[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Analysis / CFLAndersAliasAnalysis.cpp
blob690e514d4f5c79d232547fcd52619194c7769605
1 //===- CFLAndersAliasAnalysis.cpp - Unification-based Alias Analysis ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a CFL-based, summary-based alias analysis algorithm. It
10 // differs from CFLSteensAliasAnalysis in its inclusion-based nature while
11 // CFLSteensAliasAnalysis is unification-based. This pass has worse performance
12 // than CFLSteensAliasAnalysis (the worst case complexity of
13 // CFLAndersAliasAnalysis is cubic, while the worst case complexity of
14 // CFLSteensAliasAnalysis is almost linear), but it is able to yield more
15 // precise analysis result. The precision of this analysis is roughly the same
16 // as that of an one level context-sensitive Andersen's algorithm.
18 // The algorithm used here is based on recursive state machine matching scheme
19 // proposed in "Demand-driven alias analysis for C" by Xin Zheng and Radu
20 // Rugina. The general idea is to extend the traditional transitive closure
21 // algorithm to perform CFL matching along the way: instead of recording
22 // "whether X is reachable from Y", we keep track of "whether X is reachable
23 // from Y at state Z", where the "state" field indicates where we are in the CFL
24 // matching process. To understand the matching better, it is advisable to have
25 // the state machine shown in Figure 3 of the paper available when reading the
26 // codes: all we do here is to selectively expand the transitive closure by
27 // discarding edges that are not recognized by the state machine.
29 // There are two differences between our current implementation and the one
30 // described in the paper:
31 // - Our algorithm eagerly computes all alias pairs after the CFLGraph is built,
32 // while in the paper the authors did the computation in a demand-driven
33 // fashion. We did not implement the demand-driven algorithm due to the
34 // additional coding complexity and higher memory profile, but if we found it
35 // necessary we may switch to it eventually.
36 // - In the paper the authors use a state machine that does not distinguish
37 // value reads from value writes. For example, if Y is reachable from X at state
38 // S3, it may be the case that X is written into Y, or it may be the case that
39 // there's a third value Z that writes into both X and Y. To make that
40 // distinction (which is crucial in building function summary as well as
41 // retrieving mod-ref info), we choose to duplicate some of the states in the
42 // paper's proposed state machine. The duplication does not change the set the
43 // machine accepts. Given a pair of reachable values, it only provides more
44 // detailed information on which value is being written into and which is being
45 // read from.
47 //===----------------------------------------------------------------------===//
49 // N.B. AliasAnalysis as a whole is phrased as a FunctionPass at the moment, and
50 // CFLAndersAA is interprocedural. This is *technically* A Bad Thing, because
51 // FunctionPasses are only allowed to inspect the Function that they're being
52 // run on. Realistically, this likely isn't a problem until we allow
53 // FunctionPasses to run concurrently.
55 #include "llvm/Analysis/CFLAndersAliasAnalysis.h"
56 #include "AliasAnalysisSummary.h"
57 #include "CFLGraph.h"
58 #include "llvm/ADT/DenseMap.h"
59 #include "llvm/ADT/DenseMapInfo.h"
60 #include "llvm/ADT/DenseSet.h"
61 #include "llvm/ADT/None.h"
62 #include "llvm/ADT/Optional.h"
63 #include "llvm/ADT/STLExtras.h"
64 #include "llvm/ADT/SmallVector.h"
65 #include "llvm/ADT/iterator_range.h"
66 #include "llvm/Analysis/AliasAnalysis.h"
67 #include "llvm/Analysis/MemoryLocation.h"
68 #include "llvm/IR/Argument.h"
69 #include "llvm/IR/Function.h"
70 #include "llvm/IR/PassManager.h"
71 #include "llvm/IR/Type.h"
72 #include "llvm/Pass.h"
73 #include "llvm/Support/Casting.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Debug.h"
76 #include "llvm/Support/raw_ostream.h"
77 #include <algorithm>
78 #include <bitset>
79 #include <cassert>
80 #include <cstddef>
81 #include <cstdint>
82 #include <functional>
83 #include <utility>
84 #include <vector>
86 using namespace llvm;
87 using namespace llvm::cflaa;
89 #define DEBUG_TYPE "cfl-anders-aa"
91 CFLAndersAAResult::CFLAndersAAResult(const TargetLibraryInfo &TLI) : TLI(TLI) {}
92 CFLAndersAAResult::CFLAndersAAResult(CFLAndersAAResult &&RHS)
93 : AAResultBase(std::move(RHS)), TLI(RHS.TLI) {}
94 CFLAndersAAResult::~CFLAndersAAResult() = default;
96 namespace {
98 enum class MatchState : uint8_t {
99 // The following state represents S1 in the paper.
100 FlowFromReadOnly = 0,
101 // The following two states together represent S2 in the paper.
102 // The 'NoReadWrite' suffix indicates that there exists an alias path that
103 // does not contain assignment and reverse assignment edges.
104 // The 'ReadOnly' suffix indicates that there exists an alias path that
105 // contains reverse assignment edges only.
106 FlowFromMemAliasNoReadWrite,
107 FlowFromMemAliasReadOnly,
108 // The following two states together represent S3 in the paper.
109 // The 'WriteOnly' suffix indicates that there exists an alias path that
110 // contains assignment edges only.
111 // The 'ReadWrite' suffix indicates that there exists an alias path that
112 // contains both assignment and reverse assignment edges. Note that if X and Y
113 // are reachable at 'ReadWrite' state, it does NOT mean X is both read from
114 // and written to Y. Instead, it means that a third value Z is written to both
115 // X and Y.
116 FlowToWriteOnly,
117 FlowToReadWrite,
118 // The following two states together represent S4 in the paper.
119 FlowToMemAliasWriteOnly,
120 FlowToMemAliasReadWrite,
123 using StateSet = std::bitset<7>;
125 const unsigned ReadOnlyStateMask =
126 (1U << static_cast<uint8_t>(MatchState::FlowFromReadOnly)) |
127 (1U << static_cast<uint8_t>(MatchState::FlowFromMemAliasReadOnly));
128 const unsigned WriteOnlyStateMask =
129 (1U << static_cast<uint8_t>(MatchState::FlowToWriteOnly)) |
130 (1U << static_cast<uint8_t>(MatchState::FlowToMemAliasWriteOnly));
132 // A pair that consists of a value and an offset
133 struct OffsetValue {
134 const Value *Val;
135 int64_t Offset;
138 bool operator==(OffsetValue LHS, OffsetValue RHS) {
139 return LHS.Val == RHS.Val && LHS.Offset == RHS.Offset;
141 bool operator<(OffsetValue LHS, OffsetValue RHS) {
142 return std::less<const Value *>()(LHS.Val, RHS.Val) ||
143 (LHS.Val == RHS.Val && LHS.Offset < RHS.Offset);
146 // A pair that consists of an InstantiatedValue and an offset
147 struct OffsetInstantiatedValue {
148 InstantiatedValue IVal;
149 int64_t Offset;
152 bool operator==(OffsetInstantiatedValue LHS, OffsetInstantiatedValue RHS) {
153 return LHS.IVal == RHS.IVal && LHS.Offset == RHS.Offset;
156 // We use ReachabilitySet to keep track of value aliases (The nonterminal "V" in
157 // the paper) during the analysis.
158 class ReachabilitySet {
159 using ValueStateMap = DenseMap<InstantiatedValue, StateSet>;
160 using ValueReachMap = DenseMap<InstantiatedValue, ValueStateMap>;
162 ValueReachMap ReachMap;
164 public:
165 using const_valuestate_iterator = ValueStateMap::const_iterator;
166 using const_value_iterator = ValueReachMap::const_iterator;
168 // Insert edge 'From->To' at state 'State'
169 bool insert(InstantiatedValue From, InstantiatedValue To, MatchState State) {
170 assert(From != To);
171 auto &States = ReachMap[To][From];
172 auto Idx = static_cast<size_t>(State);
173 if (!States.test(Idx)) {
174 States.set(Idx);
175 return true;
177 return false;
180 // Return the set of all ('From', 'State') pair for a given node 'To'
181 iterator_range<const_valuestate_iterator>
182 reachableValueAliases(InstantiatedValue V) const {
183 auto Itr = ReachMap.find(V);
184 if (Itr == ReachMap.end())
185 return make_range<const_valuestate_iterator>(const_valuestate_iterator(),
186 const_valuestate_iterator());
187 return make_range<const_valuestate_iterator>(Itr->second.begin(),
188 Itr->second.end());
191 iterator_range<const_value_iterator> value_mappings() const {
192 return make_range<const_value_iterator>(ReachMap.begin(), ReachMap.end());
196 // We use AliasMemSet to keep track of all memory aliases (the nonterminal "M"
197 // in the paper) during the analysis.
198 class AliasMemSet {
199 using MemSet = DenseSet<InstantiatedValue>;
200 using MemMapType = DenseMap<InstantiatedValue, MemSet>;
202 MemMapType MemMap;
204 public:
205 using const_mem_iterator = MemSet::const_iterator;
207 bool insert(InstantiatedValue LHS, InstantiatedValue RHS) {
208 // Top-level values can never be memory aliases because one cannot take the
209 // addresses of them
210 assert(LHS.DerefLevel > 0 && RHS.DerefLevel > 0);
211 return MemMap[LHS].insert(RHS).second;
214 const MemSet *getMemoryAliases(InstantiatedValue V) const {
215 auto Itr = MemMap.find(V);
216 if (Itr == MemMap.end())
217 return nullptr;
218 return &Itr->second;
222 // We use AliasAttrMap to keep track of the AliasAttr of each node.
223 class AliasAttrMap {
224 using MapType = DenseMap<InstantiatedValue, AliasAttrs>;
226 MapType AttrMap;
228 public:
229 using const_iterator = MapType::const_iterator;
231 bool add(InstantiatedValue V, AliasAttrs Attr) {
232 auto &OldAttr = AttrMap[V];
233 auto NewAttr = OldAttr | Attr;
234 if (OldAttr == NewAttr)
235 return false;
236 OldAttr = NewAttr;
237 return true;
240 AliasAttrs getAttrs(InstantiatedValue V) const {
241 AliasAttrs Attr;
242 auto Itr = AttrMap.find(V);
243 if (Itr != AttrMap.end())
244 Attr = Itr->second;
245 return Attr;
248 iterator_range<const_iterator> mappings() const {
249 return make_range<const_iterator>(AttrMap.begin(), AttrMap.end());
253 struct WorkListItem {
254 InstantiatedValue From;
255 InstantiatedValue To;
256 MatchState State;
259 struct ValueSummary {
260 struct Record {
261 InterfaceValue IValue;
262 unsigned DerefLevel;
264 SmallVector<Record, 4> FromRecords, ToRecords;
267 } // end anonymous namespace
269 namespace llvm {
271 // Specialize DenseMapInfo for OffsetValue.
272 template <> struct DenseMapInfo<OffsetValue> {
273 static OffsetValue getEmptyKey() {
274 return OffsetValue{DenseMapInfo<const Value *>::getEmptyKey(),
275 DenseMapInfo<int64_t>::getEmptyKey()};
278 static OffsetValue getTombstoneKey() {
279 return OffsetValue{DenseMapInfo<const Value *>::getTombstoneKey(),
280 DenseMapInfo<int64_t>::getEmptyKey()};
283 static unsigned getHashValue(const OffsetValue &OVal) {
284 return DenseMapInfo<std::pair<const Value *, int64_t>>::getHashValue(
285 std::make_pair(OVal.Val, OVal.Offset));
288 static bool isEqual(const OffsetValue &LHS, const OffsetValue &RHS) {
289 return LHS == RHS;
293 // Specialize DenseMapInfo for OffsetInstantiatedValue.
294 template <> struct DenseMapInfo<OffsetInstantiatedValue> {
295 static OffsetInstantiatedValue getEmptyKey() {
296 return OffsetInstantiatedValue{
297 DenseMapInfo<InstantiatedValue>::getEmptyKey(),
298 DenseMapInfo<int64_t>::getEmptyKey()};
301 static OffsetInstantiatedValue getTombstoneKey() {
302 return OffsetInstantiatedValue{
303 DenseMapInfo<InstantiatedValue>::getTombstoneKey(),
304 DenseMapInfo<int64_t>::getEmptyKey()};
307 static unsigned getHashValue(const OffsetInstantiatedValue &OVal) {
308 return DenseMapInfo<std::pair<InstantiatedValue, int64_t>>::getHashValue(
309 std::make_pair(OVal.IVal, OVal.Offset));
312 static bool isEqual(const OffsetInstantiatedValue &LHS,
313 const OffsetInstantiatedValue &RHS) {
314 return LHS == RHS;
318 } // end namespace llvm
320 class CFLAndersAAResult::FunctionInfo {
321 /// Map a value to other values that may alias it
322 /// Since the alias relation is symmetric, to save some space we assume values
323 /// are properly ordered: if a and b alias each other, and a < b, then b is in
324 /// AliasMap[a] but not vice versa.
325 DenseMap<const Value *, std::vector<OffsetValue>> AliasMap;
327 /// Map a value to its corresponding AliasAttrs
328 DenseMap<const Value *, AliasAttrs> AttrMap;
330 /// Summary of externally visible effects.
331 AliasSummary Summary;
333 Optional<AliasAttrs> getAttrs(const Value *) const;
335 public:
336 FunctionInfo(const Function &, const SmallVectorImpl<Value *> &,
337 const ReachabilitySet &, const AliasAttrMap &);
339 bool mayAlias(const Value *, LocationSize, const Value *, LocationSize) const;
340 const AliasSummary &getAliasSummary() const { return Summary; }
343 static bool hasReadOnlyState(StateSet Set) {
344 return (Set & StateSet(ReadOnlyStateMask)).any();
347 static bool hasWriteOnlyState(StateSet Set) {
348 return (Set & StateSet(WriteOnlyStateMask)).any();
351 static Optional<InterfaceValue>
352 getInterfaceValue(InstantiatedValue IValue,
353 const SmallVectorImpl<Value *> &RetVals) {
354 auto Val = IValue.Val;
356 Optional<unsigned> Index;
357 if (auto Arg = dyn_cast<Argument>(Val))
358 Index = Arg->getArgNo() + 1;
359 else if (is_contained(RetVals, Val))
360 Index = 0;
362 if (Index)
363 return InterfaceValue{*Index, IValue.DerefLevel};
364 return None;
367 static void populateAttrMap(DenseMap<const Value *, AliasAttrs> &AttrMap,
368 const AliasAttrMap &AMap) {
369 for (const auto &Mapping : AMap.mappings()) {
370 auto IVal = Mapping.first;
372 // Insert IVal into the map
373 auto &Attr = AttrMap[IVal.Val];
374 // AttrMap only cares about top-level values
375 if (IVal.DerefLevel == 0)
376 Attr |= Mapping.second;
380 static void
381 populateAliasMap(DenseMap<const Value *, std::vector<OffsetValue>> &AliasMap,
382 const ReachabilitySet &ReachSet) {
383 for (const auto &OuterMapping : ReachSet.value_mappings()) {
384 // AliasMap only cares about top-level values
385 if (OuterMapping.first.DerefLevel > 0)
386 continue;
388 auto Val = OuterMapping.first.Val;
389 auto &AliasList = AliasMap[Val];
390 for (const auto &InnerMapping : OuterMapping.second) {
391 // Again, AliasMap only cares about top-level values
392 if (InnerMapping.first.DerefLevel == 0)
393 AliasList.push_back(OffsetValue{InnerMapping.first.Val, UnknownOffset});
396 // Sort AliasList for faster lookup
397 llvm::sort(AliasList);
401 static void populateExternalRelations(
402 SmallVectorImpl<ExternalRelation> &ExtRelations, const Function &Fn,
403 const SmallVectorImpl<Value *> &RetVals, const ReachabilitySet &ReachSet) {
404 // If a function only returns one of its argument X, then X will be both an
405 // argument and a return value at the same time. This is an edge case that
406 // needs special handling here.
407 for (const auto &Arg : Fn.args()) {
408 if (is_contained(RetVals, &Arg)) {
409 auto ArgVal = InterfaceValue{Arg.getArgNo() + 1, 0};
410 auto RetVal = InterfaceValue{0, 0};
411 ExtRelations.push_back(ExternalRelation{ArgVal, RetVal, 0});
415 // Below is the core summary construction logic.
416 // A naive solution of adding only the value aliases that are parameters or
417 // return values in ReachSet to the summary won't work: It is possible that a
418 // parameter P is written into an intermediate value I, and the function
419 // subsequently returns *I. In that case, *I is does not value alias anything
420 // in ReachSet, and the naive solution will miss a summary edge from (P, 1) to
421 // (I, 1).
422 // To account for the aforementioned case, we need to check each non-parameter
423 // and non-return value for the possibility of acting as an intermediate.
424 // 'ValueMap' here records, for each value, which InterfaceValues read from or
425 // write into it. If both the read list and the write list of a given value
426 // are non-empty, we know that a particular value is an intermidate and we
427 // need to add summary edges from the writes to the reads.
428 DenseMap<Value *, ValueSummary> ValueMap;
429 for (const auto &OuterMapping : ReachSet.value_mappings()) {
430 if (auto Dst = getInterfaceValue(OuterMapping.first, RetVals)) {
431 for (const auto &InnerMapping : OuterMapping.second) {
432 // If Src is a param/return value, we get a same-level assignment.
433 if (auto Src = getInterfaceValue(InnerMapping.first, RetVals)) {
434 // This may happen if both Dst and Src are return values
435 if (*Dst == *Src)
436 continue;
438 if (hasReadOnlyState(InnerMapping.second))
439 ExtRelations.push_back(ExternalRelation{*Dst, *Src, UnknownOffset});
440 // No need to check for WriteOnly state, since ReachSet is symmetric
441 } else {
442 // If Src is not a param/return, add it to ValueMap
443 auto SrcIVal = InnerMapping.first;
444 if (hasReadOnlyState(InnerMapping.second))
445 ValueMap[SrcIVal.Val].FromRecords.push_back(
446 ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
447 if (hasWriteOnlyState(InnerMapping.second))
448 ValueMap[SrcIVal.Val].ToRecords.push_back(
449 ValueSummary::Record{*Dst, SrcIVal.DerefLevel});
455 for (const auto &Mapping : ValueMap) {
456 for (const auto &FromRecord : Mapping.second.FromRecords) {
457 for (const auto &ToRecord : Mapping.second.ToRecords) {
458 auto ToLevel = ToRecord.DerefLevel;
459 auto FromLevel = FromRecord.DerefLevel;
460 // Same-level assignments should have already been processed by now
461 if (ToLevel == FromLevel)
462 continue;
464 auto SrcIndex = FromRecord.IValue.Index;
465 auto SrcLevel = FromRecord.IValue.DerefLevel;
466 auto DstIndex = ToRecord.IValue.Index;
467 auto DstLevel = ToRecord.IValue.DerefLevel;
468 if (ToLevel > FromLevel)
469 SrcLevel += ToLevel - FromLevel;
470 else
471 DstLevel += FromLevel - ToLevel;
473 ExtRelations.push_back(ExternalRelation{
474 InterfaceValue{SrcIndex, SrcLevel},
475 InterfaceValue{DstIndex, DstLevel}, UnknownOffset});
480 // Remove duplicates in ExtRelations
481 llvm::sort(ExtRelations);
482 ExtRelations.erase(std::unique(ExtRelations.begin(), ExtRelations.end()),
483 ExtRelations.end());
486 static void populateExternalAttributes(
487 SmallVectorImpl<ExternalAttribute> &ExtAttributes, const Function &Fn,
488 const SmallVectorImpl<Value *> &RetVals, const AliasAttrMap &AMap) {
489 for (const auto &Mapping : AMap.mappings()) {
490 if (auto IVal = getInterfaceValue(Mapping.first, RetVals)) {
491 auto Attr = getExternallyVisibleAttrs(Mapping.second);
492 if (Attr.any())
493 ExtAttributes.push_back(ExternalAttribute{*IVal, Attr});
498 CFLAndersAAResult::FunctionInfo::FunctionInfo(
499 const Function &Fn, const SmallVectorImpl<Value *> &RetVals,
500 const ReachabilitySet &ReachSet, const AliasAttrMap &AMap) {
501 populateAttrMap(AttrMap, AMap);
502 populateExternalAttributes(Summary.RetParamAttributes, Fn, RetVals, AMap);
503 populateAliasMap(AliasMap, ReachSet);
504 populateExternalRelations(Summary.RetParamRelations, Fn, RetVals, ReachSet);
507 Optional<AliasAttrs>
508 CFLAndersAAResult::FunctionInfo::getAttrs(const Value *V) const {
509 assert(V != nullptr);
511 auto Itr = AttrMap.find(V);
512 if (Itr != AttrMap.end())
513 return Itr->second;
514 return None;
517 bool CFLAndersAAResult::FunctionInfo::mayAlias(
518 const Value *LHS, LocationSize MaybeLHSSize, const Value *RHS,
519 LocationSize MaybeRHSSize) const {
520 assert(LHS && RHS);
522 // Check if we've seen LHS and RHS before. Sometimes LHS or RHS can be created
523 // after the analysis gets executed, and we want to be conservative in those
524 // cases.
525 auto MaybeAttrsA = getAttrs(LHS);
526 auto MaybeAttrsB = getAttrs(RHS);
527 if (!MaybeAttrsA || !MaybeAttrsB)
528 return true;
530 // Check AliasAttrs before AliasMap lookup since it's cheaper
531 auto AttrsA = *MaybeAttrsA;
532 auto AttrsB = *MaybeAttrsB;
533 if (hasUnknownOrCallerAttr(AttrsA))
534 return AttrsB.any();
535 if (hasUnknownOrCallerAttr(AttrsB))
536 return AttrsA.any();
537 if (isGlobalOrArgAttr(AttrsA))
538 return isGlobalOrArgAttr(AttrsB);
539 if (isGlobalOrArgAttr(AttrsB))
540 return isGlobalOrArgAttr(AttrsA);
542 // At this point both LHS and RHS should point to locally allocated objects
544 auto Itr = AliasMap.find(LHS);
545 if (Itr != AliasMap.end()) {
547 // Find out all (X, Offset) where X == RHS
548 auto Comparator = [](OffsetValue LHS, OffsetValue RHS) {
549 return std::less<const Value *>()(LHS.Val, RHS.Val);
551 #ifdef EXPENSIVE_CHECKS
552 assert(std::is_sorted(Itr->second.begin(), Itr->second.end(), Comparator));
553 #endif
554 auto RangePair = std::equal_range(Itr->second.begin(), Itr->second.end(),
555 OffsetValue{RHS, 0}, Comparator);
557 if (RangePair.first != RangePair.second) {
558 // Be conservative about unknown sizes
559 if (MaybeLHSSize == LocationSize::unknown() ||
560 MaybeRHSSize == LocationSize::unknown())
561 return true;
563 const uint64_t LHSSize = MaybeLHSSize.getValue();
564 const uint64_t RHSSize = MaybeRHSSize.getValue();
566 for (const auto &OVal : make_range(RangePair)) {
567 // Be conservative about UnknownOffset
568 if (OVal.Offset == UnknownOffset)
569 return true;
571 // We know that LHS aliases (RHS + OVal.Offset) if the control flow
572 // reaches here. The may-alias query essentially becomes integer
573 // range-overlap queries over two ranges [OVal.Offset, OVal.Offset +
574 // LHSSize) and [0, RHSSize).
576 // Try to be conservative on super large offsets
577 if (LLVM_UNLIKELY(LHSSize > INT64_MAX || RHSSize > INT64_MAX))
578 return true;
580 auto LHSStart = OVal.Offset;
581 // FIXME: Do we need to guard against integer overflow?
582 auto LHSEnd = OVal.Offset + static_cast<int64_t>(LHSSize);
583 auto RHSStart = 0;
584 auto RHSEnd = static_cast<int64_t>(RHSSize);
585 if (LHSEnd > RHSStart && LHSStart < RHSEnd)
586 return true;
591 return false;
594 static void propagate(InstantiatedValue From, InstantiatedValue To,
595 MatchState State, ReachabilitySet &ReachSet,
596 std::vector<WorkListItem> &WorkList) {
597 if (From == To)
598 return;
599 if (ReachSet.insert(From, To, State))
600 WorkList.push_back(WorkListItem{From, To, State});
603 static void initializeWorkList(std::vector<WorkListItem> &WorkList,
604 ReachabilitySet &ReachSet,
605 const CFLGraph &Graph) {
606 for (const auto &Mapping : Graph.value_mappings()) {
607 auto Val = Mapping.first;
608 auto &ValueInfo = Mapping.second;
609 assert(ValueInfo.getNumLevels() > 0);
611 // Insert all immediate assignment neighbors to the worklist
612 for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
613 auto Src = InstantiatedValue{Val, I};
614 // If there's an assignment edge from X to Y, it means Y is reachable from
615 // X at S3 and X is reachable from Y at S1
616 for (auto &Edge : ValueInfo.getNodeInfoAtLevel(I).Edges) {
617 propagate(Edge.Other, Src, MatchState::FlowFromReadOnly, ReachSet,
618 WorkList);
619 propagate(Src, Edge.Other, MatchState::FlowToWriteOnly, ReachSet,
620 WorkList);
626 static Optional<InstantiatedValue> getNodeBelow(const CFLGraph &Graph,
627 InstantiatedValue V) {
628 auto NodeBelow = InstantiatedValue{V.Val, V.DerefLevel + 1};
629 if (Graph.getNode(NodeBelow))
630 return NodeBelow;
631 return None;
634 static void processWorkListItem(const WorkListItem &Item, const CFLGraph &Graph,
635 ReachabilitySet &ReachSet, AliasMemSet &MemSet,
636 std::vector<WorkListItem> &WorkList) {
637 auto FromNode = Item.From;
638 auto ToNode = Item.To;
640 auto NodeInfo = Graph.getNode(ToNode);
641 assert(NodeInfo != nullptr);
643 // TODO: propagate field offsets
645 // FIXME: Here is a neat trick we can do: since both ReachSet and MemSet holds
646 // relations that are symmetric, we could actually cut the storage by half by
647 // sorting FromNode and ToNode before insertion happens.
649 // The newly added value alias pair may potentially generate more memory
650 // alias pairs. Check for them here.
651 auto FromNodeBelow = getNodeBelow(Graph, FromNode);
652 auto ToNodeBelow = getNodeBelow(Graph, ToNode);
653 if (FromNodeBelow && ToNodeBelow &&
654 MemSet.insert(*FromNodeBelow, *ToNodeBelow)) {
655 propagate(*FromNodeBelow, *ToNodeBelow,
656 MatchState::FlowFromMemAliasNoReadWrite, ReachSet, WorkList);
657 for (const auto &Mapping : ReachSet.reachableValueAliases(*FromNodeBelow)) {
658 auto Src = Mapping.first;
659 auto MemAliasPropagate = [&](MatchState FromState, MatchState ToState) {
660 if (Mapping.second.test(static_cast<size_t>(FromState)))
661 propagate(Src, *ToNodeBelow, ToState, ReachSet, WorkList);
664 MemAliasPropagate(MatchState::FlowFromReadOnly,
665 MatchState::FlowFromMemAliasReadOnly);
666 MemAliasPropagate(MatchState::FlowToWriteOnly,
667 MatchState::FlowToMemAliasWriteOnly);
668 MemAliasPropagate(MatchState::FlowToReadWrite,
669 MatchState::FlowToMemAliasReadWrite);
673 // This is the core of the state machine walking algorithm. We expand ReachSet
674 // based on which state we are at (which in turn dictates what edges we
675 // should examine)
676 // From a high-level point of view, the state machine here guarantees two
677 // properties:
678 // - If *X and *Y are memory aliases, then X and Y are value aliases
679 // - If Y is an alias of X, then reverse assignment edges (if there is any)
680 // should precede any assignment edges on the path from X to Y.
681 auto NextAssignState = [&](MatchState State) {
682 for (const auto &AssignEdge : NodeInfo->Edges)
683 propagate(FromNode, AssignEdge.Other, State, ReachSet, WorkList);
685 auto NextRevAssignState = [&](MatchState State) {
686 for (const auto &RevAssignEdge : NodeInfo->ReverseEdges)
687 propagate(FromNode, RevAssignEdge.Other, State, ReachSet, WorkList);
689 auto NextMemState = [&](MatchState State) {
690 if (auto AliasSet = MemSet.getMemoryAliases(ToNode)) {
691 for (const auto &MemAlias : *AliasSet)
692 propagate(FromNode, MemAlias, State, ReachSet, WorkList);
696 switch (Item.State) {
697 case MatchState::FlowFromReadOnly:
698 NextRevAssignState(MatchState::FlowFromReadOnly);
699 NextAssignState(MatchState::FlowToReadWrite);
700 NextMemState(MatchState::FlowFromMemAliasReadOnly);
701 break;
703 case MatchState::FlowFromMemAliasNoReadWrite:
704 NextRevAssignState(MatchState::FlowFromReadOnly);
705 NextAssignState(MatchState::FlowToWriteOnly);
706 break;
708 case MatchState::FlowFromMemAliasReadOnly:
709 NextRevAssignState(MatchState::FlowFromReadOnly);
710 NextAssignState(MatchState::FlowToReadWrite);
711 break;
713 case MatchState::FlowToWriteOnly:
714 NextAssignState(MatchState::FlowToWriteOnly);
715 NextMemState(MatchState::FlowToMemAliasWriteOnly);
716 break;
718 case MatchState::FlowToReadWrite:
719 NextAssignState(MatchState::FlowToReadWrite);
720 NextMemState(MatchState::FlowToMemAliasReadWrite);
721 break;
723 case MatchState::FlowToMemAliasWriteOnly:
724 NextAssignState(MatchState::FlowToWriteOnly);
725 break;
727 case MatchState::FlowToMemAliasReadWrite:
728 NextAssignState(MatchState::FlowToReadWrite);
729 break;
733 static AliasAttrMap buildAttrMap(const CFLGraph &Graph,
734 const ReachabilitySet &ReachSet) {
735 AliasAttrMap AttrMap;
736 std::vector<InstantiatedValue> WorkList, NextList;
738 // Initialize each node with its original AliasAttrs in CFLGraph
739 for (const auto &Mapping : Graph.value_mappings()) {
740 auto Val = Mapping.first;
741 auto &ValueInfo = Mapping.second;
742 for (unsigned I = 0, E = ValueInfo.getNumLevels(); I < E; ++I) {
743 auto Node = InstantiatedValue{Val, I};
744 AttrMap.add(Node, ValueInfo.getNodeInfoAtLevel(I).Attr);
745 WorkList.push_back(Node);
749 while (!WorkList.empty()) {
750 for (const auto &Dst : WorkList) {
751 auto DstAttr = AttrMap.getAttrs(Dst);
752 if (DstAttr.none())
753 continue;
755 // Propagate attr on the same level
756 for (const auto &Mapping : ReachSet.reachableValueAliases(Dst)) {
757 auto Src = Mapping.first;
758 if (AttrMap.add(Src, DstAttr))
759 NextList.push_back(Src);
762 // Propagate attr to the levels below
763 auto DstBelow = getNodeBelow(Graph, Dst);
764 while (DstBelow) {
765 if (AttrMap.add(*DstBelow, DstAttr)) {
766 NextList.push_back(*DstBelow);
767 break;
769 DstBelow = getNodeBelow(Graph, *DstBelow);
772 WorkList.swap(NextList);
773 NextList.clear();
776 return AttrMap;
779 CFLAndersAAResult::FunctionInfo
780 CFLAndersAAResult::buildInfoFrom(const Function &Fn) {
781 CFLGraphBuilder<CFLAndersAAResult> GraphBuilder(
782 *this, TLI,
783 // Cast away the constness here due to GraphBuilder's API requirement
784 const_cast<Function &>(Fn));
785 auto &Graph = GraphBuilder.getCFLGraph();
787 ReachabilitySet ReachSet;
788 AliasMemSet MemSet;
790 std::vector<WorkListItem> WorkList, NextList;
791 initializeWorkList(WorkList, ReachSet, Graph);
792 // TODO: make sure we don't stop before the fix point is reached
793 while (!WorkList.empty()) {
794 for (const auto &Item : WorkList)
795 processWorkListItem(Item, Graph, ReachSet, MemSet, NextList);
797 NextList.swap(WorkList);
798 NextList.clear();
801 // Now that we have all the reachability info, propagate AliasAttrs according
802 // to it
803 auto IValueAttrMap = buildAttrMap(Graph, ReachSet);
805 return FunctionInfo(Fn, GraphBuilder.getReturnValues(), ReachSet,
806 std::move(IValueAttrMap));
809 void CFLAndersAAResult::scan(const Function &Fn) {
810 auto InsertPair = Cache.insert(std::make_pair(&Fn, Optional<FunctionInfo>()));
811 (void)InsertPair;
812 assert(InsertPair.second &&
813 "Trying to scan a function that has already been cached");
815 // Note that we can't do Cache[Fn] = buildSetsFrom(Fn) here: the function call
816 // may get evaluated after operator[], potentially triggering a DenseMap
817 // resize and invalidating the reference returned by operator[]
818 auto FunInfo = buildInfoFrom(Fn);
819 Cache[&Fn] = std::move(FunInfo);
820 Handles.emplace_front(const_cast<Function *>(&Fn), this);
823 void CFLAndersAAResult::evict(const Function *Fn) { Cache.erase(Fn); }
825 const Optional<CFLAndersAAResult::FunctionInfo> &
826 CFLAndersAAResult::ensureCached(const Function &Fn) {
827 auto Iter = Cache.find(&Fn);
828 if (Iter == Cache.end()) {
829 scan(Fn);
830 Iter = Cache.find(&Fn);
831 assert(Iter != Cache.end());
832 assert(Iter->second.hasValue());
834 return Iter->second;
837 const AliasSummary *CFLAndersAAResult::getAliasSummary(const Function &Fn) {
838 auto &FunInfo = ensureCached(Fn);
839 if (FunInfo.hasValue())
840 return &FunInfo->getAliasSummary();
841 else
842 return nullptr;
845 AliasResult CFLAndersAAResult::query(const MemoryLocation &LocA,
846 const MemoryLocation &LocB) {
847 auto *ValA = LocA.Ptr;
848 auto *ValB = LocB.Ptr;
850 if (!ValA->getType()->isPointerTy() || !ValB->getType()->isPointerTy())
851 return NoAlias;
853 auto *Fn = parentFunctionOfValue(ValA);
854 if (!Fn) {
855 Fn = parentFunctionOfValue(ValB);
856 if (!Fn) {
857 // The only times this is known to happen are when globals + InlineAsm are
858 // involved
859 LLVM_DEBUG(
860 dbgs()
861 << "CFLAndersAA: could not extract parent function information.\n");
862 return MayAlias;
864 } else {
865 assert(!parentFunctionOfValue(ValB) || parentFunctionOfValue(ValB) == Fn);
868 assert(Fn != nullptr);
869 auto &FunInfo = ensureCached(*Fn);
871 // AliasMap lookup
872 if (FunInfo->mayAlias(ValA, LocA.Size, ValB, LocB.Size))
873 return MayAlias;
874 return NoAlias;
877 AliasResult CFLAndersAAResult::alias(const MemoryLocation &LocA,
878 const MemoryLocation &LocB,
879 AAQueryInfo &AAQI) {
880 if (LocA.Ptr == LocB.Ptr)
881 return MustAlias;
883 // Comparisons between global variables and other constants should be
884 // handled by BasicAA.
885 // CFLAndersAA may report NoAlias when comparing a GlobalValue and
886 // ConstantExpr, but every query needs to have at least one Value tied to a
887 // Function, and neither GlobalValues nor ConstantExprs are.
888 if (isa<Constant>(LocA.Ptr) && isa<Constant>(LocB.Ptr))
889 return AAResultBase::alias(LocA, LocB, AAQI);
891 AliasResult QueryResult = query(LocA, LocB);
892 if (QueryResult == MayAlias)
893 return AAResultBase::alias(LocA, LocB, AAQI);
895 return QueryResult;
898 AnalysisKey CFLAndersAA::Key;
900 CFLAndersAAResult CFLAndersAA::run(Function &F, FunctionAnalysisManager &AM) {
901 return CFLAndersAAResult(AM.getResult<TargetLibraryAnalysis>(F));
904 char CFLAndersAAWrapperPass::ID = 0;
905 INITIALIZE_PASS(CFLAndersAAWrapperPass, "cfl-anders-aa",
906 "Inclusion-Based CFL Alias Analysis", false, true)
908 ImmutablePass *llvm::createCFLAndersAAWrapperPass() {
909 return new CFLAndersAAWrapperPass();
912 CFLAndersAAWrapperPass::CFLAndersAAWrapperPass() : ImmutablePass(ID) {
913 initializeCFLAndersAAWrapperPassPass(*PassRegistry::getPassRegistry());
916 void CFLAndersAAWrapperPass::initializePass() {
917 auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
918 Result.reset(new CFLAndersAAResult(TLIWP.getTLI()));
921 void CFLAndersAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
922 AU.setPreservesAll();
923 AU.addRequired<TargetLibraryInfoWrapperPass>();