RHS, RK_Min,
6108 cast<Instruction>(Select->getCondition())->hasNoNaNs());
6109 } else if (m_UMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6110 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6111 } else if (m_SMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6112 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6113 } else if (m_OrdFMax(m_Value(LHS), m_Value(RHS)).match(Select) ||
6114 m_UnordFMax(m_Value(LHS), m_Value(RHS)).match(Select)) {
6115 return OperationData(
6116 Instruction::FCmp, LHS, RHS, RK_Max,
6117 cast<Instruction>(Select->getCondition())->hasNoNaNs());
6118 } else {
6119 // Try harder: look for min/max pattern based on instructions producing
6120 // same values such as: select ((cmp Inst1, Inst2), Inst1, Inst2).
6121 // During the intermediate stages of SLP, it's very common to have
6122 // pattern like this (since optimizeGatherSequence is run only once
6123 // at the end):
6124 // %1 = extractelement <2 x i32> %a, i32 0
6125 // %2 = extractelement <2 x i32> %a, i32 1
6126 // %cond = icmp sgt i32 %1, %2
6127 // %3 = extractelement <2 x i32> %a, i32 0
6128 // %4 = extractelement <2 x i32> %a, i32 1
6129 // %select = select i1 %cond, i32 %3, i32 %4
6130 CmpInst::Predicate Pred;
6131 Instruction *L1;
6132 Instruction *L2;
6134 LHS = Select->getTrueValue();
6135 RHS = Select->getFalseValue();
6136 Value *Cond = Select->getCondition();
6138 // TODO: Support inverse predicates.
6139 if (match(Cond, m_Cmp(Pred, m_Specific(LHS), m_Instruction(L2)))) {
6140 if (!isa<ExtractElementInst>(RHS) ||
6141 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6142 return OperationData(V);
6143 } else if (match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Specific(RHS)))) {
6144 if (!isa<ExtractElementInst>(LHS) ||
6145 !L1->isIdenticalTo(cast<Instruction>(LHS)))
6146 return OperationData(V);
6147 } else {
6148 if (!isa<ExtractElementInst>(LHS) || !isa<ExtractElementInst>(RHS))
6149 return OperationData(V);
6150 if (!match(Cond, m_Cmp(Pred, m_Instruction(L1), m_Instruction(L2))) ||
6151 !L1->isIdenticalTo(cast<Instruction>(LHS)) ||
6152 !L2->isIdenticalTo(cast<Instruction>(RHS)))
6153 return OperationData(V);
6155 switch (Pred) {
6156 default:
6157 return OperationData(V);
6159 case CmpInst::ICMP_ULT:
6160 case CmpInst::ICMP_ULE:
6161 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMin);
6163 case CmpInst::ICMP_SLT:
6164 case CmpInst::ICMP_SLE:
6165 return OperationData(Instruction::ICmp, LHS, RHS, RK_Min);
6167 case CmpInst::FCMP_OLT:
6168 case CmpInst::FCMP_OLE:
6169 case CmpInst::FCMP_ULT:
6170 case CmpInst::FCMP_ULE:
6171 return OperationData(Instruction::FCmp, LHS, RHS, RK_Min,
6172 cast<Instruction>(Cond)->hasNoNaNs());
6174 case CmpInst::ICMP_UGT:
6175 case CmpInst::ICMP_UGE:
6176 return OperationData(Instruction::ICmp, LHS, RHS, RK_UMax);
6178 case CmpInst::ICMP_SGT:
6179 case CmpInst::ICMP_SGE:
6180 return OperationData(Instruction::ICmp, LHS, RHS, RK_Max);
6182 case CmpInst::FCMP_OGT:
6183 case CmpInst::FCMP_OGE:
6184 case CmpInst::FCMP_UGT:
6185 case CmpInst::FCMP_UGE:
6186 return OperationData(Instruction::FCmp, LHS, RHS, RK_Max,
6187 cast<Instruction>(Cond)->hasNoNaNs());
6191 return OperationData(V);
6194 public:
6195 HorizontalReduction() = default;
6197 /// Try to find a reduction tree.
6198 bool matchAssociativeReduction(PHINode *Phi, Instruction *B) {
6199 assert((!Phi || is_contained(Phi->operands(), B)) &&
6200 "Thi phi needs to use the binary operator");
6202 ReductionData = getOperationData(B);
6204 // We could have a initial reductions that is not an add.
6205 // r *= v1 + v2 + v3 + v4
6206 // In such a case start looking for a tree rooted in the first '+'.
6207 if (Phi) {
6208 if (ReductionData.getLHS() == Phi) {
6209 Phi = nullptr;
6210 B = dyn_cast<Instruction>(ReductionData.getRHS());
6211 ReductionData = getOperationData(B);
6212 } else if (ReductionData.getRHS() == Phi) {
6213 Phi = nullptr;
6214 B = dyn_cast<Instruction>(ReductionData.getLHS());
6215 ReductionData = getOperationData(B);
6219 if (!ReductionData.isVectorizable(B))
6220 return false;
6222 Type *Ty = B->getType();
6223 if (!isValidElementType(Ty))
6224 return false;
6225 if (!Ty->isIntOrIntVectorTy() && !Ty->isFPOrFPVectorTy())
6226 return false;
6228 ReducedValueData.clear();
6229 ReductionRoot = B;
6231 // Post order traverse the reduction tree starting at B. We only handle true
6232 // trees containing only binary operators.
6233 SmallVector<std::pair<Instruction *, unsigned>, 32> Stack;
6234 Stack.push_back(std::make_pair(B, ReductionData.getFirstOperandIndex()));
6235 ReductionData.initReductionOps(ReductionOps);
6236 while (!Stack.empty()) {
6237 Instruction *TreeN = Stack.back().first;
6238 unsigned EdgeToVist = Stack.back().second++;
6239 OperationData OpData = getOperationData(TreeN);
6240 bool IsReducedValue = OpData != ReductionData;
6242 // Postorder vist.
6243 if (IsReducedValue || EdgeToVist == OpData.getNumberOfOperands()) {
6244 if (IsReducedValue)
6245 ReducedVals.push_back(TreeN);
6246 else {
6247 auto I = ExtraArgs.find(TreeN);
6248 if (I != ExtraArgs.end() && !I->second) {
6249 // Check if TreeN is an extra argument of its parent operation.
6250 if (Stack.size() <= 1) {
6251 // TreeN can't be an extra argument as it is a root reduction
6252 // operation.
6253 return false;
6255 // Yes, TreeN is an extra argument, do not add it to a list of
6256 // reduction operations.
6257 // Stack[Stack.size() - 2] always points to the parent operation.
6258 markExtraArg(Stack[Stack.size() - 2], TreeN);
6259 ExtraArgs.erase(TreeN);
6260 } else
6261 ReductionData.addReductionOps(TreeN, ReductionOps);
6263 // Retract.
6264 Stack.pop_back();
6265 continue;
6268 // Visit left or right.
6269 Value *NextV = TreeN->getOperand(EdgeToVist);
6270 if (NextV != Phi) {
6271 auto *I = dyn_cast<Instruction>(NextV);
6272 OpData = getOperationData(I);
6273 // Continue analysis if the next operand is a reduction operation or
6274 // (possibly) a reduced value. If the reduced value opcode is not set,
6275 // the first met operation != reduction operation is considered as the
6276 // reduced value class.
6277 if (I && (!ReducedValueData || OpData == ReducedValueData ||
6278 OpData == ReductionData)) {
6279 const bool IsReductionOperation = OpData == ReductionData;
6280 // Only handle trees in the current basic block.
6281 if (!ReductionData.hasSameParent(I, B->getParent(),
6282 IsReductionOperation)) {
6283 // I is an extra argument for TreeN (its parent operation).
6284 markExtraArg(Stack.back(), I);
6285 continue;
6288 // Each tree node needs to have minimal number of users except for the
6289 // ultimate reduction.
6290 if (!ReductionData.hasRequiredNumberOfUses(I,
6291 OpData == ReductionData) &&
6292 I != B) {
6293 // I is an extra argument for TreeN (its parent operation).
6294 markExtraArg(Stack.back(), I);
6295 continue;
6298 if (IsReductionOperation) {
6299 // We need to be able to reassociate the reduction operations.
6300 if (!OpData.isAssociative(I)) {
6301 // I is an extra argument for TreeN (its parent operation).
6302 markExtraArg(Stack.back(), I);
6303 continue;
6305 } else if (ReducedValueData &&
6306 ReducedValueData != OpData) {
6307 // Make sure that the opcodes of the operations that we are going to
6308 // reduce match.
6309 // I is an extra argument for TreeN (its parent operation).
6310 markExtraArg(Stack.back(), I);
6311 continue;
6312 } else if (!ReducedValueData)
6313 ReducedValueData = OpData;
6315 Stack.push_back(std::make_pair(I, OpData.getFirstOperandIndex()));
6316 continue;
6319 // NextV is an extra argument for TreeN (its parent operation).
6320 markExtraArg(Stack.back(), NextV);
6322 return true;
6325 /// Attempt to vectorize the tree found by
6326 /// matchAssociativeReduction.
6327 bool tryToReduce(BoUpSLP &V, TargetTransformInfo *TTI) {
6328 if (ReducedVals.empty())
6329 return false;
6331 // If there is a sufficient number of reduction values, reduce
6332 // to a nearby power-of-2. Can safely generate oversized
6333 // vectors and rely on the backend to split them to legal sizes.
6334 unsigned NumReducedVals = ReducedVals.size();
6335 if (NumReducedVals < 4)
6336 return false;
6338 unsigned ReduxWidth = PowerOf2Floor(NumReducedVals);
6340 Value *VectorizedTree = nullptr;
6342 // FIXME: Fast-math-flags should be set based on the instructions in the
6343 // reduction (not all of 'fast' are required).
6344 IRBuilder<> Builder(cast<Instruction>(ReductionRoot));
6345 FastMathFlags Unsafe;
6346 Unsafe.setFast();
6347 Builder.setFastMathFlags(Unsafe);
6348 unsigned i = 0;
6350 BoUpSLP::ExtraValueToDebugLocsMap ExternallyUsedValues;
6351 // The same extra argument may be used several time, so log each attempt
6352 // to use it.
6353 for (auto &Pair : ExtraArgs) {
6354 assert(Pair.first && "DebugLoc must be set.");
6355 ExternallyUsedValues[Pair.second].push_back(Pair.first);
6357 // The reduction root is used as the insertion point for new instructions,
6358 // so set it as externally used to prevent it from being deleted.
6359 ExternallyUsedValues[ReductionRoot];
6360 SmallVector<Value *, 16> IgnoreList;
6361 for (auto &V : ReductionOps)
6362 IgnoreList.append(V.begin(), V.end());
6363 while (i < NumReducedVals - ReduxWidth + 1 && ReduxWidth > 2) {
6364 auto VL = makeArrayRef(&ReducedVals[i], ReduxWidth);
6365 V.buildTree(VL, ExternallyUsedValues, IgnoreList);
6366 Optional<ArrayRef<unsigned>> Order = V.bestOrder();
6367 // TODO: Handle orders of size less than number of elements in the vector.
6368 if (Order && Order->size() == VL.size()) {
6369 // TODO: reorder tree nodes without tree rebuilding.
6370 SmallVector<Value *, 4> ReorderedOps(VL.size());
6371 llvm::transform(*Order, ReorderedOps.begin(),
6372 [VL](const unsigned Idx) { return VL[Idx]; });
6373 V.buildTree(ReorderedOps, ExternallyUsedValues, IgnoreList);
6375 if (V.isTreeTinyAndNotFullyVectorizable())
6376 break;
6378 V.computeMinimumValueSizes();
6380 // Estimate cost.
6381 int TreeCost = V.getTreeCost();
6382 int ReductionCost = getReductionCost(TTI, ReducedVals[i], ReduxWidth);
6383 int Cost = TreeCost + ReductionCost;
6384 if (Cost >= -SLPCostThreshold) {
6385 V.getORE()->emit([&]() {
6386 return OptimizationRemarkMissed(
6387 SV_NAME, "HorSLPNotBeneficial", cast<Instruction>(VL[0]))
6388 << "Vectorizing horizontal reduction is possible"
6389 << "but not beneficial with cost "
6390 << ore::NV("Cost", Cost) << " and threshold "
6391 << ore::NV("Threshold", -SLPCostThreshold);
6393 break;
6396 LLVM_DEBUG(dbgs() << "SLP: Vectorizing horizontal reduction at cost:"
6397 << Cost << ". (HorRdx)\n");
6398 V.getORE()->emit([&]() {
6399 return OptimizationRemark(
6400 SV_NAME, "VectorizedHorizontalReduction", cast<Instruction>(VL[0]))
6401 << "Vectorized horizontal reduction with cost "
6402 << ore::NV("Cost", Cost) << " and with tree size "
6403 << ore::NV("TreeSize", V.getTreeSize());
6406 // Vectorize a tree.
6407 DebugLoc Loc = cast<Instruction>(ReducedVals[i])->getDebugLoc();
6408 Value *VectorizedRoot = V.vectorizeTree(ExternallyUsedValues);
6410 // Emit a reduction.
6411 Builder.SetInsertPoint(cast<Instruction>(ReductionRoot));
6412 Value *ReducedSubTree =
6413 emitReduction(VectorizedRoot, Builder, ReduxWidth, TTI);
6414 if (VectorizedTree) {
6415 Builder.SetCurrentDebugLocation(Loc);
6416 OperationData VectReductionData(ReductionData.getOpcode(),
6417 VectorizedTree, ReducedSubTree,
6418 ReductionData.getKind());
6419 VectorizedTree =
6420 VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6421 } else
6422 VectorizedTree = ReducedSubTree;
6423 i += ReduxWidth;
6424 ReduxWidth = PowerOf2Floor(NumReducedVals - i);
6427 if (VectorizedTree) {
6428 // Finish the reduction.
6429 for (; i < NumReducedVals; ++i) {
6430 auto *I = cast<Instruction>(ReducedVals[i]);
6431 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6432 OperationData VectReductionData(ReductionData.getOpcode(),
6433 VectorizedTree, I,
6434 ReductionData.getKind());
6435 VectorizedTree = VectReductionData.createOp(Builder, "", ReductionOps);
6437 for (auto &Pair : ExternallyUsedValues) {
6438 // Add each externally used value to the final reduction.
6439 for (auto *I : Pair.second) {
6440 Builder.SetCurrentDebugLocation(I->getDebugLoc());
6441 OperationData VectReductionData(ReductionData.getOpcode(),
6442 VectorizedTree, Pair.first,
6443 ReductionData.getKind());
6444 VectorizedTree = VectReductionData.createOp(Builder, "op.extra", I);
6447 // Update users.
6448 ReductionRoot->replaceAllUsesWith(VectorizedTree);
6449 // Mark all scalar reduction ops for deletion, they are replaced by the
6450 // vector reductions.
6451 V.eraseInstructions(IgnoreList);
6453 return VectorizedTree != nullptr;
6456 unsigned numReductionValues() const {
6457 return ReducedVals.size();
6460 private:
6461 /// Calculate the cost of a reduction.
6462 int getReductionCost(TargetTransformInfo *TTI, Value *FirstReducedVal,
6463 unsigned ReduxWidth) {
6464 Type *ScalarTy = FirstReducedVal->getType();
6465 Type *VecTy = VectorType::get(ScalarTy, ReduxWidth);
6467 int PairwiseRdxCost;
6468 int SplittingRdxCost;
6469 switch (ReductionData.getKind()) {
6470 case RK_Arithmetic:
6471 PairwiseRdxCost =
6472 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6473 /*IsPairwiseForm=*/true);
6474 SplittingRdxCost =
6475 TTI->getArithmeticReductionCost(ReductionData.getOpcode(), VecTy,
6476 /*IsPairwiseForm=*/false);
6477 break;
6478 case RK_Min:
6479 case RK_Max:
6480 case RK_UMin:
6481 case RK_UMax: {
6482 Type *VecCondTy = CmpInst::makeCmpResultType(VecTy);
6483 bool IsUnsigned = ReductionData.getKind() == RK_UMin ||
6484 ReductionData.getKind() == RK_UMax;
6485 PairwiseRdxCost =
6486 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6487 /*IsPairwiseForm=*/true, IsUnsigned);
6488 SplittingRdxCost =
6489 TTI->getMinMaxReductionCost(VecTy, VecCondTy,
6490 /*IsPairwiseForm=*/false, IsUnsigned);
6491 break;
6493 case RK_None:
6494 llvm_unreachable("Expected arithmetic or min/max reduction operation");
6497 IsPairwiseReduction = PairwiseRdxCost < SplittingRdxCost;
6498 int VecReduxCost = IsPairwiseReduction ? PairwiseRdxCost : SplittingRdxCost;
6500 int ScalarReduxCost = 0;
6501 switch (ReductionData.getKind()) {
6502 case RK_Arithmetic:
6503 ScalarReduxCost =
6504 TTI->getArithmeticInstrCost(ReductionData.getOpcode(), ScalarTy);
6505 break;
6506 case RK_Min:
6507 case RK_Max:
6508 case RK_UMin:
6509 case RK_UMax:
6510 ScalarReduxCost =
6511 TTI->getCmpSelInstrCost(ReductionData.getOpcode(), ScalarTy) +
6512 TTI->getCmpSelInstrCost(Instruction::Select, ScalarTy,
6513 CmpInst::makeCmpResultType(ScalarTy));
6514 break;
6515 case RK_None:
6516 llvm_unreachable("Expected arithmetic or min/max reduction operation");
6518 ScalarReduxCost *= (ReduxWidth - 1);
6520 LLVM_DEBUG(dbgs() << "SLP: Adding cost " << VecReduxCost - ScalarReduxCost
6521 << " for reduction that starts with " << *FirstReducedVal
6522 << " (It is a "
6523 << (IsPairwiseReduction ? "pairwise" : "splitting")
6524 << " reduction)\n");
6526 return VecReduxCost - ScalarReduxCost;
6529 /// Emit a horizontal reduction of the vectorized value.
6530 Value *emitReduction(Value *VectorizedValue, IRBuilder<> &Builder,
6531 unsigned ReduxWidth, const TargetTransformInfo *TTI) {
6532 assert(VectorizedValue && "Need to have a vectorized tree node");
6533 assert(isPowerOf2_32(ReduxWidth) &&
6534 "We only handle power-of-two reductions for now");
6536 if (!IsPairwiseReduction) {
6537 // FIXME: The builder should use an FMF guard. It should not be hard-coded
6538 // to 'fast'.
6539 assert(Builder.getFastMathFlags().isFast() && "Expected 'fast' FMF");
6540 return createSimpleTargetReduction(
6541 Builder, TTI, ReductionData.getOpcode(), VectorizedValue,
6542 ReductionData.getFlags(), ReductionOps.back());
6545 Value *TmpVec = VectorizedValue;
6546 for (unsigned i = ReduxWidth / 2; i != 0; i >>= 1) {
6547 Value *LeftMask =
6548 createRdxShuffleMask(ReduxWidth, i, true, true, Builder);
6549 Value *RightMask =
6550 createRdxShuffleMask(ReduxWidth, i, true, false, Builder);
6552 Value *LeftShuf = Builder.CreateShuffleVector(
6553 TmpVec, UndefValue::get(TmpVec->getType()), LeftMask, "rdx.shuf.l");
6554 Value *RightShuf = Builder.CreateShuffleVector(
6555 TmpVec, UndefValue::get(TmpVec->getType()), (RightMask),
6556 "rdx.shuf.r");
6557 OperationData VectReductionData(ReductionData.getOpcode(), LeftShuf,
6558 RightShuf, ReductionData.getKind());
6559 TmpVec = VectReductionData.createOp(Builder, "op.rdx", ReductionOps);
6562 // The result is in the first element of the vector.
6563 return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
6567 } // end anonymous namespace
6569 /// Recognize construction of vectors like
6570 /// %ra = insertelement <4 x float> undef, float %s0, i32 0
6571 /// %rb = insertelement <4 x float> %ra, float %s1, i32 1
6572 /// %rc = insertelement <4 x float> %rb, float %s2, i32 2
6573 /// %rd = insertelement <4 x float> %rc, float %s3, i32 3
6574 /// starting from the last insertelement instruction.
6576 /// Returns true if it matches
6577 static bool findBuildVector(InsertElementInst *LastInsertElem,
6578 TargetTransformInfo *TTI,
6579 SmallVectorImpl<Value *> &BuildVectorOpds,
6580 int &UserCost) {
6581 UserCost = 0;
6582 Value *V = nullptr;
6583 do {
6584 if (auto *CI = dyn_cast<ConstantInt>(LastInsertElem->getOperand(2))) {
6585 UserCost += TTI->getVectorInstrCost(Instruction::InsertElement,
6586 LastInsertElem->getType(),
6587 CI->getZExtValue());
6589 BuildVectorOpds.push_back(LastInsertElem->getOperand(1));
6590 V = LastInsertElem->getOperand(0);
6591 if (isa<UndefValue>(V))
6592 break;
6593 LastInsertElem = dyn_cast<InsertElementInst>(V);
6594 if (!LastInsertElem || !LastInsertElem->hasOneUse())
6595 return false;
6596 } while (true);
6597 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
6598 return true;
6601 /// Like findBuildVector, but looks for construction of aggregate.
6603 /// \return true if it matches.
6604 static bool findBuildAggregate(InsertValueInst *IV,
6605 SmallVectorImpl<Value *> &BuildVectorOpds) {
6606 do {
6607 BuildVectorOpds.push_back(IV->getInsertedValueOperand());
6608 Value *V = IV->getAggregateOperand();
6609 if (isa<UndefValue>(V))
6610 break;
6611 IV = dyn_cast<InsertValueInst>(V);
6612 if (!IV || !IV->hasOneUse())
6613 return false;
6614 } while (true);
6615 std::reverse(BuildVectorOpds.begin(), BuildVectorOpds.end());
6616 return true;
6619 static bool PhiTypeSorterFunc(Value *V, Value *V2) {
6620 return V->getType() < V2->getType();
6623 /// Try and get a reduction value from a phi node.
6625 /// Given a phi node \p P in a block \p ParentBB, consider possible reductions
6626 /// if they come from either \p ParentBB or a containing loop latch.
6628 /// \returns A candidate reduction value if possible, or \code nullptr \endcode
6629 /// if not possible.
6630 static Value *getReductionValue(const DominatorTree *DT, PHINode *P,
6631 BasicBlock *ParentBB, LoopInfo *LI) {
6632 // There are situations where the reduction value is not dominated by the
6633 // reduction phi. Vectorizing such cases has been reported to cause
6634 // miscompiles. See PR25787.
6635 auto DominatedReduxValue = [&](Value *R) {
6636 return isa<Instruction>(R) &&
6637 DT->dominates(P->getParent(), cast<Instruction>(R)->getParent());
6640 Value *Rdx = nullptr;
6642 // Return the incoming value if it comes from the same BB as the phi node.
6643 if (P->getIncomingBlock(0) == ParentBB) {
6644 Rdx = P->getIncomingValue(0);
6645 } else if (P->getIncomingBlock(1) == ParentBB) {
6646 Rdx = P->getIncomingValue(1);
6649 if (Rdx && DominatedReduxValue(Rdx))
6650 return Rdx;
6652 // Otherwise, check whether we have a loop latch to look at.
6653 Loop *BBL = LI->getLoopFor(ParentBB);
6654 if (!BBL)
6655 return nullptr;
6656 BasicBlock *BBLatch = BBL->getLoopLatch();
6657 if (!BBLatch)
6658 return nullptr;
6660 // There is a loop latch, return the incoming value if it comes from
6661 // that. This reduction pattern occasionally turns up.
6662 if (P->getIncomingBlock(0) == BBLatch) {
6663 Rdx = P->getIncomingValue(0);
6664 } else if (P->getIncomingBlock(1) == BBLatch) {
6665 Rdx = P->getIncomingValue(1);
6668 if (Rdx && DominatedReduxValue(Rdx))
6669 return Rdx;
6671 return nullptr;
6674 /// Attempt to reduce a horizontal reduction.
6675 /// If it is legal to match a horizontal reduction feeding the phi node \a P
6676 /// with reduction operators \a Root (or one of its operands) in a basic block
6677 /// \a BB, then check if it can be done. If horizontal reduction is not found
6678 /// and root instruction is a binary operation, vectorization of the operands is
6679 /// attempted.
6680 /// \returns true if a horizontal reduction was matched and reduced or operands
6681 /// of one of the binary instruction were vectorized.
6682 /// \returns false if a horizontal reduction was not matched (or not possible)
6683 /// or no vectorization of any binary operation feeding \a Root instruction was
6684 /// performed.
6685 static bool tryToVectorizeHorReductionOrInstOperands(
6686 PHINode *P, Instruction *Root, BasicBlock *BB, BoUpSLP &R,
6687 TargetTransformInfo *TTI,
6688 const function_ref<bool(Instruction *, BoUpSLP &)> Vectorize) {
6689 if (!ShouldVectorizeHor)
6690 return false;
6692 if (!Root)
6693 return false;
6695 if (Root->getParent() != BB || isa<PHINode>(Root))
6696 return false;
6697 // Start analysis starting from Root instruction. If horizontal reduction is
6698 // found, try to vectorize it. If it is not a horizontal reduction or
6699 // vectorization is not possible or not effective, and currently analyzed
6700 // instruction is a binary operation, try to vectorize the operands, using
6701 // pre-order DFS traversal order. If the operands were not vectorized, repeat
6702 // the same procedure considering each operand as a possible root of the
6703 // horizontal reduction.
6704 // Interrupt the process if the Root instruction itself was vectorized or all
6705 // sub-trees not higher that RecursionMaxDepth were analyzed/vectorized.
6706 SmallVector<std::pair<Instruction *, unsigned>, 8> Stack(1, {Root, 0});
6707 SmallPtrSet<Value *, 8> VisitedInstrs;
6708 bool Res = false;
6709 while (!Stack.empty()) {
6710 Instruction *Inst;
6711 unsigned Level;
6712 std::tie(Inst, Level) = Stack.pop_back_val();
6713 auto *BI = dyn_cast<BinaryOperator>(Inst);
6714 auto *SI = dyn_cast<SelectInst>(Inst);
6715 if (BI || SI) {
6716 HorizontalReduction HorRdx;
6717 if (HorRdx.matchAssociativeReduction(P, Inst)) {
6718 if (HorRdx.tryToReduce(R, TTI)) {
6719 Res = true;
6720 // Set P to nullptr to avoid re-analysis of phi node in
6721 // matchAssociativeReduction function unless this is the root node.
6722 P = nullptr;
6723 continue;
6726 if (P && BI) {
6727 Inst = dyn_cast<Instruction>(BI->getOperand(0));
6728 if (Inst == P)
6729 Inst = dyn_cast<Instruction>(BI->getOperand(1));
6730 if (!Inst) {
6731 // Set P to nullptr to avoid re-analysis of phi node in
6732 // matchAssociativeReduction function unless this is the root node.
6733 P = nullptr;
6734 continue;
6738 // Set P to nullptr to avoid re-analysis of phi node in
6739 // matchAssociativeReduction function unless this is the root node.
6740 P = nullptr;
6741 if (Vectorize(Inst, R)) {
6742 Res = true;
6743 continue;
6746 // Try to vectorize operands.
6747 // Continue analysis for the instruction from the same basic block only to
6748 // save compile time.
6749 if (++Level < RecursionMaxDepth)
6750 for (auto *Op : Inst->operand_values())
6751 if (VisitedInstrs.insert(Op).second)
6752 if (auto *I = dyn_cast<Instruction>(Op))
6753 if (!isa<PHINode>(I) && !R.isDeleted(I) && I->getParent() == BB)
6754 Stack.emplace_back(I, Level);
6756 return Res;
6759 bool SLPVectorizerPass::vectorizeRootInstruction(PHINode *P, Value *V,
6760 BasicBlock *BB, BoUpSLP &R,
6761 TargetTransformInfo *TTI) {
6762 if (!V)
6763 return false;
6764 auto *I = dyn_cast<Instruction>(V);
6765 if (!I)
6766 return false;
6768 if (!isa<BinaryOperator>(I))
6769 P = nullptr;
6770 // Try to match and vectorize a horizontal reduction.
6771 auto &&ExtraVectorization = [this](Instruction *I, BoUpSLP &R) -> bool {
6772 return tryToVectorize(I, R);
6774 return tryToVectorizeHorReductionOrInstOperands(P, I, BB, R, TTI,
6775 ExtraVectorization);
6778 bool SLPVectorizerPass::vectorizeInsertValueInst(InsertValueInst *IVI,
6779 BasicBlock *BB, BoUpSLP &R) {
6780 const DataLayout &DL = BB->getModule()->getDataLayout();
6781 if (!R.canMapToVector(IVI->getType(), DL))
6782 return false;
6784 SmallVector<Value *, 16> BuildVectorOpds;
6785 if (!findBuildAggregate(IVI, BuildVectorOpds))
6786 return false;
6788 LLVM_DEBUG(dbgs() << "SLP: array mappable to vector: " << *IVI << "\n");
6789 // Aggregate value is unlikely to be processed in vector register, we need to
6790 // extract scalars into scalar registers, so NeedExtraction is set true.
6791 return tryToVectorizeList(BuildVectorOpds, R);
6794 bool SLPVectorizerPass::vectorizeInsertElementInst(InsertElementInst *IEI,
6795 BasicBlock *BB, BoUpSLP &R) {
6796 int UserCost;
6797 SmallVector<Value *, 16> BuildVectorOpds;
6798 if (!findBuildVector(IEI, TTI, BuildVectorOpds, UserCost) ||
6799 (llvm::all_of(BuildVectorOpds,
6800 [](Value *V) { return isa<ExtractElementInst>(V); }) &&
6801 isShuffle(BuildVectorOpds)))
6802 return false;
6804 // Vectorize starting with the build vector operands ignoring the BuildVector
6805 // instructions for the purpose of scheduling and user extraction.
6806 return tryToVectorizeList(BuildVectorOpds, R, UserCost);
6809 bool SLPVectorizerPass::vectorizeCmpInst(CmpInst *CI, BasicBlock *BB,
6810 BoUpSLP &R) {
6811 if (tryToVectorizePair(CI->getOperand(0), CI->getOperand(1), R))
6812 return true;
6814 bool OpsChanged = false;
6815 for (int Idx = 0; Idx < 2; ++Idx) {
6816 OpsChanged |=
6817 vectorizeRootInstruction(nullptr, CI->getOperand(Idx), BB, R, TTI);
6819 return OpsChanged;
6822 bool SLPVectorizerPass::vectorizeSimpleInstructions(
6823 SmallVectorImpl<Instruction *> &Instructions, BasicBlock *BB, BoUpSLP &R) {
6824 bool OpsChanged = false;
6825 for (auto *I : reverse(Instructions)) {
6826 if (R.isDeleted(I))
6827 continue;
6828 if (auto *LastInsertValue = dyn_cast<InsertValueInst>(I))
6829 OpsChanged |= vectorizeInsertValueInst(LastInsertValue, BB, R);
6830 else if (auto *LastInsertElem = dyn_cast<InsertElementInst>(I))
6831 OpsChanged |= vectorizeInsertElementInst(LastInsertElem, BB, R);
6832 else if (auto *CI = dyn_cast<CmpInst>(I))
6833 OpsChanged |= vectorizeCmpInst(CI, BB, R);
6835 Instructions.clear();
6836 return OpsChanged;
6839 bool SLPVectorizerPass::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
6840 bool Changed = false;
6841 SmallVector<Value *, 4> Incoming;
6842 SmallPtrSet<Value *, 16> VisitedInstrs;
6844 bool HaveVectorizedPhiNodes = true;
6845 while (HaveVectorizedPhiNodes) {
6846 HaveVectorizedPhiNodes = false;
6848 // Collect the incoming values from the PHIs.
6849 Incoming.clear();
6850 for (Instruction &I : *BB) {
6851 PHINode *P = dyn_cast<PHINode>(&I);
6852 if (!P)
6853 break;
6855 if (!VisitedInstrs.count(P) && !R.isDeleted(P))
6856 Incoming.push_back(P);
6859 // Sort by type.
6860 llvm::stable_sort(Incoming, PhiTypeSorterFunc);
6862 // Try to vectorize elements base on their type.
6863 for (SmallVector<Value *, 4>::iterator IncIt = Incoming.begin(),
6864 E = Incoming.end();
6865 IncIt != E;) {
6867 // Look for the next elements with the same type.
6868 SmallVector<Value *, 4>::iterator SameTypeIt = IncIt;
6869 while (SameTypeIt != E &&
6870 (*SameTypeIt)->getType() == (*IncIt)->getType()) {
6871 VisitedInstrs.insert(*SameTypeIt);
6872 ++SameTypeIt;
6875 // Try to vectorize them.
6876 unsigned NumElts = (SameTypeIt - IncIt);
6877 LLVM_DEBUG(dbgs() << "SLP: Trying to vectorize starting at PHIs ("
6878 << NumElts << ")\n");
6879 // The order in which the phi nodes appear in the program does not matter.
6880 // So allow tryToVectorizeList to reorder them if it is beneficial. This
6881 // is done when there are exactly two elements since tryToVectorizeList
6882 // asserts that there are only two values when AllowReorder is true.
6883 bool AllowReorder = NumElts == 2;
6884 if (NumElts > 1 && tryToVectorizeList(makeArrayRef(IncIt, NumElts), R,
6885 /*UserCost=*/0, AllowReorder)) {
6886 // Success start over because instructions might have been changed.
6887 HaveVectorizedPhiNodes = true;
6888 Changed = true;
6889 break;
6892 // Start over at the next instruction of a different type (or the end).
6893 IncIt = SameTypeIt;
6897 VisitedInstrs.clear();
6899 SmallVector<Instruction *, 8> PostProcessInstructions;
6900 SmallDenseSet<Instruction *, 4> KeyNodes;
6901 for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
6902 // Skip instructions marked for the deletion.
6903 if (R.isDeleted(&*it))
6904 continue;
6905 // We may go through BB multiple times so skip the one we have checked.
6906 if (!VisitedInstrs.insert(&*it).second) {
6907 if (it->use_empty() && KeyNodes.count(&*it) > 0 &&
6908 vectorizeSimpleInstructions(PostProcessInstructions, BB, R)) {
6909 // We would like to start over since some instructions are deleted
6910 // and the iterator may become invalid value.
6911 Changed = true;
6912 it = BB->begin();
6913 e = BB->end();
6915 continue;
6918 if (isa<DbgInfoIntrinsic>(it))
6919 continue;
6921 // Try to vectorize reductions that use PHINodes.
6922 if (PHINode *P = dyn_cast<PHINode>(it)) {
6923 // Check that the PHI is a reduction PHI.
6924 if (P->getNumIncomingValues() != 2)
6925 return Changed;
6927 // Try to match and vectorize a horizontal reduction.
6928 if (vectorizeRootInstruction(P, getReductionValue(DT, P, BB, LI), BB, R,
6929 TTI)) {
6930 Changed = true;
6931 it = BB->begin();
6932 e = BB->end();
6933 continue;
6935 continue;
6938 // Ran into an instruction without users, like terminator, or function call
6939 // with ignored return value, store. Ignore unused instructions (basing on
6940 // instruction type, except for CallInst and InvokeInst).
6941 if (it->use_empty() && (it->getType()->isVoidTy() || isa<CallInst>(it) ||
6942 isa<InvokeInst>(it))) {
6943 KeyNodes.insert(&*it);
6944 bool OpsChanged = false;
6945 if (ShouldStartVectorizeHorAtStore || !isa<StoreInst>(it)) {
6946 for (auto *V : it->operand_values()) {
6947 // Try to match and vectorize a horizontal reduction.
6948 OpsChanged |= vectorizeRootInstruction(nullptr, V, BB, R, TTI);
6951 // Start vectorization of post-process list of instructions from the
6952 // top-tree instructions to try to vectorize as many instructions as
6953 // possible.
6954 OpsChanged |= vectorizeSimpleInstructions(PostProcessInstructions, BB, R);
6955 if (OpsChanged) {
6956 // We would like to start over since some instructions are deleted
6957 // and the iterator may become invalid value.
6958 Changed = true;
6959 it = BB->begin();
6960 e = BB->end();
6961 continue;
6965 if (isa<InsertElementInst>(it) || isa<CmpInst>(it) ||
6966 isa<InsertValueInst>(it))
6967 PostProcessInstructions.push_back(&*it);
6970 return Changed;
6973 bool SLPVectorizerPass::vectorizeGEPIndices(BasicBlock *BB, BoUpSLP &R) {
6974 auto Changed = false;
6975 for (auto &Entry : GEPs) {
6976 // If the getelementptr list has fewer than two elements, there's nothing
6977 // to do.
6978 if (Entry.second.size() < 2)
6979 continue;
6981 LLVM_DEBUG(dbgs() << "SLP: Analyzing a getelementptr list of length "
6982 << Entry.second.size() << ".\n");
6984 // We process the getelementptr list in chunks of 16 (like we do for
6985 // stores) to minimize compile-time.
6986 for (unsigned BI = 0, BE = Entry.second.size(); BI < BE; BI += 16) {
6987 auto Len = std::min<unsigned>(BE - BI, 16);
6988 auto GEPList = makeArrayRef(&Entry.second[BI], Len);
6990 // Initialize a set a candidate getelementptrs. Note that we use a
6991 // SetVector here to preserve program order. If the index computations
6992 // are vectorizable and begin with loads, we want to minimize the chance
6993 // of having to reorder them later.
6994 SetVector<Value *> Candidates(GEPList.begin(), GEPList.end());
6996 // Some of the candidates may have already been vectorized after we
6997 // initially collected them. If so, they are marked as deleted, so remove
6998 // them from the set of candidates.
6999 Candidates.remove_if(
7000 [&R](Value *I) { return R.isDeleted(cast<Instruction>(I)); });
7002 // Remove from the set of candidates all pairs of getelementptrs with
7003 // constant differences. Such getelementptrs are likely not good
7004 // candidates for vectorization in a bottom-up phase since one can be
7005 // computed from the other. We also ensure all candidate getelementptr
7006 // indices are unique.
7007 for (int I = 0, E = GEPList.size(); I < E && Candidates.size() > 1; ++I) {
7008 auto *GEPI = GEPList[I];
7009 if (!Candidates.count(GEPI))
7010 continue;
7011 auto *SCEVI = SE->getSCEV(GEPList[I]);
7012 for (int J = I + 1; J < E && Candidates.size() > 1; ++J) {
7013 auto *GEPJ = GEPList[J];
7014 auto *SCEVJ = SE->getSCEV(GEPList[J]);
7015 if (isa<SCEVConstant>(SE->getMinusSCEV(SCEVI, SCEVJ))) {
7016 Candidates.remove(GEPI);
7017 Candidates.remove(GEPJ);
7018 } else if (GEPI->idx_begin()->get() == GEPJ->idx_begin()->get()) {
7019 Candidates.remove(GEPJ);
7024 // We break out of the above computation as soon as we know there are
7025 // fewer than two candidates remaining.
7026 if (Candidates.size() < 2)
7027 continue;
7029 // Add the single, non-constant index of each candidate to the bundle. We
7030 // ensured the indices met these constraints when we originally collected
7031 // the getelementptrs.
7032 SmallVector<Value *, 16> Bundle(Candidates.size());
7033 auto BundleIndex = 0u;
7034 for (auto *V : Candidates) {
7035 auto *GEP = cast<GetElementPtrInst>(V);
7036 auto *GEPIdx = GEP->idx_begin()->get();
7037 assert(GEP->getNumIndices() == 1 || !isa<Constant>(GEPIdx));
7038 Bundle[BundleIndex++] = GEPIdx;
7041 // Try and vectorize the indices. We are currently only interested in
7042 // gather-like cases of the form:
7044 // ... = g[a[0] - b[0]] + g[a[1] - b[1]] + ...
7046 // where the loads of "a", the loads of "b", and the subtractions can be
7047 // performed in parallel. It's likely that detecting this pattern in a
7048 // bottom-up phase will be simpler and less costly than building a
7049 // full-blown top-down phase beginning at the consecutive loads.
7050 Changed |= tryToVectorizeList(Bundle, R);
7053 return Changed;
7056 bool SLPVectorizerPass::vectorizeStoreChains(BoUpSLP &R) {
7057 bool Changed = false;
7058 // Attempt to sort and vectorize each of the store-groups.
7059 for (StoreListMap::iterator it = Stores.begin(), e = Stores.end(); it != e;
7060 ++it) {
7061 if (it->second.size() < 2)
7062 continue;
7064 LLVM_DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
7065 << it->second.size() << ".\n");
7067 // Process the stores in chunks of 16.
7068 // TODO: The limit of 16 inhibits greater vectorization factors.
7069 // For example, AVX2 supports v32i8. Increasing this limit, however,
7070 // may cause a significant compile-time increase.
7071 for (unsigned CI = 0, CE = it->second.size(); CI < CE; CI += 16) {
7072 unsigned Len = std::min<unsigned>(CE - CI, 16);
7073 Changed |= vectorizeStores(makeArrayRef(&it->second[CI], Len), R);
7076 return Changed;
7079 char SLPVectorizer::ID = 0;
7081 static const char lv_name[] = "SLP Vectorizer";
7083 INITIALIZE_PASS_BEGIN(SLPVectorizer, SV_NAME, lv_name, false, false)
7084 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
7085 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
7086 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
7087 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
7088 INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
7089 INITIALIZE_PASS_DEPENDENCY(DemandedBitsWrapperPass)
7090 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
7091 INITIALIZE_PASS_END(SLPVectorizer, SV_NAME, lv_name, false, false)
7093 Pass *llvm::createSLPVectorizerPass() { return new SLPVectorizer(); }