[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Analysis / MemorySSAUpdater.cpp
blobb29be09bda752feef49db1384d2e582fc1ed869c
1 //===-- MemorySSAUpdater.cpp - Memory SSA Updater--------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------===//
8 //
9 // This file implements the MemorySSAUpdater class.
11 //===----------------------------------------------------------------===//
12 #include "llvm/Analysis/MemorySSAUpdater.h"
13 #include "llvm/ADT/STLExtras.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/Analysis/IteratedDominanceFrontier.h"
17 #include "llvm/Analysis/MemorySSA.h"
18 #include "llvm/IR/DataLayout.h"
19 #include "llvm/IR/Dominators.h"
20 #include "llvm/IR/GlobalVariable.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/LLVMContext.h"
23 #include "llvm/IR/Metadata.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/FormattedStream.h"
27 #include <algorithm>
29 #define DEBUG_TYPE "memoryssa"
30 using namespace llvm;
32 // This is the marker algorithm from "Simple and Efficient Construction of
33 // Static Single Assignment Form"
34 // The simple, non-marker algorithm places phi nodes at any join
35 // Here, we place markers, and only place phi nodes if they end up necessary.
36 // They are only necessary if they break a cycle (IE we recursively visit
37 // ourselves again), or we discover, while getting the value of the operands,
38 // that there are two or more definitions needing to be merged.
39 // This still will leave non-minimal form in the case of irreducible control
40 // flow, where phi nodes may be in cycles with themselves, but unnecessary.
41 MemoryAccess *MemorySSAUpdater::getPreviousDefRecursive(
42 BasicBlock *BB,
43 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
44 // First, do a cache lookup. Without this cache, certain CFG structures
45 // (like a series of if statements) take exponential time to visit.
46 auto Cached = CachedPreviousDef.find(BB);
47 if (Cached != CachedPreviousDef.end()) {
48 return Cached->second;
51 if (BasicBlock *Pred = BB->getSinglePredecessor()) {
52 // Single predecessor case, just recurse, we can only have one definition.
53 MemoryAccess *Result = getPreviousDefFromEnd(Pred, CachedPreviousDef);
54 CachedPreviousDef.insert({BB, Result});
55 return Result;
58 if (VisitedBlocks.count(BB)) {
59 // We hit our node again, meaning we had a cycle, we must insert a phi
60 // node to break it so we have an operand. The only case this will
61 // insert useless phis is if we have irreducible control flow.
62 MemoryAccess *Result = MSSA->createMemoryPhi(BB);
63 CachedPreviousDef.insert({BB, Result});
64 return Result;
67 if (VisitedBlocks.insert(BB).second) {
68 // Mark us visited so we can detect a cycle
69 SmallVector<TrackingVH<MemoryAccess>, 8> PhiOps;
71 // Recurse to get the values in our predecessors for placement of a
72 // potential phi node. This will insert phi nodes if we cycle in order to
73 // break the cycle and have an operand.
74 for (auto *Pred : predecessors(BB))
75 if (MSSA->DT->isReachableFromEntry(Pred))
76 PhiOps.push_back(getPreviousDefFromEnd(Pred, CachedPreviousDef));
77 else
78 PhiOps.push_back(MSSA->getLiveOnEntryDef());
80 // Now try to simplify the ops to avoid placing a phi.
81 // This may return null if we never created a phi yet, that's okay
82 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MSSA->getMemoryAccess(BB));
84 // See if we can avoid the phi by simplifying it.
85 auto *Result = tryRemoveTrivialPhi(Phi, PhiOps);
86 // If we couldn't simplify, we may have to create a phi
87 if (Result == Phi) {
88 if (!Phi)
89 Phi = MSSA->createMemoryPhi(BB);
91 // See if the existing phi operands match what we need.
92 // Unlike normal SSA, we only allow one phi node per block, so we can't just
93 // create a new one.
94 if (Phi->getNumOperands() != 0) {
95 // FIXME: Figure out whether this is dead code and if so remove it.
96 if (!std::equal(Phi->op_begin(), Phi->op_end(), PhiOps.begin())) {
97 // These will have been filled in by the recursive read we did above.
98 llvm::copy(PhiOps, Phi->op_begin());
99 std::copy(pred_begin(BB), pred_end(BB), Phi->block_begin());
101 } else {
102 unsigned i = 0;
103 for (auto *Pred : predecessors(BB))
104 Phi->addIncoming(&*PhiOps[i++], Pred);
105 InsertedPHIs.push_back(Phi);
107 Result = Phi;
110 // Set ourselves up for the next variable by resetting visited state.
111 VisitedBlocks.erase(BB);
112 CachedPreviousDef.insert({BB, Result});
113 return Result;
115 llvm_unreachable("Should have hit one of the three cases above");
118 // This starts at the memory access, and goes backwards in the block to find the
119 // previous definition. If a definition is not found the block of the access,
120 // it continues globally, creating phi nodes to ensure we have a single
121 // definition.
122 MemoryAccess *MemorySSAUpdater::getPreviousDef(MemoryAccess *MA) {
123 if (auto *LocalResult = getPreviousDefInBlock(MA))
124 return LocalResult;
125 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
126 return getPreviousDefRecursive(MA->getBlock(), CachedPreviousDef);
129 // This starts at the memory access, and goes backwards in the block to the find
130 // the previous definition. If the definition is not found in the block of the
131 // access, it returns nullptr.
132 MemoryAccess *MemorySSAUpdater::getPreviousDefInBlock(MemoryAccess *MA) {
133 auto *Defs = MSSA->getWritableBlockDefs(MA->getBlock());
135 // It's possible there are no defs, or we got handed the first def to start.
136 if (Defs) {
137 // If this is a def, we can just use the def iterators.
138 if (!isa<MemoryUse>(MA)) {
139 auto Iter = MA->getReverseDefsIterator();
140 ++Iter;
141 if (Iter != Defs->rend())
142 return &*Iter;
143 } else {
144 // Otherwise, have to walk the all access iterator.
145 auto End = MSSA->getWritableBlockAccesses(MA->getBlock())->rend();
146 for (auto &U : make_range(++MA->getReverseIterator(), End))
147 if (!isa<MemoryUse>(U))
148 return cast<MemoryAccess>(&U);
149 // Note that if MA comes before Defs->begin(), we won't hit a def.
150 return nullptr;
153 return nullptr;
156 // This starts at the end of block
157 MemoryAccess *MemorySSAUpdater::getPreviousDefFromEnd(
158 BasicBlock *BB,
159 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> &CachedPreviousDef) {
160 auto *Defs = MSSA->getWritableBlockDefs(BB);
162 if (Defs) {
163 CachedPreviousDef.insert({BB, &*Defs->rbegin()});
164 return &*Defs->rbegin();
167 return getPreviousDefRecursive(BB, CachedPreviousDef);
169 // Recurse over a set of phi uses to eliminate the trivial ones
170 MemoryAccess *MemorySSAUpdater::recursePhi(MemoryAccess *Phi) {
171 if (!Phi)
172 return nullptr;
173 TrackingVH<MemoryAccess> Res(Phi);
174 SmallVector<TrackingVH<Value>, 8> Uses;
175 std::copy(Phi->user_begin(), Phi->user_end(), std::back_inserter(Uses));
176 for (auto &U : Uses)
177 if (MemoryPhi *UsePhi = dyn_cast<MemoryPhi>(&*U))
178 tryRemoveTrivialPhi(UsePhi);
179 return Res;
182 // Eliminate trivial phis
183 // Phis are trivial if they are defined either by themselves, or all the same
184 // argument.
185 // IE phi(a, a) or b = phi(a, b) or c = phi(a, a, c)
186 // We recursively try to remove them.
187 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi) {
188 assert(Phi && "Can only remove concrete Phi.");
189 auto OperRange = Phi->operands();
190 return tryRemoveTrivialPhi(Phi, OperRange);
192 template <class RangeType>
193 MemoryAccess *MemorySSAUpdater::tryRemoveTrivialPhi(MemoryPhi *Phi,
194 RangeType &Operands) {
195 // Bail out on non-opt Phis.
196 if (NonOptPhis.count(Phi))
197 return Phi;
199 // Detect equal or self arguments
200 MemoryAccess *Same = nullptr;
201 for (auto &Op : Operands) {
202 // If the same or self, good so far
203 if (Op == Phi || Op == Same)
204 continue;
205 // not the same, return the phi since it's not eliminatable by us
206 if (Same)
207 return Phi;
208 Same = cast<MemoryAccess>(&*Op);
210 // Never found a non-self reference, the phi is undef
211 if (Same == nullptr)
212 return MSSA->getLiveOnEntryDef();
213 if (Phi) {
214 Phi->replaceAllUsesWith(Same);
215 removeMemoryAccess(Phi);
218 // We should only end up recursing in case we replaced something, in which
219 // case, we may have made other Phis trivial.
220 return recursePhi(Same);
223 void MemorySSAUpdater::insertUse(MemoryUse *MU, bool RenameUses) {
224 InsertedPHIs.clear();
225 MU->setDefiningAccess(getPreviousDef(MU));
226 // In cases without unreachable blocks, because uses do not create new
227 // may-defs, there are only two cases:
228 // 1. There was a def already below us, and therefore, we should not have
229 // created a phi node because it was already needed for the def.
231 // 2. There is no def below us, and therefore, there is no extra renaming work
232 // to do.
234 // In cases with unreachable blocks, where the unnecessary Phis were
235 // optimized out, adding the Use may re-insert those Phis. Hence, when
236 // inserting Uses outside of the MSSA creation process, and new Phis were
237 // added, rename all uses if we are asked.
239 if (!RenameUses && !InsertedPHIs.empty()) {
240 auto *Defs = MSSA->getBlockDefs(MU->getBlock());
241 (void)Defs;
242 assert((!Defs || (++Defs->begin() == Defs->end())) &&
243 "Block may have only a Phi or no defs");
246 if (RenameUses && InsertedPHIs.size()) {
247 SmallPtrSet<BasicBlock *, 16> Visited;
248 BasicBlock *StartBlock = MU->getBlock();
250 if (auto *Defs = MSSA->getWritableBlockDefs(StartBlock)) {
251 MemoryAccess *FirstDef = &*Defs->begin();
252 // Convert to incoming value if it's a memorydef. A phi *is* already an
253 // incoming value.
254 if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
255 FirstDef = MD->getDefiningAccess();
257 MSSA->renamePass(MU->getBlock(), FirstDef, Visited);
259 // We just inserted a phi into this block, so the incoming value will
260 // become the phi anyway, so it does not matter what we pass.
261 for (auto &MP : InsertedPHIs)
262 if (MemoryPhi *Phi = cast_or_null<MemoryPhi>(MP))
263 MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
267 // Set every incoming edge {BB, MP->getBlock()} of MemoryPhi MP to NewDef.
268 static void setMemoryPhiValueForBlock(MemoryPhi *MP, const BasicBlock *BB,
269 MemoryAccess *NewDef) {
270 // Replace any operand with us an incoming block with the new defining
271 // access.
272 int i = MP->getBasicBlockIndex(BB);
273 assert(i != -1 && "Should have found the basic block in the phi");
274 // We can't just compare i against getNumOperands since one is signed and the
275 // other not. So use it to index into the block iterator.
276 for (auto BBIter = MP->block_begin() + i; BBIter != MP->block_end();
277 ++BBIter) {
278 if (*BBIter != BB)
279 break;
280 MP->setIncomingValue(i, NewDef);
281 ++i;
285 // A brief description of the algorithm:
286 // First, we compute what should define the new def, using the SSA
287 // construction algorithm.
288 // Then, we update the defs below us (and any new phi nodes) in the graph to
289 // point to the correct new defs, to ensure we only have one variable, and no
290 // disconnected stores.
291 void MemorySSAUpdater::insertDef(MemoryDef *MD, bool RenameUses) {
292 InsertedPHIs.clear();
294 // See if we had a local def, and if not, go hunting.
295 MemoryAccess *DefBefore = getPreviousDef(MD);
296 bool DefBeforeSameBlock = DefBefore->getBlock() == MD->getBlock();
298 // There is a def before us, which means we can replace any store/phi uses
299 // of that thing with us, since we are in the way of whatever was there
300 // before.
301 // We now define that def's memorydefs and memoryphis
302 if (DefBeforeSameBlock) {
303 DefBefore->replaceUsesWithIf(MD, [MD](Use &U) {
304 // Leave the MemoryUses alone.
305 // Also make sure we skip ourselves to avoid self references.
306 User *Usr = U.getUser();
307 return !isa<MemoryUse>(Usr) && Usr != MD;
308 // Defs are automatically unoptimized when the user is set to MD below,
309 // because the isOptimized() call will fail to find the same ID.
313 // and that def is now our defining access.
314 MD->setDefiningAccess(DefBefore);
316 // Remember the index where we may insert new phis below.
317 unsigned NewPhiIndex = InsertedPHIs.size();
319 SmallVector<WeakVH, 8> FixupList(InsertedPHIs.begin(), InsertedPHIs.end());
320 if (!DefBeforeSameBlock) {
321 // If there was a local def before us, we must have the same effect it
322 // did. Because every may-def is the same, any phis/etc we would create, it
323 // would also have created. If there was no local def before us, we
324 // performed a global update, and have to search all successors and make
325 // sure we update the first def in each of them (following all paths until
326 // we hit the first def along each path). This may also insert phi nodes.
327 // TODO: There are other cases we can skip this work, such as when we have a
328 // single successor, and only used a straight line of single pred blocks
329 // backwards to find the def. To make that work, we'd have to track whether
330 // getDefRecursive only ever used the single predecessor case. These types
331 // of paths also only exist in between CFG simplifications.
333 // If this is the first def in the block and this insert is in an arbitrary
334 // place, compute IDF and place phis.
335 auto Iter = MD->getDefsIterator();
336 ++Iter;
337 auto IterEnd = MSSA->getBlockDefs(MD->getBlock())->end();
338 if (Iter == IterEnd) {
339 ForwardIDFCalculator IDFs(*MSSA->DT);
340 SmallVector<BasicBlock *, 32> IDFBlocks;
341 SmallPtrSet<BasicBlock *, 2> DefiningBlocks;
342 DefiningBlocks.insert(MD->getBlock());
343 IDFs.setDefiningBlocks(DefiningBlocks);
344 IDFs.calculate(IDFBlocks);
345 SmallVector<AssertingVH<MemoryPhi>, 4> NewInsertedPHIs;
346 for (auto *BBIDF : IDFBlocks) {
347 auto *MPhi = MSSA->getMemoryAccess(BBIDF);
348 if (!MPhi) {
349 MPhi = MSSA->createMemoryPhi(BBIDF);
350 NewInsertedPHIs.push_back(MPhi);
352 // Add the phis created into the IDF blocks to NonOptPhis, so they are
353 // not optimized out as trivial by the call to getPreviousDefFromEnd
354 // below. Once they are complete, all these Phis are added to the
355 // FixupList, and removed from NonOptPhis inside fixupDefs().
356 // Existing Phis in IDF may need fixing as well, and potentially be
357 // trivial before this insertion, hence add all IDF Phis. See PR43044.
358 NonOptPhis.insert(MPhi);
361 for (auto &MPhi : NewInsertedPHIs) {
362 auto *BBIDF = MPhi->getBlock();
363 for (auto *Pred : predecessors(BBIDF)) {
364 DenseMap<BasicBlock *, TrackingVH<MemoryAccess>> CachedPreviousDef;
365 MPhi->addIncoming(getPreviousDefFromEnd(Pred, CachedPreviousDef),
366 Pred);
370 // Re-take the index where we're adding the new phis, because the above
371 // call to getPreviousDefFromEnd, may have inserted into InsertedPHIs.
372 NewPhiIndex = InsertedPHIs.size();
373 for (auto &MPhi : NewInsertedPHIs) {
374 InsertedPHIs.push_back(&*MPhi);
375 FixupList.push_back(&*MPhi);
379 FixupList.push_back(MD);
382 // Remember the index where we stopped inserting new phis above, since the
383 // fixupDefs call in the loop below may insert more, that are already minimal.
384 unsigned NewPhiIndexEnd = InsertedPHIs.size();
386 while (!FixupList.empty()) {
387 unsigned StartingPHISize = InsertedPHIs.size();
388 fixupDefs(FixupList);
389 FixupList.clear();
390 // Put any new phis on the fixup list, and process them
391 FixupList.append(InsertedPHIs.begin() + StartingPHISize, InsertedPHIs.end());
394 // Optimize potentially non-minimal phis added in this method.
395 unsigned NewPhiSize = NewPhiIndexEnd - NewPhiIndex;
396 if (NewPhiSize)
397 tryRemoveTrivialPhis(ArrayRef<WeakVH>(&InsertedPHIs[NewPhiIndex], NewPhiSize));
399 // Now that all fixups are done, rename all uses if we are asked.
400 if (RenameUses) {
401 SmallPtrSet<BasicBlock *, 16> Visited;
402 BasicBlock *StartBlock = MD->getBlock();
403 // We are guaranteed there is a def in the block, because we just got it
404 // handed to us in this function.
405 MemoryAccess *FirstDef = &*MSSA->getWritableBlockDefs(StartBlock)->begin();
406 // Convert to incoming value if it's a memorydef. A phi *is* already an
407 // incoming value.
408 if (auto *MD = dyn_cast<MemoryDef>(FirstDef))
409 FirstDef = MD->getDefiningAccess();
411 MSSA->renamePass(MD->getBlock(), FirstDef, Visited);
412 // We just inserted a phi into this block, so the incoming value will become
413 // the phi anyway, so it does not matter what we pass.
414 for (auto &MP : InsertedPHIs) {
415 MemoryPhi *Phi = dyn_cast_or_null<MemoryPhi>(MP);
416 if (Phi)
417 MSSA->renamePass(Phi->getBlock(), nullptr, Visited);
422 void MemorySSAUpdater::fixupDefs(const SmallVectorImpl<WeakVH> &Vars) {
423 SmallPtrSet<const BasicBlock *, 8> Seen;
424 SmallVector<const BasicBlock *, 16> Worklist;
425 for (auto &Var : Vars) {
426 MemoryAccess *NewDef = dyn_cast_or_null<MemoryAccess>(Var);
427 if (!NewDef)
428 continue;
429 // First, see if there is a local def after the operand.
430 auto *Defs = MSSA->getWritableBlockDefs(NewDef->getBlock());
431 auto DefIter = NewDef->getDefsIterator();
433 // The temporary Phi is being fixed, unmark it for not to optimize.
434 if (MemoryPhi *Phi = dyn_cast<MemoryPhi>(NewDef))
435 NonOptPhis.erase(Phi);
437 // If there is a local def after us, we only have to rename that.
438 if (++DefIter != Defs->end()) {
439 cast<MemoryDef>(DefIter)->setDefiningAccess(NewDef);
440 continue;
443 // Otherwise, we need to search down through the CFG.
444 // For each of our successors, handle it directly if their is a phi, or
445 // place on the fixup worklist.
446 for (const auto *S : successors(NewDef->getBlock())) {
447 if (auto *MP = MSSA->getMemoryAccess(S))
448 setMemoryPhiValueForBlock(MP, NewDef->getBlock(), NewDef);
449 else
450 Worklist.push_back(S);
453 while (!Worklist.empty()) {
454 const BasicBlock *FixupBlock = Worklist.back();
455 Worklist.pop_back();
457 // Get the first def in the block that isn't a phi node.
458 if (auto *Defs = MSSA->getWritableBlockDefs(FixupBlock)) {
459 auto *FirstDef = &*Defs->begin();
460 // The loop above and below should have taken care of phi nodes
461 assert(!isa<MemoryPhi>(FirstDef) &&
462 "Should have already handled phi nodes!");
463 // We are now this def's defining access, make sure we actually dominate
464 // it
465 assert(MSSA->dominates(NewDef, FirstDef) &&
466 "Should have dominated the new access");
468 // This may insert new phi nodes, because we are not guaranteed the
469 // block we are processing has a single pred, and depending where the
470 // store was inserted, it may require phi nodes below it.
471 cast<MemoryDef>(FirstDef)->setDefiningAccess(getPreviousDef(FirstDef));
472 return;
474 // We didn't find a def, so we must continue.
475 for (const auto *S : successors(FixupBlock)) {
476 // If there is a phi node, handle it.
477 // Otherwise, put the block on the worklist
478 if (auto *MP = MSSA->getMemoryAccess(S))
479 setMemoryPhiValueForBlock(MP, FixupBlock, NewDef);
480 else {
481 // If we cycle, we should have ended up at a phi node that we already
482 // processed. FIXME: Double check this
483 if (!Seen.insert(S).second)
484 continue;
485 Worklist.push_back(S);
492 void MemorySSAUpdater::removeEdge(BasicBlock *From, BasicBlock *To) {
493 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
494 MPhi->unorderedDeleteIncomingBlock(From);
495 tryRemoveTrivialPhi(MPhi);
499 void MemorySSAUpdater::removeDuplicatePhiEdgesBetween(const BasicBlock *From,
500 const BasicBlock *To) {
501 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(To)) {
502 bool Found = false;
503 MPhi->unorderedDeleteIncomingIf([&](const MemoryAccess *, BasicBlock *B) {
504 if (From != B)
505 return false;
506 if (Found)
507 return true;
508 Found = true;
509 return false;
511 tryRemoveTrivialPhi(MPhi);
515 static MemoryAccess *getNewDefiningAccessForClone(MemoryAccess *MA,
516 const ValueToValueMapTy &VMap,
517 PhiToDefMap &MPhiMap,
518 bool CloneWasSimplified,
519 MemorySSA *MSSA) {
520 MemoryAccess *InsnDefining = MA;
521 if (MemoryDef *DefMUD = dyn_cast<MemoryDef>(InsnDefining)) {
522 if (!MSSA->isLiveOnEntryDef(DefMUD)) {
523 Instruction *DefMUDI = DefMUD->getMemoryInst();
524 assert(DefMUDI && "Found MemoryUseOrDef with no Instruction.");
525 if (Instruction *NewDefMUDI =
526 cast_or_null<Instruction>(VMap.lookup(DefMUDI))) {
527 InsnDefining = MSSA->getMemoryAccess(NewDefMUDI);
528 if (!CloneWasSimplified)
529 assert(InsnDefining && "Defining instruction cannot be nullptr.");
530 else if (!InsnDefining || isa<MemoryUse>(InsnDefining)) {
531 // The clone was simplified, it's no longer a MemoryDef, look up.
532 auto DefIt = DefMUD->getDefsIterator();
533 // Since simplified clones only occur in single block cloning, a
534 // previous definition must exist, otherwise NewDefMUDI would not
535 // have been found in VMap.
536 assert(DefIt != MSSA->getBlockDefs(DefMUD->getBlock())->begin() &&
537 "Previous def must exist");
538 InsnDefining = getNewDefiningAccessForClone(
539 &*(--DefIt), VMap, MPhiMap, CloneWasSimplified, MSSA);
543 } else {
544 MemoryPhi *DefPhi = cast<MemoryPhi>(InsnDefining);
545 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(DefPhi))
546 InsnDefining = NewDefPhi;
548 assert(InsnDefining && "Defining instruction cannot be nullptr.");
549 return InsnDefining;
552 void MemorySSAUpdater::cloneUsesAndDefs(BasicBlock *BB, BasicBlock *NewBB,
553 const ValueToValueMapTy &VMap,
554 PhiToDefMap &MPhiMap,
555 bool CloneWasSimplified) {
556 const MemorySSA::AccessList *Acc = MSSA->getBlockAccesses(BB);
557 if (!Acc)
558 return;
559 for (const MemoryAccess &MA : *Acc) {
560 if (const MemoryUseOrDef *MUD = dyn_cast<MemoryUseOrDef>(&MA)) {
561 Instruction *Insn = MUD->getMemoryInst();
562 // Entry does not exist if the clone of the block did not clone all
563 // instructions. This occurs in LoopRotate when cloning instructions
564 // from the old header to the old preheader. The cloned instruction may
565 // also be a simplified Value, not an Instruction (see LoopRotate).
566 // Also in LoopRotate, even when it's an instruction, due to it being
567 // simplified, it may be a Use rather than a Def, so we cannot use MUD as
568 // template. Calls coming from updateForClonedBlockIntoPred, ensure this.
569 if (Instruction *NewInsn =
570 dyn_cast_or_null<Instruction>(VMap.lookup(Insn))) {
571 MemoryAccess *NewUseOrDef = MSSA->createDefinedAccess(
572 NewInsn,
573 getNewDefiningAccessForClone(MUD->getDefiningAccess(), VMap,
574 MPhiMap, CloneWasSimplified, MSSA),
575 /*Template=*/CloneWasSimplified ? nullptr : MUD,
576 /*CreationMustSucceed=*/CloneWasSimplified ? false : true);
577 if (NewUseOrDef)
578 MSSA->insertIntoListsForBlock(NewUseOrDef, NewBB, MemorySSA::End);
584 void MemorySSAUpdater::updatePhisWhenInsertingUniqueBackedgeBlock(
585 BasicBlock *Header, BasicBlock *Preheader, BasicBlock *BEBlock) {
586 auto *MPhi = MSSA->getMemoryAccess(Header);
587 if (!MPhi)
588 return;
590 // Create phi node in the backedge block and populate it with the same
591 // incoming values as MPhi. Skip incoming values coming from Preheader.
592 auto *NewMPhi = MSSA->createMemoryPhi(BEBlock);
593 bool HasUniqueIncomingValue = true;
594 MemoryAccess *UniqueValue = nullptr;
595 for (unsigned I = 0, E = MPhi->getNumIncomingValues(); I != E; ++I) {
596 BasicBlock *IBB = MPhi->getIncomingBlock(I);
597 MemoryAccess *IV = MPhi->getIncomingValue(I);
598 if (IBB != Preheader) {
599 NewMPhi->addIncoming(IV, IBB);
600 if (HasUniqueIncomingValue) {
601 if (!UniqueValue)
602 UniqueValue = IV;
603 else if (UniqueValue != IV)
604 HasUniqueIncomingValue = false;
609 // Update incoming edges into MPhi. Remove all but the incoming edge from
610 // Preheader. Add an edge from NewMPhi
611 auto *AccFromPreheader = MPhi->getIncomingValueForBlock(Preheader);
612 MPhi->setIncomingValue(0, AccFromPreheader);
613 MPhi->setIncomingBlock(0, Preheader);
614 for (unsigned I = MPhi->getNumIncomingValues() - 1; I >= 1; --I)
615 MPhi->unorderedDeleteIncoming(I);
616 MPhi->addIncoming(NewMPhi, BEBlock);
618 // If NewMPhi is a trivial phi, remove it. Its use in the header MPhi will be
619 // replaced with the unique value.
620 tryRemoveTrivialPhi(MPhi);
623 void MemorySSAUpdater::updateForClonedLoop(const LoopBlocksRPO &LoopBlocks,
624 ArrayRef<BasicBlock *> ExitBlocks,
625 const ValueToValueMapTy &VMap,
626 bool IgnoreIncomingWithNoClones) {
627 PhiToDefMap MPhiMap;
629 auto FixPhiIncomingValues = [&](MemoryPhi *Phi, MemoryPhi *NewPhi) {
630 assert(Phi && NewPhi && "Invalid Phi nodes.");
631 BasicBlock *NewPhiBB = NewPhi->getBlock();
632 SmallPtrSet<BasicBlock *, 4> NewPhiBBPreds(pred_begin(NewPhiBB),
633 pred_end(NewPhiBB));
634 for (unsigned It = 0, E = Phi->getNumIncomingValues(); It < E; ++It) {
635 MemoryAccess *IncomingAccess = Phi->getIncomingValue(It);
636 BasicBlock *IncBB = Phi->getIncomingBlock(It);
638 if (BasicBlock *NewIncBB = cast_or_null<BasicBlock>(VMap.lookup(IncBB)))
639 IncBB = NewIncBB;
640 else if (IgnoreIncomingWithNoClones)
641 continue;
643 // Now we have IncBB, and will need to add incoming from it to NewPhi.
645 // If IncBB is not a predecessor of NewPhiBB, then do not add it.
646 // NewPhiBB was cloned without that edge.
647 if (!NewPhiBBPreds.count(IncBB))
648 continue;
650 // Determine incoming value and add it as incoming from IncBB.
651 if (MemoryUseOrDef *IncMUD = dyn_cast<MemoryUseOrDef>(IncomingAccess)) {
652 if (!MSSA->isLiveOnEntryDef(IncMUD)) {
653 Instruction *IncI = IncMUD->getMemoryInst();
654 assert(IncI && "Found MemoryUseOrDef with no Instruction.");
655 if (Instruction *NewIncI =
656 cast_or_null<Instruction>(VMap.lookup(IncI))) {
657 IncMUD = MSSA->getMemoryAccess(NewIncI);
658 assert(IncMUD &&
659 "MemoryUseOrDef cannot be null, all preds processed.");
662 NewPhi->addIncoming(IncMUD, IncBB);
663 } else {
664 MemoryPhi *IncPhi = cast<MemoryPhi>(IncomingAccess);
665 if (MemoryAccess *NewDefPhi = MPhiMap.lookup(IncPhi))
666 NewPhi->addIncoming(NewDefPhi, IncBB);
667 else
668 NewPhi->addIncoming(IncPhi, IncBB);
673 auto ProcessBlock = [&](BasicBlock *BB) {
674 BasicBlock *NewBlock = cast_or_null<BasicBlock>(VMap.lookup(BB));
675 if (!NewBlock)
676 return;
678 assert(!MSSA->getWritableBlockAccesses(NewBlock) &&
679 "Cloned block should have no accesses");
681 // Add MemoryPhi.
682 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB)) {
683 MemoryPhi *NewPhi = MSSA->createMemoryPhi(NewBlock);
684 MPhiMap[MPhi] = NewPhi;
686 // Update Uses and Defs.
687 cloneUsesAndDefs(BB, NewBlock, VMap, MPhiMap);
690 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
691 ProcessBlock(BB);
693 for (auto BB : llvm::concat<BasicBlock *const>(LoopBlocks, ExitBlocks))
694 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
695 if (MemoryAccess *NewPhi = MPhiMap.lookup(MPhi))
696 FixPhiIncomingValues(MPhi, cast<MemoryPhi>(NewPhi));
699 void MemorySSAUpdater::updateForClonedBlockIntoPred(
700 BasicBlock *BB, BasicBlock *P1, const ValueToValueMapTy &VM) {
701 // All defs/phis from outside BB that are used in BB, are valid uses in P1.
702 // Since those defs/phis must have dominated BB, and also dominate P1.
703 // Defs from BB being used in BB will be replaced with the cloned defs from
704 // VM. The uses of BB's Phi (if it exists) in BB will be replaced by the
705 // incoming def into the Phi from P1.
706 // Instructions cloned into the predecessor are in practice sometimes
707 // simplified, so disable the use of the template, and create an access from
708 // scratch.
709 PhiToDefMap MPhiMap;
710 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(BB))
711 MPhiMap[MPhi] = MPhi->getIncomingValueForBlock(P1);
712 cloneUsesAndDefs(BB, P1, VM, MPhiMap, /*CloneWasSimplified=*/true);
715 template <typename Iter>
716 void MemorySSAUpdater::privateUpdateExitBlocksForClonedLoop(
717 ArrayRef<BasicBlock *> ExitBlocks, Iter ValuesBegin, Iter ValuesEnd,
718 DominatorTree &DT) {
719 SmallVector<CFGUpdate, 4> Updates;
720 // Update/insert phis in all successors of exit blocks.
721 for (auto *Exit : ExitBlocks)
722 for (const ValueToValueMapTy *VMap : make_range(ValuesBegin, ValuesEnd))
723 if (BasicBlock *NewExit = cast_or_null<BasicBlock>(VMap->lookup(Exit))) {
724 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
725 Updates.push_back({DT.Insert, NewExit, ExitSucc});
727 applyInsertUpdates(Updates, DT);
730 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
731 ArrayRef<BasicBlock *> ExitBlocks, const ValueToValueMapTy &VMap,
732 DominatorTree &DT) {
733 const ValueToValueMapTy *const Arr[] = {&VMap};
734 privateUpdateExitBlocksForClonedLoop(ExitBlocks, std::begin(Arr),
735 std::end(Arr), DT);
738 void MemorySSAUpdater::updateExitBlocksForClonedLoop(
739 ArrayRef<BasicBlock *> ExitBlocks,
740 ArrayRef<std::unique_ptr<ValueToValueMapTy>> VMaps, DominatorTree &DT) {
741 auto GetPtr = [&](const std::unique_ptr<ValueToValueMapTy> &I) {
742 return I.get();
744 using MappedIteratorType =
745 mapped_iterator<const std::unique_ptr<ValueToValueMapTy> *,
746 decltype(GetPtr)>;
747 auto MapBegin = MappedIteratorType(VMaps.begin(), GetPtr);
748 auto MapEnd = MappedIteratorType(VMaps.end(), GetPtr);
749 privateUpdateExitBlocksForClonedLoop(ExitBlocks, MapBegin, MapEnd, DT);
752 void MemorySSAUpdater::applyUpdates(ArrayRef<CFGUpdate> Updates,
753 DominatorTree &DT) {
754 SmallVector<CFGUpdate, 4> RevDeleteUpdates;
755 SmallVector<CFGUpdate, 4> InsertUpdates;
756 for (auto &Update : Updates) {
757 if (Update.getKind() == DT.Insert)
758 InsertUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
759 else
760 RevDeleteUpdates.push_back({DT.Insert, Update.getFrom(), Update.getTo()});
763 if (!RevDeleteUpdates.empty()) {
764 // Update for inserted edges: use newDT and snapshot CFG as if deletes had
765 // not occurred.
766 // FIXME: This creates a new DT, so it's more expensive to do mix
767 // delete/inserts vs just inserts. We can do an incremental update on the DT
768 // to revert deletes, than re-delete the edges. Teaching DT to do this, is
769 // part of a pending cleanup.
770 DominatorTree NewDT(DT, RevDeleteUpdates);
771 GraphDiff<BasicBlock *> GD(RevDeleteUpdates);
772 applyInsertUpdates(InsertUpdates, NewDT, &GD);
773 } else {
774 GraphDiff<BasicBlock *> GD;
775 applyInsertUpdates(InsertUpdates, DT, &GD);
778 // Update for deleted edges
779 for (auto &Update : RevDeleteUpdates)
780 removeEdge(Update.getFrom(), Update.getTo());
783 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
784 DominatorTree &DT) {
785 GraphDiff<BasicBlock *> GD;
786 applyInsertUpdates(Updates, DT, &GD);
789 void MemorySSAUpdater::applyInsertUpdates(ArrayRef<CFGUpdate> Updates,
790 DominatorTree &DT,
791 const GraphDiff<BasicBlock *> *GD) {
792 // Get recursive last Def, assuming well formed MSSA and updated DT.
793 auto GetLastDef = [&](BasicBlock *BB) -> MemoryAccess * {
794 while (true) {
795 MemorySSA::DefsList *Defs = MSSA->getWritableBlockDefs(BB);
796 // Return last Def or Phi in BB, if it exists.
797 if (Defs)
798 return &*(--Defs->end());
800 // Check number of predecessors, we only care if there's more than one.
801 unsigned Count = 0;
802 BasicBlock *Pred = nullptr;
803 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
804 Pred = Pair.second;
805 Count++;
806 if (Count == 2)
807 break;
810 // If BB has multiple predecessors, get last definition from IDom.
811 if (Count != 1) {
812 // [SimpleLoopUnswitch] If BB is a dead block, about to be deleted, its
813 // DT is invalidated. Return LoE as its last def. This will be added to
814 // MemoryPhi node, and later deleted when the block is deleted.
815 if (!DT.getNode(BB))
816 return MSSA->getLiveOnEntryDef();
817 if (auto *IDom = DT.getNode(BB)->getIDom())
818 if (IDom->getBlock() != BB) {
819 BB = IDom->getBlock();
820 continue;
822 return MSSA->getLiveOnEntryDef();
823 } else {
824 // Single predecessor, BB cannot be dead. GetLastDef of Pred.
825 assert(Count == 1 && Pred && "Single predecessor expected.");
826 BB = Pred;
829 llvm_unreachable("Unable to get last definition.");
832 // Get nearest IDom given a set of blocks.
833 // TODO: this can be optimized by starting the search at the node with the
834 // lowest level (highest in the tree).
835 auto FindNearestCommonDominator =
836 [&](const SmallSetVector<BasicBlock *, 2> &BBSet) -> BasicBlock * {
837 BasicBlock *PrevIDom = *BBSet.begin();
838 for (auto *BB : BBSet)
839 PrevIDom = DT.findNearestCommonDominator(PrevIDom, BB);
840 return PrevIDom;
843 // Get all blocks that dominate PrevIDom, stop when reaching CurrIDom. Do not
844 // include CurrIDom.
845 auto GetNoLongerDomBlocks =
846 [&](BasicBlock *PrevIDom, BasicBlock *CurrIDom,
847 SmallVectorImpl<BasicBlock *> &BlocksPrevDom) {
848 if (PrevIDom == CurrIDom)
849 return;
850 BlocksPrevDom.push_back(PrevIDom);
851 BasicBlock *NextIDom = PrevIDom;
852 while (BasicBlock *UpIDom =
853 DT.getNode(NextIDom)->getIDom()->getBlock()) {
854 if (UpIDom == CurrIDom)
855 break;
856 BlocksPrevDom.push_back(UpIDom);
857 NextIDom = UpIDom;
861 // Map a BB to its predecessors: added + previously existing. To get a
862 // deterministic order, store predecessors as SetVectors. The order in each
863 // will be defined by the order in Updates (fixed) and the order given by
864 // children<> (also fixed). Since we further iterate over these ordered sets,
865 // we lose the information of multiple edges possibly existing between two
866 // blocks, so we'll keep and EdgeCount map for that.
867 // An alternate implementation could keep unordered set for the predecessors,
868 // traverse either Updates or children<> each time to get the deterministic
869 // order, and drop the usage of EdgeCount. This alternate approach would still
870 // require querying the maps for each predecessor, and children<> call has
871 // additional computation inside for creating the snapshot-graph predecessors.
872 // As such, we favor using a little additional storage and less compute time.
873 // This decision can be revisited if we find the alternative more favorable.
875 struct PredInfo {
876 SmallSetVector<BasicBlock *, 2> Added;
877 SmallSetVector<BasicBlock *, 2> Prev;
879 SmallDenseMap<BasicBlock *, PredInfo> PredMap;
881 for (auto &Edge : Updates) {
882 BasicBlock *BB = Edge.getTo();
883 auto &AddedBlockSet = PredMap[BB].Added;
884 AddedBlockSet.insert(Edge.getFrom());
887 // Store all existing predecessor for each BB, at least one must exist.
888 SmallDenseMap<std::pair<BasicBlock *, BasicBlock *>, int> EdgeCountMap;
889 SmallPtrSet<BasicBlock *, 2> NewBlocks;
890 for (auto &BBPredPair : PredMap) {
891 auto *BB = BBPredPair.first;
892 const auto &AddedBlockSet = BBPredPair.second.Added;
893 auto &PrevBlockSet = BBPredPair.second.Prev;
894 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BB})) {
895 BasicBlock *Pi = Pair.second;
896 if (!AddedBlockSet.count(Pi))
897 PrevBlockSet.insert(Pi);
898 EdgeCountMap[{Pi, BB}]++;
901 if (PrevBlockSet.empty()) {
902 assert(pred_size(BB) == AddedBlockSet.size() && "Duplicate edges added.");
903 LLVM_DEBUG(
904 dbgs()
905 << "Adding a predecessor to a block with no predecessors. "
906 "This must be an edge added to a new, likely cloned, block. "
907 "Its memory accesses must be already correct, assuming completed "
908 "via the updateExitBlocksForClonedLoop API. "
909 "Assert a single such edge is added so no phi addition or "
910 "additional processing is required.\n");
911 assert(AddedBlockSet.size() == 1 &&
912 "Can only handle adding one predecessor to a new block.");
913 // Need to remove new blocks from PredMap. Remove below to not invalidate
914 // iterator here.
915 NewBlocks.insert(BB);
918 // Nothing to process for new/cloned blocks.
919 for (auto *BB : NewBlocks)
920 PredMap.erase(BB);
922 SmallVector<BasicBlock *, 16> BlocksWithDefsToReplace;
923 SmallVector<WeakVH, 8> InsertedPhis;
925 // First create MemoryPhis in all blocks that don't have one. Create in the
926 // order found in Updates, not in PredMap, to get deterministic numbering.
927 for (auto &Edge : Updates) {
928 BasicBlock *BB = Edge.getTo();
929 if (PredMap.count(BB) && !MSSA->getMemoryAccess(BB))
930 InsertedPhis.push_back(MSSA->createMemoryPhi(BB));
933 // Now we'll fill in the MemoryPhis with the right incoming values.
934 for (auto &BBPredPair : PredMap) {
935 auto *BB = BBPredPair.first;
936 const auto &PrevBlockSet = BBPredPair.second.Prev;
937 const auto &AddedBlockSet = BBPredPair.second.Added;
938 assert(!PrevBlockSet.empty() &&
939 "At least one previous predecessor must exist.");
941 // TODO: if this becomes a bottleneck, we can save on GetLastDef calls by
942 // keeping this map before the loop. We can reuse already populated entries
943 // if an edge is added from the same predecessor to two different blocks,
944 // and this does happen in rotate. Note that the map needs to be updated
945 // when deleting non-necessary phis below, if the phi is in the map by
946 // replacing the value with DefP1.
947 SmallDenseMap<BasicBlock *, MemoryAccess *> LastDefAddedPred;
948 for (auto *AddedPred : AddedBlockSet) {
949 auto *DefPn = GetLastDef(AddedPred);
950 assert(DefPn != nullptr && "Unable to find last definition.");
951 LastDefAddedPred[AddedPred] = DefPn;
954 MemoryPhi *NewPhi = MSSA->getMemoryAccess(BB);
955 // If Phi is not empty, add an incoming edge from each added pred. Must
956 // still compute blocks with defs to replace for this block below.
957 if (NewPhi->getNumOperands()) {
958 for (auto *Pred : AddedBlockSet) {
959 auto *LastDefForPred = LastDefAddedPred[Pred];
960 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
961 NewPhi->addIncoming(LastDefForPred, Pred);
963 } else {
964 // Pick any existing predecessor and get its definition. All other
965 // existing predecessors should have the same one, since no phi existed.
966 auto *P1 = *PrevBlockSet.begin();
967 MemoryAccess *DefP1 = GetLastDef(P1);
969 // Check DefP1 against all Defs in LastDefPredPair. If all the same,
970 // nothing to add.
971 bool InsertPhi = false;
972 for (auto LastDefPredPair : LastDefAddedPred)
973 if (DefP1 != LastDefPredPair.second) {
974 InsertPhi = true;
975 break;
977 if (!InsertPhi) {
978 // Since NewPhi may be used in other newly added Phis, replace all uses
979 // of NewPhi with the definition coming from all predecessors (DefP1),
980 // before deleting it.
981 NewPhi->replaceAllUsesWith(DefP1);
982 removeMemoryAccess(NewPhi);
983 continue;
986 // Update Phi with new values for new predecessors and old value for all
987 // other predecessors. Since AddedBlockSet and PrevBlockSet are ordered
988 // sets, the order of entries in NewPhi is deterministic.
989 for (auto *Pred : AddedBlockSet) {
990 auto *LastDefForPred = LastDefAddedPred[Pred];
991 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
992 NewPhi->addIncoming(LastDefForPred, Pred);
994 for (auto *Pred : PrevBlockSet)
995 for (int I = 0, E = EdgeCountMap[{Pred, BB}]; I < E; ++I)
996 NewPhi->addIncoming(DefP1, Pred);
999 // Get all blocks that used to dominate BB and no longer do after adding
1000 // AddedBlockSet, where PrevBlockSet are the previously known predecessors.
1001 assert(DT.getNode(BB)->getIDom() && "BB does not have valid idom");
1002 BasicBlock *PrevIDom = FindNearestCommonDominator(PrevBlockSet);
1003 assert(PrevIDom && "Previous IDom should exists");
1004 BasicBlock *NewIDom = DT.getNode(BB)->getIDom()->getBlock();
1005 assert(NewIDom && "BB should have a new valid idom");
1006 assert(DT.dominates(NewIDom, PrevIDom) &&
1007 "New idom should dominate old idom");
1008 GetNoLongerDomBlocks(PrevIDom, NewIDom, BlocksWithDefsToReplace);
1011 tryRemoveTrivialPhis(InsertedPhis);
1012 // Create the set of blocks that now have a definition. We'll use this to
1013 // compute IDF and add Phis there next.
1014 SmallVector<BasicBlock *, 8> BlocksToProcess;
1015 for (auto &VH : InsertedPhis)
1016 if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1017 BlocksToProcess.push_back(MPhi->getBlock());
1019 // Compute IDF and add Phis in all IDF blocks that do not have one.
1020 SmallVector<BasicBlock *, 32> IDFBlocks;
1021 if (!BlocksToProcess.empty()) {
1022 ForwardIDFCalculator IDFs(DT, GD);
1023 SmallPtrSet<BasicBlock *, 16> DefiningBlocks(BlocksToProcess.begin(),
1024 BlocksToProcess.end());
1025 IDFs.setDefiningBlocks(DefiningBlocks);
1026 IDFs.calculate(IDFBlocks);
1028 SmallSetVector<MemoryPhi *, 4> PhisToFill;
1029 // First create all needed Phis.
1030 for (auto *BBIDF : IDFBlocks)
1031 if (!MSSA->getMemoryAccess(BBIDF)) {
1032 auto *IDFPhi = MSSA->createMemoryPhi(BBIDF);
1033 InsertedPhis.push_back(IDFPhi);
1034 PhisToFill.insert(IDFPhi);
1036 // Then update or insert their correct incoming values.
1037 for (auto *BBIDF : IDFBlocks) {
1038 auto *IDFPhi = MSSA->getMemoryAccess(BBIDF);
1039 assert(IDFPhi && "Phi must exist");
1040 if (!PhisToFill.count(IDFPhi)) {
1041 // Update existing Phi.
1042 // FIXME: some updates may be redundant, try to optimize and skip some.
1043 for (unsigned I = 0, E = IDFPhi->getNumIncomingValues(); I < E; ++I)
1044 IDFPhi->setIncomingValue(I, GetLastDef(IDFPhi->getIncomingBlock(I)));
1045 } else {
1046 for (auto &Pair : children<GraphDiffInvBBPair>({GD, BBIDF})) {
1047 BasicBlock *Pi = Pair.second;
1048 IDFPhi->addIncoming(GetLastDef(Pi), Pi);
1054 // Now for all defs in BlocksWithDefsToReplace, if there are uses they no
1055 // longer dominate, replace those with the closest dominating def.
1056 // This will also update optimized accesses, as they're also uses.
1057 for (auto *BlockWithDefsToReplace : BlocksWithDefsToReplace) {
1058 if (auto DefsList = MSSA->getWritableBlockDefs(BlockWithDefsToReplace)) {
1059 for (auto &DefToReplaceUses : *DefsList) {
1060 BasicBlock *DominatingBlock = DefToReplaceUses.getBlock();
1061 Value::use_iterator UI = DefToReplaceUses.use_begin(),
1062 E = DefToReplaceUses.use_end();
1063 for (; UI != E;) {
1064 Use &U = *UI;
1065 ++UI;
1066 MemoryAccess *Usr = dyn_cast<MemoryAccess>(U.getUser());
1067 if (MemoryPhi *UsrPhi = dyn_cast<MemoryPhi>(Usr)) {
1068 BasicBlock *DominatedBlock = UsrPhi->getIncomingBlock(U);
1069 if (!DT.dominates(DominatingBlock, DominatedBlock))
1070 U.set(GetLastDef(DominatedBlock));
1071 } else {
1072 BasicBlock *DominatedBlock = Usr->getBlock();
1073 if (!DT.dominates(DominatingBlock, DominatedBlock)) {
1074 if (auto *DomBlPhi = MSSA->getMemoryAccess(DominatedBlock))
1075 U.set(DomBlPhi);
1076 else {
1077 auto *IDom = DT.getNode(DominatedBlock)->getIDom();
1078 assert(IDom && "Block must have a valid IDom.");
1079 U.set(GetLastDef(IDom->getBlock()));
1081 cast<MemoryUseOrDef>(Usr)->resetOptimized();
1088 tryRemoveTrivialPhis(InsertedPhis);
1091 // Move What before Where in the MemorySSA IR.
1092 template <class WhereType>
1093 void MemorySSAUpdater::moveTo(MemoryUseOrDef *What, BasicBlock *BB,
1094 WhereType Where) {
1095 // Mark MemoryPhi users of What not to be optimized.
1096 for (auto *U : What->users())
1097 if (MemoryPhi *PhiUser = dyn_cast<MemoryPhi>(U))
1098 NonOptPhis.insert(PhiUser);
1100 // Replace all our users with our defining access.
1101 What->replaceAllUsesWith(What->getDefiningAccess());
1103 // Let MemorySSA take care of moving it around in the lists.
1104 MSSA->moveTo(What, BB, Where);
1106 // Now reinsert it into the IR and do whatever fixups needed.
1107 if (auto *MD = dyn_cast<MemoryDef>(What))
1108 insertDef(MD, /*RenameUses=*/true);
1109 else
1110 insertUse(cast<MemoryUse>(What), /*RenameUses=*/true);
1112 // Clear dangling pointers. We added all MemoryPhi users, but not all
1113 // of them are removed by fixupDefs().
1114 NonOptPhis.clear();
1117 // Move What before Where in the MemorySSA IR.
1118 void MemorySSAUpdater::moveBefore(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1119 moveTo(What, Where->getBlock(), Where->getIterator());
1122 // Move What after Where in the MemorySSA IR.
1123 void MemorySSAUpdater::moveAfter(MemoryUseOrDef *What, MemoryUseOrDef *Where) {
1124 moveTo(What, Where->getBlock(), ++Where->getIterator());
1127 void MemorySSAUpdater::moveToPlace(MemoryUseOrDef *What, BasicBlock *BB,
1128 MemorySSA::InsertionPlace Where) {
1129 return moveTo(What, BB, Where);
1132 // All accesses in To used to be in From. Move to end and update access lists.
1133 void MemorySSAUpdater::moveAllAccesses(BasicBlock *From, BasicBlock *To,
1134 Instruction *Start) {
1136 MemorySSA::AccessList *Accs = MSSA->getWritableBlockAccesses(From);
1137 if (!Accs)
1138 return;
1140 MemoryAccess *FirstInNew = nullptr;
1141 for (Instruction &I : make_range(Start->getIterator(), To->end()))
1142 if ((FirstInNew = MSSA->getMemoryAccess(&I)))
1143 break;
1144 if (!FirstInNew)
1145 return;
1147 auto *MUD = cast<MemoryUseOrDef>(FirstInNew);
1148 do {
1149 auto NextIt = ++MUD->getIterator();
1150 MemoryUseOrDef *NextMUD = (!Accs || NextIt == Accs->end())
1151 ? nullptr
1152 : cast<MemoryUseOrDef>(&*NextIt);
1153 MSSA->moveTo(MUD, To, MemorySSA::End);
1154 // Moving MUD from Accs in the moveTo above, may delete Accs, so we need to
1155 // retrieve it again.
1156 Accs = MSSA->getWritableBlockAccesses(From);
1157 MUD = NextMUD;
1158 } while (MUD);
1161 void MemorySSAUpdater::moveAllAfterSpliceBlocks(BasicBlock *From,
1162 BasicBlock *To,
1163 Instruction *Start) {
1164 assert(MSSA->getBlockAccesses(To) == nullptr &&
1165 "To block is expected to be free of MemoryAccesses.");
1166 moveAllAccesses(From, To, Start);
1167 for (BasicBlock *Succ : successors(To))
1168 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1169 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1172 void MemorySSAUpdater::moveAllAfterMergeBlocks(BasicBlock *From, BasicBlock *To,
1173 Instruction *Start) {
1174 assert(From->getSinglePredecessor() == To &&
1175 "From block is expected to have a single predecessor (To).");
1176 moveAllAccesses(From, To, Start);
1177 for (BasicBlock *Succ : successors(From))
1178 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Succ))
1179 MPhi->setIncomingBlock(MPhi->getBasicBlockIndex(From), To);
1182 /// If all arguments of a MemoryPHI are defined by the same incoming
1183 /// argument, return that argument.
1184 static MemoryAccess *onlySingleValue(MemoryPhi *MP) {
1185 MemoryAccess *MA = nullptr;
1187 for (auto &Arg : MP->operands()) {
1188 if (!MA)
1189 MA = cast<MemoryAccess>(Arg);
1190 else if (MA != Arg)
1191 return nullptr;
1193 return MA;
1196 void MemorySSAUpdater::wireOldPredecessorsToNewImmediatePredecessor(
1197 BasicBlock *Old, BasicBlock *New, ArrayRef<BasicBlock *> Preds,
1198 bool IdenticalEdgesWereMerged) {
1199 assert(!MSSA->getWritableBlockAccesses(New) &&
1200 "Access list should be null for a new block.");
1201 MemoryPhi *Phi = MSSA->getMemoryAccess(Old);
1202 if (!Phi)
1203 return;
1204 if (Old->hasNPredecessors(1)) {
1205 assert(pred_size(New) == Preds.size() &&
1206 "Should have moved all predecessors.");
1207 MSSA->moveTo(Phi, New, MemorySSA::Beginning);
1208 } else {
1209 assert(!Preds.empty() && "Must be moving at least one predecessor to the "
1210 "new immediate predecessor.");
1211 MemoryPhi *NewPhi = MSSA->createMemoryPhi(New);
1212 SmallPtrSet<BasicBlock *, 16> PredsSet(Preds.begin(), Preds.end());
1213 // Currently only support the case of removing a single incoming edge when
1214 // identical edges were not merged.
1215 if (!IdenticalEdgesWereMerged)
1216 assert(PredsSet.size() == Preds.size() &&
1217 "If identical edges were not merged, we cannot have duplicate "
1218 "blocks in the predecessors");
1219 Phi->unorderedDeleteIncomingIf([&](MemoryAccess *MA, BasicBlock *B) {
1220 if (PredsSet.count(B)) {
1221 NewPhi->addIncoming(MA, B);
1222 if (!IdenticalEdgesWereMerged)
1223 PredsSet.erase(B);
1224 return true;
1226 return false;
1228 Phi->addIncoming(NewPhi, New);
1229 tryRemoveTrivialPhi(NewPhi);
1233 void MemorySSAUpdater::removeMemoryAccess(MemoryAccess *MA, bool OptimizePhis) {
1234 assert(!MSSA->isLiveOnEntryDef(MA) &&
1235 "Trying to remove the live on entry def");
1236 // We can only delete phi nodes if they have no uses, or we can replace all
1237 // uses with a single definition.
1238 MemoryAccess *NewDefTarget = nullptr;
1239 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(MA)) {
1240 // Note that it is sufficient to know that all edges of the phi node have
1241 // the same argument. If they do, by the definition of dominance frontiers
1242 // (which we used to place this phi), that argument must dominate this phi,
1243 // and thus, must dominate the phi's uses, and so we will not hit the assert
1244 // below.
1245 NewDefTarget = onlySingleValue(MP);
1246 assert((NewDefTarget || MP->use_empty()) &&
1247 "We can't delete this memory phi");
1248 } else {
1249 NewDefTarget = cast<MemoryUseOrDef>(MA)->getDefiningAccess();
1252 SmallSetVector<MemoryPhi *, 4> PhisToCheck;
1254 // Re-point the uses at our defining access
1255 if (!isa<MemoryUse>(MA) && !MA->use_empty()) {
1256 // Reset optimized on users of this store, and reset the uses.
1257 // A few notes:
1258 // 1. This is a slightly modified version of RAUW to avoid walking the
1259 // uses twice here.
1260 // 2. If we wanted to be complete, we would have to reset the optimized
1261 // flags on users of phi nodes if doing the below makes a phi node have all
1262 // the same arguments. Instead, we prefer users to removeMemoryAccess those
1263 // phi nodes, because doing it here would be N^3.
1264 if (MA->hasValueHandle())
1265 ValueHandleBase::ValueIsRAUWd(MA, NewDefTarget);
1266 // Note: We assume MemorySSA is not used in metadata since it's not really
1267 // part of the IR.
1269 while (!MA->use_empty()) {
1270 Use &U = *MA->use_begin();
1271 if (auto *MUD = dyn_cast<MemoryUseOrDef>(U.getUser()))
1272 MUD->resetOptimized();
1273 if (OptimizePhis)
1274 if (MemoryPhi *MP = dyn_cast<MemoryPhi>(U.getUser()))
1275 PhisToCheck.insert(MP);
1276 U.set(NewDefTarget);
1280 // The call below to erase will destroy MA, so we can't change the order we
1281 // are doing things here
1282 MSSA->removeFromLookups(MA);
1283 MSSA->removeFromLists(MA);
1285 // Optionally optimize Phi uses. This will recursively remove trivial phis.
1286 if (!PhisToCheck.empty()) {
1287 SmallVector<WeakVH, 16> PhisToOptimize{PhisToCheck.begin(),
1288 PhisToCheck.end()};
1289 PhisToCheck.clear();
1291 unsigned PhisSize = PhisToOptimize.size();
1292 while (PhisSize-- > 0)
1293 if (MemoryPhi *MP =
1294 cast_or_null<MemoryPhi>(PhisToOptimize.pop_back_val()))
1295 tryRemoveTrivialPhi(MP);
1299 void MemorySSAUpdater::removeBlocks(
1300 const SmallSetVector<BasicBlock *, 8> &DeadBlocks) {
1301 // First delete all uses of BB in MemoryPhis.
1302 for (BasicBlock *BB : DeadBlocks) {
1303 Instruction *TI = BB->getTerminator();
1304 assert(TI && "Basic block expected to have a terminator instruction");
1305 for (BasicBlock *Succ : successors(TI))
1306 if (!DeadBlocks.count(Succ))
1307 if (MemoryPhi *MP = MSSA->getMemoryAccess(Succ)) {
1308 MP->unorderedDeleteIncomingBlock(BB);
1309 tryRemoveTrivialPhi(MP);
1311 // Drop all references of all accesses in BB
1312 if (MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB))
1313 for (MemoryAccess &MA : *Acc)
1314 MA.dropAllReferences();
1317 // Next, delete all memory accesses in each block
1318 for (BasicBlock *BB : DeadBlocks) {
1319 MemorySSA::AccessList *Acc = MSSA->getWritableBlockAccesses(BB);
1320 if (!Acc)
1321 continue;
1322 for (auto AB = Acc->begin(), AE = Acc->end(); AB != AE;) {
1323 MemoryAccess *MA = &*AB;
1324 ++AB;
1325 MSSA->removeFromLookups(MA);
1326 MSSA->removeFromLists(MA);
1331 void MemorySSAUpdater::tryRemoveTrivialPhis(ArrayRef<WeakVH> UpdatedPHIs) {
1332 for (auto &VH : UpdatedPHIs)
1333 if (auto *MPhi = cast_or_null<MemoryPhi>(VH))
1334 tryRemoveTrivialPhi(MPhi);
1337 void MemorySSAUpdater::changeToUnreachable(const Instruction *I) {
1338 const BasicBlock *BB = I->getParent();
1339 // Remove memory accesses in BB for I and all following instructions.
1340 auto BBI = I->getIterator(), BBE = BB->end();
1341 // FIXME: If this becomes too expensive, iterate until the first instruction
1342 // with a memory access, then iterate over MemoryAccesses.
1343 while (BBI != BBE)
1344 removeMemoryAccess(&*(BBI++));
1345 // Update phis in BB's successors to remove BB.
1346 SmallVector<WeakVH, 16> UpdatedPHIs;
1347 for (const BasicBlock *Successor : successors(BB)) {
1348 removeDuplicatePhiEdgesBetween(BB, Successor);
1349 if (MemoryPhi *MPhi = MSSA->getMemoryAccess(Successor)) {
1350 MPhi->unorderedDeleteIncomingBlock(BB);
1351 UpdatedPHIs.push_back(MPhi);
1354 // Optimize trivial phis.
1355 tryRemoveTrivialPhis(UpdatedPHIs);
1358 void MemorySSAUpdater::changeCondBranchToUnconditionalTo(const BranchInst *BI,
1359 const BasicBlock *To) {
1360 const BasicBlock *BB = BI->getParent();
1361 SmallVector<WeakVH, 16> UpdatedPHIs;
1362 for (const BasicBlock *Succ : successors(BB)) {
1363 removeDuplicatePhiEdgesBetween(BB, Succ);
1364 if (Succ != To)
1365 if (auto *MPhi = MSSA->getMemoryAccess(Succ)) {
1366 MPhi->unorderedDeleteIncomingBlock(BB);
1367 UpdatedPHIs.push_back(MPhi);
1370 // Optimize trivial phis.
1371 tryRemoveTrivialPhis(UpdatedPHIs);
1374 MemoryAccess *MemorySSAUpdater::createMemoryAccessInBB(
1375 Instruction *I, MemoryAccess *Definition, const BasicBlock *BB,
1376 MemorySSA::InsertionPlace Point) {
1377 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1378 MSSA->insertIntoListsForBlock(NewAccess, BB, Point);
1379 return NewAccess;
1382 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessBefore(
1383 Instruction *I, MemoryAccess *Definition, MemoryUseOrDef *InsertPt) {
1384 assert(I->getParent() == InsertPt->getBlock() &&
1385 "New and old access must be in the same block");
1386 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1387 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1388 InsertPt->getIterator());
1389 return NewAccess;
1392 MemoryUseOrDef *MemorySSAUpdater::createMemoryAccessAfter(
1393 Instruction *I, MemoryAccess *Definition, MemoryAccess *InsertPt) {
1394 assert(I->getParent() == InsertPt->getBlock() &&
1395 "New and old access must be in the same block");
1396 MemoryUseOrDef *NewAccess = MSSA->createDefinedAccess(I, Definition);
1397 MSSA->insertIntoListsBefore(NewAccess, InsertPt->getBlock(),
1398 ++InsertPt->getIterator());
1399 return NewAccess;