1 //===- ARMTargetTransformInfo.cpp - ARM specific TTI ----------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 #include "ARMTargetTransformInfo.h"
10 #include "ARMSubtarget.h"
11 #include "MCTargetDesc/ARMAddressingModes.h"
12 #include "llvm/ADT/APInt.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/Analysis/LoopInfo.h"
15 #include "llvm/CodeGen/CostTable.h"
16 #include "llvm/CodeGen/ISDOpcodes.h"
17 #include "llvm/CodeGen/ValueTypes.h"
18 #include "llvm/IR/BasicBlock.h"
19 #include "llvm/IR/CallSite.h"
20 #include "llvm/IR/DataLayout.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/Instruction.h"
23 #include "llvm/IR/Instructions.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/Type.h"
26 #include "llvm/MC/SubtargetFeature.h"
27 #include "llvm/Support/Casting.h"
28 #include "llvm/Support/MachineValueType.h"
29 #include "llvm/Target/TargetMachine.h"
37 #define DEBUG_TYPE "armtti"
39 static cl::opt
<bool> DisableLowOverheadLoops(
40 "disable-arm-loloops", cl::Hidden
, cl::init(false),
41 cl::desc("Disable the generation of low-overhead loops"));
43 bool ARMTTIImpl::areInlineCompatible(const Function
*Caller
,
44 const Function
*Callee
) const {
45 const TargetMachine
&TM
= getTLI()->getTargetMachine();
46 const FeatureBitset
&CallerBits
=
47 TM
.getSubtargetImpl(*Caller
)->getFeatureBits();
48 const FeatureBitset
&CalleeBits
=
49 TM
.getSubtargetImpl(*Callee
)->getFeatureBits();
51 // To inline a callee, all features not in the whitelist must match exactly.
52 bool MatchExact
= (CallerBits
& ~InlineFeatureWhitelist
) ==
53 (CalleeBits
& ~InlineFeatureWhitelist
);
54 // For features in the whitelist, the callee's features must be a subset of
56 bool MatchSubset
= ((CallerBits
& CalleeBits
) & InlineFeatureWhitelist
) ==
57 (CalleeBits
& InlineFeatureWhitelist
);
58 return MatchExact
&& MatchSubset
;
61 int ARMTTIImpl::getIntImmCost(const APInt
&Imm
, Type
*Ty
) {
62 assert(Ty
->isIntegerTy());
64 unsigned Bits
= Ty
->getPrimitiveSizeInBits();
65 if (Bits
== 0 || Imm
.getActiveBits() >= 64)
68 int64_t SImmVal
= Imm
.getSExtValue();
69 uint64_t ZImmVal
= Imm
.getZExtValue();
71 if ((SImmVal
>= 0 && SImmVal
< 65536) ||
72 (ARM_AM::getSOImmVal(ZImmVal
) != -1) ||
73 (ARM_AM::getSOImmVal(~ZImmVal
) != -1))
75 return ST
->hasV6T2Ops() ? 2 : 3;
78 if ((SImmVal
>= 0 && SImmVal
< 65536) ||
79 (ARM_AM::getT2SOImmVal(ZImmVal
) != -1) ||
80 (ARM_AM::getT2SOImmVal(~ZImmVal
) != -1))
82 return ST
->hasV6T2Ops() ? 2 : 3;
84 // Thumb1, any i8 imm cost 1.
85 if (Bits
== 8 || (SImmVal
>= 0 && SImmVal
< 256))
87 if ((~SImmVal
< 256) || ARM_AM::isThumbImmShiftedVal(ZImmVal
))
89 // Load from constantpool.
93 // Constants smaller than 256 fit in the immediate field of
94 // Thumb1 instructions so we return a zero cost and 1 otherwise.
95 int ARMTTIImpl::getIntImmCodeSizeCost(unsigned Opcode
, unsigned Idx
,
96 const APInt
&Imm
, Type
*Ty
) {
97 if (Imm
.isNonNegative() && Imm
.getLimitedValue() < 256)
103 int ARMTTIImpl::getIntImmCost(unsigned Opcode
, unsigned Idx
, const APInt
&Imm
,
105 // Division by a constant can be turned into multiplication, but only if we
106 // know it's constant. So it's not so much that the immediate is cheap (it's
107 // not), but that the alternative is worse.
108 // FIXME: this is probably unneeded with GlobalISel.
109 if ((Opcode
== Instruction::SDiv
|| Opcode
== Instruction::UDiv
||
110 Opcode
== Instruction::SRem
|| Opcode
== Instruction::URem
) &&
114 if (Opcode
== Instruction::And
) {
116 if (Imm
== 255 || Imm
== 65535)
118 // Conversion to BIC is free, and means we can use ~Imm instead.
119 return std::min(getIntImmCost(Imm
, Ty
), getIntImmCost(~Imm
, Ty
));
122 if (Opcode
== Instruction::Add
)
123 // Conversion to SUB is free, and means we can use -Imm instead.
124 return std::min(getIntImmCost(Imm
, Ty
), getIntImmCost(-Imm
, Ty
));
126 if (Opcode
== Instruction::ICmp
&& Imm
.isNegative() &&
127 Ty
->getIntegerBitWidth() == 32) {
128 int64_t NegImm
= -Imm
.getSExtValue();
129 if (ST
->isThumb2() && NegImm
< 1<<12)
130 // icmp X, #-C -> cmn X, #C
132 if (ST
->isThumb() && NegImm
< 1<<8)
133 // icmp X, #-C -> adds X, #C
137 // xor a, -1 can always be folded to MVN
138 if (Opcode
== Instruction::Xor
&& Imm
.isAllOnesValue())
141 return getIntImmCost(Imm
, Ty
);
144 int ARMTTIImpl::getCastInstrCost(unsigned Opcode
, Type
*Dst
, Type
*Src
,
145 const Instruction
*I
) {
146 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
147 assert(ISD
&& "Invalid opcode");
149 // Single to/from double precision conversions.
150 static const CostTblEntry NEONFltDblTbl
[] = {
151 // Vector fptrunc/fpext conversions.
152 { ISD::FP_ROUND
, MVT::v2f64
, 2 },
153 { ISD::FP_EXTEND
, MVT::v2f32
, 2 },
154 { ISD::FP_EXTEND
, MVT::v4f32
, 4 }
157 if (Src
->isVectorTy() && ST
->hasNEON() && (ISD
== ISD::FP_ROUND
||
158 ISD
== ISD::FP_EXTEND
)) {
159 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Src
);
160 if (const auto *Entry
= CostTableLookup(NEONFltDblTbl
, ISD
, LT
.second
))
161 return LT
.first
* Entry
->Cost
;
164 EVT SrcTy
= TLI
->getValueType(DL
, Src
);
165 EVT DstTy
= TLI
->getValueType(DL
, Dst
);
167 if (!SrcTy
.isSimple() || !DstTy
.isSimple())
168 return BaseT::getCastInstrCost(Opcode
, Dst
, Src
);
170 // The extend of a load is free
171 if (I
&& isa
<LoadInst
>(I
->getOperand(0))) {
172 static const TypeConversionCostTblEntry LoadConversionTbl
[] = {
173 {ISD::SIGN_EXTEND
, MVT::i32
, MVT::i16
, 0},
174 {ISD::ZERO_EXTEND
, MVT::i32
, MVT::i16
, 0},
175 {ISD::SIGN_EXTEND
, MVT::i32
, MVT::i8
, 0},
176 {ISD::ZERO_EXTEND
, MVT::i32
, MVT::i8
, 0},
177 {ISD::SIGN_EXTEND
, MVT::i16
, MVT::i8
, 0},
178 {ISD::ZERO_EXTEND
, MVT::i16
, MVT::i8
, 0},
179 {ISD::SIGN_EXTEND
, MVT::i64
, MVT::i32
, 1},
180 {ISD::ZERO_EXTEND
, MVT::i64
, MVT::i32
, 1},
181 {ISD::SIGN_EXTEND
, MVT::i64
, MVT::i16
, 1},
182 {ISD::ZERO_EXTEND
, MVT::i64
, MVT::i16
, 1},
183 {ISD::SIGN_EXTEND
, MVT::i64
, MVT::i8
, 1},
184 {ISD::ZERO_EXTEND
, MVT::i64
, MVT::i8
, 1},
186 if (const auto *Entry
= ConvertCostTableLookup(
187 LoadConversionTbl
, ISD
, DstTy
.getSimpleVT(), SrcTy
.getSimpleVT()))
190 static const TypeConversionCostTblEntry MVELoadConversionTbl
[] = {
191 {ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i16
, 0},
192 {ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i16
, 0},
193 {ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i8
, 0},
194 {ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i8
, 0},
195 {ISD::SIGN_EXTEND
, MVT::v8i16
, MVT::v8i8
, 0},
196 {ISD::ZERO_EXTEND
, MVT::v8i16
, MVT::v8i8
, 0},
198 if (SrcTy
.isVector() && ST
->hasMVEIntegerOps()) {
199 if (const auto *Entry
=
200 ConvertCostTableLookup(MVELoadConversionTbl
, ISD
,
201 DstTy
.getSimpleVT(), SrcTy
.getSimpleVT()))
206 // Some arithmetic, load and store operations have specific instructions
207 // to cast up/down their types automatically at no extra cost.
208 // TODO: Get these tables to know at least what the related operations are.
209 static const TypeConversionCostTblEntry NEONVectorConversionTbl
[] = {
210 { ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i16
, 0 },
211 { ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i16
, 0 },
212 { ISD::SIGN_EXTEND
, MVT::v2i64
, MVT::v2i32
, 1 },
213 { ISD::ZERO_EXTEND
, MVT::v2i64
, MVT::v2i32
, 1 },
214 { ISD::TRUNCATE
, MVT::v4i32
, MVT::v4i64
, 0 },
215 { ISD::TRUNCATE
, MVT::v4i16
, MVT::v4i32
, 1 },
217 // The number of vmovl instructions for the extension.
218 { ISD::SIGN_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
219 { ISD::ZERO_EXTEND
, MVT::v4i64
, MVT::v4i16
, 3 },
220 { ISD::SIGN_EXTEND
, MVT::v8i32
, MVT::v8i8
, 3 },
221 { ISD::ZERO_EXTEND
, MVT::v8i32
, MVT::v8i8
, 3 },
222 { ISD::SIGN_EXTEND
, MVT::v8i64
, MVT::v8i8
, 7 },
223 { ISD::ZERO_EXTEND
, MVT::v8i64
, MVT::v8i8
, 7 },
224 { ISD::SIGN_EXTEND
, MVT::v8i64
, MVT::v8i16
, 6 },
225 { ISD::ZERO_EXTEND
, MVT::v8i64
, MVT::v8i16
, 6 },
226 { ISD::SIGN_EXTEND
, MVT::v16i32
, MVT::v16i8
, 6 },
227 { ISD::ZERO_EXTEND
, MVT::v16i32
, MVT::v16i8
, 6 },
229 // Operations that we legalize using splitting.
230 { ISD::TRUNCATE
, MVT::v16i8
, MVT::v16i32
, 6 },
231 { ISD::TRUNCATE
, MVT::v8i8
, MVT::v8i32
, 3 },
233 // Vector float <-> i32 conversions.
234 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 1 },
235 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i32
, 1 },
237 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i8
, 3 },
238 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i8
, 3 },
239 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i16
, 2 },
240 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i16
, 2 },
241 { ISD::SINT_TO_FP
, MVT::v2f32
, MVT::v2i32
, 1 },
242 { ISD::UINT_TO_FP
, MVT::v2f32
, MVT::v2i32
, 1 },
243 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i1
, 3 },
244 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i1
, 3 },
245 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i8
, 3 },
246 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i8
, 3 },
247 { ISD::SINT_TO_FP
, MVT::v4f32
, MVT::v4i16
, 2 },
248 { ISD::UINT_TO_FP
, MVT::v4f32
, MVT::v4i16
, 2 },
249 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i16
, 4 },
250 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i16
, 4 },
251 { ISD::SINT_TO_FP
, MVT::v8f32
, MVT::v8i32
, 2 },
252 { ISD::UINT_TO_FP
, MVT::v8f32
, MVT::v8i32
, 2 },
253 { ISD::SINT_TO_FP
, MVT::v16f32
, MVT::v16i16
, 8 },
254 { ISD::UINT_TO_FP
, MVT::v16f32
, MVT::v16i16
, 8 },
255 { ISD::SINT_TO_FP
, MVT::v16f32
, MVT::v16i32
, 4 },
256 { ISD::UINT_TO_FP
, MVT::v16f32
, MVT::v16i32
, 4 },
258 { ISD::FP_TO_SINT
, MVT::v4i32
, MVT::v4f32
, 1 },
259 { ISD::FP_TO_UINT
, MVT::v4i32
, MVT::v4f32
, 1 },
260 { ISD::FP_TO_SINT
, MVT::v4i8
, MVT::v4f32
, 3 },
261 { ISD::FP_TO_UINT
, MVT::v4i8
, MVT::v4f32
, 3 },
262 { ISD::FP_TO_SINT
, MVT::v4i16
, MVT::v4f32
, 2 },
263 { ISD::FP_TO_UINT
, MVT::v4i16
, MVT::v4f32
, 2 },
265 // Vector double <-> i32 conversions.
266 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
267 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
269 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i8
, 4 },
270 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i8
, 4 },
271 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i16
, 3 },
272 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i16
, 3 },
273 { ISD::SINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
274 { ISD::UINT_TO_FP
, MVT::v2f64
, MVT::v2i32
, 2 },
276 { ISD::FP_TO_SINT
, MVT::v2i32
, MVT::v2f64
, 2 },
277 { ISD::FP_TO_UINT
, MVT::v2i32
, MVT::v2f64
, 2 },
278 { ISD::FP_TO_SINT
, MVT::v8i16
, MVT::v8f32
, 4 },
279 { ISD::FP_TO_UINT
, MVT::v8i16
, MVT::v8f32
, 4 },
280 { ISD::FP_TO_SINT
, MVT::v16i16
, MVT::v16f32
, 8 },
281 { ISD::FP_TO_UINT
, MVT::v16i16
, MVT::v16f32
, 8 }
284 if (SrcTy
.isVector() && ST
->hasNEON()) {
285 if (const auto *Entry
= ConvertCostTableLookup(NEONVectorConversionTbl
, ISD
,
287 SrcTy
.getSimpleVT()))
291 // Scalar float to integer conversions.
292 static const TypeConversionCostTblEntry NEONFloatConversionTbl
[] = {
293 { ISD::FP_TO_SINT
, MVT::i1
, MVT::f32
, 2 },
294 { ISD::FP_TO_UINT
, MVT::i1
, MVT::f32
, 2 },
295 { ISD::FP_TO_SINT
, MVT::i1
, MVT::f64
, 2 },
296 { ISD::FP_TO_UINT
, MVT::i1
, MVT::f64
, 2 },
297 { ISD::FP_TO_SINT
, MVT::i8
, MVT::f32
, 2 },
298 { ISD::FP_TO_UINT
, MVT::i8
, MVT::f32
, 2 },
299 { ISD::FP_TO_SINT
, MVT::i8
, MVT::f64
, 2 },
300 { ISD::FP_TO_UINT
, MVT::i8
, MVT::f64
, 2 },
301 { ISD::FP_TO_SINT
, MVT::i16
, MVT::f32
, 2 },
302 { ISD::FP_TO_UINT
, MVT::i16
, MVT::f32
, 2 },
303 { ISD::FP_TO_SINT
, MVT::i16
, MVT::f64
, 2 },
304 { ISD::FP_TO_UINT
, MVT::i16
, MVT::f64
, 2 },
305 { ISD::FP_TO_SINT
, MVT::i32
, MVT::f32
, 2 },
306 { ISD::FP_TO_UINT
, MVT::i32
, MVT::f32
, 2 },
307 { ISD::FP_TO_SINT
, MVT::i32
, MVT::f64
, 2 },
308 { ISD::FP_TO_UINT
, MVT::i32
, MVT::f64
, 2 },
309 { ISD::FP_TO_SINT
, MVT::i64
, MVT::f32
, 10 },
310 { ISD::FP_TO_UINT
, MVT::i64
, MVT::f32
, 10 },
311 { ISD::FP_TO_SINT
, MVT::i64
, MVT::f64
, 10 },
312 { ISD::FP_TO_UINT
, MVT::i64
, MVT::f64
, 10 }
314 if (SrcTy
.isFloatingPoint() && ST
->hasNEON()) {
315 if (const auto *Entry
= ConvertCostTableLookup(NEONFloatConversionTbl
, ISD
,
317 SrcTy
.getSimpleVT()))
321 // Scalar integer to float conversions.
322 static const TypeConversionCostTblEntry NEONIntegerConversionTbl
[] = {
323 { ISD::SINT_TO_FP
, MVT::f32
, MVT::i1
, 2 },
324 { ISD::UINT_TO_FP
, MVT::f32
, MVT::i1
, 2 },
325 { ISD::SINT_TO_FP
, MVT::f64
, MVT::i1
, 2 },
326 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i1
, 2 },
327 { ISD::SINT_TO_FP
, MVT::f32
, MVT::i8
, 2 },
328 { ISD::UINT_TO_FP
, MVT::f32
, MVT::i8
, 2 },
329 { ISD::SINT_TO_FP
, MVT::f64
, MVT::i8
, 2 },
330 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i8
, 2 },
331 { ISD::SINT_TO_FP
, MVT::f32
, MVT::i16
, 2 },
332 { ISD::UINT_TO_FP
, MVT::f32
, MVT::i16
, 2 },
333 { ISD::SINT_TO_FP
, MVT::f64
, MVT::i16
, 2 },
334 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i16
, 2 },
335 { ISD::SINT_TO_FP
, MVT::f32
, MVT::i32
, 2 },
336 { ISD::UINT_TO_FP
, MVT::f32
, MVT::i32
, 2 },
337 { ISD::SINT_TO_FP
, MVT::f64
, MVT::i32
, 2 },
338 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i32
, 2 },
339 { ISD::SINT_TO_FP
, MVT::f32
, MVT::i64
, 10 },
340 { ISD::UINT_TO_FP
, MVT::f32
, MVT::i64
, 10 },
341 { ISD::SINT_TO_FP
, MVT::f64
, MVT::i64
, 10 },
342 { ISD::UINT_TO_FP
, MVT::f64
, MVT::i64
, 10 }
345 if (SrcTy
.isInteger() && ST
->hasNEON()) {
346 if (const auto *Entry
= ConvertCostTableLookup(NEONIntegerConversionTbl
,
347 ISD
, DstTy
.getSimpleVT(),
348 SrcTy
.getSimpleVT()))
352 // MVE extend costs, taken from codegen tests. i8->i16 or i16->i32 is one
353 // instruction, i8->i32 is two. i64 zexts are an VAND with a constant, sext
354 // are linearised so take more.
355 static const TypeConversionCostTblEntry MVEVectorConversionTbl
[] = {
356 { ISD::SIGN_EXTEND
, MVT::v8i16
, MVT::v8i8
, 1 },
357 { ISD::ZERO_EXTEND
, MVT::v8i16
, MVT::v8i8
, 1 },
358 { ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i8
, 2 },
359 { ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i8
, 2 },
360 { ISD::SIGN_EXTEND
, MVT::v2i64
, MVT::v2i8
, 10 },
361 { ISD::ZERO_EXTEND
, MVT::v2i64
, MVT::v2i8
, 2 },
362 { ISD::SIGN_EXTEND
, MVT::v4i32
, MVT::v4i16
, 1 },
363 { ISD::ZERO_EXTEND
, MVT::v4i32
, MVT::v4i16
, 1 },
364 { ISD::SIGN_EXTEND
, MVT::v2i64
, MVT::v2i16
, 10 },
365 { ISD::ZERO_EXTEND
, MVT::v2i64
, MVT::v2i16
, 2 },
366 { ISD::SIGN_EXTEND
, MVT::v2i64
, MVT::v2i32
, 8 },
367 { ISD::ZERO_EXTEND
, MVT::v2i64
, MVT::v2i32
, 2 },
370 if (SrcTy
.isVector() && ST
->hasMVEIntegerOps()) {
371 if (const auto *Entry
= ConvertCostTableLookup(MVEVectorConversionTbl
,
372 ISD
, DstTy
.getSimpleVT(),
373 SrcTy
.getSimpleVT()))
374 return Entry
->Cost
* ST
->getMVEVectorCostFactor();
377 // Scalar integer conversion costs.
378 static const TypeConversionCostTblEntry ARMIntegerConversionTbl
[] = {
379 // i16 -> i64 requires two dependent operations.
380 { ISD::SIGN_EXTEND
, MVT::i64
, MVT::i16
, 2 },
382 // Truncates on i64 are assumed to be free.
383 { ISD::TRUNCATE
, MVT::i32
, MVT::i64
, 0 },
384 { ISD::TRUNCATE
, MVT::i16
, MVT::i64
, 0 },
385 { ISD::TRUNCATE
, MVT::i8
, MVT::i64
, 0 },
386 { ISD::TRUNCATE
, MVT::i1
, MVT::i64
, 0 }
389 if (SrcTy
.isInteger()) {
390 if (const auto *Entry
= ConvertCostTableLookup(ARMIntegerConversionTbl
, ISD
,
392 SrcTy
.getSimpleVT()))
396 int BaseCost
= ST
->hasMVEIntegerOps() && Src
->isVectorTy()
397 ? ST
->getMVEVectorCostFactor()
399 return BaseCost
* BaseT::getCastInstrCost(Opcode
, Dst
, Src
);
402 int ARMTTIImpl::getVectorInstrCost(unsigned Opcode
, Type
*ValTy
,
404 // Penalize inserting into an D-subregister. We end up with a three times
405 // lower estimated throughput on swift.
406 if (ST
->hasSlowLoadDSubregister() && Opcode
== Instruction::InsertElement
&&
407 ValTy
->isVectorTy() && ValTy
->getScalarSizeInBits() <= 32)
410 if (ST
->hasNEON() && (Opcode
== Instruction::InsertElement
||
411 Opcode
== Instruction::ExtractElement
)) {
412 // Cross-class copies are expensive on many microarchitectures,
413 // so assume they are expensive by default.
414 if (ValTy
->getVectorElementType()->isIntegerTy())
417 // Even if it's not a cross class copy, this likely leads to mixing
418 // of NEON and VFP code and should be therefore penalized.
419 if (ValTy
->isVectorTy() &&
420 ValTy
->getScalarSizeInBits() <= 32)
421 return std::max(BaseT::getVectorInstrCost(Opcode
, ValTy
, Index
), 2U);
424 if (ST
->hasMVEIntegerOps() && (Opcode
== Instruction::InsertElement
||
425 Opcode
== Instruction::ExtractElement
)) {
426 // We say MVE moves costs at least the MVEVectorCostFactor, even though
427 // they are scalar instructions. This helps prevent mixing scalar and
428 // vector, to prevent vectorising where we end up just scalarising the
430 return std::max(BaseT::getVectorInstrCost(Opcode
, ValTy
, Index
),
431 ST
->getMVEVectorCostFactor()) *
432 ValTy
->getVectorNumElements() / 2;
435 return BaseT::getVectorInstrCost(Opcode
, ValTy
, Index
);
438 int ARMTTIImpl::getCmpSelInstrCost(unsigned Opcode
, Type
*ValTy
, Type
*CondTy
,
439 const Instruction
*I
) {
440 int ISD
= TLI
->InstructionOpcodeToISD(Opcode
);
441 // On NEON a vector select gets lowered to vbsl.
442 if (ST
->hasNEON() && ValTy
->isVectorTy() && ISD
== ISD::SELECT
) {
443 // Lowering of some vector selects is currently far from perfect.
444 static const TypeConversionCostTblEntry NEONVectorSelectTbl
[] = {
445 { ISD::SELECT
, MVT::v4i1
, MVT::v4i64
, 4*4 + 1*2 + 1 },
446 { ISD::SELECT
, MVT::v8i1
, MVT::v8i64
, 50 },
447 { ISD::SELECT
, MVT::v16i1
, MVT::v16i64
, 100 }
450 EVT SelCondTy
= TLI
->getValueType(DL
, CondTy
);
451 EVT SelValTy
= TLI
->getValueType(DL
, ValTy
);
452 if (SelCondTy
.isSimple() && SelValTy
.isSimple()) {
453 if (const auto *Entry
= ConvertCostTableLookup(NEONVectorSelectTbl
, ISD
,
454 SelCondTy
.getSimpleVT(),
455 SelValTy
.getSimpleVT()))
459 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, ValTy
);
463 int BaseCost
= ST
->hasMVEIntegerOps() && ValTy
->isVectorTy()
464 ? ST
->getMVEVectorCostFactor()
466 return BaseCost
* BaseT::getCmpSelInstrCost(Opcode
, ValTy
, CondTy
, I
);
469 int ARMTTIImpl::getAddressComputationCost(Type
*Ty
, ScalarEvolution
*SE
,
471 // Address computations in vectorized code with non-consecutive addresses will
472 // likely result in more instructions compared to scalar code where the
473 // computation can more often be merged into the index mode. The resulting
474 // extra micro-ops can significantly decrease throughput.
475 unsigned NumVectorInstToHideOverhead
= 10;
476 int MaxMergeDistance
= 64;
479 if (Ty
->isVectorTy() && SE
&&
480 !BaseT::isConstantStridedAccessLessThan(SE
, Ptr
, MaxMergeDistance
+ 1))
481 return NumVectorInstToHideOverhead
;
483 // In many cases the address computation is not merged into the instruction
487 return BaseT::getAddressComputationCost(Ty
, SE
, Ptr
);
490 int ARMTTIImpl::getMemcpyCost(const Instruction
*I
) {
491 const MemCpyInst
*MI
= dyn_cast
<MemCpyInst
>(I
);
492 assert(MI
&& "MemcpyInst expected");
493 ConstantInt
*C
= dyn_cast
<ConstantInt
>(MI
->getLength());
495 // To model the cost of a library call, we assume 1 for the call, and
496 // 3 for the argument setup.
497 const unsigned LibCallCost
= 4;
499 // If 'size' is not a constant, a library call will be generated.
503 const unsigned Size
= C
->getValue().getZExtValue();
504 const unsigned DstAlign
= MI
->getDestAlignment();
505 const unsigned SrcAlign
= MI
->getSourceAlignment();
506 const Function
*F
= I
->getParent()->getParent();
507 const unsigned Limit
= TLI
->getMaxStoresPerMemmove(F
->hasMinSize());
508 std::vector
<EVT
> MemOps
;
510 // MemOps will be poplulated with a list of data types that needs to be
511 // loaded and stored. That's why we multiply the number of elements by 2 to
512 // get the cost for this memcpy.
513 if (getTLI()->findOptimalMemOpLowering(
514 MemOps
, Limit
, Size
, DstAlign
, SrcAlign
, false /*IsMemset*/,
515 false /*ZeroMemset*/, false /*MemcpyStrSrc*/, false /*AllowOverlap*/,
516 MI
->getDestAddressSpace(), MI
->getSourceAddressSpace(),
518 return MemOps
.size() * 2;
520 // If we can't find an optimal memop lowering, return the default cost
524 int ARMTTIImpl::getShuffleCost(TTI::ShuffleKind Kind
, Type
*Tp
, int Index
,
527 if (Kind
== TTI::SK_Broadcast
) {
528 static const CostTblEntry NEONDupTbl
[] = {
529 // VDUP handles these cases.
530 {ISD::VECTOR_SHUFFLE
, MVT::v2i32
, 1},
531 {ISD::VECTOR_SHUFFLE
, MVT::v2f32
, 1},
532 {ISD::VECTOR_SHUFFLE
, MVT::v2i64
, 1},
533 {ISD::VECTOR_SHUFFLE
, MVT::v2f64
, 1},
534 {ISD::VECTOR_SHUFFLE
, MVT::v4i16
, 1},
535 {ISD::VECTOR_SHUFFLE
, MVT::v8i8
, 1},
537 {ISD::VECTOR_SHUFFLE
, MVT::v4i32
, 1},
538 {ISD::VECTOR_SHUFFLE
, MVT::v4f32
, 1},
539 {ISD::VECTOR_SHUFFLE
, MVT::v8i16
, 1},
540 {ISD::VECTOR_SHUFFLE
, MVT::v16i8
, 1}};
542 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
544 if (const auto *Entry
=
545 CostTableLookup(NEONDupTbl
, ISD::VECTOR_SHUFFLE
, LT
.second
))
546 return LT
.first
* Entry
->Cost
;
548 if (Kind
== TTI::SK_Reverse
) {
549 static const CostTblEntry NEONShuffleTbl
[] = {
550 // Reverse shuffle cost one instruction if we are shuffling within a
551 // double word (vrev) or two if we shuffle a quad word (vrev, vext).
552 {ISD::VECTOR_SHUFFLE
, MVT::v2i32
, 1},
553 {ISD::VECTOR_SHUFFLE
, MVT::v2f32
, 1},
554 {ISD::VECTOR_SHUFFLE
, MVT::v2i64
, 1},
555 {ISD::VECTOR_SHUFFLE
, MVT::v2f64
, 1},
556 {ISD::VECTOR_SHUFFLE
, MVT::v4i16
, 1},
557 {ISD::VECTOR_SHUFFLE
, MVT::v8i8
, 1},
559 {ISD::VECTOR_SHUFFLE
, MVT::v4i32
, 2},
560 {ISD::VECTOR_SHUFFLE
, MVT::v4f32
, 2},
561 {ISD::VECTOR_SHUFFLE
, MVT::v8i16
, 2},
562 {ISD::VECTOR_SHUFFLE
, MVT::v16i8
, 2}};
564 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
566 if (const auto *Entry
=
567 CostTableLookup(NEONShuffleTbl
, ISD::VECTOR_SHUFFLE
, LT
.second
))
568 return LT
.first
* Entry
->Cost
;
570 if (Kind
== TTI::SK_Select
) {
571 static const CostTblEntry NEONSelShuffleTbl
[] = {
572 // Select shuffle cost table for ARM. Cost is the number of
574 // required to create the shuffled vector.
576 {ISD::VECTOR_SHUFFLE
, MVT::v2f32
, 1},
577 {ISD::VECTOR_SHUFFLE
, MVT::v2i64
, 1},
578 {ISD::VECTOR_SHUFFLE
, MVT::v2f64
, 1},
579 {ISD::VECTOR_SHUFFLE
, MVT::v2i32
, 1},
581 {ISD::VECTOR_SHUFFLE
, MVT::v4i32
, 2},
582 {ISD::VECTOR_SHUFFLE
, MVT::v4f32
, 2},
583 {ISD::VECTOR_SHUFFLE
, MVT::v4i16
, 2},
585 {ISD::VECTOR_SHUFFLE
, MVT::v8i16
, 16},
587 {ISD::VECTOR_SHUFFLE
, MVT::v16i8
, 32}};
589 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
590 if (const auto *Entry
= CostTableLookup(NEONSelShuffleTbl
,
591 ISD::VECTOR_SHUFFLE
, LT
.second
))
592 return LT
.first
* Entry
->Cost
;
595 if (ST
->hasMVEIntegerOps()) {
596 if (Kind
== TTI::SK_Broadcast
) {
597 static const CostTblEntry MVEDupTbl
[] = {
598 // VDUP handles these cases.
599 {ISD::VECTOR_SHUFFLE
, MVT::v4i32
, 1},
600 {ISD::VECTOR_SHUFFLE
, MVT::v8i16
, 1},
601 {ISD::VECTOR_SHUFFLE
, MVT::v16i8
, 1},
602 {ISD::VECTOR_SHUFFLE
, MVT::v4f32
, 1},
603 {ISD::VECTOR_SHUFFLE
, MVT::v8f16
, 1}};
605 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Tp
);
607 if (const auto *Entry
= CostTableLookup(MVEDupTbl
, ISD::VECTOR_SHUFFLE
,
609 return LT
.first
* Entry
->Cost
* ST
->getMVEVectorCostFactor();
612 int BaseCost
= ST
->hasMVEIntegerOps() && Tp
->isVectorTy()
613 ? ST
->getMVEVectorCostFactor()
615 return BaseCost
* BaseT::getShuffleCost(Kind
, Tp
, Index
, SubTp
);
618 int ARMTTIImpl::getArithmeticInstrCost(
619 unsigned Opcode
, Type
*Ty
, TTI::OperandValueKind Op1Info
,
620 TTI::OperandValueKind Op2Info
, TTI::OperandValueProperties Opd1PropInfo
,
621 TTI::OperandValueProperties Opd2PropInfo
,
622 ArrayRef
<const Value
*> Args
) {
623 int ISDOpcode
= TLI
->InstructionOpcodeToISD(Opcode
);
624 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Ty
);
626 const unsigned FunctionCallDivCost
= 20;
627 const unsigned ReciprocalDivCost
= 10;
628 static const CostTblEntry CostTbl
[] = {
630 // These costs are somewhat random. Choose a cost of 20 to indicate that
631 // vectorizing devision (added function call) is going to be very expensive.
632 // Double registers types.
633 { ISD::SDIV
, MVT::v1i64
, 1 * FunctionCallDivCost
},
634 { ISD::UDIV
, MVT::v1i64
, 1 * FunctionCallDivCost
},
635 { ISD::SREM
, MVT::v1i64
, 1 * FunctionCallDivCost
},
636 { ISD::UREM
, MVT::v1i64
, 1 * FunctionCallDivCost
},
637 { ISD::SDIV
, MVT::v2i32
, 2 * FunctionCallDivCost
},
638 { ISD::UDIV
, MVT::v2i32
, 2 * FunctionCallDivCost
},
639 { ISD::SREM
, MVT::v2i32
, 2 * FunctionCallDivCost
},
640 { ISD::UREM
, MVT::v2i32
, 2 * FunctionCallDivCost
},
641 { ISD::SDIV
, MVT::v4i16
, ReciprocalDivCost
},
642 { ISD::UDIV
, MVT::v4i16
, ReciprocalDivCost
},
643 { ISD::SREM
, MVT::v4i16
, 4 * FunctionCallDivCost
},
644 { ISD::UREM
, MVT::v4i16
, 4 * FunctionCallDivCost
},
645 { ISD::SDIV
, MVT::v8i8
, ReciprocalDivCost
},
646 { ISD::UDIV
, MVT::v8i8
, ReciprocalDivCost
},
647 { ISD::SREM
, MVT::v8i8
, 8 * FunctionCallDivCost
},
648 { ISD::UREM
, MVT::v8i8
, 8 * FunctionCallDivCost
},
649 // Quad register types.
650 { ISD::SDIV
, MVT::v2i64
, 2 * FunctionCallDivCost
},
651 { ISD::UDIV
, MVT::v2i64
, 2 * FunctionCallDivCost
},
652 { ISD::SREM
, MVT::v2i64
, 2 * FunctionCallDivCost
},
653 { ISD::UREM
, MVT::v2i64
, 2 * FunctionCallDivCost
},
654 { ISD::SDIV
, MVT::v4i32
, 4 * FunctionCallDivCost
},
655 { ISD::UDIV
, MVT::v4i32
, 4 * FunctionCallDivCost
},
656 { ISD::SREM
, MVT::v4i32
, 4 * FunctionCallDivCost
},
657 { ISD::UREM
, MVT::v4i32
, 4 * FunctionCallDivCost
},
658 { ISD::SDIV
, MVT::v8i16
, 8 * FunctionCallDivCost
},
659 { ISD::UDIV
, MVT::v8i16
, 8 * FunctionCallDivCost
},
660 { ISD::SREM
, MVT::v8i16
, 8 * FunctionCallDivCost
},
661 { ISD::UREM
, MVT::v8i16
, 8 * FunctionCallDivCost
},
662 { ISD::SDIV
, MVT::v16i8
, 16 * FunctionCallDivCost
},
663 { ISD::UDIV
, MVT::v16i8
, 16 * FunctionCallDivCost
},
664 { ISD::SREM
, MVT::v16i8
, 16 * FunctionCallDivCost
},
665 { ISD::UREM
, MVT::v16i8
, 16 * FunctionCallDivCost
},
670 if (const auto *Entry
= CostTableLookup(CostTbl
, ISDOpcode
, LT
.second
))
671 return LT
.first
* Entry
->Cost
;
673 int Cost
= BaseT::getArithmeticInstrCost(Opcode
, Ty
, Op1Info
, Op2Info
,
674 Opd1PropInfo
, Opd2PropInfo
);
676 // This is somewhat of a hack. The problem that we are facing is that SROA
677 // creates a sequence of shift, and, or instructions to construct values.
678 // These sequences are recognized by the ISel and have zero-cost. Not so for
679 // the vectorized code. Because we have support for v2i64 but not i64 those
680 // sequences look particularly beneficial to vectorize.
681 // To work around this we increase the cost of v2i64 operations to make them
682 // seem less beneficial.
683 if (LT
.second
== MVT::v2i64
&&
684 Op2Info
== TargetTransformInfo::OK_UniformConstantValue
)
690 int BaseCost
= ST
->hasMVEIntegerOps() && Ty
->isVectorTy()
691 ? ST
->getMVEVectorCostFactor()
694 // The rest of this mostly follows what is done in BaseT::getArithmeticInstrCost,
695 // without treating floats as more expensive that scalars or increasing the
696 // costs for custom operations. The results is also multiplied by the
697 // MVEVectorCostFactor where appropriate.
698 if (TLI
->isOperationLegalOrCustomOrPromote(ISDOpcode
, LT
.second
))
699 return LT
.first
* BaseCost
;
701 // Else this is expand, assume that we need to scalarize this op.
702 if (Ty
->isVectorTy()) {
703 unsigned Num
= Ty
->getVectorNumElements();
704 unsigned Cost
= getArithmeticInstrCost(Opcode
, Ty
->getScalarType());
705 // Return the cost of multiple scalar invocation plus the cost of
706 // inserting and extracting the values.
707 return BaseT::getScalarizationOverhead(Ty
, Args
) + Num
* Cost
;
713 int ARMTTIImpl::getMemoryOpCost(unsigned Opcode
, Type
*Src
, unsigned Alignment
,
714 unsigned AddressSpace
, const Instruction
*I
) {
715 std::pair
<int, MVT
> LT
= TLI
->getTypeLegalizationCost(DL
, Src
);
717 if (ST
->hasNEON() && Src
->isVectorTy() && Alignment
!= 16 &&
718 Src
->getVectorElementType()->isDoubleTy()) {
719 // Unaligned loads/stores are extremely inefficient.
720 // We need 4 uops for vst.1/vld.1 vs 1uop for vldr/vstr.
723 int BaseCost
= ST
->hasMVEIntegerOps() && Src
->isVectorTy()
724 ? ST
->getMVEVectorCostFactor()
726 return BaseCost
* LT
.first
;
729 int ARMTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode
, Type
*VecTy
,
731 ArrayRef
<unsigned> Indices
,
733 unsigned AddressSpace
,
735 bool UseMaskForGaps
) {
736 assert(Factor
>= 2 && "Invalid interleave factor");
737 assert(isa
<VectorType
>(VecTy
) && "Expect a vector type");
739 // vldN/vstN doesn't support vector types of i64/f64 element.
740 bool EltIs64Bits
= DL
.getTypeSizeInBits(VecTy
->getScalarType()) == 64;
742 if (Factor
<= TLI
->getMaxSupportedInterleaveFactor() && !EltIs64Bits
&&
743 !UseMaskForCond
&& !UseMaskForGaps
) {
744 unsigned NumElts
= VecTy
->getVectorNumElements();
745 auto *SubVecTy
= VectorType::get(VecTy
->getScalarType(), NumElts
/ Factor
);
747 // vldN/vstN only support legal vector types of size 64 or 128 in bits.
748 // Accesses having vector types that are a multiple of 128 bits can be
749 // matched to more than one vldN/vstN instruction.
750 if (NumElts
% Factor
== 0 &&
751 TLI
->isLegalInterleavedAccessType(SubVecTy
, DL
))
752 return Factor
* TLI
->getNumInterleavedAccesses(SubVecTy
, DL
);
755 return BaseT::getInterleavedMemoryOpCost(Opcode
, VecTy
, Factor
, Indices
,
756 Alignment
, AddressSpace
,
757 UseMaskForCond
, UseMaskForGaps
);
760 bool ARMTTIImpl::isLoweredToCall(const Function
*F
) {
761 if (!F
->isIntrinsic())
762 BaseT::isLoweredToCall(F
);
764 // Assume all Arm-specific intrinsics map to an instruction.
765 if (F
->getName().startswith("llvm.arm"))
768 switch (F
->getIntrinsicID()) {
770 case Intrinsic::powi
:
775 case Intrinsic::log10
:
776 case Intrinsic::log2
:
778 case Intrinsic::exp2
:
780 case Intrinsic::sqrt
:
781 case Intrinsic::fabs
:
782 case Intrinsic::copysign
:
783 case Intrinsic::floor
:
784 case Intrinsic::ceil
:
785 case Intrinsic::trunc
:
786 case Intrinsic::rint
:
787 case Intrinsic::nearbyint
:
788 case Intrinsic::round
:
789 case Intrinsic::canonicalize
:
790 case Intrinsic::lround
:
791 case Intrinsic::llround
:
792 case Intrinsic::lrint
:
793 case Intrinsic::llrint
:
794 if (F
->getReturnType()->isDoubleTy() && !ST
->hasFP64())
796 if (F
->getReturnType()->isHalfTy() && !ST
->hasFullFP16())
798 // Some operations can be handled by vector instructions and assume
799 // unsupported vectors will be expanded into supported scalar ones.
800 // TODO Handle scalar operations properly.
801 return !ST
->hasFPARMv8Base() && !ST
->hasVFP2Base();
802 case Intrinsic::masked_store
:
803 case Intrinsic::masked_load
:
804 case Intrinsic::masked_gather
:
805 case Intrinsic::masked_scatter
:
806 return !ST
->hasMVEIntegerOps();
807 case Intrinsic::sadd_with_overflow
:
808 case Intrinsic::uadd_with_overflow
:
809 case Intrinsic::ssub_with_overflow
:
810 case Intrinsic::usub_with_overflow
:
811 case Intrinsic::sadd_sat
:
812 case Intrinsic::uadd_sat
:
813 case Intrinsic::ssub_sat
:
814 case Intrinsic::usub_sat
:
818 return BaseT::isLoweredToCall(F
);
821 bool ARMTTIImpl::isHardwareLoopProfitable(Loop
*L
, ScalarEvolution
&SE
,
823 TargetLibraryInfo
*LibInfo
,
824 HardwareLoopInfo
&HWLoopInfo
) {
825 // Low-overhead branches are only supported in the 'low-overhead branch'
826 // extension of v8.1-m.
827 if (!ST
->hasLOB() || DisableLowOverheadLoops
)
830 if (!SE
.hasLoopInvariantBackedgeTakenCount(L
))
833 const SCEV
*BackedgeTakenCount
= SE
.getBackedgeTakenCount(L
);
834 if (isa
<SCEVCouldNotCompute
>(BackedgeTakenCount
))
837 const SCEV
*TripCountSCEV
=
838 SE
.getAddExpr(BackedgeTakenCount
,
839 SE
.getOne(BackedgeTakenCount
->getType()));
841 // We need to store the trip count in LR, a 32-bit register.
842 if (SE
.getUnsignedRangeMax(TripCountSCEV
).getBitWidth() > 32)
845 // Making a call will trash LR and clear LO_BRANCH_INFO, so there's little
846 // point in generating a hardware loop if that's going to happen.
847 auto MaybeCall
= [this](Instruction
&I
) {
848 const ARMTargetLowering
*TLI
= getTLI();
849 unsigned ISD
= TLI
->InstructionOpcodeToISD(I
.getOpcode());
850 EVT VT
= TLI
->getValueType(DL
, I
.getType(), true);
851 if (TLI
->getOperationAction(ISD
, VT
) == TargetLowering::LibCall
)
854 // Check if an intrinsic will be lowered to a call and assume that any
855 // other CallInst will generate a bl.
856 if (auto *Call
= dyn_cast
<CallInst
>(&I
)) {
857 if (isa
<IntrinsicInst
>(Call
)) {
858 if (const Function
*F
= Call
->getCalledFunction())
859 return isLoweredToCall(F
);
864 // FPv5 provides conversions between integer, double-precision,
865 // single-precision, and half-precision formats.
866 switch (I
.getOpcode()) {
869 case Instruction::FPToSI
:
870 case Instruction::FPToUI
:
871 case Instruction::SIToFP
:
872 case Instruction::UIToFP
:
873 case Instruction::FPTrunc
:
874 case Instruction::FPExt
:
875 return !ST
->hasFPARMv8Base();
878 // FIXME: Unfortunately the approach of checking the Operation Action does
879 // not catch all cases of Legalization that use library calls. Our
880 // Legalization step categorizes some transformations into library calls as
881 // Custom, Expand or even Legal when doing type legalization. So for now
882 // we have to special case for instance the SDIV of 64bit integers and the
883 // use of floating point emulation.
884 if (VT
.isInteger() && VT
.getSizeInBits() >= 64) {
898 // Assume all other non-float operations are supported.
899 if (!VT
.isFloatingPoint())
902 // We'll need a library call to handle most floats when using soft.
903 if (TLI
->useSoftFloat()) {
904 switch (I
.getOpcode()) {
907 case Instruction::Alloca
:
908 case Instruction::Load
:
909 case Instruction::Store
:
910 case Instruction::Select
:
911 case Instruction::PHI
:
916 // We'll need a libcall to perform double precision operations on a single
917 // precision only FPU.
918 if (I
.getType()->isDoubleTy() && !ST
->hasFP64())
921 // Likewise for half precision arithmetic.
922 if (I
.getType()->isHalfTy() && !ST
->hasFullFP16())
928 auto IsHardwareLoopIntrinsic
= [](Instruction
&I
) {
929 if (auto *Call
= dyn_cast
<IntrinsicInst
>(&I
)) {
930 switch (Call
->getIntrinsicID()) {
933 case Intrinsic::set_loop_iterations
:
934 case Intrinsic::test_set_loop_iterations
:
935 case Intrinsic::loop_decrement
:
936 case Intrinsic::loop_decrement_reg
:
943 // Scan the instructions to see if there's any that we know will turn into a
944 // call or if this loop is already a low-overhead loop.
945 auto ScanLoop
= [&](Loop
*L
) {
946 for (auto *BB
: L
->getBlocks()) {
947 for (auto &I
: *BB
) {
948 if (MaybeCall(I
) || IsHardwareLoopIntrinsic(I
))
955 // Visit inner loops.
956 for (auto Inner
: *L
)
957 if (!ScanLoop(Inner
))
963 // TODO: Check whether the trip count calculation is expensive. If L is the
964 // inner loop but we know it has a low trip count, calculating that trip
965 // count (in the parent loop) may be detrimental.
967 LLVMContext
&C
= L
->getHeader()->getContext();
968 HWLoopInfo
.CounterInReg
= true;
969 HWLoopInfo
.IsNestingLegal
= false;
970 HWLoopInfo
.PerformEntryTest
= true;
971 HWLoopInfo
.CountType
= Type::getInt32Ty(C
);
972 HWLoopInfo
.LoopDecrement
= ConstantInt::get(HWLoopInfo
.CountType
, 1);
976 void ARMTTIImpl::getUnrollingPreferences(Loop
*L
, ScalarEvolution
&SE
,
977 TTI::UnrollingPreferences
&UP
) {
978 // Only currently enable these preferences for M-Class cores.
980 return BasicTTIImplBase::getUnrollingPreferences(L
, SE
, UP
);
982 // Disable loop unrolling for Oz and Os.
983 UP
.OptSizeThreshold
= 0;
984 UP
.PartialOptSizeThreshold
= 0;
985 if (L
->getHeader()->getParent()->hasOptSize())
988 // Only enable on Thumb-2 targets.
992 SmallVector
<BasicBlock
*, 4> ExitingBlocks
;
993 L
->getExitingBlocks(ExitingBlocks
);
994 LLVM_DEBUG(dbgs() << "Loop has:\n"
995 << "Blocks: " << L
->getNumBlocks() << "\n"
996 << "Exit blocks: " << ExitingBlocks
.size() << "\n");
998 // Only allow another exit other than the latch. This acts as an early exit
999 // as it mirrors the profitability calculation of the runtime unroller.
1000 if (ExitingBlocks
.size() > 2)
1003 // Limit the CFG of the loop body for targets with a branch predictor.
1004 // Allowing 4 blocks permits if-then-else diamonds in the body.
1005 if (ST
->hasBranchPredictor() && L
->getNumBlocks() > 4)
1008 // Scan the loop: don't unroll loops with calls as this could prevent
1011 for (auto *BB
: L
->getBlocks()) {
1012 for (auto &I
: *BB
) {
1013 if (isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
)) {
1014 ImmutableCallSite
CS(&I
);
1015 if (const Function
*F
= CS
.getCalledFunction()) {
1016 if (!isLoweredToCall(F
))
1021 // Don't unroll vectorised loop. MVE does not benefit from it as much as
1023 if (I
.getType()->isVectorTy())
1026 SmallVector
<const Value
*, 4> Operands(I
.value_op_begin(),
1028 Cost
+= getUserCost(&I
, Operands
);
1032 LLVM_DEBUG(dbgs() << "Cost of loop: " << Cost
<< "\n");
1036 UP
.UpperBound
= true;
1037 UP
.UnrollRemainder
= true;
1038 UP
.DefaultUnrollRuntimeCount
= 4;
1039 UP
.UnrollAndJam
= true;
1040 UP
.UnrollAndJamInnerLoopThreshold
= 60;
1042 // Force unrolling small loops can be very useful because of the branch
1043 // taken cost of the backedge.
1048 bool ARMTTIImpl::useReductionIntrinsic(unsigned Opcode
, Type
*Ty
,
1049 TTI::ReductionFlags Flags
) const {
1050 assert(isa
<VectorType
>(Ty
) && "Expected Ty to be a vector type");
1051 unsigned ScalarBits
= Ty
->getScalarSizeInBits();
1052 if (!ST
->hasMVEIntegerOps())
1056 case Instruction::FAdd
:
1057 case Instruction::FMul
:
1058 case Instruction::And
:
1059 case Instruction::Or
:
1060 case Instruction::Xor
:
1061 case Instruction::Mul
:
1062 case Instruction::ICmp
:
1063 case Instruction::FCmp
:
1065 case Instruction::Add
:
1066 return ScalarBits
* Ty
->getVectorNumElements() == 128;
1068 llvm_unreachable("Unhandled reduction opcode");