Fix bugs section.
[llvm-complete.git] / lib / Target / PowerPC / PPCISelLowering.cpp
blobd7ffc303f46f3e16537e90f011cf5b7abd5840d8
1 //===-- PPCISelLowering.cpp - PPC DAG Lowering Implementation -------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the PPCISelLowering class.
12 //===----------------------------------------------------------------------===//
14 #include "PPCISelLowering.h"
15 #include "PPCMachineFunctionInfo.h"
16 #include "PPCPredicates.h"
17 #include "PPCTargetMachine.h"
18 #include "PPCPerfectShuffle.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/VectorExtras.h"
21 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
22 #include "llvm/CodeGen/CallingConvLower.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstrBuilder.h"
26 #include "llvm/CodeGen/MachineRegisterInfo.h"
27 #include "llvm/CodeGen/SelectionDAG.h"
28 #include "llvm/Constants.h"
29 #include "llvm/Function.h"
30 #include "llvm/Intrinsics.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetOptions.h"
33 #include "llvm/Support/CommandLine.h"
34 using namespace llvm;
36 static cl::opt<bool> EnablePPCPreinc("enable-ppc-preinc",
37 cl::desc("enable preincrement load/store generation on PPC (experimental)"),
38 cl::Hidden);
40 PPCTargetLowering::PPCTargetLowering(PPCTargetMachine &TM)
41 : TargetLowering(TM), PPCSubTarget(*TM.getSubtargetImpl()) {
43 setPow2DivIsCheap();
45 // Use _setjmp/_longjmp instead of setjmp/longjmp.
46 setUseUnderscoreSetJmp(true);
47 setUseUnderscoreLongJmp(true);
49 // Set up the register classes.
50 addRegisterClass(MVT::i32, PPC::GPRCRegisterClass);
51 addRegisterClass(MVT::f32, PPC::F4RCRegisterClass);
52 addRegisterClass(MVT::f64, PPC::F8RCRegisterClass);
54 // PowerPC has an i16 but no i8 (or i1) SEXTLOAD
55 setLoadXAction(ISD::SEXTLOAD, MVT::i1, Expand);
56 setLoadXAction(ISD::SEXTLOAD, MVT::i8, Expand);
58 // PowerPC does not have truncstore for i1.
59 setStoreXAction(MVT::i1, Promote);
61 // PowerPC has pre-inc load and store's.
62 setIndexedLoadAction(ISD::PRE_INC, MVT::i1, Legal);
63 setIndexedLoadAction(ISD::PRE_INC, MVT::i8, Legal);
64 setIndexedLoadAction(ISD::PRE_INC, MVT::i16, Legal);
65 setIndexedLoadAction(ISD::PRE_INC, MVT::i32, Legal);
66 setIndexedLoadAction(ISD::PRE_INC, MVT::i64, Legal);
67 setIndexedStoreAction(ISD::PRE_INC, MVT::i1, Legal);
68 setIndexedStoreAction(ISD::PRE_INC, MVT::i8, Legal);
69 setIndexedStoreAction(ISD::PRE_INC, MVT::i16, Legal);
70 setIndexedStoreAction(ISD::PRE_INC, MVT::i32, Legal);
71 setIndexedStoreAction(ISD::PRE_INC, MVT::i64, Legal);
73 setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
74 setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
76 // Shortening conversions involving ppcf128 get expanded (2 regs -> 1 reg)
77 setConvertAction(MVT::ppcf128, MVT::f64, Expand);
78 setConvertAction(MVT::ppcf128, MVT::f32, Expand);
79 // This is used in the ppcf128->int sequence. Note it has different semantics
80 // from FP_ROUND: that rounds to nearest, this rounds to zero.
81 setOperationAction(ISD::FP_ROUND_INREG, MVT::ppcf128, Custom);
83 // PowerPC has no intrinsics for these particular operations
84 setOperationAction(ISD::MEMMOVE, MVT::Other, Expand);
85 setOperationAction(ISD::MEMSET, MVT::Other, Expand);
86 setOperationAction(ISD::MEMCPY, MVT::Other, Expand);
88 // PowerPC has no SREM/UREM instructions
89 setOperationAction(ISD::SREM, MVT::i32, Expand);
90 setOperationAction(ISD::UREM, MVT::i32, Expand);
91 setOperationAction(ISD::SREM, MVT::i64, Expand);
92 setOperationAction(ISD::UREM, MVT::i64, Expand);
94 // Don't use SMUL_LOHI/UMUL_LOHI or SDIVREM/UDIVREM to lower SREM/UREM.
95 setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand);
96 setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand);
97 setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand);
98 setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand);
99 setOperationAction(ISD::UDIVREM, MVT::i32, Expand);
100 setOperationAction(ISD::SDIVREM, MVT::i32, Expand);
101 setOperationAction(ISD::UDIVREM, MVT::i64, Expand);
102 setOperationAction(ISD::SDIVREM, MVT::i64, Expand);
104 // We don't support sin/cos/sqrt/fmod/pow
105 setOperationAction(ISD::FSIN , MVT::f64, Expand);
106 setOperationAction(ISD::FCOS , MVT::f64, Expand);
107 setOperationAction(ISD::FREM , MVT::f64, Expand);
108 setOperationAction(ISD::FPOW , MVT::f64, Expand);
109 setOperationAction(ISD::FSIN , MVT::f32, Expand);
110 setOperationAction(ISD::FCOS , MVT::f32, Expand);
111 setOperationAction(ISD::FREM , MVT::f32, Expand);
112 setOperationAction(ISD::FPOW , MVT::f32, Expand);
114 // If we're enabling GP optimizations, use hardware square root
115 if (!TM.getSubtarget<PPCSubtarget>().hasFSQRT()) {
116 setOperationAction(ISD::FSQRT, MVT::f64, Expand);
117 setOperationAction(ISD::FSQRT, MVT::f32, Expand);
120 setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
121 setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
123 // PowerPC does not have BSWAP, CTPOP or CTTZ
124 setOperationAction(ISD::BSWAP, MVT::i32 , Expand);
125 setOperationAction(ISD::CTPOP, MVT::i32 , Expand);
126 setOperationAction(ISD::CTTZ , MVT::i32 , Expand);
127 setOperationAction(ISD::BSWAP, MVT::i64 , Expand);
128 setOperationAction(ISD::CTPOP, MVT::i64 , Expand);
129 setOperationAction(ISD::CTTZ , MVT::i64 , Expand);
131 // PowerPC does not have ROTR
132 setOperationAction(ISD::ROTR, MVT::i32 , Expand);
134 // PowerPC does not have Select
135 setOperationAction(ISD::SELECT, MVT::i32, Expand);
136 setOperationAction(ISD::SELECT, MVT::i64, Expand);
137 setOperationAction(ISD::SELECT, MVT::f32, Expand);
138 setOperationAction(ISD::SELECT, MVT::f64, Expand);
140 // PowerPC wants to turn select_cc of FP into fsel when possible.
141 setOperationAction(ISD::SELECT_CC, MVT::f32, Custom);
142 setOperationAction(ISD::SELECT_CC, MVT::f64, Custom);
144 // PowerPC wants to optimize integer setcc a bit
145 setOperationAction(ISD::SETCC, MVT::i32, Custom);
147 // PowerPC does not have BRCOND which requires SetCC
148 setOperationAction(ISD::BRCOND, MVT::Other, Expand);
150 setOperationAction(ISD::BR_JT, MVT::Other, Expand);
152 // PowerPC turns FP_TO_SINT into FCTIWZ and some load/stores.
153 setOperationAction(ISD::FP_TO_SINT, MVT::i32, Custom);
155 // PowerPC does not have [U|S]INT_TO_FP
156 setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand);
157 setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand);
159 setOperationAction(ISD::BIT_CONVERT, MVT::f32, Expand);
160 setOperationAction(ISD::BIT_CONVERT, MVT::i32, Expand);
161 setOperationAction(ISD::BIT_CONVERT, MVT::i64, Expand);
162 setOperationAction(ISD::BIT_CONVERT, MVT::f64, Expand);
164 // We cannot sextinreg(i1). Expand to shifts.
165 setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1, Expand);
167 // Support label based line numbers.
168 setOperationAction(ISD::LOCATION, MVT::Other, Expand);
169 setOperationAction(ISD::DEBUG_LOC, MVT::Other, Expand);
171 setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand);
172 setOperationAction(ISD::EHSELECTION, MVT::i64, Expand);
173 setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand);
174 setOperationAction(ISD::EHSELECTION, MVT::i32, Expand);
177 // We want to legalize GlobalAddress and ConstantPool nodes into the
178 // appropriate instructions to materialize the address.
179 setOperationAction(ISD::GlobalAddress, MVT::i32, Custom);
180 setOperationAction(ISD::GlobalTLSAddress, MVT::i32, Custom);
181 setOperationAction(ISD::ConstantPool, MVT::i32, Custom);
182 setOperationAction(ISD::JumpTable, MVT::i32, Custom);
183 setOperationAction(ISD::GlobalAddress, MVT::i64, Custom);
184 setOperationAction(ISD::GlobalTLSAddress, MVT::i64, Custom);
185 setOperationAction(ISD::ConstantPool, MVT::i64, Custom);
186 setOperationAction(ISD::JumpTable, MVT::i64, Custom);
188 // RET must be custom lowered, to meet ABI requirements
189 setOperationAction(ISD::RET , MVT::Other, Custom);
191 // VASTART needs to be custom lowered to use the VarArgsFrameIndex
192 setOperationAction(ISD::VASTART , MVT::Other, Custom);
194 // VAARG is custom lowered with ELF 32 ABI
195 if (TM.getSubtarget<PPCSubtarget>().isELF32_ABI())
196 setOperationAction(ISD::VAARG, MVT::Other, Custom);
197 else
198 setOperationAction(ISD::VAARG, MVT::Other, Expand);
200 // Use the default implementation.
201 setOperationAction(ISD::VACOPY , MVT::Other, Expand);
202 setOperationAction(ISD::VAEND , MVT::Other, Expand);
203 setOperationAction(ISD::STACKSAVE , MVT::Other, Expand);
204 setOperationAction(ISD::STACKRESTORE , MVT::Other, Custom);
205 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom);
206 setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i64 , Custom);
208 // We want to custom lower some of our intrinsics.
209 setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
211 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
212 // They also have instructions for converting between i64 and fp.
213 setOperationAction(ISD::FP_TO_SINT, MVT::i64, Custom);
214 setOperationAction(ISD::FP_TO_UINT, MVT::i64, Expand);
215 setOperationAction(ISD::SINT_TO_FP, MVT::i64, Custom);
216 setOperationAction(ISD::UINT_TO_FP, MVT::i64, Expand);
217 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
219 // FIXME: disable this lowered code. This generates 64-bit register values,
220 // and we don't model the fact that the top part is clobbered by calls. We
221 // need to flag these together so that the value isn't live across a call.
222 //setOperationAction(ISD::SINT_TO_FP, MVT::i32, Custom);
224 // To take advantage of the above i64 FP_TO_SINT, promote i32 FP_TO_UINT
225 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Promote);
226 } else {
227 // PowerPC does not have FP_TO_UINT on 32-bit implementations.
228 setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand);
231 if (TM.getSubtarget<PPCSubtarget>().use64BitRegs()) {
232 // 64-bit PowerPC implementations can support i64 types directly
233 addRegisterClass(MVT::i64, PPC::G8RCRegisterClass);
234 // BUILD_PAIR can't be handled natively, and should be expanded to shl/or
235 setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand);
236 } else {
237 // 32-bit PowerPC wants to expand i64 shifts itself.
238 setOperationAction(ISD::SHL_PARTS, MVT::i32, Custom);
239 setOperationAction(ISD::SRA_PARTS, MVT::i32, Custom);
240 setOperationAction(ISD::SRL_PARTS, MVT::i32, Custom);
243 if (TM.getSubtarget<PPCSubtarget>().hasAltivec()) {
244 // First set operation action for all vector types to expand. Then we
245 // will selectively turn on ones that can be effectively codegen'd.
246 for (unsigned VT = (unsigned)MVT::FIRST_VECTOR_VALUETYPE;
247 VT <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++VT) {
248 // add/sub are legal for all supported vector VT's.
249 setOperationAction(ISD::ADD , (MVT::ValueType)VT, Legal);
250 setOperationAction(ISD::SUB , (MVT::ValueType)VT, Legal);
252 // We promote all shuffles to v16i8.
253 setOperationAction(ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, Promote);
254 AddPromotedToType (ISD::VECTOR_SHUFFLE, (MVT::ValueType)VT, MVT::v16i8);
256 // We promote all non-typed operations to v4i32.
257 setOperationAction(ISD::AND , (MVT::ValueType)VT, Promote);
258 AddPromotedToType (ISD::AND , (MVT::ValueType)VT, MVT::v4i32);
259 setOperationAction(ISD::OR , (MVT::ValueType)VT, Promote);
260 AddPromotedToType (ISD::OR , (MVT::ValueType)VT, MVT::v4i32);
261 setOperationAction(ISD::XOR , (MVT::ValueType)VT, Promote);
262 AddPromotedToType (ISD::XOR , (MVT::ValueType)VT, MVT::v4i32);
263 setOperationAction(ISD::LOAD , (MVT::ValueType)VT, Promote);
264 AddPromotedToType (ISD::LOAD , (MVT::ValueType)VT, MVT::v4i32);
265 setOperationAction(ISD::SELECT, (MVT::ValueType)VT, Promote);
266 AddPromotedToType (ISD::SELECT, (MVT::ValueType)VT, MVT::v4i32);
267 setOperationAction(ISD::STORE, (MVT::ValueType)VT, Promote);
268 AddPromotedToType (ISD::STORE, (MVT::ValueType)VT, MVT::v4i32);
270 // No other operations are legal.
271 setOperationAction(ISD::MUL , (MVT::ValueType)VT, Expand);
272 setOperationAction(ISD::SDIV, (MVT::ValueType)VT, Expand);
273 setOperationAction(ISD::SREM, (MVT::ValueType)VT, Expand);
274 setOperationAction(ISD::UDIV, (MVT::ValueType)VT, Expand);
275 setOperationAction(ISD::UREM, (MVT::ValueType)VT, Expand);
276 setOperationAction(ISD::FDIV, (MVT::ValueType)VT, Expand);
277 setOperationAction(ISD::FNEG, (MVT::ValueType)VT, Expand);
278 setOperationAction(ISD::EXTRACT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
279 setOperationAction(ISD::INSERT_VECTOR_ELT, (MVT::ValueType)VT, Expand);
280 setOperationAction(ISD::BUILD_VECTOR, (MVT::ValueType)VT, Expand);
281 setOperationAction(ISD::UMUL_LOHI, (MVT::ValueType)VT, Expand);
282 setOperationAction(ISD::SMUL_LOHI, (MVT::ValueType)VT, Expand);
283 setOperationAction(ISD::UDIVREM, (MVT::ValueType)VT, Expand);
284 setOperationAction(ISD::SDIVREM, (MVT::ValueType)VT, Expand);
285 setOperationAction(ISD::SCALAR_TO_VECTOR, (MVT::ValueType)VT, Expand);
286 setOperationAction(ISD::FPOW, (MVT::ValueType)VT, Expand);
287 setOperationAction(ISD::CTPOP, (MVT::ValueType)VT, Expand);
288 setOperationAction(ISD::CTLZ, (MVT::ValueType)VT, Expand);
289 setOperationAction(ISD::CTTZ, (MVT::ValueType)VT, Expand);
292 // We can custom expand all VECTOR_SHUFFLEs to VPERM, others we can handle
293 // with merges, splats, etc.
294 setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i8, Custom);
296 setOperationAction(ISD::AND , MVT::v4i32, Legal);
297 setOperationAction(ISD::OR , MVT::v4i32, Legal);
298 setOperationAction(ISD::XOR , MVT::v4i32, Legal);
299 setOperationAction(ISD::LOAD , MVT::v4i32, Legal);
300 setOperationAction(ISD::SELECT, MVT::v4i32, Expand);
301 setOperationAction(ISD::STORE , MVT::v4i32, Legal);
303 addRegisterClass(MVT::v4f32, PPC::VRRCRegisterClass);
304 addRegisterClass(MVT::v4i32, PPC::VRRCRegisterClass);
305 addRegisterClass(MVT::v8i16, PPC::VRRCRegisterClass);
306 addRegisterClass(MVT::v16i8, PPC::VRRCRegisterClass);
308 setOperationAction(ISD::MUL, MVT::v4f32, Legal);
309 setOperationAction(ISD::MUL, MVT::v4i32, Custom);
310 setOperationAction(ISD::MUL, MVT::v8i16, Custom);
311 setOperationAction(ISD::MUL, MVT::v16i8, Custom);
313 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4f32, Custom);
314 setOperationAction(ISD::SCALAR_TO_VECTOR, MVT::v4i32, Custom);
316 setOperationAction(ISD::BUILD_VECTOR, MVT::v16i8, Custom);
317 setOperationAction(ISD::BUILD_VECTOR, MVT::v8i16, Custom);
318 setOperationAction(ISD::BUILD_VECTOR, MVT::v4i32, Custom);
319 setOperationAction(ISD::BUILD_VECTOR, MVT::v4f32, Custom);
322 setSetCCResultType(MVT::i32);
323 setShiftAmountType(MVT::i32);
324 setSetCCResultContents(ZeroOrOneSetCCResult);
326 if (TM.getSubtarget<PPCSubtarget>().isPPC64()) {
327 setStackPointerRegisterToSaveRestore(PPC::X1);
328 setExceptionPointerRegister(PPC::X3);
329 setExceptionSelectorRegister(PPC::X4);
330 } else {
331 setStackPointerRegisterToSaveRestore(PPC::R1);
332 setExceptionPointerRegister(PPC::R3);
333 setExceptionSelectorRegister(PPC::R4);
336 // We have target-specific dag combine patterns for the following nodes:
337 setTargetDAGCombine(ISD::SINT_TO_FP);
338 setTargetDAGCombine(ISD::STORE);
339 setTargetDAGCombine(ISD::BR_CC);
340 setTargetDAGCombine(ISD::BSWAP);
342 // Darwin long double math library functions have $LDBL128 appended.
343 if (TM.getSubtarget<PPCSubtarget>().isDarwin()) {
344 setLibcallName(RTLIB::COS_PPCF128, "cosl$LDBL128");
345 setLibcallName(RTLIB::POW_PPCF128, "powl$LDBL128");
346 setLibcallName(RTLIB::REM_PPCF128, "fmodl$LDBL128");
347 setLibcallName(RTLIB::SIN_PPCF128, "sinl$LDBL128");
348 setLibcallName(RTLIB::SQRT_PPCF128, "sqrtl$LDBL128");
351 computeRegisterProperties();
354 const char *PPCTargetLowering::getTargetNodeName(unsigned Opcode) const {
355 switch (Opcode) {
356 default: return 0;
357 case PPCISD::FSEL: return "PPCISD::FSEL";
358 case PPCISD::FCFID: return "PPCISD::FCFID";
359 case PPCISD::FCTIDZ: return "PPCISD::FCTIDZ";
360 case PPCISD::FCTIWZ: return "PPCISD::FCTIWZ";
361 case PPCISD::STFIWX: return "PPCISD::STFIWX";
362 case PPCISD::VMADDFP: return "PPCISD::VMADDFP";
363 case PPCISD::VNMSUBFP: return "PPCISD::VNMSUBFP";
364 case PPCISD::VPERM: return "PPCISD::VPERM";
365 case PPCISD::Hi: return "PPCISD::Hi";
366 case PPCISD::Lo: return "PPCISD::Lo";
367 case PPCISD::DYNALLOC: return "PPCISD::DYNALLOC";
368 case PPCISD::GlobalBaseReg: return "PPCISD::GlobalBaseReg";
369 case PPCISD::SRL: return "PPCISD::SRL";
370 case PPCISD::SRA: return "PPCISD::SRA";
371 case PPCISD::SHL: return "PPCISD::SHL";
372 case PPCISD::EXTSW_32: return "PPCISD::EXTSW_32";
373 case PPCISD::STD_32: return "PPCISD::STD_32";
374 case PPCISD::CALL_ELF: return "PPCISD::CALL_ELF";
375 case PPCISD::CALL_Macho: return "PPCISD::CALL_Macho";
376 case PPCISD::MTCTR: return "PPCISD::MTCTR";
377 case PPCISD::BCTRL_Macho: return "PPCISD::BCTRL_Macho";
378 case PPCISD::BCTRL_ELF: return "PPCISD::BCTRL_ELF";
379 case PPCISD::RET_FLAG: return "PPCISD::RET_FLAG";
380 case PPCISD::MFCR: return "PPCISD::MFCR";
381 case PPCISD::VCMP: return "PPCISD::VCMP";
382 case PPCISD::VCMPo: return "PPCISD::VCMPo";
383 case PPCISD::LBRX: return "PPCISD::LBRX";
384 case PPCISD::STBRX: return "PPCISD::STBRX";
385 case PPCISD::COND_BRANCH: return "PPCISD::COND_BRANCH";
389 //===----------------------------------------------------------------------===//
390 // Node matching predicates, for use by the tblgen matching code.
391 //===----------------------------------------------------------------------===//
393 /// isFloatingPointZero - Return true if this is 0.0 or -0.0.
394 static bool isFloatingPointZero(SDOperand Op) {
395 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(Op))
396 return CFP->getValueAPF().isZero();
397 else if (ISD::isEXTLoad(Op.Val) || ISD::isNON_EXTLoad(Op.Val)) {
398 // Maybe this has already been legalized into the constant pool?
399 if (ConstantPoolSDNode *CP = dyn_cast<ConstantPoolSDNode>(Op.getOperand(1)))
400 if (ConstantFP *CFP = dyn_cast<ConstantFP>(CP->getConstVal()))
401 return CFP->getValueAPF().isZero();
403 return false;
406 /// isConstantOrUndef - Op is either an undef node or a ConstantSDNode. Return
407 /// true if Op is undef or if it matches the specified value.
408 static bool isConstantOrUndef(SDOperand Op, unsigned Val) {
409 return Op.getOpcode() == ISD::UNDEF ||
410 cast<ConstantSDNode>(Op)->getValue() == Val;
413 /// isVPKUHUMShuffleMask - Return true if this is the shuffle mask for a
414 /// VPKUHUM instruction.
415 bool PPC::isVPKUHUMShuffleMask(SDNode *N, bool isUnary) {
416 if (!isUnary) {
417 for (unsigned i = 0; i != 16; ++i)
418 if (!isConstantOrUndef(N->getOperand(i), i*2+1))
419 return false;
420 } else {
421 for (unsigned i = 0; i != 8; ++i)
422 if (!isConstantOrUndef(N->getOperand(i), i*2+1) ||
423 !isConstantOrUndef(N->getOperand(i+8), i*2+1))
424 return false;
426 return true;
429 /// isVPKUWUMShuffleMask - Return true if this is the shuffle mask for a
430 /// VPKUWUM instruction.
431 bool PPC::isVPKUWUMShuffleMask(SDNode *N, bool isUnary) {
432 if (!isUnary) {
433 for (unsigned i = 0; i != 16; i += 2)
434 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
435 !isConstantOrUndef(N->getOperand(i+1), i*2+3))
436 return false;
437 } else {
438 for (unsigned i = 0; i != 8; i += 2)
439 if (!isConstantOrUndef(N->getOperand(i ), i*2+2) ||
440 !isConstantOrUndef(N->getOperand(i+1), i*2+3) ||
441 !isConstantOrUndef(N->getOperand(i+8), i*2+2) ||
442 !isConstantOrUndef(N->getOperand(i+9), i*2+3))
443 return false;
445 return true;
448 /// isVMerge - Common function, used to match vmrg* shuffles.
450 static bool isVMerge(SDNode *N, unsigned UnitSize,
451 unsigned LHSStart, unsigned RHSStart) {
452 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
453 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
454 assert((UnitSize == 1 || UnitSize == 2 || UnitSize == 4) &&
455 "Unsupported merge size!");
457 for (unsigned i = 0; i != 8/UnitSize; ++i) // Step over units
458 for (unsigned j = 0; j != UnitSize; ++j) { // Step over bytes within unit
459 if (!isConstantOrUndef(N->getOperand(i*UnitSize*2+j),
460 LHSStart+j+i*UnitSize) ||
461 !isConstantOrUndef(N->getOperand(i*UnitSize*2+UnitSize+j),
462 RHSStart+j+i*UnitSize))
463 return false;
465 return true;
468 /// isVMRGLShuffleMask - Return true if this is a shuffle mask suitable for
469 /// a VRGL* instruction with the specified unit size (1,2 or 4 bytes).
470 bool PPC::isVMRGLShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
471 if (!isUnary)
472 return isVMerge(N, UnitSize, 8, 24);
473 return isVMerge(N, UnitSize, 8, 8);
476 /// isVMRGHShuffleMask - Return true if this is a shuffle mask suitable for
477 /// a VRGH* instruction with the specified unit size (1,2 or 4 bytes).
478 bool PPC::isVMRGHShuffleMask(SDNode *N, unsigned UnitSize, bool isUnary) {
479 if (!isUnary)
480 return isVMerge(N, UnitSize, 0, 16);
481 return isVMerge(N, UnitSize, 0, 0);
485 /// isVSLDOIShuffleMask - If this is a vsldoi shuffle mask, return the shift
486 /// amount, otherwise return -1.
487 int PPC::isVSLDOIShuffleMask(SDNode *N, bool isUnary) {
488 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
489 N->getNumOperands() == 16 && "PPC only supports shuffles by bytes!");
490 // Find the first non-undef value in the shuffle mask.
491 unsigned i;
492 for (i = 0; i != 16 && N->getOperand(i).getOpcode() == ISD::UNDEF; ++i)
493 /*search*/;
495 if (i == 16) return -1; // all undef.
497 // Otherwise, check to see if the rest of the elements are consequtively
498 // numbered from this value.
499 unsigned ShiftAmt = cast<ConstantSDNode>(N->getOperand(i))->getValue();
500 if (ShiftAmt < i) return -1;
501 ShiftAmt -= i;
503 if (!isUnary) {
504 // Check the rest of the elements to see if they are consequtive.
505 for (++i; i != 16; ++i)
506 if (!isConstantOrUndef(N->getOperand(i), ShiftAmt+i))
507 return -1;
508 } else {
509 // Check the rest of the elements to see if they are consequtive.
510 for (++i; i != 16; ++i)
511 if (!isConstantOrUndef(N->getOperand(i), (ShiftAmt+i) & 15))
512 return -1;
515 return ShiftAmt;
518 /// isSplatShuffleMask - Return true if the specified VECTOR_SHUFFLE operand
519 /// specifies a splat of a single element that is suitable for input to
520 /// VSPLTB/VSPLTH/VSPLTW.
521 bool PPC::isSplatShuffleMask(SDNode *N, unsigned EltSize) {
522 assert(N->getOpcode() == ISD::BUILD_VECTOR &&
523 N->getNumOperands() == 16 &&
524 (EltSize == 1 || EltSize == 2 || EltSize == 4));
526 // This is a splat operation if each element of the permute is the same, and
527 // if the value doesn't reference the second vector.
528 unsigned ElementBase = 0;
529 SDOperand Elt = N->getOperand(0);
530 if (ConstantSDNode *EltV = dyn_cast<ConstantSDNode>(Elt))
531 ElementBase = EltV->getValue();
532 else
533 return false; // FIXME: Handle UNDEF elements too!
535 if (cast<ConstantSDNode>(Elt)->getValue() >= 16)
536 return false;
538 // Check that they are consequtive.
539 for (unsigned i = 1; i != EltSize; ++i) {
540 if (!isa<ConstantSDNode>(N->getOperand(i)) ||
541 cast<ConstantSDNode>(N->getOperand(i))->getValue() != i+ElementBase)
542 return false;
545 assert(isa<ConstantSDNode>(Elt) && "Invalid VECTOR_SHUFFLE mask!");
546 for (unsigned i = EltSize, e = 16; i != e; i += EltSize) {
547 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
548 assert(isa<ConstantSDNode>(N->getOperand(i)) &&
549 "Invalid VECTOR_SHUFFLE mask!");
550 for (unsigned j = 0; j != EltSize; ++j)
551 if (N->getOperand(i+j) != N->getOperand(j))
552 return false;
555 return true;
558 /// isAllNegativeZeroVector - Returns true if all elements of build_vector
559 /// are -0.0.
560 bool PPC::isAllNegativeZeroVector(SDNode *N) {
561 assert(N->getOpcode() == ISD::BUILD_VECTOR);
562 if (PPC::isSplatShuffleMask(N, N->getNumOperands()))
563 if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N))
564 return CFP->getValueAPF().isNegZero();
565 return false;
568 /// getVSPLTImmediate - Return the appropriate VSPLT* immediate to splat the
569 /// specified isSplatShuffleMask VECTOR_SHUFFLE mask.
570 unsigned PPC::getVSPLTImmediate(SDNode *N, unsigned EltSize) {
571 assert(isSplatShuffleMask(N, EltSize));
572 return cast<ConstantSDNode>(N->getOperand(0))->getValue() / EltSize;
575 /// get_VSPLTI_elt - If this is a build_vector of constants which can be formed
576 /// by using a vspltis[bhw] instruction of the specified element size, return
577 /// the constant being splatted. The ByteSize field indicates the number of
578 /// bytes of each element [124] -> [bhw].
579 SDOperand PPC::get_VSPLTI_elt(SDNode *N, unsigned ByteSize, SelectionDAG &DAG) {
580 SDOperand OpVal(0, 0);
582 // If ByteSize of the splat is bigger than the element size of the
583 // build_vector, then we have a case where we are checking for a splat where
584 // multiple elements of the buildvector are folded together into a single
585 // logical element of the splat (e.g. "vsplish 1" to splat {0,1}*8).
586 unsigned EltSize = 16/N->getNumOperands();
587 if (EltSize < ByteSize) {
588 unsigned Multiple = ByteSize/EltSize; // Number of BV entries per spltval.
589 SDOperand UniquedVals[4];
590 assert(Multiple > 1 && Multiple <= 4 && "How can this happen?");
592 // See if all of the elements in the buildvector agree across.
593 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
594 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
595 // If the element isn't a constant, bail fully out.
596 if (!isa<ConstantSDNode>(N->getOperand(i))) return SDOperand();
599 if (UniquedVals[i&(Multiple-1)].Val == 0)
600 UniquedVals[i&(Multiple-1)] = N->getOperand(i);
601 else if (UniquedVals[i&(Multiple-1)] != N->getOperand(i))
602 return SDOperand(); // no match.
605 // Okay, if we reached this point, UniquedVals[0..Multiple-1] contains
606 // either constant or undef values that are identical for each chunk. See
607 // if these chunks can form into a larger vspltis*.
609 // Check to see if all of the leading entries are either 0 or -1. If
610 // neither, then this won't fit into the immediate field.
611 bool LeadingZero = true;
612 bool LeadingOnes = true;
613 for (unsigned i = 0; i != Multiple-1; ++i) {
614 if (UniquedVals[i].Val == 0) continue; // Must have been undefs.
616 LeadingZero &= cast<ConstantSDNode>(UniquedVals[i])->isNullValue();
617 LeadingOnes &= cast<ConstantSDNode>(UniquedVals[i])->isAllOnesValue();
619 // Finally, check the least significant entry.
620 if (LeadingZero) {
621 if (UniquedVals[Multiple-1].Val == 0)
622 return DAG.getTargetConstant(0, MVT::i32); // 0,0,0,undef
623 int Val = cast<ConstantSDNode>(UniquedVals[Multiple-1])->getValue();
624 if (Val < 16)
625 return DAG.getTargetConstant(Val, MVT::i32); // 0,0,0,4 -> vspltisw(4)
627 if (LeadingOnes) {
628 if (UniquedVals[Multiple-1].Val == 0)
629 return DAG.getTargetConstant(~0U, MVT::i32); // -1,-1,-1,undef
630 int Val =cast<ConstantSDNode>(UniquedVals[Multiple-1])->getSignExtended();
631 if (Val >= -16) // -1,-1,-1,-2 -> vspltisw(-2)
632 return DAG.getTargetConstant(Val, MVT::i32);
635 return SDOperand();
638 // Check to see if this buildvec has a single non-undef value in its elements.
639 for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
640 if (N->getOperand(i).getOpcode() == ISD::UNDEF) continue;
641 if (OpVal.Val == 0)
642 OpVal = N->getOperand(i);
643 else if (OpVal != N->getOperand(i))
644 return SDOperand();
647 if (OpVal.Val == 0) return SDOperand(); // All UNDEF: use implicit def.
649 unsigned ValSizeInBytes = 0;
650 uint64_t Value = 0;
651 if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
652 Value = CN->getValue();
653 ValSizeInBytes = MVT::getSizeInBits(CN->getValueType(0))/8;
654 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
655 assert(CN->getValueType(0) == MVT::f32 && "Only one legal FP vector type!");
656 Value = FloatToBits(CN->getValueAPF().convertToFloat());
657 ValSizeInBytes = 4;
660 // If the splat value is larger than the element value, then we can never do
661 // this splat. The only case that we could fit the replicated bits into our
662 // immediate field for would be zero, and we prefer to use vxor for it.
663 if (ValSizeInBytes < ByteSize) return SDOperand();
665 // If the element value is larger than the splat value, cut it in half and
666 // check to see if the two halves are equal. Continue doing this until we
667 // get to ByteSize. This allows us to handle 0x01010101 as 0x01.
668 while (ValSizeInBytes > ByteSize) {
669 ValSizeInBytes >>= 1;
671 // If the top half equals the bottom half, we're still ok.
672 if (((Value >> (ValSizeInBytes*8)) & ((1 << (8*ValSizeInBytes))-1)) !=
673 (Value & ((1 << (8*ValSizeInBytes))-1)))
674 return SDOperand();
677 // Properly sign extend the value.
678 int ShAmt = (4-ByteSize)*8;
679 int MaskVal = ((int)Value << ShAmt) >> ShAmt;
681 // If this is zero, don't match, zero matches ISD::isBuildVectorAllZeros.
682 if (MaskVal == 0) return SDOperand();
684 // Finally, if this value fits in a 5 bit sext field, return it
685 if (((MaskVal << (32-5)) >> (32-5)) == MaskVal)
686 return DAG.getTargetConstant(MaskVal, MVT::i32);
687 return SDOperand();
690 //===----------------------------------------------------------------------===//
691 // Addressing Mode Selection
692 //===----------------------------------------------------------------------===//
694 /// isIntS16Immediate - This method tests to see if the node is either a 32-bit
695 /// or 64-bit immediate, and if the value can be accurately represented as a
696 /// sign extension from a 16-bit value. If so, this returns true and the
697 /// immediate.
698 static bool isIntS16Immediate(SDNode *N, short &Imm) {
699 if (N->getOpcode() != ISD::Constant)
700 return false;
702 Imm = (short)cast<ConstantSDNode>(N)->getValue();
703 if (N->getValueType(0) == MVT::i32)
704 return Imm == (int32_t)cast<ConstantSDNode>(N)->getValue();
705 else
706 return Imm == (int64_t)cast<ConstantSDNode>(N)->getValue();
708 static bool isIntS16Immediate(SDOperand Op, short &Imm) {
709 return isIntS16Immediate(Op.Val, Imm);
713 /// SelectAddressRegReg - Given the specified addressed, check to see if it
714 /// can be represented as an indexed [r+r] operation. Returns false if it
715 /// can be more efficiently represented with [r+imm].
716 bool PPCTargetLowering::SelectAddressRegReg(SDOperand N, SDOperand &Base,
717 SDOperand &Index,
718 SelectionDAG &DAG) {
719 short imm = 0;
720 if (N.getOpcode() == ISD::ADD) {
721 if (isIntS16Immediate(N.getOperand(1), imm))
722 return false; // r+i
723 if (N.getOperand(1).getOpcode() == PPCISD::Lo)
724 return false; // r+i
726 Base = N.getOperand(0);
727 Index = N.getOperand(1);
728 return true;
729 } else if (N.getOpcode() == ISD::OR) {
730 if (isIntS16Immediate(N.getOperand(1), imm))
731 return false; // r+i can fold it if we can.
733 // If this is an or of disjoint bitfields, we can codegen this as an add
734 // (for better address arithmetic) if the LHS and RHS of the OR are provably
735 // disjoint.
736 uint64_t LHSKnownZero, LHSKnownOne;
737 uint64_t RHSKnownZero, RHSKnownOne;
738 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
740 if (LHSKnownZero) {
741 DAG.ComputeMaskedBits(N.getOperand(1), ~0U, RHSKnownZero, RHSKnownOne);
742 // If all of the bits are known zero on the LHS or RHS, the add won't
743 // carry.
744 if ((LHSKnownZero | RHSKnownZero) == ~0U) {
745 Base = N.getOperand(0);
746 Index = N.getOperand(1);
747 return true;
752 return false;
755 /// Returns true if the address N can be represented by a base register plus
756 /// a signed 16-bit displacement [r+imm], and if it is not better
757 /// represented as reg+reg.
758 bool PPCTargetLowering::SelectAddressRegImm(SDOperand N, SDOperand &Disp,
759 SDOperand &Base, SelectionDAG &DAG){
760 // If this can be more profitably realized as r+r, fail.
761 if (SelectAddressRegReg(N, Disp, Base, DAG))
762 return false;
764 if (N.getOpcode() == ISD::ADD) {
765 short imm = 0;
766 if (isIntS16Immediate(N.getOperand(1), imm)) {
767 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
768 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
769 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
770 } else {
771 Base = N.getOperand(0);
773 return true; // [r+i]
774 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
775 // Match LOAD (ADD (X, Lo(G))).
776 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
777 && "Cannot handle constant offsets yet!");
778 Disp = N.getOperand(1).getOperand(0); // The global address.
779 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
780 Disp.getOpcode() == ISD::TargetConstantPool ||
781 Disp.getOpcode() == ISD::TargetJumpTable);
782 Base = N.getOperand(0);
783 return true; // [&g+r]
785 } else if (N.getOpcode() == ISD::OR) {
786 short imm = 0;
787 if (isIntS16Immediate(N.getOperand(1), imm)) {
788 // If this is an or of disjoint bitfields, we can codegen this as an add
789 // (for better address arithmetic) if the LHS and RHS of the OR are
790 // provably disjoint.
791 uint64_t LHSKnownZero, LHSKnownOne;
792 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
793 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
794 // If all of the bits are known zero on the LHS or RHS, the add won't
795 // carry.
796 Base = N.getOperand(0);
797 Disp = DAG.getTargetConstant((int)imm & 0xFFFF, MVT::i32);
798 return true;
801 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
802 // Loading from a constant address.
804 // If this address fits entirely in a 16-bit sext immediate field, codegen
805 // this as "d, 0"
806 short Imm;
807 if (isIntS16Immediate(CN, Imm)) {
808 Disp = DAG.getTargetConstant(Imm, CN->getValueType(0));
809 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
810 return true;
813 // Handle 32-bit sext immediates with LIS + addr mode.
814 if (CN->getValueType(0) == MVT::i32 ||
815 (int64_t)CN->getValue() == (int)CN->getValue()) {
816 int Addr = (int)CN->getValue();
818 // Otherwise, break this down into an LIS + disp.
819 Disp = DAG.getTargetConstant((short)Addr, MVT::i32);
821 Base = DAG.getTargetConstant((Addr - (signed short)Addr) >> 16, MVT::i32);
822 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
823 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
824 return true;
828 Disp = DAG.getTargetConstant(0, getPointerTy());
829 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
830 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
831 else
832 Base = N;
833 return true; // [r+0]
836 /// SelectAddressRegRegOnly - Given the specified addressed, force it to be
837 /// represented as an indexed [r+r] operation.
838 bool PPCTargetLowering::SelectAddressRegRegOnly(SDOperand N, SDOperand &Base,
839 SDOperand &Index,
840 SelectionDAG &DAG) {
841 // Check to see if we can easily represent this as an [r+r] address. This
842 // will fail if it thinks that the address is more profitably represented as
843 // reg+imm, e.g. where imm = 0.
844 if (SelectAddressRegReg(N, Base, Index, DAG))
845 return true;
847 // If the operand is an addition, always emit this as [r+r], since this is
848 // better (for code size, and execution, as the memop does the add for free)
849 // than emitting an explicit add.
850 if (N.getOpcode() == ISD::ADD) {
851 Base = N.getOperand(0);
852 Index = N.getOperand(1);
853 return true;
856 // Otherwise, do it the hard way, using R0 as the base register.
857 Base = DAG.getRegister(PPC::R0, N.getValueType());
858 Index = N;
859 return true;
862 /// SelectAddressRegImmShift - Returns true if the address N can be
863 /// represented by a base register plus a signed 14-bit displacement
864 /// [r+imm*4]. Suitable for use by STD and friends.
865 bool PPCTargetLowering::SelectAddressRegImmShift(SDOperand N, SDOperand &Disp,
866 SDOperand &Base,
867 SelectionDAG &DAG) {
868 // If this can be more profitably realized as r+r, fail.
869 if (SelectAddressRegReg(N, Disp, Base, DAG))
870 return false;
872 if (N.getOpcode() == ISD::ADD) {
873 short imm = 0;
874 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
875 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
876 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N.getOperand(0))) {
877 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
878 } else {
879 Base = N.getOperand(0);
881 return true; // [r+i]
882 } else if (N.getOperand(1).getOpcode() == PPCISD::Lo) {
883 // Match LOAD (ADD (X, Lo(G))).
884 assert(!cast<ConstantSDNode>(N.getOperand(1).getOperand(1))->getValue()
885 && "Cannot handle constant offsets yet!");
886 Disp = N.getOperand(1).getOperand(0); // The global address.
887 assert(Disp.getOpcode() == ISD::TargetGlobalAddress ||
888 Disp.getOpcode() == ISD::TargetConstantPool ||
889 Disp.getOpcode() == ISD::TargetJumpTable);
890 Base = N.getOperand(0);
891 return true; // [&g+r]
893 } else if (N.getOpcode() == ISD::OR) {
894 short imm = 0;
895 if (isIntS16Immediate(N.getOperand(1), imm) && (imm & 3) == 0) {
896 // If this is an or of disjoint bitfields, we can codegen this as an add
897 // (for better address arithmetic) if the LHS and RHS of the OR are
898 // provably disjoint.
899 uint64_t LHSKnownZero, LHSKnownOne;
900 DAG.ComputeMaskedBits(N.getOperand(0), ~0U, LHSKnownZero, LHSKnownOne);
901 if ((LHSKnownZero|~(unsigned)imm) == ~0U) {
902 // If all of the bits are known zero on the LHS or RHS, the add won't
903 // carry.
904 Base = N.getOperand(0);
905 Disp = DAG.getTargetConstant(((int)imm & 0xFFFF) >> 2, MVT::i32);
906 return true;
909 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N)) {
910 // Loading from a constant address. Verify low two bits are clear.
911 if ((CN->getValue() & 3) == 0) {
912 // If this address fits entirely in a 14-bit sext immediate field, codegen
913 // this as "d, 0"
914 short Imm;
915 if (isIntS16Immediate(CN, Imm)) {
916 Disp = DAG.getTargetConstant((unsigned short)Imm >> 2, getPointerTy());
917 Base = DAG.getRegister(PPC::R0, CN->getValueType(0));
918 return true;
921 // Fold the low-part of 32-bit absolute addresses into addr mode.
922 if (CN->getValueType(0) == MVT::i32 ||
923 (int64_t)CN->getValue() == (int)CN->getValue()) {
924 int Addr = (int)CN->getValue();
926 // Otherwise, break this down into an LIS + disp.
927 Disp = DAG.getTargetConstant((short)Addr >> 2, MVT::i32);
929 Base = DAG.getTargetConstant((Addr-(signed short)Addr) >> 16, MVT::i32);
930 unsigned Opc = CN->getValueType(0) == MVT::i32 ? PPC::LIS : PPC::LIS8;
931 Base = SDOperand(DAG.getTargetNode(Opc, CN->getValueType(0), Base), 0);
932 return true;
937 Disp = DAG.getTargetConstant(0, getPointerTy());
938 if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(N))
939 Base = DAG.getTargetFrameIndex(FI->getIndex(), N.getValueType());
940 else
941 Base = N;
942 return true; // [r+0]
946 /// getPreIndexedAddressParts - returns true by value, base pointer and
947 /// offset pointer and addressing mode by reference if the node's address
948 /// can be legally represented as pre-indexed load / store address.
949 bool PPCTargetLowering::getPreIndexedAddressParts(SDNode *N, SDOperand &Base,
950 SDOperand &Offset,
951 ISD::MemIndexedMode &AM,
952 SelectionDAG &DAG) {
953 // Disabled by default for now.
954 if (!EnablePPCPreinc) return false;
956 SDOperand Ptr;
957 MVT::ValueType VT;
958 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
959 Ptr = LD->getBasePtr();
960 VT = LD->getLoadedVT();
962 } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
963 ST = ST;
964 Ptr = ST->getBasePtr();
965 VT = ST->getStoredVT();
966 } else
967 return false;
969 // PowerPC doesn't have preinc load/store instructions for vectors.
970 if (MVT::isVector(VT))
971 return false;
973 // TODO: Check reg+reg first.
975 // LDU/STU use reg+imm*4, others use reg+imm.
976 if (VT != MVT::i64) {
977 // reg + imm
978 if (!SelectAddressRegImm(Ptr, Offset, Base, DAG))
979 return false;
980 } else {
981 // reg + imm * 4.
982 if (!SelectAddressRegImmShift(Ptr, Offset, Base, DAG))
983 return false;
986 if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) {
987 // PPC64 doesn't have lwau, but it does have lwaux. Reject preinc load of
988 // sext i32 to i64 when addr mode is r+i.
989 if (LD->getValueType(0) == MVT::i64 && LD->getLoadedVT() == MVT::i32 &&
990 LD->getExtensionType() == ISD::SEXTLOAD &&
991 isa<ConstantSDNode>(Offset))
992 return false;
995 AM = ISD::PRE_INC;
996 return true;
999 //===----------------------------------------------------------------------===//
1000 // LowerOperation implementation
1001 //===----------------------------------------------------------------------===//
1003 static SDOperand LowerConstantPool(SDOperand Op, SelectionDAG &DAG) {
1004 MVT::ValueType PtrVT = Op.getValueType();
1005 ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op);
1006 Constant *C = CP->getConstVal();
1007 SDOperand CPI = DAG.getTargetConstantPool(C, PtrVT, CP->getAlignment());
1008 SDOperand Zero = DAG.getConstant(0, PtrVT);
1010 const TargetMachine &TM = DAG.getTarget();
1012 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, CPI, Zero);
1013 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, CPI, Zero);
1015 // If this is a non-darwin platform, we don't support non-static relo models
1016 // yet.
1017 if (TM.getRelocationModel() == Reloc::Static ||
1018 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1019 // Generate non-pic code that has direct accesses to the constant pool.
1020 // The address of the global is just (hi(&g)+lo(&g)).
1021 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1024 if (TM.getRelocationModel() == Reloc::PIC_) {
1025 // With PIC, the first instruction is actually "GR+hi(&G)".
1026 Hi = DAG.getNode(ISD::ADD, PtrVT,
1027 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1030 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1031 return Lo;
1034 static SDOperand LowerJumpTable(SDOperand Op, SelectionDAG &DAG) {
1035 MVT::ValueType PtrVT = Op.getValueType();
1036 JumpTableSDNode *JT = cast<JumpTableSDNode>(Op);
1037 SDOperand JTI = DAG.getTargetJumpTable(JT->getIndex(), PtrVT);
1038 SDOperand Zero = DAG.getConstant(0, PtrVT);
1040 const TargetMachine &TM = DAG.getTarget();
1042 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, JTI, Zero);
1043 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, JTI, Zero);
1045 // If this is a non-darwin platform, we don't support non-static relo models
1046 // yet.
1047 if (TM.getRelocationModel() == Reloc::Static ||
1048 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1049 // Generate non-pic code that has direct accesses to the constant pool.
1050 // The address of the global is just (hi(&g)+lo(&g)).
1051 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1054 if (TM.getRelocationModel() == Reloc::PIC_) {
1055 // With PIC, the first instruction is actually "GR+hi(&G)".
1056 Hi = DAG.getNode(ISD::ADD, PtrVT,
1057 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1060 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1061 return Lo;
1064 static SDOperand LowerGlobalTLSAddress(SDOperand Op, SelectionDAG &DAG) {
1065 assert(0 && "TLS not implemented for PPC.");
1068 static SDOperand LowerGlobalAddress(SDOperand Op, SelectionDAG &DAG) {
1069 MVT::ValueType PtrVT = Op.getValueType();
1070 GlobalAddressSDNode *GSDN = cast<GlobalAddressSDNode>(Op);
1071 GlobalValue *GV = GSDN->getGlobal();
1072 SDOperand GA = DAG.getTargetGlobalAddress(GV, PtrVT, GSDN->getOffset());
1073 SDOperand Zero = DAG.getConstant(0, PtrVT);
1075 const TargetMachine &TM = DAG.getTarget();
1077 SDOperand Hi = DAG.getNode(PPCISD::Hi, PtrVT, GA, Zero);
1078 SDOperand Lo = DAG.getNode(PPCISD::Lo, PtrVT, GA, Zero);
1080 // If this is a non-darwin platform, we don't support non-static relo models
1081 // yet.
1082 if (TM.getRelocationModel() == Reloc::Static ||
1083 !TM.getSubtarget<PPCSubtarget>().isDarwin()) {
1084 // Generate non-pic code that has direct accesses to globals.
1085 // The address of the global is just (hi(&g)+lo(&g)).
1086 return DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1089 if (TM.getRelocationModel() == Reloc::PIC_) {
1090 // With PIC, the first instruction is actually "GR+hi(&G)".
1091 Hi = DAG.getNode(ISD::ADD, PtrVT,
1092 DAG.getNode(PPCISD::GlobalBaseReg, PtrVT), Hi);
1095 Lo = DAG.getNode(ISD::ADD, PtrVT, Hi, Lo);
1097 if (!TM.getSubtarget<PPCSubtarget>().hasLazyResolverStub(GV))
1098 return Lo;
1100 // If the global is weak or external, we have to go through the lazy
1101 // resolution stub.
1102 return DAG.getLoad(PtrVT, DAG.getEntryNode(), Lo, NULL, 0);
1105 static SDOperand LowerSETCC(SDOperand Op, SelectionDAG &DAG) {
1106 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1108 // If we're comparing for equality to zero, expose the fact that this is
1109 // implented as a ctlz/srl pair on ppc, so that the dag combiner can
1110 // fold the new nodes.
1111 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
1112 if (C->isNullValue() && CC == ISD::SETEQ) {
1113 MVT::ValueType VT = Op.getOperand(0).getValueType();
1114 SDOperand Zext = Op.getOperand(0);
1115 if (VT < MVT::i32) {
1116 VT = MVT::i32;
1117 Zext = DAG.getNode(ISD::ZERO_EXTEND, VT, Op.getOperand(0));
1119 unsigned Log2b = Log2_32(MVT::getSizeInBits(VT));
1120 SDOperand Clz = DAG.getNode(ISD::CTLZ, VT, Zext);
1121 SDOperand Scc = DAG.getNode(ISD::SRL, VT, Clz,
1122 DAG.getConstant(Log2b, MVT::i32));
1123 return DAG.getNode(ISD::TRUNCATE, MVT::i32, Scc);
1125 // Leave comparisons against 0 and -1 alone for now, since they're usually
1126 // optimized. FIXME: revisit this when we can custom lower all setcc
1127 // optimizations.
1128 if (C->isAllOnesValue() || C->isNullValue())
1129 return SDOperand();
1132 // If we have an integer seteq/setne, turn it into a compare against zero
1133 // by xor'ing the rhs with the lhs, which is faster than setting a
1134 // condition register, reading it back out, and masking the correct bit. The
1135 // normal approach here uses sub to do this instead of xor. Using xor exposes
1136 // the result to other bit-twiddling opportunities.
1137 MVT::ValueType LHSVT = Op.getOperand(0).getValueType();
1138 if (MVT::isInteger(LHSVT) && (CC == ISD::SETEQ || CC == ISD::SETNE)) {
1139 MVT::ValueType VT = Op.getValueType();
1140 SDOperand Sub = DAG.getNode(ISD::XOR, LHSVT, Op.getOperand(0),
1141 Op.getOperand(1));
1142 return DAG.getSetCC(VT, Sub, DAG.getConstant(0, LHSVT), CC);
1144 return SDOperand();
1147 static SDOperand LowerVAARG(SDOperand Op, SelectionDAG &DAG,
1148 int VarArgsFrameIndex,
1149 int VarArgsStackOffset,
1150 unsigned VarArgsNumGPR,
1151 unsigned VarArgsNumFPR,
1152 const PPCSubtarget &Subtarget) {
1154 assert(0 && "VAARG in ELF32 ABI not implemented yet!");
1157 static SDOperand LowerVASTART(SDOperand Op, SelectionDAG &DAG,
1158 int VarArgsFrameIndex,
1159 int VarArgsStackOffset,
1160 unsigned VarArgsNumGPR,
1161 unsigned VarArgsNumFPR,
1162 const PPCSubtarget &Subtarget) {
1164 if (Subtarget.isMachoABI()) {
1165 // vastart just stores the address of the VarArgsFrameIndex slot into the
1166 // memory location argument.
1167 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1168 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1169 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1170 return DAG.getStore(Op.getOperand(0), FR, Op.getOperand(1), SV->getValue(),
1171 SV->getOffset());
1174 // For ELF 32 ABI we follow the layout of the va_list struct.
1175 // We suppose the given va_list is already allocated.
1177 // typedef struct {
1178 // char gpr; /* index into the array of 8 GPRs
1179 // * stored in the register save area
1180 // * gpr=0 corresponds to r3,
1181 // * gpr=1 to r4, etc.
1182 // */
1183 // char fpr; /* index into the array of 8 FPRs
1184 // * stored in the register save area
1185 // * fpr=0 corresponds to f1,
1186 // * fpr=1 to f2, etc.
1187 // */
1188 // char *overflow_arg_area;
1189 // /* location on stack that holds
1190 // * the next overflow argument
1191 // */
1192 // char *reg_save_area;
1193 // /* where r3:r10 and f1:f8 (if saved)
1194 // * are stored
1195 // */
1196 // } va_list[1];
1199 SDOperand ArgGPR = DAG.getConstant(VarArgsNumGPR, MVT::i8);
1200 SDOperand ArgFPR = DAG.getConstant(VarArgsNumFPR, MVT::i8);
1203 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1205 SDOperand StackOffset = DAG.getFrameIndex(VarArgsStackOffset, PtrVT);
1206 SDOperand FR = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1208 SDOperand ConstFrameOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8,
1209 PtrVT);
1210 SDOperand ConstStackOffset = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8 - 1,
1211 PtrVT);
1212 SDOperand ConstFPROffset = DAG.getConstant(1, PtrVT);
1214 SrcValueSDNode *SV = cast<SrcValueSDNode>(Op.getOperand(2));
1216 // Store first byte : number of int regs
1217 SDOperand firstStore = DAG.getStore(Op.getOperand(0), ArgGPR,
1218 Op.getOperand(1), SV->getValue(),
1219 SV->getOffset());
1220 SDOperand nextPtr = DAG.getNode(ISD::ADD, PtrVT, Op.getOperand(1),
1221 ConstFPROffset);
1223 // Store second byte : number of float regs
1224 SDOperand secondStore = DAG.getStore(firstStore, ArgFPR, nextPtr,
1225 SV->getValue(), SV->getOffset());
1226 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstStackOffset);
1228 // Store second word : arguments given on stack
1229 SDOperand thirdStore = DAG.getStore(secondStore, StackOffset, nextPtr,
1230 SV->getValue(), SV->getOffset());
1231 nextPtr = DAG.getNode(ISD::ADD, PtrVT, nextPtr, ConstFrameOffset);
1233 // Store third word : arguments given in registers
1234 return DAG.getStore(thirdStore, FR, nextPtr, SV->getValue(),
1235 SV->getOffset());
1239 #include "PPCGenCallingConv.inc"
1241 /// GetFPR - Get the set of FP registers that should be allocated for arguments,
1242 /// depending on which subtarget is selected.
1243 static const unsigned *GetFPR(const PPCSubtarget &Subtarget) {
1244 if (Subtarget.isMachoABI()) {
1245 static const unsigned FPR[] = {
1246 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1247 PPC::F8, PPC::F9, PPC::F10, PPC::F11, PPC::F12, PPC::F13
1249 return FPR;
1253 static const unsigned FPR[] = {
1254 PPC::F1, PPC::F2, PPC::F3, PPC::F4, PPC::F5, PPC::F6, PPC::F7,
1255 PPC::F8
1257 return FPR;
1260 static SDOperand LowerFORMAL_ARGUMENTS(SDOperand Op, SelectionDAG &DAG,
1261 int &VarArgsFrameIndex,
1262 int &VarArgsStackOffset,
1263 unsigned &VarArgsNumGPR,
1264 unsigned &VarArgsNumFPR,
1265 const PPCSubtarget &Subtarget) {
1266 // TODO: add description of PPC stack frame format, or at least some docs.
1268 MachineFunction &MF = DAG.getMachineFunction();
1269 MachineFrameInfo *MFI = MF.getFrameInfo();
1270 MachineRegisterInfo &RegInfo = MF.getRegInfo();
1271 SmallVector<SDOperand, 8> ArgValues;
1272 SDOperand Root = Op.getOperand(0);
1274 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1275 bool isPPC64 = PtrVT == MVT::i64;
1276 bool isMachoABI = Subtarget.isMachoABI();
1277 bool isELF32_ABI = Subtarget.isELF32_ABI();
1278 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1280 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1282 static const unsigned GPR_32[] = { // 32-bit registers.
1283 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1284 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1286 static const unsigned GPR_64[] = { // 64-bit registers.
1287 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1288 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1291 static const unsigned *FPR = GetFPR(Subtarget);
1293 static const unsigned VR[] = {
1294 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1295 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1298 const unsigned Num_GPR_Regs = array_lengthof(GPR_32);
1299 const unsigned Num_FPR_Regs = isMachoABI ? 13 : 8;
1300 const unsigned Num_VR_Regs = array_lengthof( VR);
1302 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1304 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1306 // Add DAG nodes to load the arguments or copy them out of registers. On
1307 // entry to a function on PPC, the arguments start after the linkage area,
1308 // although the first ones are often in registers.
1310 // In the ELF 32 ABI, GPRs and stack are double word align: an argument
1311 // represented with two words (long long or double) must be copied to an
1312 // even GPR_idx value or to an even ArgOffset value.
1314 for (unsigned ArgNo = 0, e = Op.Val->getNumValues()-1; ArgNo != e; ++ArgNo) {
1315 SDOperand ArgVal;
1316 bool needsLoad = false;
1317 MVT::ValueType ObjectVT = Op.getValue(ArgNo).getValueType();
1318 unsigned ObjSize = MVT::getSizeInBits(ObjectVT)/8;
1319 unsigned ArgSize = ObjSize;
1320 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(ArgNo+3))->getValue();
1321 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1322 // See if next argument requires stack alignment in ELF
1323 bool Expand = (ObjectVT == MVT::f64) || ((ArgNo + 1 < e) &&
1324 (cast<ConstantSDNode>(Op.getOperand(ArgNo+4))->getValue() & AlignFlag) &&
1325 (!(Flags & AlignFlag)));
1327 unsigned CurArgOffset = ArgOffset;
1328 switch (ObjectVT) {
1329 default: assert(0 && "Unhandled argument type!");
1330 case MVT::i32:
1331 // Double word align in ELF
1332 if (Expand && isELF32_ABI) GPR_idx += (GPR_idx % 2);
1333 if (GPR_idx != Num_GPR_Regs) {
1334 unsigned VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1335 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1336 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i32);
1337 ++GPR_idx;
1338 } else {
1339 needsLoad = true;
1340 ArgSize = PtrByteSize;
1342 // Stack align in ELF
1343 if (needsLoad && Expand && isELF32_ABI)
1344 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1345 // All int arguments reserve stack space in Macho ABI.
1346 if (isMachoABI || needsLoad) ArgOffset += PtrByteSize;
1347 break;
1349 case MVT::i64: // PPC64
1350 if (GPR_idx != Num_GPR_Regs) {
1351 unsigned VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1352 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1353 ArgVal = DAG.getCopyFromReg(Root, VReg, MVT::i64);
1354 ++GPR_idx;
1355 } else {
1356 needsLoad = true;
1358 // All int arguments reserve stack space in Macho ABI.
1359 if (isMachoABI || needsLoad) ArgOffset += 8;
1360 break;
1362 case MVT::f32:
1363 case MVT::f64:
1364 // Every 4 bytes of argument space consumes one of the GPRs available for
1365 // argument passing.
1366 if (GPR_idx != Num_GPR_Regs && isMachoABI) {
1367 ++GPR_idx;
1368 if (ObjSize == 8 && GPR_idx != Num_GPR_Regs && !isPPC64)
1369 ++GPR_idx;
1371 if (FPR_idx != Num_FPR_Regs) {
1372 unsigned VReg;
1373 if (ObjectVT == MVT::f32)
1374 VReg = RegInfo.createVirtualRegister(&PPC::F4RCRegClass);
1375 else
1376 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1377 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1378 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1379 ++FPR_idx;
1380 } else {
1381 needsLoad = true;
1384 // Stack align in ELF
1385 if (needsLoad && Expand && isELF32_ABI)
1386 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1387 // All FP arguments reserve stack space in Macho ABI.
1388 if (isMachoABI || needsLoad) ArgOffset += isPPC64 ? 8 : ObjSize;
1389 break;
1390 case MVT::v4f32:
1391 case MVT::v4i32:
1392 case MVT::v8i16:
1393 case MVT::v16i8:
1394 // Note that vector arguments in registers don't reserve stack space.
1395 if (VR_idx != Num_VR_Regs) {
1396 unsigned VReg = RegInfo.createVirtualRegister(&PPC::VRRCRegClass);
1397 RegInfo.addLiveIn(VR[VR_idx], VReg);
1398 ArgVal = DAG.getCopyFromReg(Root, VReg, ObjectVT);
1399 ++VR_idx;
1400 } else {
1401 // This should be simple, but requires getting 16-byte aligned stack
1402 // values.
1403 assert(0 && "Loading VR argument not implemented yet!");
1404 needsLoad = true;
1406 break;
1409 // We need to load the argument to a virtual register if we determined above
1410 // that we ran out of physical registers of the appropriate type
1411 if (needsLoad) {
1412 // If the argument is actually used, emit a load from the right stack
1413 // slot.
1414 if (!Op.Val->hasNUsesOfValue(0, ArgNo)) {
1415 int FI = MFI->CreateFixedObject(ObjSize,
1416 CurArgOffset + (ArgSize - ObjSize));
1417 SDOperand FIN = DAG.getFrameIndex(FI, PtrVT);
1418 ArgVal = DAG.getLoad(ObjectVT, Root, FIN, NULL, 0);
1419 } else {
1420 // Don't emit a dead load.
1421 ArgVal = DAG.getNode(ISD::UNDEF, ObjectVT);
1425 ArgValues.push_back(ArgVal);
1428 // If the function takes variable number of arguments, make a frame index for
1429 // the start of the first vararg value... for expansion of llvm.va_start.
1430 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1431 if (isVarArg) {
1433 int depth;
1434 if (isELF32_ABI) {
1435 VarArgsNumGPR = GPR_idx;
1436 VarArgsNumFPR = FPR_idx;
1438 // Make room for Num_GPR_Regs, Num_FPR_Regs and for a possible frame
1439 // pointer.
1440 depth = -(Num_GPR_Regs * MVT::getSizeInBits(PtrVT)/8 +
1441 Num_FPR_Regs * MVT::getSizeInBits(MVT::f64)/8 +
1442 MVT::getSizeInBits(PtrVT)/8);
1444 VarArgsStackOffset = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1445 ArgOffset);
1448 else
1449 depth = ArgOffset;
1451 VarArgsFrameIndex = MFI->CreateFixedObject(MVT::getSizeInBits(PtrVT)/8,
1452 depth);
1453 SDOperand FIN = DAG.getFrameIndex(VarArgsFrameIndex, PtrVT);
1455 SmallVector<SDOperand, 8> MemOps;
1457 // In ELF 32 ABI, the fixed integer arguments of a variadic function are
1458 // stored to the VarArgsFrameIndex on the stack.
1459 if (isELF32_ABI) {
1460 for (GPR_idx = 0; GPR_idx != VarArgsNumGPR; ++GPR_idx) {
1461 SDOperand Val = DAG.getRegister(GPR[GPR_idx], PtrVT);
1462 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1463 MemOps.push_back(Store);
1464 // Increment the address by four for the next argument to store
1465 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1466 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1470 // If this function is vararg, store any remaining integer argument regs
1471 // to their spots on the stack so that they may be loaded by deferencing the
1472 // result of va_next.
1473 for (; GPR_idx != Num_GPR_Regs; ++GPR_idx) {
1474 unsigned VReg;
1475 if (isPPC64)
1476 VReg = RegInfo.createVirtualRegister(&PPC::G8RCRegClass);
1477 else
1478 VReg = RegInfo.createVirtualRegister(&PPC::GPRCRegClass);
1480 RegInfo.addLiveIn(GPR[GPR_idx], VReg);
1481 SDOperand Val = DAG.getCopyFromReg(Root, VReg, PtrVT);
1482 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1483 MemOps.push_back(Store);
1484 // Increment the address by four for the next argument to store
1485 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(PtrVT)/8, PtrVT);
1486 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1489 // In ELF 32 ABI, the double arguments are stored to the VarArgsFrameIndex
1490 // on the stack.
1491 if (isELF32_ABI) {
1492 for (FPR_idx = 0; FPR_idx != VarArgsNumFPR; ++FPR_idx) {
1493 SDOperand Val = DAG.getRegister(FPR[FPR_idx], MVT::f64);
1494 SDOperand Store = DAG.getStore(Root, Val, FIN, NULL, 0);
1495 MemOps.push_back(Store);
1496 // Increment the address by eight for the next argument to store
1497 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1498 PtrVT);
1499 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1502 for (; FPR_idx != Num_FPR_Regs; ++FPR_idx) {
1503 unsigned VReg;
1504 VReg = RegInfo.createVirtualRegister(&PPC::F8RCRegClass);
1506 RegInfo.addLiveIn(FPR[FPR_idx], VReg);
1507 SDOperand Val = DAG.getCopyFromReg(Root, VReg, MVT::f64);
1508 SDOperand Store = DAG.getStore(Val.getValue(1), Val, FIN, NULL, 0);
1509 MemOps.push_back(Store);
1510 // Increment the address by eight for the next argument to store
1511 SDOperand PtrOff = DAG.getConstant(MVT::getSizeInBits(MVT::f64)/8,
1512 PtrVT);
1513 FIN = DAG.getNode(ISD::ADD, PtrOff.getValueType(), FIN, PtrOff);
1517 if (!MemOps.empty())
1518 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,&MemOps[0],MemOps.size());
1521 ArgValues.push_back(Root);
1523 // Return the new list of results.
1524 std::vector<MVT::ValueType> RetVT(Op.Val->value_begin(),
1525 Op.Val->value_end());
1526 return DAG.getNode(ISD::MERGE_VALUES, RetVT, &ArgValues[0], ArgValues.size());
1529 /// isCallCompatibleAddress - Return the immediate to use if the specified
1530 /// 32-bit value is representable in the immediate field of a BxA instruction.
1531 static SDNode *isBLACompatibleAddress(SDOperand Op, SelectionDAG &DAG) {
1532 ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op);
1533 if (!C) return 0;
1535 int Addr = C->getValue();
1536 if ((Addr & 3) != 0 || // Low 2 bits are implicitly zero.
1537 (Addr << 6 >> 6) != Addr)
1538 return 0; // Top 6 bits have to be sext of immediate.
1540 return DAG.getConstant((int)C->getValue() >> 2,
1541 DAG.getTargetLoweringInfo().getPointerTy()).Val;
1545 static SDOperand LowerCALL(SDOperand Op, SelectionDAG &DAG,
1546 const PPCSubtarget &Subtarget) {
1547 SDOperand Chain = Op.getOperand(0);
1548 bool isVarArg = cast<ConstantSDNode>(Op.getOperand(2))->getValue() != 0;
1549 SDOperand Callee = Op.getOperand(4);
1550 unsigned NumOps = (Op.getNumOperands() - 5) / 2;
1552 bool isMachoABI = Subtarget.isMachoABI();
1553 bool isELF32_ABI = Subtarget.isELF32_ABI();
1555 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1556 bool isPPC64 = PtrVT == MVT::i64;
1557 unsigned PtrByteSize = isPPC64 ? 8 : 4;
1559 // args_to_use will accumulate outgoing args for the PPCISD::CALL case in
1560 // SelectExpr to use to put the arguments in the appropriate registers.
1561 std::vector<SDOperand> args_to_use;
1563 // Count how many bytes are to be pushed on the stack, including the linkage
1564 // area, and parameter passing area. We start with 24/48 bytes, which is
1565 // prereserved space for [SP][CR][LR][3 x unused].
1566 unsigned NumBytes = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1568 // Add up all the space actually used.
1569 for (unsigned i = 0; i != NumOps; ++i) {
1570 unsigned ArgSize =MVT::getSizeInBits(Op.getOperand(5+2*i).getValueType())/8;
1571 ArgSize = std::max(ArgSize, PtrByteSize);
1572 NumBytes += ArgSize;
1575 // The prolog code of the callee may store up to 8 GPR argument registers to
1576 // the stack, allowing va_start to index over them in memory if its varargs.
1577 // Because we cannot tell if this is needed on the caller side, we have to
1578 // conservatively assume that it is needed. As such, make sure we have at
1579 // least enough stack space for the caller to store the 8 GPRs.
1580 NumBytes = std::max(NumBytes,
1581 PPCFrameInfo::getMinCallFrameSize(isPPC64, isMachoABI));
1583 // Adjust the stack pointer for the new arguments...
1584 // These operations are automatically eliminated by the prolog/epilog pass
1585 Chain = DAG.getCALLSEQ_START(Chain,
1586 DAG.getConstant(NumBytes, PtrVT));
1588 // Set up a copy of the stack pointer for use loading and storing any
1589 // arguments that may not fit in the registers available for argument
1590 // passing.
1591 SDOperand StackPtr;
1592 if (isPPC64)
1593 StackPtr = DAG.getRegister(PPC::X1, MVT::i64);
1594 else
1595 StackPtr = DAG.getRegister(PPC::R1, MVT::i32);
1597 // Figure out which arguments are going to go in registers, and which in
1598 // memory. Also, if this is a vararg function, floating point operations
1599 // must be stored to our stack, and loaded into integer regs as well, if
1600 // any integer regs are available for argument passing.
1601 unsigned ArgOffset = PPCFrameInfo::getLinkageSize(isPPC64, isMachoABI);
1602 unsigned GPR_idx = 0, FPR_idx = 0, VR_idx = 0;
1604 static const unsigned GPR_32[] = { // 32-bit registers.
1605 PPC::R3, PPC::R4, PPC::R5, PPC::R6,
1606 PPC::R7, PPC::R8, PPC::R9, PPC::R10,
1608 static const unsigned GPR_64[] = { // 64-bit registers.
1609 PPC::X3, PPC::X4, PPC::X5, PPC::X6,
1610 PPC::X7, PPC::X8, PPC::X9, PPC::X10,
1612 static const unsigned *FPR = GetFPR(Subtarget);
1614 static const unsigned VR[] = {
1615 PPC::V2, PPC::V3, PPC::V4, PPC::V5, PPC::V6, PPC::V7, PPC::V8,
1616 PPC::V9, PPC::V10, PPC::V11, PPC::V12, PPC::V13
1618 const unsigned NumGPRs = array_lengthof(GPR_32);
1619 const unsigned NumFPRs = isMachoABI ? 13 : 8;
1620 const unsigned NumVRs = array_lengthof( VR);
1622 const unsigned *GPR = isPPC64 ? GPR_64 : GPR_32;
1624 std::vector<std::pair<unsigned, SDOperand> > RegsToPass;
1625 SmallVector<SDOperand, 8> MemOpChains;
1626 for (unsigned i = 0; i != NumOps; ++i) {
1627 bool inMem = false;
1628 SDOperand Arg = Op.getOperand(5+2*i);
1629 unsigned Flags = cast<ConstantSDNode>(Op.getOperand(5+2*i+1))->getValue();
1630 unsigned AlignFlag = 1 << ISD::ParamFlags::OrigAlignmentOffs;
1631 // See if next argument requires stack alignment in ELF
1632 unsigned next = 5+2*(i+1)+1;
1633 bool Expand = (Arg.getValueType() == MVT::f64) || ((i + 1 < NumOps) &&
1634 (cast<ConstantSDNode>(Op.getOperand(next))->getValue() & AlignFlag) &&
1635 (!(Flags & AlignFlag)));
1637 // PtrOff will be used to store the current argument to the stack if a
1638 // register cannot be found for it.
1639 SDOperand PtrOff;
1641 // Stack align in ELF 32
1642 if (isELF32_ABI && Expand)
1643 PtrOff = DAG.getConstant(ArgOffset + ((ArgOffset/4) % 2) * PtrByteSize,
1644 StackPtr.getValueType());
1645 else
1646 PtrOff = DAG.getConstant(ArgOffset, StackPtr.getValueType());
1648 PtrOff = DAG.getNode(ISD::ADD, PtrVT, StackPtr, PtrOff);
1650 // On PPC64, promote integers to 64-bit values.
1651 if (isPPC64 && Arg.getValueType() == MVT::i32) {
1652 unsigned ExtOp = (Flags & 1) ? ISD::SIGN_EXTEND : ISD::ZERO_EXTEND;
1654 Arg = DAG.getNode(ExtOp, MVT::i64, Arg);
1657 switch (Arg.getValueType()) {
1658 default: assert(0 && "Unexpected ValueType for argument!");
1659 case MVT::i32:
1660 case MVT::i64:
1661 // Double word align in ELF
1662 if (isELF32_ABI && Expand) GPR_idx += (GPR_idx % 2);
1663 if (GPR_idx != NumGPRs) {
1664 RegsToPass.push_back(std::make_pair(GPR[GPR_idx++], Arg));
1665 } else {
1666 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1667 inMem = true;
1669 if (inMem || isMachoABI) {
1670 // Stack align in ELF
1671 if (isELF32_ABI && Expand)
1672 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1674 ArgOffset += PtrByteSize;
1676 break;
1677 case MVT::f32:
1678 case MVT::f64:
1679 if (isVarArg) {
1680 // Float varargs need to be promoted to double.
1681 if (Arg.getValueType() == MVT::f32)
1682 Arg = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Arg);
1685 if (FPR_idx != NumFPRs) {
1686 RegsToPass.push_back(std::make_pair(FPR[FPR_idx++], Arg));
1688 if (isVarArg) {
1689 SDOperand Store = DAG.getStore(Chain, Arg, PtrOff, NULL, 0);
1690 MemOpChains.push_back(Store);
1692 // Float varargs are always shadowed in available integer registers
1693 if (GPR_idx != NumGPRs) {
1694 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1695 MemOpChains.push_back(Load.getValue(1));
1696 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1697 Load));
1699 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 && !isPPC64){
1700 SDOperand ConstFour = DAG.getConstant(4, PtrOff.getValueType());
1701 PtrOff = DAG.getNode(ISD::ADD, PtrVT, PtrOff, ConstFour);
1702 SDOperand Load = DAG.getLoad(PtrVT, Store, PtrOff, NULL, 0);
1703 MemOpChains.push_back(Load.getValue(1));
1704 if (isMachoABI) RegsToPass.push_back(std::make_pair(GPR[GPR_idx++],
1705 Load));
1707 } else {
1708 // If we have any FPRs remaining, we may also have GPRs remaining.
1709 // Args passed in FPRs consume either 1 (f32) or 2 (f64) available
1710 // GPRs.
1711 if (isMachoABI) {
1712 if (GPR_idx != NumGPRs)
1713 ++GPR_idx;
1714 if (GPR_idx != NumGPRs && Arg.getValueType() == MVT::f64 &&
1715 !isPPC64) // PPC64 has 64-bit GPR's obviously :)
1716 ++GPR_idx;
1719 } else {
1720 MemOpChains.push_back(DAG.getStore(Chain, Arg, PtrOff, NULL, 0));
1721 inMem = true;
1723 if (inMem || isMachoABI) {
1724 // Stack align in ELF
1725 if (isELF32_ABI && Expand)
1726 ArgOffset += ((ArgOffset/4) % 2) * PtrByteSize;
1727 if (isPPC64)
1728 ArgOffset += 8;
1729 else
1730 ArgOffset += Arg.getValueType() == MVT::f32 ? 4 : 8;
1732 break;
1733 case MVT::v4f32:
1734 case MVT::v4i32:
1735 case MVT::v8i16:
1736 case MVT::v16i8:
1737 assert(!isVarArg && "Don't support passing vectors to varargs yet!");
1738 assert(VR_idx != NumVRs &&
1739 "Don't support passing more than 12 vector args yet!");
1740 RegsToPass.push_back(std::make_pair(VR[VR_idx++], Arg));
1741 break;
1744 if (!MemOpChains.empty())
1745 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
1746 &MemOpChains[0], MemOpChains.size());
1748 // Build a sequence of copy-to-reg nodes chained together with token chain
1749 // and flag operands which copy the outgoing args into the appropriate regs.
1750 SDOperand InFlag;
1751 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) {
1752 Chain = DAG.getCopyToReg(Chain, RegsToPass[i].first, RegsToPass[i].second,
1753 InFlag);
1754 InFlag = Chain.getValue(1);
1757 // With the ELF 32 ABI, set CR6 to true if this is a vararg call.
1758 if (isVarArg && isELF32_ABI) {
1759 SDOperand SetCR(DAG.getTargetNode(PPC::SETCR, MVT::i32), 0);
1760 Chain = DAG.getCopyToReg(Chain, PPC::CR6, SetCR, InFlag);
1761 InFlag = Chain.getValue(1);
1764 std::vector<MVT::ValueType> NodeTys;
1765 NodeTys.push_back(MVT::Other); // Returns a chain
1766 NodeTys.push_back(MVT::Flag); // Returns a flag for retval copy to use.
1768 SmallVector<SDOperand, 8> Ops;
1769 unsigned CallOpc = isMachoABI? PPCISD::CALL_Macho : PPCISD::CALL_ELF;
1771 // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every
1772 // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol
1773 // node so that legalize doesn't hack it.
1774 if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
1775 Callee = DAG.getTargetGlobalAddress(G->getGlobal(), Callee.getValueType());
1776 else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee))
1777 Callee = DAG.getTargetExternalSymbol(S->getSymbol(), Callee.getValueType());
1778 else if (SDNode *Dest = isBLACompatibleAddress(Callee, DAG))
1779 // If this is an absolute destination address, use the munged value.
1780 Callee = SDOperand(Dest, 0);
1781 else {
1782 // Otherwise, this is an indirect call. We have to use a MTCTR/BCTRL pair
1783 // to do the call, we can't use PPCISD::CALL.
1784 SDOperand MTCTROps[] = {Chain, Callee, InFlag};
1785 Chain = DAG.getNode(PPCISD::MTCTR, NodeTys, MTCTROps, 2+(InFlag.Val!=0));
1786 InFlag = Chain.getValue(1);
1788 // Copy the callee address into R12 on darwin.
1789 if (isMachoABI) {
1790 Chain = DAG.getCopyToReg(Chain, PPC::R12, Callee, InFlag);
1791 InFlag = Chain.getValue(1);
1794 NodeTys.clear();
1795 NodeTys.push_back(MVT::Other);
1796 NodeTys.push_back(MVT::Flag);
1797 Ops.push_back(Chain);
1798 CallOpc = isMachoABI ? PPCISD::BCTRL_Macho : PPCISD::BCTRL_ELF;
1799 Callee.Val = 0;
1802 // If this is a direct call, pass the chain and the callee.
1803 if (Callee.Val) {
1804 Ops.push_back(Chain);
1805 Ops.push_back(Callee);
1808 // Add argument registers to the end of the list so that they are known live
1809 // into the call.
1810 for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i)
1811 Ops.push_back(DAG.getRegister(RegsToPass[i].first,
1812 RegsToPass[i].second.getValueType()));
1814 if (InFlag.Val)
1815 Ops.push_back(InFlag);
1816 Chain = DAG.getNode(CallOpc, NodeTys, &Ops[0], Ops.size());
1817 InFlag = Chain.getValue(1);
1819 Chain = DAG.getCALLSEQ_END(Chain,
1820 DAG.getConstant(NumBytes, PtrVT),
1821 DAG.getConstant(0, PtrVT),
1822 InFlag);
1823 if (Op.Val->getValueType(0) != MVT::Other)
1824 InFlag = Chain.getValue(1);
1826 SDOperand ResultVals[3];
1827 unsigned NumResults = 0;
1828 NodeTys.clear();
1830 // If the call has results, copy the values out of the ret val registers.
1831 switch (Op.Val->getValueType(0)) {
1832 default: assert(0 && "Unexpected ret value!");
1833 case MVT::Other: break;
1834 case MVT::i32:
1835 if (Op.Val->getValueType(1) == MVT::i32) {
1836 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1837 ResultVals[0] = Chain.getValue(0);
1838 Chain = DAG.getCopyFromReg(Chain, PPC::R4, MVT::i32,
1839 Chain.getValue(2)).getValue(1);
1840 ResultVals[1] = Chain.getValue(0);
1841 NumResults = 2;
1842 NodeTys.push_back(MVT::i32);
1843 } else {
1844 Chain = DAG.getCopyFromReg(Chain, PPC::R3, MVT::i32, InFlag).getValue(1);
1845 ResultVals[0] = Chain.getValue(0);
1846 NumResults = 1;
1848 NodeTys.push_back(MVT::i32);
1849 break;
1850 case MVT::i64:
1851 Chain = DAG.getCopyFromReg(Chain, PPC::X3, MVT::i64, InFlag).getValue(1);
1852 ResultVals[0] = Chain.getValue(0);
1853 NumResults = 1;
1854 NodeTys.push_back(MVT::i64);
1855 break;
1856 case MVT::f64:
1857 if (Op.Val->getValueType(1) == MVT::f64) {
1858 Chain = DAG.getCopyFromReg(Chain, PPC::F1, MVT::f64, InFlag).getValue(1);
1859 ResultVals[0] = Chain.getValue(0);
1860 Chain = DAG.getCopyFromReg(Chain, PPC::F2, MVT::f64,
1861 Chain.getValue(2)).getValue(1);
1862 ResultVals[1] = Chain.getValue(0);
1863 NumResults = 2;
1864 NodeTys.push_back(MVT::f64);
1865 NodeTys.push_back(MVT::f64);
1866 break;
1868 // else fall through
1869 case MVT::f32:
1870 Chain = DAG.getCopyFromReg(Chain, PPC::F1, Op.Val->getValueType(0),
1871 InFlag).getValue(1);
1872 ResultVals[0] = Chain.getValue(0);
1873 NumResults = 1;
1874 NodeTys.push_back(Op.Val->getValueType(0));
1875 break;
1876 case MVT::v4f32:
1877 case MVT::v4i32:
1878 case MVT::v8i16:
1879 case MVT::v16i8:
1880 Chain = DAG.getCopyFromReg(Chain, PPC::V2, Op.Val->getValueType(0),
1881 InFlag).getValue(1);
1882 ResultVals[0] = Chain.getValue(0);
1883 NumResults = 1;
1884 NodeTys.push_back(Op.Val->getValueType(0));
1885 break;
1888 NodeTys.push_back(MVT::Other);
1890 // If the function returns void, just return the chain.
1891 if (NumResults == 0)
1892 return Chain;
1894 // Otherwise, merge everything together with a MERGE_VALUES node.
1895 ResultVals[NumResults++] = Chain;
1896 SDOperand Res = DAG.getNode(ISD::MERGE_VALUES, NodeTys,
1897 ResultVals, NumResults);
1898 return Res.getValue(Op.ResNo);
1901 static SDOperand LowerRET(SDOperand Op, SelectionDAG &DAG, TargetMachine &TM) {
1902 SmallVector<CCValAssign, 16> RVLocs;
1903 unsigned CC = DAG.getMachineFunction().getFunction()->getCallingConv();
1904 bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1905 CCState CCInfo(CC, isVarArg, TM, RVLocs);
1906 CCInfo.AnalyzeReturn(Op.Val, RetCC_PPC);
1908 // If this is the first return lowered for this function, add the regs to the
1909 // liveout set for the function.
1910 if (DAG.getMachineFunction().getRegInfo().liveout_empty()) {
1911 for (unsigned i = 0; i != RVLocs.size(); ++i)
1912 DAG.getMachineFunction().getRegInfo().addLiveOut(RVLocs[i].getLocReg());
1915 SDOperand Chain = Op.getOperand(0);
1916 SDOperand Flag;
1918 // Copy the result values into the output registers.
1919 for (unsigned i = 0; i != RVLocs.size(); ++i) {
1920 CCValAssign &VA = RVLocs[i];
1921 assert(VA.isRegLoc() && "Can only return in registers!");
1922 Chain = DAG.getCopyToReg(Chain, VA.getLocReg(), Op.getOperand(i*2+1), Flag);
1923 Flag = Chain.getValue(1);
1926 if (Flag.Val)
1927 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain, Flag);
1928 else
1929 return DAG.getNode(PPCISD::RET_FLAG, MVT::Other, Chain);
1932 static SDOperand LowerSTACKRESTORE(SDOperand Op, SelectionDAG &DAG,
1933 const PPCSubtarget &Subtarget) {
1934 // When we pop the dynamic allocation we need to restore the SP link.
1936 // Get the corect type for pointers.
1937 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1939 // Construct the stack pointer operand.
1940 bool IsPPC64 = Subtarget.isPPC64();
1941 unsigned SP = IsPPC64 ? PPC::X1 : PPC::R1;
1942 SDOperand StackPtr = DAG.getRegister(SP, PtrVT);
1944 // Get the operands for the STACKRESTORE.
1945 SDOperand Chain = Op.getOperand(0);
1946 SDOperand SaveSP = Op.getOperand(1);
1948 // Load the old link SP.
1949 SDOperand LoadLinkSP = DAG.getLoad(PtrVT, Chain, StackPtr, NULL, 0);
1951 // Restore the stack pointer.
1952 Chain = DAG.getCopyToReg(LoadLinkSP.getValue(1), SP, SaveSP);
1954 // Store the old link SP.
1955 return DAG.getStore(Chain, LoadLinkSP, StackPtr, NULL, 0);
1958 static SDOperand LowerDYNAMIC_STACKALLOC(SDOperand Op, SelectionDAG &DAG,
1959 const PPCSubtarget &Subtarget) {
1960 MachineFunction &MF = DAG.getMachineFunction();
1961 bool IsPPC64 = Subtarget.isPPC64();
1962 bool isMachoABI = Subtarget.isMachoABI();
1964 // Get current frame pointer save index. The users of this index will be
1965 // primarily DYNALLOC instructions.
1966 PPCFunctionInfo *FI = MF.getInfo<PPCFunctionInfo>();
1967 int FPSI = FI->getFramePointerSaveIndex();
1969 // If the frame pointer save index hasn't been defined yet.
1970 if (!FPSI) {
1971 // Find out what the fix offset of the frame pointer save area.
1972 int FPOffset = PPCFrameInfo::getFramePointerSaveOffset(IsPPC64, isMachoABI);
1974 // Allocate the frame index for frame pointer save area.
1975 FPSI = MF.getFrameInfo()->CreateFixedObject(IsPPC64? 8 : 4, FPOffset);
1976 // Save the result.
1977 FI->setFramePointerSaveIndex(FPSI);
1980 // Get the inputs.
1981 SDOperand Chain = Op.getOperand(0);
1982 SDOperand Size = Op.getOperand(1);
1984 // Get the corect type for pointers.
1985 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
1986 // Negate the size.
1987 SDOperand NegSize = DAG.getNode(ISD::SUB, PtrVT,
1988 DAG.getConstant(0, PtrVT), Size);
1989 // Construct a node for the frame pointer save index.
1990 SDOperand FPSIdx = DAG.getFrameIndex(FPSI, PtrVT);
1991 // Build a DYNALLOC node.
1992 SDOperand Ops[3] = { Chain, NegSize, FPSIdx };
1993 SDVTList VTs = DAG.getVTList(PtrVT, MVT::Other);
1994 return DAG.getNode(PPCISD::DYNALLOC, VTs, Ops, 3);
1998 /// LowerSELECT_CC - Lower floating point select_cc's into fsel instruction when
1999 /// possible.
2000 static SDOperand LowerSELECT_CC(SDOperand Op, SelectionDAG &DAG) {
2001 // Not FP? Not a fsel.
2002 if (!MVT::isFloatingPoint(Op.getOperand(0).getValueType()) ||
2003 !MVT::isFloatingPoint(Op.getOperand(2).getValueType()))
2004 return SDOperand();
2006 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(4))->get();
2008 // Cannot handle SETEQ/SETNE.
2009 if (CC == ISD::SETEQ || CC == ISD::SETNE) return SDOperand();
2011 MVT::ValueType ResVT = Op.getValueType();
2012 MVT::ValueType CmpVT = Op.getOperand(0).getValueType();
2013 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2014 SDOperand TV = Op.getOperand(2), FV = Op.getOperand(3);
2016 // If the RHS of the comparison is a 0.0, we don't need to do the
2017 // subtraction at all.
2018 if (isFloatingPointZero(RHS))
2019 switch (CC) {
2020 default: break; // SETUO etc aren't handled by fsel.
2021 case ISD::SETULT:
2022 case ISD::SETOLT:
2023 case ISD::SETLT:
2024 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2025 case ISD::SETUGE:
2026 case ISD::SETOGE:
2027 case ISD::SETGE:
2028 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2029 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2030 return DAG.getNode(PPCISD::FSEL, ResVT, LHS, TV, FV);
2031 case ISD::SETUGT:
2032 case ISD::SETOGT:
2033 case ISD::SETGT:
2034 std::swap(TV, FV); // fsel is natively setge, swap operands for setlt
2035 case ISD::SETULE:
2036 case ISD::SETOLE:
2037 case ISD::SETLE:
2038 if (LHS.getValueType() == MVT::f32) // Comparison is always 64-bits
2039 LHS = DAG.getNode(ISD::FP_EXTEND, MVT::f64, LHS);
2040 return DAG.getNode(PPCISD::FSEL, ResVT,
2041 DAG.getNode(ISD::FNEG, MVT::f64, LHS), TV, FV);
2044 SDOperand Cmp;
2045 switch (CC) {
2046 default: break; // SETUO etc aren't handled by fsel.
2047 case ISD::SETULT:
2048 case ISD::SETOLT:
2049 case ISD::SETLT:
2050 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2051 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2052 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2053 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2054 case ISD::SETUGE:
2055 case ISD::SETOGE:
2056 case ISD::SETGE:
2057 Cmp = DAG.getNode(ISD::FSUB, CmpVT, LHS, RHS);
2058 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2059 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2060 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2061 case ISD::SETUGT:
2062 case ISD::SETOGT:
2063 case ISD::SETGT:
2064 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2065 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2066 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2067 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, FV, TV);
2068 case ISD::SETULE:
2069 case ISD::SETOLE:
2070 case ISD::SETLE:
2071 Cmp = DAG.getNode(ISD::FSUB, CmpVT, RHS, LHS);
2072 if (Cmp.getValueType() == MVT::f32) // Comparison is always 64-bits
2073 Cmp = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Cmp);
2074 return DAG.getNode(PPCISD::FSEL, ResVT, Cmp, TV, FV);
2076 return SDOperand();
2079 // FIXME: Split this code up when LegalizeDAGTypes lands.
2080 static SDOperand LowerFP_TO_SINT(SDOperand Op, SelectionDAG &DAG) {
2081 assert(MVT::isFloatingPoint(Op.getOperand(0).getValueType()));
2082 SDOperand Src = Op.getOperand(0);
2083 if (Src.getValueType() == MVT::f32)
2084 Src = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Src);
2086 SDOperand Tmp;
2087 switch (Op.getValueType()) {
2088 default: assert(0 && "Unhandled FP_TO_SINT type in custom expander!");
2089 case MVT::i32:
2090 Tmp = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Src);
2091 break;
2092 case MVT::i64:
2093 Tmp = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Src);
2094 break;
2097 // Convert the FP value to an int value through memory.
2098 SDOperand FIPtr = DAG.CreateStackTemporary(MVT::f64);
2100 // Emit a store to the stack slot.
2101 SDOperand Chain = DAG.getStore(DAG.getEntryNode(), Tmp, FIPtr, NULL, 0);
2103 // Result is a load from the stack slot. If loading 4 bytes, make sure to
2104 // add in a bias.
2105 if (Op.getValueType() == MVT::i32)
2106 FIPtr = DAG.getNode(ISD::ADD, FIPtr.getValueType(), FIPtr,
2107 DAG.getConstant(4, FIPtr.getValueType()));
2108 return DAG.getLoad(Op.getValueType(), Chain, FIPtr, NULL, 0);
2111 static SDOperand LowerFP_ROUND_INREG(SDOperand Op, SelectionDAG &DAG) {
2112 assert(Op.getValueType() == MVT::ppcf128);
2113 SDNode *Node = Op.Val;
2114 assert(Node->getOperand(0).getValueType() == MVT::ppcf128);
2115 assert(Node->getOperand(0).Val->getOpcode() == ISD::BUILD_PAIR);
2116 SDOperand Lo = Node->getOperand(0).Val->getOperand(0);
2117 SDOperand Hi = Node->getOperand(0).Val->getOperand(1);
2119 // This sequence changes FPSCR to do round-to-zero, adds the two halves
2120 // of the long double, and puts FPSCR back the way it was. We do not
2121 // actually model FPSCR.
2122 std::vector<MVT::ValueType> NodeTys;
2123 SDOperand Ops[4], Result, MFFSreg, InFlag, FPreg;
2125 NodeTys.push_back(MVT::f64); // Return register
2126 NodeTys.push_back(MVT::Flag); // Returns a flag for later insns
2127 Result = DAG.getNode(PPCISD::MFFS, NodeTys, &InFlag, 0);
2128 MFFSreg = Result.getValue(0);
2129 InFlag = Result.getValue(1);
2131 NodeTys.clear();
2132 NodeTys.push_back(MVT::Flag); // Returns a flag
2133 Ops[0] = DAG.getConstant(31, MVT::i32);
2134 Ops[1] = InFlag;
2135 Result = DAG.getNode(PPCISD::MTFSB1, NodeTys, Ops, 2);
2136 InFlag = Result.getValue(0);
2138 NodeTys.clear();
2139 NodeTys.push_back(MVT::Flag); // Returns a flag
2140 Ops[0] = DAG.getConstant(30, MVT::i32);
2141 Ops[1] = InFlag;
2142 Result = DAG.getNode(PPCISD::MTFSB0, NodeTys, Ops, 2);
2143 InFlag = Result.getValue(0);
2145 NodeTys.clear();
2146 NodeTys.push_back(MVT::f64); // result of add
2147 NodeTys.push_back(MVT::Flag); // Returns a flag
2148 Ops[0] = Lo;
2149 Ops[1] = Hi;
2150 Ops[2] = InFlag;
2151 Result = DAG.getNode(PPCISD::FADDRTZ, NodeTys, Ops, 3);
2152 FPreg = Result.getValue(0);
2153 InFlag = Result.getValue(1);
2155 NodeTys.clear();
2156 NodeTys.push_back(MVT::f64);
2157 Ops[0] = DAG.getConstant(1, MVT::i32);
2158 Ops[1] = MFFSreg;
2159 Ops[2] = FPreg;
2160 Ops[3] = InFlag;
2161 Result = DAG.getNode(PPCISD::MTFSF, NodeTys, Ops, 4);
2162 FPreg = Result.getValue(0);
2164 // We know the low half is about to be thrown away, so just use something
2165 // convenient.
2166 return DAG.getNode(ISD::BUILD_PAIR, Lo.getValueType(), FPreg, FPreg);
2169 static SDOperand LowerSINT_TO_FP(SDOperand Op, SelectionDAG &DAG) {
2170 if (Op.getOperand(0).getValueType() == MVT::i64) {
2171 SDOperand Bits = DAG.getNode(ISD::BIT_CONVERT, MVT::f64, Op.getOperand(0));
2172 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Bits);
2173 if (Op.getValueType() == MVT::f32)
2174 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2175 return FP;
2178 assert(Op.getOperand(0).getValueType() == MVT::i32 &&
2179 "Unhandled SINT_TO_FP type in custom expander!");
2180 // Since we only generate this in 64-bit mode, we can take advantage of
2181 // 64-bit registers. In particular, sign extend the input value into the
2182 // 64-bit register with extsw, store the WHOLE 64-bit value into the stack
2183 // then lfd it and fcfid it.
2184 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2185 int FrameIdx = FrameInfo->CreateStackObject(8, 8);
2186 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2187 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2189 SDOperand Ext64 = DAG.getNode(PPCISD::EXTSW_32, MVT::i32,
2190 Op.getOperand(0));
2192 // STD the extended value into the stack slot.
2193 SDOperand Store = DAG.getNode(PPCISD::STD_32, MVT::Other,
2194 DAG.getEntryNode(), Ext64, FIdx,
2195 DAG.getSrcValue(NULL));
2196 // Load the value as a double.
2197 SDOperand Ld = DAG.getLoad(MVT::f64, Store, FIdx, NULL, 0);
2199 // FCFID it and return it.
2200 SDOperand FP = DAG.getNode(PPCISD::FCFID, MVT::f64, Ld);
2201 if (Op.getValueType() == MVT::f32)
2202 FP = DAG.getNode(ISD::FP_ROUND, MVT::f32, FP);
2203 return FP;
2206 static SDOperand LowerSHL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2207 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2208 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SHL!");
2210 // Expand into a bunch of logical ops. Note that these ops
2211 // depend on the PPC behavior for oversized shift amounts.
2212 SDOperand Lo = Op.getOperand(0);
2213 SDOperand Hi = Op.getOperand(1);
2214 SDOperand Amt = Op.getOperand(2);
2216 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2217 DAG.getConstant(32, MVT::i32), Amt);
2218 SDOperand Tmp2 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Amt);
2219 SDOperand Tmp3 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Tmp1);
2220 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2221 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2222 DAG.getConstant(-32U, MVT::i32));
2223 SDOperand Tmp6 = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Tmp5);
2224 SDOperand OutHi = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2225 SDOperand OutLo = DAG.getNode(PPCISD::SHL, MVT::i32, Lo, Amt);
2226 SDOperand OutOps[] = { OutLo, OutHi };
2227 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2228 OutOps, 2);
2231 static SDOperand LowerSRL_PARTS(SDOperand Op, SelectionDAG &DAG) {
2232 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2233 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRL!");
2235 // Otherwise, expand into a bunch of logical ops. Note that these ops
2236 // depend on the PPC behavior for oversized shift amounts.
2237 SDOperand Lo = Op.getOperand(0);
2238 SDOperand Hi = Op.getOperand(1);
2239 SDOperand Amt = Op.getOperand(2);
2241 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2242 DAG.getConstant(32, MVT::i32), Amt);
2243 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2244 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2245 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2246 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2247 DAG.getConstant(-32U, MVT::i32));
2248 SDOperand Tmp6 = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Tmp5);
2249 SDOperand OutLo = DAG.getNode(ISD::OR, MVT::i32, Tmp4, Tmp6);
2250 SDOperand OutHi = DAG.getNode(PPCISD::SRL, MVT::i32, Hi, Amt);
2251 SDOperand OutOps[] = { OutLo, OutHi };
2252 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2253 OutOps, 2);
2256 static SDOperand LowerSRA_PARTS(SDOperand Op, SelectionDAG &DAG) {
2257 assert(Op.getNumOperands() == 3 && Op.getValueType() == MVT::i32 &&
2258 Op.getOperand(1).getValueType() == MVT::i32 && "Unexpected SRA!");
2260 // Otherwise, expand into a bunch of logical ops, followed by a select_cc.
2261 SDOperand Lo = Op.getOperand(0);
2262 SDOperand Hi = Op.getOperand(1);
2263 SDOperand Amt = Op.getOperand(2);
2265 SDOperand Tmp1 = DAG.getNode(ISD::SUB, MVT::i32,
2266 DAG.getConstant(32, MVT::i32), Amt);
2267 SDOperand Tmp2 = DAG.getNode(PPCISD::SRL, MVT::i32, Lo, Amt);
2268 SDOperand Tmp3 = DAG.getNode(PPCISD::SHL, MVT::i32, Hi, Tmp1);
2269 SDOperand Tmp4 = DAG.getNode(ISD::OR , MVT::i32, Tmp2, Tmp3);
2270 SDOperand Tmp5 = DAG.getNode(ISD::ADD, MVT::i32, Amt,
2271 DAG.getConstant(-32U, MVT::i32));
2272 SDOperand Tmp6 = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Tmp5);
2273 SDOperand OutHi = DAG.getNode(PPCISD::SRA, MVT::i32, Hi, Amt);
2274 SDOperand OutLo = DAG.getSelectCC(Tmp5, DAG.getConstant(0, MVT::i32),
2275 Tmp4, Tmp6, ISD::SETLE);
2276 SDOperand OutOps[] = { OutLo, OutHi };
2277 return DAG.getNode(ISD::MERGE_VALUES, DAG.getVTList(MVT::i32, MVT::i32),
2278 OutOps, 2);
2281 //===----------------------------------------------------------------------===//
2282 // Vector related lowering.
2285 // If this is a vector of constants or undefs, get the bits. A bit in
2286 // UndefBits is set if the corresponding element of the vector is an
2287 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2288 // zero. Return true if this is not an array of constants, false if it is.
2290 static bool GetConstantBuildVectorBits(SDNode *BV, uint64_t VectorBits[2],
2291 uint64_t UndefBits[2]) {
2292 // Start with zero'd results.
2293 VectorBits[0] = VectorBits[1] = UndefBits[0] = UndefBits[1] = 0;
2295 unsigned EltBitSize = MVT::getSizeInBits(BV->getOperand(0).getValueType());
2296 for (unsigned i = 0, e = BV->getNumOperands(); i != e; ++i) {
2297 SDOperand OpVal = BV->getOperand(i);
2299 unsigned PartNo = i >= e/2; // In the upper 128 bits?
2300 unsigned SlotNo = e/2 - (i & (e/2-1))-1; // Which subpiece of the uint64_t.
2302 uint64_t EltBits = 0;
2303 if (OpVal.getOpcode() == ISD::UNDEF) {
2304 uint64_t EltUndefBits = ~0U >> (32-EltBitSize);
2305 UndefBits[PartNo] |= EltUndefBits << (SlotNo*EltBitSize);
2306 continue;
2307 } else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal)) {
2308 EltBits = CN->getValue() & (~0U >> (32-EltBitSize));
2309 } else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal)) {
2310 assert(CN->getValueType(0) == MVT::f32 &&
2311 "Only one legal FP vector type!");
2312 EltBits = FloatToBits(CN->getValueAPF().convertToFloat());
2313 } else {
2314 // Nonconstant element.
2315 return true;
2318 VectorBits[PartNo] |= EltBits << (SlotNo*EltBitSize);
2321 //printf("%llx %llx %llx %llx\n",
2322 // VectorBits[0], VectorBits[1], UndefBits[0], UndefBits[1]);
2323 return false;
2326 // If this is a splat (repetition) of a value across the whole vector, return
2327 // the smallest size that splats it. For example, "0x01010101010101..." is a
2328 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2329 // SplatSize = 1 byte.
2330 static bool isConstantSplat(const uint64_t Bits128[2],
2331 const uint64_t Undef128[2],
2332 unsigned &SplatBits, unsigned &SplatUndef,
2333 unsigned &SplatSize) {
2335 // Don't let undefs prevent splats from matching. See if the top 64-bits are
2336 // the same as the lower 64-bits, ignoring undefs.
2337 if ((Bits128[0] & ~Undef128[1]) != (Bits128[1] & ~Undef128[0]))
2338 return false; // Can't be a splat if two pieces don't match.
2340 uint64_t Bits64 = Bits128[0] | Bits128[1];
2341 uint64_t Undef64 = Undef128[0] & Undef128[1];
2343 // Check that the top 32-bits are the same as the lower 32-bits, ignoring
2344 // undefs.
2345 if ((Bits64 & (~Undef64 >> 32)) != ((Bits64 >> 32) & ~Undef64))
2346 return false; // Can't be a splat if two pieces don't match.
2348 uint32_t Bits32 = uint32_t(Bits64) | uint32_t(Bits64 >> 32);
2349 uint32_t Undef32 = uint32_t(Undef64) & uint32_t(Undef64 >> 32);
2351 // If the top 16-bits are different than the lower 16-bits, ignoring
2352 // undefs, we have an i32 splat.
2353 if ((Bits32 & (~Undef32 >> 16)) != ((Bits32 >> 16) & ~Undef32)) {
2354 SplatBits = Bits32;
2355 SplatUndef = Undef32;
2356 SplatSize = 4;
2357 return true;
2360 uint16_t Bits16 = uint16_t(Bits32) | uint16_t(Bits32 >> 16);
2361 uint16_t Undef16 = uint16_t(Undef32) & uint16_t(Undef32 >> 16);
2363 // If the top 8-bits are different than the lower 8-bits, ignoring
2364 // undefs, we have an i16 splat.
2365 if ((Bits16 & (uint16_t(~Undef16) >> 8)) != ((Bits16 >> 8) & ~Undef16)) {
2366 SplatBits = Bits16;
2367 SplatUndef = Undef16;
2368 SplatSize = 2;
2369 return true;
2372 // Otherwise, we have an 8-bit splat.
2373 SplatBits = uint8_t(Bits16) | uint8_t(Bits16 >> 8);
2374 SplatUndef = uint8_t(Undef16) & uint8_t(Undef16 >> 8);
2375 SplatSize = 1;
2376 return true;
2379 /// BuildSplatI - Build a canonical splati of Val with an element size of
2380 /// SplatSize. Cast the result to VT.
2381 static SDOperand BuildSplatI(int Val, unsigned SplatSize, MVT::ValueType VT,
2382 SelectionDAG &DAG) {
2383 assert(Val >= -16 && Val <= 15 && "vsplti is out of range!");
2385 static const MVT::ValueType VTys[] = { // canonical VT to use for each size.
2386 MVT::v16i8, MVT::v8i16, MVT::Other, MVT::v4i32
2389 MVT::ValueType ReqVT = VT != MVT::Other ? VT : VTys[SplatSize-1];
2391 // Force vspltis[hw] -1 to vspltisb -1 to canonicalize.
2392 if (Val == -1)
2393 SplatSize = 1;
2395 MVT::ValueType CanonicalVT = VTys[SplatSize-1];
2397 // Build a canonical splat for this value.
2398 SDOperand Elt = DAG.getConstant(Val, MVT::getVectorElementType(CanonicalVT));
2399 SmallVector<SDOperand, 8> Ops;
2400 Ops.assign(MVT::getVectorNumElements(CanonicalVT), Elt);
2401 SDOperand Res = DAG.getNode(ISD::BUILD_VECTOR, CanonicalVT,
2402 &Ops[0], Ops.size());
2403 return DAG.getNode(ISD::BIT_CONVERT, ReqVT, Res);
2406 /// BuildIntrinsicOp - Return a binary operator intrinsic node with the
2407 /// specified intrinsic ID.
2408 static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand LHS, SDOperand RHS,
2409 SelectionDAG &DAG,
2410 MVT::ValueType DestVT = MVT::Other) {
2411 if (DestVT == MVT::Other) DestVT = LHS.getValueType();
2412 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2413 DAG.getConstant(IID, MVT::i32), LHS, RHS);
2416 /// BuildIntrinsicOp - Return a ternary operator intrinsic node with the
2417 /// specified intrinsic ID.
2418 static SDOperand BuildIntrinsicOp(unsigned IID, SDOperand Op0, SDOperand Op1,
2419 SDOperand Op2, SelectionDAG &DAG,
2420 MVT::ValueType DestVT = MVT::Other) {
2421 if (DestVT == MVT::Other) DestVT = Op0.getValueType();
2422 return DAG.getNode(ISD::INTRINSIC_WO_CHAIN, DestVT,
2423 DAG.getConstant(IID, MVT::i32), Op0, Op1, Op2);
2427 /// BuildVSLDOI - Return a VECTOR_SHUFFLE that is a vsldoi of the specified
2428 /// amount. The result has the specified value type.
2429 static SDOperand BuildVSLDOI(SDOperand LHS, SDOperand RHS, unsigned Amt,
2430 MVT::ValueType VT, SelectionDAG &DAG) {
2431 // Force LHS/RHS to be the right type.
2432 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, LHS);
2433 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, RHS);
2435 SDOperand Ops[16];
2436 for (unsigned i = 0; i != 16; ++i)
2437 Ops[i] = DAG.getConstant(i+Amt, MVT::i32);
2438 SDOperand T = DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, LHS, RHS,
2439 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops,16));
2440 return DAG.getNode(ISD::BIT_CONVERT, VT, T);
2443 // If this is a case we can't handle, return null and let the default
2444 // expansion code take care of it. If we CAN select this case, and if it
2445 // selects to a single instruction, return Op. Otherwise, if we can codegen
2446 // this case more efficiently than a constant pool load, lower it to the
2447 // sequence of ops that should be used.
2448 static SDOperand LowerBUILD_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2449 // If this is a vector of constants or undefs, get the bits. A bit in
2450 // UndefBits is set if the corresponding element of the vector is an
2451 // ISD::UNDEF value. For undefs, the corresponding VectorBits values are
2452 // zero.
2453 uint64_t VectorBits[2];
2454 uint64_t UndefBits[2];
2455 if (GetConstantBuildVectorBits(Op.Val, VectorBits, UndefBits))
2456 return SDOperand(); // Not a constant vector.
2458 // If this is a splat (repetition) of a value across the whole vector, return
2459 // the smallest size that splats it. For example, "0x01010101010101..." is a
2460 // splat of 0x01, 0x0101, and 0x01010101. We return SplatBits = 0x01 and
2461 // SplatSize = 1 byte.
2462 unsigned SplatBits, SplatUndef, SplatSize;
2463 if (isConstantSplat(VectorBits, UndefBits, SplatBits, SplatUndef, SplatSize)){
2464 bool HasAnyUndefs = (UndefBits[0] | UndefBits[1]) != 0;
2466 // First, handle single instruction cases.
2468 // All zeros?
2469 if (SplatBits == 0) {
2470 // Canonicalize all zero vectors to be v4i32.
2471 if (Op.getValueType() != MVT::v4i32 || HasAnyUndefs) {
2472 SDOperand Z = DAG.getConstant(0, MVT::i32);
2473 Z = DAG.getNode(ISD::BUILD_VECTOR, MVT::v4i32, Z, Z, Z, Z);
2474 Op = DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Z);
2476 return Op;
2479 // If the sign extended value is in the range [-16,15], use VSPLTI[bhw].
2480 int32_t SextVal= int32_t(SplatBits << (32-8*SplatSize)) >> (32-8*SplatSize);
2481 if (SextVal >= -16 && SextVal <= 15)
2482 return BuildSplatI(SextVal, SplatSize, Op.getValueType(), DAG);
2485 // Two instruction sequences.
2487 // If this value is in the range [-32,30] and is even, use:
2488 // tmp = VSPLTI[bhw], result = add tmp, tmp
2489 if (SextVal >= -32 && SextVal <= 30 && (SextVal & 1) == 0) {
2490 Op = BuildSplatI(SextVal >> 1, SplatSize, Op.getValueType(), DAG);
2491 return DAG.getNode(ISD::ADD, Op.getValueType(), Op, Op);
2494 // If this is 0x8000_0000 x 4, turn into vspltisw + vslw. If it is
2495 // 0x7FFF_FFFF x 4, turn it into not(0x8000_0000). This is important
2496 // for fneg/fabs.
2497 if (SplatSize == 4 && SplatBits == (0x7FFFFFFF&~SplatUndef)) {
2498 // Make -1 and vspltisw -1:
2499 SDOperand OnesV = BuildSplatI(-1, 4, MVT::v4i32, DAG);
2501 // Make the VSLW intrinsic, computing 0x8000_0000.
2502 SDOperand Res = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, OnesV,
2503 OnesV, DAG);
2505 // xor by OnesV to invert it.
2506 Res = DAG.getNode(ISD::XOR, MVT::v4i32, Res, OnesV);
2507 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2510 // Check to see if this is a wide variety of vsplti*, binop self cases.
2511 unsigned SplatBitSize = SplatSize*8;
2512 static const signed char SplatCsts[] = {
2513 -1, 1, -2, 2, -3, 3, -4, 4, -5, 5, -6, 6, -7, 7,
2514 -8, 8, -9, 9, -10, 10, -11, 11, -12, 12, -13, 13, 14, -14, 15, -15, -16
2517 for (unsigned idx = 0; idx < array_lengthof(SplatCsts); ++idx) {
2518 // Indirect through the SplatCsts array so that we favor 'vsplti -1' for
2519 // cases which are ambiguous (e.g. formation of 0x8000_0000). 'vsplti -1'
2520 int i = SplatCsts[idx];
2522 // Figure out what shift amount will be used by altivec if shifted by i in
2523 // this splat size.
2524 unsigned TypeShiftAmt = i & (SplatBitSize-1);
2526 // vsplti + shl self.
2527 if (SextVal == (i << (int)TypeShiftAmt)) {
2528 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2529 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2530 Intrinsic::ppc_altivec_vslb, Intrinsic::ppc_altivec_vslh, 0,
2531 Intrinsic::ppc_altivec_vslw
2533 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2534 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2537 // vsplti + srl self.
2538 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2539 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2540 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2541 Intrinsic::ppc_altivec_vsrb, Intrinsic::ppc_altivec_vsrh, 0,
2542 Intrinsic::ppc_altivec_vsrw
2544 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2545 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2548 // vsplti + sra self.
2549 if (SextVal == (int)((unsigned)i >> TypeShiftAmt)) {
2550 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2551 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2552 Intrinsic::ppc_altivec_vsrab, Intrinsic::ppc_altivec_vsrah, 0,
2553 Intrinsic::ppc_altivec_vsraw
2555 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2556 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2559 // vsplti + rol self.
2560 if (SextVal == (int)(((unsigned)i << TypeShiftAmt) |
2561 ((unsigned)i >> (SplatBitSize-TypeShiftAmt)))) {
2562 SDOperand Res = BuildSplatI(i, SplatSize, MVT::Other, DAG);
2563 static const unsigned IIDs[] = { // Intrinsic to use for each size.
2564 Intrinsic::ppc_altivec_vrlb, Intrinsic::ppc_altivec_vrlh, 0,
2565 Intrinsic::ppc_altivec_vrlw
2567 Res = BuildIntrinsicOp(IIDs[SplatSize-1], Res, Res, DAG);
2568 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Res);
2571 // t = vsplti c, result = vsldoi t, t, 1
2572 if (SextVal == ((i << 8) | (i >> (TypeShiftAmt-8)))) {
2573 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2574 return BuildVSLDOI(T, T, 1, Op.getValueType(), DAG);
2576 // t = vsplti c, result = vsldoi t, t, 2
2577 if (SextVal == ((i << 16) | (i >> (TypeShiftAmt-16)))) {
2578 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2579 return BuildVSLDOI(T, T, 2, Op.getValueType(), DAG);
2581 // t = vsplti c, result = vsldoi t, t, 3
2582 if (SextVal == ((i << 24) | (i >> (TypeShiftAmt-24)))) {
2583 SDOperand T = BuildSplatI(i, SplatSize, MVT::v16i8, DAG);
2584 return BuildVSLDOI(T, T, 3, Op.getValueType(), DAG);
2588 // Three instruction sequences.
2590 // Odd, in range [17,31]: (vsplti C)-(vsplti -16).
2591 if (SextVal >= 0 && SextVal <= 31) {
2592 SDOperand LHS = BuildSplatI(SextVal-16, SplatSize, MVT::Other, DAG);
2593 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2594 LHS = DAG.getNode(ISD::SUB, LHS.getValueType(), LHS, RHS);
2595 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2597 // Odd, in range [-31,-17]: (vsplti C)+(vsplti -16).
2598 if (SextVal >= -31 && SextVal <= 0) {
2599 SDOperand LHS = BuildSplatI(SextVal+16, SplatSize, MVT::Other, DAG);
2600 SDOperand RHS = BuildSplatI(-16, SplatSize, MVT::Other, DAG);
2601 LHS = DAG.getNode(ISD::ADD, LHS.getValueType(), LHS, RHS);
2602 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), LHS);
2606 return SDOperand();
2609 /// GeneratePerfectShuffle - Given an entry in the perfect-shuffle table, emit
2610 /// the specified operations to build the shuffle.
2611 static SDOperand GeneratePerfectShuffle(unsigned PFEntry, SDOperand LHS,
2612 SDOperand RHS, SelectionDAG &DAG) {
2613 unsigned OpNum = (PFEntry >> 26) & 0x0F;
2614 unsigned LHSID = (PFEntry >> 13) & ((1 << 13)-1);
2615 unsigned RHSID = (PFEntry >> 0) & ((1 << 13)-1);
2617 enum {
2618 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
2619 OP_VMRGHW,
2620 OP_VMRGLW,
2621 OP_VSPLTISW0,
2622 OP_VSPLTISW1,
2623 OP_VSPLTISW2,
2624 OP_VSPLTISW3,
2625 OP_VSLDOI4,
2626 OP_VSLDOI8,
2627 OP_VSLDOI12
2630 if (OpNum == OP_COPY) {
2631 if (LHSID == (1*9+2)*9+3) return LHS;
2632 assert(LHSID == ((4*9+5)*9+6)*9+7 && "Illegal OP_COPY!");
2633 return RHS;
2636 SDOperand OpLHS, OpRHS;
2637 OpLHS = GeneratePerfectShuffle(PerfectShuffleTable[LHSID], LHS, RHS, DAG);
2638 OpRHS = GeneratePerfectShuffle(PerfectShuffleTable[RHSID], LHS, RHS, DAG);
2640 unsigned ShufIdxs[16];
2641 switch (OpNum) {
2642 default: assert(0 && "Unknown i32 permute!");
2643 case OP_VMRGHW:
2644 ShufIdxs[ 0] = 0; ShufIdxs[ 1] = 1; ShufIdxs[ 2] = 2; ShufIdxs[ 3] = 3;
2645 ShufIdxs[ 4] = 16; ShufIdxs[ 5] = 17; ShufIdxs[ 6] = 18; ShufIdxs[ 7] = 19;
2646 ShufIdxs[ 8] = 4; ShufIdxs[ 9] = 5; ShufIdxs[10] = 6; ShufIdxs[11] = 7;
2647 ShufIdxs[12] = 20; ShufIdxs[13] = 21; ShufIdxs[14] = 22; ShufIdxs[15] = 23;
2648 break;
2649 case OP_VMRGLW:
2650 ShufIdxs[ 0] = 8; ShufIdxs[ 1] = 9; ShufIdxs[ 2] = 10; ShufIdxs[ 3] = 11;
2651 ShufIdxs[ 4] = 24; ShufIdxs[ 5] = 25; ShufIdxs[ 6] = 26; ShufIdxs[ 7] = 27;
2652 ShufIdxs[ 8] = 12; ShufIdxs[ 9] = 13; ShufIdxs[10] = 14; ShufIdxs[11] = 15;
2653 ShufIdxs[12] = 28; ShufIdxs[13] = 29; ShufIdxs[14] = 30; ShufIdxs[15] = 31;
2654 break;
2655 case OP_VSPLTISW0:
2656 for (unsigned i = 0; i != 16; ++i)
2657 ShufIdxs[i] = (i&3)+0;
2658 break;
2659 case OP_VSPLTISW1:
2660 for (unsigned i = 0; i != 16; ++i)
2661 ShufIdxs[i] = (i&3)+4;
2662 break;
2663 case OP_VSPLTISW2:
2664 for (unsigned i = 0; i != 16; ++i)
2665 ShufIdxs[i] = (i&3)+8;
2666 break;
2667 case OP_VSPLTISW3:
2668 for (unsigned i = 0; i != 16; ++i)
2669 ShufIdxs[i] = (i&3)+12;
2670 break;
2671 case OP_VSLDOI4:
2672 return BuildVSLDOI(OpLHS, OpRHS, 4, OpLHS.getValueType(), DAG);
2673 case OP_VSLDOI8:
2674 return BuildVSLDOI(OpLHS, OpRHS, 8, OpLHS.getValueType(), DAG);
2675 case OP_VSLDOI12:
2676 return BuildVSLDOI(OpLHS, OpRHS, 12, OpLHS.getValueType(), DAG);
2678 SDOperand Ops[16];
2679 for (unsigned i = 0; i != 16; ++i)
2680 Ops[i] = DAG.getConstant(ShufIdxs[i], MVT::i32);
2682 return DAG.getNode(ISD::VECTOR_SHUFFLE, OpLHS.getValueType(), OpLHS, OpRHS,
2683 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2686 /// LowerVECTOR_SHUFFLE - Return the code we lower for VECTOR_SHUFFLE. If this
2687 /// is a shuffle we can handle in a single instruction, return it. Otherwise,
2688 /// return the code it can be lowered into. Worst case, it can always be
2689 /// lowered into a vperm.
2690 static SDOperand LowerVECTOR_SHUFFLE(SDOperand Op, SelectionDAG &DAG) {
2691 SDOperand V1 = Op.getOperand(0);
2692 SDOperand V2 = Op.getOperand(1);
2693 SDOperand PermMask = Op.getOperand(2);
2695 // Cases that are handled by instructions that take permute immediates
2696 // (such as vsplt*) should be left as VECTOR_SHUFFLE nodes so they can be
2697 // selected by the instruction selector.
2698 if (V2.getOpcode() == ISD::UNDEF) {
2699 if (PPC::isSplatShuffleMask(PermMask.Val, 1) ||
2700 PPC::isSplatShuffleMask(PermMask.Val, 2) ||
2701 PPC::isSplatShuffleMask(PermMask.Val, 4) ||
2702 PPC::isVPKUWUMShuffleMask(PermMask.Val, true) ||
2703 PPC::isVPKUHUMShuffleMask(PermMask.Val, true) ||
2704 PPC::isVSLDOIShuffleMask(PermMask.Val, true) != -1 ||
2705 PPC::isVMRGLShuffleMask(PermMask.Val, 1, true) ||
2706 PPC::isVMRGLShuffleMask(PermMask.Val, 2, true) ||
2707 PPC::isVMRGLShuffleMask(PermMask.Val, 4, true) ||
2708 PPC::isVMRGHShuffleMask(PermMask.Val, 1, true) ||
2709 PPC::isVMRGHShuffleMask(PermMask.Val, 2, true) ||
2710 PPC::isVMRGHShuffleMask(PermMask.Val, 4, true)) {
2711 return Op;
2715 // Altivec has a variety of "shuffle immediates" that take two vector inputs
2716 // and produce a fixed permutation. If any of these match, do not lower to
2717 // VPERM.
2718 if (PPC::isVPKUWUMShuffleMask(PermMask.Val, false) ||
2719 PPC::isVPKUHUMShuffleMask(PermMask.Val, false) ||
2720 PPC::isVSLDOIShuffleMask(PermMask.Val, false) != -1 ||
2721 PPC::isVMRGLShuffleMask(PermMask.Val, 1, false) ||
2722 PPC::isVMRGLShuffleMask(PermMask.Val, 2, false) ||
2723 PPC::isVMRGLShuffleMask(PermMask.Val, 4, false) ||
2724 PPC::isVMRGHShuffleMask(PermMask.Val, 1, false) ||
2725 PPC::isVMRGHShuffleMask(PermMask.Val, 2, false) ||
2726 PPC::isVMRGHShuffleMask(PermMask.Val, 4, false))
2727 return Op;
2729 // Check to see if this is a shuffle of 4-byte values. If so, we can use our
2730 // perfect shuffle table to emit an optimal matching sequence.
2731 unsigned PFIndexes[4];
2732 bool isFourElementShuffle = true;
2733 for (unsigned i = 0; i != 4 && isFourElementShuffle; ++i) { // Element number
2734 unsigned EltNo = 8; // Start out undef.
2735 for (unsigned j = 0; j != 4; ++j) { // Intra-element byte.
2736 if (PermMask.getOperand(i*4+j).getOpcode() == ISD::UNDEF)
2737 continue; // Undef, ignore it.
2739 unsigned ByteSource =
2740 cast<ConstantSDNode>(PermMask.getOperand(i*4+j))->getValue();
2741 if ((ByteSource & 3) != j) {
2742 isFourElementShuffle = false;
2743 break;
2746 if (EltNo == 8) {
2747 EltNo = ByteSource/4;
2748 } else if (EltNo != ByteSource/4) {
2749 isFourElementShuffle = false;
2750 break;
2753 PFIndexes[i] = EltNo;
2756 // If this shuffle can be expressed as a shuffle of 4-byte elements, use the
2757 // perfect shuffle vector to determine if it is cost effective to do this as
2758 // discrete instructions, or whether we should use a vperm.
2759 if (isFourElementShuffle) {
2760 // Compute the index in the perfect shuffle table.
2761 unsigned PFTableIndex =
2762 PFIndexes[0]*9*9*9+PFIndexes[1]*9*9+PFIndexes[2]*9+PFIndexes[3];
2764 unsigned PFEntry = PerfectShuffleTable[PFTableIndex];
2765 unsigned Cost = (PFEntry >> 30);
2767 // Determining when to avoid vperm is tricky. Many things affect the cost
2768 // of vperm, particularly how many times the perm mask needs to be computed.
2769 // For example, if the perm mask can be hoisted out of a loop or is already
2770 // used (perhaps because there are multiple permutes with the same shuffle
2771 // mask?) the vperm has a cost of 1. OTOH, hoisting the permute mask out of
2772 // the loop requires an extra register.
2774 // As a compromise, we only emit discrete instructions if the shuffle can be
2775 // generated in 3 or fewer operations. When we have loop information
2776 // available, if this block is within a loop, we should avoid using vperm
2777 // for 3-operation perms and use a constant pool load instead.
2778 if (Cost < 3)
2779 return GeneratePerfectShuffle(PFEntry, V1, V2, DAG);
2782 // Lower this to a VPERM(V1, V2, V3) expression, where V3 is a constant
2783 // vector that will get spilled to the constant pool.
2784 if (V2.getOpcode() == ISD::UNDEF) V2 = V1;
2786 // The SHUFFLE_VECTOR mask is almost exactly what we want for vperm, except
2787 // that it is in input element units, not in bytes. Convert now.
2788 MVT::ValueType EltVT = MVT::getVectorElementType(V1.getValueType());
2789 unsigned BytesPerElement = MVT::getSizeInBits(EltVT)/8;
2791 SmallVector<SDOperand, 16> ResultMask;
2792 for (unsigned i = 0, e = PermMask.getNumOperands(); i != e; ++i) {
2793 unsigned SrcElt;
2794 if (PermMask.getOperand(i).getOpcode() == ISD::UNDEF)
2795 SrcElt = 0;
2796 else
2797 SrcElt = cast<ConstantSDNode>(PermMask.getOperand(i))->getValue();
2799 for (unsigned j = 0; j != BytesPerElement; ++j)
2800 ResultMask.push_back(DAG.getConstant(SrcElt*BytesPerElement+j,
2801 MVT::i8));
2804 SDOperand VPermMask = DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8,
2805 &ResultMask[0], ResultMask.size());
2806 return DAG.getNode(PPCISD::VPERM, V1.getValueType(), V1, V2, VPermMask);
2809 /// getAltivecCompareInfo - Given an intrinsic, return false if it is not an
2810 /// altivec comparison. If it is, return true and fill in Opc/isDot with
2811 /// information about the intrinsic.
2812 static bool getAltivecCompareInfo(SDOperand Intrin, int &CompareOpc,
2813 bool &isDot) {
2814 unsigned IntrinsicID = cast<ConstantSDNode>(Intrin.getOperand(0))->getValue();
2815 CompareOpc = -1;
2816 isDot = false;
2817 switch (IntrinsicID) {
2818 default: return false;
2819 // Comparison predicates.
2820 case Intrinsic::ppc_altivec_vcmpbfp_p: CompareOpc = 966; isDot = 1; break;
2821 case Intrinsic::ppc_altivec_vcmpeqfp_p: CompareOpc = 198; isDot = 1; break;
2822 case Intrinsic::ppc_altivec_vcmpequb_p: CompareOpc = 6; isDot = 1; break;
2823 case Intrinsic::ppc_altivec_vcmpequh_p: CompareOpc = 70; isDot = 1; break;
2824 case Intrinsic::ppc_altivec_vcmpequw_p: CompareOpc = 134; isDot = 1; break;
2825 case Intrinsic::ppc_altivec_vcmpgefp_p: CompareOpc = 454; isDot = 1; break;
2826 case Intrinsic::ppc_altivec_vcmpgtfp_p: CompareOpc = 710; isDot = 1; break;
2827 case Intrinsic::ppc_altivec_vcmpgtsb_p: CompareOpc = 774; isDot = 1; break;
2828 case Intrinsic::ppc_altivec_vcmpgtsh_p: CompareOpc = 838; isDot = 1; break;
2829 case Intrinsic::ppc_altivec_vcmpgtsw_p: CompareOpc = 902; isDot = 1; break;
2830 case Intrinsic::ppc_altivec_vcmpgtub_p: CompareOpc = 518; isDot = 1; break;
2831 case Intrinsic::ppc_altivec_vcmpgtuh_p: CompareOpc = 582; isDot = 1; break;
2832 case Intrinsic::ppc_altivec_vcmpgtuw_p: CompareOpc = 646; isDot = 1; break;
2834 // Normal Comparisons.
2835 case Intrinsic::ppc_altivec_vcmpbfp: CompareOpc = 966; isDot = 0; break;
2836 case Intrinsic::ppc_altivec_vcmpeqfp: CompareOpc = 198; isDot = 0; break;
2837 case Intrinsic::ppc_altivec_vcmpequb: CompareOpc = 6; isDot = 0; break;
2838 case Intrinsic::ppc_altivec_vcmpequh: CompareOpc = 70; isDot = 0; break;
2839 case Intrinsic::ppc_altivec_vcmpequw: CompareOpc = 134; isDot = 0; break;
2840 case Intrinsic::ppc_altivec_vcmpgefp: CompareOpc = 454; isDot = 0; break;
2841 case Intrinsic::ppc_altivec_vcmpgtfp: CompareOpc = 710; isDot = 0; break;
2842 case Intrinsic::ppc_altivec_vcmpgtsb: CompareOpc = 774; isDot = 0; break;
2843 case Intrinsic::ppc_altivec_vcmpgtsh: CompareOpc = 838; isDot = 0; break;
2844 case Intrinsic::ppc_altivec_vcmpgtsw: CompareOpc = 902; isDot = 0; break;
2845 case Intrinsic::ppc_altivec_vcmpgtub: CompareOpc = 518; isDot = 0; break;
2846 case Intrinsic::ppc_altivec_vcmpgtuh: CompareOpc = 582; isDot = 0; break;
2847 case Intrinsic::ppc_altivec_vcmpgtuw: CompareOpc = 646; isDot = 0; break;
2849 return true;
2852 /// LowerINTRINSIC_WO_CHAIN - If this is an intrinsic that we want to custom
2853 /// lower, do it, otherwise return null.
2854 static SDOperand LowerINTRINSIC_WO_CHAIN(SDOperand Op, SelectionDAG &DAG) {
2855 // If this is a lowered altivec predicate compare, CompareOpc is set to the
2856 // opcode number of the comparison.
2857 int CompareOpc;
2858 bool isDot;
2859 if (!getAltivecCompareInfo(Op, CompareOpc, isDot))
2860 return SDOperand(); // Don't custom lower most intrinsics.
2862 // If this is a non-dot comparison, make the VCMP node and we are done.
2863 if (!isDot) {
2864 SDOperand Tmp = DAG.getNode(PPCISD::VCMP, Op.getOperand(2).getValueType(),
2865 Op.getOperand(1), Op.getOperand(2),
2866 DAG.getConstant(CompareOpc, MVT::i32));
2867 return DAG.getNode(ISD::BIT_CONVERT, Op.getValueType(), Tmp);
2870 // Create the PPCISD altivec 'dot' comparison node.
2871 SDOperand Ops[] = {
2872 Op.getOperand(2), // LHS
2873 Op.getOperand(3), // RHS
2874 DAG.getConstant(CompareOpc, MVT::i32)
2876 std::vector<MVT::ValueType> VTs;
2877 VTs.push_back(Op.getOperand(2).getValueType());
2878 VTs.push_back(MVT::Flag);
2879 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
2881 // Now that we have the comparison, emit a copy from the CR to a GPR.
2882 // This is flagged to the above dot comparison.
2883 SDOperand Flags = DAG.getNode(PPCISD::MFCR, MVT::i32,
2884 DAG.getRegister(PPC::CR6, MVT::i32),
2885 CompNode.getValue(1));
2887 // Unpack the result based on how the target uses it.
2888 unsigned BitNo; // Bit # of CR6.
2889 bool InvertBit; // Invert result?
2890 switch (cast<ConstantSDNode>(Op.getOperand(1))->getValue()) {
2891 default: // Can't happen, don't crash on invalid number though.
2892 case 0: // Return the value of the EQ bit of CR6.
2893 BitNo = 0; InvertBit = false;
2894 break;
2895 case 1: // Return the inverted value of the EQ bit of CR6.
2896 BitNo = 0; InvertBit = true;
2897 break;
2898 case 2: // Return the value of the LT bit of CR6.
2899 BitNo = 2; InvertBit = false;
2900 break;
2901 case 3: // Return the inverted value of the LT bit of CR6.
2902 BitNo = 2; InvertBit = true;
2903 break;
2906 // Shift the bit into the low position.
2907 Flags = DAG.getNode(ISD::SRL, MVT::i32, Flags,
2908 DAG.getConstant(8-(3-BitNo), MVT::i32));
2909 // Isolate the bit.
2910 Flags = DAG.getNode(ISD::AND, MVT::i32, Flags,
2911 DAG.getConstant(1, MVT::i32));
2913 // If we are supposed to, toggle the bit.
2914 if (InvertBit)
2915 Flags = DAG.getNode(ISD::XOR, MVT::i32, Flags,
2916 DAG.getConstant(1, MVT::i32));
2917 return Flags;
2920 static SDOperand LowerSCALAR_TO_VECTOR(SDOperand Op, SelectionDAG &DAG) {
2921 // Create a stack slot that is 16-byte aligned.
2922 MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
2923 int FrameIdx = FrameInfo->CreateStackObject(16, 16);
2924 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
2925 SDOperand FIdx = DAG.getFrameIndex(FrameIdx, PtrVT);
2927 // Store the input value into Value#0 of the stack slot.
2928 SDOperand Store = DAG.getStore(DAG.getEntryNode(),
2929 Op.getOperand(0), FIdx, NULL, 0);
2930 // Load it out.
2931 return DAG.getLoad(Op.getValueType(), Store, FIdx, NULL, 0);
2934 static SDOperand LowerMUL(SDOperand Op, SelectionDAG &DAG) {
2935 if (Op.getValueType() == MVT::v4i32) {
2936 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2938 SDOperand Zero = BuildSplatI( 0, 1, MVT::v4i32, DAG);
2939 SDOperand Neg16 = BuildSplatI(-16, 4, MVT::v4i32, DAG); // +16 as shift amt.
2941 SDOperand RHSSwap = // = vrlw RHS, 16
2942 BuildIntrinsicOp(Intrinsic::ppc_altivec_vrlw, RHS, Neg16, DAG);
2944 // Shrinkify inputs to v8i16.
2945 LHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, LHS);
2946 RHS = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHS);
2947 RHSSwap = DAG.getNode(ISD::BIT_CONVERT, MVT::v8i16, RHSSwap);
2949 // Low parts multiplied together, generating 32-bit results (we ignore the
2950 // top parts).
2951 SDOperand LoProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmulouh,
2952 LHS, RHS, DAG, MVT::v4i32);
2954 SDOperand HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmsumuhm,
2955 LHS, RHSSwap, Zero, DAG, MVT::v4i32);
2956 // Shift the high parts up 16 bits.
2957 HiProd = BuildIntrinsicOp(Intrinsic::ppc_altivec_vslw, HiProd, Neg16, DAG);
2958 return DAG.getNode(ISD::ADD, MVT::v4i32, LoProd, HiProd);
2959 } else if (Op.getValueType() == MVT::v8i16) {
2960 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2962 SDOperand Zero = BuildSplatI(0, 1, MVT::v8i16, DAG);
2964 return BuildIntrinsicOp(Intrinsic::ppc_altivec_vmladduhm,
2965 LHS, RHS, Zero, DAG);
2966 } else if (Op.getValueType() == MVT::v16i8) {
2967 SDOperand LHS = Op.getOperand(0), RHS = Op.getOperand(1);
2969 // Multiply the even 8-bit parts, producing 16-bit sums.
2970 SDOperand EvenParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuleub,
2971 LHS, RHS, DAG, MVT::v8i16);
2972 EvenParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, EvenParts);
2974 // Multiply the odd 8-bit parts, producing 16-bit sums.
2975 SDOperand OddParts = BuildIntrinsicOp(Intrinsic::ppc_altivec_vmuloub,
2976 LHS, RHS, DAG, MVT::v8i16);
2977 OddParts = DAG.getNode(ISD::BIT_CONVERT, MVT::v16i8, OddParts);
2979 // Merge the results together.
2980 SDOperand Ops[16];
2981 for (unsigned i = 0; i != 8; ++i) {
2982 Ops[i*2 ] = DAG.getConstant(2*i+1, MVT::i8);
2983 Ops[i*2+1] = DAG.getConstant(2*i+1+16, MVT::i8);
2985 return DAG.getNode(ISD::VECTOR_SHUFFLE, MVT::v16i8, EvenParts, OddParts,
2986 DAG.getNode(ISD::BUILD_VECTOR, MVT::v16i8, Ops, 16));
2987 } else {
2988 assert(0 && "Unknown mul to lower!");
2989 abort();
2993 /// LowerOperation - Provide custom lowering hooks for some operations.
2995 SDOperand PPCTargetLowering::LowerOperation(SDOperand Op, SelectionDAG &DAG) {
2996 switch (Op.getOpcode()) {
2997 default: assert(0 && "Wasn't expecting to be able to lower this!");
2998 case ISD::ConstantPool: return LowerConstantPool(Op, DAG);
2999 case ISD::GlobalAddress: return LowerGlobalAddress(Op, DAG);
3000 case ISD::GlobalTLSAddress: return LowerGlobalTLSAddress(Op, DAG);
3001 case ISD::JumpTable: return LowerJumpTable(Op, DAG);
3002 case ISD::SETCC: return LowerSETCC(Op, DAG);
3003 case ISD::VASTART:
3004 return LowerVASTART(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3005 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3007 case ISD::VAARG:
3008 return LowerVAARG(Op, DAG, VarArgsFrameIndex, VarArgsStackOffset,
3009 VarArgsNumGPR, VarArgsNumFPR, PPCSubTarget);
3011 case ISD::FORMAL_ARGUMENTS:
3012 return LowerFORMAL_ARGUMENTS(Op, DAG, VarArgsFrameIndex,
3013 VarArgsStackOffset, VarArgsNumGPR,
3014 VarArgsNumFPR, PPCSubTarget);
3016 case ISD::CALL: return LowerCALL(Op, DAG, PPCSubTarget);
3017 case ISD::RET: return LowerRET(Op, DAG, getTargetMachine());
3018 case ISD::STACKRESTORE: return LowerSTACKRESTORE(Op, DAG, PPCSubTarget);
3019 case ISD::DYNAMIC_STACKALLOC:
3020 return LowerDYNAMIC_STACKALLOC(Op, DAG, PPCSubTarget);
3022 case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG);
3023 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(Op, DAG);
3024 case ISD::SINT_TO_FP: return LowerSINT_TO_FP(Op, DAG);
3025 case ISD::FP_ROUND_INREG: return LowerFP_ROUND_INREG(Op, DAG);
3027 // Lower 64-bit shifts.
3028 case ISD::SHL_PARTS: return LowerSHL_PARTS(Op, DAG);
3029 case ISD::SRL_PARTS: return LowerSRL_PARTS(Op, DAG);
3030 case ISD::SRA_PARTS: return LowerSRA_PARTS(Op, DAG);
3032 // Vector-related lowering.
3033 case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
3034 case ISD::VECTOR_SHUFFLE: return LowerVECTOR_SHUFFLE(Op, DAG);
3035 case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
3036 case ISD::SCALAR_TO_VECTOR: return LowerSCALAR_TO_VECTOR(Op, DAG);
3037 case ISD::MUL: return LowerMUL(Op, DAG);
3039 // Frame & Return address.
3040 case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG);
3041 case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG);
3043 return SDOperand();
3046 SDNode *PPCTargetLowering::ExpandOperationResult(SDNode *N, SelectionDAG &DAG) {
3047 switch (N->getOpcode()) {
3048 default: assert(0 && "Wasn't expecting to be able to lower this!");
3049 case ISD::FP_TO_SINT: return LowerFP_TO_SINT(SDOperand(N, 0), DAG).Val;
3054 //===----------------------------------------------------------------------===//
3055 // Other Lowering Code
3056 //===----------------------------------------------------------------------===//
3058 MachineBasicBlock *
3059 PPCTargetLowering::InsertAtEndOfBasicBlock(MachineInstr *MI,
3060 MachineBasicBlock *BB) {
3061 const TargetInstrInfo *TII = getTargetMachine().getInstrInfo();
3062 assert((MI->getOpcode() == PPC::SELECT_CC_I4 ||
3063 MI->getOpcode() == PPC::SELECT_CC_I8 ||
3064 MI->getOpcode() == PPC::SELECT_CC_F4 ||
3065 MI->getOpcode() == PPC::SELECT_CC_F8 ||
3066 MI->getOpcode() == PPC::SELECT_CC_VRRC) &&
3067 "Unexpected instr type to insert");
3069 // To "insert" a SELECT_CC instruction, we actually have to insert the diamond
3070 // control-flow pattern. The incoming instruction knows the destination vreg
3071 // to set, the condition code register to branch on, the true/false values to
3072 // select between, and a branch opcode to use.
3073 const BasicBlock *LLVM_BB = BB->getBasicBlock();
3074 ilist<MachineBasicBlock>::iterator It = BB;
3075 ++It;
3077 // thisMBB:
3078 // ...
3079 // TrueVal = ...
3080 // cmpTY ccX, r1, r2
3081 // bCC copy1MBB
3082 // fallthrough --> copy0MBB
3083 MachineBasicBlock *thisMBB = BB;
3084 MachineBasicBlock *copy0MBB = new MachineBasicBlock(LLVM_BB);
3085 MachineBasicBlock *sinkMBB = new MachineBasicBlock(LLVM_BB);
3086 unsigned SelectPred = MI->getOperand(4).getImm();
3087 BuildMI(BB, TII->get(PPC::BCC))
3088 .addImm(SelectPred).addReg(MI->getOperand(1).getReg()).addMBB(sinkMBB);
3089 MachineFunction *F = BB->getParent();
3090 F->getBasicBlockList().insert(It, copy0MBB);
3091 F->getBasicBlockList().insert(It, sinkMBB);
3092 // Update machine-CFG edges by first adding all successors of the current
3093 // block to the new block which will contain the Phi node for the select.
3094 for(MachineBasicBlock::succ_iterator i = BB->succ_begin(),
3095 e = BB->succ_end(); i != e; ++i)
3096 sinkMBB->addSuccessor(*i);
3097 // Next, remove all successors of the current block, and add the true
3098 // and fallthrough blocks as its successors.
3099 while(!BB->succ_empty())
3100 BB->removeSuccessor(BB->succ_begin());
3101 BB->addSuccessor(copy0MBB);
3102 BB->addSuccessor(sinkMBB);
3104 // copy0MBB:
3105 // %FalseValue = ...
3106 // # fallthrough to sinkMBB
3107 BB = copy0MBB;
3109 // Update machine-CFG edges
3110 BB->addSuccessor(sinkMBB);
3112 // sinkMBB:
3113 // %Result = phi [ %FalseValue, copy0MBB ], [ %TrueValue, thisMBB ]
3114 // ...
3115 BB = sinkMBB;
3116 BuildMI(BB, TII->get(PPC::PHI), MI->getOperand(0).getReg())
3117 .addReg(MI->getOperand(3).getReg()).addMBB(copy0MBB)
3118 .addReg(MI->getOperand(2).getReg()).addMBB(thisMBB);
3120 delete MI; // The pseudo instruction is gone now.
3121 return BB;
3124 //===----------------------------------------------------------------------===//
3125 // Target Optimization Hooks
3126 //===----------------------------------------------------------------------===//
3128 SDOperand PPCTargetLowering::PerformDAGCombine(SDNode *N,
3129 DAGCombinerInfo &DCI) const {
3130 TargetMachine &TM = getTargetMachine();
3131 SelectionDAG &DAG = DCI.DAG;
3132 switch (N->getOpcode()) {
3133 default: break;
3134 case PPCISD::SHL:
3135 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3136 if (C->getValue() == 0) // 0 << V -> 0.
3137 return N->getOperand(0);
3139 break;
3140 case PPCISD::SRL:
3141 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3142 if (C->getValue() == 0) // 0 >>u V -> 0.
3143 return N->getOperand(0);
3145 break;
3146 case PPCISD::SRA:
3147 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
3148 if (C->getValue() == 0 || // 0 >>s V -> 0.
3149 C->isAllOnesValue()) // -1 >>s V -> -1.
3150 return N->getOperand(0);
3152 break;
3154 case ISD::SINT_TO_FP:
3155 if (TM.getSubtarget<PPCSubtarget>().has64BitSupport()) {
3156 if (N->getOperand(0).getOpcode() == ISD::FP_TO_SINT) {
3157 // Turn (sint_to_fp (fp_to_sint X)) -> fctidz/fcfid without load/stores.
3158 // We allow the src/dst to be either f32/f64, but the intermediate
3159 // type must be i64.
3160 if (N->getOperand(0).getValueType() == MVT::i64 &&
3161 N->getOperand(0).getOperand(0).getValueType() != MVT::ppcf128) {
3162 SDOperand Val = N->getOperand(0).getOperand(0);
3163 if (Val.getValueType() == MVT::f32) {
3164 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3165 DCI.AddToWorklist(Val.Val);
3168 Val = DAG.getNode(PPCISD::FCTIDZ, MVT::f64, Val);
3169 DCI.AddToWorklist(Val.Val);
3170 Val = DAG.getNode(PPCISD::FCFID, MVT::f64, Val);
3171 DCI.AddToWorklist(Val.Val);
3172 if (N->getValueType(0) == MVT::f32) {
3173 Val = DAG.getNode(ISD::FP_ROUND, MVT::f32, Val);
3174 DCI.AddToWorklist(Val.Val);
3176 return Val;
3177 } else if (N->getOperand(0).getValueType() == MVT::i32) {
3178 // If the intermediate type is i32, we can avoid the load/store here
3179 // too.
3183 break;
3184 case ISD::STORE:
3185 // Turn STORE (FP_TO_SINT F) -> STFIWX(FCTIWZ(F)).
3186 if (TM.getSubtarget<PPCSubtarget>().hasSTFIWX() &&
3187 N->getOperand(1).getOpcode() == ISD::FP_TO_SINT &&
3188 N->getOperand(1).getValueType() == MVT::i32 &&
3189 N->getOperand(1).getOperand(0).getValueType() != MVT::ppcf128) {
3190 SDOperand Val = N->getOperand(1).getOperand(0);
3191 if (Val.getValueType() == MVT::f32) {
3192 Val = DAG.getNode(ISD::FP_EXTEND, MVT::f64, Val);
3193 DCI.AddToWorklist(Val.Val);
3195 Val = DAG.getNode(PPCISD::FCTIWZ, MVT::f64, Val);
3196 DCI.AddToWorklist(Val.Val);
3198 Val = DAG.getNode(PPCISD::STFIWX, MVT::Other, N->getOperand(0), Val,
3199 N->getOperand(2), N->getOperand(3));
3200 DCI.AddToWorklist(Val.Val);
3201 return Val;
3204 // Turn STORE (BSWAP) -> sthbrx/stwbrx.
3205 if (N->getOperand(1).getOpcode() == ISD::BSWAP &&
3206 N->getOperand(1).Val->hasOneUse() &&
3207 (N->getOperand(1).getValueType() == MVT::i32 ||
3208 N->getOperand(1).getValueType() == MVT::i16)) {
3209 SDOperand BSwapOp = N->getOperand(1).getOperand(0);
3210 // Do an any-extend to 32-bits if this is a half-word input.
3211 if (BSwapOp.getValueType() == MVT::i16)
3212 BSwapOp = DAG.getNode(ISD::ANY_EXTEND, MVT::i32, BSwapOp);
3214 return DAG.getNode(PPCISD::STBRX, MVT::Other, N->getOperand(0), BSwapOp,
3215 N->getOperand(2), N->getOperand(3),
3216 DAG.getValueType(N->getOperand(1).getValueType()));
3218 break;
3219 case ISD::BSWAP:
3220 // Turn BSWAP (LOAD) -> lhbrx/lwbrx.
3221 if (ISD::isNON_EXTLoad(N->getOperand(0).Val) &&
3222 N->getOperand(0).hasOneUse() &&
3223 (N->getValueType(0) == MVT::i32 || N->getValueType(0) == MVT::i16)) {
3224 SDOperand Load = N->getOperand(0);
3225 LoadSDNode *LD = cast<LoadSDNode>(Load);
3226 // Create the byte-swapping load.
3227 std::vector<MVT::ValueType> VTs;
3228 VTs.push_back(MVT::i32);
3229 VTs.push_back(MVT::Other);
3230 SDOperand SV = DAG.getSrcValue(LD->getSrcValue(), LD->getSrcValueOffset());
3231 SDOperand Ops[] = {
3232 LD->getChain(), // Chain
3233 LD->getBasePtr(), // Ptr
3234 SV, // SrcValue
3235 DAG.getValueType(N->getValueType(0)) // VT
3237 SDOperand BSLoad = DAG.getNode(PPCISD::LBRX, VTs, Ops, 4);
3239 // If this is an i16 load, insert the truncate.
3240 SDOperand ResVal = BSLoad;
3241 if (N->getValueType(0) == MVT::i16)
3242 ResVal = DAG.getNode(ISD::TRUNCATE, MVT::i16, BSLoad);
3244 // First, combine the bswap away. This makes the value produced by the
3245 // load dead.
3246 DCI.CombineTo(N, ResVal);
3248 // Next, combine the load away, we give it a bogus result value but a real
3249 // chain result. The result value is dead because the bswap is dead.
3250 DCI.CombineTo(Load.Val, ResVal, BSLoad.getValue(1));
3252 // Return N so it doesn't get rechecked!
3253 return SDOperand(N, 0);
3256 break;
3257 case PPCISD::VCMP: {
3258 // If a VCMPo node already exists with exactly the same operands as this
3259 // node, use its result instead of this node (VCMPo computes both a CR6 and
3260 // a normal output).
3262 if (!N->getOperand(0).hasOneUse() &&
3263 !N->getOperand(1).hasOneUse() &&
3264 !N->getOperand(2).hasOneUse()) {
3266 // Scan all of the users of the LHS, looking for VCMPo's that match.
3267 SDNode *VCMPoNode = 0;
3269 SDNode *LHSN = N->getOperand(0).Val;
3270 for (SDNode::use_iterator UI = LHSN->use_begin(), E = LHSN->use_end();
3271 UI != E; ++UI)
3272 if ((*UI)->getOpcode() == PPCISD::VCMPo &&
3273 (*UI)->getOperand(1) == N->getOperand(1) &&
3274 (*UI)->getOperand(2) == N->getOperand(2) &&
3275 (*UI)->getOperand(0) == N->getOperand(0)) {
3276 VCMPoNode = *UI;
3277 break;
3280 // If there is no VCMPo node, or if the flag value has a single use, don't
3281 // transform this.
3282 if (!VCMPoNode || VCMPoNode->hasNUsesOfValue(0, 1))
3283 break;
3285 // Look at the (necessarily single) use of the flag value. If it has a
3286 // chain, this transformation is more complex. Note that multiple things
3287 // could use the value result, which we should ignore.
3288 SDNode *FlagUser = 0;
3289 for (SDNode::use_iterator UI = VCMPoNode->use_begin();
3290 FlagUser == 0; ++UI) {
3291 assert(UI != VCMPoNode->use_end() && "Didn't find user!");
3292 SDNode *User = *UI;
3293 for (unsigned i = 0, e = User->getNumOperands(); i != e; ++i) {
3294 if (User->getOperand(i) == SDOperand(VCMPoNode, 1)) {
3295 FlagUser = User;
3296 break;
3301 // If the user is a MFCR instruction, we know this is safe. Otherwise we
3302 // give up for right now.
3303 if (FlagUser->getOpcode() == PPCISD::MFCR)
3304 return SDOperand(VCMPoNode, 0);
3306 break;
3308 case ISD::BR_CC: {
3309 // If this is a branch on an altivec predicate comparison, lower this so
3310 // that we don't have to do a MFCR: instead, branch directly on CR6. This
3311 // lowering is done pre-legalize, because the legalizer lowers the predicate
3312 // compare down to code that is difficult to reassemble.
3313 ISD::CondCode CC = cast<CondCodeSDNode>(N->getOperand(1))->get();
3314 SDOperand LHS = N->getOperand(2), RHS = N->getOperand(3);
3315 int CompareOpc;
3316 bool isDot;
3318 if (LHS.getOpcode() == ISD::INTRINSIC_WO_CHAIN &&
3319 isa<ConstantSDNode>(RHS) && (CC == ISD::SETEQ || CC == ISD::SETNE) &&
3320 getAltivecCompareInfo(LHS, CompareOpc, isDot)) {
3321 assert(isDot && "Can't compare against a vector result!");
3323 // If this is a comparison against something other than 0/1, then we know
3324 // that the condition is never/always true.
3325 unsigned Val = cast<ConstantSDNode>(RHS)->getValue();
3326 if (Val != 0 && Val != 1) {
3327 if (CC == ISD::SETEQ) // Cond never true, remove branch.
3328 return N->getOperand(0);
3329 // Always !=, turn it into an unconditional branch.
3330 return DAG.getNode(ISD::BR, MVT::Other,
3331 N->getOperand(0), N->getOperand(4));
3334 bool BranchOnWhenPredTrue = (CC == ISD::SETEQ) ^ (Val == 0);
3336 // Create the PPCISD altivec 'dot' comparison node.
3337 std::vector<MVT::ValueType> VTs;
3338 SDOperand Ops[] = {
3339 LHS.getOperand(2), // LHS of compare
3340 LHS.getOperand(3), // RHS of compare
3341 DAG.getConstant(CompareOpc, MVT::i32)
3343 VTs.push_back(LHS.getOperand(2).getValueType());
3344 VTs.push_back(MVT::Flag);
3345 SDOperand CompNode = DAG.getNode(PPCISD::VCMPo, VTs, Ops, 3);
3347 // Unpack the result based on how the target uses it.
3348 PPC::Predicate CompOpc;
3349 switch (cast<ConstantSDNode>(LHS.getOperand(1))->getValue()) {
3350 default: // Can't happen, don't crash on invalid number though.
3351 case 0: // Branch on the value of the EQ bit of CR6.
3352 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_EQ : PPC::PRED_NE;
3353 break;
3354 case 1: // Branch on the inverted value of the EQ bit of CR6.
3355 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_NE : PPC::PRED_EQ;
3356 break;
3357 case 2: // Branch on the value of the LT bit of CR6.
3358 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_LT : PPC::PRED_GE;
3359 break;
3360 case 3: // Branch on the inverted value of the LT bit of CR6.
3361 CompOpc = BranchOnWhenPredTrue ? PPC::PRED_GE : PPC::PRED_LT;
3362 break;
3365 return DAG.getNode(PPCISD::COND_BRANCH, MVT::Other, N->getOperand(0),
3366 DAG.getConstant(CompOpc, MVT::i32),
3367 DAG.getRegister(PPC::CR6, MVT::i32),
3368 N->getOperand(4), CompNode.getValue(1));
3370 break;
3374 return SDOperand();
3377 //===----------------------------------------------------------------------===//
3378 // Inline Assembly Support
3379 //===----------------------------------------------------------------------===//
3381 void PPCTargetLowering::computeMaskedBitsForTargetNode(const SDOperand Op,
3382 uint64_t Mask,
3383 uint64_t &KnownZero,
3384 uint64_t &KnownOne,
3385 const SelectionDAG &DAG,
3386 unsigned Depth) const {
3387 KnownZero = 0;
3388 KnownOne = 0;
3389 switch (Op.getOpcode()) {
3390 default: break;
3391 case PPCISD::LBRX: {
3392 // lhbrx is known to have the top bits cleared out.
3393 if (cast<VTSDNode>(Op.getOperand(3))->getVT() == MVT::i16)
3394 KnownZero = 0xFFFF0000;
3395 break;
3397 case ISD::INTRINSIC_WO_CHAIN: {
3398 switch (cast<ConstantSDNode>(Op.getOperand(0))->getValue()) {
3399 default: break;
3400 case Intrinsic::ppc_altivec_vcmpbfp_p:
3401 case Intrinsic::ppc_altivec_vcmpeqfp_p:
3402 case Intrinsic::ppc_altivec_vcmpequb_p:
3403 case Intrinsic::ppc_altivec_vcmpequh_p:
3404 case Intrinsic::ppc_altivec_vcmpequw_p:
3405 case Intrinsic::ppc_altivec_vcmpgefp_p:
3406 case Intrinsic::ppc_altivec_vcmpgtfp_p:
3407 case Intrinsic::ppc_altivec_vcmpgtsb_p:
3408 case Intrinsic::ppc_altivec_vcmpgtsh_p:
3409 case Intrinsic::ppc_altivec_vcmpgtsw_p:
3410 case Intrinsic::ppc_altivec_vcmpgtub_p:
3411 case Intrinsic::ppc_altivec_vcmpgtuh_p:
3412 case Intrinsic::ppc_altivec_vcmpgtuw_p:
3413 KnownZero = ~1U; // All bits but the low one are known to be zero.
3414 break;
3421 /// getConstraintType - Given a constraint, return the type of
3422 /// constraint it is for this target.
3423 PPCTargetLowering::ConstraintType
3424 PPCTargetLowering::getConstraintType(const std::string &Constraint) const {
3425 if (Constraint.size() == 1) {
3426 switch (Constraint[0]) {
3427 default: break;
3428 case 'b':
3429 case 'r':
3430 case 'f':
3431 case 'v':
3432 case 'y':
3433 return C_RegisterClass;
3436 return TargetLowering::getConstraintType(Constraint);
3439 std::pair<unsigned, const TargetRegisterClass*>
3440 PPCTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint,
3441 MVT::ValueType VT) const {
3442 if (Constraint.size() == 1) {
3443 // GCC RS6000 Constraint Letters
3444 switch (Constraint[0]) {
3445 case 'b': // R1-R31
3446 case 'r': // R0-R31
3447 if (VT == MVT::i64 && PPCSubTarget.isPPC64())
3448 return std::make_pair(0U, PPC::G8RCRegisterClass);
3449 return std::make_pair(0U, PPC::GPRCRegisterClass);
3450 case 'f':
3451 if (VT == MVT::f32)
3452 return std::make_pair(0U, PPC::F4RCRegisterClass);
3453 else if (VT == MVT::f64)
3454 return std::make_pair(0U, PPC::F8RCRegisterClass);
3455 break;
3456 case 'v':
3457 return std::make_pair(0U, PPC::VRRCRegisterClass);
3458 case 'y': // crrc
3459 return std::make_pair(0U, PPC::CRRCRegisterClass);
3463 return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT);
3467 /// LowerAsmOperandForConstraint - Lower the specified operand into the Ops
3468 /// vector. If it is invalid, don't add anything to Ops.
3469 void PPCTargetLowering::LowerAsmOperandForConstraint(SDOperand Op, char Letter,
3470 std::vector<SDOperand>&Ops,
3471 SelectionDAG &DAG) {
3472 SDOperand Result(0,0);
3473 switch (Letter) {
3474 default: break;
3475 case 'I':
3476 case 'J':
3477 case 'K':
3478 case 'L':
3479 case 'M':
3480 case 'N':
3481 case 'O':
3482 case 'P': {
3483 ConstantSDNode *CST = dyn_cast<ConstantSDNode>(Op);
3484 if (!CST) return; // Must be an immediate to match.
3485 unsigned Value = CST->getValue();
3486 switch (Letter) {
3487 default: assert(0 && "Unknown constraint letter!");
3488 case 'I': // "I" is a signed 16-bit constant.
3489 if ((short)Value == (int)Value)
3490 Result = DAG.getTargetConstant(Value, Op.getValueType());
3491 break;
3492 case 'J': // "J" is a constant with only the high-order 16 bits nonzero.
3493 case 'L': // "L" is a signed 16-bit constant shifted left 16 bits.
3494 if ((short)Value == 0)
3495 Result = DAG.getTargetConstant(Value, Op.getValueType());
3496 break;
3497 case 'K': // "K" is a constant with only the low-order 16 bits nonzero.
3498 if ((Value >> 16) == 0)
3499 Result = DAG.getTargetConstant(Value, Op.getValueType());
3500 break;
3501 case 'M': // "M" is a constant that is greater than 31.
3502 if (Value > 31)
3503 Result = DAG.getTargetConstant(Value, Op.getValueType());
3504 break;
3505 case 'N': // "N" is a positive constant that is an exact power of two.
3506 if ((int)Value > 0 && isPowerOf2_32(Value))
3507 Result = DAG.getTargetConstant(Value, Op.getValueType());
3508 break;
3509 case 'O': // "O" is the constant zero.
3510 if (Value == 0)
3511 Result = DAG.getTargetConstant(Value, Op.getValueType());
3512 break;
3513 case 'P': // "P" is a constant whose negation is a signed 16-bit constant.
3514 if ((short)-Value == (int)-Value)
3515 Result = DAG.getTargetConstant(Value, Op.getValueType());
3516 break;
3518 break;
3522 if (Result.Val) {
3523 Ops.push_back(Result);
3524 return;
3527 // Handle standard constraint letters.
3528 TargetLowering::LowerAsmOperandForConstraint(Op, Letter, Ops, DAG);
3531 // isLegalAddressingMode - Return true if the addressing mode represented
3532 // by AM is legal for this target, for a load/store of the specified type.
3533 bool PPCTargetLowering::isLegalAddressingMode(const AddrMode &AM,
3534 const Type *Ty) const {
3535 // FIXME: PPC does not allow r+i addressing modes for vectors!
3537 // PPC allows a sign-extended 16-bit immediate field.
3538 if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
3539 return false;
3541 // No global is ever allowed as a base.
3542 if (AM.BaseGV)
3543 return false;
3545 // PPC only support r+r,
3546 switch (AM.Scale) {
3547 case 0: // "r+i" or just "i", depending on HasBaseReg.
3548 break;
3549 case 1:
3550 if (AM.HasBaseReg && AM.BaseOffs) // "r+r+i" is not allowed.
3551 return false;
3552 // Otherwise we have r+r or r+i.
3553 break;
3554 case 2:
3555 if (AM.HasBaseReg || AM.BaseOffs) // 2*r+r or 2*r+i is not allowed.
3556 return false;
3557 // Allow 2*r as r+r.
3558 break;
3559 default:
3560 // No other scales are supported.
3561 return false;
3564 return true;
3567 /// isLegalAddressImmediate - Return true if the integer value can be used
3568 /// as the offset of the target addressing mode for load / store of the
3569 /// given type.
3570 bool PPCTargetLowering::isLegalAddressImmediate(int64_t V,const Type *Ty) const{
3571 // PPC allows a sign-extended 16-bit immediate field.
3572 return (V > -(1 << 16) && V < (1 << 16)-1);
3575 bool PPCTargetLowering::isLegalAddressImmediate(llvm::GlobalValue* GV) const {
3576 return false;
3579 SDOperand PPCTargetLowering::LowerRETURNADDR(SDOperand Op, SelectionDAG &DAG) {
3580 // Depths > 0 not supported yet!
3581 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3582 return SDOperand();
3584 MachineFunction &MF = DAG.getMachineFunction();
3585 PPCFunctionInfo *FuncInfo = MF.getInfo<PPCFunctionInfo>();
3586 int RAIdx = FuncInfo->getReturnAddrSaveIndex();
3587 if (RAIdx == 0) {
3588 bool isPPC64 = PPCSubTarget.isPPC64();
3589 int Offset =
3590 PPCFrameInfo::getReturnSaveOffset(isPPC64, PPCSubTarget.isMachoABI());
3592 // Set up a frame object for the return address.
3593 RAIdx = MF.getFrameInfo()->CreateFixedObject(isPPC64 ? 8 : 4, Offset);
3595 // Remember it for next time.
3596 FuncInfo->setReturnAddrSaveIndex(RAIdx);
3598 // Make sure the function really does not optimize away the store of the RA
3599 // to the stack.
3600 FuncInfo->setLRStoreRequired();
3603 // Just load the return address off the stack.
3604 SDOperand RetAddrFI = DAG.getFrameIndex(RAIdx, getPointerTy());
3605 return DAG.getLoad(getPointerTy(), DAG.getEntryNode(), RetAddrFI, NULL, 0);
3608 SDOperand PPCTargetLowering::LowerFRAMEADDR(SDOperand Op, SelectionDAG &DAG) {
3609 // Depths > 0 not supported yet!
3610 if (cast<ConstantSDNode>(Op.getOperand(0))->getValue() > 0)
3611 return SDOperand();
3613 MVT::ValueType PtrVT = DAG.getTargetLoweringInfo().getPointerTy();
3614 bool isPPC64 = PtrVT == MVT::i64;
3616 MachineFunction &MF = DAG.getMachineFunction();
3617 MachineFrameInfo *MFI = MF.getFrameInfo();
3618 bool is31 = (NoFramePointerElim || MFI->hasVarSizedObjects())
3619 && MFI->getStackSize();
3621 if (isPPC64)
3622 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::X31 : PPC::X1,
3623 MVT::i64);
3624 else
3625 return DAG.getCopyFromReg(DAG.getEntryNode(), is31 ? PPC::R31 : PPC::R1,
3626 MVT::i32);