[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / CodeGen / InlineSpiller.cpp
blob0a10f917924355037b8629006e1017cf8d58bc86
1 //===- InlineSpiller.cpp - Insert spills and restores inline --------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // The inline spiller modifies the machine function directly instead of
10 // inserting spills and restores in VirtRegMap.
12 //===----------------------------------------------------------------------===//
14 #include "LiveRangeCalc.h"
15 #include "Spiller.h"
16 #include "SplitKit.h"
17 #include "llvm/ADT/ArrayRef.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/STLExtras.h"
22 #include "llvm/ADT/SetVector.h"
23 #include "llvm/ADT/SmallPtrSet.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/Statistic.h"
26 #include "llvm/Analysis/AliasAnalysis.h"
27 #include "llvm/CodeGen/LiveInterval.h"
28 #include "llvm/CodeGen/LiveIntervals.h"
29 #include "llvm/CodeGen/LiveRangeEdit.h"
30 #include "llvm/CodeGen/LiveStacks.h"
31 #include "llvm/CodeGen/MachineBasicBlock.h"
32 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineInstrBuilder.h"
38 #include "llvm/CodeGen/MachineInstrBundle.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineOperand.h"
41 #include "llvm/CodeGen/MachineRegisterInfo.h"
42 #include "llvm/CodeGen/SlotIndexes.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetOpcodes.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/CodeGen/VirtRegMap.h"
48 #include "llvm/Config/llvm-config.h"
49 #include "llvm/Support/BlockFrequency.h"
50 #include "llvm/Support/BranchProbability.h"
51 #include "llvm/Support/CommandLine.h"
52 #include "llvm/Support/Compiler.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/raw_ostream.h"
56 #include <cassert>
57 #include <iterator>
58 #include <tuple>
59 #include <utility>
60 #include <vector>
62 using namespace llvm;
64 #define DEBUG_TYPE "regalloc"
66 STATISTIC(NumSpilledRanges, "Number of spilled live ranges");
67 STATISTIC(NumSnippets, "Number of spilled snippets");
68 STATISTIC(NumSpills, "Number of spills inserted");
69 STATISTIC(NumSpillsRemoved, "Number of spills removed");
70 STATISTIC(NumReloads, "Number of reloads inserted");
71 STATISTIC(NumReloadsRemoved, "Number of reloads removed");
72 STATISTIC(NumFolded, "Number of folded stack accesses");
73 STATISTIC(NumFoldedLoads, "Number of folded loads");
74 STATISTIC(NumRemats, "Number of rematerialized defs for spilling");
76 static cl::opt<bool> DisableHoisting("disable-spill-hoist", cl::Hidden,
77 cl::desc("Disable inline spill hoisting"));
78 static cl::opt<bool>
79 RestrictStatepointRemat("restrict-statepoint-remat",
80 cl::init(false), cl::Hidden,
81 cl::desc("Restrict remat for statepoint operands"));
83 namespace {
85 class HoistSpillHelper : private LiveRangeEdit::Delegate {
86 MachineFunction &MF;
87 LiveIntervals &LIS;
88 LiveStacks &LSS;
89 AliasAnalysis *AA;
90 MachineDominatorTree &MDT;
91 MachineLoopInfo &Loops;
92 VirtRegMap &VRM;
93 MachineRegisterInfo &MRI;
94 const TargetInstrInfo &TII;
95 const TargetRegisterInfo &TRI;
96 const MachineBlockFrequencyInfo &MBFI;
98 InsertPointAnalysis IPA;
100 // Map from StackSlot to the LiveInterval of the original register.
101 // Note the LiveInterval of the original register may have been deleted
102 // after it is spilled. We keep a copy here to track the range where
103 // spills can be moved.
104 DenseMap<int, std::unique_ptr<LiveInterval>> StackSlotToOrigLI;
106 // Map from pair of (StackSlot and Original VNI) to a set of spills which
107 // have the same stackslot and have equal values defined by Original VNI.
108 // These spills are mergeable and are hoist candiates.
109 using MergeableSpillsMap =
110 MapVector<std::pair<int, VNInfo *>, SmallPtrSet<MachineInstr *, 16>>;
111 MergeableSpillsMap MergeableSpills;
113 /// This is the map from original register to a set containing all its
114 /// siblings. To hoist a spill to another BB, we need to find out a live
115 /// sibling there and use it as the source of the new spill.
116 DenseMap<unsigned, SmallSetVector<unsigned, 16>> Virt2SiblingsMap;
118 bool isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
119 MachineBasicBlock &BB, unsigned &LiveReg);
121 void rmRedundantSpills(
122 SmallPtrSet<MachineInstr *, 16> &Spills,
123 SmallVectorImpl<MachineInstr *> &SpillsToRm,
124 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
126 void getVisitOrders(
127 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
128 SmallVectorImpl<MachineDomTreeNode *> &Orders,
129 SmallVectorImpl<MachineInstr *> &SpillsToRm,
130 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
131 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill);
133 void runHoistSpills(LiveInterval &OrigLI, VNInfo &OrigVNI,
134 SmallPtrSet<MachineInstr *, 16> &Spills,
135 SmallVectorImpl<MachineInstr *> &SpillsToRm,
136 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns);
138 public:
139 HoistSpillHelper(MachineFunctionPass &pass, MachineFunction &mf,
140 VirtRegMap &vrm)
141 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
142 LSS(pass.getAnalysis<LiveStacks>()),
143 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
144 MDT(pass.getAnalysis<MachineDominatorTree>()),
145 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
146 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
147 TRI(*mf.getSubtarget().getRegisterInfo()),
148 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
149 IPA(LIS, mf.getNumBlockIDs()) {}
151 void addToMergeableSpills(MachineInstr &Spill, int StackSlot,
152 unsigned Original);
153 bool rmFromMergeableSpills(MachineInstr &Spill, int StackSlot);
154 void hoistAllSpills();
155 void LRE_DidCloneVirtReg(unsigned, unsigned) override;
158 class InlineSpiller : public Spiller {
159 MachineFunction &MF;
160 LiveIntervals &LIS;
161 LiveStacks &LSS;
162 AliasAnalysis *AA;
163 MachineDominatorTree &MDT;
164 MachineLoopInfo &Loops;
165 VirtRegMap &VRM;
166 MachineRegisterInfo &MRI;
167 const TargetInstrInfo &TII;
168 const TargetRegisterInfo &TRI;
169 const MachineBlockFrequencyInfo &MBFI;
171 // Variables that are valid during spill(), but used by multiple methods.
172 LiveRangeEdit *Edit;
173 LiveInterval *StackInt;
174 int StackSlot;
175 unsigned Original;
177 // All registers to spill to StackSlot, including the main register.
178 SmallVector<unsigned, 8> RegsToSpill;
180 // All COPY instructions to/from snippets.
181 // They are ignored since both operands refer to the same stack slot.
182 SmallPtrSet<MachineInstr*, 8> SnippetCopies;
184 // Values that failed to remat at some point.
185 SmallPtrSet<VNInfo*, 8> UsedValues;
187 // Dead defs generated during spilling.
188 SmallVector<MachineInstr*, 8> DeadDefs;
190 // Object records spills information and does the hoisting.
191 HoistSpillHelper HSpiller;
193 ~InlineSpiller() override = default;
195 public:
196 InlineSpiller(MachineFunctionPass &pass, MachineFunction &mf, VirtRegMap &vrm)
197 : MF(mf), LIS(pass.getAnalysis<LiveIntervals>()),
198 LSS(pass.getAnalysis<LiveStacks>()),
199 AA(&pass.getAnalysis<AAResultsWrapperPass>().getAAResults()),
200 MDT(pass.getAnalysis<MachineDominatorTree>()),
201 Loops(pass.getAnalysis<MachineLoopInfo>()), VRM(vrm),
202 MRI(mf.getRegInfo()), TII(*mf.getSubtarget().getInstrInfo()),
203 TRI(*mf.getSubtarget().getRegisterInfo()),
204 MBFI(pass.getAnalysis<MachineBlockFrequencyInfo>()),
205 HSpiller(pass, mf, vrm) {}
207 void spill(LiveRangeEdit &) override;
208 void postOptimization() override;
210 private:
211 bool isSnippet(const LiveInterval &SnipLI);
212 void collectRegsToSpill();
214 bool isRegToSpill(unsigned Reg) { return is_contained(RegsToSpill, Reg); }
216 bool isSibling(unsigned Reg);
217 bool hoistSpillInsideBB(LiveInterval &SpillLI, MachineInstr &CopyMI);
218 void eliminateRedundantSpills(LiveInterval &LI, VNInfo *VNI);
220 void markValueUsed(LiveInterval*, VNInfo*);
221 bool canGuaranteeAssignmentAfterRemat(unsigned VReg, MachineInstr &MI);
222 bool reMaterializeFor(LiveInterval &, MachineInstr &MI);
223 void reMaterializeAll();
225 bool coalesceStackAccess(MachineInstr *MI, unsigned Reg);
226 bool foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>>,
227 MachineInstr *LoadMI = nullptr);
228 void insertReload(unsigned VReg, SlotIndex, MachineBasicBlock::iterator MI);
229 void insertSpill(unsigned VReg, bool isKill, MachineBasicBlock::iterator MI);
231 void spillAroundUses(unsigned Reg);
232 void spillAll();
235 } // end anonymous namespace
237 Spiller::~Spiller() = default;
239 void Spiller::anchor() {}
241 Spiller *llvm::createInlineSpiller(MachineFunctionPass &pass,
242 MachineFunction &mf,
243 VirtRegMap &vrm) {
244 return new InlineSpiller(pass, mf, vrm);
247 //===----------------------------------------------------------------------===//
248 // Snippets
249 //===----------------------------------------------------------------------===//
251 // When spilling a virtual register, we also spill any snippets it is connected
252 // to. The snippets are small live ranges that only have a single real use,
253 // leftovers from live range splitting. Spilling them enables memory operand
254 // folding or tightens the live range around the single use.
256 // This minimizes register pressure and maximizes the store-to-load distance for
257 // spill slots which can be important in tight loops.
259 /// isFullCopyOf - If MI is a COPY to or from Reg, return the other register,
260 /// otherwise return 0.
261 static unsigned isFullCopyOf(const MachineInstr &MI, unsigned Reg) {
262 if (!MI.isFullCopy())
263 return 0;
264 if (MI.getOperand(0).getReg() == Reg)
265 return MI.getOperand(1).getReg();
266 if (MI.getOperand(1).getReg() == Reg)
267 return MI.getOperand(0).getReg();
268 return 0;
271 /// isSnippet - Identify if a live interval is a snippet that should be spilled.
272 /// It is assumed that SnipLI is a virtual register with the same original as
273 /// Edit->getReg().
274 bool InlineSpiller::isSnippet(const LiveInterval &SnipLI) {
275 unsigned Reg = Edit->getReg();
277 // A snippet is a tiny live range with only a single instruction using it
278 // besides copies to/from Reg or spills/fills. We accept:
280 // %snip = COPY %Reg / FILL fi#
281 // %snip = USE %snip
282 // %Reg = COPY %snip / SPILL %snip, fi#
284 if (SnipLI.getNumValNums() > 2 || !LIS.intervalIsInOneMBB(SnipLI))
285 return false;
287 MachineInstr *UseMI = nullptr;
289 // Check that all uses satisfy our criteria.
290 for (MachineRegisterInfo::reg_instr_nodbg_iterator
291 RI = MRI.reg_instr_nodbg_begin(SnipLI.reg),
292 E = MRI.reg_instr_nodbg_end(); RI != E; ) {
293 MachineInstr &MI = *RI++;
295 // Allow copies to/from Reg.
296 if (isFullCopyOf(MI, Reg))
297 continue;
299 // Allow stack slot loads.
300 int FI;
301 if (SnipLI.reg == TII.isLoadFromStackSlot(MI, FI) && FI == StackSlot)
302 continue;
304 // Allow stack slot stores.
305 if (SnipLI.reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot)
306 continue;
308 // Allow a single additional instruction.
309 if (UseMI && &MI != UseMI)
310 return false;
311 UseMI = &MI;
313 return true;
316 /// collectRegsToSpill - Collect live range snippets that only have a single
317 /// real use.
318 void InlineSpiller::collectRegsToSpill() {
319 unsigned Reg = Edit->getReg();
321 // Main register always spills.
322 RegsToSpill.assign(1, Reg);
323 SnippetCopies.clear();
325 // Snippets all have the same original, so there can't be any for an original
326 // register.
327 if (Original == Reg)
328 return;
330 for (MachineRegisterInfo::reg_instr_iterator
331 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end(); RI != E; ) {
332 MachineInstr &MI = *RI++;
333 unsigned SnipReg = isFullCopyOf(MI, Reg);
334 if (!isSibling(SnipReg))
335 continue;
336 LiveInterval &SnipLI = LIS.getInterval(SnipReg);
337 if (!isSnippet(SnipLI))
338 continue;
339 SnippetCopies.insert(&MI);
340 if (isRegToSpill(SnipReg))
341 continue;
342 RegsToSpill.push_back(SnipReg);
343 LLVM_DEBUG(dbgs() << "\talso spill snippet " << SnipLI << '\n');
344 ++NumSnippets;
348 bool InlineSpiller::isSibling(unsigned Reg) {
349 return Register::isVirtualRegister(Reg) && VRM.getOriginal(Reg) == Original;
352 /// It is beneficial to spill to earlier place in the same BB in case
353 /// as follows:
354 /// There is an alternative def earlier in the same MBB.
355 /// Hoist the spill as far as possible in SpillMBB. This can ease
356 /// register pressure:
358 /// x = def
359 /// y = use x
360 /// s = copy x
362 /// Hoisting the spill of s to immediately after the def removes the
363 /// interference between x and y:
365 /// x = def
366 /// spill x
367 /// y = use killed x
369 /// This hoist only helps when the copy kills its source.
371 bool InlineSpiller::hoistSpillInsideBB(LiveInterval &SpillLI,
372 MachineInstr &CopyMI) {
373 SlotIndex Idx = LIS.getInstructionIndex(CopyMI);
374 #ifndef NDEBUG
375 VNInfo *VNI = SpillLI.getVNInfoAt(Idx.getRegSlot());
376 assert(VNI && VNI->def == Idx.getRegSlot() && "Not defined by copy");
377 #endif
379 Register SrcReg = CopyMI.getOperand(1).getReg();
380 LiveInterval &SrcLI = LIS.getInterval(SrcReg);
381 VNInfo *SrcVNI = SrcLI.getVNInfoAt(Idx);
382 LiveQueryResult SrcQ = SrcLI.Query(Idx);
383 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(SrcVNI->def);
384 if (DefMBB != CopyMI.getParent() || !SrcQ.isKill())
385 return false;
387 // Conservatively extend the stack slot range to the range of the original
388 // value. We may be able to do better with stack slot coloring by being more
389 // careful here.
390 assert(StackInt && "No stack slot assigned yet.");
391 LiveInterval &OrigLI = LIS.getInterval(Original);
392 VNInfo *OrigVNI = OrigLI.getVNInfoAt(Idx);
393 StackInt->MergeValueInAsValue(OrigLI, OrigVNI, StackInt->getValNumInfo(0));
394 LLVM_DEBUG(dbgs() << "\tmerged orig valno " << OrigVNI->id << ": "
395 << *StackInt << '\n');
397 // We are going to spill SrcVNI immediately after its def, so clear out
398 // any later spills of the same value.
399 eliminateRedundantSpills(SrcLI, SrcVNI);
401 MachineBasicBlock *MBB = LIS.getMBBFromIndex(SrcVNI->def);
402 MachineBasicBlock::iterator MII;
403 if (SrcVNI->isPHIDef())
404 MII = MBB->SkipPHIsLabelsAndDebug(MBB->begin());
405 else {
406 MachineInstr *DefMI = LIS.getInstructionFromIndex(SrcVNI->def);
407 assert(DefMI && "Defining instruction disappeared");
408 MII = DefMI;
409 ++MII;
411 // Insert spill without kill flag immediately after def.
412 TII.storeRegToStackSlot(*MBB, MII, SrcReg, false, StackSlot,
413 MRI.getRegClass(SrcReg), &TRI);
414 --MII; // Point to store instruction.
415 LIS.InsertMachineInstrInMaps(*MII);
416 LLVM_DEBUG(dbgs() << "\thoisted: " << SrcVNI->def << '\t' << *MII);
418 HSpiller.addToMergeableSpills(*MII, StackSlot, Original);
419 ++NumSpills;
420 return true;
423 /// eliminateRedundantSpills - SLI:VNI is known to be on the stack. Remove any
424 /// redundant spills of this value in SLI.reg and sibling copies.
425 void InlineSpiller::eliminateRedundantSpills(LiveInterval &SLI, VNInfo *VNI) {
426 assert(VNI && "Missing value");
427 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
428 WorkList.push_back(std::make_pair(&SLI, VNI));
429 assert(StackInt && "No stack slot assigned yet.");
431 do {
432 LiveInterval *LI;
433 std::tie(LI, VNI) = WorkList.pop_back_val();
434 unsigned Reg = LI->reg;
435 LLVM_DEBUG(dbgs() << "Checking redundant spills for " << VNI->id << '@'
436 << VNI->def << " in " << *LI << '\n');
438 // Regs to spill are taken care of.
439 if (isRegToSpill(Reg))
440 continue;
442 // Add all of VNI's live range to StackInt.
443 StackInt->MergeValueInAsValue(*LI, VNI, StackInt->getValNumInfo(0));
444 LLVM_DEBUG(dbgs() << "Merged to stack int: " << *StackInt << '\n');
446 // Find all spills and copies of VNI.
447 for (MachineRegisterInfo::use_instr_nodbg_iterator
448 UI = MRI.use_instr_nodbg_begin(Reg), E = MRI.use_instr_nodbg_end();
449 UI != E; ) {
450 MachineInstr &MI = *UI++;
451 if (!MI.isCopy() && !MI.mayStore())
452 continue;
453 SlotIndex Idx = LIS.getInstructionIndex(MI);
454 if (LI->getVNInfoAt(Idx) != VNI)
455 continue;
457 // Follow sibling copies down the dominator tree.
458 if (unsigned DstReg = isFullCopyOf(MI, Reg)) {
459 if (isSibling(DstReg)) {
460 LiveInterval &DstLI = LIS.getInterval(DstReg);
461 VNInfo *DstVNI = DstLI.getVNInfoAt(Idx.getRegSlot());
462 assert(DstVNI && "Missing defined value");
463 assert(DstVNI->def == Idx.getRegSlot() && "Wrong copy def slot");
464 WorkList.push_back(std::make_pair(&DstLI, DstVNI));
466 continue;
469 // Erase spills.
470 int FI;
471 if (Reg == TII.isStoreToStackSlot(MI, FI) && FI == StackSlot) {
472 LLVM_DEBUG(dbgs() << "Redundant spill " << Idx << '\t' << MI);
473 // eliminateDeadDefs won't normally remove stores, so switch opcode.
474 MI.setDesc(TII.get(TargetOpcode::KILL));
475 DeadDefs.push_back(&MI);
476 ++NumSpillsRemoved;
477 if (HSpiller.rmFromMergeableSpills(MI, StackSlot))
478 --NumSpills;
481 } while (!WorkList.empty());
484 //===----------------------------------------------------------------------===//
485 // Rematerialization
486 //===----------------------------------------------------------------------===//
488 /// markValueUsed - Remember that VNI failed to rematerialize, so its defining
489 /// instruction cannot be eliminated. See through snippet copies
490 void InlineSpiller::markValueUsed(LiveInterval *LI, VNInfo *VNI) {
491 SmallVector<std::pair<LiveInterval*, VNInfo*>, 8> WorkList;
492 WorkList.push_back(std::make_pair(LI, VNI));
493 do {
494 std::tie(LI, VNI) = WorkList.pop_back_val();
495 if (!UsedValues.insert(VNI).second)
496 continue;
498 if (VNI->isPHIDef()) {
499 MachineBasicBlock *MBB = LIS.getMBBFromIndex(VNI->def);
500 for (MachineBasicBlock *P : MBB->predecessors()) {
501 VNInfo *PVNI = LI->getVNInfoBefore(LIS.getMBBEndIdx(P));
502 if (PVNI)
503 WorkList.push_back(std::make_pair(LI, PVNI));
505 continue;
508 // Follow snippet copies.
509 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
510 if (!SnippetCopies.count(MI))
511 continue;
512 LiveInterval &SnipLI = LIS.getInterval(MI->getOperand(1).getReg());
513 assert(isRegToSpill(SnipLI.reg) && "Unexpected register in copy");
514 VNInfo *SnipVNI = SnipLI.getVNInfoAt(VNI->def.getRegSlot(true));
515 assert(SnipVNI && "Snippet undefined before copy");
516 WorkList.push_back(std::make_pair(&SnipLI, SnipVNI));
517 } while (!WorkList.empty());
520 bool InlineSpiller::canGuaranteeAssignmentAfterRemat(unsigned VReg,
521 MachineInstr &MI) {
522 if (!RestrictStatepointRemat)
523 return true;
524 // Here's a quick explanation of the problem we're trying to handle here:
525 // * There are some pseudo instructions with more vreg uses than there are
526 // physical registers on the machine.
527 // * This is normally handled by spilling the vreg, and folding the reload
528 // into the user instruction. (Thus decreasing the number of used vregs
529 // until the remainder can be assigned to physregs.)
530 // * However, since we may try to spill vregs in any order, we can end up
531 // trying to spill each operand to the instruction, and then rematting it
532 // instead. When that happens, the new live intervals (for the remats) are
533 // expected to be trivially assignable (i.e. RS_Done). However, since we
534 // may have more remats than physregs, we're guaranteed to fail to assign
535 // one.
536 // At the moment, we only handle this for STATEPOINTs since they're the only
537 // psuedo op where we've seen this. If we start seeing other instructions
538 // with the same problem, we need to revisit this.
539 return (MI.getOpcode() != TargetOpcode::STATEPOINT);
542 /// reMaterializeFor - Attempt to rematerialize before MI instead of reloading.
543 bool InlineSpiller::reMaterializeFor(LiveInterval &VirtReg, MachineInstr &MI) {
544 // Analyze instruction
545 SmallVector<std::pair<MachineInstr *, unsigned>, 8> Ops;
546 MIBundleOperands::VirtRegInfo RI =
547 MIBundleOperands(MI).analyzeVirtReg(VirtReg.reg, &Ops);
549 if (!RI.Reads)
550 return false;
552 SlotIndex UseIdx = LIS.getInstructionIndex(MI).getRegSlot(true);
553 VNInfo *ParentVNI = VirtReg.getVNInfoAt(UseIdx.getBaseIndex());
555 if (!ParentVNI) {
556 LLVM_DEBUG(dbgs() << "\tadding <undef> flags: ");
557 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
558 MachineOperand &MO = MI.getOperand(i);
559 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg)
560 MO.setIsUndef();
562 LLVM_DEBUG(dbgs() << UseIdx << '\t' << MI);
563 return true;
566 if (SnippetCopies.count(&MI))
567 return false;
569 LiveInterval &OrigLI = LIS.getInterval(Original);
570 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
571 LiveRangeEdit::Remat RM(ParentVNI);
572 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
574 if (!Edit->canRematerializeAt(RM, OrigVNI, UseIdx, false)) {
575 markValueUsed(&VirtReg, ParentVNI);
576 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
577 return false;
580 // If the instruction also writes VirtReg.reg, it had better not require the
581 // same register for uses and defs.
582 if (RI.Tied) {
583 markValueUsed(&VirtReg, ParentVNI);
584 LLVM_DEBUG(dbgs() << "\tcannot remat tied reg: " << UseIdx << '\t' << MI);
585 return false;
588 // Before rematerializing into a register for a single instruction, try to
589 // fold a load into the instruction. That avoids allocating a new register.
590 if (RM.OrigMI->canFoldAsLoad() &&
591 foldMemoryOperand(Ops, RM.OrigMI)) {
592 Edit->markRematerialized(RM.ParentVNI);
593 ++NumFoldedLoads;
594 return true;
597 // If we can't guarantee that we'll be able to actually assign the new vreg,
598 // we can't remat.
599 if (!canGuaranteeAssignmentAfterRemat(VirtReg.reg, MI)) {
600 markValueUsed(&VirtReg, ParentVNI);
601 LLVM_DEBUG(dbgs() << "\tcannot remat for " << UseIdx << '\t' << MI);
602 return false;
605 // Allocate a new register for the remat.
606 unsigned NewVReg = Edit->createFrom(Original);
608 // Finally we can rematerialize OrigMI before MI.
609 SlotIndex DefIdx =
610 Edit->rematerializeAt(*MI.getParent(), MI, NewVReg, RM, TRI);
612 // We take the DebugLoc from MI, since OrigMI may be attributed to a
613 // different source location.
614 auto *NewMI = LIS.getInstructionFromIndex(DefIdx);
615 NewMI->setDebugLoc(MI.getDebugLoc());
617 (void)DefIdx;
618 LLVM_DEBUG(dbgs() << "\tremat: " << DefIdx << '\t'
619 << *LIS.getInstructionFromIndex(DefIdx));
621 // Replace operands
622 for (const auto &OpPair : Ops) {
623 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
624 if (MO.isReg() && MO.isUse() && MO.getReg() == VirtReg.reg) {
625 MO.setReg(NewVReg);
626 MO.setIsKill();
629 LLVM_DEBUG(dbgs() << "\t " << UseIdx << '\t' << MI << '\n');
631 ++NumRemats;
632 return true;
635 /// reMaterializeAll - Try to rematerialize as many uses as possible,
636 /// and trim the live ranges after.
637 void InlineSpiller::reMaterializeAll() {
638 if (!Edit->anyRematerializable(AA))
639 return;
641 UsedValues.clear();
643 // Try to remat before all uses of snippets.
644 bool anyRemat = false;
645 for (unsigned Reg : RegsToSpill) {
646 LiveInterval &LI = LIS.getInterval(Reg);
647 for (MachineRegisterInfo::reg_bundle_iterator
648 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
649 RegI != E; ) {
650 MachineInstr &MI = *RegI++;
652 // Debug values are not allowed to affect codegen.
653 if (MI.isDebugValue())
654 continue;
656 assert(!MI.isDebugInstr() && "Did not expect to find a use in debug "
657 "instruction that isn't a DBG_VALUE");
659 anyRemat |= reMaterializeFor(LI, MI);
662 if (!anyRemat)
663 return;
665 // Remove any values that were completely rematted.
666 for (unsigned Reg : RegsToSpill) {
667 LiveInterval &LI = LIS.getInterval(Reg);
668 for (LiveInterval::vni_iterator I = LI.vni_begin(), E = LI.vni_end();
669 I != E; ++I) {
670 VNInfo *VNI = *I;
671 if (VNI->isUnused() || VNI->isPHIDef() || UsedValues.count(VNI))
672 continue;
673 MachineInstr *MI = LIS.getInstructionFromIndex(VNI->def);
674 MI->addRegisterDead(Reg, &TRI);
675 if (!MI->allDefsAreDead())
676 continue;
677 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
678 DeadDefs.push_back(MI);
682 // Eliminate dead code after remat. Note that some snippet copies may be
683 // deleted here.
684 if (DeadDefs.empty())
685 return;
686 LLVM_DEBUG(dbgs() << "Remat created " << DeadDefs.size() << " dead defs.\n");
687 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
689 // LiveRangeEdit::eliminateDeadDef is used to remove dead define instructions
690 // after rematerialization. To remove a VNI for a vreg from its LiveInterval,
691 // LiveIntervals::removeVRegDefAt is used. However, after non-PHI VNIs are all
692 // removed, PHI VNI are still left in the LiveInterval.
693 // So to get rid of unused reg, we need to check whether it has non-dbg
694 // reference instead of whether it has non-empty interval.
695 unsigned ResultPos = 0;
696 for (unsigned Reg : RegsToSpill) {
697 if (MRI.reg_nodbg_empty(Reg)) {
698 Edit->eraseVirtReg(Reg);
699 continue;
702 assert(LIS.hasInterval(Reg) &&
703 (!LIS.getInterval(Reg).empty() || !MRI.reg_nodbg_empty(Reg)) &&
704 "Empty and not used live-range?!");
706 RegsToSpill[ResultPos++] = Reg;
708 RegsToSpill.erase(RegsToSpill.begin() + ResultPos, RegsToSpill.end());
709 LLVM_DEBUG(dbgs() << RegsToSpill.size()
710 << " registers to spill after remat.\n");
713 //===----------------------------------------------------------------------===//
714 // Spilling
715 //===----------------------------------------------------------------------===//
717 /// If MI is a load or store of StackSlot, it can be removed.
718 bool InlineSpiller::coalesceStackAccess(MachineInstr *MI, unsigned Reg) {
719 int FI = 0;
720 unsigned InstrReg = TII.isLoadFromStackSlot(*MI, FI);
721 bool IsLoad = InstrReg;
722 if (!IsLoad)
723 InstrReg = TII.isStoreToStackSlot(*MI, FI);
725 // We have a stack access. Is it the right register and slot?
726 if (InstrReg != Reg || FI != StackSlot)
727 return false;
729 if (!IsLoad)
730 HSpiller.rmFromMergeableSpills(*MI, StackSlot);
732 LLVM_DEBUG(dbgs() << "Coalescing stack access: " << *MI);
733 LIS.RemoveMachineInstrFromMaps(*MI);
734 MI->eraseFromParent();
736 if (IsLoad) {
737 ++NumReloadsRemoved;
738 --NumReloads;
739 } else {
740 ++NumSpillsRemoved;
741 --NumSpills;
744 return true;
747 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
748 LLVM_DUMP_METHOD
749 // Dump the range of instructions from B to E with their slot indexes.
750 static void dumpMachineInstrRangeWithSlotIndex(MachineBasicBlock::iterator B,
751 MachineBasicBlock::iterator E,
752 LiveIntervals const &LIS,
753 const char *const header,
754 unsigned VReg =0) {
755 char NextLine = '\n';
756 char SlotIndent = '\t';
758 if (std::next(B) == E) {
759 NextLine = ' ';
760 SlotIndent = ' ';
763 dbgs() << '\t' << header << ": " << NextLine;
765 for (MachineBasicBlock::iterator I = B; I != E; ++I) {
766 SlotIndex Idx = LIS.getInstructionIndex(*I).getRegSlot();
768 // If a register was passed in and this instruction has it as a
769 // destination that is marked as an early clobber, print the
770 // early-clobber slot index.
771 if (VReg) {
772 MachineOperand *MO = I->findRegisterDefOperand(VReg);
773 if (MO && MO->isEarlyClobber())
774 Idx = Idx.getRegSlot(true);
777 dbgs() << SlotIndent << Idx << '\t' << *I;
780 #endif
782 /// foldMemoryOperand - Try folding stack slot references in Ops into their
783 /// instructions.
785 /// @param Ops Operand indices from analyzeVirtReg().
786 /// @param LoadMI Load instruction to use instead of stack slot when non-null.
787 /// @return True on success.
788 bool InlineSpiller::
789 foldMemoryOperand(ArrayRef<std::pair<MachineInstr *, unsigned>> Ops,
790 MachineInstr *LoadMI) {
791 if (Ops.empty())
792 return false;
793 // Don't attempt folding in bundles.
794 MachineInstr *MI = Ops.front().first;
795 if (Ops.back().first != MI || MI->isBundled())
796 return false;
798 bool WasCopy = MI->isCopy();
799 unsigned ImpReg = 0;
801 // Spill subregs if the target allows it.
802 // We always want to spill subregs for stackmap/patchpoint pseudos.
803 bool SpillSubRegs = TII.isSubregFoldable() ||
804 MI->getOpcode() == TargetOpcode::STATEPOINT ||
805 MI->getOpcode() == TargetOpcode::PATCHPOINT ||
806 MI->getOpcode() == TargetOpcode::STACKMAP;
808 // TargetInstrInfo::foldMemoryOperand only expects explicit, non-tied
809 // operands.
810 SmallVector<unsigned, 8> FoldOps;
811 for (const auto &OpPair : Ops) {
812 unsigned Idx = OpPair.second;
813 assert(MI == OpPair.first && "Instruction conflict during operand folding");
814 MachineOperand &MO = MI->getOperand(Idx);
815 if (MO.isImplicit()) {
816 ImpReg = MO.getReg();
817 continue;
820 if (!SpillSubRegs && MO.getSubReg())
821 return false;
822 // We cannot fold a load instruction into a def.
823 if (LoadMI && MO.isDef())
824 return false;
825 // Tied use operands should not be passed to foldMemoryOperand.
826 if (!MI->isRegTiedToDefOperand(Idx))
827 FoldOps.push_back(Idx);
830 // If we only have implicit uses, we won't be able to fold that.
831 // Moreover, TargetInstrInfo::foldMemoryOperand will assert if we try!
832 if (FoldOps.empty())
833 return false;
835 MachineInstrSpan MIS(MI, MI->getParent());
837 MachineInstr *FoldMI =
838 LoadMI ? TII.foldMemoryOperand(*MI, FoldOps, *LoadMI, &LIS)
839 : TII.foldMemoryOperand(*MI, FoldOps, StackSlot, &LIS, &VRM);
840 if (!FoldMI)
841 return false;
843 // Remove LIS for any dead defs in the original MI not in FoldMI.
844 for (MIBundleOperands MO(*MI); MO.isValid(); ++MO) {
845 if (!MO->isReg())
846 continue;
847 Register Reg = MO->getReg();
848 if (!Reg || Register::isVirtualRegister(Reg) || MRI.isReserved(Reg)) {
849 continue;
851 // Skip non-Defs, including undef uses and internal reads.
852 if (MO->isUse())
853 continue;
854 MIBundleOperands::PhysRegInfo RI =
855 MIBundleOperands(*FoldMI).analyzePhysReg(Reg, &TRI);
856 if (RI.FullyDefined)
857 continue;
858 // FoldMI does not define this physreg. Remove the LI segment.
859 assert(MO->isDead() && "Cannot fold physreg def");
860 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
861 LIS.removePhysRegDefAt(Reg, Idx);
864 int FI;
865 if (TII.isStoreToStackSlot(*MI, FI) &&
866 HSpiller.rmFromMergeableSpills(*MI, FI))
867 --NumSpills;
868 LIS.ReplaceMachineInstrInMaps(*MI, *FoldMI);
869 if (MI->isCall())
870 MI->getMF()->updateCallSiteInfo(MI, FoldMI);
871 MI->eraseFromParent();
873 // Insert any new instructions other than FoldMI into the LIS maps.
874 assert(!MIS.empty() && "Unexpected empty span of instructions!");
875 for (MachineInstr &MI : MIS)
876 if (&MI != FoldMI)
877 LIS.InsertMachineInstrInMaps(MI);
879 // TII.foldMemoryOperand may have left some implicit operands on the
880 // instruction. Strip them.
881 if (ImpReg)
882 for (unsigned i = FoldMI->getNumOperands(); i; --i) {
883 MachineOperand &MO = FoldMI->getOperand(i - 1);
884 if (!MO.isReg() || !MO.isImplicit())
885 break;
886 if (MO.getReg() == ImpReg)
887 FoldMI->RemoveOperand(i - 1);
890 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MIS.end(), LIS,
891 "folded"));
893 if (!WasCopy)
894 ++NumFolded;
895 else if (Ops.front().second == 0) {
896 ++NumSpills;
897 HSpiller.addToMergeableSpills(*FoldMI, StackSlot, Original);
898 } else
899 ++NumReloads;
900 return true;
903 void InlineSpiller::insertReload(unsigned NewVReg,
904 SlotIndex Idx,
905 MachineBasicBlock::iterator MI) {
906 MachineBasicBlock &MBB = *MI->getParent();
908 MachineInstrSpan MIS(MI, &MBB);
909 TII.loadRegFromStackSlot(MBB, MI, NewVReg, StackSlot,
910 MRI.getRegClass(NewVReg), &TRI);
912 LIS.InsertMachineInstrRangeInMaps(MIS.begin(), MI);
914 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(MIS.begin(), MI, LIS, "reload",
915 NewVReg));
916 ++NumReloads;
919 /// Check if \p Def fully defines a VReg with an undefined value.
920 /// If that's the case, that means the value of VReg is actually
921 /// not relevant.
922 static bool isFullUndefDef(const MachineInstr &Def) {
923 if (!Def.isImplicitDef())
924 return false;
925 assert(Def.getNumOperands() == 1 &&
926 "Implicit def with more than one definition");
927 // We can say that the VReg defined by Def is undef, only if it is
928 // fully defined by Def. Otherwise, some of the lanes may not be
929 // undef and the value of the VReg matters.
930 return !Def.getOperand(0).getSubReg();
933 /// insertSpill - Insert a spill of NewVReg after MI.
934 void InlineSpiller::insertSpill(unsigned NewVReg, bool isKill,
935 MachineBasicBlock::iterator MI) {
936 MachineBasicBlock &MBB = *MI->getParent();
938 MachineInstrSpan MIS(MI, &MBB);
939 bool IsRealSpill = true;
940 if (isFullUndefDef(*MI)) {
941 // Don't spill undef value.
942 // Anything works for undef, in particular keeping the memory
943 // uninitialized is a viable option and it saves code size and
944 // run time.
945 BuildMI(MBB, std::next(MI), MI->getDebugLoc(), TII.get(TargetOpcode::KILL))
946 .addReg(NewVReg, getKillRegState(isKill));
947 IsRealSpill = false;
948 } else
949 TII.storeRegToStackSlot(MBB, std::next(MI), NewVReg, isKill, StackSlot,
950 MRI.getRegClass(NewVReg), &TRI);
952 LIS.InsertMachineInstrRangeInMaps(std::next(MI), MIS.end());
954 LLVM_DEBUG(dumpMachineInstrRangeWithSlotIndex(std::next(MI), MIS.end(), LIS,
955 "spill"));
956 ++NumSpills;
957 if (IsRealSpill)
958 HSpiller.addToMergeableSpills(*std::next(MI), StackSlot, Original);
961 /// spillAroundUses - insert spill code around each use of Reg.
962 void InlineSpiller::spillAroundUses(unsigned Reg) {
963 LLVM_DEBUG(dbgs() << "spillAroundUses " << printReg(Reg) << '\n');
964 LiveInterval &OldLI = LIS.getInterval(Reg);
966 // Iterate over instructions using Reg.
967 for (MachineRegisterInfo::reg_bundle_iterator
968 RegI = MRI.reg_bundle_begin(Reg), E = MRI.reg_bundle_end();
969 RegI != E; ) {
970 MachineInstr *MI = &*(RegI++);
972 // Debug values are not allowed to affect codegen.
973 if (MI->isDebugValue()) {
974 // Modify DBG_VALUE now that the value is in a spill slot.
975 MachineBasicBlock *MBB = MI->getParent();
976 LLVM_DEBUG(dbgs() << "Modifying debug info due to spill:\t" << *MI);
977 buildDbgValueForSpill(*MBB, MI, *MI, StackSlot);
978 MBB->erase(MI);
979 continue;
982 assert(!MI->isDebugInstr() && "Did not expect to find a use in debug "
983 "instruction that isn't a DBG_VALUE");
985 // Ignore copies to/from snippets. We'll delete them.
986 if (SnippetCopies.count(MI))
987 continue;
989 // Stack slot accesses may coalesce away.
990 if (coalesceStackAccess(MI, Reg))
991 continue;
993 // Analyze instruction.
994 SmallVector<std::pair<MachineInstr*, unsigned>, 8> Ops;
995 MIBundleOperands::VirtRegInfo RI =
996 MIBundleOperands(*MI).analyzeVirtReg(Reg, &Ops);
998 // Find the slot index where this instruction reads and writes OldLI.
999 // This is usually the def slot, except for tied early clobbers.
1000 SlotIndex Idx = LIS.getInstructionIndex(*MI).getRegSlot();
1001 if (VNInfo *VNI = OldLI.getVNInfoAt(Idx.getRegSlot(true)))
1002 if (SlotIndex::isSameInstr(Idx, VNI->def))
1003 Idx = VNI->def;
1005 // Check for a sibling copy.
1006 unsigned SibReg = isFullCopyOf(*MI, Reg);
1007 if (SibReg && isSibling(SibReg)) {
1008 // This may actually be a copy between snippets.
1009 if (isRegToSpill(SibReg)) {
1010 LLVM_DEBUG(dbgs() << "Found new snippet copy: " << *MI);
1011 SnippetCopies.insert(MI);
1012 continue;
1014 if (RI.Writes) {
1015 if (hoistSpillInsideBB(OldLI, *MI)) {
1016 // This COPY is now dead, the value is already in the stack slot.
1017 MI->getOperand(0).setIsDead();
1018 DeadDefs.push_back(MI);
1019 continue;
1021 } else {
1022 // This is a reload for a sib-reg copy. Drop spills downstream.
1023 LiveInterval &SibLI = LIS.getInterval(SibReg);
1024 eliminateRedundantSpills(SibLI, SibLI.getVNInfoAt(Idx));
1025 // The COPY will fold to a reload below.
1029 // Attempt to fold memory ops.
1030 if (foldMemoryOperand(Ops))
1031 continue;
1033 // Create a new virtual register for spill/fill.
1034 // FIXME: Infer regclass from instruction alone.
1035 unsigned NewVReg = Edit->createFrom(Reg);
1037 if (RI.Reads)
1038 insertReload(NewVReg, Idx, MI);
1040 // Rewrite instruction operands.
1041 bool hasLiveDef = false;
1042 for (const auto &OpPair : Ops) {
1043 MachineOperand &MO = OpPair.first->getOperand(OpPair.second);
1044 MO.setReg(NewVReg);
1045 if (MO.isUse()) {
1046 if (!OpPair.first->isRegTiedToDefOperand(OpPair.second))
1047 MO.setIsKill();
1048 } else {
1049 if (!MO.isDead())
1050 hasLiveDef = true;
1053 LLVM_DEBUG(dbgs() << "\trewrite: " << Idx << '\t' << *MI << '\n');
1055 // FIXME: Use a second vreg if instruction has no tied ops.
1056 if (RI.Writes)
1057 if (hasLiveDef)
1058 insertSpill(NewVReg, true, MI);
1062 /// spillAll - Spill all registers remaining after rematerialization.
1063 void InlineSpiller::spillAll() {
1064 // Update LiveStacks now that we are committed to spilling.
1065 if (StackSlot == VirtRegMap::NO_STACK_SLOT) {
1066 StackSlot = VRM.assignVirt2StackSlot(Original);
1067 StackInt = &LSS.getOrCreateInterval(StackSlot, MRI.getRegClass(Original));
1068 StackInt->getNextValue(SlotIndex(), LSS.getVNInfoAllocator());
1069 } else
1070 StackInt = &LSS.getInterval(StackSlot);
1072 if (Original != Edit->getReg())
1073 VRM.assignVirt2StackSlot(Edit->getReg(), StackSlot);
1075 assert(StackInt->getNumValNums() == 1 && "Bad stack interval values");
1076 for (unsigned Reg : RegsToSpill)
1077 StackInt->MergeSegmentsInAsValue(LIS.getInterval(Reg),
1078 StackInt->getValNumInfo(0));
1079 LLVM_DEBUG(dbgs() << "Merged spilled regs: " << *StackInt << '\n');
1081 // Spill around uses of all RegsToSpill.
1082 for (unsigned Reg : RegsToSpill)
1083 spillAroundUses(Reg);
1085 // Hoisted spills may cause dead code.
1086 if (!DeadDefs.empty()) {
1087 LLVM_DEBUG(dbgs() << "Eliminating " << DeadDefs.size() << " dead defs\n");
1088 Edit->eliminateDeadDefs(DeadDefs, RegsToSpill, AA);
1091 // Finally delete the SnippetCopies.
1092 for (unsigned Reg : RegsToSpill) {
1093 for (MachineRegisterInfo::reg_instr_iterator
1094 RI = MRI.reg_instr_begin(Reg), E = MRI.reg_instr_end();
1095 RI != E; ) {
1096 MachineInstr &MI = *(RI++);
1097 assert(SnippetCopies.count(&MI) && "Remaining use wasn't a snippet copy");
1098 // FIXME: Do this with a LiveRangeEdit callback.
1099 LIS.RemoveMachineInstrFromMaps(MI);
1100 MI.eraseFromParent();
1104 // Delete all spilled registers.
1105 for (unsigned Reg : RegsToSpill)
1106 Edit->eraseVirtReg(Reg);
1109 void InlineSpiller::spill(LiveRangeEdit &edit) {
1110 ++NumSpilledRanges;
1111 Edit = &edit;
1112 assert(!Register::isStackSlot(edit.getReg()) &&
1113 "Trying to spill a stack slot.");
1114 // Share a stack slot among all descendants of Original.
1115 Original = VRM.getOriginal(edit.getReg());
1116 StackSlot = VRM.getStackSlot(Original);
1117 StackInt = nullptr;
1119 LLVM_DEBUG(dbgs() << "Inline spilling "
1120 << TRI.getRegClassName(MRI.getRegClass(edit.getReg()))
1121 << ':' << edit.getParent() << "\nFrom original "
1122 << printReg(Original) << '\n');
1123 assert(edit.getParent().isSpillable() &&
1124 "Attempting to spill already spilled value.");
1125 assert(DeadDefs.empty() && "Previous spill didn't remove dead defs");
1127 collectRegsToSpill();
1128 reMaterializeAll();
1130 // Remat may handle everything.
1131 if (!RegsToSpill.empty())
1132 spillAll();
1134 Edit->calculateRegClassAndHint(MF, Loops, MBFI);
1137 /// Optimizations after all the reg selections and spills are done.
1138 void InlineSpiller::postOptimization() { HSpiller.hoistAllSpills(); }
1140 /// When a spill is inserted, add the spill to MergeableSpills map.
1141 void HoistSpillHelper::addToMergeableSpills(MachineInstr &Spill, int StackSlot,
1142 unsigned Original) {
1143 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
1144 LiveInterval &OrigLI = LIS.getInterval(Original);
1145 // save a copy of LiveInterval in StackSlotToOrigLI because the original
1146 // LiveInterval may be cleared after all its references are spilled.
1147 if (StackSlotToOrigLI.find(StackSlot) == StackSlotToOrigLI.end()) {
1148 auto LI = std::make_unique<LiveInterval>(OrigLI.reg, OrigLI.weight);
1149 LI->assign(OrigLI, Allocator);
1150 StackSlotToOrigLI[StackSlot] = std::move(LI);
1152 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1153 VNInfo *OrigVNI = StackSlotToOrigLI[StackSlot]->getVNInfoAt(Idx.getRegSlot());
1154 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1155 MergeableSpills[MIdx].insert(&Spill);
1158 /// When a spill is removed, remove the spill from MergeableSpills map.
1159 /// Return true if the spill is removed successfully.
1160 bool HoistSpillHelper::rmFromMergeableSpills(MachineInstr &Spill,
1161 int StackSlot) {
1162 auto It = StackSlotToOrigLI.find(StackSlot);
1163 if (It == StackSlotToOrigLI.end())
1164 return false;
1165 SlotIndex Idx = LIS.getInstructionIndex(Spill);
1166 VNInfo *OrigVNI = It->second->getVNInfoAt(Idx.getRegSlot());
1167 std::pair<int, VNInfo *> MIdx = std::make_pair(StackSlot, OrigVNI);
1168 return MergeableSpills[MIdx].erase(&Spill);
1171 /// Check BB to see if it is a possible target BB to place a hoisted spill,
1172 /// i.e., there should be a living sibling of OrigReg at the insert point.
1173 bool HoistSpillHelper::isSpillCandBB(LiveInterval &OrigLI, VNInfo &OrigVNI,
1174 MachineBasicBlock &BB, unsigned &LiveReg) {
1175 SlotIndex Idx;
1176 unsigned OrigReg = OrigLI.reg;
1177 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, BB);
1178 if (MI != BB.end())
1179 Idx = LIS.getInstructionIndex(*MI);
1180 else
1181 Idx = LIS.getMBBEndIdx(&BB).getPrevSlot();
1182 SmallSetVector<unsigned, 16> &Siblings = Virt2SiblingsMap[OrigReg];
1183 assert(OrigLI.getVNInfoAt(Idx) == &OrigVNI && "Unexpected VNI");
1185 for (auto const SibReg : Siblings) {
1186 LiveInterval &LI = LIS.getInterval(SibReg);
1187 VNInfo *VNI = LI.getVNInfoAt(Idx);
1188 if (VNI) {
1189 LiveReg = SibReg;
1190 return true;
1193 return false;
1196 /// Remove redundant spills in the same BB. Save those redundant spills in
1197 /// SpillsToRm, and save the spill to keep and its BB in SpillBBToSpill map.
1198 void HoistSpillHelper::rmRedundantSpills(
1199 SmallPtrSet<MachineInstr *, 16> &Spills,
1200 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1201 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1202 // For each spill saw, check SpillBBToSpill[] and see if its BB already has
1203 // another spill inside. If a BB contains more than one spill, only keep the
1204 // earlier spill with smaller SlotIndex.
1205 for (const auto CurrentSpill : Spills) {
1206 MachineBasicBlock *Block = CurrentSpill->getParent();
1207 MachineDomTreeNode *Node = MDT.getBase().getNode(Block);
1208 MachineInstr *PrevSpill = SpillBBToSpill[Node];
1209 if (PrevSpill) {
1210 SlotIndex PIdx = LIS.getInstructionIndex(*PrevSpill);
1211 SlotIndex CIdx = LIS.getInstructionIndex(*CurrentSpill);
1212 MachineInstr *SpillToRm = (CIdx > PIdx) ? CurrentSpill : PrevSpill;
1213 MachineInstr *SpillToKeep = (CIdx > PIdx) ? PrevSpill : CurrentSpill;
1214 SpillsToRm.push_back(SpillToRm);
1215 SpillBBToSpill[MDT.getBase().getNode(Block)] = SpillToKeep;
1216 } else {
1217 SpillBBToSpill[MDT.getBase().getNode(Block)] = CurrentSpill;
1220 for (const auto SpillToRm : SpillsToRm)
1221 Spills.erase(SpillToRm);
1224 /// Starting from \p Root find a top-down traversal order of the dominator
1225 /// tree to visit all basic blocks containing the elements of \p Spills.
1226 /// Redundant spills will be found and put into \p SpillsToRm at the same
1227 /// time. \p SpillBBToSpill will be populated as part of the process and
1228 /// maps a basic block to the first store occurring in the basic block.
1229 /// \post SpillsToRm.union(Spills\@post) == Spills\@pre
1230 void HoistSpillHelper::getVisitOrders(
1231 MachineBasicBlock *Root, SmallPtrSet<MachineInstr *, 16> &Spills,
1232 SmallVectorImpl<MachineDomTreeNode *> &Orders,
1233 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1234 DenseMap<MachineDomTreeNode *, unsigned> &SpillsToKeep,
1235 DenseMap<MachineDomTreeNode *, MachineInstr *> &SpillBBToSpill) {
1236 // The set contains all the possible BB nodes to which we may hoist
1237 // original spills.
1238 SmallPtrSet<MachineDomTreeNode *, 8> WorkSet;
1239 // Save the BB nodes on the path from the first BB node containing
1240 // non-redundant spill to the Root node.
1241 SmallPtrSet<MachineDomTreeNode *, 8> NodesOnPath;
1242 // All the spills to be hoisted must originate from a single def instruction
1243 // to the OrigReg. It means the def instruction should dominate all the spills
1244 // to be hoisted. We choose the BB where the def instruction is located as
1245 // the Root.
1246 MachineDomTreeNode *RootIDomNode = MDT[Root]->getIDom();
1247 // For every node on the dominator tree with spill, walk up on the dominator
1248 // tree towards the Root node until it is reached. If there is other node
1249 // containing spill in the middle of the path, the previous spill saw will
1250 // be redundant and the node containing it will be removed. All the nodes on
1251 // the path starting from the first node with non-redundant spill to the Root
1252 // node will be added to the WorkSet, which will contain all the possible
1253 // locations where spills may be hoisted to after the loop below is done.
1254 for (const auto Spill : Spills) {
1255 MachineBasicBlock *Block = Spill->getParent();
1256 MachineDomTreeNode *Node = MDT[Block];
1257 MachineInstr *SpillToRm = nullptr;
1258 while (Node != RootIDomNode) {
1259 // If Node dominates Block, and it already contains a spill, the spill in
1260 // Block will be redundant.
1261 if (Node != MDT[Block] && SpillBBToSpill[Node]) {
1262 SpillToRm = SpillBBToSpill[MDT[Block]];
1263 break;
1264 /// If we see the Node already in WorkSet, the path from the Node to
1265 /// the Root node must already be traversed by another spill.
1266 /// Then no need to repeat.
1267 } else if (WorkSet.count(Node)) {
1268 break;
1269 } else {
1270 NodesOnPath.insert(Node);
1272 Node = Node->getIDom();
1274 if (SpillToRm) {
1275 SpillsToRm.push_back(SpillToRm);
1276 } else {
1277 // Add a BB containing the original spills to SpillsToKeep -- i.e.,
1278 // set the initial status before hoisting start. The value of BBs
1279 // containing original spills is set to 0, in order to descriminate
1280 // with BBs containing hoisted spills which will be inserted to
1281 // SpillsToKeep later during hoisting.
1282 SpillsToKeep[MDT[Block]] = 0;
1283 WorkSet.insert(NodesOnPath.begin(), NodesOnPath.end());
1285 NodesOnPath.clear();
1288 // Sort the nodes in WorkSet in top-down order and save the nodes
1289 // in Orders. Orders will be used for hoisting in runHoistSpills.
1290 unsigned idx = 0;
1291 Orders.push_back(MDT.getBase().getNode(Root));
1292 do {
1293 MachineDomTreeNode *Node = Orders[idx++];
1294 const std::vector<MachineDomTreeNode *> &Children = Node->getChildren();
1295 unsigned NumChildren = Children.size();
1296 for (unsigned i = 0; i != NumChildren; ++i) {
1297 MachineDomTreeNode *Child = Children[i];
1298 if (WorkSet.count(Child))
1299 Orders.push_back(Child);
1301 } while (idx != Orders.size());
1302 assert(Orders.size() == WorkSet.size() &&
1303 "Orders have different size with WorkSet");
1305 #ifndef NDEBUG
1306 LLVM_DEBUG(dbgs() << "Orders size is " << Orders.size() << "\n");
1307 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1308 for (; RIt != Orders.rend(); RIt++)
1309 LLVM_DEBUG(dbgs() << "BB" << (*RIt)->getBlock()->getNumber() << ",");
1310 LLVM_DEBUG(dbgs() << "\n");
1311 #endif
1314 /// Try to hoist spills according to BB hotness. The spills to removed will
1315 /// be saved in \p SpillsToRm. The spills to be inserted will be saved in
1316 /// \p SpillsToIns.
1317 void HoistSpillHelper::runHoistSpills(
1318 LiveInterval &OrigLI, VNInfo &OrigVNI,
1319 SmallPtrSet<MachineInstr *, 16> &Spills,
1320 SmallVectorImpl<MachineInstr *> &SpillsToRm,
1321 DenseMap<MachineBasicBlock *, unsigned> &SpillsToIns) {
1322 // Visit order of dominator tree nodes.
1323 SmallVector<MachineDomTreeNode *, 32> Orders;
1324 // SpillsToKeep contains all the nodes where spills are to be inserted
1325 // during hoisting. If the spill to be inserted is an original spill
1326 // (not a hoisted one), the value of the map entry is 0. If the spill
1327 // is a hoisted spill, the value of the map entry is the VReg to be used
1328 // as the source of the spill.
1329 DenseMap<MachineDomTreeNode *, unsigned> SpillsToKeep;
1330 // Map from BB to the first spill inside of it.
1331 DenseMap<MachineDomTreeNode *, MachineInstr *> SpillBBToSpill;
1333 rmRedundantSpills(Spills, SpillsToRm, SpillBBToSpill);
1335 MachineBasicBlock *Root = LIS.getMBBFromIndex(OrigVNI.def);
1336 getVisitOrders(Root, Spills, Orders, SpillsToRm, SpillsToKeep,
1337 SpillBBToSpill);
1339 // SpillsInSubTreeMap keeps the map from a dom tree node to a pair of
1340 // nodes set and the cost of all the spills inside those nodes.
1341 // The nodes set are the locations where spills are to be inserted
1342 // in the subtree of current node.
1343 using NodesCostPair =
1344 std::pair<SmallPtrSet<MachineDomTreeNode *, 16>, BlockFrequency>;
1345 DenseMap<MachineDomTreeNode *, NodesCostPair> SpillsInSubTreeMap;
1347 // Iterate Orders set in reverse order, which will be a bottom-up order
1348 // in the dominator tree. Once we visit a dom tree node, we know its
1349 // children have already been visited and the spill locations in the
1350 // subtrees of all the children have been determined.
1351 SmallVector<MachineDomTreeNode *, 32>::reverse_iterator RIt = Orders.rbegin();
1352 for (; RIt != Orders.rend(); RIt++) {
1353 MachineBasicBlock *Block = (*RIt)->getBlock();
1355 // If Block contains an original spill, simply continue.
1356 if (SpillsToKeep.find(*RIt) != SpillsToKeep.end() && !SpillsToKeep[*RIt]) {
1357 SpillsInSubTreeMap[*RIt].first.insert(*RIt);
1358 // SpillsInSubTreeMap[*RIt].second contains the cost of spill.
1359 SpillsInSubTreeMap[*RIt].second = MBFI.getBlockFreq(Block);
1360 continue;
1363 // Collect spills in subtree of current node (*RIt) to
1364 // SpillsInSubTreeMap[*RIt].first.
1365 const std::vector<MachineDomTreeNode *> &Children = (*RIt)->getChildren();
1366 unsigned NumChildren = Children.size();
1367 for (unsigned i = 0; i != NumChildren; ++i) {
1368 MachineDomTreeNode *Child = Children[i];
1369 if (SpillsInSubTreeMap.find(Child) == SpillsInSubTreeMap.end())
1370 continue;
1371 // The stmt "SpillsInSubTree = SpillsInSubTreeMap[*RIt].first" below
1372 // should be placed before getting the begin and end iterators of
1373 // SpillsInSubTreeMap[Child].first, or else the iterators may be
1374 // invalidated when SpillsInSubTreeMap[*RIt] is seen the first time
1375 // and the map grows and then the original buckets in the map are moved.
1376 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1377 SpillsInSubTreeMap[*RIt].first;
1378 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1379 SubTreeCost += SpillsInSubTreeMap[Child].second;
1380 auto BI = SpillsInSubTreeMap[Child].first.begin();
1381 auto EI = SpillsInSubTreeMap[Child].first.end();
1382 SpillsInSubTree.insert(BI, EI);
1383 SpillsInSubTreeMap.erase(Child);
1386 SmallPtrSet<MachineDomTreeNode *, 16> &SpillsInSubTree =
1387 SpillsInSubTreeMap[*RIt].first;
1388 BlockFrequency &SubTreeCost = SpillsInSubTreeMap[*RIt].second;
1389 // No spills in subtree, simply continue.
1390 if (SpillsInSubTree.empty())
1391 continue;
1393 // Check whether Block is a possible candidate to insert spill.
1394 unsigned LiveReg = 0;
1395 if (!isSpillCandBB(OrigLI, OrigVNI, *Block, LiveReg))
1396 continue;
1398 // If there are multiple spills that could be merged, bias a little
1399 // to hoist the spill.
1400 BranchProbability MarginProb = (SpillsInSubTree.size() > 1)
1401 ? BranchProbability(9, 10)
1402 : BranchProbability(1, 1);
1403 if (SubTreeCost > MBFI.getBlockFreq(Block) * MarginProb) {
1404 // Hoist: Move spills to current Block.
1405 for (const auto SpillBB : SpillsInSubTree) {
1406 // When SpillBB is a BB contains original spill, insert the spill
1407 // to SpillsToRm.
1408 if (SpillsToKeep.find(SpillBB) != SpillsToKeep.end() &&
1409 !SpillsToKeep[SpillBB]) {
1410 MachineInstr *SpillToRm = SpillBBToSpill[SpillBB];
1411 SpillsToRm.push_back(SpillToRm);
1413 // SpillBB will not contain spill anymore, remove it from SpillsToKeep.
1414 SpillsToKeep.erase(SpillBB);
1416 // Current Block is the BB containing the new hoisted spill. Add it to
1417 // SpillsToKeep. LiveReg is the source of the new spill.
1418 SpillsToKeep[*RIt] = LiveReg;
1419 LLVM_DEBUG({
1420 dbgs() << "spills in BB: ";
1421 for (const auto Rspill : SpillsInSubTree)
1422 dbgs() << Rspill->getBlock()->getNumber() << " ";
1423 dbgs() << "were promoted to BB" << (*RIt)->getBlock()->getNumber()
1424 << "\n";
1426 SpillsInSubTree.clear();
1427 SpillsInSubTree.insert(*RIt);
1428 SubTreeCost = MBFI.getBlockFreq(Block);
1431 // For spills in SpillsToKeep with LiveReg set (i.e., not original spill),
1432 // save them to SpillsToIns.
1433 for (const auto Ent : SpillsToKeep) {
1434 if (Ent.second)
1435 SpillsToIns[Ent.first->getBlock()] = Ent.second;
1439 /// For spills with equal values, remove redundant spills and hoist those left
1440 /// to less hot spots.
1442 /// Spills with equal values will be collected into the same set in
1443 /// MergeableSpills when spill is inserted. These equal spills are originated
1444 /// from the same defining instruction and are dominated by the instruction.
1445 /// Before hoisting all the equal spills, redundant spills inside in the same
1446 /// BB are first marked to be deleted. Then starting from the spills left, walk
1447 /// up on the dominator tree towards the Root node where the define instruction
1448 /// is located, mark the dominated spills to be deleted along the way and
1449 /// collect the BB nodes on the path from non-dominated spills to the define
1450 /// instruction into a WorkSet. The nodes in WorkSet are the candidate places
1451 /// where we are considering to hoist the spills. We iterate the WorkSet in
1452 /// bottom-up order, and for each node, we will decide whether to hoist spills
1453 /// inside its subtree to that node. In this way, we can get benefit locally
1454 /// even if hoisting all the equal spills to one cold place is impossible.
1455 void HoistSpillHelper::hoistAllSpills() {
1456 SmallVector<unsigned, 4> NewVRegs;
1457 LiveRangeEdit Edit(nullptr, NewVRegs, MF, LIS, &VRM, this);
1459 for (unsigned i = 0, e = MRI.getNumVirtRegs(); i != e; ++i) {
1460 unsigned Reg = Register::index2VirtReg(i);
1461 unsigned Original = VRM.getPreSplitReg(Reg);
1462 if (!MRI.def_empty(Reg))
1463 Virt2SiblingsMap[Original].insert(Reg);
1466 // Each entry in MergeableSpills contains a spill set with equal values.
1467 for (auto &Ent : MergeableSpills) {
1468 int Slot = Ent.first.first;
1469 LiveInterval &OrigLI = *StackSlotToOrigLI[Slot];
1470 VNInfo *OrigVNI = Ent.first.second;
1471 SmallPtrSet<MachineInstr *, 16> &EqValSpills = Ent.second;
1472 if (Ent.second.empty())
1473 continue;
1475 LLVM_DEBUG({
1476 dbgs() << "\nFor Slot" << Slot << " and VN" << OrigVNI->id << ":\n"
1477 << "Equal spills in BB: ";
1478 for (const auto spill : EqValSpills)
1479 dbgs() << spill->getParent()->getNumber() << " ";
1480 dbgs() << "\n";
1483 // SpillsToRm is the spill set to be removed from EqValSpills.
1484 SmallVector<MachineInstr *, 16> SpillsToRm;
1485 // SpillsToIns is the spill set to be newly inserted after hoisting.
1486 DenseMap<MachineBasicBlock *, unsigned> SpillsToIns;
1488 runHoistSpills(OrigLI, *OrigVNI, EqValSpills, SpillsToRm, SpillsToIns);
1490 LLVM_DEBUG({
1491 dbgs() << "Finally inserted spills in BB: ";
1492 for (const auto Ispill : SpillsToIns)
1493 dbgs() << Ispill.first->getNumber() << " ";
1494 dbgs() << "\nFinally removed spills in BB: ";
1495 for (const auto Rspill : SpillsToRm)
1496 dbgs() << Rspill->getParent()->getNumber() << " ";
1497 dbgs() << "\n";
1500 // Stack live range update.
1501 LiveInterval &StackIntvl = LSS.getInterval(Slot);
1502 if (!SpillsToIns.empty() || !SpillsToRm.empty())
1503 StackIntvl.MergeValueInAsValue(OrigLI, OrigVNI,
1504 StackIntvl.getValNumInfo(0));
1506 // Insert hoisted spills.
1507 for (auto const Insert : SpillsToIns) {
1508 MachineBasicBlock *BB = Insert.first;
1509 unsigned LiveReg = Insert.second;
1510 MachineBasicBlock::iterator MI = IPA.getLastInsertPointIter(OrigLI, *BB);
1511 TII.storeRegToStackSlot(*BB, MI, LiveReg, false, Slot,
1512 MRI.getRegClass(LiveReg), &TRI);
1513 LIS.InsertMachineInstrRangeInMaps(std::prev(MI), MI);
1514 ++NumSpills;
1517 // Remove redundant spills or change them to dead instructions.
1518 NumSpills -= SpillsToRm.size();
1519 for (auto const RMEnt : SpillsToRm) {
1520 RMEnt->setDesc(TII.get(TargetOpcode::KILL));
1521 for (unsigned i = RMEnt->getNumOperands(); i; --i) {
1522 MachineOperand &MO = RMEnt->getOperand(i - 1);
1523 if (MO.isReg() && MO.isImplicit() && MO.isDef() && !MO.isDead())
1524 RMEnt->RemoveOperand(i - 1);
1527 Edit.eliminateDeadDefs(SpillsToRm, None, AA);
1531 /// For VirtReg clone, the \p New register should have the same physreg or
1532 /// stackslot as the \p old register.
1533 void HoistSpillHelper::LRE_DidCloneVirtReg(unsigned New, unsigned Old) {
1534 if (VRM.hasPhys(Old))
1535 VRM.assignVirt2Phys(New, VRM.getPhys(Old));
1536 else if (VRM.getStackSlot(Old) != VirtRegMap::NO_STACK_SLOT)
1537 VRM.assignVirt2StackSlot(New, VRM.getStackSlot(Old));
1538 else
1539 llvm_unreachable("VReg should be assigned either physreg or stackslot");