Fix bugs section.
[llvm-complete.git] / utils / PerfectShuffle / PerfectShuffle.cpp
blobe7b9421a589e35d7498a6104183cdd548111cff8
1 //===-- PerfectShuffle.cpp - Perfect Shuffle Generator --------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file computes an optimal sequence of instructions for doing all shuffles
11 // of two 4-element vectors. With a release build and when configured to emit
12 // an altivec instruction table, this takes about 30s to run on a 2.7Ghz
13 // PowerPC G5.
15 //===----------------------------------------------------------------------===//
17 #include <iostream>
18 #include <vector>
19 #include <cassert>
21 struct Operator;
23 // Masks are 4-nibble hex numbers. Values 0-7 in any nibble means that it takes
24 // an element from that value of the input vectors. A value of 8 means the
25 // entry is undefined.
27 // Mask manipulation functions.
28 static inline unsigned short MakeMask(unsigned V0, unsigned V1,
29 unsigned V2, unsigned V3) {
30 return (V0 << (3*4)) | (V1 << (2*4)) | (V2 << (1*4)) | (V3 << (0*4));
33 /// getMaskElt - Return element N of the specified mask.
34 static unsigned getMaskElt(unsigned Mask, unsigned Elt) {
35 return (Mask >> ((3-Elt)*4)) & 0xF;
38 static unsigned setMaskElt(unsigned Mask, unsigned Elt, unsigned NewVal) {
39 unsigned FieldShift = ((3-Elt)*4);
40 return (Mask & ~(0xF << FieldShift)) | (NewVal << FieldShift);
43 // Reject elements where the values are 9-15.
44 static bool isValidMask(unsigned short Mask) {
45 unsigned short UndefBits = Mask & 0x8888;
46 return (Mask & ((UndefBits >> 1)|(UndefBits>>2)|(UndefBits>>3))) == 0;
49 /// hasUndefElements - Return true if any of the elements in the mask are undefs
50 ///
51 static bool hasUndefElements(unsigned short Mask) {
52 return (Mask & 0x8888) != 0;
55 /// isOnlyLHSMask - Return true if this mask only refers to its LHS, not
56 /// including undef values..
57 static bool isOnlyLHSMask(unsigned short Mask) {
58 return (Mask & 0x4444) == 0;
61 /// getLHSOnlyMask - Given a mask that refers to its LHS and RHS, modify it to
62 /// refer to the LHS only (for when one argument value is passed into the same
63 /// function twice).
64 #if 0
65 static unsigned short getLHSOnlyMask(unsigned short Mask) {
66 return Mask & 0xBBBB; // Keep only LHS and Undefs.
68 #endif
70 /// getCompressedMask - Turn a 16-bit uncompressed mask (where each elt uses 4
71 /// bits) into a compressed 13-bit mask, where each elt is multiplied by 9.
72 static unsigned getCompressedMask(unsigned short Mask) {
73 return getMaskElt(Mask, 0)*9*9*9 + getMaskElt(Mask, 1)*9*9 +
74 getMaskElt(Mask, 2)*9 + getMaskElt(Mask, 3);
77 static void PrintMask(unsigned i, std::ostream &OS) {
78 OS << "<" << (char)(getMaskElt(i, 0) == 8 ? 'u' : ('0'+getMaskElt(i, 0)))
79 << "," << (char)(getMaskElt(i, 1) == 8 ? 'u' : ('0'+getMaskElt(i, 1)))
80 << "," << (char)(getMaskElt(i, 2) == 8 ? 'u' : ('0'+getMaskElt(i, 2)))
81 << "," << (char)(getMaskElt(i, 3) == 8 ? 'u' : ('0'+getMaskElt(i, 3)))
82 << ">";
85 /// ShuffleVal - This represents a shufflevector operation.
86 struct ShuffleVal {
87 unsigned Cost; // Number of instrs used to generate this value.
88 Operator *Op; // The Operation used to generate this value.
89 unsigned short Arg0, Arg1; // Input operands for this value.
91 ShuffleVal() : Cost(1000000) {}
95 /// ShufTab - This is the actual shuffle table that we are trying to generate.
96 ///
97 static ShuffleVal ShufTab[65536];
99 /// TheOperators - All of the operators that this target supports.
100 static std::vector<Operator*> TheOperators;
102 /// Operator - This is a vector operation that is available for use.
103 struct Operator {
104 unsigned short ShuffleMask;
105 unsigned short OpNum;
106 const char *Name;
108 Operator(unsigned short shufflemask, const char *name, unsigned opnum)
109 : ShuffleMask(shufflemask), OpNum(opnum), Name(name) {
110 TheOperators.push_back(this);
112 ~Operator() {
113 assert(TheOperators.back() == this);
114 TheOperators.pop_back();
117 bool isOnlyLHSOperator() const {
118 return isOnlyLHSMask(ShuffleMask);
121 const char *getName() const { return Name; }
123 unsigned short getTransformedMask(unsigned short LHSMask, unsigned RHSMask) {
124 // Extract the elements from LHSMask and RHSMask, as appropriate.
125 unsigned Result = 0;
126 for (unsigned i = 0; i != 4; ++i) {
127 unsigned SrcElt = (ShuffleMask >> (4*i)) & 0xF;
128 unsigned ResElt;
129 if (SrcElt < 4)
130 ResElt = getMaskElt(LHSMask, SrcElt);
131 else if (SrcElt < 8)
132 ResElt = getMaskElt(RHSMask, SrcElt-4);
133 else {
134 assert(SrcElt == 8 && "Bad src elt!");
135 ResElt = 8;
137 Result |= ResElt << (4*i);
139 return Result;
143 static const char *getZeroCostOpName(unsigned short Op) {
144 if (ShufTab[Op].Arg0 == 0x0123)
145 return "LHS";
146 else if (ShufTab[Op].Arg0 == 0x4567)
147 return "RHS";
148 else {
149 assert(0 && "bad zero cost operation");
150 abort();
154 static void PrintOperation(unsigned ValNo, unsigned short Vals[]) {
155 unsigned short ThisOp = Vals[ValNo];
156 std::cerr << "t" << ValNo;
157 PrintMask(ThisOp, std::cerr);
158 std::cerr << " = " << ShufTab[ThisOp].Op->getName() << "(";
160 if (ShufTab[ShufTab[ThisOp].Arg0].Cost == 0) {
161 std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg0);
162 PrintMask(ShufTab[ThisOp].Arg0, std::cerr);
163 } else {
164 // Figure out what tmp # it is.
165 for (unsigned i = 0; ; ++i)
166 if (Vals[i] == ShufTab[ThisOp].Arg0) {
167 std::cerr << "t" << i;
168 break;
172 if (!ShufTab[Vals[ValNo]].Op->isOnlyLHSOperator()) {
173 std::cerr << ", ";
174 if (ShufTab[ShufTab[ThisOp].Arg1].Cost == 0) {
175 std::cerr << getZeroCostOpName(ShufTab[ThisOp].Arg1);
176 PrintMask(ShufTab[ThisOp].Arg1, std::cerr);
177 } else {
178 // Figure out what tmp # it is.
179 for (unsigned i = 0; ; ++i)
180 if (Vals[i] == ShufTab[ThisOp].Arg1) {
181 std::cerr << "t" << i;
182 break;
186 std::cerr << ") ";
189 static unsigned getNumEntered() {
190 unsigned Count = 0;
191 for (unsigned i = 0; i != 65536; ++i)
192 Count += ShufTab[i].Cost < 100;
193 return Count;
196 static void EvaluateOps(unsigned short Elt, unsigned short Vals[],
197 unsigned &NumVals) {
198 if (ShufTab[Elt].Cost == 0) return;
200 // If this value has already been evaluated, it is free. FIXME: match undefs.
201 for (unsigned i = 0, e = NumVals; i != e; ++i)
202 if (Vals[i] == Elt) return;
204 // Otherwise, get the operands of the value, then add it.
205 unsigned Arg0 = ShufTab[Elt].Arg0, Arg1 = ShufTab[Elt].Arg1;
206 if (ShufTab[Arg0].Cost)
207 EvaluateOps(Arg0, Vals, NumVals);
208 if (Arg0 != Arg1 && ShufTab[Arg1].Cost)
209 EvaluateOps(Arg1, Vals, NumVals);
211 Vals[NumVals++] = Elt;
215 int main() {
216 // Seed the table with accesses to the LHS and RHS.
217 ShufTab[0x0123].Cost = 0;
218 ShufTab[0x0123].Op = 0;
219 ShufTab[0x0123].Arg0 = 0x0123;
220 ShufTab[0x4567].Cost = 0;
221 ShufTab[0x4567].Op = 0;
222 ShufTab[0x4567].Arg0 = 0x4567;
224 // Seed the first-level of shuffles, shuffles whose inputs are the input to
225 // the vectorshuffle operation.
226 bool MadeChange = true;
227 unsigned OpCount = 0;
228 while (MadeChange) {
229 MadeChange = false;
230 ++OpCount;
231 std::cerr << "Starting iteration #" << OpCount << " with "
232 << getNumEntered() << " entries established.\n";
234 // Scan the table for two reasons: First, compute the maximum cost of any
235 // operation left in the table. Second, make sure that values with undefs
236 // have the cheapest alternative that they match.
237 unsigned MaxCost = ShufTab[0].Cost;
238 for (unsigned i = 1; i != 0x8889; ++i) {
239 if (!isValidMask(i)) continue;
240 if (ShufTab[i].Cost > MaxCost)
241 MaxCost = ShufTab[i].Cost;
243 // If this value has an undef, make it be computed the cheapest possible
244 // way of any of the things that it matches.
245 if (hasUndefElements(i)) {
246 // This code is a little bit tricky, so here's the idea: consider some
247 // permutation, like 7u4u. To compute the lowest cost for 7u4u, we
248 // need to take the minimum cost of all of 7[0-8]4[0-8], 81 entries. If
249 // there are 3 undefs, the number rises to 729 entries we have to scan,
250 // and for the 4 undef case, we have to scan the whole table.
252 // Instead of doing this huge amount of scanning, we process the table
253 // entries *in order*, and use the fact that 'u' is 8, larger than any
254 // valid index. Given an entry like 7u4u then, we only need to scan
255 // 7[0-7]4u - 8 entries. We can get away with this, because we already
256 // know that each of 704u, 714u, 724u, etc contain the minimum value of
257 // all of the 704[0-8], 714[0-8] and 724[0-8] entries respectively.
258 unsigned UndefIdx;
259 if (i & 0x8000)
260 UndefIdx = 0;
261 else if (i & 0x0800)
262 UndefIdx = 1;
263 else if (i & 0x0080)
264 UndefIdx = 2;
265 else if (i & 0x0008)
266 UndefIdx = 3;
267 else
268 abort();
270 unsigned MinVal = i;
271 unsigned MinCost = ShufTab[i].Cost;
273 // Scan the 8 entries.
274 for (unsigned j = 0; j != 8; ++j) {
275 unsigned NewElt = setMaskElt(i, UndefIdx, j);
276 if (ShufTab[NewElt].Cost < MinCost) {
277 MinCost = ShufTab[NewElt].Cost;
278 MinVal = NewElt;
282 // If we found something cheaper than what was here before, use it.
283 if (i != MinVal) {
284 MadeChange = true;
285 ShufTab[i] = ShufTab[MinVal];
290 for (unsigned LHS = 0; LHS != 0x8889; ++LHS) {
291 if (!isValidMask(LHS)) continue;
292 if (ShufTab[LHS].Cost > 1000) continue;
294 // If nothing involving this operand could possibly be cheaper than what
295 // we already have, don't consider it.
296 if (ShufTab[LHS].Cost + 1 >= MaxCost)
297 continue;
299 for (unsigned opnum = 0, e = TheOperators.size(); opnum != e; ++opnum) {
300 Operator *Op = TheOperators[opnum];
302 // Evaluate op(LHS,LHS)
303 unsigned ResultMask = Op->getTransformedMask(LHS, LHS);
305 unsigned Cost = ShufTab[LHS].Cost + 1;
306 if (Cost < ShufTab[ResultMask].Cost) {
307 ShufTab[ResultMask].Cost = Cost;
308 ShufTab[ResultMask].Op = Op;
309 ShufTab[ResultMask].Arg0 = LHS;
310 ShufTab[ResultMask].Arg1 = LHS;
311 MadeChange = true;
314 // If this is a two input instruction, include the op(x,y) cases. If
315 // this is a one input instruction, skip this.
316 if (Op->isOnlyLHSOperator()) continue;
318 for (unsigned RHS = 0; RHS != 0x8889; ++RHS) {
319 if (!isValidMask(RHS)) continue;
320 if (ShufTab[RHS].Cost > 1000) continue;
322 // If nothing involving this operand could possibly be cheaper than
323 // what we already have, don't consider it.
324 if (ShufTab[RHS].Cost + 1 >= MaxCost)
325 continue;
328 // Evaluate op(LHS,RHS)
329 unsigned ResultMask = Op->getTransformedMask(LHS, RHS);
331 if (ShufTab[ResultMask].Cost <= OpCount ||
332 ShufTab[ResultMask].Cost <= ShufTab[LHS].Cost ||
333 ShufTab[ResultMask].Cost <= ShufTab[RHS].Cost)
334 continue;
336 // Figure out the cost to evaluate this, knowing that CSE's only need
337 // to be evaluated once.
338 unsigned short Vals[30];
339 unsigned NumVals = 0;
340 EvaluateOps(LHS, Vals, NumVals);
341 EvaluateOps(RHS, Vals, NumVals);
343 unsigned Cost = NumVals + 1;
344 if (Cost < ShufTab[ResultMask].Cost) {
345 ShufTab[ResultMask].Cost = Cost;
346 ShufTab[ResultMask].Op = Op;
347 ShufTab[ResultMask].Arg0 = LHS;
348 ShufTab[ResultMask].Arg1 = RHS;
349 MadeChange = true;
356 std::cerr << "Finished Table has " << getNumEntered()
357 << " entries established.\n";
359 unsigned CostArray[10] = { 0 };
361 // Compute a cost histogram.
362 for (unsigned i = 0; i != 65536; ++i) {
363 if (!isValidMask(i)) continue;
364 if (ShufTab[i].Cost > 9)
365 ++CostArray[9];
366 else
367 ++CostArray[ShufTab[i].Cost];
370 for (unsigned i = 0; i != 9; ++i)
371 if (CostArray[i])
372 std::cout << "// " << CostArray[i] << " entries have cost " << i << "\n";
373 if (CostArray[9])
374 std::cout << "// " << CostArray[9] << " entries have higher cost!\n";
377 // Build up the table to emit.
378 std::cout << "\n// This table is 6561*4 = 26244 bytes in size.\n";
379 std::cout << "static const unsigned PerfectShuffleTable[6561+1] = {\n";
381 for (unsigned i = 0; i != 0x8889; ++i) {
382 if (!isValidMask(i)) continue;
384 // CostSat - The cost of this operation saturated to two bits.
385 unsigned CostSat = ShufTab[i].Cost;
386 if (CostSat > 4) CostSat = 4;
387 if (CostSat == 0) CostSat = 1;
388 --CostSat; // Cost is now between 0-3.
390 unsigned OpNum = ShufTab[i].Op ? ShufTab[i].Op->OpNum : 0;
391 assert(OpNum < 16 && "Too few bits to encode operation!");
393 unsigned LHS = getCompressedMask(ShufTab[i].Arg0);
394 unsigned RHS = getCompressedMask(ShufTab[i].Arg1);
396 // Encode this as 2 bits of saturated cost, 4 bits of opcodes, 13 bits of
397 // LHS, and 13 bits of RHS = 32 bits.
398 unsigned Val = (CostSat << 30) | (OpNum << 26) | (LHS << 13) | RHS;
400 std::cout << " " << Val << "U,\t// ";
401 PrintMask(i, std::cout);
402 std::cout << ": Cost " << ShufTab[i].Cost;
403 std::cout << " " << (ShufTab[i].Op ? ShufTab[i].Op->getName() : "copy");
404 std::cout << " ";
405 if (ShufTab[ShufTab[i].Arg0].Cost == 0) {
406 std::cout << getZeroCostOpName(ShufTab[i].Arg0);
407 } else {
408 PrintMask(ShufTab[i].Arg0, std::cout);
411 if (ShufTab[i].Op && !ShufTab[i].Op->isOnlyLHSOperator()) {
412 std::cout << ", ";
413 if (ShufTab[ShufTab[i].Arg1].Cost == 0) {
414 std::cout << getZeroCostOpName(ShufTab[i].Arg1);
415 } else {
416 PrintMask(ShufTab[i].Arg1, std::cout);
419 std::cout << "\n";
421 std::cout << " 0\n};\n";
423 if (0) {
424 // Print out the table.
425 for (unsigned i = 0; i != 0x8889; ++i) {
426 if (!isValidMask(i)) continue;
427 if (ShufTab[i].Cost < 1000) {
428 PrintMask(i, std::cerr);
429 std::cerr << " - Cost " << ShufTab[i].Cost << " - ";
431 unsigned short Vals[30];
432 unsigned NumVals = 0;
433 EvaluateOps(i, Vals, NumVals);
435 for (unsigned j = 0, e = NumVals; j != e; ++j)
436 PrintOperation(j, Vals);
437 std::cerr << "\n";
444 #define GENERATE_ALTIVEC
446 #ifdef GENERATE_ALTIVEC
448 ///===---------------------------------------------------------------------===//
449 /// The altivec instruction definitions. This is the altivec-specific part of
450 /// this file.
451 ///===---------------------------------------------------------------------===//
453 // Note that the opcode numbers here must match those in the PPC backend.
454 enum {
455 OP_COPY = 0, // Copy, used for things like <u,u,u,3> to say it is <0,1,2,3>
456 OP_VMRGHW,
457 OP_VMRGLW,
458 OP_VSPLTISW0,
459 OP_VSPLTISW1,
460 OP_VSPLTISW2,
461 OP_VSPLTISW3,
462 OP_VSLDOI4,
463 OP_VSLDOI8,
464 OP_VSLDOI12
467 struct vmrghw : public Operator {
468 vmrghw() : Operator(0x0415, "vmrghw", OP_VMRGHW) {}
469 } the_vmrghw;
471 struct vmrglw : public Operator {
472 vmrglw() : Operator(0x2637, "vmrglw", OP_VMRGLW) {}
473 } the_vmrglw;
475 template<unsigned Elt>
476 struct vspltisw : public Operator {
477 vspltisw(const char *N, unsigned Opc)
478 : Operator(MakeMask(Elt, Elt, Elt, Elt), N, Opc) {}
481 vspltisw<0> the_vspltisw0("vspltisw0", OP_VSPLTISW0);
482 vspltisw<1> the_vspltisw1("vspltisw1", OP_VSPLTISW1);
483 vspltisw<2> the_vspltisw2("vspltisw2", OP_VSPLTISW2);
484 vspltisw<3> the_vspltisw3("vspltisw3", OP_VSPLTISW3);
486 template<unsigned N>
487 struct vsldoi : public Operator {
488 vsldoi(const char *Name, unsigned Opc)
489 : Operator(MakeMask(N&7, (N+1)&7, (N+2)&7, (N+3)&7), Name, Opc) {
493 vsldoi<1> the_vsldoi1("vsldoi4" , OP_VSLDOI4);
494 vsldoi<2> the_vsldoi2("vsldoi8" , OP_VSLDOI8);
495 vsldoi<3> the_vsldoi3("vsldoi12", OP_VSLDOI12);
497 #endif