1 //==--- InstrEmitter.cpp - Emit MachineInstrs for the SelectionDAG class ---==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This implements the Emit routines for the SelectionDAG class, which creates
10 // MachineInstrs based on the decisions of the SelectionDAG instruction
13 //===----------------------------------------------------------------------===//
15 #include "InstrEmitter.h"
16 #include "SDNodeDbgValue.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/MachineConstantPool.h"
19 #include "llvm/CodeGen/MachineFunction.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/CodeGen/StackMaps.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DebugInfo.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/MathExtras.h"
33 #define DEBUG_TYPE "instr-emitter"
35 /// MinRCSize - Smallest register class we allow when constraining virtual
36 /// registers. If satisfying all register class constraints would require
37 /// using a smaller register class, emit a COPY to a new virtual register
39 const unsigned MinRCSize
= 4;
41 /// CountResults - The results of target nodes have register or immediate
42 /// operands first, then an optional chain, and optional glue operands (which do
43 /// not go into the resulting MachineInstr).
44 unsigned InstrEmitter::CountResults(SDNode
*Node
) {
45 unsigned N
= Node
->getNumValues();
46 while (N
&& Node
->getValueType(N
- 1) == MVT::Glue
)
48 if (N
&& Node
->getValueType(N
- 1) == MVT::Other
)
49 --N
; // Skip over chain result.
53 /// countOperands - The inputs to target nodes have any actual inputs first,
54 /// followed by an optional chain operand, then an optional glue operand.
55 /// Compute the number of actual operands that will go into the resulting
58 /// Also count physreg RegisterSDNode and RegisterMaskSDNode operands preceding
59 /// the chain and glue. These operands may be implicit on the machine instr.
60 static unsigned countOperands(SDNode
*Node
, unsigned NumExpUses
,
61 unsigned &NumImpUses
) {
62 unsigned N
= Node
->getNumOperands();
63 while (N
&& Node
->getOperand(N
- 1).getValueType() == MVT::Glue
)
65 if (N
&& Node
->getOperand(N
- 1).getValueType() == MVT::Other
)
66 --N
; // Ignore chain if it exists.
68 // Count RegisterSDNode and RegisterMaskSDNode operands for NumImpUses.
69 NumImpUses
= N
- NumExpUses
;
70 for (unsigned I
= N
; I
> NumExpUses
; --I
) {
71 if (isa
<RegisterMaskSDNode
>(Node
->getOperand(I
- 1)))
73 if (RegisterSDNode
*RN
= dyn_cast
<RegisterSDNode
>(Node
->getOperand(I
- 1)))
74 if (Register::isPhysicalRegister(RN
->getReg()))
83 /// EmitCopyFromReg - Generate machine code for an CopyFromReg node or an
84 /// implicit physical register output.
86 EmitCopyFromReg(SDNode
*Node
, unsigned ResNo
, bool IsClone
, bool IsCloned
,
87 unsigned SrcReg
, DenseMap
<SDValue
, unsigned> &VRBaseMap
) {
89 if (Register::isVirtualRegister(SrcReg
)) {
90 // Just use the input register directly!
91 SDValue
Op(Node
, ResNo
);
94 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, SrcReg
)).second
;
95 (void)isNew
; // Silence compiler warning.
96 assert(isNew
&& "Node emitted out of order - early");
100 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
101 // the CopyToReg'd destination register instead of creating a new vreg.
102 bool MatchReg
= true;
103 const TargetRegisterClass
*UseRC
= nullptr;
104 MVT VT
= Node
->getSimpleValueType(ResNo
);
106 // Stick to the preferred register classes for legal types.
107 if (TLI
->isTypeLegal(VT
))
108 UseRC
= TLI
->getRegClassFor(VT
, Node
->isDivergent());
110 if (!IsClone
&& !IsCloned
)
111 for (SDNode
*User
: Node
->uses()) {
113 if (User
->getOpcode() == ISD::CopyToReg
&&
114 User
->getOperand(2).getNode() == Node
&&
115 User
->getOperand(2).getResNo() == ResNo
) {
116 unsigned DestReg
= cast
<RegisterSDNode
>(User
->getOperand(1))->getReg();
117 if (Register::isVirtualRegister(DestReg
)) {
120 } else if (DestReg
!= SrcReg
)
123 for (unsigned i
= 0, e
= User
->getNumOperands(); i
!= e
; ++i
) {
124 SDValue Op
= User
->getOperand(i
);
125 if (Op
.getNode() != Node
|| Op
.getResNo() != ResNo
)
127 MVT VT
= Node
->getSimpleValueType(Op
.getResNo());
128 if (VT
== MVT::Other
|| VT
== MVT::Glue
)
131 if (User
->isMachineOpcode()) {
132 const MCInstrDesc
&II
= TII
->get(User
->getMachineOpcode());
133 const TargetRegisterClass
*RC
= nullptr;
134 if (i
+II
.getNumDefs() < II
.getNumOperands()) {
135 RC
= TRI
->getAllocatableClass(
136 TII
->getRegClass(II
, i
+II
.getNumDefs(), TRI
, *MF
));
141 const TargetRegisterClass
*ComRC
=
142 TRI
->getCommonSubClass(UseRC
, RC
, VT
.SimpleTy
);
143 // If multiple uses expect disjoint register classes, we emit
144 // copies in AddRegisterOperand.
156 const TargetRegisterClass
*SrcRC
= nullptr, *DstRC
= nullptr;
157 SrcRC
= TRI
->getMinimalPhysRegClass(SrcReg
, VT
);
159 // Figure out the register class to create for the destreg.
161 DstRC
= MRI
->getRegClass(VRBase
);
163 assert(TRI
->isTypeLegalForClass(*UseRC
, VT
) &&
164 "Incompatible phys register def and uses!");
167 DstRC
= TLI
->getRegClassFor(VT
, Node
->isDivergent());
170 // If all uses are reading from the src physical register and copying the
171 // register is either impossible or very expensive, then don't create a copy.
172 if (MatchReg
&& SrcRC
->getCopyCost() < 0) {
175 // Create the reg, emit the copy.
176 VRBase
= MRI
->createVirtualRegister(DstRC
);
177 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(), TII
->get(TargetOpcode::COPY
),
178 VRBase
).addReg(SrcReg
);
181 SDValue
Op(Node
, ResNo
);
184 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, VRBase
)).second
;
185 (void)isNew
; // Silence compiler warning.
186 assert(isNew
&& "Node emitted out of order - early");
189 void InstrEmitter::CreateVirtualRegisters(SDNode
*Node
,
190 MachineInstrBuilder
&MIB
,
191 const MCInstrDesc
&II
,
192 bool IsClone
, bool IsCloned
,
193 DenseMap
<SDValue
, unsigned> &VRBaseMap
) {
194 assert(Node
->getMachineOpcode() != TargetOpcode::IMPLICIT_DEF
&&
195 "IMPLICIT_DEF should have been handled as a special case elsewhere!");
197 unsigned NumResults
= CountResults(Node
);
198 for (unsigned i
= 0; i
< II
.getNumDefs(); ++i
) {
199 // If the specific node value is only used by a CopyToReg and the dest reg
200 // is a vreg in the same register class, use the CopyToReg'd destination
201 // register instead of creating a new vreg.
203 const TargetRegisterClass
*RC
=
204 TRI
->getAllocatableClass(TII
->getRegClass(II
, i
, TRI
, *MF
));
205 // Always let the value type influence the used register class. The
206 // constraints on the instruction may be too lax to represent the value
207 // type correctly. For example, a 64-bit float (X86::FR64) can't live in
208 // the 32-bit float super-class (X86::FR32).
209 if (i
< NumResults
&& TLI
->isTypeLegal(Node
->getSimpleValueType(i
))) {
210 const TargetRegisterClass
*VTRC
= TLI
->getRegClassFor(
211 Node
->getSimpleValueType(i
),
212 (Node
->isDivergent() || (RC
&& TRI
->isDivergentRegClass(RC
))));
214 VTRC
= TRI
->getCommonSubClass(RC
, VTRC
);
219 if (II
.OpInfo
[i
].isOptionalDef()) {
220 // Optional def must be a physical register.
221 VRBase
= cast
<RegisterSDNode
>(Node
->getOperand(i
-NumResults
))->getReg();
222 assert(Register::isPhysicalRegister(VRBase
));
223 MIB
.addReg(VRBase
, RegState::Define
);
226 if (!VRBase
&& !IsClone
&& !IsCloned
)
227 for (SDNode
*User
: Node
->uses()) {
228 if (User
->getOpcode() == ISD::CopyToReg
&&
229 User
->getOperand(2).getNode() == Node
&&
230 User
->getOperand(2).getResNo() == i
) {
231 unsigned Reg
= cast
<RegisterSDNode
>(User
->getOperand(1))->getReg();
232 if (Register::isVirtualRegister(Reg
)) {
233 const TargetRegisterClass
*RegRC
= MRI
->getRegClass(Reg
);
236 MIB
.addReg(VRBase
, RegState::Define
);
243 // Create the result registers for this node and add the result regs to
244 // the machine instruction.
246 assert(RC
&& "Isn't a register operand!");
247 VRBase
= MRI
->createVirtualRegister(RC
);
248 MIB
.addReg(VRBase
, RegState::Define
);
251 // If this def corresponds to a result of the SDNode insert the VRBase into
253 if (i
< NumResults
) {
257 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, VRBase
)).second
;
258 (void)isNew
; // Silence compiler warning.
259 assert(isNew
&& "Node emitted out of order - early");
264 /// getVR - Return the virtual register corresponding to the specified result
265 /// of the specified node.
266 unsigned InstrEmitter::getVR(SDValue Op
,
267 DenseMap
<SDValue
, unsigned> &VRBaseMap
) {
268 if (Op
.isMachineOpcode() &&
269 Op
.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF
) {
270 // Add an IMPLICIT_DEF instruction before every use.
271 // IMPLICIT_DEF can produce any type of result so its MCInstrDesc
272 // does not include operand register class info.
273 const TargetRegisterClass
*RC
= TLI
->getRegClassFor(
274 Op
.getSimpleValueType(), Op
.getNode()->isDivergent());
275 Register VReg
= MRI
->createVirtualRegister(RC
);
276 BuildMI(*MBB
, InsertPos
, Op
.getDebugLoc(),
277 TII
->get(TargetOpcode::IMPLICIT_DEF
), VReg
);
281 DenseMap
<SDValue
, unsigned>::iterator I
= VRBaseMap
.find(Op
);
282 assert(I
!= VRBaseMap
.end() && "Node emitted out of order - late");
287 /// AddRegisterOperand - Add the specified register as an operand to the
288 /// specified machine instr. Insert register copies if the register is
289 /// not in the required register class.
291 InstrEmitter::AddRegisterOperand(MachineInstrBuilder
&MIB
,
294 const MCInstrDesc
*II
,
295 DenseMap
<SDValue
, unsigned> &VRBaseMap
,
296 bool IsDebug
, bool IsClone
, bool IsCloned
) {
297 assert(Op
.getValueType() != MVT::Other
&&
298 Op
.getValueType() != MVT::Glue
&&
299 "Chain and glue operands should occur at end of operand list!");
300 // Get/emit the operand.
301 unsigned VReg
= getVR(Op
, VRBaseMap
);
303 const MCInstrDesc
&MCID
= MIB
->getDesc();
304 bool isOptDef
= IIOpNum
< MCID
.getNumOperands() &&
305 MCID
.OpInfo
[IIOpNum
].isOptionalDef();
307 // If the instruction requires a register in a different class, create
308 // a new virtual register and copy the value into it, but first attempt to
309 // shrink VReg's register class within reason. For example, if VReg == GR32
310 // and II requires a GR32_NOSP, just constrain VReg to GR32_NOSP.
312 const TargetRegisterClass
*OpRC
= nullptr;
313 if (IIOpNum
< II
->getNumOperands())
314 OpRC
= TII
->getRegClass(*II
, IIOpNum
, TRI
, *MF
);
317 const TargetRegisterClass
*ConstrainedRC
318 = MRI
->constrainRegClass(VReg
, OpRC
, MinRCSize
);
319 if (!ConstrainedRC
) {
320 OpRC
= TRI
->getAllocatableClass(OpRC
);
321 assert(OpRC
&& "Constraints cannot be fulfilled for allocation");
322 Register NewVReg
= MRI
->createVirtualRegister(OpRC
);
323 BuildMI(*MBB
, InsertPos
, Op
.getNode()->getDebugLoc(),
324 TII
->get(TargetOpcode::COPY
), NewVReg
).addReg(VReg
);
327 assert(ConstrainedRC
->isAllocatable() &&
328 "Constraining an allocatable VReg produced an unallocatable class?");
333 // If this value has only one use, that use is a kill. This is a
334 // conservative approximation. InstrEmitter does trivial coalescing
335 // with CopyFromReg nodes, so don't emit kill flags for them.
336 // Avoid kill flags on Schedule cloned nodes, since there will be
338 // Tied operands are never killed, so we need to check that. And that
339 // means we need to determine the index of the operand.
340 bool isKill
= Op
.hasOneUse() &&
341 Op
.getNode()->getOpcode() != ISD::CopyFromReg
&&
343 !(IsClone
|| IsCloned
);
345 unsigned Idx
= MIB
->getNumOperands();
347 MIB
->getOperand(Idx
-1).isReg() &&
348 MIB
->getOperand(Idx
-1).isImplicit())
350 bool isTied
= MCID
.getOperandConstraint(Idx
, MCOI::TIED_TO
) != -1;
355 MIB
.addReg(VReg
, getDefRegState(isOptDef
) | getKillRegState(isKill
) |
356 getDebugRegState(IsDebug
));
359 /// AddOperand - Add the specified operand to the specified machine instr. II
360 /// specifies the instruction information for the node, and IIOpNum is the
361 /// operand number (in the II) that we are adding.
362 void InstrEmitter::AddOperand(MachineInstrBuilder
&MIB
,
365 const MCInstrDesc
*II
,
366 DenseMap
<SDValue
, unsigned> &VRBaseMap
,
367 bool IsDebug
, bool IsClone
, bool IsCloned
) {
368 if (Op
.isMachineOpcode()) {
369 AddRegisterOperand(MIB
, Op
, IIOpNum
, II
, VRBaseMap
,
370 IsDebug
, IsClone
, IsCloned
);
371 } else if (ConstantSDNode
*C
= dyn_cast
<ConstantSDNode
>(Op
)) {
372 MIB
.addImm(C
->getSExtValue());
373 } else if (ConstantFPSDNode
*F
= dyn_cast
<ConstantFPSDNode
>(Op
)) {
374 MIB
.addFPImm(F
->getConstantFPValue());
375 } else if (RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(Op
)) {
376 unsigned VReg
= R
->getReg();
377 MVT OpVT
= Op
.getSimpleValueType();
378 const TargetRegisterClass
*IIRC
=
379 II
? TRI
->getAllocatableClass(TII
->getRegClass(*II
, IIOpNum
, TRI
, *MF
))
381 const TargetRegisterClass
*OpRC
=
382 TLI
->isTypeLegal(OpVT
)
383 ? TLI
->getRegClassFor(OpVT
,
384 Op
.getNode()->isDivergent() ||
385 (IIRC
&& TRI
->isDivergentRegClass(IIRC
)))
388 if (OpRC
&& IIRC
&& OpRC
!= IIRC
&& Register::isVirtualRegister(VReg
)) {
389 Register NewVReg
= MRI
->createVirtualRegister(IIRC
);
390 BuildMI(*MBB
, InsertPos
, Op
.getNode()->getDebugLoc(),
391 TII
->get(TargetOpcode::COPY
), NewVReg
).addReg(VReg
);
394 // Turn additional physreg operands into implicit uses on non-variadic
395 // instructions. This is used by call and return instructions passing
396 // arguments in registers.
397 bool Imp
= II
&& (IIOpNum
>= II
->getNumOperands() && !II
->isVariadic());
398 MIB
.addReg(VReg
, getImplRegState(Imp
));
399 } else if (RegisterMaskSDNode
*RM
= dyn_cast
<RegisterMaskSDNode
>(Op
)) {
400 MIB
.addRegMask(RM
->getRegMask());
401 } else if (GlobalAddressSDNode
*TGA
= dyn_cast
<GlobalAddressSDNode
>(Op
)) {
402 MIB
.addGlobalAddress(TGA
->getGlobal(), TGA
->getOffset(),
403 TGA
->getTargetFlags());
404 } else if (BasicBlockSDNode
*BBNode
= dyn_cast
<BasicBlockSDNode
>(Op
)) {
405 MIB
.addMBB(BBNode
->getBasicBlock());
406 } else if (FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Op
)) {
407 MIB
.addFrameIndex(FI
->getIndex());
408 } else if (JumpTableSDNode
*JT
= dyn_cast
<JumpTableSDNode
>(Op
)) {
409 MIB
.addJumpTableIndex(JT
->getIndex(), JT
->getTargetFlags());
410 } else if (ConstantPoolSDNode
*CP
= dyn_cast
<ConstantPoolSDNode
>(Op
)) {
411 int Offset
= CP
->getOffset();
412 unsigned Align
= CP
->getAlignment();
413 Type
*Type
= CP
->getType();
414 // MachineConstantPool wants an explicit alignment.
416 Align
= MF
->getDataLayout().getPrefTypeAlignment(Type
);
418 // Alignment of vector types. FIXME!
419 Align
= MF
->getDataLayout().getTypeAllocSize(Type
);
424 MachineConstantPool
*MCP
= MF
->getConstantPool();
425 if (CP
->isMachineConstantPoolEntry())
426 Idx
= MCP
->getConstantPoolIndex(CP
->getMachineCPVal(), Align
);
428 Idx
= MCP
->getConstantPoolIndex(CP
->getConstVal(), Align
);
429 MIB
.addConstantPoolIndex(Idx
, Offset
, CP
->getTargetFlags());
430 } else if (ExternalSymbolSDNode
*ES
= dyn_cast
<ExternalSymbolSDNode
>(Op
)) {
431 MIB
.addExternalSymbol(ES
->getSymbol(), ES
->getTargetFlags());
432 } else if (auto *SymNode
= dyn_cast
<MCSymbolSDNode
>(Op
)) {
433 MIB
.addSym(SymNode
->getMCSymbol());
434 } else if (BlockAddressSDNode
*BA
= dyn_cast
<BlockAddressSDNode
>(Op
)) {
435 MIB
.addBlockAddress(BA
->getBlockAddress(),
437 BA
->getTargetFlags());
438 } else if (TargetIndexSDNode
*TI
= dyn_cast
<TargetIndexSDNode
>(Op
)) {
439 MIB
.addTargetIndex(TI
->getIndex(), TI
->getOffset(), TI
->getTargetFlags());
441 assert(Op
.getValueType() != MVT::Other
&&
442 Op
.getValueType() != MVT::Glue
&&
443 "Chain and glue operands should occur at end of operand list!");
444 AddRegisterOperand(MIB
, Op
, IIOpNum
, II
, VRBaseMap
,
445 IsDebug
, IsClone
, IsCloned
);
449 unsigned InstrEmitter::ConstrainForSubReg(unsigned VReg
, unsigned SubIdx
,
450 MVT VT
, bool isDivergent
, const DebugLoc
&DL
) {
451 const TargetRegisterClass
*VRC
= MRI
->getRegClass(VReg
);
452 const TargetRegisterClass
*RC
= TRI
->getSubClassWithSubReg(VRC
, SubIdx
);
454 // RC is a sub-class of VRC that supports SubIdx. Try to constrain VReg
457 RC
= MRI
->constrainRegClass(VReg
, RC
, MinRCSize
);
459 // VReg has been adjusted. It can be used with SubIdx operands now.
463 // VReg couldn't be reasonably constrained. Emit a COPY to a new virtual
465 RC
= TRI
->getSubClassWithSubReg(TLI
->getRegClassFor(VT
, isDivergent
), SubIdx
);
466 assert(RC
&& "No legal register class for VT supports that SubIdx");
467 Register NewReg
= MRI
->createVirtualRegister(RC
);
468 BuildMI(*MBB
, InsertPos
, DL
, TII
->get(TargetOpcode::COPY
), NewReg
)
473 /// EmitSubregNode - Generate machine code for subreg nodes.
475 void InstrEmitter::EmitSubregNode(SDNode
*Node
,
476 DenseMap
<SDValue
, unsigned> &VRBaseMap
,
477 bool IsClone
, bool IsCloned
) {
479 unsigned Opc
= Node
->getMachineOpcode();
481 // If the node is only used by a CopyToReg and the dest reg is a vreg, use
482 // the CopyToReg'd destination register instead of creating a new vreg.
483 for (SDNode
*User
: Node
->uses()) {
484 if (User
->getOpcode() == ISD::CopyToReg
&&
485 User
->getOperand(2).getNode() == Node
) {
486 unsigned DestReg
= cast
<RegisterSDNode
>(User
->getOperand(1))->getReg();
487 if (Register::isVirtualRegister(DestReg
)) {
494 if (Opc
== TargetOpcode::EXTRACT_SUBREG
) {
495 // EXTRACT_SUBREG is lowered as %dst = COPY %src:sub. There are no
496 // constraints on the %dst register, COPY can target all legal register
498 unsigned SubIdx
= cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue();
499 const TargetRegisterClass
*TRC
=
500 TLI
->getRegClassFor(Node
->getSimpleValueType(0), Node
->isDivergent());
504 RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(Node
->getOperand(0));
505 if (R
&& Register::isPhysicalRegister(R
->getReg())) {
509 Reg
= R
? R
->getReg() : getVR(Node
->getOperand(0), VRBaseMap
);
510 DefMI
= MRI
->getVRegDef(Reg
);
513 unsigned SrcReg
, DstReg
, DefSubIdx
;
515 TII
->isCoalescableExtInstr(*DefMI
, SrcReg
, DstReg
, DefSubIdx
) &&
516 SubIdx
== DefSubIdx
&&
517 TRC
== MRI
->getRegClass(SrcReg
)) {
519 // r1025 = s/zext r1024, 4
520 // r1026 = extract_subreg r1025, 4
522 // r1026 = copy r1024
523 VRBase
= MRI
->createVirtualRegister(TRC
);
524 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(),
525 TII
->get(TargetOpcode::COPY
), VRBase
).addReg(SrcReg
);
526 MRI
->clearKillFlags(SrcReg
);
528 // Reg may not support a SubIdx sub-register, and we may need to
529 // constrain its register class or issue a COPY to a compatible register
531 if (Register::isVirtualRegister(Reg
))
532 Reg
= ConstrainForSubReg(Reg
, SubIdx
,
533 Node
->getOperand(0).getSimpleValueType(),
534 Node
->isDivergent(), Node
->getDebugLoc());
535 // Create the destreg if it is missing.
537 VRBase
= MRI
->createVirtualRegister(TRC
);
539 // Create the extract_subreg machine instruction.
540 MachineInstrBuilder CopyMI
=
541 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(),
542 TII
->get(TargetOpcode::COPY
), VRBase
);
543 if (Register::isVirtualRegister(Reg
))
544 CopyMI
.addReg(Reg
, 0, SubIdx
);
546 CopyMI
.addReg(TRI
->getSubReg(Reg
, SubIdx
));
548 } else if (Opc
== TargetOpcode::INSERT_SUBREG
||
549 Opc
== TargetOpcode::SUBREG_TO_REG
) {
550 SDValue N0
= Node
->getOperand(0);
551 SDValue N1
= Node
->getOperand(1);
552 SDValue N2
= Node
->getOperand(2);
553 unsigned SubIdx
= cast
<ConstantSDNode
>(N2
)->getZExtValue();
555 // Figure out the register class to create for the destreg. It should be
556 // the largest legal register class supporting SubIdx sub-registers.
557 // RegisterCoalescer will constrain it further if it decides to eliminate
558 // the INSERT_SUBREG instruction.
560 // %dst = INSERT_SUBREG %src, %sub, SubIdx
562 // is lowered by TwoAddressInstructionPass to:
565 // %dst:SubIdx = COPY %sub
567 // There is no constraint on the %src register class.
569 const TargetRegisterClass
*SRC
=
570 TLI
->getRegClassFor(Node
->getSimpleValueType(0), Node
->isDivergent());
571 SRC
= TRI
->getSubClassWithSubReg(SRC
, SubIdx
);
572 assert(SRC
&& "No register class supports VT and SubIdx for INSERT_SUBREG");
574 if (VRBase
== 0 || !SRC
->hasSubClassEq(MRI
->getRegClass(VRBase
)))
575 VRBase
= MRI
->createVirtualRegister(SRC
);
577 // Create the insert_subreg or subreg_to_reg machine instruction.
578 MachineInstrBuilder MIB
=
579 BuildMI(*MF
, Node
->getDebugLoc(), TII
->get(Opc
), VRBase
);
581 // If creating a subreg_to_reg, then the first input operand
582 // is an implicit value immediate, otherwise it's a register
583 if (Opc
== TargetOpcode::SUBREG_TO_REG
) {
584 const ConstantSDNode
*SD
= cast
<ConstantSDNode
>(N0
);
585 MIB
.addImm(SD
->getZExtValue());
587 AddOperand(MIB
, N0
, 0, nullptr, VRBaseMap
, /*IsDebug=*/false,
589 // Add the subregister being inserted
590 AddOperand(MIB
, N1
, 0, nullptr, VRBaseMap
, /*IsDebug=*/false,
593 MBB
->insert(InsertPos
, MIB
);
595 llvm_unreachable("Node is not insert_subreg, extract_subreg, or subreg_to_reg");
598 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, VRBase
)).second
;
599 (void)isNew
; // Silence compiler warning.
600 assert(isNew
&& "Node emitted out of order - early");
603 /// EmitCopyToRegClassNode - Generate machine code for COPY_TO_REGCLASS nodes.
604 /// COPY_TO_REGCLASS is just a normal copy, except that the destination
605 /// register is constrained to be in a particular register class.
608 InstrEmitter::EmitCopyToRegClassNode(SDNode
*Node
,
609 DenseMap
<SDValue
, unsigned> &VRBaseMap
) {
610 unsigned VReg
= getVR(Node
->getOperand(0), VRBaseMap
);
612 // Create the new VReg in the destination class and emit a copy.
613 unsigned DstRCIdx
= cast
<ConstantSDNode
>(Node
->getOperand(1))->getZExtValue();
614 const TargetRegisterClass
*DstRC
=
615 TRI
->getAllocatableClass(TRI
->getRegClass(DstRCIdx
));
616 Register NewVReg
= MRI
->createVirtualRegister(DstRC
);
617 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(), TII
->get(TargetOpcode::COPY
),
618 NewVReg
).addReg(VReg
);
621 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, NewVReg
)).second
;
622 (void)isNew
; // Silence compiler warning.
623 assert(isNew
&& "Node emitted out of order - early");
626 /// EmitRegSequence - Generate machine code for REG_SEQUENCE nodes.
628 void InstrEmitter::EmitRegSequence(SDNode
*Node
,
629 DenseMap
<SDValue
, unsigned> &VRBaseMap
,
630 bool IsClone
, bool IsCloned
) {
631 unsigned DstRCIdx
= cast
<ConstantSDNode
>(Node
->getOperand(0))->getZExtValue();
632 const TargetRegisterClass
*RC
= TRI
->getRegClass(DstRCIdx
);
633 Register NewVReg
= MRI
->createVirtualRegister(TRI
->getAllocatableClass(RC
));
634 const MCInstrDesc
&II
= TII
->get(TargetOpcode::REG_SEQUENCE
);
635 MachineInstrBuilder MIB
= BuildMI(*MF
, Node
->getDebugLoc(), II
, NewVReg
);
636 unsigned NumOps
= Node
->getNumOperands();
637 // If the input pattern has a chain, then the root of the corresponding
638 // output pattern will get a chain as well. This can happen to be a
639 // REG_SEQUENCE (which is not "guarded" by countOperands/CountResults).
640 if (NumOps
&& Node
->getOperand(NumOps
-1).getValueType() == MVT::Other
)
641 --NumOps
; // Ignore chain if it exists.
643 assert((NumOps
& 1) == 1 &&
644 "REG_SEQUENCE must have an odd number of operands!");
645 for (unsigned i
= 1; i
!= NumOps
; ++i
) {
646 SDValue Op
= Node
->getOperand(i
);
648 RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(Node
->getOperand(i
-1));
649 // Skip physical registers as they don't have a vreg to get and we'll
650 // insert copies for them in TwoAddressInstructionPass anyway.
651 if (!R
|| !Register::isPhysicalRegister(R
->getReg())) {
652 unsigned SubIdx
= cast
<ConstantSDNode
>(Op
)->getZExtValue();
653 unsigned SubReg
= getVR(Node
->getOperand(i
-1), VRBaseMap
);
654 const TargetRegisterClass
*TRC
= MRI
->getRegClass(SubReg
);
655 const TargetRegisterClass
*SRC
=
656 TRI
->getMatchingSuperRegClass(RC
, TRC
, SubIdx
);
657 if (SRC
&& SRC
!= RC
) {
658 MRI
->setRegClass(NewVReg
, SRC
);
663 AddOperand(MIB
, Op
, i
+1, &II
, VRBaseMap
, /*IsDebug=*/false,
667 MBB
->insert(InsertPos
, MIB
);
669 bool isNew
= VRBaseMap
.insert(std::make_pair(Op
, NewVReg
)).second
;
670 (void)isNew
; // Silence compiler warning.
671 assert(isNew
&& "Node emitted out of order - early");
674 /// EmitDbgValue - Generate machine instruction for a dbg_value node.
677 InstrEmitter::EmitDbgValue(SDDbgValue
*SD
,
678 DenseMap
<SDValue
, unsigned> &VRBaseMap
) {
679 MDNode
*Var
= SD
->getVariable();
680 MDNode
*Expr
= SD
->getExpression();
681 DebugLoc DL
= SD
->getDebugLoc();
682 assert(cast
<DILocalVariable
>(Var
)->isValidLocationForIntrinsic(DL
) &&
683 "Expected inlined-at fields to agree");
687 if (SD
->isInvalidated()) {
688 // An invalidated SDNode must generate an undef DBG_VALUE: although the
689 // original value is no longer computed, earlier DBG_VALUEs live ranges
690 // must not leak into later code.
691 auto MIB
= BuildMI(*MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
));
693 MIB
.addReg(0U, RegState::Debug
);
694 MIB
.addMetadata(Var
);
695 MIB
.addMetadata(Expr
);
699 if (SD
->getKind() == SDDbgValue::FRAMEIX
) {
700 // Stack address; this needs to be lowered in target-dependent fashion.
701 // EmitTargetCodeForFrameDebugValue is responsible for allocation.
702 auto FrameMI
= BuildMI(*MF
, DL
, TII
->get(TargetOpcode::DBG_VALUE
))
703 .addFrameIndex(SD
->getFrameIx());
704 if (SD
->isIndirect())
705 // Push [fi + 0] onto the DIExpression stack.
708 // Push fi onto the DIExpression stack.
710 return FrameMI
.addMetadata(Var
).addMetadata(Expr
);
712 // Otherwise, we're going to create an instruction here.
713 const MCInstrDesc
&II
= TII
->get(TargetOpcode::DBG_VALUE
);
714 MachineInstrBuilder MIB
= BuildMI(*MF
, DL
, II
);
715 if (SD
->getKind() == SDDbgValue::SDNODE
) {
716 SDNode
*Node
= SD
->getSDNode();
717 SDValue Op
= SDValue(Node
, SD
->getResNo());
718 // It's possible we replaced this SDNode with other(s) and therefore
719 // didn't generate code for it. It's better to catch these cases where
720 // they happen and transfer the debug info, but trying to guarantee that
721 // in all cases would be very fragile; this is a safeguard for any
723 DenseMap
<SDValue
, unsigned>::iterator I
= VRBaseMap
.find(Op
);
724 if (I
==VRBaseMap
.end())
725 MIB
.addReg(0U); // undef
727 AddOperand(MIB
, Op
, (*MIB
).getNumOperands(), &II
, VRBaseMap
,
728 /*IsDebug=*/true, /*IsClone=*/false, /*IsCloned=*/false);
729 } else if (SD
->getKind() == SDDbgValue::VREG
) {
730 MIB
.addReg(SD
->getVReg(), RegState::Debug
);
731 } else if (SD
->getKind() == SDDbgValue::CONST
) {
732 const Value
*V
= SD
->getConst();
733 if (const ConstantInt
*CI
= dyn_cast
<ConstantInt
>(V
)) {
734 if (CI
->getBitWidth() > 64)
737 MIB
.addImm(CI
->getSExtValue());
738 } else if (const ConstantFP
*CF
= dyn_cast
<ConstantFP
>(V
)) {
740 } else if (isa
<ConstantPointerNull
>(V
)) {
741 // Note: This assumes that all nullptr constants are zero-valued.
744 // Could be an Undef. In any case insert an Undef so we can see what we
749 // Insert an Undef so we can see what we dropped.
753 // Indirect addressing is indicated by an Imm as the second parameter.
754 if (SD
->isIndirect())
757 MIB
.addReg(0U, RegState::Debug
);
759 MIB
.addMetadata(Var
);
760 MIB
.addMetadata(Expr
);
766 InstrEmitter::EmitDbgLabel(SDDbgLabel
*SD
) {
767 MDNode
*Label
= SD
->getLabel();
768 DebugLoc DL
= SD
->getDebugLoc();
769 assert(cast
<DILabel
>(Label
)->isValidLocationForIntrinsic(DL
) &&
770 "Expected inlined-at fields to agree");
772 const MCInstrDesc
&II
= TII
->get(TargetOpcode::DBG_LABEL
);
773 MachineInstrBuilder MIB
= BuildMI(*MF
, DL
, II
);
774 MIB
.addMetadata(Label
);
779 /// EmitMachineNode - Generate machine code for a target-specific node and
780 /// needed dependencies.
783 EmitMachineNode(SDNode
*Node
, bool IsClone
, bool IsCloned
,
784 DenseMap
<SDValue
, unsigned> &VRBaseMap
) {
785 unsigned Opc
= Node
->getMachineOpcode();
787 // Handle subreg insert/extract specially
788 if (Opc
== TargetOpcode::EXTRACT_SUBREG
||
789 Opc
== TargetOpcode::INSERT_SUBREG
||
790 Opc
== TargetOpcode::SUBREG_TO_REG
) {
791 EmitSubregNode(Node
, VRBaseMap
, IsClone
, IsCloned
);
795 // Handle COPY_TO_REGCLASS specially.
796 if (Opc
== TargetOpcode::COPY_TO_REGCLASS
) {
797 EmitCopyToRegClassNode(Node
, VRBaseMap
);
801 // Handle REG_SEQUENCE specially.
802 if (Opc
== TargetOpcode::REG_SEQUENCE
) {
803 EmitRegSequence(Node
, VRBaseMap
, IsClone
, IsCloned
);
807 if (Opc
== TargetOpcode::IMPLICIT_DEF
)
808 // We want a unique VR for each IMPLICIT_DEF use.
811 const MCInstrDesc
&II
= TII
->get(Opc
);
812 unsigned NumResults
= CountResults(Node
);
813 unsigned NumDefs
= II
.getNumDefs();
814 const MCPhysReg
*ScratchRegs
= nullptr;
816 // Handle STACKMAP and PATCHPOINT specially and then use the generic code.
817 if (Opc
== TargetOpcode::STACKMAP
|| Opc
== TargetOpcode::PATCHPOINT
) {
818 // Stackmaps do not have arguments and do not preserve their calling
819 // convention. However, to simplify runtime support, they clobber the same
820 // scratch registers as AnyRegCC.
821 unsigned CC
= CallingConv::AnyReg
;
822 if (Opc
== TargetOpcode::PATCHPOINT
) {
823 CC
= Node
->getConstantOperandVal(PatchPointOpers::CCPos
);
824 NumDefs
= NumResults
;
826 ScratchRegs
= TLI
->getScratchRegisters((CallingConv::ID
) CC
);
829 unsigned NumImpUses
= 0;
830 unsigned NodeOperands
=
831 countOperands(Node
, II
.getNumOperands() - NumDefs
, NumImpUses
);
832 bool HasPhysRegOuts
= NumResults
> NumDefs
&& II
.getImplicitDefs()!=nullptr;
834 unsigned NumMIOperands
= NodeOperands
+ NumResults
;
836 assert(NumMIOperands
>= II
.getNumOperands() &&
837 "Too few operands for a variadic node!");
839 assert(NumMIOperands
>= II
.getNumOperands() &&
840 NumMIOperands
<= II
.getNumOperands() + II
.getNumImplicitDefs() +
842 "#operands for dag node doesn't match .td file!");
845 // Create the new machine instruction.
846 MachineInstrBuilder MIB
= BuildMI(*MF
, Node
->getDebugLoc(), II
);
848 // Add result register values for things that are defined by this
851 CreateVirtualRegisters(Node
, MIB
, II
, IsClone
, IsCloned
, VRBaseMap
);
853 // Transfer any IR flags from the SDNode to the MachineInstr
854 MachineInstr
*MI
= MIB
.getInstr();
855 const SDNodeFlags Flags
= Node
->getFlags();
856 if (Flags
.hasNoSignedZeros())
857 MI
->setFlag(MachineInstr::MIFlag::FmNsz
);
859 if (Flags
.hasAllowReciprocal())
860 MI
->setFlag(MachineInstr::MIFlag::FmArcp
);
862 if (Flags
.hasNoNaNs())
863 MI
->setFlag(MachineInstr::MIFlag::FmNoNans
);
865 if (Flags
.hasNoInfs())
866 MI
->setFlag(MachineInstr::MIFlag::FmNoInfs
);
868 if (Flags
.hasAllowContract())
869 MI
->setFlag(MachineInstr::MIFlag::FmContract
);
871 if (Flags
.hasApproximateFuncs())
872 MI
->setFlag(MachineInstr::MIFlag::FmAfn
);
874 if (Flags
.hasAllowReassociation())
875 MI
->setFlag(MachineInstr::MIFlag::FmReassoc
);
877 if (Flags
.hasNoUnsignedWrap())
878 MI
->setFlag(MachineInstr::MIFlag::NoUWrap
);
880 if (Flags
.hasNoSignedWrap())
881 MI
->setFlag(MachineInstr::MIFlag::NoSWrap
);
883 if (Flags
.hasExact())
884 MI
->setFlag(MachineInstr::MIFlag::IsExact
);
886 if (Flags
.hasFPExcept())
887 MI
->setFlag(MachineInstr::MIFlag::FPExcept
);
890 // Emit all of the actual operands of this instruction, adding them to the
891 // instruction as appropriate.
892 bool HasOptPRefs
= NumDefs
> NumResults
;
893 assert((!HasOptPRefs
|| !HasPhysRegOuts
) &&
894 "Unable to cope with optional defs and phys regs defs!");
895 unsigned NumSkip
= HasOptPRefs
? NumDefs
- NumResults
: 0;
896 for (unsigned i
= NumSkip
; i
!= NodeOperands
; ++i
)
897 AddOperand(MIB
, Node
->getOperand(i
), i
-NumSkip
+NumDefs
, &II
,
898 VRBaseMap
, /*IsDebug=*/false, IsClone
, IsCloned
);
900 // Add scratch registers as implicit def and early clobber
902 for (unsigned i
= 0; ScratchRegs
[i
]; ++i
)
903 MIB
.addReg(ScratchRegs
[i
], RegState::ImplicitDefine
|
904 RegState::EarlyClobber
);
906 // Set the memory reference descriptions of this instruction now that it is
907 // part of the function.
908 MIB
.setMemRefs(cast
<MachineSDNode
>(Node
)->memoperands());
910 // Insert the instruction into position in the block. This needs to
911 // happen before any custom inserter hook is called so that the
912 // hook knows where in the block to insert the replacement code.
913 MBB
->insert(InsertPos
, MIB
);
915 // The MachineInstr may also define physregs instead of virtregs. These
916 // physreg values can reach other instructions in different ways:
918 // 1. When there is a use of a Node value beyond the explicitly defined
919 // virtual registers, we emit a CopyFromReg for one of the implicitly
920 // defined physregs. This only happens when HasPhysRegOuts is true.
922 // 2. A CopyFromReg reading a physreg may be glued to this instruction.
924 // 3. A glued instruction may implicitly use a physreg.
926 // 4. A glued instruction may use a RegisterSDNode operand.
928 // Collect all the used physreg defs, and make sure that any unused physreg
929 // defs are marked as dead.
930 SmallVector
<Register
, 8> UsedRegs
;
932 // Additional results must be physical register defs.
933 if (HasPhysRegOuts
) {
934 for (unsigned i
= NumDefs
; i
< NumResults
; ++i
) {
935 Register Reg
= II
.getImplicitDefs()[i
- NumDefs
];
936 if (!Node
->hasAnyUseOfValue(i
))
938 // This implicitly defined physreg has a use.
939 UsedRegs
.push_back(Reg
);
940 EmitCopyFromReg(Node
, i
, IsClone
, IsCloned
, Reg
, VRBaseMap
);
944 // Scan the glue chain for any used physregs.
945 if (Node
->getValueType(Node
->getNumValues()-1) == MVT::Glue
) {
946 for (SDNode
*F
= Node
->getGluedUser(); F
; F
= F
->getGluedUser()) {
947 if (F
->getOpcode() == ISD::CopyFromReg
) {
948 UsedRegs
.push_back(cast
<RegisterSDNode
>(F
->getOperand(1))->getReg());
950 } else if (F
->getOpcode() == ISD::CopyToReg
) {
951 // Skip CopyToReg nodes that are internal to the glue chain.
954 // Collect declared implicit uses.
955 const MCInstrDesc
&MCID
= TII
->get(F
->getMachineOpcode());
956 UsedRegs
.append(MCID
.getImplicitUses(),
957 MCID
.getImplicitUses() + MCID
.getNumImplicitUses());
958 // In addition to declared implicit uses, we must also check for
959 // direct RegisterSDNode operands.
960 for (unsigned i
= 0, e
= F
->getNumOperands(); i
!= e
; ++i
)
961 if (RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(F
->getOperand(i
))) {
962 Register Reg
= R
->getReg();
963 if (Reg
.isPhysical())
964 UsedRegs
.push_back(Reg
);
969 // Finally mark unused registers as dead.
970 if (!UsedRegs
.empty() || II
.getImplicitDefs() || II
.hasOptionalDef())
971 MIB
->setPhysRegsDeadExcept(UsedRegs
, *TRI
);
973 // Run post-isel target hook to adjust this instruction if needed.
974 if (II
.hasPostISelHook())
975 TLI
->AdjustInstrPostInstrSelection(*MIB
, Node
);
978 /// EmitSpecialNode - Generate machine code for a target-independent node and
979 /// needed dependencies.
981 EmitSpecialNode(SDNode
*Node
, bool IsClone
, bool IsCloned
,
982 DenseMap
<SDValue
, unsigned> &VRBaseMap
) {
983 switch (Node
->getOpcode()) {
988 llvm_unreachable("This target-independent node should have been selected!");
989 case ISD::EntryToken
:
990 llvm_unreachable("EntryToken should have been excluded from the schedule!");
991 case ISD::MERGE_VALUES
:
992 case ISD::TokenFactor
: // fall thru
994 case ISD::CopyToReg
: {
995 unsigned DestReg
= cast
<RegisterSDNode
>(Node
->getOperand(1))->getReg();
996 SDValue SrcVal
= Node
->getOperand(2);
997 if (Register::isVirtualRegister(DestReg
) && SrcVal
.isMachineOpcode() &&
998 SrcVal
.getMachineOpcode() == TargetOpcode::IMPLICIT_DEF
) {
999 // Instead building a COPY to that vreg destination, build an
1000 // IMPLICIT_DEF instruction instead.
1001 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(),
1002 TII
->get(TargetOpcode::IMPLICIT_DEF
), DestReg
);
1006 if (RegisterSDNode
*R
= dyn_cast
<RegisterSDNode
>(SrcVal
))
1007 SrcReg
= R
->getReg();
1009 SrcReg
= getVR(SrcVal
, VRBaseMap
);
1011 if (SrcReg
== DestReg
) // Coalesced away the copy? Ignore.
1014 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(), TII
->get(TargetOpcode::COPY
),
1015 DestReg
).addReg(SrcReg
);
1018 case ISD::CopyFromReg
: {
1019 unsigned SrcReg
= cast
<RegisterSDNode
>(Node
->getOperand(1))->getReg();
1020 EmitCopyFromReg(Node
, 0, IsClone
, IsCloned
, SrcReg
, VRBaseMap
);
1024 case ISD::ANNOTATION_LABEL
: {
1025 unsigned Opc
= (Node
->getOpcode() == ISD::EH_LABEL
)
1026 ? TargetOpcode::EH_LABEL
1027 : TargetOpcode::ANNOTATION_LABEL
;
1028 MCSymbol
*S
= cast
<LabelSDNode
>(Node
)->getLabel();
1029 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(),
1030 TII
->get(Opc
)).addSym(S
);
1034 case ISD::LIFETIME_START
:
1035 case ISD::LIFETIME_END
: {
1036 unsigned TarOp
= (Node
->getOpcode() == ISD::LIFETIME_START
) ?
1037 TargetOpcode::LIFETIME_START
: TargetOpcode::LIFETIME_END
;
1039 FrameIndexSDNode
*FI
= dyn_cast
<FrameIndexSDNode
>(Node
->getOperand(1));
1040 BuildMI(*MBB
, InsertPos
, Node
->getDebugLoc(), TII
->get(TarOp
))
1041 .addFrameIndex(FI
->getIndex());
1045 case ISD::INLINEASM
:
1046 case ISD::INLINEASM_BR
: {
1047 unsigned NumOps
= Node
->getNumOperands();
1048 if (Node
->getOperand(NumOps
-1).getValueType() == MVT::Glue
)
1049 --NumOps
; // Ignore the glue operand.
1051 // Create the inline asm machine instruction.
1052 unsigned TgtOpc
= Node
->getOpcode() == ISD::INLINEASM_BR
1053 ? TargetOpcode::INLINEASM_BR
1054 : TargetOpcode::INLINEASM
;
1055 MachineInstrBuilder MIB
=
1056 BuildMI(*MF
, Node
->getDebugLoc(), TII
->get(TgtOpc
));
1058 // Add the asm string as an external symbol operand.
1059 SDValue AsmStrV
= Node
->getOperand(InlineAsm::Op_AsmString
);
1060 const char *AsmStr
= cast
<ExternalSymbolSDNode
>(AsmStrV
)->getSymbol();
1061 MIB
.addExternalSymbol(AsmStr
);
1063 // Add the HasSideEffect, isAlignStack, AsmDialect, MayLoad and MayStore
1066 cast
<ConstantSDNode
>(Node
->getOperand(InlineAsm::Op_ExtraInfo
))->
1068 MIB
.addImm(ExtraInfo
);
1070 // Remember to operand index of the group flags.
1071 SmallVector
<unsigned, 8> GroupIdx
;
1073 // Remember registers that are part of early-clobber defs.
1074 SmallVector
<unsigned, 8> ECRegs
;
1076 // Add all of the operand registers to the instruction.
1077 for (unsigned i
= InlineAsm::Op_FirstOperand
; i
!= NumOps
;) {
1079 cast
<ConstantSDNode
>(Node
->getOperand(i
))->getZExtValue();
1080 const unsigned NumVals
= InlineAsm::getNumOperandRegisters(Flags
);
1082 GroupIdx
.push_back(MIB
->getNumOperands());
1084 ++i
; // Skip the ID value.
1086 switch (InlineAsm::getKind(Flags
)) {
1087 default: llvm_unreachable("Bad flags!");
1088 case InlineAsm::Kind_RegDef
:
1089 for (unsigned j
= 0; j
!= NumVals
; ++j
, ++i
) {
1090 unsigned Reg
= cast
<RegisterSDNode
>(Node
->getOperand(i
))->getReg();
1091 // FIXME: Add dead flags for physical and virtual registers defined.
1092 // For now, mark physical register defs as implicit to help fast
1093 // regalloc. This makes inline asm look a lot like calls.
1096 getImplRegState(Register::isPhysicalRegister(Reg
)));
1099 case InlineAsm::Kind_RegDefEarlyClobber
:
1100 case InlineAsm::Kind_Clobber
:
1101 for (unsigned j
= 0; j
!= NumVals
; ++j
, ++i
) {
1102 unsigned Reg
= cast
<RegisterSDNode
>(Node
->getOperand(i
))->getReg();
1104 RegState::Define
| RegState::EarlyClobber
|
1105 getImplRegState(Register::isPhysicalRegister(Reg
)));
1106 ECRegs
.push_back(Reg
);
1109 case InlineAsm::Kind_RegUse
: // Use of register.
1110 case InlineAsm::Kind_Imm
: // Immediate.
1111 case InlineAsm::Kind_Mem
: // Addressing mode.
1112 // The addressing mode has been selected, just add all of the
1113 // operands to the machine instruction.
1114 for (unsigned j
= 0; j
!= NumVals
; ++j
, ++i
)
1115 AddOperand(MIB
, Node
->getOperand(i
), 0, nullptr, VRBaseMap
,
1116 /*IsDebug=*/false, IsClone
, IsCloned
);
1118 // Manually set isTied bits.
1119 if (InlineAsm::getKind(Flags
) == InlineAsm::Kind_RegUse
) {
1120 unsigned DefGroup
= 0;
1121 if (InlineAsm::isUseOperandTiedToDef(Flags
, DefGroup
)) {
1122 unsigned DefIdx
= GroupIdx
[DefGroup
] + 1;
1123 unsigned UseIdx
= GroupIdx
.back() + 1;
1124 for (unsigned j
= 0; j
!= NumVals
; ++j
)
1125 MIB
->tieOperands(DefIdx
+ j
, UseIdx
+ j
);
1132 // GCC inline assembly allows input operands to also be early-clobber
1133 // output operands (so long as the operand is written only after it's
1134 // used), but this does not match the semantics of our early-clobber flag.
1135 // If an early-clobber operand register is also an input operand register,
1136 // then remove the early-clobber flag.
1137 for (unsigned Reg
: ECRegs
) {
1138 if (MIB
->readsRegister(Reg
, TRI
)) {
1139 MachineOperand
*MO
=
1140 MIB
->findRegisterDefOperand(Reg
, false, false, TRI
);
1141 assert(MO
&& "No def operand for clobbered register?");
1142 MO
->setIsEarlyClobber(false);
1146 // Get the mdnode from the asm if it exists and add it to the instruction.
1147 SDValue MDV
= Node
->getOperand(InlineAsm::Op_MDNode
);
1148 const MDNode
*MD
= cast
<MDNodeSDNode
>(MDV
)->getMD();
1150 MIB
.addMetadata(MD
);
1152 MBB
->insert(InsertPos
, MIB
);
1158 /// InstrEmitter - Construct an InstrEmitter and set it to start inserting
1159 /// at the given position in the given block.
1160 InstrEmitter::InstrEmitter(MachineBasicBlock
*mbb
,
1161 MachineBasicBlock::iterator insertpos
)
1162 : MF(mbb
->getParent()), MRI(&MF
->getRegInfo()),
1163 TII(MF
->getSubtarget().getInstrInfo()),
1164 TRI(MF
->getSubtarget().getRegisterInfo()),
1165 TLI(MF
->getSubtarget().getTargetLowering()), MBB(mbb
),
1166 InsertPos(insertpos
) {}