[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Analysis / DemandedBits.cpp
blob01b8ff10d35594028432a438360f11997b74a83b
1 //===- DemandedBits.cpp - Determine demanded bits -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass implements a demanded bits analysis. A demanded bit is one that
10 // contributes to a result; bits that are not demanded can be either zero or
11 // one without affecting control or data flow. For example in this sequence:
13 // %1 = add i32 %x, %y
14 // %2 = trunc i32 %1 to i16
16 // Only the lowest 16 bits of %1 are demanded; the rest are removed by the
17 // trunc.
19 //===----------------------------------------------------------------------===//
21 #include "llvm/Analysis/DemandedBits.h"
22 #include "llvm/ADT/APInt.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/StringExtras.h"
25 #include "llvm/Analysis/AssumptionCache.h"
26 #include "llvm/Analysis/ValueTracking.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DataLayout.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Dominators.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/InstrTypes.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Operator.h"
39 #include "llvm/IR/PassManager.h"
40 #include "llvm/IR/PatternMatch.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Use.h"
43 #include "llvm/Pass.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/KnownBits.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cstdint>
51 using namespace llvm;
52 using namespace llvm::PatternMatch;
54 #define DEBUG_TYPE "demanded-bits"
56 char DemandedBitsWrapperPass::ID = 0;
58 INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
59 "Demanded bits analysis", false, false)
60 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
61 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
62 INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
63 "Demanded bits analysis", false, false)
65 DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
66 initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
69 void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
70 AU.setPreservesCFG();
71 AU.addRequired<AssumptionCacheTracker>();
72 AU.addRequired<DominatorTreeWrapperPass>();
73 AU.setPreservesAll();
76 void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
77 DB->print(OS);
80 static bool isAlwaysLive(Instruction *I) {
81 return I->isTerminator() || isa<DbgInfoIntrinsic>(I) || I->isEHPad() ||
82 I->mayHaveSideEffects();
85 void DemandedBits::determineLiveOperandBits(
86 const Instruction *UserI, const Value *Val, unsigned OperandNo,
87 const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2,
88 bool &KnownBitsComputed) {
89 unsigned BitWidth = AB.getBitWidth();
91 // We're called once per operand, but for some instructions, we need to
92 // compute known bits of both operands in order to determine the live bits of
93 // either (when both operands are instructions themselves). We don't,
94 // however, want to do this twice, so we cache the result in APInts that live
95 // in the caller. For the two-relevant-operands case, both operand values are
96 // provided here.
97 auto ComputeKnownBits =
98 [&](unsigned BitWidth, const Value *V1, const Value *V2) {
99 if (KnownBitsComputed)
100 return;
101 KnownBitsComputed = true;
103 const DataLayout &DL = UserI->getModule()->getDataLayout();
104 Known = KnownBits(BitWidth);
105 computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);
107 if (V2) {
108 Known2 = KnownBits(BitWidth);
109 computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
113 switch (UserI->getOpcode()) {
114 default: break;
115 case Instruction::Call:
116 case Instruction::Invoke:
117 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
118 switch (II->getIntrinsicID()) {
119 default: break;
120 case Intrinsic::bswap:
121 // The alive bits of the input are the swapped alive bits of
122 // the output.
123 AB = AOut.byteSwap();
124 break;
125 case Intrinsic::bitreverse:
126 // The alive bits of the input are the reversed alive bits of
127 // the output.
128 AB = AOut.reverseBits();
129 break;
130 case Intrinsic::ctlz:
131 if (OperandNo == 0) {
132 // We need some output bits, so we need all bits of the
133 // input to the left of, and including, the leftmost bit
134 // known to be one.
135 ComputeKnownBits(BitWidth, Val, nullptr);
136 AB = APInt::getHighBitsSet(BitWidth,
137 std::min(BitWidth, Known.countMaxLeadingZeros()+1));
139 break;
140 case Intrinsic::cttz:
141 if (OperandNo == 0) {
142 // We need some output bits, so we need all bits of the
143 // input to the right of, and including, the rightmost bit
144 // known to be one.
145 ComputeKnownBits(BitWidth, Val, nullptr);
146 AB = APInt::getLowBitsSet(BitWidth,
147 std::min(BitWidth, Known.countMaxTrailingZeros()+1));
149 break;
150 case Intrinsic::fshl:
151 case Intrinsic::fshr: {
152 const APInt *SA;
153 if (OperandNo == 2) {
154 // Shift amount is modulo the bitwidth. For powers of two we have
155 // SA % BW == SA & (BW - 1).
156 if (isPowerOf2_32(BitWidth))
157 AB = BitWidth - 1;
158 } else if (match(II->getOperand(2), m_APInt(SA))) {
159 // Normalize to funnel shift left. APInt shifts of BitWidth are well-
160 // defined, so no need to special-case zero shifts here.
161 uint64_t ShiftAmt = SA->urem(BitWidth);
162 if (II->getIntrinsicID() == Intrinsic::fshr)
163 ShiftAmt = BitWidth - ShiftAmt;
165 if (OperandNo == 0)
166 AB = AOut.lshr(ShiftAmt);
167 else if (OperandNo == 1)
168 AB = AOut.shl(BitWidth - ShiftAmt);
170 break;
173 break;
174 case Instruction::Add:
175 case Instruction::Sub:
176 case Instruction::Mul:
177 // Find the highest live output bit. We don't need any more input
178 // bits than that (adds, and thus subtracts, ripple only to the
179 // left).
180 AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
181 break;
182 case Instruction::Shl:
183 if (OperandNo == 0) {
184 const APInt *ShiftAmtC;
185 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
186 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
187 AB = AOut.lshr(ShiftAmt);
189 // If the shift is nuw/nsw, then the high bits are not dead
190 // (because we've promised that they *must* be zero).
191 const ShlOperator *S = cast<ShlOperator>(UserI);
192 if (S->hasNoSignedWrap())
193 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
194 else if (S->hasNoUnsignedWrap())
195 AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
198 break;
199 case Instruction::LShr:
200 if (OperandNo == 0) {
201 const APInt *ShiftAmtC;
202 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
203 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
204 AB = AOut.shl(ShiftAmt);
206 // If the shift is exact, then the low bits are not dead
207 // (they must be zero).
208 if (cast<LShrOperator>(UserI)->isExact())
209 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
212 break;
213 case Instruction::AShr:
214 if (OperandNo == 0) {
215 const APInt *ShiftAmtC;
216 if (match(UserI->getOperand(1), m_APInt(ShiftAmtC))) {
217 uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
218 AB = AOut.shl(ShiftAmt);
219 // Because the high input bit is replicated into the
220 // high-order bits of the result, if we need any of those
221 // bits, then we must keep the highest input bit.
222 if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
223 .getBoolValue())
224 AB.setSignBit();
226 // If the shift is exact, then the low bits are not dead
227 // (they must be zero).
228 if (cast<AShrOperator>(UserI)->isExact())
229 AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
232 break;
233 case Instruction::And:
234 AB = AOut;
236 // For bits that are known zero, the corresponding bits in the
237 // other operand are dead (unless they're both zero, in which
238 // case they can't both be dead, so just mark the LHS bits as
239 // dead).
240 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
241 if (OperandNo == 0)
242 AB &= ~Known2.Zero;
243 else
244 AB &= ~(Known.Zero & ~Known2.Zero);
245 break;
246 case Instruction::Or:
247 AB = AOut;
249 // For bits that are known one, the corresponding bits in the
250 // other operand are dead (unless they're both one, in which
251 // case they can't both be dead, so just mark the LHS bits as
252 // dead).
253 ComputeKnownBits(BitWidth, UserI->getOperand(0), UserI->getOperand(1));
254 if (OperandNo == 0)
255 AB &= ~Known2.One;
256 else
257 AB &= ~(Known.One & ~Known2.One);
258 break;
259 case Instruction::Xor:
260 case Instruction::PHI:
261 AB = AOut;
262 break;
263 case Instruction::Trunc:
264 AB = AOut.zext(BitWidth);
265 break;
266 case Instruction::ZExt:
267 AB = AOut.trunc(BitWidth);
268 break;
269 case Instruction::SExt:
270 AB = AOut.trunc(BitWidth);
271 // Because the high input bit is replicated into the
272 // high-order bits of the result, if we need any of those
273 // bits, then we must keep the highest input bit.
274 if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
275 AOut.getBitWidth() - BitWidth))
276 .getBoolValue())
277 AB.setSignBit();
278 break;
279 case Instruction::Select:
280 if (OperandNo != 0)
281 AB = AOut;
282 break;
283 case Instruction::ExtractElement:
284 if (OperandNo == 0)
285 AB = AOut;
286 break;
287 case Instruction::InsertElement:
288 case Instruction::ShuffleVector:
289 if (OperandNo == 0 || OperandNo == 1)
290 AB = AOut;
291 break;
295 bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
296 auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
297 auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
298 DB.emplace(F, AC, DT);
299 return false;
302 void DemandedBitsWrapperPass::releaseMemory() {
303 DB.reset();
306 void DemandedBits::performAnalysis() {
307 if (Analyzed)
308 // Analysis already completed for this function.
309 return;
310 Analyzed = true;
312 Visited.clear();
313 AliveBits.clear();
314 DeadUses.clear();
316 SmallSetVector<Instruction*, 16> Worklist;
318 // Collect the set of "root" instructions that are known live.
319 for (Instruction &I : instructions(F)) {
320 if (!isAlwaysLive(&I))
321 continue;
323 LLVM_DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
324 // For integer-valued instructions, set up an initial empty set of alive
325 // bits and add the instruction to the work list. For other instructions
326 // add their operands to the work list (for integer values operands, mark
327 // all bits as live).
328 Type *T = I.getType();
329 if (T->isIntOrIntVectorTy()) {
330 if (AliveBits.try_emplace(&I, T->getScalarSizeInBits(), 0).second)
331 Worklist.insert(&I);
333 continue;
336 // Non-integer-typed instructions...
337 for (Use &OI : I.operands()) {
338 if (Instruction *J = dyn_cast<Instruction>(OI)) {
339 Type *T = J->getType();
340 if (T->isIntOrIntVectorTy())
341 AliveBits[J] = APInt::getAllOnesValue(T->getScalarSizeInBits());
342 else
343 Visited.insert(J);
344 Worklist.insert(J);
347 // To save memory, we don't add I to the Visited set here. Instead, we
348 // check isAlwaysLive on every instruction when searching for dead
349 // instructions later (we need to check isAlwaysLive for the
350 // integer-typed instructions anyway).
353 // Propagate liveness backwards to operands.
354 while (!Worklist.empty()) {
355 Instruction *UserI = Worklist.pop_back_val();
357 LLVM_DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
358 APInt AOut;
359 bool InputIsKnownDead = false;
360 if (UserI->getType()->isIntOrIntVectorTy()) {
361 AOut = AliveBits[UserI];
362 LLVM_DEBUG(dbgs() << " Alive Out: 0x"
363 << Twine::utohexstr(AOut.getLimitedValue()));
365 // If all bits of the output are dead, then all bits of the input
366 // are also dead.
367 InputIsKnownDead = !AOut && !isAlwaysLive(UserI);
369 LLVM_DEBUG(dbgs() << "\n");
371 KnownBits Known, Known2;
372 bool KnownBitsComputed = false;
373 // Compute the set of alive bits for each operand. These are anded into the
374 // existing set, if any, and if that changes the set of alive bits, the
375 // operand is added to the work-list.
376 for (Use &OI : UserI->operands()) {
377 // We also want to detect dead uses of arguments, but will only store
378 // demanded bits for instructions.
379 Instruction *I = dyn_cast<Instruction>(OI);
380 if (!I && !isa<Argument>(OI))
381 continue;
383 Type *T = OI->getType();
384 if (T->isIntOrIntVectorTy()) {
385 unsigned BitWidth = T->getScalarSizeInBits();
386 APInt AB = APInt::getAllOnesValue(BitWidth);
387 if (InputIsKnownDead) {
388 AB = APInt(BitWidth, 0);
389 } else {
390 // Bits of each operand that are used to compute alive bits of the
391 // output are alive, all others are dead.
392 determineLiveOperandBits(UserI, OI, OI.getOperandNo(), AOut, AB,
393 Known, Known2, KnownBitsComputed);
395 // Keep track of uses which have no demanded bits.
396 if (AB.isNullValue())
397 DeadUses.insert(&OI);
398 else
399 DeadUses.erase(&OI);
402 if (I) {
403 // If we've added to the set of alive bits (or the operand has not
404 // been previously visited), then re-queue the operand to be visited
405 // again.
406 auto Res = AliveBits.try_emplace(I);
407 if (Res.second || (AB |= Res.first->second) != Res.first->second) {
408 Res.first->second = std::move(AB);
409 Worklist.insert(I);
412 } else if (I && Visited.insert(I).second) {
413 Worklist.insert(I);
419 APInt DemandedBits::getDemandedBits(Instruction *I) {
420 performAnalysis();
422 auto Found = AliveBits.find(I);
423 if (Found != AliveBits.end())
424 return Found->second;
426 const DataLayout &DL = I->getModule()->getDataLayout();
427 return APInt::getAllOnesValue(
428 DL.getTypeSizeInBits(I->getType()->getScalarType()));
431 bool DemandedBits::isInstructionDead(Instruction *I) {
432 performAnalysis();
434 return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
435 !isAlwaysLive(I);
438 bool DemandedBits::isUseDead(Use *U) {
439 // We only track integer uses, everything else is assumed live.
440 if (!(*U)->getType()->isIntOrIntVectorTy())
441 return false;
443 // Uses by always-live instructions are never dead.
444 Instruction *UserI = cast<Instruction>(U->getUser());
445 if (isAlwaysLive(UserI))
446 return false;
448 performAnalysis();
449 if (DeadUses.count(U))
450 return true;
452 // If no output bits are demanded, no input bits are demanded and the use
453 // is dead. These uses might not be explicitly present in the DeadUses map.
454 if (UserI->getType()->isIntOrIntVectorTy()) {
455 auto Found = AliveBits.find(UserI);
456 if (Found != AliveBits.end() && Found->second.isNullValue())
457 return true;
460 return false;
463 void DemandedBits::print(raw_ostream &OS) {
464 performAnalysis();
465 for (auto &KV : AliveBits) {
466 OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue())
467 << " for " << *KV.first << '\n';
471 FunctionPass *llvm::createDemandedBitsWrapperPass() {
472 return new DemandedBitsWrapperPass();
475 AnalysisKey DemandedBitsAnalysis::Key;
477 DemandedBits DemandedBitsAnalysis::run(Function &F,
478 FunctionAnalysisManager &AM) {
479 auto &AC = AM.getResult<AssumptionAnalysis>(F);
480 auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
481 return DemandedBits(F, AC, DT);
484 PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
485 FunctionAnalysisManager &AM) {
486 AM.getResult<DemandedBitsAnalysis>(F).print(OS);
487 return PreservedAnalyses::all();