1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
3 // The LLVM Compiler Infrastructure
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
8 //===----------------------------------------------------------------------===//
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPredicates.h"
17 #include "PPCTargetMachine.h"
18 #include "PPCPerfectShuffle.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/VectorExtras.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/Constants.h"
29 #include "llvm/Function.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/Support/CommandLine.h"
36 static cl::opt
<bool> EnablePPCPreinc("enable-ppc-preinc",
37 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
40 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine
&TM
)
41 : TargetLowering(TM
), PPCSubTarget(*TM
.getSubtargetImpl()) {
45 // Use _setjmp/_longjmp instead of setjmp/longjmp.
46 setUseUnderscoreSetJmp(true);
47 setUseUnderscoreLongJmp(true);
49 // Set up the register classes.
50 addRegisterClass(MVT::i32
, PPC::GPRCRegisterClass
);
51 addRegisterClass(MVT::f32
, PPC::F4RCRegisterClass
);
52 addRegisterClass(MVT::f64
, PPC::F8RCRegisterClass
);
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setLoadXAction(ISD::SEXTLOAD
, MVT::i1
, Expand
);
56 setLoadXAction(ISD::SEXTLOAD
, MVT::i8
, Expand
);
58 // PowerPC does not have truncstore for i1.
59 setStoreXAction(MVT::i1
, Promote
);
61 // PowerPC has pre-inc load and store's.
62 setIndexedLoadAction(ISD::PRE_INC
, MVT::i1
, Legal
);
63 setIndexedLoadAction(ISD::PRE_INC
, MVT::i8
, Legal
);
64 setIndexedLoadAction(ISD::PRE_INC
, MVT::i16
, Legal
);
65 setIndexedLoadAction(ISD::PRE_INC
, MVT::i32
, Legal
);
66 setIndexedLoadAction(ISD::PRE_INC
, MVT::i64
, Legal
);
67 setIndexedStoreAction(ISD::PRE_INC
, MVT::i1
, Legal
);
68 setIndexedStoreAction(ISD::PRE_INC
, MVT::i8
, Legal
);
69 setIndexedStoreAction(ISD::PRE_INC
, MVT::i16
, Legal
);
70 setIndexedStoreAction(ISD::PRE_INC
, MVT::i32
, Legal
);
71 setIndexedStoreAction(ISD::PRE_INC
, MVT::i64
, Legal
);
73 setOperationAction(ISD::ConstantFP
, MVT::f64
, Expand
);
74 setOperationAction(ISD::ConstantFP
, MVT::f32
, Expand
);
76 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
77 setConvertAction(MVT::ppcf128
, MVT::f64
, Expand
);
78 setConvertAction(MVT::ppcf128
, MVT::f32
, Expand
);
79 // This is used in the ppcf128->int sequence. Note it has different semantics
80 // from FP_ROUND: that rounds to nearest, this rounds to zero.
81 setOperationAction(ISD::FP_ROUND_INREG
, MVT::ppcf128
, Custom
);
83 // PowerPC has no intrinsics for these particular operations
84 setOperationAction(ISD::MEMMOVE
, MVT::Other
, Expand
);
85 setOperationAction(ISD::MEMSET
, MVT::Other
, Expand
);
86 setOperationAction(ISD::MEMCPY
, MVT::Other
, Expand
);
88 // PowerPC has no SREM/UREM instructions
89 setOperationAction(ISD::SREM
, MVT::i32
, Expand
);
90 setOperationAction(ISD::UREM
, MVT::i32
, Expand
);
91 setOperationAction(ISD::SREM
, MVT::i64
, Expand
);
92 setOperationAction(ISD::UREM
, MVT::i64
, Expand
);
94 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
95 setOperationAction(ISD::UMUL_LOHI
, MVT::i32
, Expand
);
96 setOperationAction(ISD::SMUL_LOHI
, MVT::i32
, Expand
);
97 setOperationAction(ISD::UMUL_LOHI
, MVT::i64
, Expand
);
98 setOperationAction(ISD::SMUL_LOHI
, MVT::i64
, Expand
);
99 setOperationAction(ISD::UDIVREM
, MVT::i32
, Expand
);
100 setOperationAction(ISD::SDIVREM
, MVT::i32
, Expand
);
101 setOperationAction(ISD::UDIVREM
, MVT::i64
, Expand
);
102 setOperationAction(ISD::SDIVREM
, MVT::i64
, Expand
);
104 // We don't support sin/cos/sqrt/fmod/pow
105 setOperationAction(ISD::FSIN
, MVT::f64
, Expand
);
106 setOperationAction(ISD::FCOS
, MVT::f64
, Expand
);
107 setOperationAction(ISD::FREM
, MVT::f64
, Expand
);
108 setOperationAction(ISD::FPOW
, MVT::f64
, Expand
);
109 setOperationAction(ISD::FSIN
, MVT::f32
, Expand
);
110 setOperationAction(ISD::FCOS
, MVT::f32
, Expand
);
111 setOperationAction(ISD::FREM
, MVT::f32
, Expand
);
112 setOperationAction(ISD::FPOW
, MVT::f32
, Expand
);
114 // If we're enabling GP optimizations, use hardware square root
115 if (!TM
.getSubtarget
<PPCSubtarget
>().hasFSQRT()) {
116 setOperationAction(ISD::FSQRT
, MVT::f64
, Expand
);
117 setOperationAction(ISD::FSQRT
, MVT::f32
, Expand
);
120 setOperationAction(ISD::FCOPYSIGN
, MVT::f64
, Expand
);
121 setOperationAction(ISD::FCOPYSIGN
, MVT::f32
, Expand
);
123 // PowerPC does not have BSWAP, CTPOP or CTTZ
124 setOperationAction(ISD::BSWAP
, MVT::i32
, Expand
);
125 setOperationAction(ISD::CTPOP
, MVT::i32
, Expand
);
126 setOperationAction(ISD::CTTZ
, MVT::i32
, Expand
);
127 setOperationAction(ISD::BSWAP
, MVT::i64
, Expand
);
128 setOperationAction(ISD::CTPOP
, MVT::i64
, Expand
);
129 setOperationAction(ISD::CTTZ
, MVT::i64
, Expand
);
131 // PowerPC does not have ROTR
132 setOperationAction(ISD::ROTR
, MVT::i32
, Expand
);
134 // PowerPC does not have Select
135 setOperationAction(ISD::SELECT
, MVT::i32
, Expand
);
136 setOperationAction(ISD::SELECT
, MVT::i64
, Expand
);
137 setOperationAction(ISD::SELECT
, MVT::f32
, Expand
);
138 setOperationAction(ISD::SELECT
, MVT::f64
, Expand
);
140 // PowerPC wants to turn select_cc of FP into fsel when possible.
141 setOperationAction(ISD::SELECT_CC
, MVT::f32
, Custom
);
142 setOperationAction(ISD::SELECT_CC
, MVT::f64
, Custom
);
144 // PowerPC wants to optimize integer setcc a bit
145 setOperationAction(ISD::SETCC
, MVT::i32
, Custom
);
147 // PowerPC does not have BRCOND which requires SetCC
148 setOperationAction(ISD::BRCOND
, MVT::Other
, Expand
);
150 setOperationAction(ISD::BR_JT
, MVT::Other
, Expand
);
152 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
153 setOperationAction(ISD::FP_TO_SINT
, MVT::i32
, Custom
);
155 // PowerPC does not have [U|S]INT_TO_FP
156 setOperationAction(ISD::SINT_TO_FP
, MVT::i32
, Expand
);
157 setOperationAction(ISD::UINT_TO_FP
, MVT::i32
, Expand
);
159 setOperationAction(ISD::BIT_CONVERT
, MVT::f32
, Expand
);
160 setOperationAction(ISD::BIT_CONVERT
, MVT::i32
, Expand
);
161 setOperationAction(ISD::BIT_CONVERT
, MVT::i64
, Expand
);
162 setOperationAction(ISD::BIT_CONVERT
, MVT::f64
, Expand
);
164 // We cannot sextinreg(i1). Expand to shifts.
165 setOperationAction(ISD::SIGN_EXTEND_INREG
, MVT::i1
, Expand
);
167 // Support label based line numbers.
168 setOperationAction(ISD::LOCATION
, MVT::Other
, Expand
);
169 setOperationAction(ISD::DEBUG_LOC
, MVT::Other
, Expand
);
171 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i64
, Expand
);
172 setOperationAction(ISD::EHSELECTION
, MVT::i64
, Expand
);
173 setOperationAction(ISD::EXCEPTIONADDR
, MVT::i32
, Expand
);
174 setOperationAction(ISD::EHSELECTION
, MVT::i32
, Expand
);
177 // We want to legalize GlobalAddress and ConstantPool nodes into the
178 // appropriate instructions to materialize the address.
179 setOperationAction(ISD::GlobalAddress
, MVT::i32
, Custom
);
180 setOperationAction(ISD::GlobalTLSAddress
, MVT::i32
, Custom
);
181 setOperationAction(ISD::ConstantPool
, MVT::i32
, Custom
);
182 setOperationAction(ISD::JumpTable
, MVT::i32
, Custom
);
183 setOperationAction(ISD::GlobalAddress
, MVT::i64
, Custom
);
184 setOperationAction(ISD::GlobalTLSAddress
, MVT::i64
, Custom
);
185 setOperationAction(ISD::ConstantPool
, MVT::i64
, Custom
);
186 setOperationAction(ISD::JumpTable
, MVT::i64
, Custom
);
188 // RET must be custom lowered, to meet ABI requirements
189 setOperationAction(ISD::RET
, MVT::Other
, Custom
);
191 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
192 setOperationAction(ISD::VASTART
, MVT::Other
, Custom
);
194 // VAARG is custom lowered with ELF 32 ABI
195 if (TM
.getSubtarget
<PPCSubtarget
>().isELF32_ABI())
196 setOperationAction(ISD::VAARG
, MVT::Other
, Custom
);
198 setOperationAction(ISD::VAARG
, MVT::Other
, Expand
);
200 // Use the default implementation.
201 setOperationAction(ISD::VACOPY
, MVT::Other
, Expand
);
202 setOperationAction(ISD::VAEND
, MVT::Other
, Expand
);
203 setOperationAction(ISD::STACKSAVE
, MVT::Other
, Expand
);
204 setOperationAction(ISD::STACKRESTORE
, MVT::Other
, Custom
);
205 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i32
, Custom
);
206 setOperationAction(ISD::DYNAMIC_STACKALLOC
, MVT::i64
, Custom
);
208 // We want to custom lower some of our intrinsics.
209 setOperationAction(ISD::INTRINSIC_WO_CHAIN
, MVT::Other
, Custom
);
211 if (TM
.getSubtarget
<PPCSubtarget
>().has64BitSupport()) {
212 // They also have instructions for converting between i64 and fp.
213 setOperationAction(ISD::FP_TO_SINT
, MVT::i64
, Custom
);
214 setOperationAction(ISD::FP_TO_UINT
, MVT::i64
, Expand
);
215 setOperationAction(ISD::SINT_TO_FP
, MVT::i64
, Custom
);
216 setOperationAction(ISD::UINT_TO_FP
, MVT::i64
, Expand
);
217 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
219 // FIXME: disable this lowered code. This generates 64-bit register values,
220 // and we don't model the fact that the top part is clobbered by calls. We
221 // need to flag these together so that the value isn't live across a call.
222 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
224 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Promote
);
227 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228 setOperationAction(ISD::FP_TO_UINT
, MVT::i32
, Expand
);
231 if (TM
.getSubtarget
<PPCSubtarget
>().use64BitRegs()) {
232 // 64-bit PowerPC implementations can support i64 types directly
233 addRegisterClass(MVT::i64
, PPC::G8RCRegisterClass
);
234 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235 setOperationAction(ISD::BUILD_PAIR
, MVT::i64
, Expand
);
237 // 32-bit PowerPC wants to expand i64 shifts itself.
238 setOperationAction(ISD::SHL_PARTS
, MVT::i32
, Custom
);
239 setOperationAction(ISD::SRA_PARTS
, MVT::i32
, Custom
);
240 setOperationAction(ISD::SRL_PARTS
, MVT::i32
, Custom
);
243 if (TM
.getSubtarget
<PPCSubtarget
>().hasAltivec()) {
244 // First set operation action for all vector types to expand. Then we
245 // will selectively turn on ones that can be effectively codegen'd.
246 for (unsigned VT
= (unsigned)MVT::FIRST_VECTOR_VALUETYPE
;
247 VT
<= (unsigned)MVT::LAST_VECTOR_VALUETYPE
; ++VT
) {
248 // add/sub are legal for all supported vector VT's.
249 setOperationAction(ISD::ADD
, (MVT::ValueType
)VT
, Legal
);
250 setOperationAction(ISD::SUB
, (MVT::ValueType
)VT
, Legal
);
252 // We promote all shuffles to v16i8.
253 setOperationAction(ISD::VECTOR_SHUFFLE
, (MVT::ValueType
)VT
, Promote
);
254 AddPromotedToType (ISD::VECTOR_SHUFFLE
, (MVT::ValueType
)VT
, MVT::v16i8
);
256 // We promote all non-typed operations to v4i32.
257 setOperationAction(ISD::AND
, (MVT::ValueType
)VT
, Promote
);
258 AddPromotedToType (ISD::AND
, (MVT::ValueType
)VT
, MVT::v4i32
);
259 setOperationAction(ISD::OR
, (MVT::ValueType
)VT
, Promote
);
260 AddPromotedToType (ISD::OR
, (MVT::ValueType
)VT
, MVT::v4i32
);
261 setOperationAction(ISD::XOR
, (MVT::ValueType
)VT
, Promote
);
262 AddPromotedToType (ISD::XOR
, (MVT::ValueType
)VT
, MVT::v4i32
);
263 setOperationAction(ISD::LOAD
, (MVT::ValueType
)VT
, Promote
);
264 AddPromotedToType (ISD::LOAD
, (MVT::ValueType
)VT
, MVT::v4i32
);
265 setOperationAction(ISD::SELECT
, (MVT::ValueType
)VT
, Promote
);
266 AddPromotedToType (ISD::SELECT
, (MVT::ValueType
)VT
, MVT::v4i32
);
267 setOperationAction(ISD::STORE
, (MVT::ValueType
)VT
, Promote
);
268 AddPromotedToType (ISD::STORE
, (MVT::ValueType
)VT
, MVT::v4i32
);
270 // No other operations are legal.
271 setOperationAction(ISD::MUL
, (MVT::ValueType
)VT
, Expand
);
272 setOperationAction(ISD::SDIV
, (MVT::ValueType
)VT
, Expand
);
273 setOperationAction(ISD::SREM
, (MVT::ValueType
)VT
, Expand
);
274 setOperationAction(ISD::UDIV
, (MVT::ValueType
)VT
, Expand
);
275 setOperationAction(ISD::UREM
, (MVT::ValueType
)VT
, Expand
);
276 setOperationAction(ISD::FDIV
, (MVT::ValueType
)VT
, Expand
);
277 setOperationAction(ISD::FNEG
, (MVT::ValueType
)VT
, Expand
);
278 setOperationAction(ISD::EXTRACT_VECTOR_ELT
, (MVT::ValueType
)VT
, Expand
);
279 setOperationAction(ISD::INSERT_VECTOR_ELT
, (MVT::ValueType
)VT
, Expand
);
280 setOperationAction(ISD::BUILD_VECTOR
, (MVT::ValueType
)VT
, Expand
);
281 setOperationAction(ISD::UMUL_LOHI
, (MVT::ValueType
)VT
, Expand
);
282 setOperationAction(ISD::SMUL_LOHI
, (MVT::ValueType
)VT
, Expand
);
283 setOperationAction(ISD::UDIVREM
, (MVT::ValueType
)VT
, Expand
);
284 setOperationAction(ISD::SDIVREM
, (MVT::ValueType
)VT
, Expand
);
285 setOperationAction(ISD::SCALAR_TO_VECTOR
, (MVT::ValueType
)VT
, Expand
);
286 setOperationAction(ISD::FPOW
, (MVT::ValueType
)VT
, Expand
);
287 setOperationAction(ISD::CTPOP
, (MVT::ValueType
)VT
, Expand
);
288 setOperationAction(ISD::CTLZ
, (MVT::ValueType
)VT
, Expand
);
289 setOperationAction(ISD::CTTZ
, (MVT::ValueType
)VT
, Expand
);
292 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
293 // with merges, splats, etc.
294 setOperationAction(ISD::VECTOR_SHUFFLE
, MVT::v16i8
, Custom
);
296 setOperationAction(ISD::AND
, MVT::v4i32
, Legal
);
297 setOperationAction(ISD::OR
, MVT::v4i32
, Legal
);
298 setOperationAction(ISD::XOR
, MVT::v4i32
, Legal
);
299 setOperationAction(ISD::LOAD
, MVT::v4i32
, Legal
);
300 setOperationAction(ISD::SELECT
, MVT::v4i32
, Expand
);
301 setOperationAction(ISD::STORE
, MVT::v4i32
, Legal
);
303 addRegisterClass(MVT::v4f32
, PPC::VRRCRegisterClass
);
304 addRegisterClass(MVT::v4i32
, PPC::VRRCRegisterClass
);
305 addRegisterClass(MVT::v8i16
, PPC::VRRCRegisterClass
);
306 addRegisterClass(MVT::v16i8
, PPC::VRRCRegisterClass
);
308 setOperationAction(ISD::MUL
, MVT::v4f32
, Legal
);
309 setOperationAction(ISD::MUL
, MVT::v4i32
, Custom
);
310 setOperationAction(ISD::MUL
, MVT::v8i16
, Custom
);
311 setOperationAction(ISD::MUL
, MVT::v16i8
, Custom
);
313 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4f32
, Custom
);
314 setOperationAction(ISD::SCALAR_TO_VECTOR
, MVT::v4i32
, Custom
);
316 setOperationAction(ISD::BUILD_VECTOR
, MVT::v16i8
, Custom
);
317 setOperationAction(ISD::BUILD_VECTOR
, MVT::v8i16
, Custom
);
318 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4i32
, Custom
);
319 setOperationAction(ISD::BUILD_VECTOR
, MVT::v4f32
, Custom
);
322 setSetCCResultType(MVT::i32
);
323 setShiftAmountType(MVT::i32
);
324 setSetCCResultContents(ZeroOrOneSetCCResult
);
326 if (TM
.getSubtarget
<PPCSubtarget
>().isPPC64()) {
327 setStackPointerRegisterToSaveRestore(PPC::X1
);
328 setExceptionPointerRegister(PPC::X3
);
329 setExceptionSelectorRegister(PPC::X4
);
331 setStackPointerRegisterToSaveRestore(PPC::R1
);
332 setExceptionPointerRegister(PPC::R3
);
333 setExceptionSelectorRegister(PPC::R4
);
336 // We have target-specific dag combine patterns for the following nodes:
337 setTargetDAGCombine(ISD::SINT_TO_FP
);
338 setTargetDAGCombine(ISD::STORE
);
339 setTargetDAGCombine(ISD::BR_CC
);
340 setTargetDAGCombine(ISD::BSWAP
);
342 // Darwin long double math library functions have $LDBL128 appended.
343 if (TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
344 setLibcallName(RTLIB::COS_PPCF128
, "cosl$LDBL128");
345 setLibcallName(RTLIB::POW_PPCF128
, "powl$LDBL128");
346 setLibcallName(RTLIB::REM_PPCF128
, "fmodl$LDBL128");
347 setLibcallName(RTLIB::SIN_PPCF128
, "sinl$LDBL128");
348 setLibcallName(RTLIB::SQRT_PPCF128
, "sqrtl$LDBL128");
351 computeRegisterProperties();
354 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode
) const {
357 case PPCISD::FSEL
: return "PPCISD::FSEL";
358 case PPCISD::FCFID
: return "PPCISD::FCFID";
359 case PPCISD::FCTIDZ
: return "PPCISD::FCTIDZ";
360 case PPCISD::FCTIWZ
: return "PPCISD::FCTIWZ";
361 case PPCISD::STFIWX
: return "PPCISD::STFIWX";
362 case PPCISD::VMADDFP
: return "PPCISD::VMADDFP";
363 case PPCISD::VNMSUBFP
: return "PPCISD::VNMSUBFP";
364 case PPCISD::VPERM
: return "PPCISD::VPERM";
365 case PPCISD::Hi
: return "PPCISD::Hi";
366 case PPCISD::Lo
: return "PPCISD::Lo";
367 case PPCISD::DYNALLOC
: return "PPCISD::DYNALLOC";
368 case PPCISD::GlobalBaseReg
: return "PPCISD::GlobalBaseReg";
369 case PPCISD::SRL
: return "PPCISD::SRL";
370 case PPCISD::SRA
: return "PPCISD::SRA";
371 case PPCISD::SHL
: return "PPCISD::SHL";
372 case PPCISD::EXTSW_32
: return "PPCISD::EXTSW_32";
373 case PPCISD::STD_32
: return "PPCISD::STD_32";
374 case PPCISD::CALL_ELF
: return "PPCISD::CALL_ELF";
375 case PPCISD::CALL_Macho
: return "PPCISD::CALL_Macho";
376 case PPCISD::MTCTR
: return "PPCISD::MTCTR";
377 case PPCISD::BCTRL_Macho
: return "PPCISD::BCTRL_Macho";
378 case PPCISD::BCTRL_ELF
: return "PPCISD::BCTRL_ELF";
379 case PPCISD::RET_FLAG
: return "PPCISD::RET_FLAG";
380 case PPCISD::MFCR
: return "PPCISD::MFCR";
381 case PPCISD::VCMP
: return "PPCISD::VCMP";
382 case PPCISD::VCMPo
: return "PPCISD::VCMPo";
383 case PPCISD::LBRX
: return "PPCISD::LBRX";
384 case PPCISD::STBRX
: return "PPCISD::STBRX";
385 case PPCISD::COND_BRANCH
: return "PPCISD::COND_BRANCH";
389 //===----------------------------------------------------------------------===//
390 // Node matching predicates, for use by the tblgen matching code.
391 //===----------------------------------------------------------------------===//
393 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
394 static bool isFloatingPointZero(SDOperand Op
) {
395 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(Op
))
396 return CFP
->getValueAPF().isZero();
397 else if (ISD::isEXTLoad(Op
.Val
) || ISD::isNON_EXTLoad(Op
.Val
)) {
398 // Maybe this has already been legalized into the constant pool?
399 if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(Op
.getOperand(1)))
400 if (ConstantFP
*CFP
= dyn_cast
<ConstantFP
>(CP
->getConstVal()))
401 return CFP
->getValueAPF().isZero();
406 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
407 /// true if Op is undef or if it matches the specified value.
408 static bool isConstantOrUndef(SDOperand Op
, unsigned Val
) {
409 return Op
.getOpcode() == ISD::UNDEF
||
410 cast
<ConstantSDNode
>(Op
)->getValue() == Val
;
413 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
414 /// VPKUHUM instruction.
415 bool PPC::isVPKUHUMShuffleMask(SDNode
*N
, bool isUnary
) {
417 for (unsigned i
= 0; i
!= 16; ++i
)
418 if (!isConstantOrUndef(N
->getOperand(i
), i
*2+1))
421 for (unsigned i
= 0; i
!= 8; ++i
)
422 if (!isConstantOrUndef(N
->getOperand(i
), i
*2+1) ||
423 !isConstantOrUndef(N
->getOperand(i
+8), i
*2+1))
429 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
430 /// VPKUWUM instruction.
431 bool PPC::isVPKUWUMShuffleMask(SDNode
*N
, bool isUnary
) {
433 for (unsigned i
= 0; i
!= 16; i
+= 2)
434 if (!isConstantOrUndef(N
->getOperand(i
), i
*2+2) ||
435 !isConstantOrUndef(N
->getOperand(i
+1), i
*2+3))
438 for (unsigned i
= 0; i
!= 8; i
+= 2)
439 if (!isConstantOrUndef(N
->getOperand(i
), i
*2+2) ||
440 !isConstantOrUndef(N
->getOperand(i
+1), i
*2+3) ||
441 !isConstantOrUndef(N
->getOperand(i
+8), i
*2+2) ||
442 !isConstantOrUndef(N
->getOperand(i
+9), i
*2+3))
448 /// isVMerge - Common function, used to match vmrg* shuffles.
450 static bool isVMerge(SDNode
*N
, unsigned UnitSize
,
451 unsigned LHSStart
, unsigned RHSStart
) {
452 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&&
453 N
->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
454 assert((UnitSize
== 1 || UnitSize
== 2 || UnitSize
== 4) &&
455 "Unsupported merge size!");
457 for (unsigned i
= 0; i
!= 8/UnitSize
; ++i
) // Step over units
458 for (unsigned j
= 0; j
!= UnitSize
; ++j
) { // Step over bytes within unit
459 if (!isConstantOrUndef(N
->getOperand(i
*UnitSize
*2+j
),
460 LHSStart
+j
+i
*UnitSize
) ||
461 !isConstantOrUndef(N
->getOperand(i
*UnitSize
*2+UnitSize
+j
),
462 RHSStart
+j
+i
*UnitSize
))
468 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
469 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
470 bool PPC::isVMRGLShuffleMask(SDNode
*N
, unsigned UnitSize
, bool isUnary
) {
472 return isVMerge(N
, UnitSize
, 8, 24);
473 return isVMerge(N
, UnitSize
, 8, 8);
476 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
477 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
478 bool PPC::isVMRGHShuffleMask(SDNode
*N
, unsigned UnitSize
, bool isUnary
) {
480 return isVMerge(N
, UnitSize
, 0, 16);
481 return isVMerge(N
, UnitSize
, 0, 0);
485 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
486 /// amount, otherwise return -1.
487 int PPC::isVSLDOIShuffleMask(SDNode
*N
, bool isUnary
) {
488 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&&
489 N
->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
490 // Find the first non-undef value in the shuffle mask.
492 for (i
= 0; i
!= 16 && N
->getOperand(i
).getOpcode() == ISD::UNDEF
; ++i
)
495 if (i
== 16) return -1; // all undef.
497 // Otherwise, check to see if the rest of the elements are consequtively
498 // numbered from this value.
499 unsigned ShiftAmt
= cast
<ConstantSDNode
>(N
->getOperand(i
))->getValue();
500 if (ShiftAmt
< i
) return -1;
504 // Check the rest of the elements to see if they are consequtive.
505 for (++i
; i
!= 16; ++i
)
506 if (!isConstantOrUndef(N
->getOperand(i
), ShiftAmt
+i
))
509 // Check the rest of the elements to see if they are consequtive.
510 for (++i
; i
!= 16; ++i
)
511 if (!isConstantOrUndef(N
->getOperand(i
), (ShiftAmt
+i
) & 15))
518 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
519 /// specifies a splat of a single element that is suitable for input to
520 /// VSPLTB/VSPLTH/VSPLTW.
521 bool PPC::isSplatShuffleMask(SDNode
*N
, unsigned EltSize
) {
522 assert(N
->getOpcode() == ISD::BUILD_VECTOR
&&
523 N
->getNumOperands() == 16 &&
524 (EltSize
== 1 || EltSize
== 2 || EltSize
== 4));
526 // This is a splat operation if each element of the permute is the same, and
527 // if the value doesn't reference the second vector.
528 unsigned ElementBase
= 0;
529 SDOperand Elt
= N
->getOperand(0);
530 if (ConstantSDNode
*EltV
= dyn_cast
<ConstantSDNode
>(Elt
))
531 ElementBase
= EltV
->getValue();
533 return false; // FIXME: Handle UNDEF elements too!
535 if (cast
<ConstantSDNode
>(Elt
)->getValue() >= 16)
538 // Check that they are consequtive.
539 for (unsigned i
= 1; i
!= EltSize
; ++i
) {
540 if (!isa
<ConstantSDNode
>(N
->getOperand(i
)) ||
541 cast
<ConstantSDNode
>(N
->getOperand(i
))->getValue() != i
+ElementBase
)
545 assert(isa
<ConstantSDNode
>(Elt
) && "Invalid VECTOR_SHUFFLE mask!");
546 for (unsigned i
= EltSize
, e
= 16; i
!= e
; i
+= EltSize
) {
547 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
548 assert(isa
<ConstantSDNode
>(N
->getOperand(i
)) &&
549 "Invalid VECTOR_SHUFFLE mask!");
550 for (unsigned j
= 0; j
!= EltSize
; ++j
)
551 if (N
->getOperand(i
+j
) != N
->getOperand(j
))
558 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
560 bool PPC::isAllNegativeZeroVector(SDNode
*N
) {
561 assert(N
->getOpcode() == ISD::BUILD_VECTOR
);
562 if (PPC::isSplatShuffleMask(N
, N
->getNumOperands()))
563 if (ConstantFPSDNode
*CFP
= dyn_cast
<ConstantFPSDNode
>(N
))
564 return CFP
->getValueAPF().isNegZero();
568 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
569 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
570 unsigned PPC::getVSPLTImmediate(SDNode
*N
, unsigned EltSize
) {
571 assert(isSplatShuffleMask(N
, EltSize
));
572 return cast
<ConstantSDNode
>(N
->getOperand(0))->getValue() / EltSize
;
575 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
576 /// by using a vspltis[bhw] instruction of the specified element size, return
577 /// the constant being splatted. The ByteSize field indicates the number of
578 /// bytes of each element [124] -> [bhw].
579 SDOperand
PPC::get_VSPLTI_elt(SDNode
*N
, unsigned ByteSize
, SelectionDAG
&DAG
) {
580 SDOperand
OpVal(0, 0);
582 // If ByteSize of the splat is bigger than the element size of the
583 // build_vector, then we have a case where we are checking for a splat where
584 // multiple elements of the buildvector are folded together into a single
585 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
586 unsigned EltSize
= 16/N
->getNumOperands();
587 if (EltSize
< ByteSize
) {
588 unsigned Multiple
= ByteSize
/EltSize
; // Number of BV entries per spltval.
589 SDOperand UniquedVals
[4];
590 assert(Multiple
> 1 && Multiple
<= 4 && "How can this happen?");
592 // See if all of the elements in the buildvector agree across.
593 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
594 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
595 // If the element isn't a constant, bail fully out.
596 if (!isa
<ConstantSDNode
>(N
->getOperand(i
))) return SDOperand();
599 if (UniquedVals
[i
&(Multiple
-1)].Val
== 0)
600 UniquedVals
[i
&(Multiple
-1)] = N
->getOperand(i
);
601 else if (UniquedVals
[i
&(Multiple
-1)] != N
->getOperand(i
))
602 return SDOperand(); // no match.
605 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
606 // either constant or undef values that are identical for each chunk. See
607 // if these chunks can form into a larger vspltis*.
609 // Check to see if all of the leading entries are either 0 or -1. If
610 // neither, then this won't fit into the immediate field.
611 bool LeadingZero
= true;
612 bool LeadingOnes
= true;
613 for (unsigned i
= 0; i
!= Multiple
-1; ++i
) {
614 if (UniquedVals
[i
].Val
== 0) continue; // Must have been undefs.
616 LeadingZero
&= cast
<ConstantSDNode
>(UniquedVals
[i
])->isNullValue();
617 LeadingOnes
&= cast
<ConstantSDNode
>(UniquedVals
[i
])->isAllOnesValue();
619 // Finally, check the least significant entry.
621 if (UniquedVals
[Multiple
-1].Val
== 0)
622 return DAG
.getTargetConstant(0, MVT::i32
); // 0,0,0,undef
623 int Val
= cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getValue();
625 return DAG
.getTargetConstant(Val
, MVT::i32
); // 0,0,0,4 -> vspltisw(4)
628 if (UniquedVals
[Multiple
-1].Val
== 0)
629 return DAG
.getTargetConstant(~0U, MVT::i32
); // -1,-1,-1,undef
630 int Val
=cast
<ConstantSDNode
>(UniquedVals
[Multiple
-1])->getSignExtended();
631 if (Val
>= -16) // -1,-1,-1,-2 -> vspltisw(-2)
632 return DAG
.getTargetConstant(Val
, MVT::i32
);
638 // Check to see if this buildvec has a single non-undef value in its elements.
639 for (unsigned i
= 0, e
= N
->getNumOperands(); i
!= e
; ++i
) {
640 if (N
->getOperand(i
).getOpcode() == ISD::UNDEF
) continue;
642 OpVal
= N
->getOperand(i
);
643 else if (OpVal
!= N
->getOperand(i
))
647 if (OpVal
.Val
== 0) return SDOperand(); // All UNDEF: use implicit def.
649 unsigned ValSizeInBytes
= 0;
651 if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
652 Value
= CN
->getValue();
653 ValSizeInBytes
= MVT::getSizeInBits(CN
->getValueType(0))/8;
654 } else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
)) {
655 assert(CN
->getValueType(0) == MVT::f32
&& "Only one legal FP vector type!");
656 Value
= FloatToBits(CN
->getValueAPF().convertToFloat());
660 // If the splat value is larger than the element value, then we can never do
661 // this splat. The only case that we could fit the replicated bits into our
662 // immediate field for would be zero, and we prefer to use vxor for it.
663 if (ValSizeInBytes
< ByteSize
) return SDOperand();
665 // If the element value is larger than the splat value, cut it in half and
666 // check to see if the two halves are equal. Continue doing this until we
667 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
668 while (ValSizeInBytes
> ByteSize
) {
669 ValSizeInBytes
>>= 1;
671 // If the top half equals the bottom half, we're still ok.
672 if (((Value
>> (ValSizeInBytes
*8)) & ((1 << (8*ValSizeInBytes
))-1)) !=
673 (Value
& ((1 << (8*ValSizeInBytes
))-1)))
677 // Properly sign extend the value.
678 int ShAmt
= (4-ByteSize
)*8;
679 int MaskVal
= ((int)Value
<< ShAmt
) >> ShAmt
;
681 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
682 if (MaskVal
== 0) return SDOperand();
684 // Finally, if this value fits in a 5 bit sext field, return it
685 if (((MaskVal
<< (32-5)) >> (32-5)) == MaskVal
)
686 return DAG
.getTargetConstant(MaskVal
, MVT::i32
);
690 //===----------------------------------------------------------------------===//
691 // Addressing Mode Selection
692 //===----------------------------------------------------------------------===//
694 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
695 /// or 64-bit immediate, and if the value can be accurately represented as a
696 /// sign extension from a 16-bit value. If so, this returns true and the
698 static bool isIntS16Immediate(SDNode
*N
, short &Imm
) {
699 if (N
->getOpcode() != ISD::Constant
)
702 Imm
= (short)cast
<ConstantSDNode
>(N
)->getValue();
703 if (N
->getValueType(0) == MVT::i32
)
704 return Imm
== (int32_t)cast
<ConstantSDNode
>(N
)->getValue();
706 return Imm
== (int64_t)cast
<ConstantSDNode
>(N
)->getValue();
708 static bool isIntS16Immediate(SDOperand Op
, short &Imm
) {
709 return isIntS16Immediate(Op
.Val
, Imm
);
713 /// SelectAddressRegReg - Given the specified addressed, check to see if it
714 /// can be represented as an indexed [r+r] operation. Returns false if it
715 /// can be more efficiently represented with [r+imm].
716 bool PPCTargetLowering::SelectAddressRegReg(SDOperand N
, SDOperand
&Base
,
720 if (N
.getOpcode() == ISD::ADD
) {
721 if (isIntS16Immediate(N
.getOperand(1), imm
))
723 if (N
.getOperand(1).getOpcode() == PPCISD::Lo
)
726 Base
= N
.getOperand(0);
727 Index
= N
.getOperand(1);
729 } else if (N
.getOpcode() == ISD::OR
) {
730 if (isIntS16Immediate(N
.getOperand(1), imm
))
731 return false; // r+i can fold it if we can.
733 // If this is an or of disjoint bitfields, we can codegen this as an add
734 // (for better address arithmetic) if the LHS and RHS of the OR are provably
736 uint64_t LHSKnownZero
, LHSKnownOne
;
737 uint64_t RHSKnownZero
, RHSKnownOne
;
738 DAG
.ComputeMaskedBits(N
.getOperand(0), ~0U, LHSKnownZero
, LHSKnownOne
);
741 DAG
.ComputeMaskedBits(N
.getOperand(1), ~0U, RHSKnownZero
, RHSKnownOne
);
742 // If all of the bits are known zero on the LHS or RHS, the add won't
744 if ((LHSKnownZero
| RHSKnownZero
) == ~0U) {
745 Base
= N
.getOperand(0);
746 Index
= N
.getOperand(1);
755 /// Returns true if the address N can be represented by a base register plus
756 /// a signed 16-bit displacement [r+imm], and if it is not better
757 /// represented as reg+reg.
758 bool PPCTargetLowering::SelectAddressRegImm(SDOperand N
, SDOperand
&Disp
,
759 SDOperand
&Base
, SelectionDAG
&DAG
){
760 // If this can be more profitably realized as r+r, fail.
761 if (SelectAddressRegReg(N
, Disp
, Base
, DAG
))
764 if (N
.getOpcode() == ISD::ADD
) {
766 if (isIntS16Immediate(N
.getOperand(1), imm
)) {
767 Disp
= DAG
.getTargetConstant((int)imm
& 0xFFFF, MVT::i32
);
768 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
769 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
771 Base
= N
.getOperand(0);
773 return true; // [r+i]
774 } else if (N
.getOperand(1).getOpcode() == PPCISD::Lo
) {
775 // Match LOAD (ADD (X, Lo(G))).
776 assert(!cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))->getValue()
777 && "Cannot handle constant offsets yet!");
778 Disp
= N
.getOperand(1).getOperand(0); // The global address.
779 assert(Disp
.getOpcode() == ISD::TargetGlobalAddress
||
780 Disp
.getOpcode() == ISD::TargetConstantPool
||
781 Disp
.getOpcode() == ISD::TargetJumpTable
);
782 Base
= N
.getOperand(0);
783 return true; // [&g+r]
785 } else if (N
.getOpcode() == ISD::OR
) {
787 if (isIntS16Immediate(N
.getOperand(1), imm
)) {
788 // If this is an or of disjoint bitfields, we can codegen this as an add
789 // (for better address arithmetic) if the LHS and RHS of the OR are
790 // provably disjoint.
791 uint64_t LHSKnownZero
, LHSKnownOne
;
792 DAG
.ComputeMaskedBits(N
.getOperand(0), ~0U, LHSKnownZero
, LHSKnownOne
);
793 if ((LHSKnownZero
|~(unsigned)imm
) == ~0U) {
794 // If all of the bits are known zero on the LHS or RHS, the add won't
796 Base
= N
.getOperand(0);
797 Disp
= DAG
.getTargetConstant((int)imm
& 0xFFFF, MVT::i32
);
801 } else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
)) {
802 // Loading from a constant address.
804 // If this address fits entirely in a 16-bit sext immediate field, codegen
807 if (isIntS16Immediate(CN
, Imm
)) {
808 Disp
= DAG
.getTargetConstant(Imm
, CN
->getValueType(0));
809 Base
= DAG
.getRegister(PPC::R0
, CN
->getValueType(0));
813 // Handle 32-bit sext immediates with LIS + addr mode.
814 if (CN
->getValueType(0) == MVT::i32
||
815 (int64_t)CN
->getValue() == (int)CN
->getValue()) {
816 int Addr
= (int)CN
->getValue();
818 // Otherwise, break this down into an LIS + disp.
819 Disp
= DAG
.getTargetConstant((short)Addr
, MVT::i32
);
821 Base
= DAG
.getTargetConstant((Addr
- (signed short)Addr
) >> 16, MVT::i32
);
822 unsigned Opc
= CN
->getValueType(0) == MVT::i32
? PPC::LIS
: PPC::LIS8
;
823 Base
= SDOperand(DAG
.getTargetNode(Opc
, CN
->getValueType(0), Base
), 0);
828 Disp
= DAG
.getTargetConstant(0, getPointerTy());
829 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
))
830 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
833 return true; // [r+0]
836 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
837 /// represented as an indexed [r+r] operation.
838 bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N
, SDOperand
&Base
,
841 // Check to see if we can easily represent this as an [r+r] address. This
842 // will fail if it thinks that the address is more profitably represented as
843 // reg+imm, e.g. where imm = 0.
844 if (SelectAddressRegReg(N
, Base
, Index
, DAG
))
847 // If the operand is an addition, always emit this as [r+r], since this is
848 // better (for code size, and execution, as the memop does the add for free)
849 // than emitting an explicit add.
850 if (N
.getOpcode() == ISD::ADD
) {
851 Base
= N
.getOperand(0);
852 Index
= N
.getOperand(1);
856 // Otherwise, do it the hard way, using R0 as the base register.
857 Base
= DAG
.getRegister(PPC::R0
, N
.getValueType());
862 /// SelectAddressRegImmShift - Returns true if the address N can be
863 /// represented by a base register plus a signed 14-bit displacement
864 /// [r+imm*4]. Suitable for use by STD and friends.
865 bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N
, SDOperand
&Disp
,
868 // If this can be more profitably realized as r+r, fail.
869 if (SelectAddressRegReg(N
, Disp
, Base
, DAG
))
872 if (N
.getOpcode() == ISD::ADD
) {
874 if (isIntS16Immediate(N
.getOperand(1), imm
) && (imm
& 3) == 0) {
875 Disp
= DAG
.getTargetConstant(((int)imm
& 0xFFFF) >> 2, MVT::i32
);
876 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
.getOperand(0))) {
877 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
879 Base
= N
.getOperand(0);
881 return true; // [r+i]
882 } else if (N
.getOperand(1).getOpcode() == PPCISD::Lo
) {
883 // Match LOAD (ADD (X, Lo(G))).
884 assert(!cast
<ConstantSDNode
>(N
.getOperand(1).getOperand(1))->getValue()
885 && "Cannot handle constant offsets yet!");
886 Disp
= N
.getOperand(1).getOperand(0); // The global address.
887 assert(Disp
.getOpcode() == ISD::TargetGlobalAddress
||
888 Disp
.getOpcode() == ISD::TargetConstantPool
||
889 Disp
.getOpcode() == ISD::TargetJumpTable
);
890 Base
= N
.getOperand(0);
891 return true; // [&g+r]
893 } else if (N
.getOpcode() == ISD::OR
) {
895 if (isIntS16Immediate(N
.getOperand(1), imm
) && (imm
& 3) == 0) {
896 // If this is an or of disjoint bitfields, we can codegen this as an add
897 // (for better address arithmetic) if the LHS and RHS of the OR are
898 // provably disjoint.
899 uint64_t LHSKnownZero
, LHSKnownOne
;
900 DAG
.ComputeMaskedBits(N
.getOperand(0), ~0U, LHSKnownZero
, LHSKnownOne
);
901 if ((LHSKnownZero
|~(unsigned)imm
) == ~0U) {
902 // If all of the bits are known zero on the LHS or RHS, the add won't
904 Base
= N
.getOperand(0);
905 Disp
= DAG
.getTargetConstant(((int)imm
& 0xFFFF) >> 2, MVT::i32
);
909 } else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(N
)) {
910 // Loading from a constant address. Verify low two bits are clear.
911 if ((CN
->getValue() & 3) == 0) {
912 // If this address fits entirely in a 14-bit sext immediate field, codegen
915 if (isIntS16Immediate(CN
, Imm
)) {
916 Disp
= DAG
.getTargetConstant((unsigned short)Imm
>> 2, getPointerTy());
917 Base
= DAG
.getRegister(PPC::R0
, CN
->getValueType(0));
921 // Fold the low-part of 32-bit absolute addresses into addr mode.
922 if (CN
->getValueType(0) == MVT::i32
||
923 (int64_t)CN
->getValue() == (int)CN
->getValue()) {
924 int Addr
= (int)CN
->getValue();
926 // Otherwise, break this down into an LIS + disp.
927 Disp
= DAG
.getTargetConstant((short)Addr
>> 2, MVT::i32
);
929 Base
= DAG
.getTargetConstant((Addr
-(signed short)Addr
) >> 16, MVT::i32
);
930 unsigned Opc
= CN
->getValueType(0) == MVT::i32
? PPC::LIS
: PPC::LIS8
;
931 Base
= SDOperand(DAG
.getTargetNode(Opc
, CN
->getValueType(0), Base
), 0);
937 Disp
= DAG
.getTargetConstant(0, getPointerTy());
938 if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(N
))
939 Base
= DAG
.getTargetFrameIndex(FI
->getIndex(), N
.getValueType());
942 return true; // [r+0]
946 /// getPreIndexedAddressParts - returns true by value, base pointer and
947 /// offset pointer and addressing mode by reference if the node's address
948 /// can be legally represented as pre-indexed load / store address.
949 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode
*N
, SDOperand
&Base
,
951 ISD::MemIndexedMode
&AM
,
953 // Disabled by default for now.
954 if (!EnablePPCPreinc
) return false;
958 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
959 Ptr
= LD
->getBasePtr();
960 VT
= LD
->getLoadedVT();
962 } else if (StoreSDNode
*ST
= dyn_cast
<StoreSDNode
>(N
)) {
964 Ptr
= ST
->getBasePtr();
965 VT
= ST
->getStoredVT();
969 // PowerPC doesn't have preinc load/store instructions for vectors.
970 if (MVT::isVector(VT
))
973 // TODO: Check reg+reg first.
975 // LDU/STU use reg+imm*4, others use reg+imm.
976 if (VT
!= MVT::i64
) {
978 if (!SelectAddressRegImm(Ptr
, Offset
, Base
, DAG
))
982 if (!SelectAddressRegImmShift(Ptr
, Offset
, Base
, DAG
))
986 if (LoadSDNode
*LD
= dyn_cast
<LoadSDNode
>(N
)) {
987 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
988 // sext i32 to i64 when addr mode is r+i.
989 if (LD
->getValueType(0) == MVT::i64
&& LD
->getLoadedVT() == MVT::i32
&&
990 LD
->getExtensionType() == ISD::SEXTLOAD
&&
991 isa
<ConstantSDNode
>(Offset
))
999 //===----------------------------------------------------------------------===//
1000 // LowerOperation implementation
1001 //===----------------------------------------------------------------------===//
1003 static SDOperand
LowerConstantPool(SDOperand Op
, SelectionDAG
&DAG
) {
1004 MVT::ValueType PtrVT
= Op
.getValueType();
1005 ConstantPoolSDNode
*CP
= cast
<ConstantPoolSDNode
>(Op
);
1006 Constant
*C
= CP
->getConstVal();
1007 SDOperand CPI
= DAG
.getTargetConstantPool(C
, PtrVT
, CP
->getAlignment());
1008 SDOperand Zero
= DAG
.getConstant(0, PtrVT
);
1010 const TargetMachine
&TM
= DAG
.getTarget();
1012 SDOperand Hi
= DAG
.getNode(PPCISD::Hi
, PtrVT
, CPI
, Zero
);
1013 SDOperand Lo
= DAG
.getNode(PPCISD::Lo
, PtrVT
, CPI
, Zero
);
1015 // If this is a non-darwin platform, we don't support non-static relo models
1017 if (TM
.getRelocationModel() == Reloc::Static
||
1018 !TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
1019 // Generate non-pic code that has direct accesses to the constant pool.
1020 // The address of the global is just (hi(&g)+lo(&g)).
1021 return DAG
.getNode(ISD::ADD
, PtrVT
, Hi
, Lo
);
1024 if (TM
.getRelocationModel() == Reloc::PIC_
) {
1025 // With PIC, the first instruction is actually "GR+hi(&G)".
1026 Hi
= DAG
.getNode(ISD::ADD
, PtrVT
,
1027 DAG
.getNode(PPCISD::GlobalBaseReg
, PtrVT
), Hi
);
1030 Lo
= DAG
.getNode(ISD::ADD
, PtrVT
, Hi
, Lo
);
1034 static SDOperand
LowerJumpTable(SDOperand Op
, SelectionDAG
&DAG
) {
1035 MVT::ValueType PtrVT
= Op
.getValueType();
1036 JumpTableSDNode
*JT
= cast
<JumpTableSDNode
>(Op
);
1037 SDOperand JTI
= DAG
.getTargetJumpTable(JT
->getIndex(), PtrVT
);
1038 SDOperand Zero
= DAG
.getConstant(0, PtrVT
);
1040 const TargetMachine
&TM
= DAG
.getTarget();
1042 SDOperand Hi
= DAG
.getNode(PPCISD::Hi
, PtrVT
, JTI
, Zero
);
1043 SDOperand Lo
= DAG
.getNode(PPCISD::Lo
, PtrVT
, JTI
, Zero
);
1045 // If this is a non-darwin platform, we don't support non-static relo models
1047 if (TM
.getRelocationModel() == Reloc::Static
||
1048 !TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
1049 // Generate non-pic code that has direct accesses to the constant pool.
1050 // The address of the global is just (hi(&g)+lo(&g)).
1051 return DAG
.getNode(ISD::ADD
, PtrVT
, Hi
, Lo
);
1054 if (TM
.getRelocationModel() == Reloc::PIC_
) {
1055 // With PIC, the first instruction is actually "GR+hi(&G)".
1056 Hi
= DAG
.getNode(ISD::ADD
, PtrVT
,
1057 DAG
.getNode(PPCISD::GlobalBaseReg
, PtrVT
), Hi
);
1060 Lo
= DAG
.getNode(ISD::ADD
, PtrVT
, Hi
, Lo
);
1064 static SDOperand
LowerGlobalTLSAddress(SDOperand Op
, SelectionDAG
&DAG
) {
1065 assert(0 && "TLS not implemented for PPC.");
1068 static SDOperand
LowerGlobalAddress(SDOperand Op
, SelectionDAG
&DAG
) {
1069 MVT::ValueType PtrVT
= Op
.getValueType();
1070 GlobalAddressSDNode
*GSDN
= cast
<GlobalAddressSDNode
>(Op
);
1071 GlobalValue
*GV
= GSDN
->getGlobal();
1072 SDOperand GA
= DAG
.getTargetGlobalAddress(GV
, PtrVT
, GSDN
->getOffset());
1073 SDOperand Zero
= DAG
.getConstant(0, PtrVT
);
1075 const TargetMachine
&TM
= DAG
.getTarget();
1077 SDOperand Hi
= DAG
.getNode(PPCISD::Hi
, PtrVT
, GA
, Zero
);
1078 SDOperand Lo
= DAG
.getNode(PPCISD::Lo
, PtrVT
, GA
, Zero
);
1080 // If this is a non-darwin platform, we don't support non-static relo models
1082 if (TM
.getRelocationModel() == Reloc::Static
||
1083 !TM
.getSubtarget
<PPCSubtarget
>().isDarwin()) {
1084 // Generate non-pic code that has direct accesses to globals.
1085 // The address of the global is just (hi(&g)+lo(&g)).
1086 return DAG
.getNode(ISD::ADD
, PtrVT
, Hi
, Lo
);
1089 if (TM
.getRelocationModel() == Reloc::PIC_
) {
1090 // With PIC, the first instruction is actually "GR+hi(&G)".
1091 Hi
= DAG
.getNode(ISD::ADD
, PtrVT
,
1092 DAG
.getNode(PPCISD::GlobalBaseReg
, PtrVT
), Hi
);
1095 Lo
= DAG
.getNode(ISD::ADD
, PtrVT
, Hi
, Lo
);
1097 if (!TM
.getSubtarget
<PPCSubtarget
>().hasLazyResolverStub(GV
))
1100 // If the global is weak or external, we have to go through the lazy
1102 return DAG
.getLoad(PtrVT
, DAG
.getEntryNode(), Lo
, NULL
, 0);
1105 static SDOperand
LowerSETCC(SDOperand Op
, SelectionDAG
&DAG
) {
1106 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(2))->get();
1108 // If we're comparing for equality to zero, expose the fact that this is
1109 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1110 // fold the new nodes.
1111 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
.getOperand(1))) {
1112 if (C
->isNullValue() && CC
== ISD::SETEQ
) {
1113 MVT::ValueType VT
= Op
.getOperand(0).getValueType();
1114 SDOperand Zext
= Op
.getOperand(0);
1115 if (VT
< MVT::i32
) {
1117 Zext
= DAG
.getNode(ISD::ZERO_EXTEND
, VT
, Op
.getOperand(0));
1119 unsigned Log2b
= Log2_32(MVT::getSizeInBits(VT
));
1120 SDOperand Clz
= DAG
.getNode(ISD::CTLZ
, VT
, Zext
);
1121 SDOperand Scc
= DAG
.getNode(ISD::SRL
, VT
, Clz
,
1122 DAG
.getConstant(Log2b
, MVT::i32
));
1123 return DAG
.getNode(ISD::TRUNCATE
, MVT::i32
, Scc
);
1125 // Leave comparisons against 0 and -1 alone for now, since they're usually
1126 // optimized. FIXME: revisit this when we can custom lower all setcc
1128 if (C
->isAllOnesValue() || C
->isNullValue())
1132 // If we have an integer seteq/setne, turn it into a compare against zero
1133 // by xor'ing the rhs with the lhs, which is faster than setting a
1134 // condition register, reading it back out, and masking the correct bit. The
1135 // normal approach here uses sub to do this instead of xor. Using xor exposes
1136 // the result to other bit-twiddling opportunities.
1137 MVT::ValueType LHSVT
= Op
.getOperand(0).getValueType();
1138 if (MVT::isInteger(LHSVT
) && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
)) {
1139 MVT::ValueType VT
= Op
.getValueType();
1140 SDOperand Sub
= DAG
.getNode(ISD::XOR
, LHSVT
, Op
.getOperand(0),
1142 return DAG
.getSetCC(VT
, Sub
, DAG
.getConstant(0, LHSVT
), CC
);
1147 static SDOperand
LowerVAARG(SDOperand Op
, SelectionDAG
&DAG
,
1148 int VarArgsFrameIndex
,
1149 int VarArgsStackOffset
,
1150 unsigned VarArgsNumGPR
,
1151 unsigned VarArgsNumFPR
,
1152 const PPCSubtarget
&Subtarget
) {
1154 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1157 static SDOperand
LowerVASTART(SDOperand Op
, SelectionDAG
&DAG
,
1158 int VarArgsFrameIndex
,
1159 int VarArgsStackOffset
,
1160 unsigned VarArgsNumGPR
,
1161 unsigned VarArgsNumFPR
,
1162 const PPCSubtarget
&Subtarget
) {
1164 if (Subtarget
.isMachoABI()) {
1165 // vastart just stores the address of the VarArgsFrameIndex slot into the
1166 // memory location argument.
1167 MVT::ValueType PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1168 SDOperand FR
= DAG
.getFrameIndex(VarArgsFrameIndex
, PtrVT
);
1169 SrcValueSDNode
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2));
1170 return DAG
.getStore(Op
.getOperand(0), FR
, Op
.getOperand(1), SV
->getValue(),
1174 // For ELF 32 ABI we follow the layout of the va_list struct.
1175 // We suppose the given va_list is already allocated.
1178 // char gpr; /* index into the array of 8 GPRs
1179 // * stored in the register save area
1180 // * gpr=0 corresponds to r3,
1181 // * gpr=1 to r4, etc.
1183 // char fpr; /* index into the array of 8 FPRs
1184 // * stored in the register save area
1185 // * fpr=0 corresponds to f1,
1186 // * fpr=1 to f2, etc.
1188 // char *overflow_arg_area;
1189 // /* location on stack that holds
1190 // * the next overflow argument
1192 // char *reg_save_area;
1193 // /* where r3:r10 and f1:f8 (if saved)
1199 SDOperand ArgGPR
= DAG
.getConstant(VarArgsNumGPR
, MVT::i8
);
1200 SDOperand ArgFPR
= DAG
.getConstant(VarArgsNumFPR
, MVT::i8
);
1203 MVT::ValueType PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1205 SDOperand StackOffset
= DAG
.getFrameIndex(VarArgsStackOffset
, PtrVT
);
1206 SDOperand FR
= DAG
.getFrameIndex(VarArgsFrameIndex
, PtrVT
);
1208 SDOperand ConstFrameOffset
= DAG
.getConstant(MVT::getSizeInBits(PtrVT
)/8,
1210 SDOperand ConstStackOffset
= DAG
.getConstant(MVT::getSizeInBits(PtrVT
)/8 - 1,
1212 SDOperand ConstFPROffset
= DAG
.getConstant(1, PtrVT
);
1214 SrcValueSDNode
*SV
= cast
<SrcValueSDNode
>(Op
.getOperand(2));
1216 // Store first byte : number of int regs
1217 SDOperand firstStore
= DAG
.getStore(Op
.getOperand(0), ArgGPR
,
1218 Op
.getOperand(1), SV
->getValue(),
1220 SDOperand nextPtr
= DAG
.getNode(ISD::ADD
, PtrVT
, Op
.getOperand(1),
1223 // Store second byte : number of float regs
1224 SDOperand secondStore
= DAG
.getStore(firstStore
, ArgFPR
, nextPtr
,
1225 SV
->getValue(), SV
->getOffset());
1226 nextPtr
= DAG
.getNode(ISD::ADD
, PtrVT
, nextPtr
, ConstStackOffset
);
1228 // Store second word : arguments given on stack
1229 SDOperand thirdStore
= DAG
.getStore(secondStore
, StackOffset
, nextPtr
,
1230 SV
->getValue(), SV
->getOffset());
1231 nextPtr
= DAG
.getNode(ISD::ADD
, PtrVT
, nextPtr
, ConstFrameOffset
);
1233 // Store third word : arguments given in registers
1234 return DAG
.getStore(thirdStore
, FR
, nextPtr
, SV
->getValue(),
1239 #include "PPCGenCallingConv.inc"
1241 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1242 /// depending on which subtarget is selected.
1243 static const unsigned *GetFPR(const PPCSubtarget
&Subtarget
) {
1244 if (Subtarget
.isMachoABI()) {
1245 static const unsigned FPR
[] = {
1246 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
1247 PPC::F8
, PPC::F9
, PPC::F10
, PPC::F11
, PPC::F12
, PPC::F13
1253 static const unsigned FPR
[] = {
1254 PPC::F1
, PPC::F2
, PPC::F3
, PPC::F4
, PPC::F5
, PPC::F6
, PPC::F7
,
1260 static SDOperand
LowerFORMAL_ARGUMENTS(SDOperand Op
, SelectionDAG
&DAG
,
1261 int &VarArgsFrameIndex
,
1262 int &VarArgsStackOffset
,
1263 unsigned &VarArgsNumGPR
,
1264 unsigned &VarArgsNumFPR
,
1265 const PPCSubtarget
&Subtarget
) {
1266 // TODO: add description of PPC stack frame format, or at least some docs.
1268 MachineFunction
&MF
= DAG
.getMachineFunction();
1269 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
1270 MachineRegisterInfo
&RegInfo
= MF
.getRegInfo();
1271 SmallVector
<SDOperand
, 8> ArgValues
;
1272 SDOperand Root
= Op
.getOperand(0);
1274 MVT::ValueType PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1275 bool isPPC64
= PtrVT
== MVT::i64
;
1276 bool isMachoABI
= Subtarget
.isMachoABI();
1277 bool isELF32_ABI
= Subtarget
.isELF32_ABI();
1278 unsigned PtrByteSize
= isPPC64
? 8 : 4;
1280 unsigned ArgOffset
= PPCFrameInfo::getLinkageSize(isPPC64
, isMachoABI
);
1282 static const unsigned GPR_32
[] = { // 32-bit registers.
1283 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
1284 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
1286 static const unsigned GPR_64
[] = { // 64-bit registers.
1287 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
1288 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
1291 static const unsigned *FPR
= GetFPR(Subtarget
);
1293 static const unsigned VR
[] = {
1294 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
1295 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
1298 const unsigned Num_GPR_Regs
= array_lengthof(GPR_32
);
1299 const unsigned Num_FPR_Regs
= isMachoABI
? 13 : 8;
1300 const unsigned Num_VR_Regs
= array_lengthof( VR
);
1302 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
1304 const unsigned *GPR
= isPPC64
? GPR_64
: GPR_32
;
1306 // Add DAG nodes to load the arguments or copy them out of registers. On
1307 // entry to a function on PPC, the arguments start after the linkage area,
1308 // although the first ones are often in registers.
1310 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1311 // represented with two words (long long or double) must be copied to an
1312 // even GPR_idx value or to an even ArgOffset value.
1314 for (unsigned ArgNo
= 0, e
= Op
.Val
->getNumValues()-1; ArgNo
!= e
; ++ArgNo
) {
1316 bool needsLoad
= false;
1317 MVT::ValueType ObjectVT
= Op
.getValue(ArgNo
).getValueType();
1318 unsigned ObjSize
= MVT::getSizeInBits(ObjectVT
)/8;
1319 unsigned ArgSize
= ObjSize
;
1320 unsigned Flags
= cast
<ConstantSDNode
>(Op
.getOperand(ArgNo
+3))->getValue();
1321 unsigned AlignFlag
= 1 << ISD::ParamFlags::OrigAlignmentOffs
;
1322 // See if next argument requires stack alignment in ELF
1323 bool Expand
= (ObjectVT
== MVT::f64
) || ((ArgNo
+ 1 < e
) &&
1324 (cast
<ConstantSDNode
>(Op
.getOperand(ArgNo
+4))->getValue() & AlignFlag
) &&
1325 (!(Flags
& AlignFlag
)));
1327 unsigned CurArgOffset
= ArgOffset
;
1329 default: assert(0 && "Unhandled argument type!");
1331 // Double word align in ELF
1332 if (Expand
&& isELF32_ABI
) GPR_idx
+= (GPR_idx
% 2);
1333 if (GPR_idx
!= Num_GPR_Regs
) {
1334 unsigned VReg
= RegInfo
.createVirtualRegister(&PPC::GPRCRegClass
);
1335 RegInfo
.addLiveIn(GPR
[GPR_idx
], VReg
);
1336 ArgVal
= DAG
.getCopyFromReg(Root
, VReg
, MVT::i32
);
1340 ArgSize
= PtrByteSize
;
1342 // Stack align in ELF
1343 if (needsLoad
&& Expand
&& isELF32_ABI
)
1344 ArgOffset
+= ((ArgOffset
/4) % 2) * PtrByteSize
;
1345 // All int arguments reserve stack space in Macho ABI.
1346 if (isMachoABI
|| needsLoad
) ArgOffset
+= PtrByteSize
;
1349 case MVT::i64
: // PPC64
1350 if (GPR_idx
!= Num_GPR_Regs
) {
1351 unsigned VReg
= RegInfo
.createVirtualRegister(&PPC::G8RCRegClass
);
1352 RegInfo
.addLiveIn(GPR
[GPR_idx
], VReg
);
1353 ArgVal
= DAG
.getCopyFromReg(Root
, VReg
, MVT::i64
);
1358 // All int arguments reserve stack space in Macho ABI.
1359 if (isMachoABI
|| needsLoad
) ArgOffset
+= 8;
1364 // Every 4 bytes of argument space consumes one of the GPRs available for
1365 // argument passing.
1366 if (GPR_idx
!= Num_GPR_Regs
&& isMachoABI
) {
1368 if (ObjSize
== 8 && GPR_idx
!= Num_GPR_Regs
&& !isPPC64
)
1371 if (FPR_idx
!= Num_FPR_Regs
) {
1373 if (ObjectVT
== MVT::f32
)
1374 VReg
= RegInfo
.createVirtualRegister(&PPC::F4RCRegClass
);
1376 VReg
= RegInfo
.createVirtualRegister(&PPC::F8RCRegClass
);
1377 RegInfo
.addLiveIn(FPR
[FPR_idx
], VReg
);
1378 ArgVal
= DAG
.getCopyFromReg(Root
, VReg
, ObjectVT
);
1384 // Stack align in ELF
1385 if (needsLoad
&& Expand
&& isELF32_ABI
)
1386 ArgOffset
+= ((ArgOffset
/4) % 2) * PtrByteSize
;
1387 // All FP arguments reserve stack space in Macho ABI.
1388 if (isMachoABI
|| needsLoad
) ArgOffset
+= isPPC64
? 8 : ObjSize
;
1394 // Note that vector arguments in registers don't reserve stack space.
1395 if (VR_idx
!= Num_VR_Regs
) {
1396 unsigned VReg
= RegInfo
.createVirtualRegister(&PPC::VRRCRegClass
);
1397 RegInfo
.addLiveIn(VR
[VR_idx
], VReg
);
1398 ArgVal
= DAG
.getCopyFromReg(Root
, VReg
, ObjectVT
);
1401 // This should be simple, but requires getting 16-byte aligned stack
1403 assert(0 && "Loading VR argument not implemented yet!");
1409 // We need to load the argument to a virtual register if we determined above
1410 // that we ran out of physical registers of the appropriate type
1412 // If the argument is actually used, emit a load from the right stack
1414 if (!Op
.Val
->hasNUsesOfValue(0, ArgNo
)) {
1415 int FI
= MFI
->CreateFixedObject(ObjSize
,
1416 CurArgOffset
+ (ArgSize
- ObjSize
));
1417 SDOperand FIN
= DAG
.getFrameIndex(FI
, PtrVT
);
1418 ArgVal
= DAG
.getLoad(ObjectVT
, Root
, FIN
, NULL
, 0);
1420 // Don't emit a dead load.
1421 ArgVal
= DAG
.getNode(ISD::UNDEF
, ObjectVT
);
1425 ArgValues
.push_back(ArgVal
);
1428 // If the function takes variable number of arguments, make a frame index for
1429 // the start of the first vararg value... for expansion of llvm.va_start.
1430 bool isVarArg
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getValue() != 0;
1435 VarArgsNumGPR
= GPR_idx
;
1436 VarArgsNumFPR
= FPR_idx
;
1438 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1440 depth
= -(Num_GPR_Regs
* MVT::getSizeInBits(PtrVT
)/8 +
1441 Num_FPR_Regs
* MVT::getSizeInBits(MVT::f64
)/8 +
1442 MVT::getSizeInBits(PtrVT
)/8);
1444 VarArgsStackOffset
= MFI
->CreateFixedObject(MVT::getSizeInBits(PtrVT
)/8,
1451 VarArgsFrameIndex
= MFI
->CreateFixedObject(MVT::getSizeInBits(PtrVT
)/8,
1453 SDOperand FIN
= DAG
.getFrameIndex(VarArgsFrameIndex
, PtrVT
);
1455 SmallVector
<SDOperand
, 8> MemOps
;
1457 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1458 // stored to the VarArgsFrameIndex on the stack.
1460 for (GPR_idx
= 0; GPR_idx
!= VarArgsNumGPR
; ++GPR_idx
) {
1461 SDOperand Val
= DAG
.getRegister(GPR
[GPR_idx
], PtrVT
);
1462 SDOperand Store
= DAG
.getStore(Root
, Val
, FIN
, NULL
, 0);
1463 MemOps
.push_back(Store
);
1464 // Increment the address by four for the next argument to store
1465 SDOperand PtrOff
= DAG
.getConstant(MVT::getSizeInBits(PtrVT
)/8, PtrVT
);
1466 FIN
= DAG
.getNode(ISD::ADD
, PtrOff
.getValueType(), FIN
, PtrOff
);
1470 // If this function is vararg, store any remaining integer argument regs
1471 // to their spots on the stack so that they may be loaded by deferencing the
1472 // result of va_next.
1473 for (; GPR_idx
!= Num_GPR_Regs
; ++GPR_idx
) {
1476 VReg
= RegInfo
.createVirtualRegister(&PPC::G8RCRegClass
);
1478 VReg
= RegInfo
.createVirtualRegister(&PPC::GPRCRegClass
);
1480 RegInfo
.addLiveIn(GPR
[GPR_idx
], VReg
);
1481 SDOperand Val
= DAG
.getCopyFromReg(Root
, VReg
, PtrVT
);
1482 SDOperand Store
= DAG
.getStore(Val
.getValue(1), Val
, FIN
, NULL
, 0);
1483 MemOps
.push_back(Store
);
1484 // Increment the address by four for the next argument to store
1485 SDOperand PtrOff
= DAG
.getConstant(MVT::getSizeInBits(PtrVT
)/8, PtrVT
);
1486 FIN
= DAG
.getNode(ISD::ADD
, PtrOff
.getValueType(), FIN
, PtrOff
);
1489 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1492 for (FPR_idx
= 0; FPR_idx
!= VarArgsNumFPR
; ++FPR_idx
) {
1493 SDOperand Val
= DAG
.getRegister(FPR
[FPR_idx
], MVT::f64
);
1494 SDOperand Store
= DAG
.getStore(Root
, Val
, FIN
, NULL
, 0);
1495 MemOps
.push_back(Store
);
1496 // Increment the address by eight for the next argument to store
1497 SDOperand PtrOff
= DAG
.getConstant(MVT::getSizeInBits(MVT::f64
)/8,
1499 FIN
= DAG
.getNode(ISD::ADD
, PtrOff
.getValueType(), FIN
, PtrOff
);
1502 for (; FPR_idx
!= Num_FPR_Regs
; ++FPR_idx
) {
1504 VReg
= RegInfo
.createVirtualRegister(&PPC::F8RCRegClass
);
1506 RegInfo
.addLiveIn(FPR
[FPR_idx
], VReg
);
1507 SDOperand Val
= DAG
.getCopyFromReg(Root
, VReg
, MVT::f64
);
1508 SDOperand Store
= DAG
.getStore(Val
.getValue(1), Val
, FIN
, NULL
, 0);
1509 MemOps
.push_back(Store
);
1510 // Increment the address by eight for the next argument to store
1511 SDOperand PtrOff
= DAG
.getConstant(MVT::getSizeInBits(MVT::f64
)/8,
1513 FIN
= DAG
.getNode(ISD::ADD
, PtrOff
.getValueType(), FIN
, PtrOff
);
1517 if (!MemOps
.empty())
1518 Root
= DAG
.getNode(ISD::TokenFactor
, MVT::Other
,&MemOps
[0],MemOps
.size());
1521 ArgValues
.push_back(Root
);
1523 // Return the new list of results.
1524 std::vector
<MVT::ValueType
> RetVT(Op
.Val
->value_begin(),
1525 Op
.Val
->value_end());
1526 return DAG
.getNode(ISD::MERGE_VALUES
, RetVT
, &ArgValues
[0], ArgValues
.size());
1529 /// isCallCompatibleAddress - Return the immediate to use if the specified
1530 /// 32-bit value is representable in the immediate field of a BxA instruction.
1531 static SDNode
*isBLACompatibleAddress(SDOperand Op
, SelectionDAG
&DAG
) {
1532 ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
);
1535 int Addr
= C
->getValue();
1536 if ((Addr
& 3) != 0 || // Low 2 bits are implicitly zero.
1537 (Addr
<< 6 >> 6) != Addr
)
1538 return 0; // Top 6 bits have to be sext of immediate.
1540 return DAG
.getConstant((int)C
->getValue() >> 2,
1541 DAG
.getTargetLoweringInfo().getPointerTy()).Val
;
1545 static SDOperand
LowerCALL(SDOperand Op
, SelectionDAG
&DAG
,
1546 const PPCSubtarget
&Subtarget
) {
1547 SDOperand Chain
= Op
.getOperand(0);
1548 bool isVarArg
= cast
<ConstantSDNode
>(Op
.getOperand(2))->getValue() != 0;
1549 SDOperand Callee
= Op
.getOperand(4);
1550 unsigned NumOps
= (Op
.getNumOperands() - 5) / 2;
1552 bool isMachoABI
= Subtarget
.isMachoABI();
1553 bool isELF32_ABI
= Subtarget
.isELF32_ABI();
1555 MVT::ValueType PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1556 bool isPPC64
= PtrVT
== MVT::i64
;
1557 unsigned PtrByteSize
= isPPC64
? 8 : 4;
1559 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1560 // SelectExpr to use to put the arguments in the appropriate registers.
1561 std::vector
<SDOperand
> args_to_use
;
1563 // Count how many bytes are to be pushed on the stack, including the linkage
1564 // area, and parameter passing area. We start with 24/48 bytes, which is
1565 // prereserved space for [SP][CR][LR][3 x unused].
1566 unsigned NumBytes
= PPCFrameInfo::getLinkageSize(isPPC64
, isMachoABI
);
1568 // Add up all the space actually used.
1569 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
1570 unsigned ArgSize
=MVT::getSizeInBits(Op
.getOperand(5+2*i
).getValueType())/8;
1571 ArgSize
= std::max(ArgSize
, PtrByteSize
);
1572 NumBytes
+= ArgSize
;
1575 // The prolog code of the callee may store up to 8 GPR argument registers to
1576 // the stack, allowing va_start to index over them in memory if its varargs.
1577 // Because we cannot tell if this is needed on the caller side, we have to
1578 // conservatively assume that it is needed. As such, make sure we have at
1579 // least enough stack space for the caller to store the 8 GPRs.
1580 NumBytes
= std::max(NumBytes
,
1581 PPCFrameInfo::getMinCallFrameSize(isPPC64
, isMachoABI
));
1583 // Adjust the stack pointer for the new arguments...
1584 // These operations are automatically eliminated by the prolog/epilog pass
1585 Chain
= DAG
.getCALLSEQ_START(Chain
,
1586 DAG
.getConstant(NumBytes
, PtrVT
));
1588 // Set up a copy of the stack pointer for use loading and storing any
1589 // arguments that may not fit in the registers available for argument
1593 StackPtr
= DAG
.getRegister(PPC::X1
, MVT::i64
);
1595 StackPtr
= DAG
.getRegister(PPC::R1
, MVT::i32
);
1597 // Figure out which arguments are going to go in registers, and which in
1598 // memory. Also, if this is a vararg function, floating point operations
1599 // must be stored to our stack, and loaded into integer regs as well, if
1600 // any integer regs are available for argument passing.
1601 unsigned ArgOffset
= PPCFrameInfo::getLinkageSize(isPPC64
, isMachoABI
);
1602 unsigned GPR_idx
= 0, FPR_idx
= 0, VR_idx
= 0;
1604 static const unsigned GPR_32
[] = { // 32-bit registers.
1605 PPC::R3
, PPC::R4
, PPC::R5
, PPC::R6
,
1606 PPC::R7
, PPC::R8
, PPC::R9
, PPC::R10
,
1608 static const unsigned GPR_64
[] = { // 64-bit registers.
1609 PPC::X3
, PPC::X4
, PPC::X5
, PPC::X6
,
1610 PPC::X7
, PPC::X8
, PPC::X9
, PPC::X10
,
1612 static const unsigned *FPR
= GetFPR(Subtarget
);
1614 static const unsigned VR
[] = {
1615 PPC::V2
, PPC::V3
, PPC::V4
, PPC::V5
, PPC::V6
, PPC::V7
, PPC::V8
,
1616 PPC::V9
, PPC::V10
, PPC::V11
, PPC::V12
, PPC::V13
1618 const unsigned NumGPRs
= array_lengthof(GPR_32
);
1619 const unsigned NumFPRs
= isMachoABI
? 13 : 8;
1620 const unsigned NumVRs
= array_lengthof( VR
);
1622 const unsigned *GPR
= isPPC64
? GPR_64
: GPR_32
;
1624 std::vector
<std::pair
<unsigned, SDOperand
> > RegsToPass
;
1625 SmallVector
<SDOperand
, 8> MemOpChains
;
1626 for (unsigned i
= 0; i
!= NumOps
; ++i
) {
1628 SDOperand Arg
= Op
.getOperand(5+2*i
);
1629 unsigned Flags
= cast
<ConstantSDNode
>(Op
.getOperand(5+2*i
+1))->getValue();
1630 unsigned AlignFlag
= 1 << ISD::ParamFlags::OrigAlignmentOffs
;
1631 // See if next argument requires stack alignment in ELF
1632 unsigned next
= 5+2*(i
+1)+1;
1633 bool Expand
= (Arg
.getValueType() == MVT::f64
) || ((i
+ 1 < NumOps
) &&
1634 (cast
<ConstantSDNode
>(Op
.getOperand(next
))->getValue() & AlignFlag
) &&
1635 (!(Flags
& AlignFlag
)));
1637 // PtrOff will be used to store the current argument to the stack if a
1638 // register cannot be found for it.
1641 // Stack align in ELF 32
1642 if (isELF32_ABI
&& Expand
)
1643 PtrOff
= DAG
.getConstant(ArgOffset
+ ((ArgOffset
/4) % 2) * PtrByteSize
,
1644 StackPtr
.getValueType());
1646 PtrOff
= DAG
.getConstant(ArgOffset
, StackPtr
.getValueType());
1648 PtrOff
= DAG
.getNode(ISD::ADD
, PtrVT
, StackPtr
, PtrOff
);
1650 // On PPC64, promote integers to 64-bit values.
1651 if (isPPC64
&& Arg
.getValueType() == MVT::i32
) {
1652 unsigned ExtOp
= (Flags
& 1) ? ISD::SIGN_EXTEND
: ISD::ZERO_EXTEND
;
1654 Arg
= DAG
.getNode(ExtOp
, MVT::i64
, Arg
);
1657 switch (Arg
.getValueType()) {
1658 default: assert(0 && "Unexpected ValueType for argument!");
1661 // Double word align in ELF
1662 if (isELF32_ABI
&& Expand
) GPR_idx
+= (GPR_idx
% 2);
1663 if (GPR_idx
!= NumGPRs
) {
1664 RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++], Arg
));
1666 MemOpChains
.push_back(DAG
.getStore(Chain
, Arg
, PtrOff
, NULL
, 0));
1669 if (inMem
|| isMachoABI
) {
1670 // Stack align in ELF
1671 if (isELF32_ABI
&& Expand
)
1672 ArgOffset
+= ((ArgOffset
/4) % 2) * PtrByteSize
;
1674 ArgOffset
+= PtrByteSize
;
1680 // Float varargs need to be promoted to double.
1681 if (Arg
.getValueType() == MVT::f32
)
1682 Arg
= DAG
.getNode(ISD::FP_EXTEND
, MVT::f64
, Arg
);
1685 if (FPR_idx
!= NumFPRs
) {
1686 RegsToPass
.push_back(std::make_pair(FPR
[FPR_idx
++], Arg
));
1689 SDOperand Store
= DAG
.getStore(Chain
, Arg
, PtrOff
, NULL
, 0);
1690 MemOpChains
.push_back(Store
);
1692 // Float varargs are always shadowed in available integer registers
1693 if (GPR_idx
!= NumGPRs
) {
1694 SDOperand Load
= DAG
.getLoad(PtrVT
, Store
, PtrOff
, NULL
, 0);
1695 MemOpChains
.push_back(Load
.getValue(1));
1696 if (isMachoABI
) RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++],
1699 if (GPR_idx
!= NumGPRs
&& Arg
.getValueType() == MVT::f64
&& !isPPC64
){
1700 SDOperand ConstFour
= DAG
.getConstant(4, PtrOff
.getValueType());
1701 PtrOff
= DAG
.getNode(ISD::ADD
, PtrVT
, PtrOff
, ConstFour
);
1702 SDOperand Load
= DAG
.getLoad(PtrVT
, Store
, PtrOff
, NULL
, 0);
1703 MemOpChains
.push_back(Load
.getValue(1));
1704 if (isMachoABI
) RegsToPass
.push_back(std::make_pair(GPR
[GPR_idx
++],
1708 // If we have any FPRs remaining, we may also have GPRs remaining.
1709 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1712 if (GPR_idx
!= NumGPRs
)
1714 if (GPR_idx
!= NumGPRs
&& Arg
.getValueType() == MVT::f64
&&
1715 !isPPC64
) // PPC64 has 64-bit GPR's obviously :)
1720 MemOpChains
.push_back(DAG
.getStore(Chain
, Arg
, PtrOff
, NULL
, 0));
1723 if (inMem
|| isMachoABI
) {
1724 // Stack align in ELF
1725 if (isELF32_ABI
&& Expand
)
1726 ArgOffset
+= ((ArgOffset
/4) % 2) * PtrByteSize
;
1730 ArgOffset
+= Arg
.getValueType() == MVT::f32
? 4 : 8;
1737 assert(!isVarArg
&& "Don't support passing vectors to varargs yet!");
1738 assert(VR_idx
!= NumVRs
&&
1739 "Don't support passing more than 12 vector args yet!");
1740 RegsToPass
.push_back(std::make_pair(VR
[VR_idx
++], Arg
));
1744 if (!MemOpChains
.empty())
1745 Chain
= DAG
.getNode(ISD::TokenFactor
, MVT::Other
,
1746 &MemOpChains
[0], MemOpChains
.size());
1748 // Build a sequence of copy-to-reg nodes chained together with token chain
1749 // and flag operands which copy the outgoing args into the appropriate regs.
1751 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
) {
1752 Chain
= DAG
.getCopyToReg(Chain
, RegsToPass
[i
].first
, RegsToPass
[i
].second
,
1754 InFlag
= Chain
.getValue(1);
1757 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1758 if (isVarArg
&& isELF32_ABI
) {
1759 SDOperand
SetCR(DAG
.getTargetNode(PPC::SETCR
, MVT::i32
), 0);
1760 Chain
= DAG
.getCopyToReg(Chain
, PPC::CR6
, SetCR
, InFlag
);
1761 InFlag
= Chain
.getValue(1);
1764 std::vector
<MVT::ValueType
> NodeTys
;
1765 NodeTys
.push_back(MVT::Other
); // Returns a chain
1766 NodeTys
.push_back(MVT::Flag
); // Returns a flag for retval copy to use.
1768 SmallVector
<SDOperand
, 8> Ops
;
1769 unsigned CallOpc
= isMachoABI
? PPCISD::CALL_Macho
: PPCISD::CALL_ELF
;
1771 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1772 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1773 // node so that legalize doesn't hack it.
1774 if (GlobalAddressSDNode
*G
= dyn_cast
<GlobalAddressSDNode
>(Callee
))
1775 Callee
= DAG
.getTargetGlobalAddress(G
->getGlobal(), Callee
.getValueType());
1776 else if (ExternalSymbolSDNode
*S
= dyn_cast
<ExternalSymbolSDNode
>(Callee
))
1777 Callee
= DAG
.getTargetExternalSymbol(S
->getSymbol(), Callee
.getValueType());
1778 else if (SDNode
*Dest
= isBLACompatibleAddress(Callee
, DAG
))
1779 // If this is an absolute destination address, use the munged value.
1780 Callee
= SDOperand(Dest
, 0);
1782 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
1783 // to do the call, we can't use PPCISD::CALL.
1784 SDOperand MTCTROps
[] = {Chain
, Callee
, InFlag
};
1785 Chain
= DAG
.getNode(PPCISD::MTCTR
, NodeTys
, MTCTROps
, 2+(InFlag
.Val
!=0));
1786 InFlag
= Chain
.getValue(1);
1788 // Copy the callee address into R12 on darwin.
1790 Chain
= DAG
.getCopyToReg(Chain
, PPC::R12
, Callee
, InFlag
);
1791 InFlag
= Chain
.getValue(1);
1795 NodeTys
.push_back(MVT::Other
);
1796 NodeTys
.push_back(MVT::Flag
);
1797 Ops
.push_back(Chain
);
1798 CallOpc
= isMachoABI
? PPCISD::BCTRL_Macho
: PPCISD::BCTRL_ELF
;
1802 // If this is a direct call, pass the chain and the callee.
1804 Ops
.push_back(Chain
);
1805 Ops
.push_back(Callee
);
1808 // Add argument registers to the end of the list so that they are known live
1810 for (unsigned i
= 0, e
= RegsToPass
.size(); i
!= e
; ++i
)
1811 Ops
.push_back(DAG
.getRegister(RegsToPass
[i
].first
,
1812 RegsToPass
[i
].second
.getValueType()));
1815 Ops
.push_back(InFlag
);
1816 Chain
= DAG
.getNode(CallOpc
, NodeTys
, &Ops
[0], Ops
.size());
1817 InFlag
= Chain
.getValue(1);
1819 Chain
= DAG
.getCALLSEQ_END(Chain
,
1820 DAG
.getConstant(NumBytes
, PtrVT
),
1821 DAG
.getConstant(0, PtrVT
),
1823 if (Op
.Val
->getValueType(0) != MVT::Other
)
1824 InFlag
= Chain
.getValue(1);
1826 SDOperand ResultVals
[3];
1827 unsigned NumResults
= 0;
1830 // If the call has results, copy the values out of the ret val registers.
1831 switch (Op
.Val
->getValueType(0)) {
1832 default: assert(0 && "Unexpected ret value!");
1833 case MVT::Other
: break;
1835 if (Op
.Val
->getValueType(1) == MVT::i32
) {
1836 Chain
= DAG
.getCopyFromReg(Chain
, PPC::R3
, MVT::i32
, InFlag
).getValue(1);
1837 ResultVals
[0] = Chain
.getValue(0);
1838 Chain
= DAG
.getCopyFromReg(Chain
, PPC::R4
, MVT::i32
,
1839 Chain
.getValue(2)).getValue(1);
1840 ResultVals
[1] = Chain
.getValue(0);
1842 NodeTys
.push_back(MVT::i32
);
1844 Chain
= DAG
.getCopyFromReg(Chain
, PPC::R3
, MVT::i32
, InFlag
).getValue(1);
1845 ResultVals
[0] = Chain
.getValue(0);
1848 NodeTys
.push_back(MVT::i32
);
1851 Chain
= DAG
.getCopyFromReg(Chain
, PPC::X3
, MVT::i64
, InFlag
).getValue(1);
1852 ResultVals
[0] = Chain
.getValue(0);
1854 NodeTys
.push_back(MVT::i64
);
1857 if (Op
.Val
->getValueType(1) == MVT::f64
) {
1858 Chain
= DAG
.getCopyFromReg(Chain
, PPC::F1
, MVT::f64
, InFlag
).getValue(1);
1859 ResultVals
[0] = Chain
.getValue(0);
1860 Chain
= DAG
.getCopyFromReg(Chain
, PPC::F2
, MVT::f64
,
1861 Chain
.getValue(2)).getValue(1);
1862 ResultVals
[1] = Chain
.getValue(0);
1864 NodeTys
.push_back(MVT::f64
);
1865 NodeTys
.push_back(MVT::f64
);
1868 // else fall through
1870 Chain
= DAG
.getCopyFromReg(Chain
, PPC::F1
, Op
.Val
->getValueType(0),
1871 InFlag
).getValue(1);
1872 ResultVals
[0] = Chain
.getValue(0);
1874 NodeTys
.push_back(Op
.Val
->getValueType(0));
1880 Chain
= DAG
.getCopyFromReg(Chain
, PPC::V2
, Op
.Val
->getValueType(0),
1881 InFlag
).getValue(1);
1882 ResultVals
[0] = Chain
.getValue(0);
1884 NodeTys
.push_back(Op
.Val
->getValueType(0));
1888 NodeTys
.push_back(MVT::Other
);
1890 // If the function returns void, just return the chain.
1891 if (NumResults
== 0)
1894 // Otherwise, merge everything together with a MERGE_VALUES node.
1895 ResultVals
[NumResults
++] = Chain
;
1896 SDOperand Res
= DAG
.getNode(ISD::MERGE_VALUES
, NodeTys
,
1897 ResultVals
, NumResults
);
1898 return Res
.getValue(Op
.ResNo
);
1901 static SDOperand
LowerRET(SDOperand Op
, SelectionDAG
&DAG
, TargetMachine
&TM
) {
1902 SmallVector
<CCValAssign
, 16> RVLocs
;
1903 unsigned CC
= DAG
.getMachineFunction().getFunction()->getCallingConv();
1904 bool isVarArg
= DAG
.getMachineFunction().getFunction()->isVarArg();
1905 CCState
CCInfo(CC
, isVarArg
, TM
, RVLocs
);
1906 CCInfo
.AnalyzeReturn(Op
.Val
, RetCC_PPC
);
1908 // If this is the first return lowered for this function, add the regs to the
1909 // liveout set for the function.
1910 if (DAG
.getMachineFunction().getRegInfo().liveout_empty()) {
1911 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
)
1912 DAG
.getMachineFunction().getRegInfo().addLiveOut(RVLocs
[i
].getLocReg());
1915 SDOperand Chain
= Op
.getOperand(0);
1918 // Copy the result values into the output registers.
1919 for (unsigned i
= 0; i
!= RVLocs
.size(); ++i
) {
1920 CCValAssign
&VA
= RVLocs
[i
];
1921 assert(VA
.isRegLoc() && "Can only return in registers!");
1922 Chain
= DAG
.getCopyToReg(Chain
, VA
.getLocReg(), Op
.getOperand(i
*2+1), Flag
);
1923 Flag
= Chain
.getValue(1);
1927 return DAG
.getNode(PPCISD::RET_FLAG
, MVT::Other
, Chain
, Flag
);
1929 return DAG
.getNode(PPCISD::RET_FLAG
, MVT::Other
, Chain
);
1932 static SDOperand
LowerSTACKRESTORE(SDOperand Op
, SelectionDAG
&DAG
,
1933 const PPCSubtarget
&Subtarget
) {
1934 // When we pop the dynamic allocation we need to restore the SP link.
1936 // Get the corect type for pointers.
1937 MVT::ValueType PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1939 // Construct the stack pointer operand.
1940 bool IsPPC64
= Subtarget
.isPPC64();
1941 unsigned SP
= IsPPC64
? PPC::X1
: PPC::R1
;
1942 SDOperand StackPtr
= DAG
.getRegister(SP
, PtrVT
);
1944 // Get the operands for the STACKRESTORE.
1945 SDOperand Chain
= Op
.getOperand(0);
1946 SDOperand SaveSP
= Op
.getOperand(1);
1948 // Load the old link SP.
1949 SDOperand LoadLinkSP
= DAG
.getLoad(PtrVT
, Chain
, StackPtr
, NULL
, 0);
1951 // Restore the stack pointer.
1952 Chain
= DAG
.getCopyToReg(LoadLinkSP
.getValue(1), SP
, SaveSP
);
1954 // Store the old link SP.
1955 return DAG
.getStore(Chain
, LoadLinkSP
, StackPtr
, NULL
, 0);
1958 static SDOperand
LowerDYNAMIC_STACKALLOC(SDOperand Op
, SelectionDAG
&DAG
,
1959 const PPCSubtarget
&Subtarget
) {
1960 MachineFunction
&MF
= DAG
.getMachineFunction();
1961 bool IsPPC64
= Subtarget
.isPPC64();
1962 bool isMachoABI
= Subtarget
.isMachoABI();
1964 // Get current frame pointer save index. The users of this index will be
1965 // primarily DYNALLOC instructions.
1966 PPCFunctionInfo
*FI
= MF
.getInfo
<PPCFunctionInfo
>();
1967 int FPSI
= FI
->getFramePointerSaveIndex();
1969 // If the frame pointer save index hasn't been defined yet.
1971 // Find out what the fix offset of the frame pointer save area.
1972 int FPOffset
= PPCFrameInfo::getFramePointerSaveOffset(IsPPC64
, isMachoABI
);
1974 // Allocate the frame index for frame pointer save area.
1975 FPSI
= MF
.getFrameInfo()->CreateFixedObject(IsPPC64
? 8 : 4, FPOffset
);
1977 FI
->setFramePointerSaveIndex(FPSI
);
1981 SDOperand Chain
= Op
.getOperand(0);
1982 SDOperand Size
= Op
.getOperand(1);
1984 // Get the corect type for pointers.
1985 MVT::ValueType PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
1987 SDOperand NegSize
= DAG
.getNode(ISD::SUB
, PtrVT
,
1988 DAG
.getConstant(0, PtrVT
), Size
);
1989 // Construct a node for the frame pointer save index.
1990 SDOperand FPSIdx
= DAG
.getFrameIndex(FPSI
, PtrVT
);
1991 // Build a DYNALLOC node.
1992 SDOperand Ops
[3] = { Chain
, NegSize
, FPSIdx
};
1993 SDVTList VTs
= DAG
.getVTList(PtrVT
, MVT::Other
);
1994 return DAG
.getNode(PPCISD::DYNALLOC
, VTs
, Ops
, 3);
1998 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
2000 static SDOperand
LowerSELECT_CC(SDOperand Op
, SelectionDAG
&DAG
) {
2001 // Not FP? Not a fsel.
2002 if (!MVT::isFloatingPoint(Op
.getOperand(0).getValueType()) ||
2003 !MVT::isFloatingPoint(Op
.getOperand(2).getValueType()))
2006 ISD::CondCode CC
= cast
<CondCodeSDNode
>(Op
.getOperand(4))->get();
2008 // Cannot handle SETEQ/SETNE.
2009 if (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) return SDOperand();
2011 MVT::ValueType ResVT
= Op
.getValueType();
2012 MVT::ValueType CmpVT
= Op
.getOperand(0).getValueType();
2013 SDOperand LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
2014 SDOperand TV
= Op
.getOperand(2), FV
= Op
.getOperand(3);
2016 // If the RHS of the comparison is a 0.0, we don't need to do the
2017 // subtraction at all.
2018 if (isFloatingPointZero(RHS
))
2020 default: break; // SETUO etc aren't handled by fsel.
2024 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
2028 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
2029 LHS
= DAG
.getNode(ISD::FP_EXTEND
, MVT::f64
, LHS
);
2030 return DAG
.getNode(PPCISD::FSEL
, ResVT
, LHS
, TV
, FV
);
2034 std::swap(TV
, FV
); // fsel is natively setge, swap operands for setlt
2038 if (LHS
.getValueType() == MVT::f32
) // Comparison is always 64-bits
2039 LHS
= DAG
.getNode(ISD::FP_EXTEND
, MVT::f64
, LHS
);
2040 return DAG
.getNode(PPCISD::FSEL
, ResVT
,
2041 DAG
.getNode(ISD::FNEG
, MVT::f64
, LHS
), TV
, FV
);
2046 default: break; // SETUO etc aren't handled by fsel.
2050 Cmp
= DAG
.getNode(ISD::FSUB
, CmpVT
, LHS
, RHS
);
2051 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
2052 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, MVT::f64
, Cmp
);
2053 return DAG
.getNode(PPCISD::FSEL
, ResVT
, Cmp
, FV
, TV
);
2057 Cmp
= DAG
.getNode(ISD::FSUB
, CmpVT
, LHS
, RHS
);
2058 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
2059 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, MVT::f64
, Cmp
);
2060 return DAG
.getNode(PPCISD::FSEL
, ResVT
, Cmp
, TV
, FV
);
2064 Cmp
= DAG
.getNode(ISD::FSUB
, CmpVT
, RHS
, LHS
);
2065 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
2066 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, MVT::f64
, Cmp
);
2067 return DAG
.getNode(PPCISD::FSEL
, ResVT
, Cmp
, FV
, TV
);
2071 Cmp
= DAG
.getNode(ISD::FSUB
, CmpVT
, RHS
, LHS
);
2072 if (Cmp
.getValueType() == MVT::f32
) // Comparison is always 64-bits
2073 Cmp
= DAG
.getNode(ISD::FP_EXTEND
, MVT::f64
, Cmp
);
2074 return DAG
.getNode(PPCISD::FSEL
, ResVT
, Cmp
, TV
, FV
);
2079 // FIXME: Split this code up when LegalizeDAGTypes lands.
2080 static SDOperand
LowerFP_TO_SINT(SDOperand Op
, SelectionDAG
&DAG
) {
2081 assert(MVT::isFloatingPoint(Op
.getOperand(0).getValueType()));
2082 SDOperand Src
= Op
.getOperand(0);
2083 if (Src
.getValueType() == MVT::f32
)
2084 Src
= DAG
.getNode(ISD::FP_EXTEND
, MVT::f64
, Src
);
2087 switch (Op
.getValueType()) {
2088 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2090 Tmp
= DAG
.getNode(PPCISD::FCTIWZ
, MVT::f64
, Src
);
2093 Tmp
= DAG
.getNode(PPCISD::FCTIDZ
, MVT::f64
, Src
);
2097 // Convert the FP value to an int value through memory.
2098 SDOperand FIPtr
= DAG
.CreateStackTemporary(MVT::f64
);
2100 // Emit a store to the stack slot.
2101 SDOperand Chain
= DAG
.getStore(DAG
.getEntryNode(), Tmp
, FIPtr
, NULL
, 0);
2103 // Result is a load from the stack slot. If loading 4 bytes, make sure to
2105 if (Op
.getValueType() == MVT::i32
)
2106 FIPtr
= DAG
.getNode(ISD::ADD
, FIPtr
.getValueType(), FIPtr
,
2107 DAG
.getConstant(4, FIPtr
.getValueType()));
2108 return DAG
.getLoad(Op
.getValueType(), Chain
, FIPtr
, NULL
, 0);
2111 static SDOperand
LowerFP_ROUND_INREG(SDOperand Op
, SelectionDAG
&DAG
) {
2112 assert(Op
.getValueType() == MVT::ppcf128
);
2113 SDNode
*Node
= Op
.Val
;
2114 assert(Node
->getOperand(0).getValueType() == MVT::ppcf128
);
2115 assert(Node
->getOperand(0).Val
->getOpcode() == ISD::BUILD_PAIR
);
2116 SDOperand Lo
= Node
->getOperand(0).Val
->getOperand(0);
2117 SDOperand Hi
= Node
->getOperand(0).Val
->getOperand(1);
2119 // This sequence changes FPSCR to do round-to-zero, adds the two halves
2120 // of the long double, and puts FPSCR back the way it was. We do not
2121 // actually model FPSCR.
2122 std::vector
<MVT::ValueType
> NodeTys
;
2123 SDOperand Ops
[4], Result
, MFFSreg
, InFlag
, FPreg
;
2125 NodeTys
.push_back(MVT::f64
); // Return register
2126 NodeTys
.push_back(MVT::Flag
); // Returns a flag for later insns
2127 Result
= DAG
.getNode(PPCISD::MFFS
, NodeTys
, &InFlag
, 0);
2128 MFFSreg
= Result
.getValue(0);
2129 InFlag
= Result
.getValue(1);
2132 NodeTys
.push_back(MVT::Flag
); // Returns a flag
2133 Ops
[0] = DAG
.getConstant(31, MVT::i32
);
2135 Result
= DAG
.getNode(PPCISD::MTFSB1
, NodeTys
, Ops
, 2);
2136 InFlag
= Result
.getValue(0);
2139 NodeTys
.push_back(MVT::Flag
); // Returns a flag
2140 Ops
[0] = DAG
.getConstant(30, MVT::i32
);
2142 Result
= DAG
.getNode(PPCISD::MTFSB0
, NodeTys
, Ops
, 2);
2143 InFlag
= Result
.getValue(0);
2146 NodeTys
.push_back(MVT::f64
); // result of add
2147 NodeTys
.push_back(MVT::Flag
); // Returns a flag
2151 Result
= DAG
.getNode(PPCISD::FADDRTZ
, NodeTys
, Ops
, 3);
2152 FPreg
= Result
.getValue(0);
2153 InFlag
= Result
.getValue(1);
2156 NodeTys
.push_back(MVT::f64
);
2157 Ops
[0] = DAG
.getConstant(1, MVT::i32
);
2161 Result
= DAG
.getNode(PPCISD::MTFSF
, NodeTys
, Ops
, 4);
2162 FPreg
= Result
.getValue(0);
2164 // We know the low half is about to be thrown away, so just use something
2166 return DAG
.getNode(ISD::BUILD_PAIR
, Lo
.getValueType(), FPreg
, FPreg
);
2169 static SDOperand
LowerSINT_TO_FP(SDOperand Op
, SelectionDAG
&DAG
) {
2170 if (Op
.getOperand(0).getValueType() == MVT::i64
) {
2171 SDOperand Bits
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::f64
, Op
.getOperand(0));
2172 SDOperand FP
= DAG
.getNode(PPCISD::FCFID
, MVT::f64
, Bits
);
2173 if (Op
.getValueType() == MVT::f32
)
2174 FP
= DAG
.getNode(ISD::FP_ROUND
, MVT::f32
, FP
);
2178 assert(Op
.getOperand(0).getValueType() == MVT::i32
&&
2179 "Unhandled SINT_TO_FP type in custom expander!");
2180 // Since we only generate this in 64-bit mode, we can take advantage of
2181 // 64-bit registers. In particular, sign extend the input value into the
2182 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2183 // then lfd it and fcfid it.
2184 MachineFrameInfo
*FrameInfo
= DAG
.getMachineFunction().getFrameInfo();
2185 int FrameIdx
= FrameInfo
->CreateStackObject(8, 8);
2186 MVT::ValueType PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
2187 SDOperand FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
2189 SDOperand Ext64
= DAG
.getNode(PPCISD::EXTSW_32
, MVT::i32
,
2192 // STD the extended value into the stack slot.
2193 SDOperand Store
= DAG
.getNode(PPCISD::STD_32
, MVT::Other
,
2194 DAG
.getEntryNode(), Ext64
, FIdx
,
2195 DAG
.getSrcValue(NULL
));
2196 // Load the value as a double.
2197 SDOperand Ld
= DAG
.getLoad(MVT::f64
, Store
, FIdx
, NULL
, 0);
2199 // FCFID it and return it.
2200 SDOperand FP
= DAG
.getNode(PPCISD::FCFID
, MVT::f64
, Ld
);
2201 if (Op
.getValueType() == MVT::f32
)
2202 FP
= DAG
.getNode(ISD::FP_ROUND
, MVT::f32
, FP
);
2206 static SDOperand
LowerSHL_PARTS(SDOperand Op
, SelectionDAG
&DAG
) {
2207 assert(Op
.getNumOperands() == 3 && Op
.getValueType() == MVT::i32
&&
2208 Op
.getOperand(1).getValueType() == MVT::i32
&& "Unexpected SHL!");
2210 // Expand into a bunch of logical ops. Note that these ops
2211 // depend on the PPC behavior for oversized shift amounts.
2212 SDOperand Lo
= Op
.getOperand(0);
2213 SDOperand Hi
= Op
.getOperand(1);
2214 SDOperand Amt
= Op
.getOperand(2);
2216 SDOperand Tmp1
= DAG
.getNode(ISD::SUB
, MVT::i32
,
2217 DAG
.getConstant(32, MVT::i32
), Amt
);
2218 SDOperand Tmp2
= DAG
.getNode(PPCISD::SHL
, MVT::i32
, Hi
, Amt
);
2219 SDOperand Tmp3
= DAG
.getNode(PPCISD::SRL
, MVT::i32
, Lo
, Tmp1
);
2220 SDOperand Tmp4
= DAG
.getNode(ISD::OR
, MVT::i32
, Tmp2
, Tmp3
);
2221 SDOperand Tmp5
= DAG
.getNode(ISD::ADD
, MVT::i32
, Amt
,
2222 DAG
.getConstant(-32U, MVT::i32
));
2223 SDOperand Tmp6
= DAG
.getNode(PPCISD::SHL
, MVT::i32
, Lo
, Tmp5
);
2224 SDOperand OutHi
= DAG
.getNode(ISD::OR
, MVT::i32
, Tmp4
, Tmp6
);
2225 SDOperand OutLo
= DAG
.getNode(PPCISD::SHL
, MVT::i32
, Lo
, Amt
);
2226 SDOperand OutOps
[] = { OutLo
, OutHi
};
2227 return DAG
.getNode(ISD::MERGE_VALUES
, DAG
.getVTList(MVT::i32
, MVT::i32
),
2231 static SDOperand
LowerSRL_PARTS(SDOperand Op
, SelectionDAG
&DAG
) {
2232 assert(Op
.getNumOperands() == 3 && Op
.getValueType() == MVT::i32
&&
2233 Op
.getOperand(1).getValueType() == MVT::i32
&& "Unexpected SRL!");
2235 // Otherwise, expand into a bunch of logical ops. Note that these ops
2236 // depend on the PPC behavior for oversized shift amounts.
2237 SDOperand Lo
= Op
.getOperand(0);
2238 SDOperand Hi
= Op
.getOperand(1);
2239 SDOperand Amt
= Op
.getOperand(2);
2241 SDOperand Tmp1
= DAG
.getNode(ISD::SUB
, MVT::i32
,
2242 DAG
.getConstant(32, MVT::i32
), Amt
);
2243 SDOperand Tmp2
= DAG
.getNode(PPCISD::SRL
, MVT::i32
, Lo
, Amt
);
2244 SDOperand Tmp3
= DAG
.getNode(PPCISD::SHL
, MVT::i32
, Hi
, Tmp1
);
2245 SDOperand Tmp4
= DAG
.getNode(ISD::OR
, MVT::i32
, Tmp2
, Tmp3
);
2246 SDOperand Tmp5
= DAG
.getNode(ISD::ADD
, MVT::i32
, Amt
,
2247 DAG
.getConstant(-32U, MVT::i32
));
2248 SDOperand Tmp6
= DAG
.getNode(PPCISD::SRL
, MVT::i32
, Hi
, Tmp5
);
2249 SDOperand OutLo
= DAG
.getNode(ISD::OR
, MVT::i32
, Tmp4
, Tmp6
);
2250 SDOperand OutHi
= DAG
.getNode(PPCISD::SRL
, MVT::i32
, Hi
, Amt
);
2251 SDOperand OutOps
[] = { OutLo
, OutHi
};
2252 return DAG
.getNode(ISD::MERGE_VALUES
, DAG
.getVTList(MVT::i32
, MVT::i32
),
2256 static SDOperand
LowerSRA_PARTS(SDOperand Op
, SelectionDAG
&DAG
) {
2257 assert(Op
.getNumOperands() == 3 && Op
.getValueType() == MVT::i32
&&
2258 Op
.getOperand(1).getValueType() == MVT::i32
&& "Unexpected SRA!");
2260 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2261 SDOperand Lo
= Op
.getOperand(0);
2262 SDOperand Hi
= Op
.getOperand(1);
2263 SDOperand Amt
= Op
.getOperand(2);
2265 SDOperand Tmp1
= DAG
.getNode(ISD::SUB
, MVT::i32
,
2266 DAG
.getConstant(32, MVT::i32
), Amt
);
2267 SDOperand Tmp2
= DAG
.getNode(PPCISD::SRL
, MVT::i32
, Lo
, Amt
);
2268 SDOperand Tmp3
= DAG
.getNode(PPCISD::SHL
, MVT::i32
, Hi
, Tmp1
);
2269 SDOperand Tmp4
= DAG
.getNode(ISD::OR
, MVT::i32
, Tmp2
, Tmp3
);
2270 SDOperand Tmp5
= DAG
.getNode(ISD::ADD
, MVT::i32
, Amt
,
2271 DAG
.getConstant(-32U, MVT::i32
));
2272 SDOperand Tmp6
= DAG
.getNode(PPCISD::SRA
, MVT::i32
, Hi
, Tmp5
);
2273 SDOperand OutHi
= DAG
.getNode(PPCISD::SRA
, MVT::i32
, Hi
, Amt
);
2274 SDOperand OutLo
= DAG
.getSelectCC(Tmp5
, DAG
.getConstant(0, MVT::i32
),
2275 Tmp4
, Tmp6
, ISD::SETLE
);
2276 SDOperand OutOps
[] = { OutLo
, OutHi
};
2277 return DAG
.getNode(ISD::MERGE_VALUES
, DAG
.getVTList(MVT::i32
, MVT::i32
),
2281 //===----------------------------------------------------------------------===//
2282 // Vector related lowering.
2285 // If this is a vector of constants or undefs, get the bits. A bit in
2286 // UndefBits is set if the corresponding element of the vector is an
2287 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2288 // zero. Return true if this is not an array of constants, false if it is.
2290 static bool GetConstantBuildVectorBits(SDNode
*BV
, uint64_t VectorBits
[2],
2291 uint64_t UndefBits
[2]) {
2292 // Start with zero'd results.
2293 VectorBits
[0] = VectorBits
[1] = UndefBits
[0] = UndefBits
[1] = 0;
2295 unsigned EltBitSize
= MVT::getSizeInBits(BV
->getOperand(0).getValueType());
2296 for (unsigned i
= 0, e
= BV
->getNumOperands(); i
!= e
; ++i
) {
2297 SDOperand OpVal
= BV
->getOperand(i
);
2299 unsigned PartNo
= i
>= e
/2; // In the upper 128 bits?
2300 unsigned SlotNo
= e
/2 - (i
& (e
/2-1))-1; // Which subpiece of the uint64_t.
2302 uint64_t EltBits
= 0;
2303 if (OpVal
.getOpcode() == ISD::UNDEF
) {
2304 uint64_t EltUndefBits
= ~0U >> (32-EltBitSize
);
2305 UndefBits
[PartNo
] |= EltUndefBits
<< (SlotNo
*EltBitSize
);
2307 } else if (ConstantSDNode
*CN
= dyn_cast
<ConstantSDNode
>(OpVal
)) {
2308 EltBits
= CN
->getValue() & (~0U >> (32-EltBitSize
));
2309 } else if (ConstantFPSDNode
*CN
= dyn_cast
<ConstantFPSDNode
>(OpVal
)) {
2310 assert(CN
->getValueType(0) == MVT::f32
&&
2311 "Only one legal FP vector type!");
2312 EltBits
= FloatToBits(CN
->getValueAPF().convertToFloat());
2314 // Nonconstant element.
2318 VectorBits
[PartNo
] |= EltBits
<< (SlotNo
*EltBitSize
);
2321 //printf("%llx %llx %llx %llx\n",
2322 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2326 // If this is a splat (repetition) of a value across the whole vector, return
2327 // the smallest size that splats it. For example, "0x01010101010101..." is a
2328 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2329 // SplatSize = 1 byte.
2330 static bool isConstantSplat(const uint64_t Bits128
[2],
2331 const uint64_t Undef128
[2],
2332 unsigned &SplatBits
, unsigned &SplatUndef
,
2333 unsigned &SplatSize
) {
2335 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2336 // the same as the lower 64-bits, ignoring undefs.
2337 if ((Bits128
[0] & ~Undef128
[1]) != (Bits128
[1] & ~Undef128
[0]))
2338 return false; // Can't be a splat if two pieces don't match.
2340 uint64_t Bits64
= Bits128
[0] | Bits128
[1];
2341 uint64_t Undef64
= Undef128
[0] & Undef128
[1];
2343 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2345 if ((Bits64
& (~Undef64
>> 32)) != ((Bits64
>> 32) & ~Undef64
))
2346 return false; // Can't be a splat if two pieces don't match.
2348 uint32_t Bits32
= uint32_t(Bits64
) | uint32_t(Bits64
>> 32);
2349 uint32_t Undef32
= uint32_t(Undef64
) & uint32_t(Undef64
>> 32);
2351 // If the top 16-bits are different than the lower 16-bits, ignoring
2352 // undefs, we have an i32 splat.
2353 if ((Bits32
& (~Undef32
>> 16)) != ((Bits32
>> 16) & ~Undef32
)) {
2355 SplatUndef
= Undef32
;
2360 uint16_t Bits16
= uint16_t(Bits32
) | uint16_t(Bits32
>> 16);
2361 uint16_t Undef16
= uint16_t(Undef32
) & uint16_t(Undef32
>> 16);
2363 // If the top 8-bits are different than the lower 8-bits, ignoring
2364 // undefs, we have an i16 splat.
2365 if ((Bits16
& (uint16_t(~Undef16
) >> 8)) != ((Bits16
>> 8) & ~Undef16
)) {
2367 SplatUndef
= Undef16
;
2372 // Otherwise, we have an 8-bit splat.
2373 SplatBits
= uint8_t(Bits16
) | uint8_t(Bits16
>> 8);
2374 SplatUndef
= uint8_t(Undef16
) & uint8_t(Undef16
>> 8);
2379 /// BuildSplatI - Build a canonical splati of Val with an element size of
2380 /// SplatSize. Cast the result to VT.
2381 static SDOperand
BuildSplatI(int Val
, unsigned SplatSize
, MVT::ValueType VT
,
2382 SelectionDAG
&DAG
) {
2383 assert(Val
>= -16 && Val
<= 15 && "vsplti is out of range!");
2385 static const MVT::ValueType VTys
[] = { // canonical VT to use for each size.
2386 MVT::v16i8
, MVT::v8i16
, MVT::Other
, MVT::v4i32
2389 MVT::ValueType ReqVT
= VT
!= MVT::Other
? VT
: VTys
[SplatSize
-1];
2391 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2395 MVT::ValueType CanonicalVT
= VTys
[SplatSize
-1];
2397 // Build a canonical splat for this value.
2398 SDOperand Elt
= DAG
.getConstant(Val
, MVT::getVectorElementType(CanonicalVT
));
2399 SmallVector
<SDOperand
, 8> Ops
;
2400 Ops
.assign(MVT::getVectorNumElements(CanonicalVT
), Elt
);
2401 SDOperand Res
= DAG
.getNode(ISD::BUILD_VECTOR
, CanonicalVT
,
2402 &Ops
[0], Ops
.size());
2403 return DAG
.getNode(ISD::BIT_CONVERT
, ReqVT
, Res
);
2406 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2407 /// specified intrinsic ID.
2408 static SDOperand
BuildIntrinsicOp(unsigned IID
, SDOperand LHS
, SDOperand RHS
,
2410 MVT::ValueType DestVT
= MVT::Other
) {
2411 if (DestVT
== MVT::Other
) DestVT
= LHS
.getValueType();
2412 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DestVT
,
2413 DAG
.getConstant(IID
, MVT::i32
), LHS
, RHS
);
2416 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2417 /// specified intrinsic ID.
2418 static SDOperand
BuildIntrinsicOp(unsigned IID
, SDOperand Op0
, SDOperand Op1
,
2419 SDOperand Op2
, SelectionDAG
&DAG
,
2420 MVT::ValueType DestVT
= MVT::Other
) {
2421 if (DestVT
== MVT::Other
) DestVT
= Op0
.getValueType();
2422 return DAG
.getNode(ISD::INTRINSIC_WO_CHAIN
, DestVT
,
2423 DAG
.getConstant(IID
, MVT::i32
), Op0
, Op1
, Op2
);
2427 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2428 /// amount. The result has the specified value type.
2429 static SDOperand
BuildVSLDOI(SDOperand LHS
, SDOperand RHS
, unsigned Amt
,
2430 MVT::ValueType VT
, SelectionDAG
&DAG
) {
2431 // Force LHS/RHS to be the right type.
2432 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::v16i8
, LHS
);
2433 RHS
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::v16i8
, RHS
);
2436 for (unsigned i
= 0; i
!= 16; ++i
)
2437 Ops
[i
] = DAG
.getConstant(i
+Amt
, MVT::i32
);
2438 SDOperand T
= DAG
.getNode(ISD::VECTOR_SHUFFLE
, MVT::v16i8
, LHS
, RHS
,
2439 DAG
.getNode(ISD::BUILD_VECTOR
, MVT::v16i8
, Ops
,16));
2440 return DAG
.getNode(ISD::BIT_CONVERT
, VT
, T
);
2443 // If this is a case we can't handle, return null and let the default
2444 // expansion code take care of it. If we CAN select this case, and if it
2445 // selects to a single instruction, return Op. Otherwise, if we can codegen
2446 // this case more efficiently than a constant pool load, lower it to the
2447 // sequence of ops that should be used.
2448 static SDOperand
LowerBUILD_VECTOR(SDOperand Op
, SelectionDAG
&DAG
) {
2449 // If this is a vector of constants or undefs, get the bits. A bit in
2450 // UndefBits is set if the corresponding element of the vector is an
2451 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2453 uint64_t VectorBits
[2];
2454 uint64_t UndefBits
[2];
2455 if (GetConstantBuildVectorBits(Op
.Val
, VectorBits
, UndefBits
))
2456 return SDOperand(); // Not a constant vector.
2458 // If this is a splat (repetition) of a value across the whole vector, return
2459 // the smallest size that splats it. For example, "0x01010101010101..." is a
2460 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2461 // SplatSize = 1 byte.
2462 unsigned SplatBits
, SplatUndef
, SplatSize
;
2463 if (isConstantSplat(VectorBits
, UndefBits
, SplatBits
, SplatUndef
, SplatSize
)){
2464 bool HasAnyUndefs
= (UndefBits
[0] | UndefBits
[1]) != 0;
2466 // First, handle single instruction cases.
2469 if (SplatBits
== 0) {
2470 // Canonicalize all zero vectors to be v4i32.
2471 if (Op
.getValueType() != MVT::v4i32
|| HasAnyUndefs
) {
2472 SDOperand Z
= DAG
.getConstant(0, MVT::i32
);
2473 Z
= DAG
.getNode(ISD::BUILD_VECTOR
, MVT::v4i32
, Z
, Z
, Z
, Z
);
2474 Op
= DAG
.getNode(ISD::BIT_CONVERT
, Op
.getValueType(), Z
);
2479 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2480 int32_t SextVal
= int32_t(SplatBits
<< (32-8*SplatSize
)) >> (32-8*SplatSize
);
2481 if (SextVal
>= -16 && SextVal
<= 15)
2482 return BuildSplatI(SextVal
, SplatSize
, Op
.getValueType(), DAG
);
2485 // Two instruction sequences.
2487 // If this value is in the range [-32,30] and is even, use:
2488 // tmp = VSPLTI[bhw], result = add tmp, tmp
2489 if (SextVal
>= -32 && SextVal
<= 30 && (SextVal
& 1) == 0) {
2490 Op
= BuildSplatI(SextVal
>> 1, SplatSize
, Op
.getValueType(), DAG
);
2491 return DAG
.getNode(ISD::ADD
, Op
.getValueType(), Op
, Op
);
2494 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2495 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2497 if (SplatSize
== 4 && SplatBits
== (0x7FFFFFFF&~SplatUndef
)) {
2498 // Make -1 and vspltisw -1:
2499 SDOperand OnesV
= BuildSplatI(-1, 4, MVT::v4i32
, DAG
);
2501 // Make the VSLW intrinsic, computing 0x8000_0000.
2502 SDOperand Res
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, OnesV
,
2505 // xor by OnesV to invert it.
2506 Res
= DAG
.getNode(ISD::XOR
, MVT::v4i32
, Res
, OnesV
);
2507 return DAG
.getNode(ISD::BIT_CONVERT
, Op
.getValueType(), Res
);
2510 // Check to see if this is a wide variety of vsplti*, binop self cases.
2511 unsigned SplatBitSize
= SplatSize
*8;
2512 static const signed char SplatCsts
[] = {
2513 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2514 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2517 for (unsigned idx
= 0; idx
< array_lengthof(SplatCsts
); ++idx
) {
2518 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2519 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2520 int i
= SplatCsts
[idx
];
2522 // Figure out what shift amount will be used by altivec if shifted by i in
2524 unsigned TypeShiftAmt
= i
& (SplatBitSize
-1);
2526 // vsplti + shl self.
2527 if (SextVal
== (i
<< (int)TypeShiftAmt
)) {
2528 SDOperand Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
);
2529 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
2530 Intrinsic::ppc_altivec_vslb
, Intrinsic::ppc_altivec_vslh
, 0,
2531 Intrinsic::ppc_altivec_vslw
2533 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
);
2534 return DAG
.getNode(ISD::BIT_CONVERT
, Op
.getValueType(), Res
);
2537 // vsplti + srl self.
2538 if (SextVal
== (int)((unsigned)i
>> TypeShiftAmt
)) {
2539 SDOperand Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
);
2540 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
2541 Intrinsic::ppc_altivec_vsrb
, Intrinsic::ppc_altivec_vsrh
, 0,
2542 Intrinsic::ppc_altivec_vsrw
2544 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
);
2545 return DAG
.getNode(ISD::BIT_CONVERT
, Op
.getValueType(), Res
);
2548 // vsplti + sra self.
2549 if (SextVal
== (int)((unsigned)i
>> TypeShiftAmt
)) {
2550 SDOperand Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
);
2551 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
2552 Intrinsic::ppc_altivec_vsrab
, Intrinsic::ppc_altivec_vsrah
, 0,
2553 Intrinsic::ppc_altivec_vsraw
2555 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
);
2556 return DAG
.getNode(ISD::BIT_CONVERT
, Op
.getValueType(), Res
);
2559 // vsplti + rol self.
2560 if (SextVal
== (int)(((unsigned)i
<< TypeShiftAmt
) |
2561 ((unsigned)i
>> (SplatBitSize
-TypeShiftAmt
)))) {
2562 SDOperand Res
= BuildSplatI(i
, SplatSize
, MVT::Other
, DAG
);
2563 static const unsigned IIDs
[] = { // Intrinsic to use for each size.
2564 Intrinsic::ppc_altivec_vrlb
, Intrinsic::ppc_altivec_vrlh
, 0,
2565 Intrinsic::ppc_altivec_vrlw
2567 Res
= BuildIntrinsicOp(IIDs
[SplatSize
-1], Res
, Res
, DAG
);
2568 return DAG
.getNode(ISD::BIT_CONVERT
, Op
.getValueType(), Res
);
2571 // t = vsplti c, result = vsldoi t, t, 1
2572 if (SextVal
== ((i
<< 8) | (i
>> (TypeShiftAmt
-8)))) {
2573 SDOperand T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
);
2574 return BuildVSLDOI(T
, T
, 1, Op
.getValueType(), DAG
);
2576 // t = vsplti c, result = vsldoi t, t, 2
2577 if (SextVal
== ((i
<< 16) | (i
>> (TypeShiftAmt
-16)))) {
2578 SDOperand T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
);
2579 return BuildVSLDOI(T
, T
, 2, Op
.getValueType(), DAG
);
2581 // t = vsplti c, result = vsldoi t, t, 3
2582 if (SextVal
== ((i
<< 24) | (i
>> (TypeShiftAmt
-24)))) {
2583 SDOperand T
= BuildSplatI(i
, SplatSize
, MVT::v16i8
, DAG
);
2584 return BuildVSLDOI(T
, T
, 3, Op
.getValueType(), DAG
);
2588 // Three instruction sequences.
2590 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2591 if (SextVal
>= 0 && SextVal
<= 31) {
2592 SDOperand LHS
= BuildSplatI(SextVal
-16, SplatSize
, MVT::Other
, DAG
);
2593 SDOperand RHS
= BuildSplatI(-16, SplatSize
, MVT::Other
, DAG
);
2594 LHS
= DAG
.getNode(ISD::SUB
, LHS
.getValueType(), LHS
, RHS
);
2595 return DAG
.getNode(ISD::BIT_CONVERT
, Op
.getValueType(), LHS
);
2597 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2598 if (SextVal
>= -31 && SextVal
<= 0) {
2599 SDOperand LHS
= BuildSplatI(SextVal
+16, SplatSize
, MVT::Other
, DAG
);
2600 SDOperand RHS
= BuildSplatI(-16, SplatSize
, MVT::Other
, DAG
);
2601 LHS
= DAG
.getNode(ISD::ADD
, LHS
.getValueType(), LHS
, RHS
);
2602 return DAG
.getNode(ISD::BIT_CONVERT
, Op
.getValueType(), LHS
);
2609 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2610 /// the specified operations to build the shuffle.
2611 static SDOperand
GeneratePerfectShuffle(unsigned PFEntry
, SDOperand LHS
,
2612 SDOperand RHS
, SelectionDAG
&DAG
) {
2613 unsigned OpNum
= (PFEntry
>> 26) & 0x0F;
2614 unsigned LHSID
= (PFEntry
>> 13) & ((1 << 13)-1);
2615 unsigned RHSID
= (PFEntry
>> 0) & ((1 << 13)-1);
2618 OP_COPY
= 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2630 if (OpNum
== OP_COPY
) {
2631 if (LHSID
== (1*9+2)*9+3) return LHS
;
2632 assert(LHSID
== ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2636 SDOperand OpLHS
, OpRHS
;
2637 OpLHS
= GeneratePerfectShuffle(PerfectShuffleTable
[LHSID
], LHS
, RHS
, DAG
);
2638 OpRHS
= GeneratePerfectShuffle(PerfectShuffleTable
[RHSID
], LHS
, RHS
, DAG
);
2640 unsigned ShufIdxs
[16];
2642 default: assert(0 && "Unknown i32 permute!");
2644 ShufIdxs
[ 0] = 0; ShufIdxs
[ 1] = 1; ShufIdxs
[ 2] = 2; ShufIdxs
[ 3] = 3;
2645 ShufIdxs
[ 4] = 16; ShufIdxs
[ 5] = 17; ShufIdxs
[ 6] = 18; ShufIdxs
[ 7] = 19;
2646 ShufIdxs
[ 8] = 4; ShufIdxs
[ 9] = 5; ShufIdxs
[10] = 6; ShufIdxs
[11] = 7;
2647 ShufIdxs
[12] = 20; ShufIdxs
[13] = 21; ShufIdxs
[14] = 22; ShufIdxs
[15] = 23;
2650 ShufIdxs
[ 0] = 8; ShufIdxs
[ 1] = 9; ShufIdxs
[ 2] = 10; ShufIdxs
[ 3] = 11;
2651 ShufIdxs
[ 4] = 24; ShufIdxs
[ 5] = 25; ShufIdxs
[ 6] = 26; ShufIdxs
[ 7] = 27;
2652 ShufIdxs
[ 8] = 12; ShufIdxs
[ 9] = 13; ShufIdxs
[10] = 14; ShufIdxs
[11] = 15;
2653 ShufIdxs
[12] = 28; ShufIdxs
[13] = 29; ShufIdxs
[14] = 30; ShufIdxs
[15] = 31;
2656 for (unsigned i
= 0; i
!= 16; ++i
)
2657 ShufIdxs
[i
] = (i
&3)+0;
2660 for (unsigned i
= 0; i
!= 16; ++i
)
2661 ShufIdxs
[i
] = (i
&3)+4;
2664 for (unsigned i
= 0; i
!= 16; ++i
)
2665 ShufIdxs
[i
] = (i
&3)+8;
2668 for (unsigned i
= 0; i
!= 16; ++i
)
2669 ShufIdxs
[i
] = (i
&3)+12;
2672 return BuildVSLDOI(OpLHS
, OpRHS
, 4, OpLHS
.getValueType(), DAG
);
2674 return BuildVSLDOI(OpLHS
, OpRHS
, 8, OpLHS
.getValueType(), DAG
);
2676 return BuildVSLDOI(OpLHS
, OpRHS
, 12, OpLHS
.getValueType(), DAG
);
2679 for (unsigned i
= 0; i
!= 16; ++i
)
2680 Ops
[i
] = DAG
.getConstant(ShufIdxs
[i
], MVT::i32
);
2682 return DAG
.getNode(ISD::VECTOR_SHUFFLE
, OpLHS
.getValueType(), OpLHS
, OpRHS
,
2683 DAG
.getNode(ISD::BUILD_VECTOR
, MVT::v16i8
, Ops
, 16));
2686 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
2687 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
2688 /// return the code it can be lowered into. Worst case, it can always be
2689 /// lowered into a vperm.
2690 static SDOperand
LowerVECTOR_SHUFFLE(SDOperand Op
, SelectionDAG
&DAG
) {
2691 SDOperand V1
= Op
.getOperand(0);
2692 SDOperand V2
= Op
.getOperand(1);
2693 SDOperand PermMask
= Op
.getOperand(2);
2695 // Cases that are handled by instructions that take permute immediates
2696 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2697 // selected by the instruction selector.
2698 if (V2
.getOpcode() == ISD::UNDEF
) {
2699 if (PPC::isSplatShuffleMask(PermMask
.Val
, 1) ||
2700 PPC::isSplatShuffleMask(PermMask
.Val
, 2) ||
2701 PPC::isSplatShuffleMask(PermMask
.Val
, 4) ||
2702 PPC::isVPKUWUMShuffleMask(PermMask
.Val
, true) ||
2703 PPC::isVPKUHUMShuffleMask(PermMask
.Val
, true) ||
2704 PPC::isVSLDOIShuffleMask(PermMask
.Val
, true) != -1 ||
2705 PPC::isVMRGLShuffleMask(PermMask
.Val
, 1, true) ||
2706 PPC::isVMRGLShuffleMask(PermMask
.Val
, 2, true) ||
2707 PPC::isVMRGLShuffleMask(PermMask
.Val
, 4, true) ||
2708 PPC::isVMRGHShuffleMask(PermMask
.Val
, 1, true) ||
2709 PPC::isVMRGHShuffleMask(PermMask
.Val
, 2, true) ||
2710 PPC::isVMRGHShuffleMask(PermMask
.Val
, 4, true)) {
2715 // Altivec has a variety of "shuffle immediates" that take two vector inputs
2716 // and produce a fixed permutation. If any of these match, do not lower to
2718 if (PPC::isVPKUWUMShuffleMask(PermMask
.Val
, false) ||
2719 PPC::isVPKUHUMShuffleMask(PermMask
.Val
, false) ||
2720 PPC::isVSLDOIShuffleMask(PermMask
.Val
, false) != -1 ||
2721 PPC::isVMRGLShuffleMask(PermMask
.Val
, 1, false) ||
2722 PPC::isVMRGLShuffleMask(PermMask
.Val
, 2, false) ||
2723 PPC::isVMRGLShuffleMask(PermMask
.Val
, 4, false) ||
2724 PPC::isVMRGHShuffleMask(PermMask
.Val
, 1, false) ||
2725 PPC::isVMRGHShuffleMask(PermMask
.Val
, 2, false) ||
2726 PPC::isVMRGHShuffleMask(PermMask
.Val
, 4, false))
2729 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
2730 // perfect shuffle table to emit an optimal matching sequence.
2731 unsigned PFIndexes
[4];
2732 bool isFourElementShuffle
= true;
2733 for (unsigned i
= 0; i
!= 4 && isFourElementShuffle
; ++i
) { // Element number
2734 unsigned EltNo
= 8; // Start out undef.
2735 for (unsigned j
= 0; j
!= 4; ++j
) { // Intra-element byte.
2736 if (PermMask
.getOperand(i
*4+j
).getOpcode() == ISD::UNDEF
)
2737 continue; // Undef, ignore it.
2739 unsigned ByteSource
=
2740 cast
<ConstantSDNode
>(PermMask
.getOperand(i
*4+j
))->getValue();
2741 if ((ByteSource
& 3) != j
) {
2742 isFourElementShuffle
= false;
2747 EltNo
= ByteSource
/4;
2748 } else if (EltNo
!= ByteSource
/4) {
2749 isFourElementShuffle
= false;
2753 PFIndexes
[i
] = EltNo
;
2756 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2757 // perfect shuffle vector to determine if it is cost effective to do this as
2758 // discrete instructions, or whether we should use a vperm.
2759 if (isFourElementShuffle
) {
2760 // Compute the index in the perfect shuffle table.
2761 unsigned PFTableIndex
=
2762 PFIndexes
[0]*9*9*9+PFIndexes
[1]*9*9+PFIndexes
[2]*9+PFIndexes
[3];
2764 unsigned PFEntry
= PerfectShuffleTable
[PFTableIndex
];
2765 unsigned Cost
= (PFEntry
>> 30);
2767 // Determining when to avoid vperm is tricky. Many things affect the cost
2768 // of vperm, particularly how many times the perm mask needs to be computed.
2769 // For example, if the perm mask can be hoisted out of a loop or is already
2770 // used (perhaps because there are multiple permutes with the same shuffle
2771 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
2772 // the loop requires an extra register.
2774 // As a compromise, we only emit discrete instructions if the shuffle can be
2775 // generated in 3 or fewer operations. When we have loop information
2776 // available, if this block is within a loop, we should avoid using vperm
2777 // for 3-operation perms and use a constant pool load instead.
2779 return GeneratePerfectShuffle(PFEntry
, V1
, V2
, DAG
);
2782 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2783 // vector that will get spilled to the constant pool.
2784 if (V2
.getOpcode() == ISD::UNDEF
) V2
= V1
;
2786 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2787 // that it is in input element units, not in bytes. Convert now.
2788 MVT::ValueType EltVT
= MVT::getVectorElementType(V1
.getValueType());
2789 unsigned BytesPerElement
= MVT::getSizeInBits(EltVT
)/8;
2791 SmallVector
<SDOperand
, 16> ResultMask
;
2792 for (unsigned i
= 0, e
= PermMask
.getNumOperands(); i
!= e
; ++i
) {
2794 if (PermMask
.getOperand(i
).getOpcode() == ISD::UNDEF
)
2797 SrcElt
= cast
<ConstantSDNode
>(PermMask
.getOperand(i
))->getValue();
2799 for (unsigned j
= 0; j
!= BytesPerElement
; ++j
)
2800 ResultMask
.push_back(DAG
.getConstant(SrcElt
*BytesPerElement
+j
,
2804 SDOperand VPermMask
= DAG
.getNode(ISD::BUILD_VECTOR
, MVT::v16i8
,
2805 &ResultMask
[0], ResultMask
.size());
2806 return DAG
.getNode(PPCISD::VPERM
, V1
.getValueType(), V1
, V2
, VPermMask
);
2809 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2810 /// altivec comparison. If it is, return true and fill in Opc/isDot with
2811 /// information about the intrinsic.
2812 static bool getAltivecCompareInfo(SDOperand Intrin
, int &CompareOpc
,
2814 unsigned IntrinsicID
= cast
<ConstantSDNode
>(Intrin
.getOperand(0))->getValue();
2817 switch (IntrinsicID
) {
2818 default: return false;
2819 // Comparison predicates.
2820 case Intrinsic::ppc_altivec_vcmpbfp_p
: CompareOpc
= 966; isDot
= 1; break;
2821 case Intrinsic::ppc_altivec_vcmpeqfp_p
: CompareOpc
= 198; isDot
= 1; break;
2822 case Intrinsic::ppc_altivec_vcmpequb_p
: CompareOpc
= 6; isDot
= 1; break;
2823 case Intrinsic::ppc_altivec_vcmpequh_p
: CompareOpc
= 70; isDot
= 1; break;
2824 case Intrinsic::ppc_altivec_vcmpequw_p
: CompareOpc
= 134; isDot
= 1; break;
2825 case Intrinsic::ppc_altivec_vcmpgefp_p
: CompareOpc
= 454; isDot
= 1; break;
2826 case Intrinsic::ppc_altivec_vcmpgtfp_p
: CompareOpc
= 710; isDot
= 1; break;
2827 case Intrinsic::ppc_altivec_vcmpgtsb_p
: CompareOpc
= 774; isDot
= 1; break;
2828 case Intrinsic::ppc_altivec_vcmpgtsh_p
: CompareOpc
= 838; isDot
= 1; break;
2829 case Intrinsic::ppc_altivec_vcmpgtsw_p
: CompareOpc
= 902; isDot
= 1; break;
2830 case Intrinsic::ppc_altivec_vcmpgtub_p
: CompareOpc
= 518; isDot
= 1; break;
2831 case Intrinsic::ppc_altivec_vcmpgtuh_p
: CompareOpc
= 582; isDot
= 1; break;
2832 case Intrinsic::ppc_altivec_vcmpgtuw_p
: CompareOpc
= 646; isDot
= 1; break;
2834 // Normal Comparisons.
2835 case Intrinsic::ppc_altivec_vcmpbfp
: CompareOpc
= 966; isDot
= 0; break;
2836 case Intrinsic::ppc_altivec_vcmpeqfp
: CompareOpc
= 198; isDot
= 0; break;
2837 case Intrinsic::ppc_altivec_vcmpequb
: CompareOpc
= 6; isDot
= 0; break;
2838 case Intrinsic::ppc_altivec_vcmpequh
: CompareOpc
= 70; isDot
= 0; break;
2839 case Intrinsic::ppc_altivec_vcmpequw
: CompareOpc
= 134; isDot
= 0; break;
2840 case Intrinsic::ppc_altivec_vcmpgefp
: CompareOpc
= 454; isDot
= 0; break;
2841 case Intrinsic::ppc_altivec_vcmpgtfp
: CompareOpc
= 710; isDot
= 0; break;
2842 case Intrinsic::ppc_altivec_vcmpgtsb
: CompareOpc
= 774; isDot
= 0; break;
2843 case Intrinsic::ppc_altivec_vcmpgtsh
: CompareOpc
= 838; isDot
= 0; break;
2844 case Intrinsic::ppc_altivec_vcmpgtsw
: CompareOpc
= 902; isDot
= 0; break;
2845 case Intrinsic::ppc_altivec_vcmpgtub
: CompareOpc
= 518; isDot
= 0; break;
2846 case Intrinsic::ppc_altivec_vcmpgtuh
: CompareOpc
= 582; isDot
= 0; break;
2847 case Intrinsic::ppc_altivec_vcmpgtuw
: CompareOpc
= 646; isDot
= 0; break;
2852 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2853 /// lower, do it, otherwise return null.
2854 static SDOperand
LowerINTRINSIC_WO_CHAIN(SDOperand Op
, SelectionDAG
&DAG
) {
2855 // If this is a lowered altivec predicate compare, CompareOpc is set to the
2856 // opcode number of the comparison.
2859 if (!getAltivecCompareInfo(Op
, CompareOpc
, isDot
))
2860 return SDOperand(); // Don't custom lower most intrinsics.
2862 // If this is a non-dot comparison, make the VCMP node and we are done.
2864 SDOperand Tmp
= DAG
.getNode(PPCISD::VCMP
, Op
.getOperand(2).getValueType(),
2865 Op
.getOperand(1), Op
.getOperand(2),
2866 DAG
.getConstant(CompareOpc
, MVT::i32
));
2867 return DAG
.getNode(ISD::BIT_CONVERT
, Op
.getValueType(), Tmp
);
2870 // Create the PPCISD altivec 'dot' comparison node.
2872 Op
.getOperand(2), // LHS
2873 Op
.getOperand(3), // RHS
2874 DAG
.getConstant(CompareOpc
, MVT::i32
)
2876 std::vector
<MVT::ValueType
> VTs
;
2877 VTs
.push_back(Op
.getOperand(2).getValueType());
2878 VTs
.push_back(MVT::Flag
);
2879 SDOperand CompNode
= DAG
.getNode(PPCISD::VCMPo
, VTs
, Ops
, 3);
2881 // Now that we have the comparison, emit a copy from the CR to a GPR.
2882 // This is flagged to the above dot comparison.
2883 SDOperand Flags
= DAG
.getNode(PPCISD::MFCR
, MVT::i32
,
2884 DAG
.getRegister(PPC::CR6
, MVT::i32
),
2885 CompNode
.getValue(1));
2887 // Unpack the result based on how the target uses it.
2888 unsigned BitNo
; // Bit # of CR6.
2889 bool InvertBit
; // Invert result?
2890 switch (cast
<ConstantSDNode
>(Op
.getOperand(1))->getValue()) {
2891 default: // Can't happen, don't crash on invalid number though.
2892 case 0: // Return the value of the EQ bit of CR6.
2893 BitNo
= 0; InvertBit
= false;
2895 case 1: // Return the inverted value of the EQ bit of CR6.
2896 BitNo
= 0; InvertBit
= true;
2898 case 2: // Return the value of the LT bit of CR6.
2899 BitNo
= 2; InvertBit
= false;
2901 case 3: // Return the inverted value of the LT bit of CR6.
2902 BitNo
= 2; InvertBit
= true;
2906 // Shift the bit into the low position.
2907 Flags
= DAG
.getNode(ISD::SRL
, MVT::i32
, Flags
,
2908 DAG
.getConstant(8-(3-BitNo
), MVT::i32
));
2910 Flags
= DAG
.getNode(ISD::AND
, MVT::i32
, Flags
,
2911 DAG
.getConstant(1, MVT::i32
));
2913 // If we are supposed to, toggle the bit.
2915 Flags
= DAG
.getNode(ISD::XOR
, MVT::i32
, Flags
,
2916 DAG
.getConstant(1, MVT::i32
));
2920 static SDOperand
LowerSCALAR_TO_VECTOR(SDOperand Op
, SelectionDAG
&DAG
) {
2921 // Create a stack slot that is 16-byte aligned.
2922 MachineFrameInfo
*FrameInfo
= DAG
.getMachineFunction().getFrameInfo();
2923 int FrameIdx
= FrameInfo
->CreateStackObject(16, 16);
2924 MVT::ValueType PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
2925 SDOperand FIdx
= DAG
.getFrameIndex(FrameIdx
, PtrVT
);
2927 // Store the input value into Value#0 of the stack slot.
2928 SDOperand Store
= DAG
.getStore(DAG
.getEntryNode(),
2929 Op
.getOperand(0), FIdx
, NULL
, 0);
2931 return DAG
.getLoad(Op
.getValueType(), Store
, FIdx
, NULL
, 0);
2934 static SDOperand
LowerMUL(SDOperand Op
, SelectionDAG
&DAG
) {
2935 if (Op
.getValueType() == MVT::v4i32
) {
2936 SDOperand LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
2938 SDOperand Zero
= BuildSplatI( 0, 1, MVT::v4i32
, DAG
);
2939 SDOperand Neg16
= BuildSplatI(-16, 4, MVT::v4i32
, DAG
); // +16 as shift amt.
2941 SDOperand RHSSwap
= // = vrlw RHS, 16
2942 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw
, RHS
, Neg16
, DAG
);
2944 // Shrinkify inputs to v8i16.
2945 LHS
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::v8i16
, LHS
);
2946 RHS
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::v8i16
, RHS
);
2947 RHSSwap
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::v8i16
, RHSSwap
);
2949 // Low parts multiplied together, generating 32-bit results (we ignore the
2951 SDOperand LoProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh
,
2952 LHS
, RHS
, DAG
, MVT::v4i32
);
2954 SDOperand HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm
,
2955 LHS
, RHSSwap
, Zero
, DAG
, MVT::v4i32
);
2956 // Shift the high parts up 16 bits.
2957 HiProd
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw
, HiProd
, Neg16
, DAG
);
2958 return DAG
.getNode(ISD::ADD
, MVT::v4i32
, LoProd
, HiProd
);
2959 } else if (Op
.getValueType() == MVT::v8i16
) {
2960 SDOperand LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
2962 SDOperand Zero
= BuildSplatI(0, 1, MVT::v8i16
, DAG
);
2964 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm
,
2965 LHS
, RHS
, Zero
, DAG
);
2966 } else if (Op
.getValueType() == MVT::v16i8
) {
2967 SDOperand LHS
= Op
.getOperand(0), RHS
= Op
.getOperand(1);
2969 // Multiply the even 8-bit parts, producing 16-bit sums.
2970 SDOperand EvenParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub
,
2971 LHS
, RHS
, DAG
, MVT::v8i16
);
2972 EvenParts
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::v16i8
, EvenParts
);
2974 // Multiply the odd 8-bit parts, producing 16-bit sums.
2975 SDOperand OddParts
= BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub
,
2976 LHS
, RHS
, DAG
, MVT::v8i16
);
2977 OddParts
= DAG
.getNode(ISD::BIT_CONVERT
, MVT::v16i8
, OddParts
);
2979 // Merge the results together.
2981 for (unsigned i
= 0; i
!= 8; ++i
) {
2982 Ops
[i
*2 ] = DAG
.getConstant(2*i
+1, MVT::i8
);
2983 Ops
[i
*2+1] = DAG
.getConstant(2*i
+1+16, MVT::i8
);
2985 return DAG
.getNode(ISD::VECTOR_SHUFFLE
, MVT::v16i8
, EvenParts
, OddParts
,
2986 DAG
.getNode(ISD::BUILD_VECTOR
, MVT::v16i8
, Ops
, 16));
2988 assert(0 && "Unknown mul to lower!");
2993 /// LowerOperation - Provide custom lowering hooks for some operations.
2995 SDOperand
PPCTargetLowering::LowerOperation(SDOperand Op
, SelectionDAG
&DAG
) {
2996 switch (Op
.getOpcode()) {
2997 default: assert(0 && "Wasn't expecting to be able to lower this!");
2998 case ISD::ConstantPool
: return LowerConstantPool(Op
, DAG
);
2999 case ISD::GlobalAddress
: return LowerGlobalAddress(Op
, DAG
);
3000 case ISD::GlobalTLSAddress
: return LowerGlobalTLSAddress(Op
, DAG
);
3001 case ISD::JumpTable
: return LowerJumpTable(Op
, DAG
);
3002 case ISD::SETCC
: return LowerSETCC(Op
, DAG
);
3004 return LowerVASTART(Op
, DAG
, VarArgsFrameIndex
, VarArgsStackOffset
,
3005 VarArgsNumGPR
, VarArgsNumFPR
, PPCSubTarget
);
3008 return LowerVAARG(Op
, DAG
, VarArgsFrameIndex
, VarArgsStackOffset
,
3009 VarArgsNumGPR
, VarArgsNumFPR
, PPCSubTarget
);
3011 case ISD::FORMAL_ARGUMENTS
:
3012 return LowerFORMAL_ARGUMENTS(Op
, DAG
, VarArgsFrameIndex
,
3013 VarArgsStackOffset
, VarArgsNumGPR
,
3014 VarArgsNumFPR
, PPCSubTarget
);
3016 case ISD::CALL
: return LowerCALL(Op
, DAG
, PPCSubTarget
);
3017 case ISD::RET
: return LowerRET(Op
, DAG
, getTargetMachine());
3018 case ISD::STACKRESTORE
: return LowerSTACKRESTORE(Op
, DAG
, PPCSubTarget
);
3019 case ISD::DYNAMIC_STACKALLOC
:
3020 return LowerDYNAMIC_STACKALLOC(Op
, DAG
, PPCSubTarget
);
3022 case ISD::SELECT_CC
: return LowerSELECT_CC(Op
, DAG
);
3023 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(Op
, DAG
);
3024 case ISD::SINT_TO_FP
: return LowerSINT_TO_FP(Op
, DAG
);
3025 case ISD::FP_ROUND_INREG
: return LowerFP_ROUND_INREG(Op
, DAG
);
3027 // Lower 64-bit shifts.
3028 case ISD::SHL_PARTS
: return LowerSHL_PARTS(Op
, DAG
);
3029 case ISD::SRL_PARTS
: return LowerSRL_PARTS(Op
, DAG
);
3030 case ISD::SRA_PARTS
: return LowerSRA_PARTS(Op
, DAG
);
3032 // Vector-related lowering.
3033 case ISD::BUILD_VECTOR
: return LowerBUILD_VECTOR(Op
, DAG
);
3034 case ISD::VECTOR_SHUFFLE
: return LowerVECTOR_SHUFFLE(Op
, DAG
);
3035 case ISD::INTRINSIC_WO_CHAIN
: return LowerINTRINSIC_WO_CHAIN(Op
, DAG
);
3036 case ISD::SCALAR_TO_VECTOR
: return LowerSCALAR_TO_VECTOR(Op
, DAG
);
3037 case ISD::MUL
: return LowerMUL(Op
, DAG
);
3039 // Frame & Return address.
3040 case ISD::RETURNADDR
: return LowerRETURNADDR(Op
, DAG
);
3041 case ISD::FRAMEADDR
: return LowerFRAMEADDR(Op
, DAG
);
3046 SDNode
*PPCTargetLowering::ExpandOperationResult(SDNode
*N
, SelectionDAG
&DAG
) {
3047 switch (N
->getOpcode()) {
3048 default: assert(0 && "Wasn't expecting to be able to lower this!");
3049 case ISD::FP_TO_SINT
: return LowerFP_TO_SINT(SDOperand(N
, 0), DAG
).Val
;
3054 //===----------------------------------------------------------------------===//
3055 // Other Lowering Code
3056 //===----------------------------------------------------------------------===//
3059 PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr
*MI
,
3060 MachineBasicBlock
*BB
) {
3061 const TargetInstrInfo
*TII
= getTargetMachine().getInstrInfo();
3062 assert((MI
->getOpcode() == PPC::SELECT_CC_I4
||
3063 MI
->getOpcode() == PPC::SELECT_CC_I8
||
3064 MI
->getOpcode() == PPC::SELECT_CC_F4
||
3065 MI
->getOpcode() == PPC::SELECT_CC_F8
||
3066 MI
->getOpcode() == PPC::SELECT_CC_VRRC
) &&
3067 "Unexpected instr type to insert");
3069 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3070 // control-flow pattern. The incoming instruction knows the destination vreg
3071 // to set, the condition code register to branch on, the true/false values to
3072 // select between, and a branch opcode to use.
3073 const BasicBlock
*LLVM_BB
= BB
->getBasicBlock();
3074 ilist
<MachineBasicBlock
>::iterator It
= BB
;
3080 // cmpTY ccX, r1, r2
3082 // fallthrough --> copy0MBB
3083 MachineBasicBlock
*thisMBB
= BB
;
3084 MachineBasicBlock
*copy0MBB
= new MachineBasicBlock(LLVM_BB
);
3085 MachineBasicBlock
*sinkMBB
= new MachineBasicBlock(LLVM_BB
);
3086 unsigned SelectPred
= MI
->getOperand(4).getImm();
3087 BuildMI(BB
, TII
->get(PPC::BCC
))
3088 .addImm(SelectPred
).addReg(MI
->getOperand(1).getReg()).addMBB(sinkMBB
);
3089 MachineFunction
*F
= BB
->getParent();
3090 F
->getBasicBlockList().insert(It
, copy0MBB
);
3091 F
->getBasicBlockList().insert(It
, sinkMBB
);
3092 // Update machine-CFG edges by first adding all successors of the current
3093 // block to the new block which will contain the Phi node for the select.
3094 for(MachineBasicBlock::succ_iterator i
= BB
->succ_begin(),
3095 e
= BB
->succ_end(); i
!= e
; ++i
)
3096 sinkMBB
->addSuccessor(*i
);
3097 // Next, remove all successors of the current block, and add the true
3098 // and fallthrough blocks as its successors.
3099 while(!BB
->succ_empty())
3100 BB
->removeSuccessor(BB
->succ_begin());
3101 BB
->addSuccessor(copy0MBB
);
3102 BB
->addSuccessor(sinkMBB
);
3105 // %FalseValue = ...
3106 // # fallthrough to sinkMBB
3109 // Update machine-CFG edges
3110 BB
->addSuccessor(sinkMBB
);
3113 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3116 BuildMI(BB
, TII
->get(PPC::PHI
), MI
->getOperand(0).getReg())
3117 .addReg(MI
->getOperand(3).getReg()).addMBB(copy0MBB
)
3118 .addReg(MI
->getOperand(2).getReg()).addMBB(thisMBB
);
3120 delete MI
; // The pseudo instruction is gone now.
3124 //===----------------------------------------------------------------------===//
3125 // Target Optimization Hooks
3126 //===----------------------------------------------------------------------===//
3128 SDOperand
PPCTargetLowering::PerformDAGCombine(SDNode
*N
,
3129 DAGCombinerInfo
&DCI
) const {
3130 TargetMachine
&TM
= getTargetMachine();
3131 SelectionDAG
&DAG
= DCI
.DAG
;
3132 switch (N
->getOpcode()) {
3135 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
3136 if (C
->getValue() == 0) // 0 << V -> 0.
3137 return N
->getOperand(0);
3141 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
3142 if (C
->getValue() == 0) // 0 >>u V -> 0.
3143 return N
->getOperand(0);
3147 if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(N
->getOperand(0))) {
3148 if (C
->getValue() == 0 || // 0 >>s V -> 0.
3149 C
->isAllOnesValue()) // -1 >>s V -> -1.
3150 return N
->getOperand(0);
3154 case ISD::SINT_TO_FP
:
3155 if (TM
.getSubtarget
<PPCSubtarget
>().has64BitSupport()) {
3156 if (N
->getOperand(0).getOpcode() == ISD::FP_TO_SINT
) {
3157 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3158 // We allow the src/dst to be either f32/f64, but the intermediate
3159 // type must be i64.
3160 if (N
->getOperand(0).getValueType() == MVT::i64
&&
3161 N
->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128
) {
3162 SDOperand Val
= N
->getOperand(0).getOperand(0);
3163 if (Val
.getValueType() == MVT::f32
) {
3164 Val
= DAG
.getNode(ISD::FP_EXTEND
, MVT::f64
, Val
);
3165 DCI
.AddToWorklist(Val
.Val
);
3168 Val
= DAG
.getNode(PPCISD::FCTIDZ
, MVT::f64
, Val
);
3169 DCI
.AddToWorklist(Val
.Val
);
3170 Val
= DAG
.getNode(PPCISD::FCFID
, MVT::f64
, Val
);
3171 DCI
.AddToWorklist(Val
.Val
);
3172 if (N
->getValueType(0) == MVT::f32
) {
3173 Val
= DAG
.getNode(ISD::FP_ROUND
, MVT::f32
, Val
);
3174 DCI
.AddToWorklist(Val
.Val
);
3177 } else if (N
->getOperand(0).getValueType() == MVT::i32
) {
3178 // If the intermediate type is i32, we can avoid the load/store here
3185 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3186 if (TM
.getSubtarget
<PPCSubtarget
>().hasSTFIWX() &&
3187 N
->getOperand(1).getOpcode() == ISD::FP_TO_SINT
&&
3188 N
->getOperand(1).getValueType() == MVT::i32
&&
3189 N
->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128
) {
3190 SDOperand Val
= N
->getOperand(1).getOperand(0);
3191 if (Val
.getValueType() == MVT::f32
) {
3192 Val
= DAG
.getNode(ISD::FP_EXTEND
, MVT::f64
, Val
);
3193 DCI
.AddToWorklist(Val
.Val
);
3195 Val
= DAG
.getNode(PPCISD::FCTIWZ
, MVT::f64
, Val
);
3196 DCI
.AddToWorklist(Val
.Val
);
3198 Val
= DAG
.getNode(PPCISD::STFIWX
, MVT::Other
, N
->getOperand(0), Val
,
3199 N
->getOperand(2), N
->getOperand(3));
3200 DCI
.AddToWorklist(Val
.Val
);
3204 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3205 if (N
->getOperand(1).getOpcode() == ISD::BSWAP
&&
3206 N
->getOperand(1).Val
->hasOneUse() &&
3207 (N
->getOperand(1).getValueType() == MVT::i32
||
3208 N
->getOperand(1).getValueType() == MVT::i16
)) {
3209 SDOperand BSwapOp
= N
->getOperand(1).getOperand(0);
3210 // Do an any-extend to 32-bits if this is a half-word input.
3211 if (BSwapOp
.getValueType() == MVT::i16
)
3212 BSwapOp
= DAG
.getNode(ISD::ANY_EXTEND
, MVT::i32
, BSwapOp
);
3214 return DAG
.getNode(PPCISD::STBRX
, MVT::Other
, N
->getOperand(0), BSwapOp
,
3215 N
->getOperand(2), N
->getOperand(3),
3216 DAG
.getValueType(N
->getOperand(1).getValueType()));
3220 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3221 if (ISD::isNON_EXTLoad(N
->getOperand(0).Val
) &&
3222 N
->getOperand(0).hasOneUse() &&
3223 (N
->getValueType(0) == MVT::i32
|| N
->getValueType(0) == MVT::i16
)) {
3224 SDOperand Load
= N
->getOperand(0);
3225 LoadSDNode
*LD
= cast
<LoadSDNode
>(Load
);
3226 // Create the byte-swapping load.
3227 std::vector
<MVT::ValueType
> VTs
;
3228 VTs
.push_back(MVT::i32
);
3229 VTs
.push_back(MVT::Other
);
3230 SDOperand SV
= DAG
.getSrcValue(LD
->getSrcValue(), LD
->getSrcValueOffset());
3232 LD
->getChain(), // Chain
3233 LD
->getBasePtr(), // Ptr
3235 DAG
.getValueType(N
->getValueType(0)) // VT
3237 SDOperand BSLoad
= DAG
.getNode(PPCISD::LBRX
, VTs
, Ops
, 4);
3239 // If this is an i16 load, insert the truncate.
3240 SDOperand ResVal
= BSLoad
;
3241 if (N
->getValueType(0) == MVT::i16
)
3242 ResVal
= DAG
.getNode(ISD::TRUNCATE
, MVT::i16
, BSLoad
);
3244 // First, combine the bswap away. This makes the value produced by the
3246 DCI
.CombineTo(N
, ResVal
);
3248 // Next, combine the load away, we give it a bogus result value but a real
3249 // chain result. The result value is dead because the bswap is dead.
3250 DCI
.CombineTo(Load
.Val
, ResVal
, BSLoad
.getValue(1));
3252 // Return N so it doesn't get rechecked!
3253 return SDOperand(N
, 0);
3257 case PPCISD::VCMP
: {
3258 // If a VCMPo node already exists with exactly the same operands as this
3259 // node, use its result instead of this node (VCMPo computes both a CR6 and
3260 // a normal output).
3262 if (!N
->getOperand(0).hasOneUse() &&
3263 !N
->getOperand(1).hasOneUse() &&
3264 !N
->getOperand(2).hasOneUse()) {
3266 // Scan all of the users of the LHS, looking for VCMPo's that match.
3267 SDNode
*VCMPoNode
= 0;
3269 SDNode
*LHSN
= N
->getOperand(0).Val
;
3270 for (SDNode::use_iterator UI
= LHSN
->use_begin(), E
= LHSN
->use_end();
3272 if ((*UI
)->getOpcode() == PPCISD::VCMPo
&&
3273 (*UI
)->getOperand(1) == N
->getOperand(1) &&
3274 (*UI
)->getOperand(2) == N
->getOperand(2) &&
3275 (*UI
)->getOperand(0) == N
->getOperand(0)) {
3280 // If there is no VCMPo node, or if the flag value has a single use, don't
3282 if (!VCMPoNode
|| VCMPoNode
->hasNUsesOfValue(0, 1))
3285 // Look at the (necessarily single) use of the flag value. If it has a
3286 // chain, this transformation is more complex. Note that multiple things
3287 // could use the value result, which we should ignore.
3288 SDNode
*FlagUser
= 0;
3289 for (SDNode::use_iterator UI
= VCMPoNode
->use_begin();
3290 FlagUser
== 0; ++UI
) {
3291 assert(UI
!= VCMPoNode
->use_end() && "Didn't find user!");
3293 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
) {
3294 if (User
->getOperand(i
) == SDOperand(VCMPoNode
, 1)) {
3301 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3302 // give up for right now.
3303 if (FlagUser
->getOpcode() == PPCISD::MFCR
)
3304 return SDOperand(VCMPoNode
, 0);
3309 // If this is a branch on an altivec predicate comparison, lower this so
3310 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3311 // lowering is done pre-legalize, because the legalizer lowers the predicate
3312 // compare down to code that is difficult to reassemble.
3313 ISD::CondCode CC
= cast
<CondCodeSDNode
>(N
->getOperand(1))->get();
3314 SDOperand LHS
= N
->getOperand(2), RHS
= N
->getOperand(3);
3318 if (LHS
.getOpcode() == ISD::INTRINSIC_WO_CHAIN
&&
3319 isa
<ConstantSDNode
>(RHS
) && (CC
== ISD::SETEQ
|| CC
== ISD::SETNE
) &&
3320 getAltivecCompareInfo(LHS
, CompareOpc
, isDot
)) {
3321 assert(isDot
&& "Can't compare against a vector result!");
3323 // If this is a comparison against something other than 0/1, then we know
3324 // that the condition is never/always true.
3325 unsigned Val
= cast
<ConstantSDNode
>(RHS
)->getValue();
3326 if (Val
!= 0 && Val
!= 1) {
3327 if (CC
== ISD::SETEQ
) // Cond never true, remove branch.
3328 return N
->getOperand(0);
3329 // Always !=, turn it into an unconditional branch.
3330 return DAG
.getNode(ISD::BR
, MVT::Other
,
3331 N
->getOperand(0), N
->getOperand(4));
3334 bool BranchOnWhenPredTrue
= (CC
== ISD::SETEQ
) ^ (Val
== 0);
3336 // Create the PPCISD altivec 'dot' comparison node.
3337 std::vector
<MVT::ValueType
> VTs
;
3339 LHS
.getOperand(2), // LHS of compare
3340 LHS
.getOperand(3), // RHS of compare
3341 DAG
.getConstant(CompareOpc
, MVT::i32
)
3343 VTs
.push_back(LHS
.getOperand(2).getValueType());
3344 VTs
.push_back(MVT::Flag
);
3345 SDOperand CompNode
= DAG
.getNode(PPCISD::VCMPo
, VTs
, Ops
, 3);
3347 // Unpack the result based on how the target uses it.
3348 PPC::Predicate CompOpc
;
3349 switch (cast
<ConstantSDNode
>(LHS
.getOperand(1))->getValue()) {
3350 default: // Can't happen, don't crash on invalid number though.
3351 case 0: // Branch on the value of the EQ bit of CR6.
3352 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_EQ
: PPC::PRED_NE
;
3354 case 1: // Branch on the inverted value of the EQ bit of CR6.
3355 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_NE
: PPC::PRED_EQ
;
3357 case 2: // Branch on the value of the LT bit of CR6.
3358 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_LT
: PPC::PRED_GE
;
3360 case 3: // Branch on the inverted value of the LT bit of CR6.
3361 CompOpc
= BranchOnWhenPredTrue
? PPC::PRED_GE
: PPC::PRED_LT
;
3365 return DAG
.getNode(PPCISD::COND_BRANCH
, MVT::Other
, N
->getOperand(0),
3366 DAG
.getConstant(CompOpc
, MVT::i32
),
3367 DAG
.getRegister(PPC::CR6
, MVT::i32
),
3368 N
->getOperand(4), CompNode
.getValue(1));
3377 //===----------------------------------------------------------------------===//
3378 // Inline Assembly Support
3379 //===----------------------------------------------------------------------===//
3381 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op
,
3383 uint64_t &KnownZero
,
3385 const SelectionDAG
&DAG
,
3386 unsigned Depth
) const {
3389 switch (Op
.getOpcode()) {
3391 case PPCISD::LBRX
: {
3392 // lhbrx is known to have the top bits cleared out.
3393 if (cast
<VTSDNode
>(Op
.getOperand(3))->getVT() == MVT::i16
)
3394 KnownZero
= 0xFFFF0000;
3397 case ISD::INTRINSIC_WO_CHAIN
: {
3398 switch (cast
<ConstantSDNode
>(Op
.getOperand(0))->getValue()) {
3400 case Intrinsic::ppc_altivec_vcmpbfp_p
:
3401 case Intrinsic::ppc_altivec_vcmpeqfp_p
:
3402 case Intrinsic::ppc_altivec_vcmpequb_p
:
3403 case Intrinsic::ppc_altivec_vcmpequh_p
:
3404 case Intrinsic::ppc_altivec_vcmpequw_p
:
3405 case Intrinsic::ppc_altivec_vcmpgefp_p
:
3406 case Intrinsic::ppc_altivec_vcmpgtfp_p
:
3407 case Intrinsic::ppc_altivec_vcmpgtsb_p
:
3408 case Intrinsic::ppc_altivec_vcmpgtsh_p
:
3409 case Intrinsic::ppc_altivec_vcmpgtsw_p
:
3410 case Intrinsic::ppc_altivec_vcmpgtub_p
:
3411 case Intrinsic::ppc_altivec_vcmpgtuh_p
:
3412 case Intrinsic::ppc_altivec_vcmpgtuw_p
:
3413 KnownZero
= ~1U; // All bits but the low one are known to be zero.
3421 /// getConstraintType - Given a constraint, return the type of
3422 /// constraint it is for this target.
3423 PPCTargetLowering::ConstraintType
3424 PPCTargetLowering::getConstraintType(const std::string
&Constraint
) const {
3425 if (Constraint
.size() == 1) {
3426 switch (Constraint
[0]) {
3433 return C_RegisterClass
;
3436 return TargetLowering::getConstraintType(Constraint
);
3439 std::pair
<unsigned, const TargetRegisterClass
*>
3440 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string
&Constraint
,
3441 MVT::ValueType VT
) const {
3442 if (Constraint
.size() == 1) {
3443 // GCC RS6000 Constraint Letters
3444 switch (Constraint
[0]) {
3447 if (VT
== MVT::i64
&& PPCSubTarget
.isPPC64())
3448 return std::make_pair(0U, PPC::G8RCRegisterClass
);
3449 return std::make_pair(0U, PPC::GPRCRegisterClass
);
3452 return std::make_pair(0U, PPC::F4RCRegisterClass
);
3453 else if (VT
== MVT::f64
)
3454 return std::make_pair(0U, PPC::F8RCRegisterClass
);
3457 return std::make_pair(0U, PPC::VRRCRegisterClass
);
3459 return std::make_pair(0U, PPC::CRRCRegisterClass
);
3463 return TargetLowering::getRegForInlineAsmConstraint(Constraint
, VT
);
3467 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3468 /// vector. If it is invalid, don't add anything to Ops.
3469 void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op
, char Letter
,
3470 std::vector
<SDOperand
>&Ops
,
3471 SelectionDAG
&DAG
) {
3472 SDOperand
Result(0,0);
3483 ConstantSDNode
*CST
= dyn_cast
<ConstantSDNode
>(Op
);
3484 if (!CST
) return; // Must be an immediate to match.
3485 unsigned Value
= CST
->getValue();
3487 default: assert(0 && "Unknown constraint letter!");
3488 case 'I': // "I" is a signed 16-bit constant.
3489 if ((short)Value
== (int)Value
)
3490 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
3492 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3493 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3494 if ((short)Value
== 0)
3495 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
3497 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3498 if ((Value
>> 16) == 0)
3499 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
3501 case 'M': // "M" is a constant that is greater than 31.
3503 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
3505 case 'N': // "N" is a positive constant that is an exact power of two.
3506 if ((int)Value
> 0 && isPowerOf2_32(Value
))
3507 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
3509 case 'O': // "O" is the constant zero.
3511 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
3513 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3514 if ((short)-Value
== (int)-Value
)
3515 Result
= DAG
.getTargetConstant(Value
, Op
.getValueType());
3523 Ops
.push_back(Result
);
3527 // Handle standard constraint letters.
3528 TargetLowering::LowerAsmOperandForConstraint(Op
, Letter
, Ops
, DAG
);
3531 // isLegalAddressingMode - Return true if the addressing mode represented
3532 // by AM is legal for this target, for a load/store of the specified type.
3533 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode
&AM
,
3534 const Type
*Ty
) const {
3535 // FIXME: PPC does not allow r+i addressing modes for vectors!
3537 // PPC allows a sign-extended 16-bit immediate field.
3538 if (AM
.BaseOffs
<= -(1LL << 16) || AM
.BaseOffs
>= (1LL << 16)-1)
3541 // No global is ever allowed as a base.
3545 // PPC only support r+r,
3547 case 0: // "r+i" or just "i", depending on HasBaseReg.
3550 if (AM
.HasBaseReg
&& AM
.BaseOffs
) // "r+r+i" is not allowed.
3552 // Otherwise we have r+r or r+i.
3555 if (AM
.HasBaseReg
|| AM
.BaseOffs
) // 2*r+r or 2*r+i is not allowed.
3557 // Allow 2*r as r+r.
3560 // No other scales are supported.
3567 /// isLegalAddressImmediate - Return true if the integer value can be used
3568 /// as the offset of the target addressing mode for load / store of the
3570 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V
,const Type
*Ty
) const{
3571 // PPC allows a sign-extended 16-bit immediate field.
3572 return (V
> -(1 << 16) && V
< (1 << 16)-1);
3575 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue
* GV
) const {
3579 SDOperand
PPCTargetLowering::LowerRETURNADDR(SDOperand Op
, SelectionDAG
&DAG
) {
3580 // Depths > 0 not supported yet!
3581 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getValue() > 0)
3584 MachineFunction
&MF
= DAG
.getMachineFunction();
3585 PPCFunctionInfo
*FuncInfo
= MF
.getInfo
<PPCFunctionInfo
>();
3586 int RAIdx
= FuncInfo
->getReturnAddrSaveIndex();
3588 bool isPPC64
= PPCSubTarget
.isPPC64();
3590 PPCFrameInfo::getReturnSaveOffset(isPPC64
, PPCSubTarget
.isMachoABI());
3592 // Set up a frame object for the return address.
3593 RAIdx
= MF
.getFrameInfo()->CreateFixedObject(isPPC64
? 8 : 4, Offset
);
3595 // Remember it for next time.
3596 FuncInfo
->setReturnAddrSaveIndex(RAIdx
);
3598 // Make sure the function really does not optimize away the store of the RA
3600 FuncInfo
->setLRStoreRequired();
3603 // Just load the return address off the stack.
3604 SDOperand RetAddrFI
= DAG
.getFrameIndex(RAIdx
, getPointerTy());
3605 return DAG
.getLoad(getPointerTy(), DAG
.getEntryNode(), RetAddrFI
, NULL
, 0);
3608 SDOperand
PPCTargetLowering::LowerFRAMEADDR(SDOperand Op
, SelectionDAG
&DAG
) {
3609 // Depths > 0 not supported yet!
3610 if (cast
<ConstantSDNode
>(Op
.getOperand(0))->getValue() > 0)
3613 MVT::ValueType PtrVT
= DAG
.getTargetLoweringInfo().getPointerTy();
3614 bool isPPC64
= PtrVT
== MVT::i64
;
3616 MachineFunction
&MF
= DAG
.getMachineFunction();
3617 MachineFrameInfo
*MFI
= MF
.getFrameInfo();
3618 bool is31
= (NoFramePointerElim
|| MFI
->hasVarSizedObjects())
3619 && MFI
->getStackSize();
3622 return DAG
.getCopyFromReg(DAG
.getEntryNode(), is31
? PPC::X31
: PPC::X1
,
3625 return DAG
.getCopyFromReg(DAG
.getEntryNode(), is31
? PPC::R31
: PPC::R1
,