Fix bugs section.
[llvm-complete.git] / lib / Target / PowerPC / PPCISelDAGToDAG.cpp
blobdf1d9b5d25bf2c274a224860ca9dd3e1fe1cc4b2
1 //===-- PPCISelDAGToDAG.cpp - PPC --pattern matching inst selector --------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines a pattern matching instruction selector for PowerPC,
11 // converting from a legalized dag to a PPC dag.
13 //===----------------------------------------------------------------------===//
15 #define DEBUG_TYPE "ppc-codegen"
16 #include "PPC.h"
17 #include "PPCPredicates.h"
18 #include "PPCTargetMachine.h"
19 #include "PPCISelLowering.h"
20 #include "PPCHazardRecognizers.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/SelectionDAG.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/Target/TargetOptions.h"
27 #include "llvm/Constants.h"
28 #include "llvm/GlobalValue.h"
29 #include "llvm/Intrinsics.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Support/Compiler.h"
33 #include <queue>
34 #include <set>
35 using namespace llvm;
37 namespace {
38 //===--------------------------------------------------------------------===//
39 /// PPCDAGToDAGISel - PPC specific code to select PPC machine
40 /// instructions for SelectionDAG operations.
41 ///
42 class VISIBILITY_HIDDEN PPCDAGToDAGISel : public SelectionDAGISel {
43 PPCTargetMachine &TM;
44 PPCTargetLowering PPCLowering;
45 const PPCSubtarget &PPCSubTarget;
46 unsigned GlobalBaseReg;
47 public:
48 PPCDAGToDAGISel(PPCTargetMachine &tm)
49 : SelectionDAGISel(PPCLowering), TM(tm),
50 PPCLowering(*TM.getTargetLowering()),
51 PPCSubTarget(*TM.getSubtargetImpl()) {}
53 virtual bool runOnFunction(Function &Fn) {
54 // Make sure we re-emit a set of the global base reg if necessary
55 GlobalBaseReg = 0;
56 SelectionDAGISel::runOnFunction(Fn);
58 InsertVRSaveCode(Fn);
59 return true;
62 /// getI32Imm - Return a target constant with the specified value, of type
63 /// i32.
64 inline SDOperand getI32Imm(unsigned Imm) {
65 return CurDAG->getTargetConstant(Imm, MVT::i32);
68 /// getI64Imm - Return a target constant with the specified value, of type
69 /// i64.
70 inline SDOperand getI64Imm(uint64_t Imm) {
71 return CurDAG->getTargetConstant(Imm, MVT::i64);
74 /// getSmallIPtrImm - Return a target constant of pointer type.
75 inline SDOperand getSmallIPtrImm(unsigned Imm) {
76 return CurDAG->getTargetConstant(Imm, PPCLowering.getPointerTy());
79 /// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s
80 /// with any number of 0s on either side. The 1s are allowed to wrap from
81 /// LSB to MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs.
82 /// 0x0F0F0000 is not, since all 1s are not contiguous.
83 static bool isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME);
86 /// isRotateAndMask - Returns true if Mask and Shift can be folded into a
87 /// rotate and mask opcode and mask operation.
88 static bool isRotateAndMask(SDNode *N, unsigned Mask, bool IsShiftMask,
89 unsigned &SH, unsigned &MB, unsigned &ME);
91 /// getGlobalBaseReg - insert code into the entry mbb to materialize the PIC
92 /// base register. Return the virtual register that holds this value.
93 SDNode *getGlobalBaseReg();
95 // Select - Convert the specified operand from a target-independent to a
96 // target-specific node if it hasn't already been changed.
97 SDNode *Select(SDOperand Op);
99 SDNode *SelectBitfieldInsert(SDNode *N);
101 /// SelectCC - Select a comparison of the specified values with the
102 /// specified condition code, returning the CR# of the expression.
103 SDOperand SelectCC(SDOperand LHS, SDOperand RHS, ISD::CondCode CC);
105 /// SelectAddrImm - Returns true if the address N can be represented by
106 /// a base register plus a signed 16-bit displacement [r+imm].
107 bool SelectAddrImm(SDOperand Op, SDOperand N, SDOperand &Disp,
108 SDOperand &Base) {
109 return PPCLowering.SelectAddressRegImm(N, Disp, Base, *CurDAG);
112 /// SelectAddrImmOffs - Return true if the operand is valid for a preinc
113 /// immediate field. Because preinc imms have already been validated, just
114 /// accept it.
115 bool SelectAddrImmOffs(SDOperand Op, SDOperand N, SDOperand &Out) const {
116 Out = N;
117 return true;
120 /// SelectAddrIdx - Given the specified addressed, check to see if it can be
121 /// represented as an indexed [r+r] operation. Returns false if it can
122 /// be represented by [r+imm], which are preferred.
123 bool SelectAddrIdx(SDOperand Op, SDOperand N, SDOperand &Base,
124 SDOperand &Index) {
125 return PPCLowering.SelectAddressRegReg(N, Base, Index, *CurDAG);
128 /// SelectAddrIdxOnly - Given the specified addressed, force it to be
129 /// represented as an indexed [r+r] operation.
130 bool SelectAddrIdxOnly(SDOperand Op, SDOperand N, SDOperand &Base,
131 SDOperand &Index) {
132 return PPCLowering.SelectAddressRegRegOnly(N, Base, Index, *CurDAG);
135 /// SelectAddrImmShift - Returns true if the address N can be represented by
136 /// a base register plus a signed 14-bit displacement [r+imm*4]. Suitable
137 /// for use by STD and friends.
138 bool SelectAddrImmShift(SDOperand Op, SDOperand N, SDOperand &Disp,
139 SDOperand &Base) {
140 return PPCLowering.SelectAddressRegImmShift(N, Disp, Base, *CurDAG);
143 /// SelectInlineAsmMemoryOperand - Implement addressing mode selection for
144 /// inline asm expressions.
145 virtual bool SelectInlineAsmMemoryOperand(const SDOperand &Op,
146 char ConstraintCode,
147 std::vector<SDOperand> &OutOps,
148 SelectionDAG &DAG) {
149 SDOperand Op0, Op1;
150 switch (ConstraintCode) {
151 default: return true;
152 case 'm': // memory
153 if (!SelectAddrIdx(Op, Op, Op0, Op1))
154 SelectAddrImm(Op, Op, Op0, Op1);
155 break;
156 case 'o': // offsetable
157 if (!SelectAddrImm(Op, Op, Op0, Op1)) {
158 Op0 = Op;
159 AddToISelQueue(Op0); // r+0.
160 Op1 = getSmallIPtrImm(0);
162 break;
163 case 'v': // not offsetable
164 SelectAddrIdxOnly(Op, Op, Op0, Op1);
165 break;
168 OutOps.push_back(Op0);
169 OutOps.push_back(Op1);
170 return false;
173 SDOperand BuildSDIVSequence(SDNode *N);
174 SDOperand BuildUDIVSequence(SDNode *N);
176 /// InstructionSelectBasicBlock - This callback is invoked by
177 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
178 virtual void InstructionSelectBasicBlock(SelectionDAG &DAG);
180 void InsertVRSaveCode(Function &Fn);
182 virtual const char *getPassName() const {
183 return "PowerPC DAG->DAG Pattern Instruction Selection";
186 /// CreateTargetHazardRecognizer - Return the hazard recognizer to use for
187 /// this target when scheduling the DAG.
188 virtual HazardRecognizer *CreateTargetHazardRecognizer() {
189 // Should use subtarget info to pick the right hazard recognizer. For
190 // now, always return a PPC970 recognizer.
191 const TargetInstrInfo *II = PPCLowering.getTargetMachine().getInstrInfo();
192 assert(II && "No InstrInfo?");
193 return new PPCHazardRecognizer970(*II);
196 // Include the pieces autogenerated from the target description.
197 #include "PPCGenDAGISel.inc"
199 private:
200 SDNode *SelectSETCC(SDOperand Op);
204 /// InstructionSelectBasicBlock - This callback is invoked by
205 /// SelectionDAGISel when it has created a SelectionDAG for us to codegen.
206 void PPCDAGToDAGISel::InstructionSelectBasicBlock(SelectionDAG &DAG) {
207 DEBUG(BB->dump());
209 // Select target instructions for the DAG.
210 DAG.setRoot(SelectRoot(DAG.getRoot()));
211 DAG.RemoveDeadNodes();
213 // Emit machine code to BB.
214 ScheduleAndEmitDAG(DAG);
217 /// InsertVRSaveCode - Once the entire function has been instruction selected,
218 /// all virtual registers are created and all machine instructions are built,
219 /// check to see if we need to save/restore VRSAVE. If so, do it.
220 void PPCDAGToDAGISel::InsertVRSaveCode(Function &F) {
221 // Check to see if this function uses vector registers, which means we have to
222 // save and restore the VRSAVE register and update it with the regs we use.
224 // In this case, there will be virtual registers of vector type type created
225 // by the scheduler. Detect them now.
226 MachineFunction &Fn = MachineFunction::get(&F);
227 bool HasVectorVReg = false;
228 for (unsigned i = MRegisterInfo::FirstVirtualRegister,
229 e = RegInfo->getLastVirtReg()+1; i != e; ++i)
230 if (RegInfo->getRegClass(i) == &PPC::VRRCRegClass) {
231 HasVectorVReg = true;
232 break;
234 if (!HasVectorVReg) return; // nothing to do.
236 // If we have a vector register, we want to emit code into the entry and exit
237 // blocks to save and restore the VRSAVE register. We do this here (instead
238 // of marking all vector instructions as clobbering VRSAVE) for two reasons:
240 // 1. This (trivially) reduces the load on the register allocator, by not
241 // having to represent the live range of the VRSAVE register.
242 // 2. This (more significantly) allows us to create a temporary virtual
243 // register to hold the saved VRSAVE value, allowing this temporary to be
244 // register allocated, instead of forcing it to be spilled to the stack.
246 // Create two vregs - one to hold the VRSAVE register that is live-in to the
247 // function and one for the value after having bits or'd into it.
248 unsigned InVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
249 unsigned UpdatedVRSAVE = RegInfo->createVirtualRegister(&PPC::GPRCRegClass);
251 const TargetInstrInfo &TII = *TM.getInstrInfo();
252 MachineBasicBlock &EntryBB = *Fn.begin();
253 // Emit the following code into the entry block:
254 // InVRSAVE = MFVRSAVE
255 // UpdatedVRSAVE = UPDATE_VRSAVE InVRSAVE
256 // MTVRSAVE UpdatedVRSAVE
257 MachineBasicBlock::iterator IP = EntryBB.begin(); // Insert Point
258 BuildMI(EntryBB, IP, TII.get(PPC::MFVRSAVE), InVRSAVE);
259 BuildMI(EntryBB, IP, TII.get(PPC::UPDATE_VRSAVE),
260 UpdatedVRSAVE).addReg(InVRSAVE);
261 BuildMI(EntryBB, IP, TII.get(PPC::MTVRSAVE)).addReg(UpdatedVRSAVE);
263 // Find all return blocks, outputting a restore in each epilog.
264 for (MachineFunction::iterator BB = Fn.begin(), E = Fn.end(); BB != E; ++BB) {
265 if (!BB->empty() && BB->back().getDesc().isReturn()) {
266 IP = BB->end(); --IP;
268 // Skip over all terminator instructions, which are part of the return
269 // sequence.
270 MachineBasicBlock::iterator I2 = IP;
271 while (I2 != BB->begin() && (--I2)->getDesc().isTerminator())
272 IP = I2;
274 // Emit: MTVRSAVE InVRSave
275 BuildMI(*BB, IP, TII.get(PPC::MTVRSAVE)).addReg(InVRSAVE);
281 /// getGlobalBaseReg - Output the instructions required to put the
282 /// base address to use for accessing globals into a register.
284 SDNode *PPCDAGToDAGISel::getGlobalBaseReg() {
285 if (!GlobalBaseReg) {
286 const TargetInstrInfo &TII = *TM.getInstrInfo();
287 // Insert the set of GlobalBaseReg into the first MBB of the function
288 MachineBasicBlock &FirstMBB = BB->getParent()->front();
289 MachineBasicBlock::iterator MBBI = FirstMBB.begin();
291 if (PPCLowering.getPointerTy() == MVT::i32) {
292 GlobalBaseReg = RegInfo->createVirtualRegister(PPC::GPRCRegisterClass);
293 BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR), PPC::LR);
294 BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR), GlobalBaseReg);
295 } else {
296 GlobalBaseReg = RegInfo->createVirtualRegister(PPC::G8RCRegisterClass);
297 BuildMI(FirstMBB, MBBI, TII.get(PPC::MovePCtoLR8), PPC::LR8);
298 BuildMI(FirstMBB, MBBI, TII.get(PPC::MFLR8), GlobalBaseReg);
301 return CurDAG->getRegister(GlobalBaseReg, PPCLowering.getPointerTy()).Val;
304 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
305 /// or 64-bit immediate, and if the value can be accurately represented as a
306 /// sign extension from a 16-bit value. If so, this returns true and the
307 /// immediate.
308 static bool isIntS16Immediate(SDNode *N, short &Imm) {
309 if (N->getOpcode() != ISD::Constant)
310 return false;
312 Imm = (short)cast<ConstantSDNode>(N)->getValue();
313 if (N->getValueType(0) == MVT::i32)
314 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
315 else
316 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
319 static bool isIntS16Immediate(SDOperand Op, short &Imm) {
320 return isIntS16Immediate(Op.Val, Imm);
324 /// isInt32Immediate - This method tests to see if the node is a 32-bit constant
325 /// operand. If so Imm will receive the 32-bit value.
326 static bool isInt32Immediate(SDNode *N, unsigned &Imm) {
327 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i32) {
328 Imm = cast<ConstantSDNode>(N)->getValue();
329 return true;
331 return false;
334 /// isInt64Immediate - This method tests to see if the node is a 64-bit constant
335 /// operand. If so Imm will receive the 64-bit value.
336 static bool isInt64Immediate(SDNode *N, uint64_t &Imm) {
337 if (N->getOpcode() == ISD::Constant && N->getValueType(0) == MVT::i64) {
338 Imm = cast<ConstantSDNode>(N)->getValue();
339 return true;
341 return false;
344 // isInt32Immediate - This method tests to see if a constant operand.
345 // If so Imm will receive the 32 bit value.
346 static bool isInt32Immediate(SDOperand N, unsigned &Imm) {
347 return isInt32Immediate(N.Val, Imm);
351 // isOpcWithIntImmediate - This method tests to see if the node is a specific
352 // opcode and that it has a immediate integer right operand.
353 // If so Imm will receive the 32 bit value.
354 static bool isOpcWithIntImmediate(SDNode *N, unsigned Opc, unsigned& Imm) {
355 return N->getOpcode() == Opc && isInt32Immediate(N->getOperand(1).Val, Imm);
358 bool PPCDAGToDAGISel::isRunOfOnes(unsigned Val, unsigned &MB, unsigned &ME) {
359 if (isShiftedMask_32(Val)) {
360 // look for the first non-zero bit
361 MB = CountLeadingZeros_32(Val);
362 // look for the first zero bit after the run of ones
363 ME = CountLeadingZeros_32((Val - 1) ^ Val);
364 return true;
365 } else {
366 Val = ~Val; // invert mask
367 if (isShiftedMask_32(Val)) {
368 // effectively look for the first zero bit
369 ME = CountLeadingZeros_32(Val) - 1;
370 // effectively look for the first one bit after the run of zeros
371 MB = CountLeadingZeros_32((Val - 1) ^ Val) + 1;
372 return true;
375 // no run present
376 return false;
379 bool PPCDAGToDAGISel::isRotateAndMask(SDNode *N, unsigned Mask,
380 bool IsShiftMask, unsigned &SH,
381 unsigned &MB, unsigned &ME) {
382 // Don't even go down this path for i64, since different logic will be
383 // necessary for rldicl/rldicr/rldimi.
384 if (N->getValueType(0) != MVT::i32)
385 return false;
387 unsigned Shift = 32;
388 unsigned Indeterminant = ~0; // bit mask marking indeterminant results
389 unsigned Opcode = N->getOpcode();
390 if (N->getNumOperands() != 2 ||
391 !isInt32Immediate(N->getOperand(1).Val, Shift) || (Shift > 31))
392 return false;
394 if (Opcode == ISD::SHL) {
395 // apply shift left to mask if it comes first
396 if (IsShiftMask) Mask = Mask << Shift;
397 // determine which bits are made indeterminant by shift
398 Indeterminant = ~(0xFFFFFFFFu << Shift);
399 } else if (Opcode == ISD::SRL) {
400 // apply shift right to mask if it comes first
401 if (IsShiftMask) Mask = Mask >> Shift;
402 // determine which bits are made indeterminant by shift
403 Indeterminant = ~(0xFFFFFFFFu >> Shift);
404 // adjust for the left rotate
405 Shift = 32 - Shift;
406 } else if (Opcode == ISD::ROTL) {
407 Indeterminant = 0;
408 } else {
409 return false;
412 // if the mask doesn't intersect any Indeterminant bits
413 if (Mask && !(Mask & Indeterminant)) {
414 SH = Shift & 31;
415 // make sure the mask is still a mask (wrap arounds may not be)
416 return isRunOfOnes(Mask, MB, ME);
418 return false;
421 /// SelectBitfieldInsert - turn an or of two masked values into
422 /// the rotate left word immediate then mask insert (rlwimi) instruction.
423 SDNode *PPCDAGToDAGISel::SelectBitfieldInsert(SDNode *N) {
424 SDOperand Op0 = N->getOperand(0);
425 SDOperand Op1 = N->getOperand(1);
427 uint64_t LKZ, LKO, RKZ, RKO;
428 CurDAG->ComputeMaskedBits(Op0, 0xFFFFFFFFULL, LKZ, LKO);
429 CurDAG->ComputeMaskedBits(Op1, 0xFFFFFFFFULL, RKZ, RKO);
431 unsigned TargetMask = LKZ;
432 unsigned InsertMask = RKZ;
434 if ((TargetMask | InsertMask) == 0xFFFFFFFF) {
435 unsigned Op0Opc = Op0.getOpcode();
436 unsigned Op1Opc = Op1.getOpcode();
437 unsigned Value, SH = 0;
438 TargetMask = ~TargetMask;
439 InsertMask = ~InsertMask;
441 // If the LHS has a foldable shift and the RHS does not, then swap it to the
442 // RHS so that we can fold the shift into the insert.
443 if (Op0Opc == ISD::AND && Op1Opc == ISD::AND) {
444 if (Op0.getOperand(0).getOpcode() == ISD::SHL ||
445 Op0.getOperand(0).getOpcode() == ISD::SRL) {
446 if (Op1.getOperand(0).getOpcode() != ISD::SHL &&
447 Op1.getOperand(0).getOpcode() != ISD::SRL) {
448 std::swap(Op0, Op1);
449 std::swap(Op0Opc, Op1Opc);
450 std::swap(TargetMask, InsertMask);
453 } else if (Op0Opc == ISD::SHL || Op0Opc == ISD::SRL) {
454 if (Op1Opc == ISD::AND && Op1.getOperand(0).getOpcode() != ISD::SHL &&
455 Op1.getOperand(0).getOpcode() != ISD::SRL) {
456 std::swap(Op0, Op1);
457 std::swap(Op0Opc, Op1Opc);
458 std::swap(TargetMask, InsertMask);
462 unsigned MB, ME;
463 if (InsertMask && isRunOfOnes(InsertMask, MB, ME)) {
464 SDOperand Tmp1, Tmp2, Tmp3;
465 bool DisjointMask = (TargetMask ^ InsertMask) == 0xFFFFFFFF;
467 if ((Op1Opc == ISD::SHL || Op1Opc == ISD::SRL) &&
468 isInt32Immediate(Op1.getOperand(1), Value)) {
469 Op1 = Op1.getOperand(0);
470 SH = (Op1Opc == ISD::SHL) ? Value : 32 - Value;
472 if (Op1Opc == ISD::AND) {
473 unsigned SHOpc = Op1.getOperand(0).getOpcode();
474 if ((SHOpc == ISD::SHL || SHOpc == ISD::SRL) &&
475 isInt32Immediate(Op1.getOperand(0).getOperand(1), Value)) {
476 Op1 = Op1.getOperand(0).getOperand(0);
477 SH = (SHOpc == ISD::SHL) ? Value : 32 - Value;
478 } else {
479 Op1 = Op1.getOperand(0);
483 Tmp3 = (Op0Opc == ISD::AND && DisjointMask) ? Op0.getOperand(0) : Op0;
484 AddToISelQueue(Tmp3);
485 AddToISelQueue(Op1);
486 SH &= 31;
487 SDOperand Ops[] = { Tmp3, Op1, getI32Imm(SH), getI32Imm(MB),
488 getI32Imm(ME) };
489 return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
492 return 0;
495 /// SelectCC - Select a comparison of the specified values with the specified
496 /// condition code, returning the CR# of the expression.
497 SDOperand PPCDAGToDAGISel::SelectCC(SDOperand LHS, SDOperand RHS,
498 ISD::CondCode CC) {
499 // Always select the LHS.
500 AddToISelQueue(LHS);
501 unsigned Opc;
503 if (LHS.getValueType() == MVT::i32) {
504 unsigned Imm;
505 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
506 if (isInt32Immediate(RHS, Imm)) {
507 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
508 if (isUInt16(Imm))
509 return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
510 getI32Imm(Imm & 0xFFFF)), 0);
511 // If this is a 16-bit signed immediate, fold it.
512 if (isInt16((int)Imm))
513 return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
514 getI32Imm(Imm & 0xFFFF)), 0);
516 // For non-equality comparisons, the default code would materialize the
517 // constant, then compare against it, like this:
518 // lis r2, 4660
519 // ori r2, r2, 22136
520 // cmpw cr0, r3, r2
521 // Since we are just comparing for equality, we can emit this instead:
522 // xoris r0,r3,0x1234
523 // cmplwi cr0,r0,0x5678
524 // beq cr0,L6
525 SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS, MVT::i32, LHS,
526 getI32Imm(Imm >> 16)), 0);
527 return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, Xor,
528 getI32Imm(Imm & 0xFFFF)), 0);
530 Opc = PPC::CMPLW;
531 } else if (ISD::isUnsignedIntSetCC(CC)) {
532 if (isInt32Immediate(RHS, Imm) && isUInt16(Imm))
533 return SDOperand(CurDAG->getTargetNode(PPC::CMPLWI, MVT::i32, LHS,
534 getI32Imm(Imm & 0xFFFF)), 0);
535 Opc = PPC::CMPLW;
536 } else {
537 short SImm;
538 if (isIntS16Immediate(RHS, SImm))
539 return SDOperand(CurDAG->getTargetNode(PPC::CMPWI, MVT::i32, LHS,
540 getI32Imm((int)SImm & 0xFFFF)),
542 Opc = PPC::CMPW;
544 } else if (LHS.getValueType() == MVT::i64) {
545 uint64_t Imm;
546 if (CC == ISD::SETEQ || CC == ISD::SETNE) {
547 if (isInt64Immediate(RHS.Val, Imm)) {
548 // SETEQ/SETNE comparison with 16-bit immediate, fold it.
549 if (isUInt16(Imm))
550 return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
551 getI32Imm(Imm & 0xFFFF)), 0);
552 // If this is a 16-bit signed immediate, fold it.
553 if (isInt16(Imm))
554 return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
555 getI32Imm(Imm & 0xFFFF)), 0);
557 // For non-equality comparisons, the default code would materialize the
558 // constant, then compare against it, like this:
559 // lis r2, 4660
560 // ori r2, r2, 22136
561 // cmpd cr0, r3, r2
562 // Since we are just comparing for equality, we can emit this instead:
563 // xoris r0,r3,0x1234
564 // cmpldi cr0,r0,0x5678
565 // beq cr0,L6
566 if (isUInt32(Imm)) {
567 SDOperand Xor(CurDAG->getTargetNode(PPC::XORIS8, MVT::i64, LHS,
568 getI64Imm(Imm >> 16)), 0);
569 return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, Xor,
570 getI64Imm(Imm & 0xFFFF)), 0);
573 Opc = PPC::CMPLD;
574 } else if (ISD::isUnsignedIntSetCC(CC)) {
575 if (isInt64Immediate(RHS.Val, Imm) && isUInt16(Imm))
576 return SDOperand(CurDAG->getTargetNode(PPC::CMPLDI, MVT::i64, LHS,
577 getI64Imm(Imm & 0xFFFF)), 0);
578 Opc = PPC::CMPLD;
579 } else {
580 short SImm;
581 if (isIntS16Immediate(RHS, SImm))
582 return SDOperand(CurDAG->getTargetNode(PPC::CMPDI, MVT::i64, LHS,
583 getI64Imm(SImm & 0xFFFF)),
585 Opc = PPC::CMPD;
587 } else if (LHS.getValueType() == MVT::f32) {
588 Opc = PPC::FCMPUS;
589 } else {
590 assert(LHS.getValueType() == MVT::f64 && "Unknown vt!");
591 Opc = PPC::FCMPUD;
593 AddToISelQueue(RHS);
594 return SDOperand(CurDAG->getTargetNode(Opc, MVT::i32, LHS, RHS), 0);
597 static PPC::Predicate getPredicateForSetCC(ISD::CondCode CC) {
598 switch (CC) {
599 default: assert(0 && "Unknown condition!"); abort();
600 case ISD::SETOEQ: // FIXME: This is incorrect see PR642.
601 case ISD::SETUEQ:
602 case ISD::SETEQ: return PPC::PRED_EQ;
603 case ISD::SETONE: // FIXME: This is incorrect see PR642.
604 case ISD::SETUNE:
605 case ISD::SETNE: return PPC::PRED_NE;
606 case ISD::SETOLT: // FIXME: This is incorrect see PR642.
607 case ISD::SETULT:
608 case ISD::SETLT: return PPC::PRED_LT;
609 case ISD::SETOLE: // FIXME: This is incorrect see PR642.
610 case ISD::SETULE:
611 case ISD::SETLE: return PPC::PRED_LE;
612 case ISD::SETOGT: // FIXME: This is incorrect see PR642.
613 case ISD::SETUGT:
614 case ISD::SETGT: return PPC::PRED_GT;
615 case ISD::SETOGE: // FIXME: This is incorrect see PR642.
616 case ISD::SETUGE:
617 case ISD::SETGE: return PPC::PRED_GE;
619 case ISD::SETO: return PPC::PRED_NU;
620 case ISD::SETUO: return PPC::PRED_UN;
624 /// getCRIdxForSetCC - Return the index of the condition register field
625 /// associated with the SetCC condition, and whether or not the field is
626 /// treated as inverted. That is, lt = 0; ge = 0 inverted.
628 /// If this returns with Other != -1, then the returned comparison is an or of
629 /// two simpler comparisons. In this case, Invert is guaranteed to be false.
630 static unsigned getCRIdxForSetCC(ISD::CondCode CC, bool &Invert, int &Other) {
631 Invert = false;
632 Other = -1;
633 switch (CC) {
634 default: assert(0 && "Unknown condition!"); abort();
635 case ISD::SETOLT:
636 case ISD::SETLT: return 0; // Bit #0 = SETOLT
637 case ISD::SETOGT:
638 case ISD::SETGT: return 1; // Bit #1 = SETOGT
639 case ISD::SETOEQ:
640 case ISD::SETEQ: return 2; // Bit #2 = SETOEQ
641 case ISD::SETUO: return 3; // Bit #3 = SETUO
642 case ISD::SETUGE:
643 case ISD::SETGE: Invert = true; return 0; // !Bit #0 = SETUGE
644 case ISD::SETULE:
645 case ISD::SETLE: Invert = true; return 1; // !Bit #1 = SETULE
646 case ISD::SETUNE:
647 case ISD::SETNE: Invert = true; return 2; // !Bit #2 = SETUNE
648 case ISD::SETO: Invert = true; return 3; // !Bit #3 = SETO
649 case ISD::SETULT: Other = 0; return 3; // SETOLT | SETUO
650 case ISD::SETUGT: Other = 1; return 3; // SETOGT | SETUO
651 case ISD::SETUEQ: Other = 2; return 3; // SETOEQ | SETUO
652 case ISD::SETOGE: Other = 1; return 2; // SETOGT | SETOEQ
653 case ISD::SETOLE: Other = 0; return 2; // SETOLT | SETOEQ
654 case ISD::SETONE: Other = 0; return 1; // SETOLT | SETOGT
656 return 0;
659 SDNode *PPCDAGToDAGISel::SelectSETCC(SDOperand Op) {
660 SDNode *N = Op.Val;
661 unsigned Imm;
662 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(2))->get();
663 if (isInt32Immediate(N->getOperand(1), Imm)) {
664 // We can codegen setcc op, imm very efficiently compared to a brcond.
665 // Check for those cases here.
666 // setcc op, 0
667 if (Imm == 0) {
668 SDOperand Op = N->getOperand(0);
669 AddToISelQueue(Op);
670 switch (CC) {
671 default: break;
672 case ISD::SETEQ: {
673 Op = SDOperand(CurDAG->getTargetNode(PPC::CNTLZW, MVT::i32, Op), 0);
674 SDOperand Ops[] = { Op, getI32Imm(27), getI32Imm(5), getI32Imm(31) };
675 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
677 case ISD::SETNE: {
678 SDOperand AD =
679 SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
680 Op, getI32Imm(~0U)), 0);
681 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, AD, Op,
682 AD.getValue(1));
684 case ISD::SETLT: {
685 SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
686 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
688 case ISD::SETGT: {
689 SDOperand T =
690 SDOperand(CurDAG->getTargetNode(PPC::NEG, MVT::i32, Op), 0);
691 T = SDOperand(CurDAG->getTargetNode(PPC::ANDC, MVT::i32, T, Op), 0);
692 SDOperand Ops[] = { T, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
693 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
696 } else if (Imm == ~0U) { // setcc op, -1
697 SDOperand Op = N->getOperand(0);
698 AddToISelQueue(Op);
699 switch (CC) {
700 default: break;
701 case ISD::SETEQ:
702 Op = SDOperand(CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
703 Op, getI32Imm(1)), 0);
704 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
705 SDOperand(CurDAG->getTargetNode(PPC::LI, MVT::i32,
706 getI32Imm(0)), 0),
707 Op.getValue(1));
708 case ISD::SETNE: {
709 Op = SDOperand(CurDAG->getTargetNode(PPC::NOR, MVT::i32, Op, Op), 0);
710 SDNode *AD = CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
711 Op, getI32Imm(~0U));
712 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32, SDOperand(AD, 0),
713 Op, SDOperand(AD, 1));
715 case ISD::SETLT: {
716 SDOperand AD = SDOperand(CurDAG->getTargetNode(PPC::ADDI, MVT::i32, Op,
717 getI32Imm(1)), 0);
718 SDOperand AN = SDOperand(CurDAG->getTargetNode(PPC::AND, MVT::i32, AD,
719 Op), 0);
720 SDOperand Ops[] = { AN, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
721 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
723 case ISD::SETGT: {
724 SDOperand Ops[] = { Op, getI32Imm(1), getI32Imm(31), getI32Imm(31) };
725 Op = SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
726 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Op,
727 getI32Imm(1));
733 bool Inv;
734 int OtherCondIdx;
735 unsigned Idx = getCRIdxForSetCC(CC, Inv, OtherCondIdx);
736 SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
737 SDOperand IntCR;
739 // Force the ccreg into CR7.
740 SDOperand CR7Reg = CurDAG->getRegister(PPC::CR7, MVT::i32);
742 SDOperand InFlag(0, 0); // Null incoming flag value.
743 CCReg = CurDAG->getCopyToReg(CurDAG->getEntryNode(), CR7Reg, CCReg,
744 InFlag).getValue(1);
746 if (PPCSubTarget.isGigaProcessor() && OtherCondIdx == -1)
747 IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32, CR7Reg,
748 CCReg), 0);
749 else
750 IntCR = SDOperand(CurDAG->getTargetNode(PPC::MFCR, MVT::i32, CCReg), 0);
752 SDOperand Ops[] = { IntCR, getI32Imm((32-(3-Idx)) & 31),
753 getI32Imm(31), getI32Imm(31) };
754 if (OtherCondIdx == -1 && !Inv)
755 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
757 // Get the specified bit.
758 SDOperand Tmp =
759 SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
760 if (Inv) {
761 assert(OtherCondIdx == -1 && "Can't have split plus negation");
762 return CurDAG->SelectNodeTo(N, PPC::XORI, MVT::i32, Tmp, getI32Imm(1));
765 // Otherwise, we have to turn an operation like SETONE -> SETOLT | SETOGT.
766 // We already got the bit for the first part of the comparison (e.g. SETULE).
768 // Get the other bit of the comparison.
769 Ops[1] = getI32Imm((32-(3-OtherCondIdx)) & 31);
770 SDOperand OtherCond =
771 SDOperand(CurDAG->getTargetNode(PPC::RLWINM, MVT::i32, Ops, 4), 0);
773 return CurDAG->SelectNodeTo(N, PPC::OR, MVT::i32, Tmp, OtherCond);
777 // Select - Convert the specified operand from a target-independent to a
778 // target-specific node if it hasn't already been changed.
779 SDNode *PPCDAGToDAGISel::Select(SDOperand Op) {
780 SDNode *N = Op.Val;
781 if (N->getOpcode() >= ISD::BUILTIN_OP_END &&
782 N->getOpcode() < PPCISD::FIRST_NUMBER)
783 return NULL; // Already selected.
785 switch (N->getOpcode()) {
786 default: break;
788 case ISD::Constant: {
789 if (N->getValueType(0) == MVT::i64) {
790 // Get 64 bit value.
791 int64_t Imm = cast<ConstantSDNode>(N)->getValue();
792 // Assume no remaining bits.
793 unsigned Remainder = 0;
794 // Assume no shift required.
795 unsigned Shift = 0;
797 // If it can't be represented as a 32 bit value.
798 if (!isInt32(Imm)) {
799 Shift = CountTrailingZeros_64(Imm);
800 int64_t ImmSh = static_cast<uint64_t>(Imm) >> Shift;
802 // If the shifted value fits 32 bits.
803 if (isInt32(ImmSh)) {
804 // Go with the shifted value.
805 Imm = ImmSh;
806 } else {
807 // Still stuck with a 64 bit value.
808 Remainder = Imm;
809 Shift = 32;
810 Imm >>= 32;
814 // Intermediate operand.
815 SDNode *Result;
817 // Handle first 32 bits.
818 unsigned Lo = Imm & 0xFFFF;
819 unsigned Hi = (Imm >> 16) & 0xFFFF;
821 // Simple value.
822 if (isInt16(Imm)) {
823 // Just the Lo bits.
824 Result = CurDAG->getTargetNode(PPC::LI8, MVT::i64, getI32Imm(Lo));
825 } else if (Lo) {
826 // Handle the Hi bits.
827 unsigned OpC = Hi ? PPC::LIS8 : PPC::LI8;
828 Result = CurDAG->getTargetNode(OpC, MVT::i64, getI32Imm(Hi));
829 // And Lo bits.
830 Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
831 SDOperand(Result, 0), getI32Imm(Lo));
832 } else {
833 // Just the Hi bits.
834 Result = CurDAG->getTargetNode(PPC::LIS8, MVT::i64, getI32Imm(Hi));
837 // If no shift, we're done.
838 if (!Shift) return Result;
840 // Shift for next step if the upper 32-bits were not zero.
841 if (Imm) {
842 Result = CurDAG->getTargetNode(PPC::RLDICR, MVT::i64,
843 SDOperand(Result, 0),
844 getI32Imm(Shift), getI32Imm(63 - Shift));
847 // Add in the last bits as required.
848 if ((Hi = (Remainder >> 16) & 0xFFFF)) {
849 Result = CurDAG->getTargetNode(PPC::ORIS8, MVT::i64,
850 SDOperand(Result, 0), getI32Imm(Hi));
852 if ((Lo = Remainder & 0xFFFF)) {
853 Result = CurDAG->getTargetNode(PPC::ORI8, MVT::i64,
854 SDOperand(Result, 0), getI32Imm(Lo));
857 return Result;
859 break;
862 case ISD::SETCC:
863 return SelectSETCC(Op);
864 case PPCISD::GlobalBaseReg:
865 return getGlobalBaseReg();
867 case ISD::FrameIndex: {
868 int FI = cast<FrameIndexSDNode>(N)->getIndex();
869 SDOperand TFI = CurDAG->getTargetFrameIndex(FI, Op.getValueType());
870 unsigned Opc = Op.getValueType() == MVT::i32 ? PPC::ADDI : PPC::ADDI8;
871 if (N->hasOneUse())
872 return CurDAG->SelectNodeTo(N, Opc, Op.getValueType(), TFI,
873 getSmallIPtrImm(0));
874 return CurDAG->getTargetNode(Opc, Op.getValueType(), TFI,
875 getSmallIPtrImm(0));
878 case PPCISD::MFCR: {
879 SDOperand InFlag = N->getOperand(1);
880 AddToISelQueue(InFlag);
881 // Use MFOCRF if supported.
882 if (PPCSubTarget.isGigaProcessor())
883 return CurDAG->getTargetNode(PPC::MFOCRF, MVT::i32,
884 N->getOperand(0), InFlag);
885 else
886 return CurDAG->getTargetNode(PPC::MFCR, MVT::i32, InFlag);
889 case ISD::SDIV: {
890 // FIXME: since this depends on the setting of the carry flag from the srawi
891 // we should really be making notes about that for the scheduler.
892 // FIXME: It sure would be nice if we could cheaply recognize the
893 // srl/add/sra pattern the dag combiner will generate for this as
894 // sra/addze rather than having to handle sdiv ourselves. oh well.
895 unsigned Imm;
896 if (isInt32Immediate(N->getOperand(1), Imm)) {
897 SDOperand N0 = N->getOperand(0);
898 AddToISelQueue(N0);
899 if ((signed)Imm > 0 && isPowerOf2_32(Imm)) {
900 SDNode *Op =
901 CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
902 N0, getI32Imm(Log2_32(Imm)));
903 return CurDAG->SelectNodeTo(N, PPC::ADDZE, MVT::i32,
904 SDOperand(Op, 0), SDOperand(Op, 1));
905 } else if ((signed)Imm < 0 && isPowerOf2_32(-Imm)) {
906 SDNode *Op =
907 CurDAG->getTargetNode(PPC::SRAWI, MVT::i32, MVT::Flag,
908 N0, getI32Imm(Log2_32(-Imm)));
909 SDOperand PT =
910 SDOperand(CurDAG->getTargetNode(PPC::ADDZE, MVT::i32,
911 SDOperand(Op, 0), SDOperand(Op, 1)),
913 return CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
917 // Other cases are autogenerated.
918 break;
921 case ISD::LOAD: {
922 // Handle preincrement loads.
923 LoadSDNode *LD = cast<LoadSDNode>(Op);
924 MVT::ValueType LoadedVT = LD->getLoadedVT();
926 // Normal loads are handled by code generated from the .td file.
927 if (LD->getAddressingMode() != ISD::PRE_INC)
928 break;
930 SDOperand Offset = LD->getOffset();
931 if (isa<ConstantSDNode>(Offset) ||
932 Offset.getOpcode() == ISD::TargetGlobalAddress) {
934 unsigned Opcode;
935 bool isSExt = LD->getExtensionType() == ISD::SEXTLOAD;
936 if (LD->getValueType(0) != MVT::i64) {
937 // Handle PPC32 integer and normal FP loads.
938 assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
939 switch (LoadedVT) {
940 default: assert(0 && "Invalid PPC load type!");
941 case MVT::f64: Opcode = PPC::LFDU; break;
942 case MVT::f32: Opcode = PPC::LFSU; break;
943 case MVT::i32: Opcode = PPC::LWZU; break;
944 case MVT::i16: Opcode = isSExt ? PPC::LHAU : PPC::LHZU; break;
945 case MVT::i1:
946 case MVT::i8: Opcode = PPC::LBZU; break;
948 } else {
949 assert(LD->getValueType(0) == MVT::i64 && "Unknown load result type!");
950 assert(!isSExt || LoadedVT == MVT::i16 && "Invalid sext update load");
951 switch (LoadedVT) {
952 default: assert(0 && "Invalid PPC load type!");
953 case MVT::i64: Opcode = PPC::LDU; break;
954 case MVT::i32: Opcode = PPC::LWZU8; break;
955 case MVT::i16: Opcode = isSExt ? PPC::LHAU8 : PPC::LHZU8; break;
956 case MVT::i1:
957 case MVT::i8: Opcode = PPC::LBZU8; break;
961 SDOperand Chain = LD->getChain();
962 SDOperand Base = LD->getBasePtr();
963 AddToISelQueue(Chain);
964 AddToISelQueue(Base);
965 AddToISelQueue(Offset);
966 SDOperand Ops[] = { Offset, Base, Chain };
967 // FIXME: PPC64
968 return CurDAG->getTargetNode(Opcode, MVT::i32, MVT::i32,
969 MVT::Other, Ops, 3);
970 } else {
971 assert(0 && "R+R preindex loads not supported yet!");
975 case ISD::AND: {
976 unsigned Imm, Imm2, SH, MB, ME;
978 // If this is an and of a value rotated between 0 and 31 bits and then and'd
979 // with a mask, emit rlwinm
980 if (isInt32Immediate(N->getOperand(1), Imm) &&
981 isRotateAndMask(N->getOperand(0).Val, Imm, false, SH, MB, ME)) {
982 SDOperand Val = N->getOperand(0).getOperand(0);
983 AddToISelQueue(Val);
984 SDOperand Ops[] = { Val, getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
985 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
987 // If this is just a masked value where the input is not handled above, and
988 // is not a rotate-left (handled by a pattern in the .td file), emit rlwinm
989 if (isInt32Immediate(N->getOperand(1), Imm) &&
990 isRunOfOnes(Imm, MB, ME) &&
991 N->getOperand(0).getOpcode() != ISD::ROTL) {
992 SDOperand Val = N->getOperand(0);
993 AddToISelQueue(Val);
994 SDOperand Ops[] = { Val, getI32Imm(0), getI32Imm(MB), getI32Imm(ME) };
995 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
997 // AND X, 0 -> 0, not "rlwinm 32".
998 if (isInt32Immediate(N->getOperand(1), Imm) && (Imm == 0)) {
999 AddToISelQueue(N->getOperand(1));
1000 ReplaceUses(SDOperand(N, 0), N->getOperand(1));
1001 return NULL;
1003 // ISD::OR doesn't get all the bitfield insertion fun.
1004 // (and (or x, c1), c2) where isRunOfOnes(~(c1^c2)) is a bitfield insert
1005 if (isInt32Immediate(N->getOperand(1), Imm) &&
1006 N->getOperand(0).getOpcode() == ISD::OR &&
1007 isInt32Immediate(N->getOperand(0).getOperand(1), Imm2)) {
1008 unsigned MB, ME;
1009 Imm = ~(Imm^Imm2);
1010 if (isRunOfOnes(Imm, MB, ME)) {
1011 AddToISelQueue(N->getOperand(0).getOperand(0));
1012 AddToISelQueue(N->getOperand(0).getOperand(1));
1013 SDOperand Ops[] = { N->getOperand(0).getOperand(0),
1014 N->getOperand(0).getOperand(1),
1015 getI32Imm(0), getI32Imm(MB),getI32Imm(ME) };
1016 return CurDAG->getTargetNode(PPC::RLWIMI, MVT::i32, Ops, 5);
1020 // Other cases are autogenerated.
1021 break;
1023 case ISD::OR:
1024 if (N->getValueType(0) == MVT::i32)
1025 if (SDNode *I = SelectBitfieldInsert(N))
1026 return I;
1028 // Other cases are autogenerated.
1029 break;
1030 case ISD::SHL: {
1031 unsigned Imm, SH, MB, ME;
1032 if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
1033 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1034 AddToISelQueue(N->getOperand(0).getOperand(0));
1035 SDOperand Ops[] = { N->getOperand(0).getOperand(0),
1036 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1037 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1040 // Other cases are autogenerated.
1041 break;
1043 case ISD::SRL: {
1044 unsigned Imm, SH, MB, ME;
1045 if (isOpcWithIntImmediate(N->getOperand(0).Val, ISD::AND, Imm) &&
1046 isRotateAndMask(N, Imm, true, SH, MB, ME)) {
1047 AddToISelQueue(N->getOperand(0).getOperand(0));
1048 SDOperand Ops[] = { N->getOperand(0).getOperand(0),
1049 getI32Imm(SH), getI32Imm(MB), getI32Imm(ME) };
1050 return CurDAG->SelectNodeTo(N, PPC::RLWINM, MVT::i32, Ops, 4);
1053 // Other cases are autogenerated.
1054 break;
1056 case ISD::SELECT_CC: {
1057 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(4))->get();
1059 // Handle the setcc cases here. select_cc lhs, 0, 1, 0, cc
1060 if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N->getOperand(1)))
1061 if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N->getOperand(2)))
1062 if (ConstantSDNode *N3C = dyn_cast<ConstantSDNode>(N->getOperand(3)))
1063 if (N1C->isNullValue() && N3C->isNullValue() &&
1064 N2C->getValue() == 1ULL && CC == ISD::SETNE &&
1065 // FIXME: Implement this optzn for PPC64.
1066 N->getValueType(0) == MVT::i32) {
1067 AddToISelQueue(N->getOperand(0));
1068 SDNode *Tmp =
1069 CurDAG->getTargetNode(PPC::ADDIC, MVT::i32, MVT::Flag,
1070 N->getOperand(0), getI32Imm(~0U));
1071 return CurDAG->SelectNodeTo(N, PPC::SUBFE, MVT::i32,
1072 SDOperand(Tmp, 0), N->getOperand(0),
1073 SDOperand(Tmp, 1));
1076 SDOperand CCReg = SelectCC(N->getOperand(0), N->getOperand(1), CC);
1077 unsigned BROpc = getPredicateForSetCC(CC);
1079 unsigned SelectCCOp;
1080 if (N->getValueType(0) == MVT::i32)
1081 SelectCCOp = PPC::SELECT_CC_I4;
1082 else if (N->getValueType(0) == MVT::i64)
1083 SelectCCOp = PPC::SELECT_CC_I8;
1084 else if (N->getValueType(0) == MVT::f32)
1085 SelectCCOp = PPC::SELECT_CC_F4;
1086 else if (N->getValueType(0) == MVT::f64)
1087 SelectCCOp = PPC::SELECT_CC_F8;
1088 else
1089 SelectCCOp = PPC::SELECT_CC_VRRC;
1091 AddToISelQueue(N->getOperand(2));
1092 AddToISelQueue(N->getOperand(3));
1093 SDOperand Ops[] = { CCReg, N->getOperand(2), N->getOperand(3),
1094 getI32Imm(BROpc) };
1095 return CurDAG->SelectNodeTo(N, SelectCCOp, N->getValueType(0), Ops, 4);
1097 case PPCISD::COND_BRANCH: {
1098 AddToISelQueue(N->getOperand(0)); // Op #0 is the Chain.
1099 // Op #1 is the PPC::PRED_* number.
1100 // Op #2 is the CR#
1101 // Op #3 is the Dest MBB
1102 AddToISelQueue(N->getOperand(4)); // Op #4 is the Flag.
1103 // Prevent PPC::PRED_* from being selected into LI.
1104 SDOperand Pred =
1105 getI32Imm(cast<ConstantSDNode>(N->getOperand(1))->getValue());
1106 SDOperand Ops[] = { Pred, N->getOperand(2), N->getOperand(3),
1107 N->getOperand(0), N->getOperand(4) };
1108 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 5);
1110 case ISD::BR_CC: {
1111 AddToISelQueue(N->getOperand(0));
1112 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
1113 SDOperand CondCode = SelectCC(N->getOperand(2), N->getOperand(3), CC);
1114 SDOperand Ops[] = { getI32Imm(getPredicateForSetCC(CC)), CondCode,
1115 N->getOperand(4), N->getOperand(0) };
1116 return CurDAG->SelectNodeTo(N, PPC::BCC, MVT::Other, Ops, 4);
1118 case ISD::BRIND: {
1119 // FIXME: Should custom lower this.
1120 SDOperand Chain = N->getOperand(0);
1121 SDOperand Target = N->getOperand(1);
1122 AddToISelQueue(Chain);
1123 AddToISelQueue(Target);
1124 unsigned Opc = Target.getValueType() == MVT::i32 ? PPC::MTCTR : PPC::MTCTR8;
1125 Chain = SDOperand(CurDAG->getTargetNode(Opc, MVT::Other, Target,
1126 Chain), 0);
1127 return CurDAG->SelectNodeTo(N, PPC::BCTR, MVT::Other, Chain);
1131 return SelectCode(Op);
1136 /// createPPCISelDag - This pass converts a legalized DAG into a
1137 /// PowerPC-specific DAG, ready for instruction scheduling.
1139 FunctionPass *llvm::createPPCISelDag(PPCTargetMachine &TM) {
1140 return new PPCDAGToDAGISel(TM);