Fix bugs section.
[llvm-complete.git] / docs / AliasAnalysis.html
blob6663f0caa75fb1d7f1a4b49ca24c8225872677fa
1 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3 <html>
4 <head>
5 <title>LLVM Alias Analysis Infrastructure</title>
6 <link rel="stylesheet" href="llvm.css" type="text/css">
7 </head>
8 <body>
10 <div class="doc_title">
11 LLVM Alias Analysis Infrastructure
12 </div>
14 <ol>
15 <li><a href="#introduction">Introduction</a></li>
17 <li><a href="#overview"><tt>AliasAnalysis</tt> Class Overview</a>
18 <ul>
19 <li><a href="#pointers">Representation of Pointers</a></li>
20 <li><a href="#alias">The <tt>alias</tt> method</a></li>
21 <li><a href="#ModRefInfo">The <tt>getModRefInfo</tt> methods</a></li>
22 <li><a href="#OtherItfs">Other useful <tt>AliasAnalysis</tt> methods</a></li>
23 </ul>
24 </li>
26 <li><a href="#writingnew">Writing a new <tt>AliasAnalysis</tt> Implementation</a>
27 <ul>
28 <li><a href="#passsubclasses">Different Pass styles</a></li>
29 <li><a href="#requiredcalls">Required initialization calls</a></li>
30 <li><a href="#interfaces">Interfaces which may be specified</a></li>
31 <li><a href="#chaining"><tt>AliasAnalysis</tt> chaining behavior</a></li>
32 <li><a href="#updating">Updating analysis results for transformations</a></li>
33 <li><a href="#implefficiency">Efficiency Issues</a></li>
34 </ul>
35 </li>
37 <li><a href="#using">Using alias analysis results</a>
38 <ul>
39 <li><a href="#loadvn">Using the <tt>-load-vn</tt> Pass</a></li>
40 <li><a href="#ast">Using the <tt>AliasSetTracker</tt> class</a></li>
41 <li><a href="#direct">Using the <tt>AliasAnalysis</tt> interface directly</a></li>
42 </ul>
43 </li>
45 <li><a href="#exist">Existing alias analysis implementations and clients</a>
46 <ul>
47 <li><a href="#impls">Available <tt>AliasAnalysis</tt> implementations</a></li>
48 <li><a href="#aliasanalysis-xforms">Alias analysis driven transformations</a></li>
49 <li><a href="#aliasanalysis-debug">Clients for debugging and evaluation of
50 implementations</a></li>
51 </ul>
52 </li>
53 <li><a href="#memdep">Memory Dependence Analysis</a></li>
54 </ol>
56 <div class="doc_author">
57 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a></p>
58 </div>
60 <!-- *********************************************************************** -->
61 <div class="doc_section">
62 <a name="introduction">Introduction</a>
63 </div>
64 <!-- *********************************************************************** -->
66 <div class="doc_text">
68 <p>Alias Analysis (aka Pointer Analysis) is a class of techniques which attempt
69 to determine whether or not two pointers ever can point to the same object in
70 memory. There are many different algorithms for alias analysis and many
71 different ways of classifying them: flow-sensitive vs flow-insensitive,
72 context-sensitive vs context-insensitive, field-sensitive vs field-insensitive,
73 unification-based vs subset-based, etc. Traditionally, alias analyses respond
74 to a query with a <a href="#MustMayNo">Must, May, or No</a> alias response,
75 indicating that two pointers always point to the same object, might point to the
76 same object, or are known to never point to the same object.</p>
78 <p>The LLVM <a
79 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html"><tt>AliasAnalysis</tt></a>
80 class is the primary interface used by clients and implementations of alias
81 analyses in the LLVM system. This class is the common interface between clients
82 of alias analysis information and the implementations providing it, and is
83 designed to support a wide range of implementations and clients (but currently
84 all clients are assumed to be flow-insensitive). In addition to simple alias
85 analysis information, this class exposes Mod/Ref information from those
86 implementations which can provide it, allowing for powerful analyses and
87 transformations to work well together.</p>
89 <p>This document contains information necessary to successfully implement this
90 interface, use it, and to test both sides. It also explains some of the finer
91 points about what exactly results mean. If you feel that something is unclear
92 or should be added, please <a href="mailto:sabre@nondot.org">let me
93 know</a>.</p>
95 </div>
97 <!-- *********************************************************************** -->
98 <div class="doc_section">
99 <a name="overview"><tt>AliasAnalysis</tt> Class Overview</a>
100 </div>
101 <!-- *********************************************************************** -->
103 <div class="doc_text">
105 <p>The <a
106 href="http://llvm.org/doxygen/classllvm_1_1AliasAnalysis.html"><tt>AliasAnalysis</tt></a>
107 class defines the interface that the various alias analysis implementations
108 should support. This class exports two important enums: <tt>AliasResult</tt>
109 and <tt>ModRefResult</tt> which represent the result of an alias query or a
110 mod/ref query, respectively.</p>
112 <p>The <tt>AliasAnalysis</tt> interface exposes information about memory,
113 represented in several different ways. In particular, memory objects are
114 represented as a starting address and size, and function calls are represented
115 as the actual <tt>call</tt> or <tt>invoke</tt> instructions that performs the
116 call. The <tt>AliasAnalysis</tt> interface also exposes some helper methods
117 which allow you to get mod/ref information for arbitrary instructions.</p>
119 </div>
121 <!-- ======================================================================= -->
122 <div class="doc_subsection">
123 <a name="pointers">Representation of Pointers</a>
124 </div>
126 <div class="doc_text">
128 <p>Most importantly, the <tt>AliasAnalysis</tt> class provides several methods
129 which are used to query whether or not two memory objects alias, whether
130 function calls can modify or read a memory object, etc. For all of these
131 queries, memory objects are represented as a pair of their starting address (a
132 symbolic LLVM <tt>Value*</tt>) and a static size.</p>
134 <p>Representing memory objects as a starting address and a size is critically
135 important for correct Alias Analyses. For example, consider this (silly, but
136 possible) C code:</p>
138 <div class="doc_code">
139 <pre>
140 int i;
141 char C[2];
142 char A[10];
143 /* ... */
144 for (i = 0; i != 10; ++i) {
145 C[0] = A[i]; /* One byte store */
146 C[1] = A[9-i]; /* One byte store */
148 </pre>
149 </div>
151 <p>In this case, the <tt>basicaa</tt> pass will disambiguate the stores to
152 <tt>C[0]</tt> and <tt>C[1]</tt> because they are accesses to two distinct
153 locations one byte apart, and the accesses are each one byte. In this case, the
154 LICM pass can use store motion to remove the stores from the loop. In
155 constrast, the following code:</p>
157 <div class="doc_code">
158 <pre>
159 int i;
160 char C[2];
161 char A[10];
162 /* ... */
163 for (i = 0; i != 10; ++i) {
164 ((short*)C)[0] = A[i]; /* Two byte store! */
165 C[1] = A[9-i]; /* One byte store */
167 </pre>
168 </div>
170 <p>In this case, the two stores to C do alias each other, because the access to
171 the <tt>&amp;C[0]</tt> element is a two byte access. If size information wasn't
172 available in the query, even the first case would have to conservatively assume
173 that the accesses alias.</p>
175 </div>
177 <!-- ======================================================================= -->
178 <div class="doc_subsection">
179 <a name="alias">The <tt>alias</tt> method</a>
180 </div>
182 <div class="doc_text">
183 The <tt>alias</tt> method is the primary interface used to determine whether or
184 not two memory objects alias each other. It takes two memory objects as input
185 and returns MustAlias, MayAlias, or NoAlias as appropriate.
186 </div>
188 <!-- _______________________________________________________________________ -->
189 <div class="doc_subsubsection">
190 <a name="MustMayNo">Must, May, and No Alias Responses</a>
191 </div>
193 <div class="doc_text">
195 <p>An Alias Analysis implementation can return one of three responses:
196 MustAlias, MayAlias, and NoAlias. The No and May alias results are obvious: if
197 the two pointers can never equal each other, return NoAlias, if they might,
198 return MayAlias.</p>
200 <p>The MustAlias response is trickier though. In LLVM, the Must Alias response
201 may only be returned if the two memory objects are guaranteed to always start at
202 exactly the same location. If two memory objects overlap, but do not start at
203 the same location, return MayAlias.</p>
205 </div>
207 <!-- ======================================================================= -->
208 <div class="doc_subsection">
209 <a name="ModRefInfo">The <tt>getModRefInfo</tt> methods</a>
210 </div>
212 <div class="doc_text">
214 <p>The <tt>getModRefInfo</tt> methods return information about whether the
215 execution of an instruction can read or modify a memory location. Mod/Ref
216 information is always conservative: if an instruction <b>might</b> read or write
217 a location, ModRef is returned.</p>
219 <p>The <tt>AliasAnalysis</tt> class also provides a <tt>getModRefInfo</tt>
220 method for testing dependencies between function calls. This method takes two
221 call sites (CS1 &amp; CS2), returns NoModRef if the two calls refer to disjoint
222 memory locations, Ref if CS1 reads memory written by CS2, Mod if CS1 writes to
223 memory read or written by CS2, or ModRef if CS1 might read or write memory
224 accessed by CS2. Note that this relation is not commutative. Clients that use
225 this method should be predicated on the <tt>hasNoModRefInfoForCalls()</tt>
226 method, which indicates whether or not an analysis can provide mod/ref
227 information for function call pairs (most can not). If this predicate is false,
228 the client shouldn't waste analysis time querying the <tt>getModRefInfo</tt>
229 method many times.</p>
231 </div>
234 <!-- ======================================================================= -->
235 <div class="doc_subsection">
236 <a name="OtherItfs">Other useful <tt>AliasAnalysis</tt> methods</a>
237 </div>
239 <div class="doc_text">
242 Several other tidbits of information are often collected by various alias
243 analysis implementations and can be put to good use by various clients.
244 </p>
246 </div>
248 <!-- _______________________________________________________________________ -->
249 <div class="doc_subsubsection">
250 The <tt>getMustAliases</tt> method
251 </div>
253 <div class="doc_text">
255 <p>The <tt>getMustAliases</tt> method returns all values that are known to
256 always must alias a pointer. This information can be provided in some cases for
257 important objects like the null pointer and global values. Knowing that a
258 pointer always points to a particular function allows indirect calls to be
259 turned into direct calls, for example.</p>
261 </div>
263 <!-- _______________________________________________________________________ -->
264 <div class="doc_subsubsection">
265 The <tt>pointsToConstantMemory</tt> method
266 </div>
268 <div class="doc_text">
270 <p>The <tt>pointsToConstantMemory</tt> method returns true if and only if the
271 analysis can prove that the pointer only points to unchanging memory locations
272 (functions, constant global variables, and the null pointer). This information
273 can be used to refine mod/ref information: it is impossible for an unchanging
274 memory location to be modified.</p>
276 </div>
278 <!-- _______________________________________________________________________ -->
279 <div class="doc_subsubsection">
280 <a name="simplemodref">The <tt>doesNotAccessMemory</tt> and
281 <tt>onlyReadsMemory</tt> methods</a>
282 </div>
284 <div class="doc_text">
286 <p>These methods are used to provide very simple mod/ref information for
287 function calls. The <tt>doesNotAccessMemory</tt> method returns true for a
288 function if the analysis can prove that the function never reads or writes to
289 memory, or if the function only reads from constant memory. Functions with this
290 property are side-effect free and only depend on their input arguments, allowing
291 them to be eliminated if they form common subexpressions or be hoisted out of
292 loops. Many common functions behave this way (e.g., <tt>sin</tt> and
293 <tt>cos</tt>) but many others do not (e.g., <tt>acos</tt>, which modifies the
294 <tt>errno</tt> variable).</p>
296 <p>The <tt>onlyReadsMemory</tt> method returns true for a function if analysis
297 can prove that (at most) the function only reads from non-volatile memory.
298 Functions with this property are side-effect free, only depending on their input
299 arguments and the state of memory when they are called. This property allows
300 calls to these functions to be eliminated and moved around, as long as there is
301 no store instruction that changes the contents of memory. Note that all
302 functions that satisfy the <tt>doesNotAccessMemory</tt> method also satisfies
303 <tt>onlyReadsMemory</tt>.</p>
305 </div>
307 <!-- *********************************************************************** -->
308 <div class="doc_section">
309 <a name="writingnew">Writing a new <tt>AliasAnalysis</tt> Implementation</a>
310 </div>
311 <!-- *********************************************************************** -->
313 <div class="doc_text">
315 <p>Writing a new alias analysis implementation for LLVM is quite
316 straight-forward. There are already several implementations that you can use
317 for examples, and the following information should help fill in any details.
318 For a examples, take a look at the <a href="#impls">various alias analysis
319 implementations</a> included with LLVM.</p>
321 </div>
323 <!-- ======================================================================= -->
324 <div class="doc_subsection">
325 <a name="passsubclasses">Different Pass styles</a>
326 </div>
328 <div class="doc_text">
330 <p>The first step to determining what type of <a
331 href="WritingAnLLVMPass.html">LLVM pass</a> you need to use for your Alias
332 Analysis. As is the case with most other analyses and transformations, the
333 answer should be fairly obvious from what type of problem you are trying to
334 solve:</p>
336 <ol>
337 <li>If you require interprocedural analysis, it should be a
338 <tt>Pass</tt>.</li>
339 <li>If you are a function-local analysis, subclass <tt>FunctionPass</tt>.</li>
340 <li>If you don't need to look at the program at all, subclass
341 <tt>ImmutablePass</tt>.</li>
342 </ol>
344 <p>In addition to the pass that you subclass, you should also inherit from the
345 <tt>AliasAnalysis</tt> interface, of course, and use the
346 <tt>RegisterAnalysisGroup</tt> template to register as an implementation of
347 <tt>AliasAnalysis</tt>.</p>
349 </div>
351 <!-- ======================================================================= -->
352 <div class="doc_subsection">
353 <a name="requiredcalls">Required initialization calls</a>
354 </div>
356 <div class="doc_text">
358 <p>Your subclass of <tt>AliasAnalysis</tt> is required to invoke two methods on
359 the <tt>AliasAnalysis</tt> base class: <tt>getAnalysisUsage</tt> and
360 <tt>InitializeAliasAnalysis</tt>. In particular, your implementation of
361 <tt>getAnalysisUsage</tt> should explicitly call into the
362 <tt>AliasAnalysis::getAnalysisUsage</tt> method in addition to doing any
363 declaring any pass dependencies your pass has. Thus you should have something
364 like this:</p>
366 <div class="doc_code">
367 <pre>
368 void getAnalysisUsage(AnalysisUsage &amp;AU) const {
369 AliasAnalysis::getAnalysisUsage(AU);
370 <i>// declare your dependencies here.</i>
372 </pre>
373 </div>
375 <p>Additionally, your must invoke the <tt>InitializeAliasAnalysis</tt> method
376 from your analysis run method (<tt>run</tt> for a <tt>Pass</tt>,
377 <tt>runOnFunction</tt> for a <tt>FunctionPass</tt>, or <tt>InitializePass</tt>
378 for an <tt>ImmutablePass</tt>). For example (as part of a <tt>Pass</tt>):</p>
380 <div class="doc_code">
381 <pre>
382 bool run(Module &amp;M) {
383 InitializeAliasAnalysis(this);
384 <i>// Perform analysis here...</i>
385 return false;
387 </pre>
388 </div>
390 </div>
392 <!-- ======================================================================= -->
393 <div class="doc_subsection">
394 <a name="interfaces">Interfaces which may be specified</a>
395 </div>
397 <div class="doc_text">
399 <p>All of the <a
400 href="/doxygen/classllvm_1_1AliasAnalysis.html"><tt>AliasAnalysis</tt></a>
401 virtual methods default to providing <a href="#chaining">chaining</a> to another
402 alias analysis implementation, which ends up returning conservatively correct
403 information (returning "May" Alias and "Mod/Ref" for alias and mod/ref queries
404 respectively). Depending on the capabilities of the analysis you are
405 implementing, you just override the interfaces you can improve.</p>
407 </div>
411 <!-- ======================================================================= -->
412 <div class="doc_subsection">
413 <a name="chaining"><tt>AliasAnalysis</tt> chaining behavior</a>
414 </div>
416 <div class="doc_text">
418 <p>With only two special exceptions (the <tt><a
419 href="#basic-aa">basicaa</a></tt> and <a href="#no-aa"><tt>no-aa</tt></a>
420 passes) every alias analysis pass chains to another alias analysis
421 implementation (for example, the user can specify "<tt>-basicaa -ds-aa
422 -anders-aa -licm</tt>" to get the maximum benefit from the three alias
423 analyses). The alias analysis class automatically takes care of most of this
424 for methods that you don't override. For methods that you do override, in code
425 paths that return a conservative MayAlias or Mod/Ref result, simply return
426 whatever the superclass computes. For example:</p>
428 <div class="doc_code">
429 <pre>
430 AliasAnalysis::AliasResult alias(const Value *V1, unsigned V1Size,
431 const Value *V2, unsigned V2Size) {
432 if (...)
433 return NoAlias;
436 <i>// Couldn't determine a must or no-alias result.</i>
437 return AliasAnalysis::alias(V1, V1Size, V2, V2Size);
439 </pre>
440 </div>
442 <p>In addition to analysis queries, you must make sure to unconditionally pass
443 LLVM <a href="#updating">update notification</a> methods to the superclass as
444 well if you override them, which allows all alias analyses in a change to be
445 updated.</p>
447 </div>
450 <!-- ======================================================================= -->
451 <div class="doc_subsection">
452 <a name="updating">Updating analysis results for transformations</a>
453 </div>
455 <div class="doc_text">
457 Alias analysis information is initially computed for a static snapshot of the
458 program, but clients will use this information to make transformations to the
459 code. All but the most trivial forms of alias analysis will need to have their
460 analysis results updated to reflect the changes made by these transformations.
461 </p>
464 The <tt>AliasAnalysis</tt> interface exposes two methods which are used to
465 communicate program changes from the clients to the analysis implementations.
466 Various alias analysis implementations should use these methods to ensure that
467 their internal data structures are kept up-to-date as the program changes (for
468 example, when an instruction is deleted), and clients of alias analysis must be
469 sure to call these interfaces appropriately.
470 </p>
471 </div>
473 <!-- _______________________________________________________________________ -->
474 <div class="doc_subsubsection">The <tt>deleteValue</tt> method</div>
476 <div class="doc_text">
477 The <tt>deleteValue</tt> method is called by transformations when they remove an
478 instruction or any other value from the program (including values that do not
479 use pointers). Typically alias analyses keep data structures that have entries
480 for each value in the program. When this method is called, they should remove
481 any entries for the specified value, if they exist.
482 </div>
484 <!-- _______________________________________________________________________ -->
485 <div class="doc_subsubsection">The <tt>copyValue</tt> method</div>
487 <div class="doc_text">
488 The <tt>copyValue</tt> method is used when a new value is introduced into the
489 program. There is no way to introduce a value into the program that did not
490 exist before (this doesn't make sense for a safe compiler transformation), so
491 this is the only way to introduce a new value. This method indicates that the
492 new value has exactly the same properties as the value being copied.
493 </div>
495 <!-- _______________________________________________________________________ -->
496 <div class="doc_subsubsection">The <tt>replaceWithNewValue</tt> method</div>
498 <div class="doc_text">
499 This method is a simple helper method that is provided to make clients easier to
500 use. It is implemented by copying the old analysis information to the new
501 value, then deleting the old value. This method cannot be overridden by alias
502 analysis implementations.
503 </div>
505 <!-- ======================================================================= -->
506 <div class="doc_subsection">
507 <a name="implefficiency">Efficiency Issues</a>
508 </div>
510 <div class="doc_text">
512 <p>From the LLVM perspective, the only thing you need to do to provide an
513 efficient alias analysis is to make sure that alias analysis <b>queries</b> are
514 serviced quickly. The actual calculation of the alias analysis results (the
515 "run" method) is only performed once, but many (perhaps duplicate) queries may
516 be performed. Because of this, try to move as much computation to the run
517 method as possible (within reason).</p>
519 </div>
521 <!-- *********************************************************************** -->
522 <div class="doc_section">
523 <a name="using">Using alias analysis results</a>
524 </div>
525 <!-- *********************************************************************** -->
527 <div class="doc_text">
529 <p>There are several different ways to use alias analysis results. In order of
530 preference, these are...</p>
532 </div>
534 <!-- ======================================================================= -->
535 <div class="doc_subsection">
536 <a name="loadvn">Using the <tt>-load-vn</tt> Pass</a>
537 </div>
539 <div class="doc_text">
541 <p>The <tt>load-vn</tt> pass uses alias analysis to provide value numbering
542 information for <tt>load</tt> instructions and pointer values. If your analysis
543 or transformation can be modeled in a form that uses value numbering
544 information, you don't have to do anything special to handle load instructions:
545 just use the <tt>load-vn</tt> pass, which uses alias analysis.</p>
547 </div>
549 <!-- ======================================================================= -->
550 <div class="doc_subsection">
551 <a name="ast">Using the <tt>AliasSetTracker</tt> class</a>
552 </div>
554 <div class="doc_text">
556 <p>Many transformations need information about alias <b>sets</b> that are active
557 in some scope, rather than information about pairwise aliasing. The <tt><a
558 href="/doxygen/classllvm_1_1AliasSetTracker.html">AliasSetTracker</a></tt> class
559 is used to efficiently build these Alias Sets from the pairwise alias analysis
560 information provided by the <tt>AliasAnalysis</tt> interface.</p>
562 <p>First you initialize the AliasSetTracker by using the "<tt>add</tt>" methods
563 to add information about various potentially aliasing instructions in the scope
564 you are interested in. Once all of the alias sets are completed, your pass
565 should simply iterate through the constructed alias sets, using the
566 <tt>AliasSetTracker</tt> <tt>begin()</tt>/<tt>end()</tt> methods.</p>
568 <p>The <tt>AliasSet</tt>s formed by the <tt>AliasSetTracker</tt> are guaranteed
569 to be disjoint, calculate mod/ref information and volatility for the set, and
570 keep track of whether or not all of the pointers in the set are Must aliases.
571 The AliasSetTracker also makes sure that sets are properly folded due to call
572 instructions, and can provide a list of pointers in each set.</p>
574 <p>As an example user of this, the <a href="/doxygen/structLICM.html">Loop
575 Invariant Code Motion</a> pass uses <tt>AliasSetTracker</tt>s to calculate alias
576 sets for each loop nest. If an <tt>AliasSet</tt> in a loop is not modified,
577 then all load instructions from that set may be hoisted out of the loop. If any
578 alias sets are stored to <b>and</b> are must alias sets, then the stores may be
579 sunk to outside of the loop, promoting the memory location to a register for the
580 duration of the loop nest. Both of these transformations only apply if the
581 pointer argument is loop-invariant.</p>
583 </div>
585 <!-- _______________________________________________________________________ -->
586 <div class="doc_subsubsection">
587 The AliasSetTracker implementation
588 </div>
590 <div class="doc_text">
592 <p>The AliasSetTracker class is implemented to be as efficient as possible. It
593 uses the union-find algorithm to efficiently merge AliasSets when a pointer is
594 inserted into the AliasSetTracker that aliases multiple sets. The primary data
595 structure is a hash table mapping pointers to the AliasSet they are in.</p>
597 <p>The AliasSetTracker class must maintain a list of all of the LLVM Value*'s
598 that are in each AliasSet. Since the hash table already has entries for each
599 LLVM Value* of interest, the AliasesSets thread the linked list through these
600 hash-table nodes to avoid having to allocate memory unnecessarily, and to make
601 merging alias sets extremely efficient (the linked list merge is constant time).
602 </p>
604 <p>You shouldn't need to understand these details if you are just a client of
605 the AliasSetTracker, but if you look at the code, hopefully this brief
606 description will help make sense of why things are designed the way they
607 are.</p>
609 </div>
611 <!-- ======================================================================= -->
612 <div class="doc_subsection">
613 <a name="direct">Using the <tt>AliasAnalysis</tt> interface directly</a>
614 </div>
616 <div class="doc_text">
618 <p>If neither of these utility class are what your pass needs, you should use
619 the interfaces exposed by the <tt>AliasAnalysis</tt> class directly. Try to use
620 the higher-level methods when possible (e.g., use mod/ref information instead of
621 the <a href="#alias"><tt>alias</tt></a> method directly if possible) to get the
622 best precision and efficiency.</p>
624 </div>
626 <!-- *********************************************************************** -->
627 <div class="doc_section">
628 <a name="exist">Existing alias analysis implementations and clients</a>
629 </div>
630 <!-- *********************************************************************** -->
632 <div class="doc_text">
634 <p>If you're going to be working with the LLVM alias analysis infrastructure,
635 you should know what clients and implementations of alias analysis are
636 available. In particular, if you are implementing an alias analysis, you should
637 be aware of the <a href="#aliasanalysis-debug">the clients</a> that are useful
638 for monitoring and evaluating different implementations.</p>
640 </div>
642 <!-- ======================================================================= -->
643 <div class="doc_subsection">
644 <a name="impls">Available <tt>AliasAnalysis</tt> implementations</a>
645 </div>
647 <div class="doc_text">
649 <p>This section lists the various implementations of the <tt>AliasAnalysis</tt>
650 interface. With the exception of the <a href="#no-aa"><tt>-no-aa</tt></a> and
651 <a href="#basic-aa"><tt>-basicaa</tt></a> implementations, all of these <a
652 href="#chaining">chain</a> to other alias analysis implementations.</p>
654 </div>
656 <!-- _______________________________________________________________________ -->
657 <div class="doc_subsubsection">
658 <a name="no-aa">The <tt>-no-aa</tt> pass</a>
659 </div>
661 <div class="doc_text">
663 <p>The <tt>-no-aa</tt> pass is just like what it sounds: an alias analysis that
664 never returns any useful information. This pass can be useful if you think that
665 alias analysis is doing something wrong and are trying to narrow down a
666 problem.</p>
668 </div>
670 <!-- _______________________________________________________________________ -->
671 <div class="doc_subsubsection">
672 <a name="basic-aa">The <tt>-basicaa</tt> pass</a>
673 </div>
675 <div class="doc_text">
677 <p>The <tt>-basicaa</tt> pass is the default LLVM alias analysis. It is an
678 aggressive local analysis that "knows" many important facts:</p>
680 <ul>
681 <li>Distinct globals, stack allocations, and heap allocations can never
682 alias.</li>
683 <li>Globals, stack allocations, and heap allocations never alias the null
684 pointer.</li>
685 <li>Different fields of a structure do not alias.</li>
686 <li>Indexes into arrays with statically differing subscripts cannot alias.</li>
687 <li>Many common standard C library functions <a
688 href="#simplemodref">never access memory or only read memory</a>.</li>
689 <li>Pointers that obviously point to constant globals
690 "<tt>pointToConstantMemory</tt>".</li>
691 <li>Function calls can not modify or references stack allocations if they never
692 escape from the function that allocates them (a common case for automatic
693 arrays).</li>
694 </ul>
696 </div>
698 <!-- _______________________________________________________________________ -->
699 <div class="doc_subsubsection">
700 <a name="globalsmodref">The <tt>-globalsmodref-aa</tt> pass</a>
701 </div>
703 <div class="doc_text">
705 <p>This pass implements a simple context-sensitive mod/ref and alias analysis
706 for internal global variables that don't "have their address taken". If a
707 global does not have its address taken, the pass knows that no pointers alias
708 the global. This pass also keeps track of functions that it knows never access
709 memory or never read memory. This allows certain optimizations (e.g. GCSE) to
710 eliminate call instructions entirely.
711 </p>
713 <p>The real power of this pass is that it provides context-sensitive mod/ref
714 information for call instructions. This allows the optimizer to know that
715 calls to a function do not clobber or read the value of the global, allowing
716 loads and stores to be eliminated.</p>
718 <p>Note that this pass is somewhat limited in its scope (only support
719 non-address taken globals), but is very quick analysis.</p>
720 </div>
722 <!-- _______________________________________________________________________ -->
723 <div class="doc_subsubsection">
724 <a name="anders-aa">The <tt>-anders-aa</tt> pass</a>
725 </div>
727 <div class="doc_text">
729 <p>The <tt>-anders-aa</tt> pass implements the well-known "Andersen's algorithm"
730 for interprocedural alias analysis. This algorithm is a subset-based,
731 flow-insensitive, context-insensitive, and field-insensitive alias analysis that
732 is widely believed to be fairly precise. Unfortunately, this algorithm is also
733 O(N<sup>3</sup>). The LLVM implementation currently does not implement any of
734 the refinements (such as "online cycle elimination" or "offline variable
735 substitution") to improve its efficiency, so it can be quite slow in common
736 cases.
737 </p>
739 </div>
741 <!-- _______________________________________________________________________ -->
742 <div class="doc_subsubsection">
743 <a name="steens-aa">The <tt>-steens-aa</tt> pass</a>
744 </div>
746 <div class="doc_text">
748 <p>The <tt>-steens-aa</tt> pass implements a variation on the well-known
749 "Steensgaard's algorithm" for interprocedural alias analysis. Steensgaard's
750 algorithm is a unification-based, flow-insensitive, context-insensitive, and
751 field-insensitive alias analysis that is also very scalable (effectively linear
752 time).</p>
754 <p>The LLVM <tt>-steens-aa</tt> pass implements a "speculatively
755 field-<b>sensitive</b>" version of Steensgaard's algorithm using the Data
756 Structure Analysis framework. This gives it substantially more precision than
757 the standard algorithm while maintaining excellent analysis scalability.</p>
759 <p>Note that <tt>-steens-aa</tt> is available in the optional "poolalloc"
760 module, it is not part of the LLVM core.</p>
762 </div>
764 <!-- _______________________________________________________________________ -->
765 <div class="doc_subsubsection">
766 <a name="ds-aa">The <tt>-ds-aa</tt> pass</a>
767 </div>
769 <div class="doc_text">
771 <p>The <tt>-ds-aa</tt> pass implements the full Data Structure Analysis
772 algorithm. Data Structure Analysis is a modular unification-based,
773 flow-insensitive, context-<b>sensitive</b>, and speculatively
774 field-<b>sensitive</b> alias analysis that is also quite scalable, usually at
775 O(n*log(n)).</p>
777 <p>This algorithm is capable of responding to a full variety of alias analysis
778 queries, and can provide context-sensitive mod/ref information as well. The
779 only major facility not implemented so far is support for must-alias
780 information.</p>
782 <p>Note that <tt>-ds-aa</tt> is available in the optional "poolalloc"
783 module, it is not part of the LLVM core.</p>
785 </div>
788 <!-- ======================================================================= -->
789 <div class="doc_subsection">
790 <a name="aliasanalysis-xforms">Alias analysis driven transformations</a>
791 </div>
793 <div class="doc_text">
794 LLVM includes several alias-analysis driven transformations which can be used
795 with any of the implementations above.
796 </div>
798 <!-- _______________________________________________________________________ -->
799 <div class="doc_subsubsection">
800 <a name="adce">The <tt>-adce</tt> pass</a>
801 </div>
803 <div class="doc_text">
805 <p>The <tt>-adce</tt> pass, which implements Aggressive Dead Code Elimination
806 uses the <tt>AliasAnalysis</tt> interface to delete calls to functions that do
807 not have side-effects and are not used.</p>
809 </div>
812 <!-- _______________________________________________________________________ -->
813 <div class="doc_subsubsection">
814 <a name="licm">The <tt>-licm</tt> pass</a>
815 </div>
817 <div class="doc_text">
819 <p>The <tt>-licm</tt> pass implements various Loop Invariant Code Motion related
820 transformations. It uses the <tt>AliasAnalysis</tt> interface for several
821 different transformations:</p>
823 <ul>
824 <li>It uses mod/ref information to hoist or sink load instructions out of loops
825 if there are no instructions in the loop that modifies the memory loaded.</li>
827 <li>It uses mod/ref information to hoist function calls out of loops that do not
828 write to memory and are loop-invariant.</li>
830 <li>If uses alias information to promote memory objects that are loaded and
831 stored to in loops to live in a register instead. It can do this if there are
832 no may aliases to the loaded/stored memory location.</li>
833 </ul>
835 </div>
837 <!-- _______________________________________________________________________ -->
838 <div class="doc_subsubsection">
839 <a name="argpromotion">The <tt>-argpromotion</tt> pass</a>
840 </div>
842 <div class="doc_text">
844 The <tt>-argpromotion</tt> pass promotes by-reference arguments to be passed in
845 by-value instead. In particular, if pointer arguments are only loaded from it
846 passes in the value loaded instead of the address to the function. This pass
847 uses alias information to make sure that the value loaded from the argument
848 pointer is not modified between the entry of the function and any load of the
849 pointer.</p>
850 </div>
852 <!-- _______________________________________________________________________ -->
853 <div class="doc_subsubsection">
854 <a name="gcseloadvn">The <tt>-load-vn</tt> &amp; <tt>-gcse</tt> passes</a>
855 </div>
857 <div class="doc_text">
859 <p>The <tt>-load-vn</tt> pass uses alias analysis to "<a href="#loadvn">value
860 number</a>" loads and pointers values, which is used by the GCSE pass to
861 eliminate instructions. The <tt>-load-vn</tt> pass relies on alias information
862 and must-alias information. This combination of passes can make the following
863 transformations:</p>
865 <ul>
866 <li>Redundant load instructions are eliminated.</li>
867 <li>Load instructions that follow a store to the same location are replaced with
868 the stored value ("store forwarding").</li>
869 <li>Pointers values (e.g. formal arguments) that must-alias simpler expressions
870 (e.g. global variables or the null pointer) are replaced. Note that this
871 implements transformations like "virtual method resolution", turning indirect
872 calls into direct calls.</li>
873 </ul>
875 </div>
877 <!-- ======================================================================= -->
878 <div class="doc_subsection">
879 <a name="aliasanalysis-debug">Clients for debugging and evaluation of
880 implementations</a>
881 </div>
883 <div class="doc_text">
885 <p>These passes are useful for evaluating the various alias analysis
886 implementations. You can use them with commands like '<tt>opt -anders-aa -ds-aa
887 -aa-eval foo.bc -disable-output -stats</tt>'.</p>
889 </div>
891 <!-- _______________________________________________________________________ -->
892 <div class="doc_subsubsection">
893 <a name="print-alias-sets">The <tt>-print-alias-sets</tt> pass</a>
894 </div>
896 <div class="doc_text">
898 <p>The <tt>-print-alias-sets</tt> pass is exposed as part of the
899 <tt>opt</tt> tool to print out the Alias Sets formed by the <a
900 href="#ast"><tt>AliasSetTracker</tt></a> class. This is useful if you're using
901 the <tt>AliasSetTracker</tt> class. To use it, use something like:</p>
903 <div class="doc_code">
904 <pre>
905 % opt -ds-aa -print-alias-sets -disable-output
906 </pre>
907 </div>
909 </div>
912 <!-- _______________________________________________________________________ -->
913 <div class="doc_subsubsection">
914 <a name="count-aa">The <tt>-count-aa</tt> pass</a>
915 </div>
917 <div class="doc_text">
919 <p>The <tt>-count-aa</tt> pass is useful to see how many queries a particular
920 pass is making and what responses are returned by the alias analysis. As an
921 example,</p>
923 <div class="doc_code">
924 <pre>
925 % opt -basicaa -count-aa -ds-aa -count-aa -licm
926 </pre>
927 </div>
929 <p>will print out how many queries (and what responses are returned) by the
930 <tt>-licm</tt> pass (of the <tt>-ds-aa</tt> pass) and how many queries are made
931 of the <tt>-basicaa</tt> pass by the <tt>-ds-aa</tt> pass. This can be useful
932 when debugging a transformation or an alias analysis implementation.</p>
934 </div>
936 <!-- _______________________________________________________________________ -->
937 <div class="doc_subsubsection">
938 <a name="aa-eval">The <tt>-aa-eval</tt> pass</a>
939 </div>
941 <div class="doc_text">
943 <p>The <tt>-aa-eval</tt> pass simply iterates through all pairs of pointers in a
944 function and asks an alias analysis whether or not the pointers alias. This
945 gives an indication of the precision of the alias analysis. Statistics are
946 printed indicating the percent of no/may/must aliases found (a more precise
947 algorithm will have a lower number of may aliases).</p>
949 </div>
951 <!-- *********************************************************************** -->
952 <div class="doc_section">
953 <a name="memdep">Memory Dependence Analysis</a>
954 </div>
955 <!-- *********************************************************************** -->
957 <div class="doc_text">
959 <p>If you're just looking to be a client of alias analysis information, consider
960 using the Memory Dependence Analysis interface instead. MemDep is a lazy,
961 caching layer on top of alias analysis that is able to answer the question of
962 what preceding memory operations a given instruction depends on, either at an
963 intra- or inter-block level. Because of its laziness and caching
964 policy, using MemDep can be a significant performance win over accessing alias
965 analysis directly.</p>
967 </div>
969 <!-- *********************************************************************** -->
971 <hr>
972 <address>
973 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
974 src="http://jigsaw.w3.org/css-validator/images/vcss" alt="Valid CSS!"></a>
975 <a href="http://validator.w3.org/check/referer"><img
976 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01!"></a>
978 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
979 <a href="http://llvm.org">LLVM Compiler Infrastructure</a><br>
980 Last modified: $Date$
981 </address>
983 </body>
984 </html>