[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / CodeGen / SelectionDAG / TargetLowering.cpp
blobf83526be4a81d23983942bd86536a3d7c44e09a0
1 //===-- TargetLowering.cpp - Implement the TargetLowering class -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLowering class.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/CodeGen/TargetLowering.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/CodeGen/CallingConvLower.h"
16 #include "llvm/CodeGen/MachineFrameInfo.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineJumpTableInfo.h"
19 #include "llvm/CodeGen/MachineRegisterInfo.h"
20 #include "llvm/CodeGen/SelectionDAG.h"
21 #include "llvm/CodeGen/TargetRegisterInfo.h"
22 #include "llvm/CodeGen/TargetSubtargetInfo.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/GlobalVariable.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/MC/MCAsmInfo.h"
28 #include "llvm/MC/MCExpr.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/KnownBits.h"
31 #include "llvm/Support/MathExtras.h"
32 #include "llvm/Target/TargetLoweringObjectFile.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cctype>
35 using namespace llvm;
37 /// NOTE: The TargetMachine owns TLOF.
38 TargetLowering::TargetLowering(const TargetMachine &tm)
39 : TargetLoweringBase(tm) {}
41 const char *TargetLowering::getTargetNodeName(unsigned Opcode) const {
42 return nullptr;
45 bool TargetLowering::isPositionIndependent() const {
46 return getTargetMachine().isPositionIndependent();
49 /// Check whether a given call node is in tail position within its function. If
50 /// so, it sets Chain to the input chain of the tail call.
51 bool TargetLowering::isInTailCallPosition(SelectionDAG &DAG, SDNode *Node,
52 SDValue &Chain) const {
53 const Function &F = DAG.getMachineFunction().getFunction();
55 // Conservatively require the attributes of the call to match those of
56 // the return. Ignore NoAlias and NonNull because they don't affect the
57 // call sequence.
58 AttributeList CallerAttrs = F.getAttributes();
59 if (AttrBuilder(CallerAttrs, AttributeList::ReturnIndex)
60 .removeAttribute(Attribute::NoAlias)
61 .removeAttribute(Attribute::NonNull)
62 .hasAttributes())
63 return false;
65 // It's not safe to eliminate the sign / zero extension of the return value.
66 if (CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::ZExt) ||
67 CallerAttrs.hasAttribute(AttributeList::ReturnIndex, Attribute::SExt))
68 return false;
70 // Check if the only use is a function return node.
71 return isUsedByReturnOnly(Node, Chain);
74 bool TargetLowering::parametersInCSRMatch(const MachineRegisterInfo &MRI,
75 const uint32_t *CallerPreservedMask,
76 const SmallVectorImpl<CCValAssign> &ArgLocs,
77 const SmallVectorImpl<SDValue> &OutVals) const {
78 for (unsigned I = 0, E = ArgLocs.size(); I != E; ++I) {
79 const CCValAssign &ArgLoc = ArgLocs[I];
80 if (!ArgLoc.isRegLoc())
81 continue;
82 Register Reg = ArgLoc.getLocReg();
83 // Only look at callee saved registers.
84 if (MachineOperand::clobbersPhysReg(CallerPreservedMask, Reg))
85 continue;
86 // Check that we pass the value used for the caller.
87 // (We look for a CopyFromReg reading a virtual register that is used
88 // for the function live-in value of register Reg)
89 SDValue Value = OutVals[I];
90 if (Value->getOpcode() != ISD::CopyFromReg)
91 return false;
92 unsigned ArgReg = cast<RegisterSDNode>(Value->getOperand(1))->getReg();
93 if (MRI.getLiveInPhysReg(ArgReg) != Reg)
94 return false;
96 return true;
99 /// Set CallLoweringInfo attribute flags based on a call instruction
100 /// and called function attributes.
101 void TargetLoweringBase::ArgListEntry::setAttributes(const CallBase *Call,
102 unsigned ArgIdx) {
103 IsSExt = Call->paramHasAttr(ArgIdx, Attribute::SExt);
104 IsZExt = Call->paramHasAttr(ArgIdx, Attribute::ZExt);
105 IsInReg = Call->paramHasAttr(ArgIdx, Attribute::InReg);
106 IsSRet = Call->paramHasAttr(ArgIdx, Attribute::StructRet);
107 IsNest = Call->paramHasAttr(ArgIdx, Attribute::Nest);
108 IsByVal = Call->paramHasAttr(ArgIdx, Attribute::ByVal);
109 IsInAlloca = Call->paramHasAttr(ArgIdx, Attribute::InAlloca);
110 IsReturned = Call->paramHasAttr(ArgIdx, Attribute::Returned);
111 IsSwiftSelf = Call->paramHasAttr(ArgIdx, Attribute::SwiftSelf);
112 IsSwiftError = Call->paramHasAttr(ArgIdx, Attribute::SwiftError);
113 Alignment = Call->getParamAlignment(ArgIdx);
114 ByValType = nullptr;
115 if (Call->paramHasAttr(ArgIdx, Attribute::ByVal))
116 ByValType = Call->getParamByValType(ArgIdx);
119 /// Generate a libcall taking the given operands as arguments and returning a
120 /// result of type RetVT.
121 std::pair<SDValue, SDValue>
122 TargetLowering::makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT,
123 ArrayRef<SDValue> Ops,
124 MakeLibCallOptions CallOptions,
125 const SDLoc &dl) const {
126 TargetLowering::ArgListTy Args;
127 Args.reserve(Ops.size());
129 TargetLowering::ArgListEntry Entry;
130 for (unsigned i = 0; i < Ops.size(); ++i) {
131 SDValue NewOp = Ops[i];
132 Entry.Node = NewOp;
133 Entry.Ty = Entry.Node.getValueType().getTypeForEVT(*DAG.getContext());
134 Entry.IsSExt = shouldSignExtendTypeInLibCall(NewOp.getValueType(),
135 CallOptions.IsSExt);
136 Entry.IsZExt = !Entry.IsSExt;
138 if (CallOptions.IsSoften &&
139 !shouldExtendTypeInLibCall(CallOptions.OpsVTBeforeSoften[i])) {
140 Entry.IsSExt = Entry.IsZExt = false;
142 Args.push_back(Entry);
145 if (LC == RTLIB::UNKNOWN_LIBCALL)
146 report_fatal_error("Unsupported library call operation!");
147 SDValue Callee = DAG.getExternalSymbol(getLibcallName(LC),
148 getPointerTy(DAG.getDataLayout()));
150 Type *RetTy = RetVT.getTypeForEVT(*DAG.getContext());
151 TargetLowering::CallLoweringInfo CLI(DAG);
152 bool signExtend = shouldSignExtendTypeInLibCall(RetVT, CallOptions.IsSExt);
153 bool zeroExtend = !signExtend;
155 if (CallOptions.IsSoften &&
156 !shouldExtendTypeInLibCall(CallOptions.RetVTBeforeSoften)) {
157 signExtend = zeroExtend = false;
160 CLI.setDebugLoc(dl)
161 .setChain(DAG.getEntryNode())
162 .setLibCallee(getLibcallCallingConv(LC), RetTy, Callee, std::move(Args))
163 .setNoReturn(CallOptions.DoesNotReturn)
164 .setDiscardResult(!CallOptions.IsReturnValueUsed)
165 .setIsPostTypeLegalization(CallOptions.IsPostTypeLegalization)
166 .setSExtResult(signExtend)
167 .setZExtResult(zeroExtend);
168 return LowerCallTo(CLI);
171 bool
172 TargetLowering::findOptimalMemOpLowering(std::vector<EVT> &MemOps,
173 unsigned Limit, uint64_t Size,
174 unsigned DstAlign, unsigned SrcAlign,
175 bool IsMemset,
176 bool ZeroMemset,
177 bool MemcpyStrSrc,
178 bool AllowOverlap,
179 unsigned DstAS, unsigned SrcAS,
180 const AttributeList &FuncAttributes) const {
181 // If 'SrcAlign' is zero, that means the memory operation does not need to
182 // load the value, i.e. memset or memcpy from constant string. Otherwise,
183 // it's the inferred alignment of the source. 'DstAlign', on the other hand,
184 // is the specified alignment of the memory operation. If it is zero, that
185 // means it's possible to change the alignment of the destination.
186 // 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
187 // not need to be loaded.
188 if (!(SrcAlign == 0 || SrcAlign >= DstAlign))
189 return false;
191 EVT VT = getOptimalMemOpType(Size, DstAlign, SrcAlign,
192 IsMemset, ZeroMemset, MemcpyStrSrc,
193 FuncAttributes);
195 if (VT == MVT::Other) {
196 // Use the largest integer type whose alignment constraints are satisfied.
197 // We only need to check DstAlign here as SrcAlign is always greater or
198 // equal to DstAlign (or zero).
199 VT = MVT::i64;
200 while (DstAlign && DstAlign < VT.getSizeInBits() / 8 &&
201 !allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign))
202 VT = (MVT::SimpleValueType)(VT.getSimpleVT().SimpleTy - 1);
203 assert(VT.isInteger());
205 // Find the largest legal integer type.
206 MVT LVT = MVT::i64;
207 while (!isTypeLegal(LVT))
208 LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
209 assert(LVT.isInteger());
211 // If the type we've chosen is larger than the largest legal integer type
212 // then use that instead.
213 if (VT.bitsGT(LVT))
214 VT = LVT;
217 unsigned NumMemOps = 0;
218 while (Size != 0) {
219 unsigned VTSize = VT.getSizeInBits() / 8;
220 while (VTSize > Size) {
221 // For now, only use non-vector load / store's for the left-over pieces.
222 EVT NewVT = VT;
223 unsigned NewVTSize;
225 bool Found = false;
226 if (VT.isVector() || VT.isFloatingPoint()) {
227 NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
228 if (isOperationLegalOrCustom(ISD::STORE, NewVT) &&
229 isSafeMemOpType(NewVT.getSimpleVT()))
230 Found = true;
231 else if (NewVT == MVT::i64 &&
232 isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
233 isSafeMemOpType(MVT::f64)) {
234 // i64 is usually not legal on 32-bit targets, but f64 may be.
235 NewVT = MVT::f64;
236 Found = true;
240 if (!Found) {
241 do {
242 NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
243 if (NewVT == MVT::i8)
244 break;
245 } while (!isSafeMemOpType(NewVT.getSimpleVT()));
247 NewVTSize = NewVT.getSizeInBits() / 8;
249 // If the new VT cannot cover all of the remaining bits, then consider
250 // issuing a (or a pair of) unaligned and overlapping load / store.
251 bool Fast;
252 if (NumMemOps && AllowOverlap && NewVTSize < Size &&
253 allowsMisalignedMemoryAccesses(VT, DstAS, DstAlign,
254 MachineMemOperand::MONone, &Fast) &&
255 Fast)
256 VTSize = Size;
257 else {
258 VT = NewVT;
259 VTSize = NewVTSize;
263 if (++NumMemOps > Limit)
264 return false;
266 MemOps.push_back(VT);
267 Size -= VTSize;
270 return true;
273 /// Soften the operands of a comparison. This code is shared among BR_CC,
274 /// SELECT_CC, and SETCC handlers.
275 void TargetLowering::softenSetCCOperands(SelectionDAG &DAG, EVT VT,
276 SDValue &NewLHS, SDValue &NewRHS,
277 ISD::CondCode &CCCode,
278 const SDLoc &dl, const SDValue OldLHS,
279 const SDValue OldRHS) const {
280 assert((VT == MVT::f32 || VT == MVT::f64 || VT == MVT::f128 || VT == MVT::ppcf128)
281 && "Unsupported setcc type!");
283 // Expand into one or more soft-fp libcall(s).
284 RTLIB::Libcall LC1 = RTLIB::UNKNOWN_LIBCALL, LC2 = RTLIB::UNKNOWN_LIBCALL;
285 bool ShouldInvertCC = false;
286 switch (CCCode) {
287 case ISD::SETEQ:
288 case ISD::SETOEQ:
289 LC1 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
290 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
291 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
292 break;
293 case ISD::SETNE:
294 case ISD::SETUNE:
295 LC1 = (VT == MVT::f32) ? RTLIB::UNE_F32 :
296 (VT == MVT::f64) ? RTLIB::UNE_F64 :
297 (VT == MVT::f128) ? RTLIB::UNE_F128 : RTLIB::UNE_PPCF128;
298 break;
299 case ISD::SETGE:
300 case ISD::SETOGE:
301 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
302 (VT == MVT::f64) ? RTLIB::OGE_F64 :
303 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
304 break;
305 case ISD::SETLT:
306 case ISD::SETOLT:
307 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
308 (VT == MVT::f64) ? RTLIB::OLT_F64 :
309 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
310 break;
311 case ISD::SETLE:
312 case ISD::SETOLE:
313 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
314 (VT == MVT::f64) ? RTLIB::OLE_F64 :
315 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
316 break;
317 case ISD::SETGT:
318 case ISD::SETOGT:
319 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
320 (VT == MVT::f64) ? RTLIB::OGT_F64 :
321 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
322 break;
323 case ISD::SETUO:
324 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
325 (VT == MVT::f64) ? RTLIB::UO_F64 :
326 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
327 break;
328 case ISD::SETO:
329 LC1 = (VT == MVT::f32) ? RTLIB::O_F32 :
330 (VT == MVT::f64) ? RTLIB::O_F64 :
331 (VT == MVT::f128) ? RTLIB::O_F128 : RTLIB::O_PPCF128;
332 break;
333 case ISD::SETONE:
334 // SETONE = SETOLT | SETOGT
335 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
336 (VT == MVT::f64) ? RTLIB::OLT_F64 :
337 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
338 LC2 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
339 (VT == MVT::f64) ? RTLIB::OGT_F64 :
340 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
341 break;
342 case ISD::SETUEQ:
343 LC1 = (VT == MVT::f32) ? RTLIB::UO_F32 :
344 (VT == MVT::f64) ? RTLIB::UO_F64 :
345 (VT == MVT::f128) ? RTLIB::UO_F128 : RTLIB::UO_PPCF128;
346 LC2 = (VT == MVT::f32) ? RTLIB::OEQ_F32 :
347 (VT == MVT::f64) ? RTLIB::OEQ_F64 :
348 (VT == MVT::f128) ? RTLIB::OEQ_F128 : RTLIB::OEQ_PPCF128;
349 break;
350 default:
351 // Invert CC for unordered comparisons
352 ShouldInvertCC = true;
353 switch (CCCode) {
354 case ISD::SETULT:
355 LC1 = (VT == MVT::f32) ? RTLIB::OGE_F32 :
356 (VT == MVT::f64) ? RTLIB::OGE_F64 :
357 (VT == MVT::f128) ? RTLIB::OGE_F128 : RTLIB::OGE_PPCF128;
358 break;
359 case ISD::SETULE:
360 LC1 = (VT == MVT::f32) ? RTLIB::OGT_F32 :
361 (VT == MVT::f64) ? RTLIB::OGT_F64 :
362 (VT == MVT::f128) ? RTLIB::OGT_F128 : RTLIB::OGT_PPCF128;
363 break;
364 case ISD::SETUGT:
365 LC1 = (VT == MVT::f32) ? RTLIB::OLE_F32 :
366 (VT == MVT::f64) ? RTLIB::OLE_F64 :
367 (VT == MVT::f128) ? RTLIB::OLE_F128 : RTLIB::OLE_PPCF128;
368 break;
369 case ISD::SETUGE:
370 LC1 = (VT == MVT::f32) ? RTLIB::OLT_F32 :
371 (VT == MVT::f64) ? RTLIB::OLT_F64 :
372 (VT == MVT::f128) ? RTLIB::OLT_F128 : RTLIB::OLT_PPCF128;
373 break;
374 default: llvm_unreachable("Do not know how to soften this setcc!");
378 // Use the target specific return value for comparions lib calls.
379 EVT RetVT = getCmpLibcallReturnType();
380 SDValue Ops[2] = {NewLHS, NewRHS};
381 TargetLowering::MakeLibCallOptions CallOptions;
382 EVT OpsVT[2] = { OldLHS.getValueType(),
383 OldRHS.getValueType() };
384 CallOptions.setTypeListBeforeSoften(OpsVT, RetVT, true);
385 NewLHS = makeLibCall(DAG, LC1, RetVT, Ops, CallOptions, dl).first;
386 NewRHS = DAG.getConstant(0, dl, RetVT);
388 CCCode = getCmpLibcallCC(LC1);
389 if (ShouldInvertCC)
390 CCCode = getSetCCInverse(CCCode, /*isInteger=*/true);
392 if (LC2 != RTLIB::UNKNOWN_LIBCALL) {
393 SDValue Tmp = DAG.getNode(
394 ISD::SETCC, dl,
395 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
396 NewLHS, NewRHS, DAG.getCondCode(CCCode));
397 NewLHS = makeLibCall(DAG, LC2, RetVT, Ops, CallOptions, dl).first;
398 NewLHS = DAG.getNode(
399 ISD::SETCC, dl,
400 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), RetVT),
401 NewLHS, NewRHS, DAG.getCondCode(getCmpLibcallCC(LC2)));
402 NewLHS = DAG.getNode(ISD::OR, dl, Tmp.getValueType(), Tmp, NewLHS);
403 NewRHS = SDValue();
407 /// Return the entry encoding for a jump table in the current function. The
408 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
409 unsigned TargetLowering::getJumpTableEncoding() const {
410 // In non-pic modes, just use the address of a block.
411 if (!isPositionIndependent())
412 return MachineJumpTableInfo::EK_BlockAddress;
414 // In PIC mode, if the target supports a GPRel32 directive, use it.
415 if (getTargetMachine().getMCAsmInfo()->getGPRel32Directive() != nullptr)
416 return MachineJumpTableInfo::EK_GPRel32BlockAddress;
418 // Otherwise, use a label difference.
419 return MachineJumpTableInfo::EK_LabelDifference32;
422 SDValue TargetLowering::getPICJumpTableRelocBase(SDValue Table,
423 SelectionDAG &DAG) const {
424 // If our PIC model is GP relative, use the global offset table as the base.
425 unsigned JTEncoding = getJumpTableEncoding();
427 if ((JTEncoding == MachineJumpTableInfo::EK_GPRel64BlockAddress) ||
428 (JTEncoding == MachineJumpTableInfo::EK_GPRel32BlockAddress))
429 return DAG.getGLOBAL_OFFSET_TABLE(getPointerTy(DAG.getDataLayout()));
431 return Table;
434 /// This returns the relocation base for the given PIC jumptable, the same as
435 /// getPICJumpTableRelocBase, but as an MCExpr.
436 const MCExpr *
437 TargetLowering::getPICJumpTableRelocBaseExpr(const MachineFunction *MF,
438 unsigned JTI,MCContext &Ctx) const{
439 // The normal PIC reloc base is the label at the start of the jump table.
440 return MCSymbolRefExpr::create(MF->getJTISymbol(JTI, Ctx), Ctx);
443 bool
444 TargetLowering::isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const {
445 const TargetMachine &TM = getTargetMachine();
446 const GlobalValue *GV = GA->getGlobal();
448 // If the address is not even local to this DSO we will have to load it from
449 // a got and then add the offset.
450 if (!TM.shouldAssumeDSOLocal(*GV->getParent(), GV))
451 return false;
453 // If the code is position independent we will have to add a base register.
454 if (isPositionIndependent())
455 return false;
457 // Otherwise we can do it.
458 return true;
461 //===----------------------------------------------------------------------===//
462 // Optimization Methods
463 //===----------------------------------------------------------------------===//
465 /// If the specified instruction has a constant integer operand and there are
466 /// bits set in that constant that are not demanded, then clear those bits and
467 /// return true.
468 bool TargetLowering::ShrinkDemandedConstant(SDValue Op, const APInt &Demanded,
469 TargetLoweringOpt &TLO) const {
470 SDLoc DL(Op);
471 unsigned Opcode = Op.getOpcode();
473 // Do target-specific constant optimization.
474 if (targetShrinkDemandedConstant(Op, Demanded, TLO))
475 return TLO.New.getNode();
477 // FIXME: ISD::SELECT, ISD::SELECT_CC
478 switch (Opcode) {
479 default:
480 break;
481 case ISD::XOR:
482 case ISD::AND:
483 case ISD::OR: {
484 auto *Op1C = dyn_cast<ConstantSDNode>(Op.getOperand(1));
485 if (!Op1C)
486 return false;
488 // If this is a 'not' op, don't touch it because that's a canonical form.
489 const APInt &C = Op1C->getAPIntValue();
490 if (Opcode == ISD::XOR && Demanded.isSubsetOf(C))
491 return false;
493 if (!C.isSubsetOf(Demanded)) {
494 EVT VT = Op.getValueType();
495 SDValue NewC = TLO.DAG.getConstant(Demanded & C, DL, VT);
496 SDValue NewOp = TLO.DAG.getNode(Opcode, DL, VT, Op.getOperand(0), NewC);
497 return TLO.CombineTo(Op, NewOp);
500 break;
504 return false;
507 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
508 /// This uses isZExtFree and ZERO_EXTEND for the widening cast, but it could be
509 /// generalized for targets with other types of implicit widening casts.
510 bool TargetLowering::ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
511 const APInt &Demanded,
512 TargetLoweringOpt &TLO) const {
513 assert(Op.getNumOperands() == 2 &&
514 "ShrinkDemandedOp only supports binary operators!");
515 assert(Op.getNode()->getNumValues() == 1 &&
516 "ShrinkDemandedOp only supports nodes with one result!");
518 SelectionDAG &DAG = TLO.DAG;
519 SDLoc dl(Op);
521 // Early return, as this function cannot handle vector types.
522 if (Op.getValueType().isVector())
523 return false;
525 // Don't do this if the node has another user, which may require the
526 // full value.
527 if (!Op.getNode()->hasOneUse())
528 return false;
530 // Search for the smallest integer type with free casts to and from
531 // Op's type. For expedience, just check power-of-2 integer types.
532 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
533 unsigned DemandedSize = Demanded.getActiveBits();
534 unsigned SmallVTBits = DemandedSize;
535 if (!isPowerOf2_32(SmallVTBits))
536 SmallVTBits = NextPowerOf2(SmallVTBits);
537 for (; SmallVTBits < BitWidth; SmallVTBits = NextPowerOf2(SmallVTBits)) {
538 EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), SmallVTBits);
539 if (TLI.isTruncateFree(Op.getValueType(), SmallVT) &&
540 TLI.isZExtFree(SmallVT, Op.getValueType())) {
541 // We found a type with free casts.
542 SDValue X = DAG.getNode(
543 Op.getOpcode(), dl, SmallVT,
544 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(0)),
545 DAG.getNode(ISD::TRUNCATE, dl, SmallVT, Op.getOperand(1)));
546 assert(DemandedSize <= SmallVTBits && "Narrowed below demanded bits?");
547 SDValue Z = DAG.getNode(ISD::ANY_EXTEND, dl, Op.getValueType(), X);
548 return TLO.CombineTo(Op, Z);
551 return false;
554 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
555 DAGCombinerInfo &DCI) const {
556 SelectionDAG &DAG = DCI.DAG;
557 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
558 !DCI.isBeforeLegalizeOps());
559 KnownBits Known;
561 bool Simplified = SimplifyDemandedBits(Op, DemandedBits, Known, TLO);
562 if (Simplified) {
563 DCI.AddToWorklist(Op.getNode());
564 DCI.CommitTargetLoweringOpt(TLO);
566 return Simplified;
569 bool TargetLowering::SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits,
570 KnownBits &Known,
571 TargetLoweringOpt &TLO,
572 unsigned Depth,
573 bool AssumeSingleUse) const {
574 EVT VT = Op.getValueType();
575 APInt DemandedElts = VT.isVector()
576 ? APInt::getAllOnesValue(VT.getVectorNumElements())
577 : APInt(1, 1);
578 return SimplifyDemandedBits(Op, DemandedBits, DemandedElts, Known, TLO, Depth,
579 AssumeSingleUse);
582 // TODO: Can we merge SelectionDAG::GetDemandedBits into this?
583 // TODO: Under what circumstances can we create nodes? Constant folding?
584 SDValue TargetLowering::SimplifyMultipleUseDemandedBits(
585 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
586 SelectionDAG &DAG, unsigned Depth) const {
587 // Limit search depth.
588 if (Depth >= 6)
589 return SDValue();
591 // Ignore UNDEFs.
592 if (Op.isUndef())
593 return SDValue();
595 // Not demanding any bits/elts from Op.
596 if (DemandedBits == 0 || DemandedElts == 0)
597 return DAG.getUNDEF(Op.getValueType());
599 unsigned NumElts = DemandedElts.getBitWidth();
600 KnownBits LHSKnown, RHSKnown;
601 switch (Op.getOpcode()) {
602 case ISD::BITCAST: {
603 SDValue Src = peekThroughBitcasts(Op.getOperand(0));
604 EVT SrcVT = Src.getValueType();
605 EVT DstVT = Op.getValueType();
606 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
607 unsigned NumDstEltBits = DstVT.getScalarSizeInBits();
609 if (NumSrcEltBits == NumDstEltBits)
610 if (SDValue V = SimplifyMultipleUseDemandedBits(
611 Src, DemandedBits, DemandedElts, DAG, Depth + 1))
612 return DAG.getBitcast(DstVT, V);
614 // TODO - bigendian once we have test coverage.
615 if (SrcVT.isVector() && (NumDstEltBits % NumSrcEltBits) == 0 &&
616 DAG.getDataLayout().isLittleEndian()) {
617 unsigned Scale = NumDstEltBits / NumSrcEltBits;
618 unsigned NumSrcElts = SrcVT.getVectorNumElements();
619 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
620 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
621 for (unsigned i = 0; i != Scale; ++i) {
622 unsigned Offset = i * NumSrcEltBits;
623 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
624 if (!Sub.isNullValue()) {
625 DemandedSrcBits |= Sub;
626 for (unsigned j = 0; j != NumElts; ++j)
627 if (DemandedElts[j])
628 DemandedSrcElts.setBit((j * Scale) + i);
632 if (SDValue V = SimplifyMultipleUseDemandedBits(
633 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
634 return DAG.getBitcast(DstVT, V);
637 // TODO - bigendian once we have test coverage.
638 if ((NumSrcEltBits % NumDstEltBits) == 0 &&
639 DAG.getDataLayout().isLittleEndian()) {
640 unsigned Scale = NumSrcEltBits / NumDstEltBits;
641 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
642 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
643 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
644 for (unsigned i = 0; i != NumElts; ++i)
645 if (DemandedElts[i]) {
646 unsigned Offset = (i % Scale) * NumDstEltBits;
647 DemandedSrcBits.insertBits(DemandedBits, Offset);
648 DemandedSrcElts.setBit(i / Scale);
651 if (SDValue V = SimplifyMultipleUseDemandedBits(
652 Src, DemandedSrcBits, DemandedSrcElts, DAG, Depth + 1))
653 return DAG.getBitcast(DstVT, V);
656 break;
658 case ISD::AND: {
659 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
660 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
662 // If all of the demanded bits are known 1 on one side, return the other.
663 // These bits cannot contribute to the result of the 'and' in this
664 // context.
665 if (DemandedBits.isSubsetOf(LHSKnown.Zero | RHSKnown.One))
666 return Op.getOperand(0);
667 if (DemandedBits.isSubsetOf(RHSKnown.Zero | LHSKnown.One))
668 return Op.getOperand(1);
669 break;
671 case ISD::OR: {
672 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
673 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
675 // If all of the demanded bits are known zero on one side, return the
676 // other. These bits cannot contribute to the result of the 'or' in this
677 // context.
678 if (DemandedBits.isSubsetOf(LHSKnown.One | RHSKnown.Zero))
679 return Op.getOperand(0);
680 if (DemandedBits.isSubsetOf(RHSKnown.One | LHSKnown.Zero))
681 return Op.getOperand(1);
682 break;
684 case ISD::XOR: {
685 LHSKnown = DAG.computeKnownBits(Op.getOperand(0), DemandedElts, Depth + 1);
686 RHSKnown = DAG.computeKnownBits(Op.getOperand(1), DemandedElts, Depth + 1);
688 // If all of the demanded bits are known zero on one side, return the
689 // other.
690 if (DemandedBits.isSubsetOf(RHSKnown.Zero))
691 return Op.getOperand(0);
692 if (DemandedBits.isSubsetOf(LHSKnown.Zero))
693 return Op.getOperand(1);
694 break;
696 case ISD::SIGN_EXTEND_INREG: {
697 // If none of the extended bits are demanded, eliminate the sextinreg.
698 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
699 if (DemandedBits.getActiveBits() <= ExVT.getScalarSizeInBits())
700 return Op.getOperand(0);
701 break;
703 case ISD::INSERT_VECTOR_ELT: {
704 // If we don't demand the inserted element, return the base vector.
705 SDValue Vec = Op.getOperand(0);
706 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
707 EVT VecVT = Vec.getValueType();
708 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements()) &&
709 !DemandedElts[CIdx->getZExtValue()])
710 return Vec;
711 break;
713 case ISD::VECTOR_SHUFFLE: {
714 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
716 // If all the demanded elts are from one operand and are inline,
717 // then we can use the operand directly.
718 bool AllUndef = true, IdentityLHS = true, IdentityRHS = true;
719 for (unsigned i = 0; i != NumElts; ++i) {
720 int M = ShuffleMask[i];
721 if (M < 0 || !DemandedElts[i])
722 continue;
723 AllUndef = false;
724 IdentityLHS &= (M == (int)i);
725 IdentityRHS &= ((M - NumElts) == i);
728 if (AllUndef)
729 return DAG.getUNDEF(Op.getValueType());
730 if (IdentityLHS)
731 return Op.getOperand(0);
732 if (IdentityRHS)
733 return Op.getOperand(1);
734 break;
736 default:
737 if (Op.getOpcode() >= ISD::BUILTIN_OP_END)
738 if (SDValue V = SimplifyMultipleUseDemandedBitsForTargetNode(
739 Op, DemandedBits, DemandedElts, DAG, Depth))
740 return V;
741 break;
743 return SDValue();
746 /// Look at Op. At this point, we know that only the OriginalDemandedBits of the
747 /// result of Op are ever used downstream. If we can use this information to
748 /// simplify Op, create a new simplified DAG node and return true, returning the
749 /// original and new nodes in Old and New. Otherwise, analyze the expression and
750 /// return a mask of Known bits for the expression (used to simplify the
751 /// caller). The Known bits may only be accurate for those bits in the
752 /// OriginalDemandedBits and OriginalDemandedElts.
753 bool TargetLowering::SimplifyDemandedBits(
754 SDValue Op, const APInt &OriginalDemandedBits,
755 const APInt &OriginalDemandedElts, KnownBits &Known, TargetLoweringOpt &TLO,
756 unsigned Depth, bool AssumeSingleUse) const {
757 unsigned BitWidth = OriginalDemandedBits.getBitWidth();
758 assert(Op.getScalarValueSizeInBits() == BitWidth &&
759 "Mask size mismatches value type size!");
761 unsigned NumElts = OriginalDemandedElts.getBitWidth();
762 assert((!Op.getValueType().isVector() ||
763 NumElts == Op.getValueType().getVectorNumElements()) &&
764 "Unexpected vector size");
766 APInt DemandedBits = OriginalDemandedBits;
767 APInt DemandedElts = OriginalDemandedElts;
768 SDLoc dl(Op);
769 auto &DL = TLO.DAG.getDataLayout();
771 // Don't know anything.
772 Known = KnownBits(BitWidth);
774 // Undef operand.
775 if (Op.isUndef())
776 return false;
778 if (Op.getOpcode() == ISD::Constant) {
779 // We know all of the bits for a constant!
780 Known.One = cast<ConstantSDNode>(Op)->getAPIntValue();
781 Known.Zero = ~Known.One;
782 return false;
785 // Other users may use these bits.
786 EVT VT = Op.getValueType();
787 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse) {
788 if (Depth != 0) {
789 // If not at the root, Just compute the Known bits to
790 // simplify things downstream.
791 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
792 return false;
794 // If this is the root being simplified, allow it to have multiple uses,
795 // just set the DemandedBits/Elts to all bits.
796 DemandedBits = APInt::getAllOnesValue(BitWidth);
797 DemandedElts = APInt::getAllOnesValue(NumElts);
798 } else if (OriginalDemandedBits == 0 || OriginalDemandedElts == 0) {
799 // Not demanding any bits/elts from Op.
800 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
801 } else if (Depth >= 6) { // Limit search depth.
802 return false;
805 KnownBits Known2, KnownOut;
806 switch (Op.getOpcode()) {
807 case ISD::SCALAR_TO_VECTOR: {
808 if (!DemandedElts[0])
809 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
811 KnownBits SrcKnown;
812 SDValue Src = Op.getOperand(0);
813 unsigned SrcBitWidth = Src.getScalarValueSizeInBits();
814 APInt SrcDemandedBits = DemandedBits.zextOrSelf(SrcBitWidth);
815 if (SimplifyDemandedBits(Src, SrcDemandedBits, SrcKnown, TLO, Depth + 1))
816 return true;
817 Known = SrcKnown.zextOrTrunc(BitWidth, false);
818 break;
820 case ISD::BUILD_VECTOR:
821 // Collect the known bits that are shared by every demanded element.
822 // TODO: Call SimplifyDemandedBits for non-constant demanded elements.
823 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
824 return false; // Don't fall through, will infinitely loop.
825 case ISD::LOAD: {
826 LoadSDNode *LD = cast<LoadSDNode>(Op);
827 if (getTargetConstantFromLoad(LD)) {
828 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
829 return false; // Don't fall through, will infinitely loop.
831 break;
833 case ISD::INSERT_VECTOR_ELT: {
834 SDValue Vec = Op.getOperand(0);
835 SDValue Scl = Op.getOperand(1);
836 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
837 EVT VecVT = Vec.getValueType();
839 // If index isn't constant, assume we need all vector elements AND the
840 // inserted element.
841 APInt DemandedVecElts(DemandedElts);
842 if (CIdx && CIdx->getAPIntValue().ult(VecVT.getVectorNumElements())) {
843 unsigned Idx = CIdx->getZExtValue();
844 DemandedVecElts.clearBit(Idx);
846 // Inserted element is not required.
847 if (!DemandedElts[Idx])
848 return TLO.CombineTo(Op, Vec);
851 KnownBits KnownScl;
852 unsigned NumSclBits = Scl.getScalarValueSizeInBits();
853 APInt DemandedSclBits = DemandedBits.zextOrTrunc(NumSclBits);
854 if (SimplifyDemandedBits(Scl, DemandedSclBits, KnownScl, TLO, Depth + 1))
855 return true;
857 Known = KnownScl.zextOrTrunc(BitWidth, false);
859 KnownBits KnownVec;
860 if (SimplifyDemandedBits(Vec, DemandedBits, DemandedVecElts, KnownVec, TLO,
861 Depth + 1))
862 return true;
864 if (!!DemandedVecElts) {
865 Known.One &= KnownVec.One;
866 Known.Zero &= KnownVec.Zero;
869 return false;
871 case ISD::INSERT_SUBVECTOR: {
872 SDValue Base = Op.getOperand(0);
873 SDValue Sub = Op.getOperand(1);
874 EVT SubVT = Sub.getValueType();
875 unsigned NumSubElts = SubVT.getVectorNumElements();
877 // If index isn't constant, assume we need the original demanded base
878 // elements and ALL the inserted subvector elements.
879 APInt BaseElts = DemandedElts;
880 APInt SubElts = APInt::getAllOnesValue(NumSubElts);
881 if (isa<ConstantSDNode>(Op.getOperand(2))) {
882 const APInt &Idx = Op.getConstantOperandAPInt(2);
883 if (Idx.ule(NumElts - NumSubElts)) {
884 unsigned SubIdx = Idx.getZExtValue();
885 SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
886 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
890 KnownBits KnownSub, KnownBase;
891 if (SimplifyDemandedBits(Sub, DemandedBits, SubElts, KnownSub, TLO,
892 Depth + 1))
893 return true;
894 if (SimplifyDemandedBits(Base, DemandedBits, BaseElts, KnownBase, TLO,
895 Depth + 1))
896 return true;
898 Known.Zero.setAllBits();
899 Known.One.setAllBits();
900 if (!!SubElts) {
901 Known.One &= KnownSub.One;
902 Known.Zero &= KnownSub.Zero;
904 if (!!BaseElts) {
905 Known.One &= KnownBase.One;
906 Known.Zero &= KnownBase.Zero;
908 break;
910 case ISD::CONCAT_VECTORS: {
911 Known.Zero.setAllBits();
912 Known.One.setAllBits();
913 EVT SubVT = Op.getOperand(0).getValueType();
914 unsigned NumSubVecs = Op.getNumOperands();
915 unsigned NumSubElts = SubVT.getVectorNumElements();
916 for (unsigned i = 0; i != NumSubVecs; ++i) {
917 APInt DemandedSubElts =
918 DemandedElts.extractBits(NumSubElts, i * NumSubElts);
919 if (SimplifyDemandedBits(Op.getOperand(i), DemandedBits, DemandedSubElts,
920 Known2, TLO, Depth + 1))
921 return true;
922 // Known bits are shared by every demanded subvector element.
923 if (!!DemandedSubElts) {
924 Known.One &= Known2.One;
925 Known.Zero &= Known2.Zero;
928 break;
930 case ISD::VECTOR_SHUFFLE: {
931 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
933 // Collect demanded elements from shuffle operands..
934 APInt DemandedLHS(NumElts, 0);
935 APInt DemandedRHS(NumElts, 0);
936 for (unsigned i = 0; i != NumElts; ++i) {
937 if (!DemandedElts[i])
938 continue;
939 int M = ShuffleMask[i];
940 if (M < 0) {
941 // For UNDEF elements, we don't know anything about the common state of
942 // the shuffle result.
943 DemandedLHS.clearAllBits();
944 DemandedRHS.clearAllBits();
945 break;
947 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
948 if (M < (int)NumElts)
949 DemandedLHS.setBit(M);
950 else
951 DemandedRHS.setBit(M - NumElts);
954 if (!!DemandedLHS || !!DemandedRHS) {
955 SDValue Op0 = Op.getOperand(0);
956 SDValue Op1 = Op.getOperand(1);
958 Known.Zero.setAllBits();
959 Known.One.setAllBits();
960 if (!!DemandedLHS) {
961 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedLHS, Known2, TLO,
962 Depth + 1))
963 return true;
964 Known.One &= Known2.One;
965 Known.Zero &= Known2.Zero;
967 if (!!DemandedRHS) {
968 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedRHS, Known2, TLO,
969 Depth + 1))
970 return true;
971 Known.One &= Known2.One;
972 Known.Zero &= Known2.Zero;
975 // Attempt to avoid multi-use ops if we don't need anything from them.
976 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
977 Op0, DemandedBits, DemandedLHS, TLO.DAG, Depth + 1);
978 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
979 Op1, DemandedBits, DemandedRHS, TLO.DAG, Depth + 1);
980 if (DemandedOp0 || DemandedOp1) {
981 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
982 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
983 SDValue NewOp = TLO.DAG.getVectorShuffle(VT, dl, Op0, Op1, ShuffleMask);
984 return TLO.CombineTo(Op, NewOp);
987 break;
989 case ISD::AND: {
990 SDValue Op0 = Op.getOperand(0);
991 SDValue Op1 = Op.getOperand(1);
993 // If the RHS is a constant, check to see if the LHS would be zero without
994 // using the bits from the RHS. Below, we use knowledge about the RHS to
995 // simplify the LHS, here we're using information from the LHS to simplify
996 // the RHS.
997 if (ConstantSDNode *RHSC = isConstOrConstSplat(Op1)) {
998 // Do not increment Depth here; that can cause an infinite loop.
999 KnownBits LHSKnown = TLO.DAG.computeKnownBits(Op0, DemandedElts, Depth);
1000 // If the LHS already has zeros where RHSC does, this 'and' is dead.
1001 if ((LHSKnown.Zero & DemandedBits) ==
1002 (~RHSC->getAPIntValue() & DemandedBits))
1003 return TLO.CombineTo(Op, Op0);
1005 // If any of the set bits in the RHS are known zero on the LHS, shrink
1006 // the constant.
1007 if (ShrinkDemandedConstant(Op, ~LHSKnown.Zero & DemandedBits, TLO))
1008 return true;
1010 // Bitwise-not (xor X, -1) is a special case: we don't usually shrink its
1011 // constant, but if this 'and' is only clearing bits that were just set by
1012 // the xor, then this 'and' can be eliminated by shrinking the mask of
1013 // the xor. For example, for a 32-bit X:
1014 // and (xor (srl X, 31), -1), 1 --> xor (srl X, 31), 1
1015 if (isBitwiseNot(Op0) && Op0.hasOneUse() &&
1016 LHSKnown.One == ~RHSC->getAPIntValue()) {
1017 SDValue Xor = TLO.DAG.getNode(ISD::XOR, dl, VT, Op0.getOperand(0), Op1);
1018 return TLO.CombineTo(Op, Xor);
1022 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1023 Depth + 1))
1024 return true;
1025 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1026 if (SimplifyDemandedBits(Op0, ~Known.Zero & DemandedBits, DemandedElts,
1027 Known2, TLO, Depth + 1))
1028 return true;
1029 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1031 // Attempt to avoid multi-use ops if we don't need anything from them.
1032 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1033 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1034 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1035 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1036 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1037 if (DemandedOp0 || DemandedOp1) {
1038 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1039 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1040 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1041 return TLO.CombineTo(Op, NewOp);
1045 // If all of the demanded bits are known one on one side, return the other.
1046 // These bits cannot contribute to the result of the 'and'.
1047 if (DemandedBits.isSubsetOf(Known2.Zero | Known.One))
1048 return TLO.CombineTo(Op, Op0);
1049 if (DemandedBits.isSubsetOf(Known.Zero | Known2.One))
1050 return TLO.CombineTo(Op, Op1);
1051 // If all of the demanded bits in the inputs are known zeros, return zero.
1052 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1053 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, dl, VT));
1054 // If the RHS is a constant, see if we can simplify it.
1055 if (ShrinkDemandedConstant(Op, ~Known2.Zero & DemandedBits, TLO))
1056 return true;
1057 // If the operation can be done in a smaller type, do so.
1058 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1059 return true;
1061 // Output known-1 bits are only known if set in both the LHS & RHS.
1062 Known.One &= Known2.One;
1063 // Output known-0 are known to be clear if zero in either the LHS | RHS.
1064 Known.Zero |= Known2.Zero;
1065 break;
1067 case ISD::OR: {
1068 SDValue Op0 = Op.getOperand(0);
1069 SDValue Op1 = Op.getOperand(1);
1071 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1072 Depth + 1))
1073 return true;
1074 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1075 if (SimplifyDemandedBits(Op0, ~Known.One & DemandedBits, DemandedElts,
1076 Known2, TLO, Depth + 1))
1077 return true;
1078 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1080 // Attempt to avoid multi-use ops if we don't need anything from them.
1081 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1082 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1083 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1084 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1085 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1086 if (DemandedOp0 || DemandedOp1) {
1087 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1088 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1089 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1090 return TLO.CombineTo(Op, NewOp);
1094 // If all of the demanded bits are known zero on one side, return the other.
1095 // These bits cannot contribute to the result of the 'or'.
1096 if (DemandedBits.isSubsetOf(Known2.One | Known.Zero))
1097 return TLO.CombineTo(Op, Op0);
1098 if (DemandedBits.isSubsetOf(Known.One | Known2.Zero))
1099 return TLO.CombineTo(Op, Op1);
1100 // If the RHS is a constant, see if we can simplify it.
1101 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1102 return true;
1103 // If the operation can be done in a smaller type, do so.
1104 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1105 return true;
1107 // Output known-0 bits are only known if clear in both the LHS & RHS.
1108 Known.Zero &= Known2.Zero;
1109 // Output known-1 are known to be set if set in either the LHS | RHS.
1110 Known.One |= Known2.One;
1111 break;
1113 case ISD::XOR: {
1114 SDValue Op0 = Op.getOperand(0);
1115 SDValue Op1 = Op.getOperand(1);
1117 if (SimplifyDemandedBits(Op1, DemandedBits, DemandedElts, Known, TLO,
1118 Depth + 1))
1119 return true;
1120 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1121 if (SimplifyDemandedBits(Op0, DemandedBits, DemandedElts, Known2, TLO,
1122 Depth + 1))
1123 return true;
1124 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1126 // Attempt to avoid multi-use ops if we don't need anything from them.
1127 if (!DemandedBits.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1128 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1129 Op0, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1130 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1131 Op1, DemandedBits, DemandedElts, TLO.DAG, Depth + 1);
1132 if (DemandedOp0 || DemandedOp1) {
1133 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1134 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1135 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1);
1136 return TLO.CombineTo(Op, NewOp);
1140 // If all of the demanded bits are known zero on one side, return the other.
1141 // These bits cannot contribute to the result of the 'xor'.
1142 if (DemandedBits.isSubsetOf(Known.Zero))
1143 return TLO.CombineTo(Op, Op0);
1144 if (DemandedBits.isSubsetOf(Known2.Zero))
1145 return TLO.CombineTo(Op, Op1);
1146 // If the operation can be done in a smaller type, do so.
1147 if (ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1148 return true;
1150 // If all of the unknown bits are known to be zero on one side or the other
1151 // (but not both) turn this into an *inclusive* or.
1152 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1153 if (DemandedBits.isSubsetOf(Known.Zero | Known2.Zero))
1154 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::OR, dl, VT, Op0, Op1));
1156 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1157 KnownOut.Zero = (Known.Zero & Known2.Zero) | (Known.One & Known2.One);
1158 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1159 KnownOut.One = (Known.Zero & Known2.One) | (Known.One & Known2.Zero);
1161 if (ConstantSDNode *C = isConstOrConstSplat(Op1)) {
1162 // If one side is a constant, and all of the known set bits on the other
1163 // side are also set in the constant, turn this into an AND, as we know
1164 // the bits will be cleared.
1165 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1166 // NB: it is okay if more bits are known than are requested
1167 if (C->getAPIntValue() == Known2.One) {
1168 SDValue ANDC =
1169 TLO.DAG.getConstant(~C->getAPIntValue() & DemandedBits, dl, VT);
1170 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::AND, dl, VT, Op0, ANDC));
1173 // If the RHS is a constant, see if we can change it. Don't alter a -1
1174 // constant because that's a 'not' op, and that is better for combining
1175 // and codegen.
1176 if (!C->isAllOnesValue()) {
1177 if (DemandedBits.isSubsetOf(C->getAPIntValue())) {
1178 // We're flipping all demanded bits. Flip the undemanded bits too.
1179 SDValue New = TLO.DAG.getNOT(dl, Op0, VT);
1180 return TLO.CombineTo(Op, New);
1182 // If we can't turn this into a 'not', try to shrink the constant.
1183 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1184 return true;
1188 Known = std::move(KnownOut);
1189 break;
1191 case ISD::SELECT:
1192 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known, TLO,
1193 Depth + 1))
1194 return true;
1195 if (SimplifyDemandedBits(Op.getOperand(1), DemandedBits, Known2, TLO,
1196 Depth + 1))
1197 return true;
1198 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1199 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1201 // If the operands are constants, see if we can simplify them.
1202 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1203 return true;
1205 // Only known if known in both the LHS and RHS.
1206 Known.One &= Known2.One;
1207 Known.Zero &= Known2.Zero;
1208 break;
1209 case ISD::SELECT_CC:
1210 if (SimplifyDemandedBits(Op.getOperand(3), DemandedBits, Known, TLO,
1211 Depth + 1))
1212 return true;
1213 if (SimplifyDemandedBits(Op.getOperand(2), DemandedBits, Known2, TLO,
1214 Depth + 1))
1215 return true;
1216 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1217 assert(!Known2.hasConflict() && "Bits known to be one AND zero?");
1219 // If the operands are constants, see if we can simplify them.
1220 if (ShrinkDemandedConstant(Op, DemandedBits, TLO))
1221 return true;
1223 // Only known if known in both the LHS and RHS.
1224 Known.One &= Known2.One;
1225 Known.Zero &= Known2.Zero;
1226 break;
1227 case ISD::SETCC: {
1228 SDValue Op0 = Op.getOperand(0);
1229 SDValue Op1 = Op.getOperand(1);
1230 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
1231 // If (1) we only need the sign-bit, (2) the setcc operands are the same
1232 // width as the setcc result, and (3) the result of a setcc conforms to 0 or
1233 // -1, we may be able to bypass the setcc.
1234 if (DemandedBits.isSignMask() &&
1235 Op0.getScalarValueSizeInBits() == BitWidth &&
1236 getBooleanContents(VT) ==
1237 BooleanContent::ZeroOrNegativeOneBooleanContent) {
1238 // If we're testing X < 0, then this compare isn't needed - just use X!
1239 // FIXME: We're limiting to integer types here, but this should also work
1240 // if we don't care about FP signed-zero. The use of SETLT with FP means
1241 // that we don't care about NaNs.
1242 if (CC == ISD::SETLT && Op1.getValueType().isInteger() &&
1243 (isNullConstant(Op1) || ISD::isBuildVectorAllZeros(Op1.getNode())))
1244 return TLO.CombineTo(Op, Op0);
1246 // TODO: Should we check for other forms of sign-bit comparisons?
1247 // Examples: X <= -1, X >= 0
1249 if (getBooleanContents(Op0.getValueType()) ==
1250 TargetLowering::ZeroOrOneBooleanContent &&
1251 BitWidth > 1)
1252 Known.Zero.setBitsFrom(1);
1253 break;
1255 case ISD::SHL: {
1256 SDValue Op0 = Op.getOperand(0);
1257 SDValue Op1 = Op.getOperand(1);
1259 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1260 // If the shift count is an invalid immediate, don't do anything.
1261 if (SA->getAPIntValue().uge(BitWidth))
1262 break;
1264 unsigned ShAmt = SA->getZExtValue();
1265 if (ShAmt == 0)
1266 return TLO.CombineTo(Op, Op0);
1268 // If this is ((X >>u C1) << ShAmt), see if we can simplify this into a
1269 // single shift. We can do this if the bottom bits (which are shifted
1270 // out) are never demanded.
1271 // TODO - support non-uniform vector amounts.
1272 if (Op0.getOpcode() == ISD::SRL) {
1273 if ((DemandedBits & APInt::getLowBitsSet(BitWidth, ShAmt)) == 0) {
1274 if (ConstantSDNode *SA2 =
1275 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1276 if (SA2->getAPIntValue().ult(BitWidth)) {
1277 unsigned C1 = SA2->getZExtValue();
1278 unsigned Opc = ISD::SHL;
1279 int Diff = ShAmt - C1;
1280 if (Diff < 0) {
1281 Diff = -Diff;
1282 Opc = ISD::SRL;
1285 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, Op1.getValueType());
1286 return TLO.CombineTo(
1287 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1293 if (SimplifyDemandedBits(Op0, DemandedBits.lshr(ShAmt), DemandedElts,
1294 Known, TLO, Depth + 1))
1295 return true;
1297 // Try shrinking the operation as long as the shift amount will still be
1298 // in range.
1299 if ((ShAmt < DemandedBits.getActiveBits()) &&
1300 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO))
1301 return true;
1303 // Convert (shl (anyext x, c)) to (anyext (shl x, c)) if the high bits
1304 // are not demanded. This will likely allow the anyext to be folded away.
1305 if (Op0.getOpcode() == ISD::ANY_EXTEND) {
1306 SDValue InnerOp = Op0.getOperand(0);
1307 EVT InnerVT = InnerOp.getValueType();
1308 unsigned InnerBits = InnerVT.getScalarSizeInBits();
1309 if (ShAmt < InnerBits && DemandedBits.getActiveBits() <= InnerBits &&
1310 isTypeDesirableForOp(ISD::SHL, InnerVT)) {
1311 EVT ShTy = getShiftAmountTy(InnerVT, DL);
1312 if (!APInt(BitWidth, ShAmt).isIntN(ShTy.getSizeInBits()))
1313 ShTy = InnerVT;
1314 SDValue NarrowShl =
1315 TLO.DAG.getNode(ISD::SHL, dl, InnerVT, InnerOp,
1316 TLO.DAG.getConstant(ShAmt, dl, ShTy));
1317 return TLO.CombineTo(
1318 Op, TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT, NarrowShl));
1320 // Repeat the SHL optimization above in cases where an extension
1321 // intervenes: (shl (anyext (shr x, c1)), c2) to
1322 // (shl (anyext x), c2-c1). This requires that the bottom c1 bits
1323 // aren't demanded (as above) and that the shifted upper c1 bits of
1324 // x aren't demanded.
1325 if (Op0.hasOneUse() && InnerOp.getOpcode() == ISD::SRL &&
1326 InnerOp.hasOneUse()) {
1327 if (ConstantSDNode *SA2 =
1328 isConstOrConstSplat(InnerOp.getOperand(1))) {
1329 unsigned InnerShAmt = SA2->getLimitedValue(InnerBits);
1330 if (InnerShAmt < ShAmt && InnerShAmt < InnerBits &&
1331 DemandedBits.getActiveBits() <=
1332 (InnerBits - InnerShAmt + ShAmt) &&
1333 DemandedBits.countTrailingZeros() >= ShAmt) {
1334 SDValue NewSA = TLO.DAG.getConstant(ShAmt - InnerShAmt, dl,
1335 Op1.getValueType());
1336 SDValue NewExt = TLO.DAG.getNode(ISD::ANY_EXTEND, dl, VT,
1337 InnerOp.getOperand(0));
1338 return TLO.CombineTo(
1339 Op, TLO.DAG.getNode(ISD::SHL, dl, VT, NewExt, NewSA));
1345 Known.Zero <<= ShAmt;
1346 Known.One <<= ShAmt;
1347 // low bits known zero.
1348 Known.Zero.setLowBits(ShAmt);
1350 break;
1352 case ISD::SRL: {
1353 SDValue Op0 = Op.getOperand(0);
1354 SDValue Op1 = Op.getOperand(1);
1356 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1357 // If the shift count is an invalid immediate, don't do anything.
1358 if (SA->getAPIntValue().uge(BitWidth))
1359 break;
1361 unsigned ShAmt = SA->getZExtValue();
1362 if (ShAmt == 0)
1363 return TLO.CombineTo(Op, Op0);
1365 EVT ShiftVT = Op1.getValueType();
1366 APInt InDemandedMask = (DemandedBits << ShAmt);
1368 // If the shift is exact, then it does demand the low bits (and knows that
1369 // they are zero).
1370 if (Op->getFlags().hasExact())
1371 InDemandedMask.setLowBits(ShAmt);
1373 // If this is ((X << C1) >>u ShAmt), see if we can simplify this into a
1374 // single shift. We can do this if the top bits (which are shifted out)
1375 // are never demanded.
1376 // TODO - support non-uniform vector amounts.
1377 if (Op0.getOpcode() == ISD::SHL) {
1378 if (ConstantSDNode *SA2 =
1379 isConstOrConstSplat(Op0.getOperand(1), DemandedElts)) {
1380 if ((DemandedBits & APInt::getHighBitsSet(BitWidth, ShAmt)) == 0) {
1381 if (SA2->getAPIntValue().ult(BitWidth)) {
1382 unsigned C1 = SA2->getZExtValue();
1383 unsigned Opc = ISD::SRL;
1384 int Diff = ShAmt - C1;
1385 if (Diff < 0) {
1386 Diff = -Diff;
1387 Opc = ISD::SHL;
1390 SDValue NewSA = TLO.DAG.getConstant(Diff, dl, ShiftVT);
1391 return TLO.CombineTo(
1392 Op, TLO.DAG.getNode(Opc, dl, VT, Op0.getOperand(0), NewSA));
1398 // Compute the new bits that are at the top now.
1399 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1400 Depth + 1))
1401 return true;
1402 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1403 Known.Zero.lshrInPlace(ShAmt);
1404 Known.One.lshrInPlace(ShAmt);
1406 Known.Zero.setHighBits(ShAmt); // High bits known zero.
1408 break;
1410 case ISD::SRA: {
1411 SDValue Op0 = Op.getOperand(0);
1412 SDValue Op1 = Op.getOperand(1);
1414 // If this is an arithmetic shift right and only the low-bit is set, we can
1415 // always convert this into a logical shr, even if the shift amount is
1416 // variable. The low bit of the shift cannot be an input sign bit unless
1417 // the shift amount is >= the size of the datatype, which is undefined.
1418 if (DemandedBits.isOneValue())
1419 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1));
1421 if (ConstantSDNode *SA = isConstOrConstSplat(Op1, DemandedElts)) {
1422 // If the shift count is an invalid immediate, don't do anything.
1423 if (SA->getAPIntValue().uge(BitWidth))
1424 break;
1426 unsigned ShAmt = SA->getZExtValue();
1427 if (ShAmt == 0)
1428 return TLO.CombineTo(Op, Op0);
1430 APInt InDemandedMask = (DemandedBits << ShAmt);
1432 // If the shift is exact, then it does demand the low bits (and knows that
1433 // they are zero).
1434 if (Op->getFlags().hasExact())
1435 InDemandedMask.setLowBits(ShAmt);
1437 // If any of the demanded bits are produced by the sign extension, we also
1438 // demand the input sign bit.
1439 if (DemandedBits.countLeadingZeros() < ShAmt)
1440 InDemandedMask.setSignBit();
1442 if (SimplifyDemandedBits(Op0, InDemandedMask, DemandedElts, Known, TLO,
1443 Depth + 1))
1444 return true;
1445 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1446 Known.Zero.lshrInPlace(ShAmt);
1447 Known.One.lshrInPlace(ShAmt);
1449 // If the input sign bit is known to be zero, or if none of the top bits
1450 // are demanded, turn this into an unsigned shift right.
1451 if (Known.Zero[BitWidth - ShAmt - 1] ||
1452 DemandedBits.countLeadingZeros() >= ShAmt) {
1453 SDNodeFlags Flags;
1454 Flags.setExact(Op->getFlags().hasExact());
1455 return TLO.CombineTo(
1456 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, Op1, Flags));
1459 int Log2 = DemandedBits.exactLogBase2();
1460 if (Log2 >= 0) {
1461 // The bit must come from the sign.
1462 SDValue NewSA =
1463 TLO.DAG.getConstant(BitWidth - 1 - Log2, dl, Op1.getValueType());
1464 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::SRL, dl, VT, Op0, NewSA));
1467 if (Known.One[BitWidth - ShAmt - 1])
1468 // New bits are known one.
1469 Known.One.setHighBits(ShAmt);
1471 break;
1473 case ISD::FSHL:
1474 case ISD::FSHR: {
1475 SDValue Op0 = Op.getOperand(0);
1476 SDValue Op1 = Op.getOperand(1);
1477 SDValue Op2 = Op.getOperand(2);
1478 bool IsFSHL = (Op.getOpcode() == ISD::FSHL);
1480 if (ConstantSDNode *SA = isConstOrConstSplat(Op2, DemandedElts)) {
1481 unsigned Amt = SA->getAPIntValue().urem(BitWidth);
1483 // For fshl, 0-shift returns the 1st arg.
1484 // For fshr, 0-shift returns the 2nd arg.
1485 if (Amt == 0) {
1486 if (SimplifyDemandedBits(IsFSHL ? Op0 : Op1, DemandedBits, DemandedElts,
1487 Known, TLO, Depth + 1))
1488 return true;
1489 break;
1492 // fshl: (Op0 << Amt) | (Op1 >> (BW - Amt))
1493 // fshr: (Op0 << (BW - Amt)) | (Op1 >> Amt)
1494 APInt Demanded0 = DemandedBits.lshr(IsFSHL ? Amt : (BitWidth - Amt));
1495 APInt Demanded1 = DemandedBits << (IsFSHL ? (BitWidth - Amt) : Amt);
1496 if (SimplifyDemandedBits(Op0, Demanded0, DemandedElts, Known2, TLO,
1497 Depth + 1))
1498 return true;
1499 if (SimplifyDemandedBits(Op1, Demanded1, DemandedElts, Known, TLO,
1500 Depth + 1))
1501 return true;
1503 Known2.One <<= (IsFSHL ? Amt : (BitWidth - Amt));
1504 Known2.Zero <<= (IsFSHL ? Amt : (BitWidth - Amt));
1505 Known.One.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1506 Known.Zero.lshrInPlace(IsFSHL ? (BitWidth - Amt) : Amt);
1507 Known.One |= Known2.One;
1508 Known.Zero |= Known2.Zero;
1510 break;
1512 case ISD::BITREVERSE: {
1513 SDValue Src = Op.getOperand(0);
1514 APInt DemandedSrcBits = DemandedBits.reverseBits();
1515 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedElts, Known2, TLO,
1516 Depth + 1))
1517 return true;
1518 Known.One = Known2.One.reverseBits();
1519 Known.Zero = Known2.Zero.reverseBits();
1520 break;
1522 case ISD::SIGN_EXTEND_INREG: {
1523 SDValue Op0 = Op.getOperand(0);
1524 EVT ExVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1525 unsigned ExVTBits = ExVT.getScalarSizeInBits();
1527 // If we only care about the highest bit, don't bother shifting right.
1528 if (DemandedBits.isSignMask()) {
1529 unsigned NumSignBits = TLO.DAG.ComputeNumSignBits(Op0);
1530 bool AlreadySignExtended = NumSignBits >= BitWidth - ExVTBits + 1;
1531 // However if the input is already sign extended we expect the sign
1532 // extension to be dropped altogether later and do not simplify.
1533 if (!AlreadySignExtended) {
1534 // Compute the correct shift amount type, which must be getShiftAmountTy
1535 // for scalar types after legalization.
1536 EVT ShiftAmtTy = VT;
1537 if (TLO.LegalTypes() && !ShiftAmtTy.isVector())
1538 ShiftAmtTy = getShiftAmountTy(ShiftAmtTy, DL);
1540 SDValue ShiftAmt =
1541 TLO.DAG.getConstant(BitWidth - ExVTBits, dl, ShiftAmtTy);
1542 return TLO.CombineTo(Op,
1543 TLO.DAG.getNode(ISD::SHL, dl, VT, Op0, ShiftAmt));
1547 // If none of the extended bits are demanded, eliminate the sextinreg.
1548 if (DemandedBits.getActiveBits() <= ExVTBits)
1549 return TLO.CombineTo(Op, Op0);
1551 APInt InputDemandedBits = DemandedBits.getLoBits(ExVTBits);
1553 // Since the sign extended bits are demanded, we know that the sign
1554 // bit is demanded.
1555 InputDemandedBits.setBit(ExVTBits - 1);
1557 if (SimplifyDemandedBits(Op0, InputDemandedBits, Known, TLO, Depth + 1))
1558 return true;
1559 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1561 // If the sign bit of the input is known set or clear, then we know the
1562 // top bits of the result.
1564 // If the input sign bit is known zero, convert this into a zero extension.
1565 if (Known.Zero[ExVTBits - 1])
1566 return TLO.CombineTo(
1567 Op, TLO.DAG.getZeroExtendInReg(Op0, dl, ExVT.getScalarType()));
1569 APInt Mask = APInt::getLowBitsSet(BitWidth, ExVTBits);
1570 if (Known.One[ExVTBits - 1]) { // Input sign bit known set
1571 Known.One.setBitsFrom(ExVTBits);
1572 Known.Zero &= Mask;
1573 } else { // Input sign bit unknown
1574 Known.Zero &= Mask;
1575 Known.One &= Mask;
1577 break;
1579 case ISD::BUILD_PAIR: {
1580 EVT HalfVT = Op.getOperand(0).getValueType();
1581 unsigned HalfBitWidth = HalfVT.getScalarSizeInBits();
1583 APInt MaskLo = DemandedBits.getLoBits(HalfBitWidth).trunc(HalfBitWidth);
1584 APInt MaskHi = DemandedBits.getHiBits(HalfBitWidth).trunc(HalfBitWidth);
1586 KnownBits KnownLo, KnownHi;
1588 if (SimplifyDemandedBits(Op.getOperand(0), MaskLo, KnownLo, TLO, Depth + 1))
1589 return true;
1591 if (SimplifyDemandedBits(Op.getOperand(1), MaskHi, KnownHi, TLO, Depth + 1))
1592 return true;
1594 Known.Zero = KnownLo.Zero.zext(BitWidth) |
1595 KnownHi.Zero.zext(BitWidth).shl(HalfBitWidth);
1597 Known.One = KnownLo.One.zext(BitWidth) |
1598 KnownHi.One.zext(BitWidth).shl(HalfBitWidth);
1599 break;
1601 case ISD::ZERO_EXTEND:
1602 case ISD::ZERO_EXTEND_VECTOR_INREG: {
1603 SDValue Src = Op.getOperand(0);
1604 EVT SrcVT = Src.getValueType();
1605 unsigned InBits = SrcVT.getScalarSizeInBits();
1606 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1607 bool IsVecInReg = Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG;
1609 // If none of the top bits are demanded, convert this into an any_extend.
1610 if (DemandedBits.getActiveBits() <= InBits) {
1611 // If we only need the non-extended bits of the bottom element
1612 // then we can just bitcast to the result.
1613 if (IsVecInReg && DemandedElts == 1 &&
1614 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1615 TLO.DAG.getDataLayout().isLittleEndian())
1616 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1618 unsigned Opc =
1619 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1620 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1621 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1624 APInt InDemandedBits = DemandedBits.trunc(InBits);
1625 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1626 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1627 Depth + 1))
1628 return true;
1629 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1630 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1631 Known = Known.zext(BitWidth, true /* ExtendedBitsAreKnownZero */);
1632 break;
1634 case ISD::SIGN_EXTEND:
1635 case ISD::SIGN_EXTEND_VECTOR_INREG: {
1636 SDValue Src = Op.getOperand(0);
1637 EVT SrcVT = Src.getValueType();
1638 unsigned InBits = SrcVT.getScalarSizeInBits();
1639 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1640 bool IsVecInReg = Op.getOpcode() == ISD::SIGN_EXTEND_VECTOR_INREG;
1642 // If none of the top bits are demanded, convert this into an any_extend.
1643 if (DemandedBits.getActiveBits() <= InBits) {
1644 // If we only need the non-extended bits of the bottom element
1645 // then we can just bitcast to the result.
1646 if (IsVecInReg && DemandedElts == 1 &&
1647 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1648 TLO.DAG.getDataLayout().isLittleEndian())
1649 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1651 unsigned Opc =
1652 IsVecInReg ? ISD::ANY_EXTEND_VECTOR_INREG : ISD::ANY_EXTEND;
1653 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1654 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1657 APInt InDemandedBits = DemandedBits.trunc(InBits);
1658 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1660 // Since some of the sign extended bits are demanded, we know that the sign
1661 // bit is demanded.
1662 InDemandedBits.setBit(InBits - 1);
1664 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1665 Depth + 1))
1666 return true;
1667 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1668 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1670 // If the sign bit is known one, the top bits match.
1671 Known = Known.sext(BitWidth);
1673 // If the sign bit is known zero, convert this to a zero extend.
1674 if (Known.isNonNegative()) {
1675 unsigned Opc =
1676 IsVecInReg ? ISD::ZERO_EXTEND_VECTOR_INREG : ISD::ZERO_EXTEND;
1677 if (!TLO.LegalOperations() || isOperationLegal(Opc, VT))
1678 return TLO.CombineTo(Op, TLO.DAG.getNode(Opc, dl, VT, Src));
1680 break;
1682 case ISD::ANY_EXTEND:
1683 case ISD::ANY_EXTEND_VECTOR_INREG: {
1684 SDValue Src = Op.getOperand(0);
1685 EVT SrcVT = Src.getValueType();
1686 unsigned InBits = SrcVT.getScalarSizeInBits();
1687 unsigned InElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1688 bool IsVecInReg = Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG;
1690 // If we only need the bottom element then we can just bitcast.
1691 // TODO: Handle ANY_EXTEND?
1692 if (IsVecInReg && DemandedElts == 1 &&
1693 VT.getSizeInBits() == SrcVT.getSizeInBits() &&
1694 TLO.DAG.getDataLayout().isLittleEndian())
1695 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
1697 APInt InDemandedBits = DemandedBits.trunc(InBits);
1698 APInt InDemandedElts = DemandedElts.zextOrSelf(InElts);
1699 if (SimplifyDemandedBits(Src, InDemandedBits, InDemandedElts, Known, TLO,
1700 Depth + 1))
1701 return true;
1702 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1703 assert(Known.getBitWidth() == InBits && "Src width has changed?");
1704 Known = Known.zext(BitWidth, false /* => any extend */);
1705 break;
1707 case ISD::TRUNCATE: {
1708 SDValue Src = Op.getOperand(0);
1710 // Simplify the input, using demanded bit information, and compute the known
1711 // zero/one bits live out.
1712 unsigned OperandBitWidth = Src.getScalarValueSizeInBits();
1713 APInt TruncMask = DemandedBits.zext(OperandBitWidth);
1714 if (SimplifyDemandedBits(Src, TruncMask, Known, TLO, Depth + 1))
1715 return true;
1716 Known = Known.trunc(BitWidth);
1718 // Attempt to avoid multi-use ops if we don't need anything from them.
1719 if (SDValue NewSrc = SimplifyMultipleUseDemandedBits(
1720 Src, TruncMask, DemandedElts, TLO.DAG, Depth + 1))
1721 return TLO.CombineTo(Op, TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, NewSrc));
1723 // If the input is only used by this truncate, see if we can shrink it based
1724 // on the known demanded bits.
1725 if (Src.getNode()->hasOneUse()) {
1726 switch (Src.getOpcode()) {
1727 default:
1728 break;
1729 case ISD::SRL:
1730 // Shrink SRL by a constant if none of the high bits shifted in are
1731 // demanded.
1732 if (TLO.LegalTypes() && !isTypeDesirableForOp(ISD::SRL, VT))
1733 // Do not turn (vt1 truncate (vt2 srl)) into (vt1 srl) if vt1 is
1734 // undesirable.
1735 break;
1737 auto *ShAmt = dyn_cast<ConstantSDNode>(Src.getOperand(1));
1738 if (!ShAmt || ShAmt->getAPIntValue().uge(BitWidth))
1739 break;
1741 SDValue Shift = Src.getOperand(1);
1742 uint64_t ShVal = ShAmt->getZExtValue();
1744 if (TLO.LegalTypes())
1745 Shift = TLO.DAG.getConstant(ShVal, dl, getShiftAmountTy(VT, DL));
1747 APInt HighBits =
1748 APInt::getHighBitsSet(OperandBitWidth, OperandBitWidth - BitWidth);
1749 HighBits.lshrInPlace(ShVal);
1750 HighBits = HighBits.trunc(BitWidth);
1752 if (!(HighBits & DemandedBits)) {
1753 // None of the shifted in bits are needed. Add a truncate of the
1754 // shift input, then shift it.
1755 SDValue NewTrunc =
1756 TLO.DAG.getNode(ISD::TRUNCATE, dl, VT, Src.getOperand(0));
1757 return TLO.CombineTo(
1758 Op, TLO.DAG.getNode(ISD::SRL, dl, VT, NewTrunc, Shift));
1760 break;
1764 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1765 break;
1767 case ISD::AssertZext: {
1768 // AssertZext demands all of the high bits, plus any of the low bits
1769 // demanded by its users.
1770 EVT ZVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
1771 APInt InMask = APInt::getLowBitsSet(BitWidth, ZVT.getSizeInBits());
1772 if (SimplifyDemandedBits(Op.getOperand(0), ~InMask | DemandedBits, Known,
1773 TLO, Depth + 1))
1774 return true;
1775 assert(!Known.hasConflict() && "Bits known to be one AND zero?");
1777 Known.Zero |= ~InMask;
1778 break;
1780 case ISD::EXTRACT_VECTOR_ELT: {
1781 SDValue Src = Op.getOperand(0);
1782 SDValue Idx = Op.getOperand(1);
1783 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
1784 unsigned EltBitWidth = Src.getScalarValueSizeInBits();
1786 // Demand the bits from every vector element without a constant index.
1787 APInt DemandedSrcElts = APInt::getAllOnesValue(NumSrcElts);
1788 if (auto *CIdx = dyn_cast<ConstantSDNode>(Idx))
1789 if (CIdx->getAPIntValue().ult(NumSrcElts))
1790 DemandedSrcElts = APInt::getOneBitSet(NumSrcElts, CIdx->getZExtValue());
1792 // If BitWidth > EltBitWidth the value is anyext:ed. So we do not know
1793 // anything about the extended bits.
1794 APInt DemandedSrcBits = DemandedBits;
1795 if (BitWidth > EltBitWidth)
1796 DemandedSrcBits = DemandedSrcBits.trunc(EltBitWidth);
1798 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts, Known2, TLO,
1799 Depth + 1))
1800 return true;
1802 Known = Known2;
1803 if (BitWidth > EltBitWidth)
1804 Known = Known.zext(BitWidth, false /* => any extend */);
1805 break;
1807 case ISD::BITCAST: {
1808 SDValue Src = Op.getOperand(0);
1809 EVT SrcVT = Src.getValueType();
1810 unsigned NumSrcEltBits = SrcVT.getScalarSizeInBits();
1812 // If this is an FP->Int bitcast and if the sign bit is the only
1813 // thing demanded, turn this into a FGETSIGN.
1814 if (!TLO.LegalOperations() && !VT.isVector() && !SrcVT.isVector() &&
1815 DemandedBits == APInt::getSignMask(Op.getValueSizeInBits()) &&
1816 SrcVT.isFloatingPoint()) {
1817 bool OpVTLegal = isOperationLegalOrCustom(ISD::FGETSIGN, VT);
1818 bool i32Legal = isOperationLegalOrCustom(ISD::FGETSIGN, MVT::i32);
1819 if ((OpVTLegal || i32Legal) && VT.isSimple() && SrcVT != MVT::f16 &&
1820 SrcVT != MVT::f128) {
1821 // Cannot eliminate/lower SHL for f128 yet.
1822 EVT Ty = OpVTLegal ? VT : MVT::i32;
1823 // Make a FGETSIGN + SHL to move the sign bit into the appropriate
1824 // place. We expect the SHL to be eliminated by other optimizations.
1825 SDValue Sign = TLO.DAG.getNode(ISD::FGETSIGN, dl, Ty, Src);
1826 unsigned OpVTSizeInBits = Op.getValueSizeInBits();
1827 if (!OpVTLegal && OpVTSizeInBits > 32)
1828 Sign = TLO.DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Sign);
1829 unsigned ShVal = Op.getValueSizeInBits() - 1;
1830 SDValue ShAmt = TLO.DAG.getConstant(ShVal, dl, VT);
1831 return TLO.CombineTo(Op,
1832 TLO.DAG.getNode(ISD::SHL, dl, VT, Sign, ShAmt));
1836 // Bitcast from a vector using SimplifyDemanded Bits/VectorElts.
1837 // Demand the elt/bit if any of the original elts/bits are demanded.
1838 // TODO - bigendian once we have test coverage.
1839 if (SrcVT.isVector() && (BitWidth % NumSrcEltBits) == 0 &&
1840 TLO.DAG.getDataLayout().isLittleEndian()) {
1841 unsigned Scale = BitWidth / NumSrcEltBits;
1842 unsigned NumSrcElts = SrcVT.getVectorNumElements();
1843 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1844 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1845 for (unsigned i = 0; i != Scale; ++i) {
1846 unsigned Offset = i * NumSrcEltBits;
1847 APInt Sub = DemandedBits.extractBits(NumSrcEltBits, Offset);
1848 if (!Sub.isNullValue()) {
1849 DemandedSrcBits |= Sub;
1850 for (unsigned j = 0; j != NumElts; ++j)
1851 if (DemandedElts[j])
1852 DemandedSrcElts.setBit((j * Scale) + i);
1856 APInt KnownSrcUndef, KnownSrcZero;
1857 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1858 KnownSrcZero, TLO, Depth + 1))
1859 return true;
1861 KnownBits KnownSrcBits;
1862 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1863 KnownSrcBits, TLO, Depth + 1))
1864 return true;
1865 } else if ((NumSrcEltBits % BitWidth) == 0 &&
1866 TLO.DAG.getDataLayout().isLittleEndian()) {
1867 unsigned Scale = NumSrcEltBits / BitWidth;
1868 unsigned NumSrcElts = SrcVT.isVector() ? SrcVT.getVectorNumElements() : 1;
1869 APInt DemandedSrcBits = APInt::getNullValue(NumSrcEltBits);
1870 APInt DemandedSrcElts = APInt::getNullValue(NumSrcElts);
1871 for (unsigned i = 0; i != NumElts; ++i)
1872 if (DemandedElts[i]) {
1873 unsigned Offset = (i % Scale) * BitWidth;
1874 DemandedSrcBits.insertBits(DemandedBits, Offset);
1875 DemandedSrcElts.setBit(i / Scale);
1878 if (SrcVT.isVector()) {
1879 APInt KnownSrcUndef, KnownSrcZero;
1880 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, KnownSrcUndef,
1881 KnownSrcZero, TLO, Depth + 1))
1882 return true;
1885 KnownBits KnownSrcBits;
1886 if (SimplifyDemandedBits(Src, DemandedSrcBits, DemandedSrcElts,
1887 KnownSrcBits, TLO, Depth + 1))
1888 return true;
1891 // If this is a bitcast, let computeKnownBits handle it. Only do this on a
1892 // recursive call where Known may be useful to the caller.
1893 if (Depth > 0) {
1894 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1895 return false;
1897 break;
1899 case ISD::ADD:
1900 case ISD::MUL:
1901 case ISD::SUB: {
1902 // Add, Sub, and Mul don't demand any bits in positions beyond that
1903 // of the highest bit demanded of them.
1904 SDValue Op0 = Op.getOperand(0), Op1 = Op.getOperand(1);
1905 SDNodeFlags Flags = Op.getNode()->getFlags();
1906 unsigned DemandedBitsLZ = DemandedBits.countLeadingZeros();
1907 APInt LoMask = APInt::getLowBitsSet(BitWidth, BitWidth - DemandedBitsLZ);
1908 if (SimplifyDemandedBits(Op0, LoMask, DemandedElts, Known2, TLO,
1909 Depth + 1) ||
1910 SimplifyDemandedBits(Op1, LoMask, DemandedElts, Known2, TLO,
1911 Depth + 1) ||
1912 // See if the operation should be performed at a smaller bit width.
1913 ShrinkDemandedOp(Op, BitWidth, DemandedBits, TLO)) {
1914 if (Flags.hasNoSignedWrap() || Flags.hasNoUnsignedWrap()) {
1915 // Disable the nsw and nuw flags. We can no longer guarantee that we
1916 // won't wrap after simplification.
1917 Flags.setNoSignedWrap(false);
1918 Flags.setNoUnsignedWrap(false);
1919 SDValue NewOp =
1920 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1921 return TLO.CombineTo(Op, NewOp);
1923 return true;
1926 // Attempt to avoid multi-use ops if we don't need anything from them.
1927 if (!LoMask.isAllOnesValue() || !DemandedElts.isAllOnesValue()) {
1928 SDValue DemandedOp0 = SimplifyMultipleUseDemandedBits(
1929 Op0, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1930 SDValue DemandedOp1 = SimplifyMultipleUseDemandedBits(
1931 Op1, LoMask, DemandedElts, TLO.DAG, Depth + 1);
1932 if (DemandedOp0 || DemandedOp1) {
1933 Flags.setNoSignedWrap(false);
1934 Flags.setNoUnsignedWrap(false);
1935 Op0 = DemandedOp0 ? DemandedOp0 : Op0;
1936 Op1 = DemandedOp1 ? DemandedOp1 : Op1;
1937 SDValue NewOp =
1938 TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Op1, Flags);
1939 return TLO.CombineTo(Op, NewOp);
1943 // If we have a constant operand, we may be able to turn it into -1 if we
1944 // do not demand the high bits. This can make the constant smaller to
1945 // encode, allow more general folding, or match specialized instruction
1946 // patterns (eg, 'blsr' on x86). Don't bother changing 1 to -1 because that
1947 // is probably not useful (and could be detrimental).
1948 ConstantSDNode *C = isConstOrConstSplat(Op1);
1949 APInt HighMask = APInt::getHighBitsSet(BitWidth, DemandedBitsLZ);
1950 if (C && !C->isAllOnesValue() && !C->isOne() &&
1951 (C->getAPIntValue() | HighMask).isAllOnesValue()) {
1952 SDValue Neg1 = TLO.DAG.getAllOnesConstant(dl, VT);
1953 // Disable the nsw and nuw flags. We can no longer guarantee that we
1954 // won't wrap after simplification.
1955 Flags.setNoSignedWrap(false);
1956 Flags.setNoUnsignedWrap(false);
1957 SDValue NewOp = TLO.DAG.getNode(Op.getOpcode(), dl, VT, Op0, Neg1, Flags);
1958 return TLO.CombineTo(Op, NewOp);
1961 LLVM_FALLTHROUGH;
1963 default:
1964 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
1965 if (SimplifyDemandedBitsForTargetNode(Op, DemandedBits, DemandedElts,
1966 Known, TLO, Depth))
1967 return true;
1968 break;
1971 // Just use computeKnownBits to compute output bits.
1972 Known = TLO.DAG.computeKnownBits(Op, DemandedElts, Depth);
1973 break;
1976 // If we know the value of all of the demanded bits, return this as a
1977 // constant.
1978 if (DemandedBits.isSubsetOf(Known.Zero | Known.One)) {
1979 // Avoid folding to a constant if any OpaqueConstant is involved.
1980 const SDNode *N = Op.getNode();
1981 for (SDNodeIterator I = SDNodeIterator::begin(N),
1982 E = SDNodeIterator::end(N);
1983 I != E; ++I) {
1984 SDNode *Op = *I;
1985 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op))
1986 if (C->isOpaque())
1987 return false;
1989 // TODO: Handle float bits as well.
1990 if (VT.isInteger())
1991 return TLO.CombineTo(Op, TLO.DAG.getConstant(Known.One, dl, VT));
1994 return false;
1997 bool TargetLowering::SimplifyDemandedVectorElts(SDValue Op,
1998 const APInt &DemandedElts,
1999 APInt &KnownUndef,
2000 APInt &KnownZero,
2001 DAGCombinerInfo &DCI) const {
2002 SelectionDAG &DAG = DCI.DAG;
2003 TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
2004 !DCI.isBeforeLegalizeOps());
2006 bool Simplified =
2007 SimplifyDemandedVectorElts(Op, DemandedElts, KnownUndef, KnownZero, TLO);
2008 if (Simplified) {
2009 DCI.AddToWorklist(Op.getNode());
2010 DCI.CommitTargetLoweringOpt(TLO);
2013 return Simplified;
2016 /// Given a vector binary operation and known undefined elements for each input
2017 /// operand, compute whether each element of the output is undefined.
2018 static APInt getKnownUndefForVectorBinop(SDValue BO, SelectionDAG &DAG,
2019 const APInt &UndefOp0,
2020 const APInt &UndefOp1) {
2021 EVT VT = BO.getValueType();
2022 assert(DAG.getTargetLoweringInfo().isBinOp(BO.getOpcode()) && VT.isVector() &&
2023 "Vector binop only");
2025 EVT EltVT = VT.getVectorElementType();
2026 unsigned NumElts = VT.getVectorNumElements();
2027 assert(UndefOp0.getBitWidth() == NumElts &&
2028 UndefOp1.getBitWidth() == NumElts && "Bad type for undef analysis");
2030 auto getUndefOrConstantElt = [&](SDValue V, unsigned Index,
2031 const APInt &UndefVals) {
2032 if (UndefVals[Index])
2033 return DAG.getUNDEF(EltVT);
2035 if (auto *BV = dyn_cast<BuildVectorSDNode>(V)) {
2036 // Try hard to make sure that the getNode() call is not creating temporary
2037 // nodes. Ignore opaque integers because they do not constant fold.
2038 SDValue Elt = BV->getOperand(Index);
2039 auto *C = dyn_cast<ConstantSDNode>(Elt);
2040 if (isa<ConstantFPSDNode>(Elt) || Elt.isUndef() || (C && !C->isOpaque()))
2041 return Elt;
2044 return SDValue();
2047 APInt KnownUndef = APInt::getNullValue(NumElts);
2048 for (unsigned i = 0; i != NumElts; ++i) {
2049 // If both inputs for this element are either constant or undef and match
2050 // the element type, compute the constant/undef result for this element of
2051 // the vector.
2052 // TODO: Ideally we would use FoldConstantArithmetic() here, but that does
2053 // not handle FP constants. The code within getNode() should be refactored
2054 // to avoid the danger of creating a bogus temporary node here.
2055 SDValue C0 = getUndefOrConstantElt(BO.getOperand(0), i, UndefOp0);
2056 SDValue C1 = getUndefOrConstantElt(BO.getOperand(1), i, UndefOp1);
2057 if (C0 && C1 && C0.getValueType() == EltVT && C1.getValueType() == EltVT)
2058 if (DAG.getNode(BO.getOpcode(), SDLoc(BO), EltVT, C0, C1).isUndef())
2059 KnownUndef.setBit(i);
2061 return KnownUndef;
2064 bool TargetLowering::SimplifyDemandedVectorElts(
2065 SDValue Op, const APInt &OriginalDemandedElts, APInt &KnownUndef,
2066 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth,
2067 bool AssumeSingleUse) const {
2068 EVT VT = Op.getValueType();
2069 APInt DemandedElts = OriginalDemandedElts;
2070 unsigned NumElts = DemandedElts.getBitWidth();
2071 assert(VT.isVector() && "Expected vector op");
2072 assert(VT.getVectorNumElements() == NumElts &&
2073 "Mask size mismatches value type element count!");
2075 KnownUndef = KnownZero = APInt::getNullValue(NumElts);
2077 // Undef operand.
2078 if (Op.isUndef()) {
2079 KnownUndef.setAllBits();
2080 return false;
2083 // If Op has other users, assume that all elements are needed.
2084 if (!Op.getNode()->hasOneUse() && !AssumeSingleUse)
2085 DemandedElts.setAllBits();
2087 // Not demanding any elements from Op.
2088 if (DemandedElts == 0) {
2089 KnownUndef.setAllBits();
2090 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2093 // Limit search depth.
2094 if (Depth >= 6)
2095 return false;
2097 SDLoc DL(Op);
2098 unsigned EltSizeInBits = VT.getScalarSizeInBits();
2100 switch (Op.getOpcode()) {
2101 case ISD::SCALAR_TO_VECTOR: {
2102 if (!DemandedElts[0]) {
2103 KnownUndef.setAllBits();
2104 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2106 KnownUndef.setHighBits(NumElts - 1);
2107 break;
2109 case ISD::BITCAST: {
2110 SDValue Src = Op.getOperand(0);
2111 EVT SrcVT = Src.getValueType();
2113 // We only handle vectors here.
2114 // TODO - investigate calling SimplifyDemandedBits/ComputeKnownBits?
2115 if (!SrcVT.isVector())
2116 break;
2118 // Fast handling of 'identity' bitcasts.
2119 unsigned NumSrcElts = SrcVT.getVectorNumElements();
2120 if (NumSrcElts == NumElts)
2121 return SimplifyDemandedVectorElts(Src, DemandedElts, KnownUndef,
2122 KnownZero, TLO, Depth + 1);
2124 APInt SrcZero, SrcUndef;
2125 APInt SrcDemandedElts = APInt::getNullValue(NumSrcElts);
2127 // Bitcast from 'large element' src vector to 'small element' vector, we
2128 // must demand a source element if any DemandedElt maps to it.
2129 if ((NumElts % NumSrcElts) == 0) {
2130 unsigned Scale = NumElts / NumSrcElts;
2131 for (unsigned i = 0; i != NumElts; ++i)
2132 if (DemandedElts[i])
2133 SrcDemandedElts.setBit(i / Scale);
2135 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2136 TLO, Depth + 1))
2137 return true;
2139 // Try calling SimplifyDemandedBits, converting demanded elts to the bits
2140 // of the large element.
2141 // TODO - bigendian once we have test coverage.
2142 if (TLO.DAG.getDataLayout().isLittleEndian()) {
2143 unsigned SrcEltSizeInBits = SrcVT.getScalarSizeInBits();
2144 APInt SrcDemandedBits = APInt::getNullValue(SrcEltSizeInBits);
2145 for (unsigned i = 0; i != NumElts; ++i)
2146 if (DemandedElts[i]) {
2147 unsigned Ofs = (i % Scale) * EltSizeInBits;
2148 SrcDemandedBits.setBits(Ofs, Ofs + EltSizeInBits);
2151 KnownBits Known;
2152 if (SimplifyDemandedBits(Src, SrcDemandedBits, Known, TLO, Depth + 1))
2153 return true;
2156 // If the src element is zero/undef then all the output elements will be -
2157 // only demanded elements are guaranteed to be correct.
2158 for (unsigned i = 0; i != NumSrcElts; ++i) {
2159 if (SrcDemandedElts[i]) {
2160 if (SrcZero[i])
2161 KnownZero.setBits(i * Scale, (i + 1) * Scale);
2162 if (SrcUndef[i])
2163 KnownUndef.setBits(i * Scale, (i + 1) * Scale);
2168 // Bitcast from 'small element' src vector to 'large element' vector, we
2169 // demand all smaller source elements covered by the larger demanded element
2170 // of this vector.
2171 if ((NumSrcElts % NumElts) == 0) {
2172 unsigned Scale = NumSrcElts / NumElts;
2173 for (unsigned i = 0; i != NumElts; ++i)
2174 if (DemandedElts[i])
2175 SrcDemandedElts.setBits(i * Scale, (i + 1) * Scale);
2177 if (SimplifyDemandedVectorElts(Src, SrcDemandedElts, SrcUndef, SrcZero,
2178 TLO, Depth + 1))
2179 return true;
2181 // If all the src elements covering an output element are zero/undef, then
2182 // the output element will be as well, assuming it was demanded.
2183 for (unsigned i = 0; i != NumElts; ++i) {
2184 if (DemandedElts[i]) {
2185 if (SrcZero.extractBits(Scale, i * Scale).isAllOnesValue())
2186 KnownZero.setBit(i);
2187 if (SrcUndef.extractBits(Scale, i * Scale).isAllOnesValue())
2188 KnownUndef.setBit(i);
2192 break;
2194 case ISD::BUILD_VECTOR: {
2195 // Check all elements and simplify any unused elements with UNDEF.
2196 if (!DemandedElts.isAllOnesValue()) {
2197 // Don't simplify BROADCASTS.
2198 if (llvm::any_of(Op->op_values(),
2199 [&](SDValue Elt) { return Op.getOperand(0) != Elt; })) {
2200 SmallVector<SDValue, 32> Ops(Op->op_begin(), Op->op_end());
2201 bool Updated = false;
2202 for (unsigned i = 0; i != NumElts; ++i) {
2203 if (!DemandedElts[i] && !Ops[i].isUndef()) {
2204 Ops[i] = TLO.DAG.getUNDEF(Ops[0].getValueType());
2205 KnownUndef.setBit(i);
2206 Updated = true;
2209 if (Updated)
2210 return TLO.CombineTo(Op, TLO.DAG.getBuildVector(VT, DL, Ops));
2213 for (unsigned i = 0; i != NumElts; ++i) {
2214 SDValue SrcOp = Op.getOperand(i);
2215 if (SrcOp.isUndef()) {
2216 KnownUndef.setBit(i);
2217 } else if (EltSizeInBits == SrcOp.getScalarValueSizeInBits() &&
2218 (isNullConstant(SrcOp) || isNullFPConstant(SrcOp))) {
2219 KnownZero.setBit(i);
2222 break;
2224 case ISD::CONCAT_VECTORS: {
2225 EVT SubVT = Op.getOperand(0).getValueType();
2226 unsigned NumSubVecs = Op.getNumOperands();
2227 unsigned NumSubElts = SubVT.getVectorNumElements();
2228 for (unsigned i = 0; i != NumSubVecs; ++i) {
2229 SDValue SubOp = Op.getOperand(i);
2230 APInt SubElts = DemandedElts.extractBits(NumSubElts, i * NumSubElts);
2231 APInt SubUndef, SubZero;
2232 if (SimplifyDemandedVectorElts(SubOp, SubElts, SubUndef, SubZero, TLO,
2233 Depth + 1))
2234 return true;
2235 KnownUndef.insertBits(SubUndef, i * NumSubElts);
2236 KnownZero.insertBits(SubZero, i * NumSubElts);
2238 break;
2240 case ISD::INSERT_SUBVECTOR: {
2241 if (!isa<ConstantSDNode>(Op.getOperand(2)))
2242 break;
2243 SDValue Base = Op.getOperand(0);
2244 SDValue Sub = Op.getOperand(1);
2245 EVT SubVT = Sub.getValueType();
2246 unsigned NumSubElts = SubVT.getVectorNumElements();
2247 const APInt &Idx = Op.getConstantOperandAPInt(2);
2248 if (Idx.ugt(NumElts - NumSubElts))
2249 break;
2250 unsigned SubIdx = Idx.getZExtValue();
2251 APInt SubElts = DemandedElts.extractBits(NumSubElts, SubIdx);
2252 APInt SubUndef, SubZero;
2253 if (SimplifyDemandedVectorElts(Sub, SubElts, SubUndef, SubZero, TLO,
2254 Depth + 1))
2255 return true;
2256 APInt BaseElts = DemandedElts;
2257 BaseElts.insertBits(APInt::getNullValue(NumSubElts), SubIdx);
2259 // If none of the base operand elements are demanded, replace it with undef.
2260 if (!BaseElts && !Base.isUndef())
2261 return TLO.CombineTo(Op,
2262 TLO.DAG.getNode(ISD::INSERT_SUBVECTOR, DL, VT,
2263 TLO.DAG.getUNDEF(VT),
2264 Op.getOperand(1),
2265 Op.getOperand(2)));
2267 if (SimplifyDemandedVectorElts(Base, BaseElts, KnownUndef, KnownZero, TLO,
2268 Depth + 1))
2269 return true;
2270 KnownUndef.insertBits(SubUndef, SubIdx);
2271 KnownZero.insertBits(SubZero, SubIdx);
2272 break;
2274 case ISD::EXTRACT_SUBVECTOR: {
2275 SDValue Src = Op.getOperand(0);
2276 ConstantSDNode *SubIdx = dyn_cast<ConstantSDNode>(Op.getOperand(1));
2277 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2278 if (SubIdx && SubIdx->getAPIntValue().ule(NumSrcElts - NumElts)) {
2279 // Offset the demanded elts by the subvector index.
2280 uint64_t Idx = SubIdx->getZExtValue();
2281 APInt SrcElts = DemandedElts.zextOrSelf(NumSrcElts).shl(Idx);
2282 APInt SrcUndef, SrcZero;
2283 if (SimplifyDemandedVectorElts(Src, SrcElts, SrcUndef, SrcZero, TLO,
2284 Depth + 1))
2285 return true;
2286 KnownUndef = SrcUndef.extractBits(NumElts, Idx);
2287 KnownZero = SrcZero.extractBits(NumElts, Idx);
2289 break;
2291 case ISD::INSERT_VECTOR_ELT: {
2292 SDValue Vec = Op.getOperand(0);
2293 SDValue Scl = Op.getOperand(1);
2294 auto *CIdx = dyn_cast<ConstantSDNode>(Op.getOperand(2));
2296 // For a legal, constant insertion index, if we don't need this insertion
2297 // then strip it, else remove it from the demanded elts.
2298 if (CIdx && CIdx->getAPIntValue().ult(NumElts)) {
2299 unsigned Idx = CIdx->getZExtValue();
2300 if (!DemandedElts[Idx])
2301 return TLO.CombineTo(Op, Vec);
2303 APInt DemandedVecElts(DemandedElts);
2304 DemandedVecElts.clearBit(Idx);
2305 if (SimplifyDemandedVectorElts(Vec, DemandedVecElts, KnownUndef,
2306 KnownZero, TLO, Depth + 1))
2307 return true;
2309 KnownUndef.clearBit(Idx);
2310 if (Scl.isUndef())
2311 KnownUndef.setBit(Idx);
2313 KnownZero.clearBit(Idx);
2314 if (isNullConstant(Scl) || isNullFPConstant(Scl))
2315 KnownZero.setBit(Idx);
2316 break;
2319 APInt VecUndef, VecZero;
2320 if (SimplifyDemandedVectorElts(Vec, DemandedElts, VecUndef, VecZero, TLO,
2321 Depth + 1))
2322 return true;
2323 // Without knowing the insertion index we can't set KnownUndef/KnownZero.
2324 break;
2326 case ISD::VSELECT: {
2327 // Try to transform the select condition based on the current demanded
2328 // elements.
2329 // TODO: If a condition element is undef, we can choose from one arm of the
2330 // select (and if one arm is undef, then we can propagate that to the
2331 // result).
2332 // TODO - add support for constant vselect masks (see IR version of this).
2333 APInt UnusedUndef, UnusedZero;
2334 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UnusedUndef,
2335 UnusedZero, TLO, Depth + 1))
2336 return true;
2338 // See if we can simplify either vselect operand.
2339 APInt DemandedLHS(DemandedElts);
2340 APInt DemandedRHS(DemandedElts);
2341 APInt UndefLHS, ZeroLHS;
2342 APInt UndefRHS, ZeroRHS;
2343 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedLHS, UndefLHS,
2344 ZeroLHS, TLO, Depth + 1))
2345 return true;
2346 if (SimplifyDemandedVectorElts(Op.getOperand(2), DemandedRHS, UndefRHS,
2347 ZeroRHS, TLO, Depth + 1))
2348 return true;
2350 KnownUndef = UndefLHS & UndefRHS;
2351 KnownZero = ZeroLHS & ZeroRHS;
2352 break;
2354 case ISD::VECTOR_SHUFFLE: {
2355 ArrayRef<int> ShuffleMask = cast<ShuffleVectorSDNode>(Op)->getMask();
2357 // Collect demanded elements from shuffle operands..
2358 APInt DemandedLHS(NumElts, 0);
2359 APInt DemandedRHS(NumElts, 0);
2360 for (unsigned i = 0; i != NumElts; ++i) {
2361 int M = ShuffleMask[i];
2362 if (M < 0 || !DemandedElts[i])
2363 continue;
2364 assert(0 <= M && M < (int)(2 * NumElts) && "Shuffle index out of range");
2365 if (M < (int)NumElts)
2366 DemandedLHS.setBit(M);
2367 else
2368 DemandedRHS.setBit(M - NumElts);
2371 // See if we can simplify either shuffle operand.
2372 APInt UndefLHS, ZeroLHS;
2373 APInt UndefRHS, ZeroRHS;
2374 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedLHS, UndefLHS,
2375 ZeroLHS, TLO, Depth + 1))
2376 return true;
2377 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedRHS, UndefRHS,
2378 ZeroRHS, TLO, Depth + 1))
2379 return true;
2381 // Simplify mask using undef elements from LHS/RHS.
2382 bool Updated = false;
2383 bool IdentityLHS = true, IdentityRHS = true;
2384 SmallVector<int, 32> NewMask(ShuffleMask.begin(), ShuffleMask.end());
2385 for (unsigned i = 0; i != NumElts; ++i) {
2386 int &M = NewMask[i];
2387 if (M < 0)
2388 continue;
2389 if (!DemandedElts[i] || (M < (int)NumElts && UndefLHS[M]) ||
2390 (M >= (int)NumElts && UndefRHS[M - NumElts])) {
2391 Updated = true;
2392 M = -1;
2394 IdentityLHS &= (M < 0) || (M == (int)i);
2395 IdentityRHS &= (M < 0) || ((M - NumElts) == i);
2398 // Update legal shuffle masks based on demanded elements if it won't reduce
2399 // to Identity which can cause premature removal of the shuffle mask.
2400 if (Updated && !IdentityLHS && !IdentityRHS && !TLO.LegalOps) {
2401 SDValue LegalShuffle =
2402 buildLegalVectorShuffle(VT, DL, Op.getOperand(0), Op.getOperand(1),
2403 NewMask, TLO.DAG);
2404 if (LegalShuffle)
2405 return TLO.CombineTo(Op, LegalShuffle);
2408 // Propagate undef/zero elements from LHS/RHS.
2409 for (unsigned i = 0; i != NumElts; ++i) {
2410 int M = ShuffleMask[i];
2411 if (M < 0) {
2412 KnownUndef.setBit(i);
2413 } else if (M < (int)NumElts) {
2414 if (UndefLHS[M])
2415 KnownUndef.setBit(i);
2416 if (ZeroLHS[M])
2417 KnownZero.setBit(i);
2418 } else {
2419 if (UndefRHS[M - NumElts])
2420 KnownUndef.setBit(i);
2421 if (ZeroRHS[M - NumElts])
2422 KnownZero.setBit(i);
2425 break;
2427 case ISD::ANY_EXTEND_VECTOR_INREG:
2428 case ISD::SIGN_EXTEND_VECTOR_INREG:
2429 case ISD::ZERO_EXTEND_VECTOR_INREG: {
2430 APInt SrcUndef, SrcZero;
2431 SDValue Src = Op.getOperand(0);
2432 unsigned NumSrcElts = Src.getValueType().getVectorNumElements();
2433 APInt DemandedSrcElts = DemandedElts.zextOrSelf(NumSrcElts);
2434 if (SimplifyDemandedVectorElts(Src, DemandedSrcElts, SrcUndef, SrcZero, TLO,
2435 Depth + 1))
2436 return true;
2437 KnownZero = SrcZero.zextOrTrunc(NumElts);
2438 KnownUndef = SrcUndef.zextOrTrunc(NumElts);
2440 if (Op.getOpcode() == ISD::ANY_EXTEND_VECTOR_INREG &&
2441 Op.getValueSizeInBits() == Src.getValueSizeInBits() &&
2442 DemandedSrcElts == 1 && TLO.DAG.getDataLayout().isLittleEndian()) {
2443 // aext - if we just need the bottom element then we can bitcast.
2444 return TLO.CombineTo(Op, TLO.DAG.getBitcast(VT, Src));
2447 if (Op.getOpcode() == ISD::ZERO_EXTEND_VECTOR_INREG) {
2448 // zext(undef) upper bits are guaranteed to be zero.
2449 if (DemandedElts.isSubsetOf(KnownUndef))
2450 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2451 KnownUndef.clearAllBits();
2453 break;
2456 // TODO: There are more binop opcodes that could be handled here - MUL, MIN,
2457 // MAX, saturated math, etc.
2458 case ISD::OR:
2459 case ISD::XOR:
2460 case ISD::ADD:
2461 case ISD::SUB:
2462 case ISD::FADD:
2463 case ISD::FSUB:
2464 case ISD::FMUL:
2465 case ISD::FDIV:
2466 case ISD::FREM: {
2467 APInt UndefRHS, ZeroRHS;
2468 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2469 ZeroRHS, TLO, Depth + 1))
2470 return true;
2471 APInt UndefLHS, ZeroLHS;
2472 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2473 ZeroLHS, TLO, Depth + 1))
2474 return true;
2476 KnownZero = ZeroLHS & ZeroRHS;
2477 KnownUndef = getKnownUndefForVectorBinop(Op, TLO.DAG, UndefLHS, UndefRHS);
2478 break;
2480 case ISD::SHL:
2481 case ISD::SRL:
2482 case ISD::SRA:
2483 case ISD::ROTL:
2484 case ISD::ROTR: {
2485 APInt UndefRHS, ZeroRHS;
2486 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, UndefRHS,
2487 ZeroRHS, TLO, Depth + 1))
2488 return true;
2489 APInt UndefLHS, ZeroLHS;
2490 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, UndefLHS,
2491 ZeroLHS, TLO, Depth + 1))
2492 return true;
2494 KnownZero = ZeroLHS;
2495 KnownUndef = UndefLHS & UndefRHS; // TODO: use getKnownUndefForVectorBinop?
2496 break;
2498 case ISD::MUL:
2499 case ISD::AND: {
2500 APInt SrcUndef, SrcZero;
2501 if (SimplifyDemandedVectorElts(Op.getOperand(1), DemandedElts, SrcUndef,
2502 SrcZero, TLO, Depth + 1))
2503 return true;
2504 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2505 KnownZero, TLO, Depth + 1))
2506 return true;
2508 // If either side has a zero element, then the result element is zero, even
2509 // if the other is an UNDEF.
2510 // TODO: Extend getKnownUndefForVectorBinop to also deal with known zeros
2511 // and then handle 'and' nodes with the rest of the binop opcodes.
2512 KnownZero |= SrcZero;
2513 KnownUndef &= SrcUndef;
2514 KnownUndef &= ~KnownZero;
2515 break;
2517 case ISD::TRUNCATE:
2518 case ISD::SIGN_EXTEND:
2519 case ISD::ZERO_EXTEND:
2520 if (SimplifyDemandedVectorElts(Op.getOperand(0), DemandedElts, KnownUndef,
2521 KnownZero, TLO, Depth + 1))
2522 return true;
2524 if (Op.getOpcode() == ISD::ZERO_EXTEND) {
2525 // zext(undef) upper bits are guaranteed to be zero.
2526 if (DemandedElts.isSubsetOf(KnownUndef))
2527 return TLO.CombineTo(Op, TLO.DAG.getConstant(0, SDLoc(Op), VT));
2528 KnownUndef.clearAllBits();
2530 break;
2531 default: {
2532 if (Op.getOpcode() >= ISD::BUILTIN_OP_END) {
2533 if (SimplifyDemandedVectorEltsForTargetNode(Op, DemandedElts, KnownUndef,
2534 KnownZero, TLO, Depth))
2535 return true;
2536 } else {
2537 KnownBits Known;
2538 APInt DemandedBits = APInt::getAllOnesValue(EltSizeInBits);
2539 if (SimplifyDemandedBits(Op, DemandedBits, OriginalDemandedElts, Known,
2540 TLO, Depth, AssumeSingleUse))
2541 return true;
2543 break;
2546 assert((KnownUndef & KnownZero) == 0 && "Elements flagged as undef AND zero");
2548 // Constant fold all undef cases.
2549 // TODO: Handle zero cases as well.
2550 if (DemandedElts.isSubsetOf(KnownUndef))
2551 return TLO.CombineTo(Op, TLO.DAG.getUNDEF(VT));
2553 return false;
2556 /// Determine which of the bits specified in Mask are known to be either zero or
2557 /// one and return them in the Known.
2558 void TargetLowering::computeKnownBitsForTargetNode(const SDValue Op,
2559 KnownBits &Known,
2560 const APInt &DemandedElts,
2561 const SelectionDAG &DAG,
2562 unsigned Depth) const {
2563 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2564 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2565 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2566 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2567 "Should use MaskedValueIsZero if you don't know whether Op"
2568 " is a target node!");
2569 Known.resetAll();
2572 void TargetLowering::computeKnownBitsForTargetInstr(
2573 Register R, KnownBits &Known, const APInt &DemandedElts,
2574 const MachineRegisterInfo &MRI, unsigned Depth) const {
2575 Known.resetAll();
2578 void TargetLowering::computeKnownBitsForFrameIndex(const SDValue Op,
2579 KnownBits &Known,
2580 const APInt &DemandedElts,
2581 const SelectionDAG &DAG,
2582 unsigned Depth) const {
2583 assert(isa<FrameIndexSDNode>(Op) && "expected FrameIndex");
2585 if (unsigned Align = DAG.InferPtrAlignment(Op)) {
2586 // The low bits are known zero if the pointer is aligned.
2587 Known.Zero.setLowBits(Log2_32(Align));
2591 /// This method can be implemented by targets that want to expose additional
2592 /// information about sign bits to the DAG Combiner.
2593 unsigned TargetLowering::ComputeNumSignBitsForTargetNode(SDValue Op,
2594 const APInt &,
2595 const SelectionDAG &,
2596 unsigned Depth) const {
2597 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2598 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2599 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2600 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2601 "Should use ComputeNumSignBits if you don't know whether Op"
2602 " is a target node!");
2603 return 1;
2606 bool TargetLowering::SimplifyDemandedVectorEltsForTargetNode(
2607 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero,
2608 TargetLoweringOpt &TLO, unsigned Depth) const {
2609 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2610 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2611 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2612 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2613 "Should use SimplifyDemandedVectorElts if you don't know whether Op"
2614 " is a target node!");
2615 return false;
2618 bool TargetLowering::SimplifyDemandedBitsForTargetNode(
2619 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2620 KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth) const {
2621 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2622 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2623 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2624 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2625 "Should use SimplifyDemandedBits if you don't know whether Op"
2626 " is a target node!");
2627 computeKnownBitsForTargetNode(Op, Known, DemandedElts, TLO.DAG, Depth);
2628 return false;
2631 SDValue TargetLowering::SimplifyMultipleUseDemandedBitsForTargetNode(
2632 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
2633 SelectionDAG &DAG, unsigned Depth) const {
2634 assert(
2635 (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2636 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2637 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2638 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2639 "Should use SimplifyMultipleUseDemandedBits if you don't know whether Op"
2640 " is a target node!");
2641 return SDValue();
2644 SDValue
2645 TargetLowering::buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0,
2646 SDValue N1, MutableArrayRef<int> Mask,
2647 SelectionDAG &DAG) const {
2648 bool LegalMask = isShuffleMaskLegal(Mask, VT);
2649 if (!LegalMask) {
2650 std::swap(N0, N1);
2651 ShuffleVectorSDNode::commuteMask(Mask);
2652 LegalMask = isShuffleMaskLegal(Mask, VT);
2655 if (!LegalMask)
2656 return SDValue();
2658 return DAG.getVectorShuffle(VT, DL, N0, N1, Mask);
2661 const Constant *TargetLowering::getTargetConstantFromLoad(LoadSDNode*) const {
2662 return nullptr;
2665 bool TargetLowering::isKnownNeverNaNForTargetNode(SDValue Op,
2666 const SelectionDAG &DAG,
2667 bool SNaN,
2668 unsigned Depth) const {
2669 assert((Op.getOpcode() >= ISD::BUILTIN_OP_END ||
2670 Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
2671 Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
2672 Op.getOpcode() == ISD::INTRINSIC_VOID) &&
2673 "Should use isKnownNeverNaN if you don't know whether Op"
2674 " is a target node!");
2675 return false;
2678 // FIXME: Ideally, this would use ISD::isConstantSplatVector(), but that must
2679 // work with truncating build vectors and vectors with elements of less than
2680 // 8 bits.
2681 bool TargetLowering::isConstTrueVal(const SDNode *N) const {
2682 if (!N)
2683 return false;
2685 APInt CVal;
2686 if (auto *CN = dyn_cast<ConstantSDNode>(N)) {
2687 CVal = CN->getAPIntValue();
2688 } else if (auto *BV = dyn_cast<BuildVectorSDNode>(N)) {
2689 auto *CN = BV->getConstantSplatNode();
2690 if (!CN)
2691 return false;
2693 // If this is a truncating build vector, truncate the splat value.
2694 // Otherwise, we may fail to match the expected values below.
2695 unsigned BVEltWidth = BV->getValueType(0).getScalarSizeInBits();
2696 CVal = CN->getAPIntValue();
2697 if (BVEltWidth < CVal.getBitWidth())
2698 CVal = CVal.trunc(BVEltWidth);
2699 } else {
2700 return false;
2703 switch (getBooleanContents(N->getValueType(0))) {
2704 case UndefinedBooleanContent:
2705 return CVal[0];
2706 case ZeroOrOneBooleanContent:
2707 return CVal.isOneValue();
2708 case ZeroOrNegativeOneBooleanContent:
2709 return CVal.isAllOnesValue();
2712 llvm_unreachable("Invalid boolean contents");
2715 bool TargetLowering::isConstFalseVal(const SDNode *N) const {
2716 if (!N)
2717 return false;
2719 const ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N);
2720 if (!CN) {
2721 const BuildVectorSDNode *BV = dyn_cast<BuildVectorSDNode>(N);
2722 if (!BV)
2723 return false;
2725 // Only interested in constant splats, we don't care about undef
2726 // elements in identifying boolean constants and getConstantSplatNode
2727 // returns NULL if all ops are undef;
2728 CN = BV->getConstantSplatNode();
2729 if (!CN)
2730 return false;
2733 if (getBooleanContents(N->getValueType(0)) == UndefinedBooleanContent)
2734 return !CN->getAPIntValue()[0];
2736 return CN->isNullValue();
2739 bool TargetLowering::isExtendedTrueVal(const ConstantSDNode *N, EVT VT,
2740 bool SExt) const {
2741 if (VT == MVT::i1)
2742 return N->isOne();
2744 TargetLowering::BooleanContent Cnt = getBooleanContents(VT);
2745 switch (Cnt) {
2746 case TargetLowering::ZeroOrOneBooleanContent:
2747 // An extended value of 1 is always true, unless its original type is i1,
2748 // in which case it will be sign extended to -1.
2749 return (N->isOne() && !SExt) || (SExt && (N->getValueType(0) != MVT::i1));
2750 case TargetLowering::UndefinedBooleanContent:
2751 case TargetLowering::ZeroOrNegativeOneBooleanContent:
2752 return N->isAllOnesValue() && SExt;
2754 llvm_unreachable("Unexpected enumeration.");
2757 /// This helper function of SimplifySetCC tries to optimize the comparison when
2758 /// either operand of the SetCC node is a bitwise-and instruction.
2759 SDValue TargetLowering::foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1,
2760 ISD::CondCode Cond, const SDLoc &DL,
2761 DAGCombinerInfo &DCI) const {
2762 // Match these patterns in any of their permutations:
2763 // (X & Y) == Y
2764 // (X & Y) != Y
2765 if (N1.getOpcode() == ISD::AND && N0.getOpcode() != ISD::AND)
2766 std::swap(N0, N1);
2768 EVT OpVT = N0.getValueType();
2769 if (N0.getOpcode() != ISD::AND || !OpVT.isInteger() ||
2770 (Cond != ISD::SETEQ && Cond != ISD::SETNE))
2771 return SDValue();
2773 SDValue X, Y;
2774 if (N0.getOperand(0) == N1) {
2775 X = N0.getOperand(1);
2776 Y = N0.getOperand(0);
2777 } else if (N0.getOperand(1) == N1) {
2778 X = N0.getOperand(0);
2779 Y = N0.getOperand(1);
2780 } else {
2781 return SDValue();
2784 SelectionDAG &DAG = DCI.DAG;
2785 SDValue Zero = DAG.getConstant(0, DL, OpVT);
2786 if (DAG.isKnownToBeAPowerOfTwo(Y)) {
2787 // Simplify X & Y == Y to X & Y != 0 if Y has exactly one bit set.
2788 // Note that where Y is variable and is known to have at most one bit set
2789 // (for example, if it is Z & 1) we cannot do this; the expressions are not
2790 // equivalent when Y == 0.
2791 Cond = ISD::getSetCCInverse(Cond, /*isInteger=*/true);
2792 if (DCI.isBeforeLegalizeOps() ||
2793 isCondCodeLegal(Cond, N0.getSimpleValueType()))
2794 return DAG.getSetCC(DL, VT, N0, Zero, Cond);
2795 } else if (N0.hasOneUse() && hasAndNotCompare(Y)) {
2796 // If the target supports an 'and-not' or 'and-complement' logic operation,
2797 // try to use that to make a comparison operation more efficient.
2798 // But don't do this transform if the mask is a single bit because there are
2799 // more efficient ways to deal with that case (for example, 'bt' on x86 or
2800 // 'rlwinm' on PPC).
2802 // Bail out if the compare operand that we want to turn into a zero is
2803 // already a zero (otherwise, infinite loop).
2804 auto *YConst = dyn_cast<ConstantSDNode>(Y);
2805 if (YConst && YConst->isNullValue())
2806 return SDValue();
2808 // Transform this into: ~X & Y == 0.
2809 SDValue NotX = DAG.getNOT(SDLoc(X), X, OpVT);
2810 SDValue NewAnd = DAG.getNode(ISD::AND, SDLoc(N0), OpVT, NotX, Y);
2811 return DAG.getSetCC(DL, VT, NewAnd, Zero, Cond);
2814 return SDValue();
2817 /// There are multiple IR patterns that could be checking whether certain
2818 /// truncation of a signed number would be lossy or not. The pattern which is
2819 /// best at IR level, may not lower optimally. Thus, we want to unfold it.
2820 /// We are looking for the following pattern: (KeptBits is a constant)
2821 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
2822 /// KeptBits won't be bitwidth(x), that will be constant-folded to true/false.
2823 /// KeptBits also can't be 1, that would have been folded to %x dstcond 0
2824 /// We will unfold it into the natural trunc+sext pattern:
2825 /// ((%x << C) a>> C) dstcond %x
2826 /// Where C = bitwidth(x) - KeptBits and C u< bitwidth(x)
2827 SDValue TargetLowering::optimizeSetCCOfSignedTruncationCheck(
2828 EVT SCCVT, SDValue N0, SDValue N1, ISD::CondCode Cond, DAGCombinerInfo &DCI,
2829 const SDLoc &DL) const {
2830 // We must be comparing with a constant.
2831 ConstantSDNode *C1;
2832 if (!(C1 = dyn_cast<ConstantSDNode>(N1)))
2833 return SDValue();
2835 // N0 should be: add %x, (1 << (KeptBits-1))
2836 if (N0->getOpcode() != ISD::ADD)
2837 return SDValue();
2839 // And we must be 'add'ing a constant.
2840 ConstantSDNode *C01;
2841 if (!(C01 = dyn_cast<ConstantSDNode>(N0->getOperand(1))))
2842 return SDValue();
2844 SDValue X = N0->getOperand(0);
2845 EVT XVT = X.getValueType();
2847 // Validate constants ...
2849 APInt I1 = C1->getAPIntValue();
2851 ISD::CondCode NewCond;
2852 if (Cond == ISD::CondCode::SETULT) {
2853 NewCond = ISD::CondCode::SETEQ;
2854 } else if (Cond == ISD::CondCode::SETULE) {
2855 NewCond = ISD::CondCode::SETEQ;
2856 // But need to 'canonicalize' the constant.
2857 I1 += 1;
2858 } else if (Cond == ISD::CondCode::SETUGT) {
2859 NewCond = ISD::CondCode::SETNE;
2860 // But need to 'canonicalize' the constant.
2861 I1 += 1;
2862 } else if (Cond == ISD::CondCode::SETUGE) {
2863 NewCond = ISD::CondCode::SETNE;
2864 } else
2865 return SDValue();
2867 APInt I01 = C01->getAPIntValue();
2869 auto checkConstants = [&I1, &I01]() -> bool {
2870 // Both of them must be power-of-two, and the constant from setcc is bigger.
2871 return I1.ugt(I01) && I1.isPowerOf2() && I01.isPowerOf2();
2874 if (checkConstants()) {
2875 // Great, e.g. got icmp ult i16 (add i16 %x, 128), 256
2876 } else {
2877 // What if we invert constants? (and the target predicate)
2878 I1.negate();
2879 I01.negate();
2880 NewCond = getSetCCInverse(NewCond, /*isInteger=*/true);
2881 if (!checkConstants())
2882 return SDValue();
2883 // Great, e.g. got icmp uge i16 (add i16 %x, -128), -256
2886 // They are power-of-two, so which bit is set?
2887 const unsigned KeptBits = I1.logBase2();
2888 const unsigned KeptBitsMinusOne = I01.logBase2();
2890 // Magic!
2891 if (KeptBits != (KeptBitsMinusOne + 1))
2892 return SDValue();
2893 assert(KeptBits > 0 && KeptBits < XVT.getSizeInBits() && "unreachable");
2895 // We don't want to do this in every single case.
2896 SelectionDAG &DAG = DCI.DAG;
2897 if (!DAG.getTargetLoweringInfo().shouldTransformSignedTruncationCheck(
2898 XVT, KeptBits))
2899 return SDValue();
2901 const unsigned MaskedBits = XVT.getSizeInBits() - KeptBits;
2902 assert(MaskedBits > 0 && MaskedBits < XVT.getSizeInBits() && "unreachable");
2904 // Unfold into: ((%x << C) a>> C) cond %x
2905 // Where 'cond' will be either 'eq' or 'ne'.
2906 SDValue ShiftAmt = DAG.getConstant(MaskedBits, DL, XVT);
2907 SDValue T0 = DAG.getNode(ISD::SHL, DL, XVT, X, ShiftAmt);
2908 SDValue T1 = DAG.getNode(ISD::SRA, DL, XVT, T0, ShiftAmt);
2909 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, X, NewCond);
2911 return T2;
2914 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
2915 SDValue TargetLowering::optimizeSetCCByHoistingAndByConstFromLogicalShift(
2916 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
2917 DAGCombinerInfo &DCI, const SDLoc &DL) const {
2918 assert(isConstOrConstSplat(N1C) &&
2919 isConstOrConstSplat(N1C)->getAPIntValue().isNullValue() &&
2920 "Should be a comparison with 0.");
2921 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
2922 "Valid only for [in]equality comparisons.");
2924 unsigned NewShiftOpcode;
2925 SDValue X, C, Y;
2927 SelectionDAG &DAG = DCI.DAG;
2928 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2930 // Look for '(C l>>/<< Y)'.
2931 auto Match = [&NewShiftOpcode, &X, &C, &Y, &TLI, &DAG](SDValue V) {
2932 // The shift should be one-use.
2933 if (!V.hasOneUse())
2934 return false;
2935 unsigned OldShiftOpcode = V.getOpcode();
2936 switch (OldShiftOpcode) {
2937 case ISD::SHL:
2938 NewShiftOpcode = ISD::SRL;
2939 break;
2940 case ISD::SRL:
2941 NewShiftOpcode = ISD::SHL;
2942 break;
2943 default:
2944 return false; // must be a logical shift.
2946 // We should be shifting a constant.
2947 // FIXME: best to use isConstantOrConstantVector().
2948 C = V.getOperand(0);
2949 ConstantSDNode *CC =
2950 isConstOrConstSplat(C, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2951 if (!CC)
2952 return false;
2953 Y = V.getOperand(1);
2955 ConstantSDNode *XC =
2956 isConstOrConstSplat(X, /*AllowUndefs=*/true, /*AllowTruncation=*/true);
2957 return TLI.shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(
2958 X, XC, CC, Y, OldShiftOpcode, NewShiftOpcode, DAG);
2961 // LHS of comparison should be an one-use 'and'.
2962 if (N0.getOpcode() != ISD::AND || !N0.hasOneUse())
2963 return SDValue();
2965 X = N0.getOperand(0);
2966 SDValue Mask = N0.getOperand(1);
2968 // 'and' is commutative!
2969 if (!Match(Mask)) {
2970 std::swap(X, Mask);
2971 if (!Match(Mask))
2972 return SDValue();
2975 EVT VT = X.getValueType();
2977 // Produce:
2978 // ((X 'OppositeShiftOpcode' Y) & C) Cond 0
2979 SDValue T0 = DAG.getNode(NewShiftOpcode, DL, VT, X, Y);
2980 SDValue T1 = DAG.getNode(ISD::AND, DL, VT, T0, C);
2981 SDValue T2 = DAG.getSetCC(DL, SCCVT, T1, N1C, Cond);
2982 return T2;
2985 /// Try to fold an equality comparison with a {add/sub/xor} binary operation as
2986 /// the 1st operand (N0). Callers are expected to swap the N0/N1 parameters to
2987 /// handle the commuted versions of these patterns.
2988 SDValue TargetLowering::foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1,
2989 ISD::CondCode Cond, const SDLoc &DL,
2990 DAGCombinerInfo &DCI) const {
2991 unsigned BOpcode = N0.getOpcode();
2992 assert((BOpcode == ISD::ADD || BOpcode == ISD::SUB || BOpcode == ISD::XOR) &&
2993 "Unexpected binop");
2994 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) && "Unexpected condcode");
2996 // (X + Y) == X --> Y == 0
2997 // (X - Y) == X --> Y == 0
2998 // (X ^ Y) == X --> Y == 0
2999 SelectionDAG &DAG = DCI.DAG;
3000 EVT OpVT = N0.getValueType();
3001 SDValue X = N0.getOperand(0);
3002 SDValue Y = N0.getOperand(1);
3003 if (X == N1)
3004 return DAG.getSetCC(DL, VT, Y, DAG.getConstant(0, DL, OpVT), Cond);
3006 if (Y != N1)
3007 return SDValue();
3009 // (X + Y) == Y --> X == 0
3010 // (X ^ Y) == Y --> X == 0
3011 if (BOpcode == ISD::ADD || BOpcode == ISD::XOR)
3012 return DAG.getSetCC(DL, VT, X, DAG.getConstant(0, DL, OpVT), Cond);
3014 // The shift would not be valid if the operands are boolean (i1).
3015 if (!N0.hasOneUse() || OpVT.getScalarSizeInBits() == 1)
3016 return SDValue();
3018 // (X - Y) == Y --> X == Y << 1
3019 EVT ShiftVT = getShiftAmountTy(OpVT, DAG.getDataLayout(),
3020 !DCI.isBeforeLegalize());
3021 SDValue One = DAG.getConstant(1, DL, ShiftVT);
3022 SDValue YShl1 = DAG.getNode(ISD::SHL, DL, N1.getValueType(), Y, One);
3023 if (!DCI.isCalledByLegalizer())
3024 DCI.AddToWorklist(YShl1.getNode());
3025 return DAG.getSetCC(DL, VT, X, YShl1, Cond);
3028 /// Try to simplify a setcc built with the specified operands and cc. If it is
3029 /// unable to simplify it, return a null SDValue.
3030 SDValue TargetLowering::SimplifySetCC(EVT VT, SDValue N0, SDValue N1,
3031 ISD::CondCode Cond, bool foldBooleans,
3032 DAGCombinerInfo &DCI,
3033 const SDLoc &dl) const {
3034 SelectionDAG &DAG = DCI.DAG;
3035 EVT OpVT = N0.getValueType();
3037 // Constant fold or commute setcc.
3038 if (SDValue Fold = DAG.FoldSetCC(VT, N0, N1, Cond, dl))
3039 return Fold;
3041 // Ensure that the constant occurs on the RHS and fold constant comparisons.
3042 // TODO: Handle non-splat vector constants. All undef causes trouble.
3043 ISD::CondCode SwappedCC = ISD::getSetCCSwappedOperands(Cond);
3044 if (isConstOrConstSplat(N0) &&
3045 (DCI.isBeforeLegalizeOps() ||
3046 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())))
3047 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3049 // If we have a subtract with the same 2 non-constant operands as this setcc
3050 // -- but in reverse order -- then try to commute the operands of this setcc
3051 // to match. A matching pair of setcc (cmp) and sub may be combined into 1
3052 // instruction on some targets.
3053 if (!isConstOrConstSplat(N0) && !isConstOrConstSplat(N1) &&
3054 (DCI.isBeforeLegalizeOps() ||
3055 isCondCodeLegal(SwappedCC, N0.getSimpleValueType())) &&
3056 DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N1, N0 } ) &&
3057 !DAG.getNodeIfExists(ISD::SUB, DAG.getVTList(OpVT), { N0, N1 } ))
3058 return DAG.getSetCC(dl, VT, N1, N0, SwappedCC);
3060 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3061 const APInt &C1 = N1C->getAPIntValue();
3063 // If the LHS is '(srl (ctlz x), 5)', the RHS is 0/1, and this is an
3064 // equality comparison, then we're just comparing whether X itself is
3065 // zero.
3066 if (N0.getOpcode() == ISD::SRL && (C1.isNullValue() || C1.isOneValue()) &&
3067 N0.getOperand(0).getOpcode() == ISD::CTLZ &&
3068 N0.getOperand(1).getOpcode() == ISD::Constant) {
3069 const APInt &ShAmt = N0.getConstantOperandAPInt(1);
3070 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3071 ShAmt == Log2_32(N0.getValueSizeInBits())) {
3072 if ((C1 == 0) == (Cond == ISD::SETEQ)) {
3073 // (srl (ctlz x), 5) == 0 -> X != 0
3074 // (srl (ctlz x), 5) != 1 -> X != 0
3075 Cond = ISD::SETNE;
3076 } else {
3077 // (srl (ctlz x), 5) != 0 -> X == 0
3078 // (srl (ctlz x), 5) == 1 -> X == 0
3079 Cond = ISD::SETEQ;
3081 SDValue Zero = DAG.getConstant(0, dl, N0.getValueType());
3082 return DAG.getSetCC(dl, VT, N0.getOperand(0).getOperand(0),
3083 Zero, Cond);
3087 SDValue CTPOP = N0;
3088 // Look through truncs that don't change the value of a ctpop.
3089 if (N0.hasOneUse() && N0.getOpcode() == ISD::TRUNCATE)
3090 CTPOP = N0.getOperand(0);
3092 if (CTPOP.hasOneUse() && CTPOP.getOpcode() == ISD::CTPOP &&
3093 (N0 == CTPOP ||
3094 N0.getValueSizeInBits() > Log2_32_Ceil(CTPOP.getValueSizeInBits()))) {
3095 EVT CTVT = CTPOP.getValueType();
3096 SDValue CTOp = CTPOP.getOperand(0);
3098 // (ctpop x) u< 2 -> (x & x-1) == 0
3099 // (ctpop x) u> 1 -> (x & x-1) != 0
3100 if ((Cond == ISD::SETULT && C1 == 2) || (Cond == ISD::SETUGT && C1 == 1)){
3101 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3102 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3103 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3104 ISD::CondCode CC = Cond == ISD::SETULT ? ISD::SETEQ : ISD::SETNE;
3105 return DAG.getSetCC(dl, VT, And, DAG.getConstant(0, dl, CTVT), CC);
3108 // If ctpop is not supported, expand a power-of-2 comparison based on it.
3109 if (C1 == 1 && !isOperationLegalOrCustom(ISD::CTPOP, CTVT) &&
3110 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3111 // (ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
3112 // (ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
3113 SDValue Zero = DAG.getConstant(0, dl, CTVT);
3114 SDValue NegOne = DAG.getAllOnesConstant(dl, CTVT);
3115 ISD::CondCode InvCond = ISD::getSetCCInverse(Cond, true);
3116 SDValue Add = DAG.getNode(ISD::ADD, dl, CTVT, CTOp, NegOne);
3117 SDValue And = DAG.getNode(ISD::AND, dl, CTVT, CTOp, Add);
3118 SDValue LHS = DAG.getSetCC(dl, VT, CTOp, Zero, InvCond);
3119 SDValue RHS = DAG.getSetCC(dl, VT, And, Zero, Cond);
3120 unsigned LogicOpcode = Cond == ISD::SETEQ ? ISD::AND : ISD::OR;
3121 return DAG.getNode(LogicOpcode, dl, VT, LHS, RHS);
3125 // (zext x) == C --> x == (trunc C)
3126 // (sext x) == C --> x == (trunc C)
3127 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3128 DCI.isBeforeLegalize() && N0->hasOneUse()) {
3129 unsigned MinBits = N0.getValueSizeInBits();
3130 SDValue PreExt;
3131 bool Signed = false;
3132 if (N0->getOpcode() == ISD::ZERO_EXTEND) {
3133 // ZExt
3134 MinBits = N0->getOperand(0).getValueSizeInBits();
3135 PreExt = N0->getOperand(0);
3136 } else if (N0->getOpcode() == ISD::AND) {
3137 // DAGCombine turns costly ZExts into ANDs
3138 if (auto *C = dyn_cast<ConstantSDNode>(N0->getOperand(1)))
3139 if ((C->getAPIntValue()+1).isPowerOf2()) {
3140 MinBits = C->getAPIntValue().countTrailingOnes();
3141 PreExt = N0->getOperand(0);
3143 } else if (N0->getOpcode() == ISD::SIGN_EXTEND) {
3144 // SExt
3145 MinBits = N0->getOperand(0).getValueSizeInBits();
3146 PreExt = N0->getOperand(0);
3147 Signed = true;
3148 } else if (auto *LN0 = dyn_cast<LoadSDNode>(N0)) {
3149 // ZEXTLOAD / SEXTLOAD
3150 if (LN0->getExtensionType() == ISD::ZEXTLOAD) {
3151 MinBits = LN0->getMemoryVT().getSizeInBits();
3152 PreExt = N0;
3153 } else if (LN0->getExtensionType() == ISD::SEXTLOAD) {
3154 Signed = true;
3155 MinBits = LN0->getMemoryVT().getSizeInBits();
3156 PreExt = N0;
3160 // Figure out how many bits we need to preserve this constant.
3161 unsigned ReqdBits = Signed ?
3162 C1.getBitWidth() - C1.getNumSignBits() + 1 :
3163 C1.getActiveBits();
3165 // Make sure we're not losing bits from the constant.
3166 if (MinBits > 0 &&
3167 MinBits < C1.getBitWidth() &&
3168 MinBits >= ReqdBits) {
3169 EVT MinVT = EVT::getIntegerVT(*DAG.getContext(), MinBits);
3170 if (isTypeDesirableForOp(ISD::SETCC, MinVT)) {
3171 // Will get folded away.
3172 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, dl, MinVT, PreExt);
3173 if (MinBits == 1 && C1 == 1)
3174 // Invert the condition.
3175 return DAG.getSetCC(dl, VT, Trunc, DAG.getConstant(0, dl, MVT::i1),
3176 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3177 SDValue C = DAG.getConstant(C1.trunc(MinBits), dl, MinVT);
3178 return DAG.getSetCC(dl, VT, Trunc, C, Cond);
3181 // If truncating the setcc operands is not desirable, we can still
3182 // simplify the expression in some cases:
3183 // setcc ([sz]ext (setcc x, y, cc)), 0, setne) -> setcc (x, y, cc)
3184 // setcc ([sz]ext (setcc x, y, cc)), 0, seteq) -> setcc (x, y, inv(cc))
3185 // setcc (zext (setcc x, y, cc)), 1, setne) -> setcc (x, y, inv(cc))
3186 // setcc (zext (setcc x, y, cc)), 1, seteq) -> setcc (x, y, cc)
3187 // setcc (sext (setcc x, y, cc)), -1, setne) -> setcc (x, y, inv(cc))
3188 // setcc (sext (setcc x, y, cc)), -1, seteq) -> setcc (x, y, cc)
3189 SDValue TopSetCC = N0->getOperand(0);
3190 unsigned N0Opc = N0->getOpcode();
3191 bool SExt = (N0Opc == ISD::SIGN_EXTEND);
3192 if (TopSetCC.getValueType() == MVT::i1 && VT == MVT::i1 &&
3193 TopSetCC.getOpcode() == ISD::SETCC &&
3194 (N0Opc == ISD::ZERO_EXTEND || N0Opc == ISD::SIGN_EXTEND) &&
3195 (isConstFalseVal(N1C) ||
3196 isExtendedTrueVal(N1C, N0->getValueType(0), SExt))) {
3198 bool Inverse = (N1C->isNullValue() && Cond == ISD::SETEQ) ||
3199 (!N1C->isNullValue() && Cond == ISD::SETNE);
3201 if (!Inverse)
3202 return TopSetCC;
3204 ISD::CondCode InvCond = ISD::getSetCCInverse(
3205 cast<CondCodeSDNode>(TopSetCC.getOperand(2))->get(),
3206 TopSetCC.getOperand(0).getValueType().isInteger());
3207 return DAG.getSetCC(dl, VT, TopSetCC.getOperand(0),
3208 TopSetCC.getOperand(1),
3209 InvCond);
3214 // If the LHS is '(and load, const)', the RHS is 0, the test is for
3215 // equality or unsigned, and all 1 bits of the const are in the same
3216 // partial word, see if we can shorten the load.
3217 if (DCI.isBeforeLegalize() &&
3218 !ISD::isSignedIntSetCC(Cond) &&
3219 N0.getOpcode() == ISD::AND && C1 == 0 &&
3220 N0.getNode()->hasOneUse() &&
3221 isa<LoadSDNode>(N0.getOperand(0)) &&
3222 N0.getOperand(0).getNode()->hasOneUse() &&
3223 isa<ConstantSDNode>(N0.getOperand(1))) {
3224 LoadSDNode *Lod = cast<LoadSDNode>(N0.getOperand(0));
3225 APInt bestMask;
3226 unsigned bestWidth = 0, bestOffset = 0;
3227 if (!Lod->isVolatile() && Lod->isUnindexed()) {
3228 unsigned origWidth = N0.getValueSizeInBits();
3229 unsigned maskWidth = origWidth;
3230 // We can narrow (e.g.) 16-bit extending loads on 32-bit target to
3231 // 8 bits, but have to be careful...
3232 if (Lod->getExtensionType() != ISD::NON_EXTLOAD)
3233 origWidth = Lod->getMemoryVT().getSizeInBits();
3234 const APInt &Mask = N0.getConstantOperandAPInt(1);
3235 for (unsigned width = origWidth / 2; width>=8; width /= 2) {
3236 APInt newMask = APInt::getLowBitsSet(maskWidth, width);
3237 for (unsigned offset=0; offset<origWidth/width; offset++) {
3238 if (Mask.isSubsetOf(newMask)) {
3239 if (DAG.getDataLayout().isLittleEndian())
3240 bestOffset = (uint64_t)offset * (width/8);
3241 else
3242 bestOffset = (origWidth/width - offset - 1) * (width/8);
3243 bestMask = Mask.lshr(offset * (width/8) * 8);
3244 bestWidth = width;
3245 break;
3247 newMask <<= width;
3251 if (bestWidth) {
3252 EVT newVT = EVT::getIntegerVT(*DAG.getContext(), bestWidth);
3253 if (newVT.isRound() &&
3254 shouldReduceLoadWidth(Lod, ISD::NON_EXTLOAD, newVT)) {
3255 EVT PtrType = Lod->getOperand(1).getValueType();
3256 SDValue Ptr = Lod->getBasePtr();
3257 if (bestOffset != 0)
3258 Ptr = DAG.getNode(ISD::ADD, dl, PtrType, Lod->getBasePtr(),
3259 DAG.getConstant(bestOffset, dl, PtrType));
3260 unsigned NewAlign = MinAlign(Lod->getAlignment(), bestOffset);
3261 SDValue NewLoad = DAG.getLoad(
3262 newVT, dl, Lod->getChain(), Ptr,
3263 Lod->getPointerInfo().getWithOffset(bestOffset), NewAlign);
3264 return DAG.getSetCC(dl, VT,
3265 DAG.getNode(ISD::AND, dl, newVT, NewLoad,
3266 DAG.getConstant(bestMask.trunc(bestWidth),
3267 dl, newVT)),
3268 DAG.getConstant(0LL, dl, newVT), Cond);
3273 // If the LHS is a ZERO_EXTEND, perform the comparison on the input.
3274 if (N0.getOpcode() == ISD::ZERO_EXTEND) {
3275 unsigned InSize = N0.getOperand(0).getValueSizeInBits();
3277 // If the comparison constant has bits in the upper part, the
3278 // zero-extended value could never match.
3279 if (C1.intersects(APInt::getHighBitsSet(C1.getBitWidth(),
3280 C1.getBitWidth() - InSize))) {
3281 switch (Cond) {
3282 case ISD::SETUGT:
3283 case ISD::SETUGE:
3284 case ISD::SETEQ:
3285 return DAG.getConstant(0, dl, VT);
3286 case ISD::SETULT:
3287 case ISD::SETULE:
3288 case ISD::SETNE:
3289 return DAG.getConstant(1, dl, VT);
3290 case ISD::SETGT:
3291 case ISD::SETGE:
3292 // True if the sign bit of C1 is set.
3293 return DAG.getConstant(C1.isNegative(), dl, VT);
3294 case ISD::SETLT:
3295 case ISD::SETLE:
3296 // True if the sign bit of C1 isn't set.
3297 return DAG.getConstant(C1.isNonNegative(), dl, VT);
3298 default:
3299 break;
3303 // Otherwise, we can perform the comparison with the low bits.
3304 switch (Cond) {
3305 case ISD::SETEQ:
3306 case ISD::SETNE:
3307 case ISD::SETUGT:
3308 case ISD::SETUGE:
3309 case ISD::SETULT:
3310 case ISD::SETULE: {
3311 EVT newVT = N0.getOperand(0).getValueType();
3312 if (DCI.isBeforeLegalizeOps() ||
3313 (isOperationLegal(ISD::SETCC, newVT) &&
3314 isCondCodeLegal(Cond, newVT.getSimpleVT()))) {
3315 EVT NewSetCCVT =
3316 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), newVT);
3317 SDValue NewConst = DAG.getConstant(C1.trunc(InSize), dl, newVT);
3319 SDValue NewSetCC = DAG.getSetCC(dl, NewSetCCVT, N0.getOperand(0),
3320 NewConst, Cond);
3321 return DAG.getBoolExtOrTrunc(NewSetCC, dl, VT, N0.getValueType());
3323 break;
3325 default:
3326 break; // todo, be more careful with signed comparisons
3328 } else if (N0.getOpcode() == ISD::SIGN_EXTEND_INREG &&
3329 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3330 EVT ExtSrcTy = cast<VTSDNode>(N0.getOperand(1))->getVT();
3331 unsigned ExtSrcTyBits = ExtSrcTy.getSizeInBits();
3332 EVT ExtDstTy = N0.getValueType();
3333 unsigned ExtDstTyBits = ExtDstTy.getSizeInBits();
3335 // If the constant doesn't fit into the number of bits for the source of
3336 // the sign extension, it is impossible for both sides to be equal.
3337 if (C1.getMinSignedBits() > ExtSrcTyBits)
3338 return DAG.getConstant(Cond == ISD::SETNE, dl, VT);
3340 SDValue ZextOp;
3341 EVT Op0Ty = N0.getOperand(0).getValueType();
3342 if (Op0Ty == ExtSrcTy) {
3343 ZextOp = N0.getOperand(0);
3344 } else {
3345 APInt Imm = APInt::getLowBitsSet(ExtDstTyBits, ExtSrcTyBits);
3346 ZextOp = DAG.getNode(ISD::AND, dl, Op0Ty, N0.getOperand(0),
3347 DAG.getConstant(Imm, dl, Op0Ty));
3349 if (!DCI.isCalledByLegalizer())
3350 DCI.AddToWorklist(ZextOp.getNode());
3351 // Otherwise, make this a use of a zext.
3352 return DAG.getSetCC(dl, VT, ZextOp,
3353 DAG.getConstant(C1 & APInt::getLowBitsSet(
3354 ExtDstTyBits,
3355 ExtSrcTyBits),
3356 dl, ExtDstTy),
3357 Cond);
3358 } else if ((N1C->isNullValue() || N1C->isOne()) &&
3359 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3360 // SETCC (SETCC), [0|1], [EQ|NE] -> SETCC
3361 if (N0.getOpcode() == ISD::SETCC &&
3362 isTypeLegal(VT) && VT.bitsLE(N0.getValueType())) {
3363 bool TrueWhenTrue = (Cond == ISD::SETEQ) ^ (!N1C->isOne());
3364 if (TrueWhenTrue)
3365 return DAG.getNode(ISD::TRUNCATE, dl, VT, N0);
3366 // Invert the condition.
3367 ISD::CondCode CC = cast<CondCodeSDNode>(N0.getOperand(2))->get();
3368 CC = ISD::getSetCCInverse(CC,
3369 N0.getOperand(0).getValueType().isInteger());
3370 if (DCI.isBeforeLegalizeOps() ||
3371 isCondCodeLegal(CC, N0.getOperand(0).getSimpleValueType()))
3372 return DAG.getSetCC(dl, VT, N0.getOperand(0), N0.getOperand(1), CC);
3375 if ((N0.getOpcode() == ISD::XOR ||
3376 (N0.getOpcode() == ISD::AND &&
3377 N0.getOperand(0).getOpcode() == ISD::XOR &&
3378 N0.getOperand(1) == N0.getOperand(0).getOperand(1))) &&
3379 isa<ConstantSDNode>(N0.getOperand(1)) &&
3380 cast<ConstantSDNode>(N0.getOperand(1))->isOne()) {
3381 // If this is (X^1) == 0/1, swap the RHS and eliminate the xor. We
3382 // can only do this if the top bits are known zero.
3383 unsigned BitWidth = N0.getValueSizeInBits();
3384 if (DAG.MaskedValueIsZero(N0,
3385 APInt::getHighBitsSet(BitWidth,
3386 BitWidth-1))) {
3387 // Okay, get the un-inverted input value.
3388 SDValue Val;
3389 if (N0.getOpcode() == ISD::XOR) {
3390 Val = N0.getOperand(0);
3391 } else {
3392 assert(N0.getOpcode() == ISD::AND &&
3393 N0.getOperand(0).getOpcode() == ISD::XOR);
3394 // ((X^1)&1)^1 -> X & 1
3395 Val = DAG.getNode(ISD::AND, dl, N0.getValueType(),
3396 N0.getOperand(0).getOperand(0),
3397 N0.getOperand(1));
3400 return DAG.getSetCC(dl, VT, Val, N1,
3401 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3403 } else if (N1C->isOne() &&
3404 (VT == MVT::i1 ||
3405 getBooleanContents(N0->getValueType(0)) ==
3406 ZeroOrOneBooleanContent)) {
3407 SDValue Op0 = N0;
3408 if (Op0.getOpcode() == ISD::TRUNCATE)
3409 Op0 = Op0.getOperand(0);
3411 if ((Op0.getOpcode() == ISD::XOR) &&
3412 Op0.getOperand(0).getOpcode() == ISD::SETCC &&
3413 Op0.getOperand(1).getOpcode() == ISD::SETCC) {
3414 // (xor (setcc), (setcc)) == / != 1 -> (setcc) != / == (setcc)
3415 Cond = (Cond == ISD::SETEQ) ? ISD::SETNE : ISD::SETEQ;
3416 return DAG.getSetCC(dl, VT, Op0.getOperand(0), Op0.getOperand(1),
3417 Cond);
3419 if (Op0.getOpcode() == ISD::AND &&
3420 isa<ConstantSDNode>(Op0.getOperand(1)) &&
3421 cast<ConstantSDNode>(Op0.getOperand(1))->isOne()) {
3422 // If this is (X&1) == / != 1, normalize it to (X&1) != / == 0.
3423 if (Op0.getValueType().bitsGT(VT))
3424 Op0 = DAG.getNode(ISD::AND, dl, VT,
3425 DAG.getNode(ISD::TRUNCATE, dl, VT, Op0.getOperand(0)),
3426 DAG.getConstant(1, dl, VT));
3427 else if (Op0.getValueType().bitsLT(VT))
3428 Op0 = DAG.getNode(ISD::AND, dl, VT,
3429 DAG.getNode(ISD::ANY_EXTEND, dl, VT, Op0.getOperand(0)),
3430 DAG.getConstant(1, dl, VT));
3432 return DAG.getSetCC(dl, VT, Op0,
3433 DAG.getConstant(0, dl, Op0.getValueType()),
3434 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3436 if (Op0.getOpcode() == ISD::AssertZext &&
3437 cast<VTSDNode>(Op0.getOperand(1))->getVT() == MVT::i1)
3438 return DAG.getSetCC(dl, VT, Op0,
3439 DAG.getConstant(0, dl, Op0.getValueType()),
3440 Cond == ISD::SETEQ ? ISD::SETNE : ISD::SETEQ);
3444 // Given:
3445 // icmp eq/ne (urem %x, %y), 0
3446 // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
3447 // icmp eq/ne %x, 0
3448 if (N0.getOpcode() == ISD::UREM && N1C->isNullValue() &&
3449 (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3450 KnownBits XKnown = DAG.computeKnownBits(N0.getOperand(0));
3451 KnownBits YKnown = DAG.computeKnownBits(N0.getOperand(1));
3452 if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
3453 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1, Cond);
3456 if (SDValue V =
3457 optimizeSetCCOfSignedTruncationCheck(VT, N0, N1, Cond, DCI, dl))
3458 return V;
3461 // These simplifications apply to splat vectors as well.
3462 // TODO: Handle more splat vector cases.
3463 if (auto *N1C = isConstOrConstSplat(N1)) {
3464 const APInt &C1 = N1C->getAPIntValue();
3466 APInt MinVal, MaxVal;
3467 unsigned OperandBitSize = N1C->getValueType(0).getScalarSizeInBits();
3468 if (ISD::isSignedIntSetCC(Cond)) {
3469 MinVal = APInt::getSignedMinValue(OperandBitSize);
3470 MaxVal = APInt::getSignedMaxValue(OperandBitSize);
3471 } else {
3472 MinVal = APInt::getMinValue(OperandBitSize);
3473 MaxVal = APInt::getMaxValue(OperandBitSize);
3476 // Canonicalize GE/LE comparisons to use GT/LT comparisons.
3477 if (Cond == ISD::SETGE || Cond == ISD::SETUGE) {
3478 // X >= MIN --> true
3479 if (C1 == MinVal)
3480 return DAG.getBoolConstant(true, dl, VT, OpVT);
3482 if (!VT.isVector()) { // TODO: Support this for vectors.
3483 // X >= C0 --> X > (C0 - 1)
3484 APInt C = C1 - 1;
3485 ISD::CondCode NewCC = (Cond == ISD::SETGE) ? ISD::SETGT : ISD::SETUGT;
3486 if ((DCI.isBeforeLegalizeOps() ||
3487 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3488 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3489 isLegalICmpImmediate(C.getSExtValue())))) {
3490 return DAG.getSetCC(dl, VT, N0,
3491 DAG.getConstant(C, dl, N1.getValueType()),
3492 NewCC);
3497 if (Cond == ISD::SETLE || Cond == ISD::SETULE) {
3498 // X <= MAX --> true
3499 if (C1 == MaxVal)
3500 return DAG.getBoolConstant(true, dl, VT, OpVT);
3502 // X <= C0 --> X < (C0 + 1)
3503 if (!VT.isVector()) { // TODO: Support this for vectors.
3504 APInt C = C1 + 1;
3505 ISD::CondCode NewCC = (Cond == ISD::SETLE) ? ISD::SETLT : ISD::SETULT;
3506 if ((DCI.isBeforeLegalizeOps() ||
3507 isCondCodeLegal(NewCC, VT.getSimpleVT())) &&
3508 (!N1C->isOpaque() || (C.getBitWidth() <= 64 &&
3509 isLegalICmpImmediate(C.getSExtValue())))) {
3510 return DAG.getSetCC(dl, VT, N0,
3511 DAG.getConstant(C, dl, N1.getValueType()),
3512 NewCC);
3517 if (Cond == ISD::SETLT || Cond == ISD::SETULT) {
3518 if (C1 == MinVal)
3519 return DAG.getBoolConstant(false, dl, VT, OpVT); // X < MIN --> false
3521 // TODO: Support this for vectors after legalize ops.
3522 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3523 // Canonicalize setlt X, Max --> setne X, Max
3524 if (C1 == MaxVal)
3525 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3527 // If we have setult X, 1, turn it into seteq X, 0
3528 if (C1 == MinVal+1)
3529 return DAG.getSetCC(dl, VT, N0,
3530 DAG.getConstant(MinVal, dl, N0.getValueType()),
3531 ISD::SETEQ);
3535 if (Cond == ISD::SETGT || Cond == ISD::SETUGT) {
3536 if (C1 == MaxVal)
3537 return DAG.getBoolConstant(false, dl, VT, OpVT); // X > MAX --> false
3539 // TODO: Support this for vectors after legalize ops.
3540 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3541 // Canonicalize setgt X, Min --> setne X, Min
3542 if (C1 == MinVal)
3543 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETNE);
3545 // If we have setugt X, Max-1, turn it into seteq X, Max
3546 if (C1 == MaxVal-1)
3547 return DAG.getSetCC(dl, VT, N0,
3548 DAG.getConstant(MaxVal, dl, N0.getValueType()),
3549 ISD::SETEQ);
3553 if (Cond == ISD::SETEQ || Cond == ISD::SETNE) {
3554 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
3555 if (C1.isNullValue())
3556 if (SDValue CC = optimizeSetCCByHoistingAndByConstFromLogicalShift(
3557 VT, N0, N1, Cond, DCI, dl))
3558 return CC;
3561 // If we have "setcc X, C0", check to see if we can shrink the immediate
3562 // by changing cc.
3563 // TODO: Support this for vectors after legalize ops.
3564 if (!VT.isVector() || DCI.isBeforeLegalizeOps()) {
3565 // SETUGT X, SINTMAX -> SETLT X, 0
3566 if (Cond == ISD::SETUGT &&
3567 C1 == APInt::getSignedMaxValue(OperandBitSize))
3568 return DAG.getSetCC(dl, VT, N0,
3569 DAG.getConstant(0, dl, N1.getValueType()),
3570 ISD::SETLT);
3572 // SETULT X, SINTMIN -> SETGT X, -1
3573 if (Cond == ISD::SETULT &&
3574 C1 == APInt::getSignedMinValue(OperandBitSize)) {
3575 SDValue ConstMinusOne =
3576 DAG.getConstant(APInt::getAllOnesValue(OperandBitSize), dl,
3577 N1.getValueType());
3578 return DAG.getSetCC(dl, VT, N0, ConstMinusOne, ISD::SETGT);
3583 // Back to non-vector simplifications.
3584 // TODO: Can we do these for vector splats?
3585 if (auto *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
3586 const APInt &C1 = N1C->getAPIntValue();
3588 // Fold bit comparisons when we can.
3589 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3590 (VT == N0.getValueType() ||
3591 (isTypeLegal(VT) && VT.bitsLE(N0.getValueType()))) &&
3592 N0.getOpcode() == ISD::AND) {
3593 auto &DL = DAG.getDataLayout();
3594 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3595 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3596 !DCI.isBeforeLegalize());
3597 if (Cond == ISD::SETNE && C1 == 0) {// (X & 8) != 0 --> (X & 8) >> 3
3598 // Perform the xform if the AND RHS is a single bit.
3599 if (AndRHS->getAPIntValue().isPowerOf2()) {
3600 return DAG.getNode(ISD::TRUNCATE, dl, VT,
3601 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3602 DAG.getConstant(AndRHS->getAPIntValue().logBase2(), dl,
3603 ShiftTy)));
3605 } else if (Cond == ISD::SETEQ && C1 == AndRHS->getAPIntValue()) {
3606 // (X & 8) == 8 --> (X & 8) >> 3
3607 // Perform the xform if C1 is a single bit.
3608 if (C1.isPowerOf2()) {
3609 return DAG.getNode(ISD::TRUNCATE, dl, VT,
3610 DAG.getNode(ISD::SRL, dl, N0.getValueType(), N0,
3611 DAG.getConstant(C1.logBase2(), dl,
3612 ShiftTy)));
3618 if (C1.getMinSignedBits() <= 64 &&
3619 !isLegalICmpImmediate(C1.getSExtValue())) {
3620 // (X & -256) == 256 -> (X >> 8) == 1
3621 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3622 N0.getOpcode() == ISD::AND && N0.hasOneUse()) {
3623 if (auto *AndRHS = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3624 const APInt &AndRHSC = AndRHS->getAPIntValue();
3625 if ((-AndRHSC).isPowerOf2() && (AndRHSC & C1) == C1) {
3626 unsigned ShiftBits = AndRHSC.countTrailingZeros();
3627 auto &DL = DAG.getDataLayout();
3628 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3629 !DCI.isBeforeLegalize());
3630 EVT CmpTy = N0.getValueType();
3631 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0.getOperand(0),
3632 DAG.getConstant(ShiftBits, dl,
3633 ShiftTy));
3634 SDValue CmpRHS = DAG.getConstant(C1.lshr(ShiftBits), dl, CmpTy);
3635 return DAG.getSetCC(dl, VT, Shift, CmpRHS, Cond);
3638 } else if (Cond == ISD::SETULT || Cond == ISD::SETUGE ||
3639 Cond == ISD::SETULE || Cond == ISD::SETUGT) {
3640 bool AdjOne = (Cond == ISD::SETULE || Cond == ISD::SETUGT);
3641 // X < 0x100000000 -> (X >> 32) < 1
3642 // X >= 0x100000000 -> (X >> 32) >= 1
3643 // X <= 0x0ffffffff -> (X >> 32) < 1
3644 // X > 0x0ffffffff -> (X >> 32) >= 1
3645 unsigned ShiftBits;
3646 APInt NewC = C1;
3647 ISD::CondCode NewCond = Cond;
3648 if (AdjOne) {
3649 ShiftBits = C1.countTrailingOnes();
3650 NewC = NewC + 1;
3651 NewCond = (Cond == ISD::SETULE) ? ISD::SETULT : ISD::SETUGE;
3652 } else {
3653 ShiftBits = C1.countTrailingZeros();
3655 NewC.lshrInPlace(ShiftBits);
3656 if (ShiftBits && NewC.getMinSignedBits() <= 64 &&
3657 isLegalICmpImmediate(NewC.getSExtValue())) {
3658 auto &DL = DAG.getDataLayout();
3659 EVT ShiftTy = getShiftAmountTy(N0.getValueType(), DL,
3660 !DCI.isBeforeLegalize());
3661 EVT CmpTy = N0.getValueType();
3662 SDValue Shift = DAG.getNode(ISD::SRL, dl, CmpTy, N0,
3663 DAG.getConstant(ShiftBits, dl, ShiftTy));
3664 SDValue CmpRHS = DAG.getConstant(NewC, dl, CmpTy);
3665 return DAG.getSetCC(dl, VT, Shift, CmpRHS, NewCond);
3671 if (!isa<ConstantFPSDNode>(N0) && isa<ConstantFPSDNode>(N1)) {
3672 auto *CFP = cast<ConstantFPSDNode>(N1);
3673 assert(!CFP->getValueAPF().isNaN() && "Unexpected NaN value");
3675 // Otherwise, we know the RHS is not a NaN. Simplify the node to drop the
3676 // constant if knowing that the operand is non-nan is enough. We prefer to
3677 // have SETO(x,x) instead of SETO(x, 0.0) because this avoids having to
3678 // materialize 0.0.
3679 if (Cond == ISD::SETO || Cond == ISD::SETUO)
3680 return DAG.getSetCC(dl, VT, N0, N0, Cond);
3682 // setcc (fneg x), C -> setcc swap(pred) x, -C
3683 if (N0.getOpcode() == ISD::FNEG) {
3684 ISD::CondCode SwapCond = ISD::getSetCCSwappedOperands(Cond);
3685 if (DCI.isBeforeLegalizeOps() ||
3686 isCondCodeLegal(SwapCond, N0.getSimpleValueType())) {
3687 SDValue NegN1 = DAG.getNode(ISD::FNEG, dl, N0.getValueType(), N1);
3688 return DAG.getSetCC(dl, VT, N0.getOperand(0), NegN1, SwapCond);
3692 // If the condition is not legal, see if we can find an equivalent one
3693 // which is legal.
3694 if (!isCondCodeLegal(Cond, N0.getSimpleValueType())) {
3695 // If the comparison was an awkward floating-point == or != and one of
3696 // the comparison operands is infinity or negative infinity, convert the
3697 // condition to a less-awkward <= or >=.
3698 if (CFP->getValueAPF().isInfinity()) {
3699 if (CFP->getValueAPF().isNegative()) {
3700 if (Cond == ISD::SETOEQ &&
3701 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3702 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLE);
3703 if (Cond == ISD::SETUEQ &&
3704 isCondCodeLegal(ISD::SETOLE, N0.getSimpleValueType()))
3705 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULE);
3706 if (Cond == ISD::SETUNE &&
3707 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3708 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGT);
3709 if (Cond == ISD::SETONE &&
3710 isCondCodeLegal(ISD::SETUGT, N0.getSimpleValueType()))
3711 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGT);
3712 } else {
3713 if (Cond == ISD::SETOEQ &&
3714 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3715 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOGE);
3716 if (Cond == ISD::SETUEQ &&
3717 isCondCodeLegal(ISD::SETOGE, N0.getSimpleValueType()))
3718 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETUGE);
3719 if (Cond == ISD::SETUNE &&
3720 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3721 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETULT);
3722 if (Cond == ISD::SETONE &&
3723 isCondCodeLegal(ISD::SETULT, N0.getSimpleValueType()))
3724 return DAG.getSetCC(dl, VT, N0, N1, ISD::SETOLT);
3730 if (N0 == N1) {
3731 // The sext(setcc()) => setcc() optimization relies on the appropriate
3732 // constant being emitted.
3733 assert(!N0.getValueType().isInteger() &&
3734 "Integer types should be handled by FoldSetCC");
3736 bool EqTrue = ISD::isTrueWhenEqual(Cond);
3737 unsigned UOF = ISD::getUnorderedFlavor(Cond);
3738 if (UOF == 2) // FP operators that are undefined on NaNs.
3739 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3740 if (UOF == unsigned(EqTrue))
3741 return DAG.getBoolConstant(EqTrue, dl, VT, OpVT);
3742 // Otherwise, we can't fold it. However, we can simplify it to SETUO/SETO
3743 // if it is not already.
3744 ISD::CondCode NewCond = UOF == 0 ? ISD::SETO : ISD::SETUO;
3745 if (NewCond != Cond &&
3746 (DCI.isBeforeLegalizeOps() ||
3747 isCondCodeLegal(NewCond, N0.getSimpleValueType())))
3748 return DAG.getSetCC(dl, VT, N0, N1, NewCond);
3751 if ((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
3752 N0.getValueType().isInteger()) {
3753 if (N0.getOpcode() == ISD::ADD || N0.getOpcode() == ISD::SUB ||
3754 N0.getOpcode() == ISD::XOR) {
3755 // Simplify (X+Y) == (X+Z) --> Y == Z
3756 if (N0.getOpcode() == N1.getOpcode()) {
3757 if (N0.getOperand(0) == N1.getOperand(0))
3758 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(1), Cond);
3759 if (N0.getOperand(1) == N1.getOperand(1))
3760 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(0), Cond);
3761 if (isCommutativeBinOp(N0.getOpcode())) {
3762 // If X op Y == Y op X, try other combinations.
3763 if (N0.getOperand(0) == N1.getOperand(1))
3764 return DAG.getSetCC(dl, VT, N0.getOperand(1), N1.getOperand(0),
3765 Cond);
3766 if (N0.getOperand(1) == N1.getOperand(0))
3767 return DAG.getSetCC(dl, VT, N0.getOperand(0), N1.getOperand(1),
3768 Cond);
3772 // If RHS is a legal immediate value for a compare instruction, we need
3773 // to be careful about increasing register pressure needlessly.
3774 bool LegalRHSImm = false;
3776 if (auto *RHSC = dyn_cast<ConstantSDNode>(N1)) {
3777 if (auto *LHSR = dyn_cast<ConstantSDNode>(N0.getOperand(1))) {
3778 // Turn (X+C1) == C2 --> X == C2-C1
3779 if (N0.getOpcode() == ISD::ADD && N0.getNode()->hasOneUse()) {
3780 return DAG.getSetCC(dl, VT, N0.getOperand(0),
3781 DAG.getConstant(RHSC->getAPIntValue()-
3782 LHSR->getAPIntValue(),
3783 dl, N0.getValueType()), Cond);
3786 // Turn (X^C1) == C2 into X == C1^C2 iff X&~C1 = 0.
3787 if (N0.getOpcode() == ISD::XOR)
3788 // If we know that all of the inverted bits are zero, don't bother
3789 // performing the inversion.
3790 if (DAG.MaskedValueIsZero(N0.getOperand(0), ~LHSR->getAPIntValue()))
3791 return
3792 DAG.getSetCC(dl, VT, N0.getOperand(0),
3793 DAG.getConstant(LHSR->getAPIntValue() ^
3794 RHSC->getAPIntValue(),
3795 dl, N0.getValueType()),
3796 Cond);
3799 // Turn (C1-X) == C2 --> X == C1-C2
3800 if (auto *SUBC = dyn_cast<ConstantSDNode>(N0.getOperand(0))) {
3801 if (N0.getOpcode() == ISD::SUB && N0.getNode()->hasOneUse()) {
3802 return
3803 DAG.getSetCC(dl, VT, N0.getOperand(1),
3804 DAG.getConstant(SUBC->getAPIntValue() -
3805 RHSC->getAPIntValue(),
3806 dl, N0.getValueType()),
3807 Cond);
3811 // Could RHSC fold directly into a compare?
3812 if (RHSC->getValueType(0).getSizeInBits() <= 64)
3813 LegalRHSImm = isLegalICmpImmediate(RHSC->getSExtValue());
3816 // (X+Y) == X --> Y == 0 and similar folds.
3817 // Don't do this if X is an immediate that can fold into a cmp
3818 // instruction and X+Y has other uses. It could be an induction variable
3819 // chain, and the transform would increase register pressure.
3820 if (!LegalRHSImm || N0.hasOneUse())
3821 if (SDValue V = foldSetCCWithBinOp(VT, N0, N1, Cond, dl, DCI))
3822 return V;
3825 if (N1.getOpcode() == ISD::ADD || N1.getOpcode() == ISD::SUB ||
3826 N1.getOpcode() == ISD::XOR)
3827 if (SDValue V = foldSetCCWithBinOp(VT, N1, N0, Cond, dl, DCI))
3828 return V;
3830 if (SDValue V = foldSetCCWithAnd(VT, N0, N1, Cond, dl, DCI))
3831 return V;
3834 // Fold remainder of division by a constant.
3835 if ((N0.getOpcode() == ISD::UREM || N0.getOpcode() == ISD::SREM) &&
3836 N0.hasOneUse() && (Cond == ISD::SETEQ || Cond == ISD::SETNE)) {
3837 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
3839 // When division is cheap or optimizing for minimum size,
3840 // fall through to DIVREM creation by skipping this fold.
3841 if (!isIntDivCheap(VT, Attr) && !Attr.hasFnAttribute(Attribute::MinSize)) {
3842 if (N0.getOpcode() == ISD::UREM) {
3843 if (SDValue Folded = buildUREMEqFold(VT, N0, N1, Cond, DCI, dl))
3844 return Folded;
3845 } else if (N0.getOpcode() == ISD::SREM) {
3846 if (SDValue Folded = buildSREMEqFold(VT, N0, N1, Cond, DCI, dl))
3847 return Folded;
3852 // Fold away ALL boolean setcc's.
3853 if (N0.getValueType().getScalarType() == MVT::i1 && foldBooleans) {
3854 SDValue Temp;
3855 switch (Cond) {
3856 default: llvm_unreachable("Unknown integer setcc!");
3857 case ISD::SETEQ: // X == Y -> ~(X^Y)
3858 Temp = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3859 N0 = DAG.getNOT(dl, Temp, OpVT);
3860 if (!DCI.isCalledByLegalizer())
3861 DCI.AddToWorklist(Temp.getNode());
3862 break;
3863 case ISD::SETNE: // X != Y --> (X^Y)
3864 N0 = DAG.getNode(ISD::XOR, dl, OpVT, N0, N1);
3865 break;
3866 case ISD::SETGT: // X >s Y --> X == 0 & Y == 1 --> ~X & Y
3867 case ISD::SETULT: // X <u Y --> X == 0 & Y == 1 --> ~X & Y
3868 Temp = DAG.getNOT(dl, N0, OpVT);
3869 N0 = DAG.getNode(ISD::AND, dl, OpVT, N1, Temp);
3870 if (!DCI.isCalledByLegalizer())
3871 DCI.AddToWorklist(Temp.getNode());
3872 break;
3873 case ISD::SETLT: // X <s Y --> X == 1 & Y == 0 --> ~Y & X
3874 case ISD::SETUGT: // X >u Y --> X == 1 & Y == 0 --> ~Y & X
3875 Temp = DAG.getNOT(dl, N1, OpVT);
3876 N0 = DAG.getNode(ISD::AND, dl, OpVT, N0, Temp);
3877 if (!DCI.isCalledByLegalizer())
3878 DCI.AddToWorklist(Temp.getNode());
3879 break;
3880 case ISD::SETULE: // X <=u Y --> X == 0 | Y == 1 --> ~X | Y
3881 case ISD::SETGE: // X >=s Y --> X == 0 | Y == 1 --> ~X | Y
3882 Temp = DAG.getNOT(dl, N0, OpVT);
3883 N0 = DAG.getNode(ISD::OR, dl, OpVT, N1, Temp);
3884 if (!DCI.isCalledByLegalizer())
3885 DCI.AddToWorklist(Temp.getNode());
3886 break;
3887 case ISD::SETUGE: // X >=u Y --> X == 1 | Y == 0 --> ~Y | X
3888 case ISD::SETLE: // X <=s Y --> X == 1 | Y == 0 --> ~Y | X
3889 Temp = DAG.getNOT(dl, N1, OpVT);
3890 N0 = DAG.getNode(ISD::OR, dl, OpVT, N0, Temp);
3891 break;
3893 if (VT.getScalarType() != MVT::i1) {
3894 if (!DCI.isCalledByLegalizer())
3895 DCI.AddToWorklist(N0.getNode());
3896 // FIXME: If running after legalize, we probably can't do this.
3897 ISD::NodeType ExtendCode = getExtendForContent(getBooleanContents(OpVT));
3898 N0 = DAG.getNode(ExtendCode, dl, VT, N0);
3900 return N0;
3903 // Could not fold it.
3904 return SDValue();
3907 /// Returns true (and the GlobalValue and the offset) if the node is a
3908 /// GlobalAddress + offset.
3909 bool TargetLowering::isGAPlusOffset(SDNode *WN, const GlobalValue *&GA,
3910 int64_t &Offset) const {
3912 SDNode *N = unwrapAddress(SDValue(WN, 0)).getNode();
3914 if (auto *GASD = dyn_cast<GlobalAddressSDNode>(N)) {
3915 GA = GASD->getGlobal();
3916 Offset += GASD->getOffset();
3917 return true;
3920 if (N->getOpcode() == ISD::ADD) {
3921 SDValue N1 = N->getOperand(0);
3922 SDValue N2 = N->getOperand(1);
3923 if (isGAPlusOffset(N1.getNode(), GA, Offset)) {
3924 if (auto *V = dyn_cast<ConstantSDNode>(N2)) {
3925 Offset += V->getSExtValue();
3926 return true;
3928 } else if (isGAPlusOffset(N2.getNode(), GA, Offset)) {
3929 if (auto *V = dyn_cast<ConstantSDNode>(N1)) {
3930 Offset += V->getSExtValue();
3931 return true;
3936 return false;
3939 SDValue TargetLowering::PerformDAGCombine(SDNode *N,
3940 DAGCombinerInfo &DCI) const {
3941 // Default implementation: no optimization.
3942 return SDValue();
3945 //===----------------------------------------------------------------------===//
3946 // Inline Assembler Implementation Methods
3947 //===----------------------------------------------------------------------===//
3949 TargetLowering::ConstraintType
3950 TargetLowering::getConstraintType(StringRef Constraint) const {
3951 unsigned S = Constraint.size();
3953 if (S == 1) {
3954 switch (Constraint[0]) {
3955 default: break;
3956 case 'r':
3957 return C_RegisterClass;
3958 case 'm': // memory
3959 case 'o': // offsetable
3960 case 'V': // not offsetable
3961 return C_Memory;
3962 case 'n': // Simple Integer
3963 case 'E': // Floating Point Constant
3964 case 'F': // Floating Point Constant
3965 return C_Immediate;
3966 case 'i': // Simple Integer or Relocatable Constant
3967 case 's': // Relocatable Constant
3968 case 'p': // Address.
3969 case 'X': // Allow ANY value.
3970 case 'I': // Target registers.
3971 case 'J':
3972 case 'K':
3973 case 'L':
3974 case 'M':
3975 case 'N':
3976 case 'O':
3977 case 'P':
3978 case '<':
3979 case '>':
3980 return C_Other;
3984 if (S > 1 && Constraint[0] == '{' && Constraint[S - 1] == '}') {
3985 if (S == 8 && Constraint.substr(1, 6) == "memory") // "{memory}"
3986 return C_Memory;
3987 return C_Register;
3989 return C_Unknown;
3992 /// Try to replace an X constraint, which matches anything, with another that
3993 /// has more specific requirements based on the type of the corresponding
3994 /// operand.
3995 const char *TargetLowering::LowerXConstraint(EVT ConstraintVT) const {
3996 if (ConstraintVT.isInteger())
3997 return "r";
3998 if (ConstraintVT.isFloatingPoint())
3999 return "f"; // works for many targets
4000 return nullptr;
4003 SDValue TargetLowering::LowerAsmOutputForConstraint(
4004 SDValue &Chain, SDValue &Flag, SDLoc DL, const AsmOperandInfo &OpInfo,
4005 SelectionDAG &DAG) const {
4006 return SDValue();
4009 /// Lower the specified operand into the Ops vector.
4010 /// If it is invalid, don't add anything to Ops.
4011 void TargetLowering::LowerAsmOperandForConstraint(SDValue Op,
4012 std::string &Constraint,
4013 std::vector<SDValue> &Ops,
4014 SelectionDAG &DAG) const {
4016 if (Constraint.length() > 1) return;
4018 char ConstraintLetter = Constraint[0];
4019 switch (ConstraintLetter) {
4020 default: break;
4021 case 'X': // Allows any operand; labels (basic block) use this.
4022 if (Op.getOpcode() == ISD::BasicBlock ||
4023 Op.getOpcode() == ISD::TargetBlockAddress) {
4024 Ops.push_back(Op);
4025 return;
4027 LLVM_FALLTHROUGH;
4028 case 'i': // Simple Integer or Relocatable Constant
4029 case 'n': // Simple Integer
4030 case 's': { // Relocatable Constant
4032 GlobalAddressSDNode *GA;
4033 ConstantSDNode *C;
4034 BlockAddressSDNode *BA;
4035 uint64_t Offset = 0;
4037 // Match (GA) or (C) or (GA+C) or (GA-C) or ((GA+C)+C) or (((GA+C)+C)+C),
4038 // etc., since getelementpointer is variadic. We can't use
4039 // SelectionDAG::FoldSymbolOffset because it expects the GA to be accessible
4040 // while in this case the GA may be furthest from the root node which is
4041 // likely an ISD::ADD.
4042 while (1) {
4043 if ((GA = dyn_cast<GlobalAddressSDNode>(Op)) && ConstraintLetter != 'n') {
4044 Ops.push_back(DAG.getTargetGlobalAddress(GA->getGlobal(), SDLoc(Op),
4045 GA->getValueType(0),
4046 Offset + GA->getOffset()));
4047 return;
4048 } else if ((C = dyn_cast<ConstantSDNode>(Op)) &&
4049 ConstraintLetter != 's') {
4050 // gcc prints these as sign extended. Sign extend value to 64 bits
4051 // now; without this it would get ZExt'd later in
4052 // ScheduleDAGSDNodes::EmitNode, which is very generic.
4053 bool IsBool = C->getConstantIntValue()->getBitWidth() == 1;
4054 BooleanContent BCont = getBooleanContents(MVT::i64);
4055 ISD::NodeType ExtOpc = IsBool ? getExtendForContent(BCont)
4056 : ISD::SIGN_EXTEND;
4057 int64_t ExtVal = ExtOpc == ISD::ZERO_EXTEND ? C->getZExtValue()
4058 : C->getSExtValue();
4059 Ops.push_back(DAG.getTargetConstant(Offset + ExtVal,
4060 SDLoc(C), MVT::i64));
4061 return;
4062 } else if ((BA = dyn_cast<BlockAddressSDNode>(Op)) &&
4063 ConstraintLetter != 'n') {
4064 Ops.push_back(DAG.getTargetBlockAddress(
4065 BA->getBlockAddress(), BA->getValueType(0),
4066 Offset + BA->getOffset(), BA->getTargetFlags()));
4067 return;
4068 } else {
4069 const unsigned OpCode = Op.getOpcode();
4070 if (OpCode == ISD::ADD || OpCode == ISD::SUB) {
4071 if ((C = dyn_cast<ConstantSDNode>(Op.getOperand(0))))
4072 Op = Op.getOperand(1);
4073 // Subtraction is not commutative.
4074 else if (OpCode == ISD::ADD &&
4075 (C = dyn_cast<ConstantSDNode>(Op.getOperand(1))))
4076 Op = Op.getOperand(0);
4077 else
4078 return;
4079 Offset += (OpCode == ISD::ADD ? 1 : -1) * C->getSExtValue();
4080 continue;
4083 return;
4085 break;
4090 std::pair<unsigned, const TargetRegisterClass *>
4091 TargetLowering::getRegForInlineAsmConstraint(const TargetRegisterInfo *RI,
4092 StringRef Constraint,
4093 MVT VT) const {
4094 if (Constraint.empty() || Constraint[0] != '{')
4095 return std::make_pair(0u, static_cast<TargetRegisterClass *>(nullptr));
4096 assert(*(Constraint.end() - 1) == '}' && "Not a brace enclosed constraint?");
4098 // Remove the braces from around the name.
4099 StringRef RegName(Constraint.data() + 1, Constraint.size() - 2);
4101 std::pair<unsigned, const TargetRegisterClass *> R =
4102 std::make_pair(0u, static_cast<const TargetRegisterClass *>(nullptr));
4104 // Figure out which register class contains this reg.
4105 for (const TargetRegisterClass *RC : RI->regclasses()) {
4106 // If none of the value types for this register class are valid, we
4107 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4108 if (!isLegalRC(*RI, *RC))
4109 continue;
4111 for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end();
4112 I != E; ++I) {
4113 if (RegName.equals_lower(RI->getRegAsmName(*I))) {
4114 std::pair<unsigned, const TargetRegisterClass *> S =
4115 std::make_pair(*I, RC);
4117 // If this register class has the requested value type, return it,
4118 // otherwise keep searching and return the first class found
4119 // if no other is found which explicitly has the requested type.
4120 if (RI->isTypeLegalForClass(*RC, VT))
4121 return S;
4122 if (!R.second)
4123 R = S;
4128 return R;
4131 //===----------------------------------------------------------------------===//
4132 // Constraint Selection.
4134 /// Return true of this is an input operand that is a matching constraint like
4135 /// "4".
4136 bool TargetLowering::AsmOperandInfo::isMatchingInputConstraint() const {
4137 assert(!ConstraintCode.empty() && "No known constraint!");
4138 return isdigit(static_cast<unsigned char>(ConstraintCode[0]));
4141 /// If this is an input matching constraint, this method returns the output
4142 /// operand it matches.
4143 unsigned TargetLowering::AsmOperandInfo::getMatchedOperand() const {
4144 assert(!ConstraintCode.empty() && "No known constraint!");
4145 return atoi(ConstraintCode.c_str());
4148 /// Split up the constraint string from the inline assembly value into the
4149 /// specific constraints and their prefixes, and also tie in the associated
4150 /// operand values.
4151 /// If this returns an empty vector, and if the constraint string itself
4152 /// isn't empty, there was an error parsing.
4153 TargetLowering::AsmOperandInfoVector
4154 TargetLowering::ParseConstraints(const DataLayout &DL,
4155 const TargetRegisterInfo *TRI,
4156 ImmutableCallSite CS) const {
4157 /// Information about all of the constraints.
4158 AsmOperandInfoVector ConstraintOperands;
4159 const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4160 unsigned maCount = 0; // Largest number of multiple alternative constraints.
4162 // Do a prepass over the constraints, canonicalizing them, and building up the
4163 // ConstraintOperands list.
4164 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4165 unsigned ResNo = 0; // ResNo - The result number of the next output.
4167 for (InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) {
4168 ConstraintOperands.emplace_back(std::move(CI));
4169 AsmOperandInfo &OpInfo = ConstraintOperands.back();
4171 // Update multiple alternative constraint count.
4172 if (OpInfo.multipleAlternatives.size() > maCount)
4173 maCount = OpInfo.multipleAlternatives.size();
4175 OpInfo.ConstraintVT = MVT::Other;
4177 // Compute the value type for each operand.
4178 switch (OpInfo.Type) {
4179 case InlineAsm::isOutput:
4180 // Indirect outputs just consume an argument.
4181 if (OpInfo.isIndirect) {
4182 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4183 break;
4186 // The return value of the call is this value. As such, there is no
4187 // corresponding argument.
4188 assert(!CS.getType()->isVoidTy() &&
4189 "Bad inline asm!");
4190 if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
4191 OpInfo.ConstraintVT =
4192 getSimpleValueType(DL, STy->getElementType(ResNo));
4193 } else {
4194 assert(ResNo == 0 && "Asm only has one result!");
4195 OpInfo.ConstraintVT = getSimpleValueType(DL, CS.getType());
4197 ++ResNo;
4198 break;
4199 case InlineAsm::isInput:
4200 OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
4201 break;
4202 case InlineAsm::isClobber:
4203 // Nothing to do.
4204 break;
4207 if (OpInfo.CallOperandVal) {
4208 llvm::Type *OpTy = OpInfo.CallOperandVal->getType();
4209 if (OpInfo.isIndirect) {
4210 llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
4211 if (!PtrTy)
4212 report_fatal_error("Indirect operand for inline asm not a pointer!");
4213 OpTy = PtrTy->getElementType();
4216 // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
4217 if (StructType *STy = dyn_cast<StructType>(OpTy))
4218 if (STy->getNumElements() == 1)
4219 OpTy = STy->getElementType(0);
4221 // If OpTy is not a single value, it may be a struct/union that we
4222 // can tile with integers.
4223 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4224 unsigned BitSize = DL.getTypeSizeInBits(OpTy);
4225 switch (BitSize) {
4226 default: break;
4227 case 1:
4228 case 8:
4229 case 16:
4230 case 32:
4231 case 64:
4232 case 128:
4233 OpInfo.ConstraintVT =
4234 MVT::getVT(IntegerType::get(OpTy->getContext(), BitSize), true);
4235 break;
4237 } else if (PointerType *PT = dyn_cast<PointerType>(OpTy)) {
4238 unsigned PtrSize = DL.getPointerSizeInBits(PT->getAddressSpace());
4239 OpInfo.ConstraintVT = MVT::getIntegerVT(PtrSize);
4240 } else {
4241 OpInfo.ConstraintVT = MVT::getVT(OpTy, true);
4246 // If we have multiple alternative constraints, select the best alternative.
4247 if (!ConstraintOperands.empty()) {
4248 if (maCount) {
4249 unsigned bestMAIndex = 0;
4250 int bestWeight = -1;
4251 // weight: -1 = invalid match, and 0 = so-so match to 5 = good match.
4252 int weight = -1;
4253 unsigned maIndex;
4254 // Compute the sums of the weights for each alternative, keeping track
4255 // of the best (highest weight) one so far.
4256 for (maIndex = 0; maIndex < maCount; ++maIndex) {
4257 int weightSum = 0;
4258 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4259 cIndex != eIndex; ++cIndex) {
4260 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4261 if (OpInfo.Type == InlineAsm::isClobber)
4262 continue;
4264 // If this is an output operand with a matching input operand,
4265 // look up the matching input. If their types mismatch, e.g. one
4266 // is an integer, the other is floating point, or their sizes are
4267 // different, flag it as an maCantMatch.
4268 if (OpInfo.hasMatchingInput()) {
4269 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4270 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4271 if ((OpInfo.ConstraintVT.isInteger() !=
4272 Input.ConstraintVT.isInteger()) ||
4273 (OpInfo.ConstraintVT.getSizeInBits() !=
4274 Input.ConstraintVT.getSizeInBits())) {
4275 weightSum = -1; // Can't match.
4276 break;
4280 weight = getMultipleConstraintMatchWeight(OpInfo, maIndex);
4281 if (weight == -1) {
4282 weightSum = -1;
4283 break;
4285 weightSum += weight;
4287 // Update best.
4288 if (weightSum > bestWeight) {
4289 bestWeight = weightSum;
4290 bestMAIndex = maIndex;
4294 // Now select chosen alternative in each constraint.
4295 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4296 cIndex != eIndex; ++cIndex) {
4297 AsmOperandInfo &cInfo = ConstraintOperands[cIndex];
4298 if (cInfo.Type == InlineAsm::isClobber)
4299 continue;
4300 cInfo.selectAlternative(bestMAIndex);
4305 // Check and hook up tied operands, choose constraint code to use.
4306 for (unsigned cIndex = 0, eIndex = ConstraintOperands.size();
4307 cIndex != eIndex; ++cIndex) {
4308 AsmOperandInfo &OpInfo = ConstraintOperands[cIndex];
4310 // If this is an output operand with a matching input operand, look up the
4311 // matching input. If their types mismatch, e.g. one is an integer, the
4312 // other is floating point, or their sizes are different, flag it as an
4313 // error.
4314 if (OpInfo.hasMatchingInput()) {
4315 AsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4317 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4318 std::pair<unsigned, const TargetRegisterClass *> MatchRC =
4319 getRegForInlineAsmConstraint(TRI, OpInfo.ConstraintCode,
4320 OpInfo.ConstraintVT);
4321 std::pair<unsigned, const TargetRegisterClass *> InputRC =
4322 getRegForInlineAsmConstraint(TRI, Input.ConstraintCode,
4323 Input.ConstraintVT);
4324 if ((OpInfo.ConstraintVT.isInteger() !=
4325 Input.ConstraintVT.isInteger()) ||
4326 (MatchRC.second != InputRC.second)) {
4327 report_fatal_error("Unsupported asm: input constraint"
4328 " with a matching output constraint of"
4329 " incompatible type!");
4335 return ConstraintOperands;
4338 /// Return an integer indicating how general CT is.
4339 static unsigned getConstraintGenerality(TargetLowering::ConstraintType CT) {
4340 switch (CT) {
4341 case TargetLowering::C_Immediate:
4342 case TargetLowering::C_Other:
4343 case TargetLowering::C_Unknown:
4344 return 0;
4345 case TargetLowering::C_Register:
4346 return 1;
4347 case TargetLowering::C_RegisterClass:
4348 return 2;
4349 case TargetLowering::C_Memory:
4350 return 3;
4352 llvm_unreachable("Invalid constraint type");
4355 /// Examine constraint type and operand type and determine a weight value.
4356 /// This object must already have been set up with the operand type
4357 /// and the current alternative constraint selected.
4358 TargetLowering::ConstraintWeight
4359 TargetLowering::getMultipleConstraintMatchWeight(
4360 AsmOperandInfo &info, int maIndex) const {
4361 InlineAsm::ConstraintCodeVector *rCodes;
4362 if (maIndex >= (int)info.multipleAlternatives.size())
4363 rCodes = &info.Codes;
4364 else
4365 rCodes = &info.multipleAlternatives[maIndex].Codes;
4366 ConstraintWeight BestWeight = CW_Invalid;
4368 // Loop over the options, keeping track of the most general one.
4369 for (unsigned i = 0, e = rCodes->size(); i != e; ++i) {
4370 ConstraintWeight weight =
4371 getSingleConstraintMatchWeight(info, (*rCodes)[i].c_str());
4372 if (weight > BestWeight)
4373 BestWeight = weight;
4376 return BestWeight;
4379 /// Examine constraint type and operand type and determine a weight value.
4380 /// This object must already have been set up with the operand type
4381 /// and the current alternative constraint selected.
4382 TargetLowering::ConstraintWeight
4383 TargetLowering::getSingleConstraintMatchWeight(
4384 AsmOperandInfo &info, const char *constraint) const {
4385 ConstraintWeight weight = CW_Invalid;
4386 Value *CallOperandVal = info.CallOperandVal;
4387 // If we don't have a value, we can't do a match,
4388 // but allow it at the lowest weight.
4389 if (!CallOperandVal)
4390 return CW_Default;
4391 // Look at the constraint type.
4392 switch (*constraint) {
4393 case 'i': // immediate integer.
4394 case 'n': // immediate integer with a known value.
4395 if (isa<ConstantInt>(CallOperandVal))
4396 weight = CW_Constant;
4397 break;
4398 case 's': // non-explicit intregal immediate.
4399 if (isa<GlobalValue>(CallOperandVal))
4400 weight = CW_Constant;
4401 break;
4402 case 'E': // immediate float if host format.
4403 case 'F': // immediate float.
4404 if (isa<ConstantFP>(CallOperandVal))
4405 weight = CW_Constant;
4406 break;
4407 case '<': // memory operand with autodecrement.
4408 case '>': // memory operand with autoincrement.
4409 case 'm': // memory operand.
4410 case 'o': // offsettable memory operand
4411 case 'V': // non-offsettable memory operand
4412 weight = CW_Memory;
4413 break;
4414 case 'r': // general register.
4415 case 'g': // general register, memory operand or immediate integer.
4416 // note: Clang converts "g" to "imr".
4417 if (CallOperandVal->getType()->isIntegerTy())
4418 weight = CW_Register;
4419 break;
4420 case 'X': // any operand.
4421 default:
4422 weight = CW_Default;
4423 break;
4425 return weight;
4428 /// If there are multiple different constraints that we could pick for this
4429 /// operand (e.g. "imr") try to pick the 'best' one.
4430 /// This is somewhat tricky: constraints fall into four classes:
4431 /// Other -> immediates and magic values
4432 /// Register -> one specific register
4433 /// RegisterClass -> a group of regs
4434 /// Memory -> memory
4435 /// Ideally, we would pick the most specific constraint possible: if we have
4436 /// something that fits into a register, we would pick it. The problem here
4437 /// is that if we have something that could either be in a register or in
4438 /// memory that use of the register could cause selection of *other*
4439 /// operands to fail: they might only succeed if we pick memory. Because of
4440 /// this the heuristic we use is:
4442 /// 1) If there is an 'other' constraint, and if the operand is valid for
4443 /// that constraint, use it. This makes us take advantage of 'i'
4444 /// constraints when available.
4445 /// 2) Otherwise, pick the most general constraint present. This prefers
4446 /// 'm' over 'r', for example.
4448 static void ChooseConstraint(TargetLowering::AsmOperandInfo &OpInfo,
4449 const TargetLowering &TLI,
4450 SDValue Op, SelectionDAG *DAG) {
4451 assert(OpInfo.Codes.size() > 1 && "Doesn't have multiple constraint options");
4452 unsigned BestIdx = 0;
4453 TargetLowering::ConstraintType BestType = TargetLowering::C_Unknown;
4454 int BestGenerality = -1;
4456 // Loop over the options, keeping track of the most general one.
4457 for (unsigned i = 0, e = OpInfo.Codes.size(); i != e; ++i) {
4458 TargetLowering::ConstraintType CType =
4459 TLI.getConstraintType(OpInfo.Codes[i]);
4461 // If this is an 'other' or 'immediate' constraint, see if the operand is
4462 // valid for it. For example, on X86 we might have an 'rI' constraint. If
4463 // the operand is an integer in the range [0..31] we want to use I (saving a
4464 // load of a register), otherwise we must use 'r'.
4465 if ((CType == TargetLowering::C_Other ||
4466 CType == TargetLowering::C_Immediate) && Op.getNode()) {
4467 assert(OpInfo.Codes[i].size() == 1 &&
4468 "Unhandled multi-letter 'other' constraint");
4469 std::vector<SDValue> ResultOps;
4470 TLI.LowerAsmOperandForConstraint(Op, OpInfo.Codes[i],
4471 ResultOps, *DAG);
4472 if (!ResultOps.empty()) {
4473 BestType = CType;
4474 BestIdx = i;
4475 break;
4479 // Things with matching constraints can only be registers, per gcc
4480 // documentation. This mainly affects "g" constraints.
4481 if (CType == TargetLowering::C_Memory && OpInfo.hasMatchingInput())
4482 continue;
4484 // This constraint letter is more general than the previous one, use it.
4485 int Generality = getConstraintGenerality(CType);
4486 if (Generality > BestGenerality) {
4487 BestType = CType;
4488 BestIdx = i;
4489 BestGenerality = Generality;
4493 OpInfo.ConstraintCode = OpInfo.Codes[BestIdx];
4494 OpInfo.ConstraintType = BestType;
4497 /// Determines the constraint code and constraint type to use for the specific
4498 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4499 void TargetLowering::ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4500 SDValue Op,
4501 SelectionDAG *DAG) const {
4502 assert(!OpInfo.Codes.empty() && "Must have at least one constraint");
4504 // Single-letter constraints ('r') are very common.
4505 if (OpInfo.Codes.size() == 1) {
4506 OpInfo.ConstraintCode = OpInfo.Codes[0];
4507 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4508 } else {
4509 ChooseConstraint(OpInfo, *this, Op, DAG);
4512 // 'X' matches anything.
4513 if (OpInfo.ConstraintCode == "X" && OpInfo.CallOperandVal) {
4514 // Labels and constants are handled elsewhere ('X' is the only thing
4515 // that matches labels). For Functions, the type here is the type of
4516 // the result, which is not what we want to look at; leave them alone.
4517 Value *v = OpInfo.CallOperandVal;
4518 if (isa<BasicBlock>(v) || isa<ConstantInt>(v) || isa<Function>(v)) {
4519 OpInfo.CallOperandVal = v;
4520 return;
4523 if (Op.getNode() && Op.getOpcode() == ISD::TargetBlockAddress)
4524 return;
4526 // Otherwise, try to resolve it to something we know about by looking at
4527 // the actual operand type.
4528 if (const char *Repl = LowerXConstraint(OpInfo.ConstraintVT)) {
4529 OpInfo.ConstraintCode = Repl;
4530 OpInfo.ConstraintType = getConstraintType(OpInfo.ConstraintCode);
4535 /// Given an exact SDIV by a constant, create a multiplication
4536 /// with the multiplicative inverse of the constant.
4537 static SDValue BuildExactSDIV(const TargetLowering &TLI, SDNode *N,
4538 const SDLoc &dl, SelectionDAG &DAG,
4539 SmallVectorImpl<SDNode *> &Created) {
4540 SDValue Op0 = N->getOperand(0);
4541 SDValue Op1 = N->getOperand(1);
4542 EVT VT = N->getValueType(0);
4543 EVT SVT = VT.getScalarType();
4544 EVT ShVT = TLI.getShiftAmountTy(VT, DAG.getDataLayout());
4545 EVT ShSVT = ShVT.getScalarType();
4547 bool UseSRA = false;
4548 SmallVector<SDValue, 16> Shifts, Factors;
4550 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4551 if (C->isNullValue())
4552 return false;
4553 APInt Divisor = C->getAPIntValue();
4554 unsigned Shift = Divisor.countTrailingZeros();
4555 if (Shift) {
4556 Divisor.ashrInPlace(Shift);
4557 UseSRA = true;
4559 // Calculate the multiplicative inverse, using Newton's method.
4560 APInt t;
4561 APInt Factor = Divisor;
4562 while ((t = Divisor * Factor) != 1)
4563 Factor *= APInt(Divisor.getBitWidth(), 2) - t;
4564 Shifts.push_back(DAG.getConstant(Shift, dl, ShSVT));
4565 Factors.push_back(DAG.getConstant(Factor, dl, SVT));
4566 return true;
4569 // Collect all magic values from the build vector.
4570 if (!ISD::matchUnaryPredicate(Op1, BuildSDIVPattern))
4571 return SDValue();
4573 SDValue Shift, Factor;
4574 if (VT.isVector()) {
4575 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4576 Factor = DAG.getBuildVector(VT, dl, Factors);
4577 } else {
4578 Shift = Shifts[0];
4579 Factor = Factors[0];
4582 SDValue Res = Op0;
4584 // Shift the value upfront if it is even, so the LSB is one.
4585 if (UseSRA) {
4586 // TODO: For UDIV use SRL instead of SRA.
4587 SDNodeFlags Flags;
4588 Flags.setExact(true);
4589 Res = DAG.getNode(ISD::SRA, dl, VT, Res, Shift, Flags);
4590 Created.push_back(Res.getNode());
4593 return DAG.getNode(ISD::MUL, dl, VT, Res, Factor);
4596 SDValue TargetLowering::BuildSDIVPow2(SDNode *N, const APInt &Divisor,
4597 SelectionDAG &DAG,
4598 SmallVectorImpl<SDNode *> &Created) const {
4599 AttributeList Attr = DAG.getMachineFunction().getFunction().getAttributes();
4600 const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4601 if (TLI.isIntDivCheap(N->getValueType(0), Attr))
4602 return SDValue(N, 0); // Lower SDIV as SDIV
4603 return SDValue();
4606 /// Given an ISD::SDIV node expressing a divide by constant,
4607 /// return a DAG expression to select that will generate the same value by
4608 /// multiplying by a magic number.
4609 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4610 SDValue TargetLowering::BuildSDIV(SDNode *N, SelectionDAG &DAG,
4611 bool IsAfterLegalization,
4612 SmallVectorImpl<SDNode *> &Created) const {
4613 SDLoc dl(N);
4614 EVT VT = N->getValueType(0);
4615 EVT SVT = VT.getScalarType();
4616 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4617 EVT ShSVT = ShVT.getScalarType();
4618 unsigned EltBits = VT.getScalarSizeInBits();
4620 // Check to see if we can do this.
4621 // FIXME: We should be more aggressive here.
4622 if (!isTypeLegal(VT))
4623 return SDValue();
4625 // If the sdiv has an 'exact' bit we can use a simpler lowering.
4626 if (N->getFlags().hasExact())
4627 return BuildExactSDIV(*this, N, dl, DAG, Created);
4629 SmallVector<SDValue, 16> MagicFactors, Factors, Shifts, ShiftMasks;
4631 auto BuildSDIVPattern = [&](ConstantSDNode *C) {
4632 if (C->isNullValue())
4633 return false;
4635 const APInt &Divisor = C->getAPIntValue();
4636 APInt::ms magics = Divisor.magic();
4637 int NumeratorFactor = 0;
4638 int ShiftMask = -1;
4640 if (Divisor.isOneValue() || Divisor.isAllOnesValue()) {
4641 // If d is +1/-1, we just multiply the numerator by +1/-1.
4642 NumeratorFactor = Divisor.getSExtValue();
4643 magics.m = 0;
4644 magics.s = 0;
4645 ShiftMask = 0;
4646 } else if (Divisor.isStrictlyPositive() && magics.m.isNegative()) {
4647 // If d > 0 and m < 0, add the numerator.
4648 NumeratorFactor = 1;
4649 } else if (Divisor.isNegative() && magics.m.isStrictlyPositive()) {
4650 // If d < 0 and m > 0, subtract the numerator.
4651 NumeratorFactor = -1;
4654 MagicFactors.push_back(DAG.getConstant(magics.m, dl, SVT));
4655 Factors.push_back(DAG.getConstant(NumeratorFactor, dl, SVT));
4656 Shifts.push_back(DAG.getConstant(magics.s, dl, ShSVT));
4657 ShiftMasks.push_back(DAG.getConstant(ShiftMask, dl, SVT));
4658 return true;
4661 SDValue N0 = N->getOperand(0);
4662 SDValue N1 = N->getOperand(1);
4664 // Collect the shifts / magic values from each element.
4665 if (!ISD::matchUnaryPredicate(N1, BuildSDIVPattern))
4666 return SDValue();
4668 SDValue MagicFactor, Factor, Shift, ShiftMask;
4669 if (VT.isVector()) {
4670 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4671 Factor = DAG.getBuildVector(VT, dl, Factors);
4672 Shift = DAG.getBuildVector(ShVT, dl, Shifts);
4673 ShiftMask = DAG.getBuildVector(VT, dl, ShiftMasks);
4674 } else {
4675 MagicFactor = MagicFactors[0];
4676 Factor = Factors[0];
4677 Shift = Shifts[0];
4678 ShiftMask = ShiftMasks[0];
4681 // Multiply the numerator (operand 0) by the magic value.
4682 // FIXME: We should support doing a MUL in a wider type.
4683 SDValue Q;
4684 if (IsAfterLegalization ? isOperationLegal(ISD::MULHS, VT)
4685 : isOperationLegalOrCustom(ISD::MULHS, VT))
4686 Q = DAG.getNode(ISD::MULHS, dl, VT, N0, MagicFactor);
4687 else if (IsAfterLegalization ? isOperationLegal(ISD::SMUL_LOHI, VT)
4688 : isOperationLegalOrCustom(ISD::SMUL_LOHI, VT)) {
4689 SDValue LoHi =
4690 DAG.getNode(ISD::SMUL_LOHI, dl, DAG.getVTList(VT, VT), N0, MagicFactor);
4691 Q = SDValue(LoHi.getNode(), 1);
4692 } else
4693 return SDValue(); // No mulhs or equivalent.
4694 Created.push_back(Q.getNode());
4696 // (Optionally) Add/subtract the numerator using Factor.
4697 Factor = DAG.getNode(ISD::MUL, dl, VT, N0, Factor);
4698 Created.push_back(Factor.getNode());
4699 Q = DAG.getNode(ISD::ADD, dl, VT, Q, Factor);
4700 Created.push_back(Q.getNode());
4702 // Shift right algebraic by shift value.
4703 Q = DAG.getNode(ISD::SRA, dl, VT, Q, Shift);
4704 Created.push_back(Q.getNode());
4706 // Extract the sign bit, mask it and add it to the quotient.
4707 SDValue SignShift = DAG.getConstant(EltBits - 1, dl, ShVT);
4708 SDValue T = DAG.getNode(ISD::SRL, dl, VT, Q, SignShift);
4709 Created.push_back(T.getNode());
4710 T = DAG.getNode(ISD::AND, dl, VT, T, ShiftMask);
4711 Created.push_back(T.getNode());
4712 return DAG.getNode(ISD::ADD, dl, VT, Q, T);
4715 /// Given an ISD::UDIV node expressing a divide by constant,
4716 /// return a DAG expression to select that will generate the same value by
4717 /// multiplying by a magic number.
4718 /// Ref: "Hacker's Delight" or "The PowerPC Compiler Writer's Guide".
4719 SDValue TargetLowering::BuildUDIV(SDNode *N, SelectionDAG &DAG,
4720 bool IsAfterLegalization,
4721 SmallVectorImpl<SDNode *> &Created) const {
4722 SDLoc dl(N);
4723 EVT VT = N->getValueType(0);
4724 EVT SVT = VT.getScalarType();
4725 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4726 EVT ShSVT = ShVT.getScalarType();
4727 unsigned EltBits = VT.getScalarSizeInBits();
4729 // Check to see if we can do this.
4730 // FIXME: We should be more aggressive here.
4731 if (!isTypeLegal(VT))
4732 return SDValue();
4734 bool UseNPQ = false;
4735 SmallVector<SDValue, 16> PreShifts, PostShifts, MagicFactors, NPQFactors;
4737 auto BuildUDIVPattern = [&](ConstantSDNode *C) {
4738 if (C->isNullValue())
4739 return false;
4740 // FIXME: We should use a narrower constant when the upper
4741 // bits are known to be zero.
4742 APInt Divisor = C->getAPIntValue();
4743 APInt::mu magics = Divisor.magicu();
4744 unsigned PreShift = 0, PostShift = 0;
4746 // If the divisor is even, we can avoid using the expensive fixup by
4747 // shifting the divided value upfront.
4748 if (magics.a != 0 && !Divisor[0]) {
4749 PreShift = Divisor.countTrailingZeros();
4750 // Get magic number for the shifted divisor.
4751 magics = Divisor.lshr(PreShift).magicu(PreShift);
4752 assert(magics.a == 0 && "Should use cheap fixup now");
4755 APInt Magic = magics.m;
4757 unsigned SelNPQ;
4758 if (magics.a == 0 || Divisor.isOneValue()) {
4759 assert(magics.s < Divisor.getBitWidth() &&
4760 "We shouldn't generate an undefined shift!");
4761 PostShift = magics.s;
4762 SelNPQ = false;
4763 } else {
4764 PostShift = magics.s - 1;
4765 SelNPQ = true;
4768 PreShifts.push_back(DAG.getConstant(PreShift, dl, ShSVT));
4769 MagicFactors.push_back(DAG.getConstant(Magic, dl, SVT));
4770 NPQFactors.push_back(
4771 DAG.getConstant(SelNPQ ? APInt::getOneBitSet(EltBits, EltBits - 1)
4772 : APInt::getNullValue(EltBits),
4773 dl, SVT));
4774 PostShifts.push_back(DAG.getConstant(PostShift, dl, ShSVT));
4775 UseNPQ |= SelNPQ;
4776 return true;
4779 SDValue N0 = N->getOperand(0);
4780 SDValue N1 = N->getOperand(1);
4782 // Collect the shifts/magic values from each element.
4783 if (!ISD::matchUnaryPredicate(N1, BuildUDIVPattern))
4784 return SDValue();
4786 SDValue PreShift, PostShift, MagicFactor, NPQFactor;
4787 if (VT.isVector()) {
4788 PreShift = DAG.getBuildVector(ShVT, dl, PreShifts);
4789 MagicFactor = DAG.getBuildVector(VT, dl, MagicFactors);
4790 NPQFactor = DAG.getBuildVector(VT, dl, NPQFactors);
4791 PostShift = DAG.getBuildVector(ShVT, dl, PostShifts);
4792 } else {
4793 PreShift = PreShifts[0];
4794 MagicFactor = MagicFactors[0];
4795 PostShift = PostShifts[0];
4798 SDValue Q = N0;
4799 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PreShift);
4800 Created.push_back(Q.getNode());
4802 // FIXME: We should support doing a MUL in a wider type.
4803 auto GetMULHU = [&](SDValue X, SDValue Y) {
4804 if (IsAfterLegalization ? isOperationLegal(ISD::MULHU, VT)
4805 : isOperationLegalOrCustom(ISD::MULHU, VT))
4806 return DAG.getNode(ISD::MULHU, dl, VT, X, Y);
4807 if (IsAfterLegalization ? isOperationLegal(ISD::UMUL_LOHI, VT)
4808 : isOperationLegalOrCustom(ISD::UMUL_LOHI, VT)) {
4809 SDValue LoHi =
4810 DAG.getNode(ISD::UMUL_LOHI, dl, DAG.getVTList(VT, VT), X, Y);
4811 return SDValue(LoHi.getNode(), 1);
4813 return SDValue(); // No mulhu or equivalent
4816 // Multiply the numerator (operand 0) by the magic value.
4817 Q = GetMULHU(Q, MagicFactor);
4818 if (!Q)
4819 return SDValue();
4821 Created.push_back(Q.getNode());
4823 if (UseNPQ) {
4824 SDValue NPQ = DAG.getNode(ISD::SUB, dl, VT, N0, Q);
4825 Created.push_back(NPQ.getNode());
4827 // For vectors we might have a mix of non-NPQ/NPQ paths, so use
4828 // MULHU to act as a SRL-by-1 for NPQ, else multiply by zero.
4829 if (VT.isVector())
4830 NPQ = GetMULHU(NPQ, NPQFactor);
4831 else
4832 NPQ = DAG.getNode(ISD::SRL, dl, VT, NPQ, DAG.getConstant(1, dl, ShVT));
4834 Created.push_back(NPQ.getNode());
4836 Q = DAG.getNode(ISD::ADD, dl, VT, NPQ, Q);
4837 Created.push_back(Q.getNode());
4840 Q = DAG.getNode(ISD::SRL, dl, VT, Q, PostShift);
4841 Created.push_back(Q.getNode());
4843 SDValue One = DAG.getConstant(1, dl, VT);
4844 SDValue IsOne = DAG.getSetCC(dl, VT, N1, One, ISD::SETEQ);
4845 return DAG.getSelect(dl, VT, IsOne, N0, Q);
4848 /// If all values in Values that *don't* match the predicate are same 'splat'
4849 /// value, then replace all values with that splat value.
4850 /// Else, if AlternativeReplacement was provided, then replace all values that
4851 /// do match predicate with AlternativeReplacement value.
4852 static void
4853 turnVectorIntoSplatVector(MutableArrayRef<SDValue> Values,
4854 std::function<bool(SDValue)> Predicate,
4855 SDValue AlternativeReplacement = SDValue()) {
4856 SDValue Replacement;
4857 // Is there a value for which the Predicate does *NOT* match? What is it?
4858 auto SplatValue = llvm::find_if_not(Values, Predicate);
4859 if (SplatValue != Values.end()) {
4860 // Does Values consist only of SplatValue's and values matching Predicate?
4861 if (llvm::all_of(Values, [Predicate, SplatValue](SDValue Value) {
4862 return Value == *SplatValue || Predicate(Value);
4863 })) // Then we shall replace values matching predicate with SplatValue.
4864 Replacement = *SplatValue;
4866 if (!Replacement) {
4867 // Oops, we did not find the "baseline" splat value.
4868 if (!AlternativeReplacement)
4869 return; // Nothing to do.
4870 // Let's replace with provided value then.
4871 Replacement = AlternativeReplacement;
4873 std::replace_if(Values.begin(), Values.end(), Predicate, Replacement);
4876 /// Given an ISD::UREM used only by an ISD::SETEQ or ISD::SETNE
4877 /// where the divisor is constant and the comparison target is zero,
4878 /// return a DAG expression that will generate the same comparison result
4879 /// using only multiplications, additions and shifts/rotations.
4880 /// Ref: "Hacker's Delight" 10-17.
4881 SDValue TargetLowering::buildUREMEqFold(EVT SETCCVT, SDValue REMNode,
4882 SDValue CompTargetNode,
4883 ISD::CondCode Cond,
4884 DAGCombinerInfo &DCI,
4885 const SDLoc &DL) const {
4886 SmallVector<SDNode *, 2> Built;
4887 if (SDValue Folded = prepareUREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
4888 DCI, DL, Built)) {
4889 for (SDNode *N : Built)
4890 DCI.AddToWorklist(N);
4891 return Folded;
4894 return SDValue();
4897 SDValue
4898 TargetLowering::prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
4899 SDValue CompTargetNode, ISD::CondCode Cond,
4900 DAGCombinerInfo &DCI, const SDLoc &DL,
4901 SmallVectorImpl<SDNode *> &Created) const {
4902 // fold (seteq/ne (urem N, D), 0) -> (setule/ugt (rotr (mul N, P), K), Q)
4903 // - D must be constant, with D = D0 * 2^K where D0 is odd
4904 // - P is the multiplicative inverse of D0 modulo 2^W
4905 // - Q = floor(((2^W) - 1) / D)
4906 // where W is the width of the common type of N and D.
4907 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
4908 "Only applicable for (in)equality comparisons.");
4910 SelectionDAG &DAG = DCI.DAG;
4912 EVT VT = REMNode.getValueType();
4913 EVT SVT = VT.getScalarType();
4914 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
4915 EVT ShSVT = ShVT.getScalarType();
4917 // If MUL is unavailable, we cannot proceed in any case.
4918 if (!isOperationLegalOrCustom(ISD::MUL, VT))
4919 return SDValue();
4921 // TODO: Could support comparing with non-zero too.
4922 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
4923 if (!CompTarget || !CompTarget->isNullValue())
4924 return SDValue();
4926 bool HadOneDivisor = false;
4927 bool AllDivisorsAreOnes = true;
4928 bool HadEvenDivisor = false;
4929 bool AllDivisorsArePowerOfTwo = true;
4930 SmallVector<SDValue, 16> PAmts, KAmts, QAmts;
4932 auto BuildUREMPattern = [&](ConstantSDNode *C) {
4933 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
4934 if (C->isNullValue())
4935 return false;
4937 const APInt &D = C->getAPIntValue();
4938 // If all divisors are ones, we will prefer to avoid the fold.
4939 HadOneDivisor |= D.isOneValue();
4940 AllDivisorsAreOnes &= D.isOneValue();
4942 // Decompose D into D0 * 2^K
4943 unsigned K = D.countTrailingZeros();
4944 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
4945 APInt D0 = D.lshr(K);
4947 // D is even if it has trailing zeros.
4948 HadEvenDivisor |= (K != 0);
4949 // D is a power-of-two if D0 is one.
4950 // If all divisors are power-of-two, we will prefer to avoid the fold.
4951 AllDivisorsArePowerOfTwo &= D0.isOneValue();
4953 // P = inv(D0, 2^W)
4954 // 2^W requires W + 1 bits, so we have to extend and then truncate.
4955 unsigned W = D.getBitWidth();
4956 APInt P = D0.zext(W + 1)
4957 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
4958 .trunc(W);
4959 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
4960 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
4962 // Q = floor((2^W - 1) / D)
4963 APInt Q = APInt::getAllOnesValue(W).udiv(D);
4965 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
4966 "We are expecting that K is always less than all-ones for ShSVT");
4968 // If the divisor is 1 the result can be constant-folded.
4969 if (D.isOneValue()) {
4970 // Set P and K amount to a bogus values so we can try to splat them.
4971 P = 0;
4972 K = -1;
4973 assert(Q.isAllOnesValue() &&
4974 "Expecting all-ones comparison for one divisor");
4977 PAmts.push_back(DAG.getConstant(P, DL, SVT));
4978 KAmts.push_back(
4979 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
4980 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
4981 return true;
4984 SDValue N = REMNode.getOperand(0);
4985 SDValue D = REMNode.getOperand(1);
4987 // Collect the values from each element.
4988 if (!ISD::matchUnaryPredicate(D, BuildUREMPattern))
4989 return SDValue();
4991 // If this is a urem by a one, avoid the fold since it can be constant-folded.
4992 if (AllDivisorsAreOnes)
4993 return SDValue();
4995 // If this is a urem by a powers-of-two, avoid the fold since it can be
4996 // best implemented as a bit test.
4997 if (AllDivisorsArePowerOfTwo)
4998 return SDValue();
5000 SDValue PVal, KVal, QVal;
5001 if (VT.isVector()) {
5002 if (HadOneDivisor) {
5003 // Try to turn PAmts into a splat, since we don't care about the values
5004 // that are currently '0'. If we can't, just keep '0'`s.
5005 turnVectorIntoSplatVector(PAmts, isNullConstant);
5006 // Try to turn KAmts into a splat, since we don't care about the values
5007 // that are currently '-1'. If we can't, change them to '0'`s.
5008 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5009 DAG.getConstant(0, DL, ShSVT));
5012 PVal = DAG.getBuildVector(VT, DL, PAmts);
5013 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5014 QVal = DAG.getBuildVector(VT, DL, QAmts);
5015 } else {
5016 PVal = PAmts[0];
5017 KVal = KAmts[0];
5018 QVal = QAmts[0];
5021 // (mul N, P)
5022 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5023 Created.push_back(Op0.getNode());
5025 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5026 // divisors as a performance improvement, since rotating by 0 is a no-op.
5027 if (HadEvenDivisor) {
5028 // We need ROTR to do this.
5029 if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5030 return SDValue();
5031 SDNodeFlags Flags;
5032 Flags.setExact(true);
5033 // UREM: (rotr (mul N, P), K)
5034 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5035 Created.push_back(Op0.getNode());
5038 // UREM: (setule/setugt (rotr (mul N, P), K), Q)
5039 return DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5040 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5043 /// Given an ISD::SREM used only by an ISD::SETEQ or ISD::SETNE
5044 /// where the divisor is constant and the comparison target is zero,
5045 /// return a DAG expression that will generate the same comparison result
5046 /// using only multiplications, additions and shifts/rotations.
5047 /// Ref: "Hacker's Delight" 10-17.
5048 SDValue TargetLowering::buildSREMEqFold(EVT SETCCVT, SDValue REMNode,
5049 SDValue CompTargetNode,
5050 ISD::CondCode Cond,
5051 DAGCombinerInfo &DCI,
5052 const SDLoc &DL) const {
5053 SmallVector<SDNode *, 7> Built;
5054 if (SDValue Folded = prepareSREMEqFold(SETCCVT, REMNode, CompTargetNode, Cond,
5055 DCI, DL, Built)) {
5056 assert(Built.size() <= 7 && "Max size prediction failed.");
5057 for (SDNode *N : Built)
5058 DCI.AddToWorklist(N);
5059 return Folded;
5062 return SDValue();
5065 SDValue
5066 TargetLowering::prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5067 SDValue CompTargetNode, ISD::CondCode Cond,
5068 DAGCombinerInfo &DCI, const SDLoc &DL,
5069 SmallVectorImpl<SDNode *> &Created) const {
5070 // Fold:
5071 // (seteq/ne (srem N, D), 0)
5072 // To:
5073 // (setule/ugt (rotr (add (mul N, P), A), K), Q)
5075 // - D must be constant, with D = D0 * 2^K where D0 is odd
5076 // - P is the multiplicative inverse of D0 modulo 2^W
5077 // - A = bitwiseand(floor((2^(W - 1) - 1) / D0), (-(2^k)))
5078 // - Q = floor((2 * A) / (2^K))
5079 // where W is the width of the common type of N and D.
5080 assert((Cond == ISD::SETEQ || Cond == ISD::SETNE) &&
5081 "Only applicable for (in)equality comparisons.");
5083 SelectionDAG &DAG = DCI.DAG;
5085 EVT VT = REMNode.getValueType();
5086 EVT SVT = VT.getScalarType();
5087 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5088 EVT ShSVT = ShVT.getScalarType();
5090 // If MUL is unavailable, we cannot proceed in any case.
5091 if (!isOperationLegalOrCustom(ISD::MUL, VT))
5092 return SDValue();
5094 // TODO: Could support comparing with non-zero too.
5095 ConstantSDNode *CompTarget = isConstOrConstSplat(CompTargetNode);
5096 if (!CompTarget || !CompTarget->isNullValue())
5097 return SDValue();
5099 bool HadIntMinDivisor = false;
5100 bool HadOneDivisor = false;
5101 bool AllDivisorsAreOnes = true;
5102 bool HadEvenDivisor = false;
5103 bool NeedToApplyOffset = false;
5104 bool AllDivisorsArePowerOfTwo = true;
5105 SmallVector<SDValue, 16> PAmts, AAmts, KAmts, QAmts;
5107 auto BuildSREMPattern = [&](ConstantSDNode *C) {
5108 // Division by 0 is UB. Leave it to be constant-folded elsewhere.
5109 if (C->isNullValue())
5110 return false;
5112 // FIXME: we don't fold `rem %X, -C` to `rem %X, C` in DAGCombine.
5114 // WARNING: this fold is only valid for positive divisors!
5115 APInt D = C->getAPIntValue();
5116 if (D.isNegative())
5117 D.negate(); // `rem %X, -C` is equivalent to `rem %X, C`
5119 HadIntMinDivisor |= D.isMinSignedValue();
5121 // If all divisors are ones, we will prefer to avoid the fold.
5122 HadOneDivisor |= D.isOneValue();
5123 AllDivisorsAreOnes &= D.isOneValue();
5125 // Decompose D into D0 * 2^K
5126 unsigned K = D.countTrailingZeros();
5127 assert((!D.isOneValue() || (K == 0)) && "For divisor '1' we won't rotate.");
5128 APInt D0 = D.lshr(K);
5130 if (!D.isMinSignedValue()) {
5131 // D is even if it has trailing zeros; unless it's INT_MIN, in which case
5132 // we don't care about this lane in this fold, we'll special-handle it.
5133 HadEvenDivisor |= (K != 0);
5136 // D is a power-of-two if D0 is one. This includes INT_MIN.
5137 // If all divisors are power-of-two, we will prefer to avoid the fold.
5138 AllDivisorsArePowerOfTwo &= D0.isOneValue();
5140 // P = inv(D0, 2^W)
5141 // 2^W requires W + 1 bits, so we have to extend and then truncate.
5142 unsigned W = D.getBitWidth();
5143 APInt P = D0.zext(W + 1)
5144 .multiplicativeInverse(APInt::getSignedMinValue(W + 1))
5145 .trunc(W);
5146 assert(!P.isNullValue() && "No multiplicative inverse!"); // unreachable
5147 assert((D0 * P).isOneValue() && "Multiplicative inverse sanity check.");
5149 // A = floor((2^(W - 1) - 1) / D0) & -2^K
5150 APInt A = APInt::getSignedMaxValue(W).udiv(D0);
5151 A.clearLowBits(K);
5153 if (!D.isMinSignedValue()) {
5154 // If divisor INT_MIN, then we don't care about this lane in this fold,
5155 // we'll special-handle it.
5156 NeedToApplyOffset |= A != 0;
5159 // Q = floor((2 * A) / (2^K))
5160 APInt Q = (2 * A).udiv(APInt::getOneBitSet(W, K));
5162 assert(APInt::getAllOnesValue(SVT.getSizeInBits()).ugt(A) &&
5163 "We are expecting that A is always less than all-ones for SVT");
5164 assert(APInt::getAllOnesValue(ShSVT.getSizeInBits()).ugt(K) &&
5165 "We are expecting that K is always less than all-ones for ShSVT");
5167 // If the divisor is 1 the result can be constant-folded. Likewise, we
5168 // don't care about INT_MIN lanes, those can be set to undef if appropriate.
5169 if (D.isOneValue()) {
5170 // Set P, A and K to a bogus values so we can try to splat them.
5171 P = 0;
5172 A = -1;
5173 K = -1;
5175 // x ?% 1 == 0 <--> true <--> x u<= -1
5176 Q = -1;
5179 PAmts.push_back(DAG.getConstant(P, DL, SVT));
5180 AAmts.push_back(DAG.getConstant(A, DL, SVT));
5181 KAmts.push_back(
5182 DAG.getConstant(APInt(ShSVT.getSizeInBits(), K), DL, ShSVT));
5183 QAmts.push_back(DAG.getConstant(Q, DL, SVT));
5184 return true;
5187 SDValue N = REMNode.getOperand(0);
5188 SDValue D = REMNode.getOperand(1);
5190 // Collect the values from each element.
5191 if (!ISD::matchUnaryPredicate(D, BuildSREMPattern))
5192 return SDValue();
5194 // If this is a srem by a one, avoid the fold since it can be constant-folded.
5195 if (AllDivisorsAreOnes)
5196 return SDValue();
5198 // If this is a srem by a powers-of-two (including INT_MIN), avoid the fold
5199 // since it can be best implemented as a bit test.
5200 if (AllDivisorsArePowerOfTwo)
5201 return SDValue();
5203 SDValue PVal, AVal, KVal, QVal;
5204 if (VT.isVector()) {
5205 if (HadOneDivisor) {
5206 // Try to turn PAmts into a splat, since we don't care about the values
5207 // that are currently '0'. If we can't, just keep '0'`s.
5208 turnVectorIntoSplatVector(PAmts, isNullConstant);
5209 // Try to turn AAmts into a splat, since we don't care about the
5210 // values that are currently '-1'. If we can't, change them to '0'`s.
5211 turnVectorIntoSplatVector(AAmts, isAllOnesConstant,
5212 DAG.getConstant(0, DL, SVT));
5213 // Try to turn KAmts into a splat, since we don't care about the values
5214 // that are currently '-1'. If we can't, change them to '0'`s.
5215 turnVectorIntoSplatVector(KAmts, isAllOnesConstant,
5216 DAG.getConstant(0, DL, ShSVT));
5219 PVal = DAG.getBuildVector(VT, DL, PAmts);
5220 AVal = DAG.getBuildVector(VT, DL, AAmts);
5221 KVal = DAG.getBuildVector(ShVT, DL, KAmts);
5222 QVal = DAG.getBuildVector(VT, DL, QAmts);
5223 } else {
5224 PVal = PAmts[0];
5225 AVal = AAmts[0];
5226 KVal = KAmts[0];
5227 QVal = QAmts[0];
5230 // (mul N, P)
5231 SDValue Op0 = DAG.getNode(ISD::MUL, DL, VT, N, PVal);
5232 Created.push_back(Op0.getNode());
5234 if (NeedToApplyOffset) {
5235 // We need ADD to do this.
5236 if (!isOperationLegalOrCustom(ISD::ADD, VT))
5237 return SDValue();
5239 // (add (mul N, P), A)
5240 Op0 = DAG.getNode(ISD::ADD, DL, VT, Op0, AVal);
5241 Created.push_back(Op0.getNode());
5244 // Rotate right only if any divisor was even. We avoid rotates for all-odd
5245 // divisors as a performance improvement, since rotating by 0 is a no-op.
5246 if (HadEvenDivisor) {
5247 // We need ROTR to do this.
5248 if (!isOperationLegalOrCustom(ISD::ROTR, VT))
5249 return SDValue();
5250 SDNodeFlags Flags;
5251 Flags.setExact(true);
5252 // SREM: (rotr (add (mul N, P), A), K)
5253 Op0 = DAG.getNode(ISD::ROTR, DL, VT, Op0, KVal, Flags);
5254 Created.push_back(Op0.getNode());
5257 // SREM: (setule/setugt (rotr (add (mul N, P), A), K), Q)
5258 SDValue Fold =
5259 DAG.getSetCC(DL, SETCCVT, Op0, QVal,
5260 ((Cond == ISD::SETEQ) ? ISD::SETULE : ISD::SETUGT));
5262 // If we didn't have lanes with INT_MIN divisor, then we're done.
5263 if (!HadIntMinDivisor)
5264 return Fold;
5266 // That fold is only valid for positive divisors. Which effectively means,
5267 // it is invalid for INT_MIN divisors. So if we have such a lane,
5268 // we must fix-up results for said lanes.
5269 assert(VT.isVector() && "Can/should only get here for vectors.");
5271 if (!isOperationLegalOrCustom(ISD::SETEQ, VT) ||
5272 !isOperationLegalOrCustom(ISD::AND, VT) ||
5273 !isOperationLegalOrCustom(Cond, VT) ||
5274 !isOperationLegalOrCustom(ISD::VSELECT, VT))
5275 return SDValue();
5277 Created.push_back(Fold.getNode());
5279 SDValue IntMin = DAG.getConstant(
5280 APInt::getSignedMinValue(SVT.getScalarSizeInBits()), DL, VT);
5281 SDValue IntMax = DAG.getConstant(
5282 APInt::getSignedMaxValue(SVT.getScalarSizeInBits()), DL, VT);
5283 SDValue Zero =
5284 DAG.getConstant(APInt::getNullValue(SVT.getScalarSizeInBits()), DL, VT);
5286 // Which lanes had INT_MIN divisors? Divisor is constant, so const-folded.
5287 SDValue DivisorIsIntMin = DAG.getSetCC(DL, SETCCVT, D, IntMin, ISD::SETEQ);
5288 Created.push_back(DivisorIsIntMin.getNode());
5290 // (N s% INT_MIN) ==/!= 0 <--> (N & INT_MAX) ==/!= 0
5291 SDValue Masked = DAG.getNode(ISD::AND, DL, VT, N, IntMax);
5292 Created.push_back(Masked.getNode());
5293 SDValue MaskedIsZero = DAG.getSetCC(DL, SETCCVT, Masked, Zero, Cond);
5294 Created.push_back(MaskedIsZero.getNode());
5296 // To produce final result we need to blend 2 vectors: 'SetCC' and
5297 // 'MaskedIsZero'. If the divisor for channel was *NOT* INT_MIN, we pick
5298 // from 'Fold', else pick from 'MaskedIsZero'. Since 'DivisorIsIntMin' is
5299 // constant-folded, select can get lowered to a shuffle with constant mask.
5300 SDValue Blended =
5301 DAG.getNode(ISD::VSELECT, DL, VT, DivisorIsIntMin, MaskedIsZero, Fold);
5303 return Blended;
5306 bool TargetLowering::
5307 verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const {
5308 if (!isa<ConstantSDNode>(Op.getOperand(0))) {
5309 DAG.getContext()->emitError("argument to '__builtin_return_address' must "
5310 "be a constant integer");
5311 return true;
5314 return false;
5317 //===----------------------------------------------------------------------===//
5318 // Legalization Utilities
5319 //===----------------------------------------------------------------------===//
5321 bool TargetLowering::expandMUL_LOHI(unsigned Opcode, EVT VT, SDLoc dl,
5322 SDValue LHS, SDValue RHS,
5323 SmallVectorImpl<SDValue> &Result,
5324 EVT HiLoVT, SelectionDAG &DAG,
5325 MulExpansionKind Kind, SDValue LL,
5326 SDValue LH, SDValue RL, SDValue RH) const {
5327 assert(Opcode == ISD::MUL || Opcode == ISD::UMUL_LOHI ||
5328 Opcode == ISD::SMUL_LOHI);
5330 bool HasMULHS = (Kind == MulExpansionKind::Always) ||
5331 isOperationLegalOrCustom(ISD::MULHS, HiLoVT);
5332 bool HasMULHU = (Kind == MulExpansionKind::Always) ||
5333 isOperationLegalOrCustom(ISD::MULHU, HiLoVT);
5334 bool HasSMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5335 isOperationLegalOrCustom(ISD::SMUL_LOHI, HiLoVT);
5336 bool HasUMUL_LOHI = (Kind == MulExpansionKind::Always) ||
5337 isOperationLegalOrCustom(ISD::UMUL_LOHI, HiLoVT);
5339 if (!HasMULHU && !HasMULHS && !HasUMUL_LOHI && !HasSMUL_LOHI)
5340 return false;
5342 unsigned OuterBitSize = VT.getScalarSizeInBits();
5343 unsigned InnerBitSize = HiLoVT.getScalarSizeInBits();
5344 unsigned LHSSB = DAG.ComputeNumSignBits(LHS);
5345 unsigned RHSSB = DAG.ComputeNumSignBits(RHS);
5347 // LL, LH, RL, and RH must be either all NULL or all set to a value.
5348 assert((LL.getNode() && LH.getNode() && RL.getNode() && RH.getNode()) ||
5349 (!LL.getNode() && !LH.getNode() && !RL.getNode() && !RH.getNode()));
5351 SDVTList VTs = DAG.getVTList(HiLoVT, HiLoVT);
5352 auto MakeMUL_LOHI = [&](SDValue L, SDValue R, SDValue &Lo, SDValue &Hi,
5353 bool Signed) -> bool {
5354 if ((Signed && HasSMUL_LOHI) || (!Signed && HasUMUL_LOHI)) {
5355 Lo = DAG.getNode(Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI, dl, VTs, L, R);
5356 Hi = SDValue(Lo.getNode(), 1);
5357 return true;
5359 if ((Signed && HasMULHS) || (!Signed && HasMULHU)) {
5360 Lo = DAG.getNode(ISD::MUL, dl, HiLoVT, L, R);
5361 Hi = DAG.getNode(Signed ? ISD::MULHS : ISD::MULHU, dl, HiLoVT, L, R);
5362 return true;
5364 return false;
5367 SDValue Lo, Hi;
5369 if (!LL.getNode() && !RL.getNode() &&
5370 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5371 LL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LHS);
5372 RL = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RHS);
5375 if (!LL.getNode())
5376 return false;
5378 APInt HighMask = APInt::getHighBitsSet(OuterBitSize, InnerBitSize);
5379 if (DAG.MaskedValueIsZero(LHS, HighMask) &&
5380 DAG.MaskedValueIsZero(RHS, HighMask)) {
5381 // The inputs are both zero-extended.
5382 if (MakeMUL_LOHI(LL, RL, Lo, Hi, false)) {
5383 Result.push_back(Lo);
5384 Result.push_back(Hi);
5385 if (Opcode != ISD::MUL) {
5386 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5387 Result.push_back(Zero);
5388 Result.push_back(Zero);
5390 return true;
5394 if (!VT.isVector() && Opcode == ISD::MUL && LHSSB > InnerBitSize &&
5395 RHSSB > InnerBitSize) {
5396 // The input values are both sign-extended.
5397 // TODO non-MUL case?
5398 if (MakeMUL_LOHI(LL, RL, Lo, Hi, true)) {
5399 Result.push_back(Lo);
5400 Result.push_back(Hi);
5401 return true;
5405 unsigned ShiftAmount = OuterBitSize - InnerBitSize;
5406 EVT ShiftAmountTy = getShiftAmountTy(VT, DAG.getDataLayout());
5407 if (APInt::getMaxValue(ShiftAmountTy.getSizeInBits()).ult(ShiftAmount)) {
5408 // FIXME getShiftAmountTy does not always return a sensible result when VT
5409 // is an illegal type, and so the type may be too small to fit the shift
5410 // amount. Override it with i32. The shift will have to be legalized.
5411 ShiftAmountTy = MVT::i32;
5413 SDValue Shift = DAG.getConstant(ShiftAmount, dl, ShiftAmountTy);
5415 if (!LH.getNode() && !RH.getNode() &&
5416 isOperationLegalOrCustom(ISD::SRL, VT) &&
5417 isOperationLegalOrCustom(ISD::TRUNCATE, HiLoVT)) {
5418 LH = DAG.getNode(ISD::SRL, dl, VT, LHS, Shift);
5419 LH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, LH);
5420 RH = DAG.getNode(ISD::SRL, dl, VT, RHS, Shift);
5421 RH = DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, RH);
5424 if (!LH.getNode())
5425 return false;
5427 if (!MakeMUL_LOHI(LL, RL, Lo, Hi, false))
5428 return false;
5430 Result.push_back(Lo);
5432 if (Opcode == ISD::MUL) {
5433 RH = DAG.getNode(ISD::MUL, dl, HiLoVT, LL, RH);
5434 LH = DAG.getNode(ISD::MUL, dl, HiLoVT, LH, RL);
5435 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, RH);
5436 Hi = DAG.getNode(ISD::ADD, dl, HiLoVT, Hi, LH);
5437 Result.push_back(Hi);
5438 return true;
5441 // Compute the full width result.
5442 auto Merge = [&](SDValue Lo, SDValue Hi) -> SDValue {
5443 Lo = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Lo);
5444 Hi = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5445 Hi = DAG.getNode(ISD::SHL, dl, VT, Hi, Shift);
5446 return DAG.getNode(ISD::OR, dl, VT, Lo, Hi);
5449 SDValue Next = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Hi);
5450 if (!MakeMUL_LOHI(LL, RH, Lo, Hi, false))
5451 return false;
5453 // This is effectively the add part of a multiply-add of half-sized operands,
5454 // so it cannot overflow.
5455 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5457 if (!MakeMUL_LOHI(LH, RL, Lo, Hi, false))
5458 return false;
5460 SDValue Zero = DAG.getConstant(0, dl, HiLoVT);
5461 EVT BoolType = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5463 bool UseGlue = (isOperationLegalOrCustom(ISD::ADDC, VT) &&
5464 isOperationLegalOrCustom(ISD::ADDE, VT));
5465 if (UseGlue)
5466 Next = DAG.getNode(ISD::ADDC, dl, DAG.getVTList(VT, MVT::Glue), Next,
5467 Merge(Lo, Hi));
5468 else
5469 Next = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(VT, BoolType), Next,
5470 Merge(Lo, Hi), DAG.getConstant(0, dl, BoolType));
5472 SDValue Carry = Next.getValue(1);
5473 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5474 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5476 if (!MakeMUL_LOHI(LH, RH, Lo, Hi, Opcode == ISD::SMUL_LOHI))
5477 return false;
5479 if (UseGlue)
5480 Hi = DAG.getNode(ISD::ADDE, dl, DAG.getVTList(HiLoVT, MVT::Glue), Hi, Zero,
5481 Carry);
5482 else
5483 Hi = DAG.getNode(ISD::ADDCARRY, dl, DAG.getVTList(HiLoVT, BoolType), Hi,
5484 Zero, Carry);
5486 Next = DAG.getNode(ISD::ADD, dl, VT, Next, Merge(Lo, Hi));
5488 if (Opcode == ISD::SMUL_LOHI) {
5489 SDValue NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5490 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, RL));
5491 Next = DAG.getSelectCC(dl, LH, Zero, NextSub, Next, ISD::SETLT);
5493 NextSub = DAG.getNode(ISD::SUB, dl, VT, Next,
5494 DAG.getNode(ISD::ZERO_EXTEND, dl, VT, LL));
5495 Next = DAG.getSelectCC(dl, RH, Zero, NextSub, Next, ISD::SETLT);
5498 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5499 Next = DAG.getNode(ISD::SRL, dl, VT, Next, Shift);
5500 Result.push_back(DAG.getNode(ISD::TRUNCATE, dl, HiLoVT, Next));
5501 return true;
5504 bool TargetLowering::expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5505 SelectionDAG &DAG, MulExpansionKind Kind,
5506 SDValue LL, SDValue LH, SDValue RL,
5507 SDValue RH) const {
5508 SmallVector<SDValue, 2> Result;
5509 bool Ok = expandMUL_LOHI(N->getOpcode(), N->getValueType(0), N,
5510 N->getOperand(0), N->getOperand(1), Result, HiLoVT,
5511 DAG, Kind, LL, LH, RL, RH);
5512 if (Ok) {
5513 assert(Result.size() == 2);
5514 Lo = Result[0];
5515 Hi = Result[1];
5517 return Ok;
5520 bool TargetLowering::expandFunnelShift(SDNode *Node, SDValue &Result,
5521 SelectionDAG &DAG) const {
5522 EVT VT = Node->getValueType(0);
5524 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5525 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5526 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5527 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5528 return false;
5530 // fshl: (X << (Z % BW)) | (Y >> (BW - (Z % BW)))
5531 // fshr: (X << (BW - (Z % BW))) | (Y >> (Z % BW))
5532 SDValue X = Node->getOperand(0);
5533 SDValue Y = Node->getOperand(1);
5534 SDValue Z = Node->getOperand(2);
5536 unsigned EltSizeInBits = VT.getScalarSizeInBits();
5537 bool IsFSHL = Node->getOpcode() == ISD::FSHL;
5538 SDLoc DL(SDValue(Node, 0));
5540 EVT ShVT = Z.getValueType();
5541 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5542 SDValue Zero = DAG.getConstant(0, DL, ShVT);
5544 SDValue ShAmt;
5545 if (isPowerOf2_32(EltSizeInBits)) {
5546 SDValue Mask = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5547 ShAmt = DAG.getNode(ISD::AND, DL, ShVT, Z, Mask);
5548 } else {
5549 ShAmt = DAG.getNode(ISD::UREM, DL, ShVT, Z, BitWidthC);
5552 SDValue InvShAmt = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, ShAmt);
5553 SDValue ShX = DAG.getNode(ISD::SHL, DL, VT, X, IsFSHL ? ShAmt : InvShAmt);
5554 SDValue ShY = DAG.getNode(ISD::SRL, DL, VT, Y, IsFSHL ? InvShAmt : ShAmt);
5555 SDValue Or = DAG.getNode(ISD::OR, DL, VT, ShX, ShY);
5557 // If (Z % BW == 0), then the opposite direction shift is shift-by-bitwidth,
5558 // and that is undefined. We must compare and select to avoid UB.
5559 EVT CCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ShVT);
5561 // For fshl, 0-shift returns the 1st arg (X).
5562 // For fshr, 0-shift returns the 2nd arg (Y).
5563 SDValue IsZeroShift = DAG.getSetCC(DL, CCVT, ShAmt, Zero, ISD::SETEQ);
5564 Result = DAG.getSelect(DL, VT, IsZeroShift, IsFSHL ? X : Y, Or);
5565 return true;
5568 // TODO: Merge with expandFunnelShift.
5569 bool TargetLowering::expandROT(SDNode *Node, SDValue &Result,
5570 SelectionDAG &DAG) const {
5571 EVT VT = Node->getValueType(0);
5572 unsigned EltSizeInBits = VT.getScalarSizeInBits();
5573 bool IsLeft = Node->getOpcode() == ISD::ROTL;
5574 SDValue Op0 = Node->getOperand(0);
5575 SDValue Op1 = Node->getOperand(1);
5576 SDLoc DL(SDValue(Node, 0));
5578 EVT ShVT = Op1.getValueType();
5579 SDValue BitWidthC = DAG.getConstant(EltSizeInBits, DL, ShVT);
5581 // If a rotate in the other direction is legal, use it.
5582 unsigned RevRot = IsLeft ? ISD::ROTR : ISD::ROTL;
5583 if (isOperationLegal(RevRot, VT)) {
5584 SDValue Sub = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5585 Result = DAG.getNode(RevRot, DL, VT, Op0, Sub);
5586 return true;
5589 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SHL, VT) ||
5590 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5591 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5592 !isOperationLegalOrCustomOrPromote(ISD::OR, VT) ||
5593 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5594 return false;
5596 // Otherwise,
5597 // (rotl x, c) -> (or (shl x, (and c, w-1)), (srl x, (and w-c, w-1)))
5598 // (rotr x, c) -> (or (srl x, (and c, w-1)), (shl x, (and w-c, w-1)))
5600 assert(isPowerOf2_32(EltSizeInBits) && EltSizeInBits > 1 &&
5601 "Expecting the type bitwidth to be a power of 2");
5602 unsigned ShOpc = IsLeft ? ISD::SHL : ISD::SRL;
5603 unsigned HsOpc = IsLeft ? ISD::SRL : ISD::SHL;
5604 SDValue BitWidthMinusOneC = DAG.getConstant(EltSizeInBits - 1, DL, ShVT);
5605 SDValue NegOp1 = DAG.getNode(ISD::SUB, DL, ShVT, BitWidthC, Op1);
5606 SDValue And0 = DAG.getNode(ISD::AND, DL, ShVT, Op1, BitWidthMinusOneC);
5607 SDValue And1 = DAG.getNode(ISD::AND, DL, ShVT, NegOp1, BitWidthMinusOneC);
5608 Result = DAG.getNode(ISD::OR, DL, VT, DAG.getNode(ShOpc, DL, VT, Op0, And0),
5609 DAG.getNode(HsOpc, DL, VT, Op0, And1));
5610 return true;
5613 bool TargetLowering::expandFP_TO_SINT(SDNode *Node, SDValue &Result,
5614 SelectionDAG &DAG) const {
5615 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5616 SDValue Src = Node->getOperand(OpNo);
5617 EVT SrcVT = Src.getValueType();
5618 EVT DstVT = Node->getValueType(0);
5619 SDLoc dl(SDValue(Node, 0));
5621 // FIXME: Only f32 to i64 conversions are supported.
5622 if (SrcVT != MVT::f32 || DstVT != MVT::i64)
5623 return false;
5625 if (Node->isStrictFPOpcode())
5626 // When a NaN is converted to an integer a trap is allowed. We can't
5627 // use this expansion here because it would eliminate that trap. Other
5628 // traps are also allowed and cannot be eliminated. See
5629 // IEEE 754-2008 sec 5.8.
5630 return false;
5632 // Expand f32 -> i64 conversion
5633 // This algorithm comes from compiler-rt's implementation of fixsfdi:
5634 // https://github.com/llvm/llvm-project/blob/master/compiler-rt/lib/builtins/fixsfdi.c
5635 unsigned SrcEltBits = SrcVT.getScalarSizeInBits();
5636 EVT IntVT = SrcVT.changeTypeToInteger();
5637 EVT IntShVT = getShiftAmountTy(IntVT, DAG.getDataLayout());
5639 SDValue ExponentMask = DAG.getConstant(0x7F800000, dl, IntVT);
5640 SDValue ExponentLoBit = DAG.getConstant(23, dl, IntVT);
5641 SDValue Bias = DAG.getConstant(127, dl, IntVT);
5642 SDValue SignMask = DAG.getConstant(APInt::getSignMask(SrcEltBits), dl, IntVT);
5643 SDValue SignLowBit = DAG.getConstant(SrcEltBits - 1, dl, IntVT);
5644 SDValue MantissaMask = DAG.getConstant(0x007FFFFF, dl, IntVT);
5646 SDValue Bits = DAG.getNode(ISD::BITCAST, dl, IntVT, Src);
5648 SDValue ExponentBits = DAG.getNode(
5649 ISD::SRL, dl, IntVT, DAG.getNode(ISD::AND, dl, IntVT, Bits, ExponentMask),
5650 DAG.getZExtOrTrunc(ExponentLoBit, dl, IntShVT));
5651 SDValue Exponent = DAG.getNode(ISD::SUB, dl, IntVT, ExponentBits, Bias);
5653 SDValue Sign = DAG.getNode(ISD::SRA, dl, IntVT,
5654 DAG.getNode(ISD::AND, dl, IntVT, Bits, SignMask),
5655 DAG.getZExtOrTrunc(SignLowBit, dl, IntShVT));
5656 Sign = DAG.getSExtOrTrunc(Sign, dl, DstVT);
5658 SDValue R = DAG.getNode(ISD::OR, dl, IntVT,
5659 DAG.getNode(ISD::AND, dl, IntVT, Bits, MantissaMask),
5660 DAG.getConstant(0x00800000, dl, IntVT));
5662 R = DAG.getZExtOrTrunc(R, dl, DstVT);
5664 R = DAG.getSelectCC(
5665 dl, Exponent, ExponentLoBit,
5666 DAG.getNode(ISD::SHL, dl, DstVT, R,
5667 DAG.getZExtOrTrunc(
5668 DAG.getNode(ISD::SUB, dl, IntVT, Exponent, ExponentLoBit),
5669 dl, IntShVT)),
5670 DAG.getNode(ISD::SRL, dl, DstVT, R,
5671 DAG.getZExtOrTrunc(
5672 DAG.getNode(ISD::SUB, dl, IntVT, ExponentLoBit, Exponent),
5673 dl, IntShVT)),
5674 ISD::SETGT);
5676 SDValue Ret = DAG.getNode(ISD::SUB, dl, DstVT,
5677 DAG.getNode(ISD::XOR, dl, DstVT, R, Sign), Sign);
5679 Result = DAG.getSelectCC(dl, Exponent, DAG.getConstant(0, dl, IntVT),
5680 DAG.getConstant(0, dl, DstVT), Ret, ISD::SETLT);
5681 return true;
5684 bool TargetLowering::expandFP_TO_UINT(SDNode *Node, SDValue &Result,
5685 SDValue &Chain,
5686 SelectionDAG &DAG) const {
5687 SDLoc dl(SDValue(Node, 0));
5688 unsigned OpNo = Node->isStrictFPOpcode() ? 1 : 0;
5689 SDValue Src = Node->getOperand(OpNo);
5691 EVT SrcVT = Src.getValueType();
5692 EVT DstVT = Node->getValueType(0);
5693 EVT SetCCVT =
5694 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5696 // Only expand vector types if we have the appropriate vector bit operations.
5697 unsigned SIntOpcode = Node->isStrictFPOpcode() ? ISD::STRICT_FP_TO_SINT :
5698 ISD::FP_TO_SINT;
5699 if (DstVT.isVector() && (!isOperationLegalOrCustom(SIntOpcode, DstVT) ||
5700 !isOperationLegalOrCustomOrPromote(ISD::XOR, SrcVT)))
5701 return false;
5703 // If the maximum float value is smaller then the signed integer range,
5704 // the destination signmask can't be represented by the float, so we can
5705 // just use FP_TO_SINT directly.
5706 const fltSemantics &APFSem = DAG.EVTToAPFloatSemantics(SrcVT);
5707 APFloat APF(APFSem, APInt::getNullValue(SrcVT.getScalarSizeInBits()));
5708 APInt SignMask = APInt::getSignMask(DstVT.getScalarSizeInBits());
5709 if (APFloat::opOverflow &
5710 APF.convertFromAPInt(SignMask, false, APFloat::rmNearestTiesToEven)) {
5711 if (Node->isStrictFPOpcode()) {
5712 Result = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
5713 { Node->getOperand(0), Src });
5714 Chain = Result.getValue(1);
5715 } else
5716 Result = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5717 return true;
5720 SDValue Cst = DAG.getConstantFP(APF, dl, SrcVT);
5721 SDValue Sel = DAG.getSetCC(dl, SetCCVT, Src, Cst, ISD::SETLT);
5723 bool Strict = Node->isStrictFPOpcode() ||
5724 shouldUseStrictFP_TO_INT(SrcVT, DstVT, /*IsSigned*/ false);
5726 if (Strict) {
5727 // Expand based on maximum range of FP_TO_SINT, if the value exceeds the
5728 // signmask then offset (the result of which should be fully representable).
5729 // Sel = Src < 0x8000000000000000
5730 // Val = select Sel, Src, Src - 0x8000000000000000
5731 // Ofs = select Sel, 0, 0x8000000000000000
5732 // Result = fp_to_sint(Val) ^ Ofs
5734 // TODO: Should any fast-math-flags be set for the FSUB?
5735 SDValue SrcBiased;
5736 if (Node->isStrictFPOpcode())
5737 SrcBiased = DAG.getNode(ISD::STRICT_FSUB, dl, { SrcVT, MVT::Other },
5738 { Node->getOperand(0), Src, Cst });
5739 else
5740 SrcBiased = DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst);
5741 SDValue Val = DAG.getSelect(dl, SrcVT, Sel, Src, SrcBiased);
5742 SDValue Ofs = DAG.getSelect(dl, DstVT, Sel, DAG.getConstant(0, dl, DstVT),
5743 DAG.getConstant(SignMask, dl, DstVT));
5744 SDValue SInt;
5745 if (Node->isStrictFPOpcode()) {
5746 SInt = DAG.getNode(ISD::STRICT_FP_TO_SINT, dl, { DstVT, MVT::Other },
5747 { SrcBiased.getValue(1), Val });
5748 Chain = SInt.getValue(1);
5749 } else
5750 SInt = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Val);
5751 Result = DAG.getNode(ISD::XOR, dl, DstVT, SInt, Ofs);
5752 } else {
5753 // Expand based on maximum range of FP_TO_SINT:
5754 // True = fp_to_sint(Src)
5755 // False = 0x8000000000000000 + fp_to_sint(Src - 0x8000000000000000)
5756 // Result = select (Src < 0x8000000000000000), True, False
5758 SDValue True = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT, Src);
5759 // TODO: Should any fast-math-flags be set for the FSUB?
5760 SDValue False = DAG.getNode(ISD::FP_TO_SINT, dl, DstVT,
5761 DAG.getNode(ISD::FSUB, dl, SrcVT, Src, Cst));
5762 False = DAG.getNode(ISD::XOR, dl, DstVT, False,
5763 DAG.getConstant(SignMask, dl, DstVT));
5764 Result = DAG.getSelect(dl, DstVT, Sel, True, False);
5766 return true;
5769 bool TargetLowering::expandUINT_TO_FP(SDNode *Node, SDValue &Result,
5770 SelectionDAG &DAG) const {
5771 SDValue Src = Node->getOperand(0);
5772 EVT SrcVT = Src.getValueType();
5773 EVT DstVT = Node->getValueType(0);
5775 if (SrcVT.getScalarType() != MVT::i64)
5776 return false;
5778 SDLoc dl(SDValue(Node, 0));
5779 EVT ShiftVT = getShiftAmountTy(SrcVT, DAG.getDataLayout());
5781 if (DstVT.getScalarType() == MVT::f32) {
5782 // Only expand vector types if we have the appropriate vector bit
5783 // operations.
5784 if (SrcVT.isVector() &&
5785 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5786 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5787 !isOperationLegalOrCustom(ISD::SINT_TO_FP, SrcVT) ||
5788 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5789 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5790 return false;
5792 // For unsigned conversions, convert them to signed conversions using the
5793 // algorithm from the x86_64 __floatundidf in compiler_rt.
5794 SDValue Fast = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Src);
5796 SDValue ShiftConst = DAG.getConstant(1, dl, ShiftVT);
5797 SDValue Shr = DAG.getNode(ISD::SRL, dl, SrcVT, Src, ShiftConst);
5798 SDValue AndConst = DAG.getConstant(1, dl, SrcVT);
5799 SDValue And = DAG.getNode(ISD::AND, dl, SrcVT, Src, AndConst);
5800 SDValue Or = DAG.getNode(ISD::OR, dl, SrcVT, And, Shr);
5802 SDValue SignCvt = DAG.getNode(ISD::SINT_TO_FP, dl, DstVT, Or);
5803 SDValue Slow = DAG.getNode(ISD::FADD, dl, DstVT, SignCvt, SignCvt);
5805 // TODO: This really should be implemented using a branch rather than a
5806 // select. We happen to get lucky and machinesink does the right
5807 // thing most of the time. This would be a good candidate for a
5808 // pseudo-op, or, even better, for whole-function isel.
5809 EVT SetCCVT =
5810 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), SrcVT);
5812 SDValue SignBitTest = DAG.getSetCC(
5813 dl, SetCCVT, Src, DAG.getConstant(0, dl, SrcVT), ISD::SETLT);
5814 Result = DAG.getSelect(dl, DstVT, SignBitTest, Slow, Fast);
5815 return true;
5818 if (DstVT.getScalarType() == MVT::f64) {
5819 // Only expand vector types if we have the appropriate vector bit
5820 // operations.
5821 if (SrcVT.isVector() &&
5822 (!isOperationLegalOrCustom(ISD::SRL, SrcVT) ||
5823 !isOperationLegalOrCustom(ISD::FADD, DstVT) ||
5824 !isOperationLegalOrCustom(ISD::FSUB, DstVT) ||
5825 !isOperationLegalOrCustomOrPromote(ISD::OR, SrcVT) ||
5826 !isOperationLegalOrCustomOrPromote(ISD::AND, SrcVT)))
5827 return false;
5829 // Implementation of unsigned i64 to f64 following the algorithm in
5830 // __floatundidf in compiler_rt. This implementation has the advantage
5831 // of performing rounding correctly, both in the default rounding mode
5832 // and in all alternate rounding modes.
5833 SDValue TwoP52 = DAG.getConstant(UINT64_C(0x4330000000000000), dl, SrcVT);
5834 SDValue TwoP84PlusTwoP52 = DAG.getConstantFP(
5835 BitsToDouble(UINT64_C(0x4530000000100000)), dl, DstVT);
5836 SDValue TwoP84 = DAG.getConstant(UINT64_C(0x4530000000000000), dl, SrcVT);
5837 SDValue LoMask = DAG.getConstant(UINT64_C(0x00000000FFFFFFFF), dl, SrcVT);
5838 SDValue HiShift = DAG.getConstant(32, dl, ShiftVT);
5840 SDValue Lo = DAG.getNode(ISD::AND, dl, SrcVT, Src, LoMask);
5841 SDValue Hi = DAG.getNode(ISD::SRL, dl, SrcVT, Src, HiShift);
5842 SDValue LoOr = DAG.getNode(ISD::OR, dl, SrcVT, Lo, TwoP52);
5843 SDValue HiOr = DAG.getNode(ISD::OR, dl, SrcVT, Hi, TwoP84);
5844 SDValue LoFlt = DAG.getBitcast(DstVT, LoOr);
5845 SDValue HiFlt = DAG.getBitcast(DstVT, HiOr);
5846 SDValue HiSub = DAG.getNode(ISD::FSUB, dl, DstVT, HiFlt, TwoP84PlusTwoP52);
5847 Result = DAG.getNode(ISD::FADD, dl, DstVT, LoFlt, HiSub);
5848 return true;
5851 return false;
5854 SDValue TargetLowering::expandFMINNUM_FMAXNUM(SDNode *Node,
5855 SelectionDAG &DAG) const {
5856 SDLoc dl(Node);
5857 unsigned NewOp = Node->getOpcode() == ISD::FMINNUM ?
5858 ISD::FMINNUM_IEEE : ISD::FMAXNUM_IEEE;
5859 EVT VT = Node->getValueType(0);
5860 if (isOperationLegalOrCustom(NewOp, VT)) {
5861 SDValue Quiet0 = Node->getOperand(0);
5862 SDValue Quiet1 = Node->getOperand(1);
5864 if (!Node->getFlags().hasNoNaNs()) {
5865 // Insert canonicalizes if it's possible we need to quiet to get correct
5866 // sNaN behavior.
5867 if (!DAG.isKnownNeverSNaN(Quiet0)) {
5868 Quiet0 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet0,
5869 Node->getFlags());
5871 if (!DAG.isKnownNeverSNaN(Quiet1)) {
5872 Quiet1 = DAG.getNode(ISD::FCANONICALIZE, dl, VT, Quiet1,
5873 Node->getFlags());
5877 return DAG.getNode(NewOp, dl, VT, Quiet0, Quiet1, Node->getFlags());
5880 // If the target has FMINIMUM/FMAXIMUM but not FMINNUM/FMAXNUM use that
5881 // instead if there are no NaNs.
5882 if (Node->getFlags().hasNoNaNs()) {
5883 unsigned IEEE2018Op =
5884 Node->getOpcode() == ISD::FMINNUM ? ISD::FMINIMUM : ISD::FMAXIMUM;
5885 if (isOperationLegalOrCustom(IEEE2018Op, VT)) {
5886 return DAG.getNode(IEEE2018Op, dl, VT, Node->getOperand(0),
5887 Node->getOperand(1), Node->getFlags());
5891 return SDValue();
5894 bool TargetLowering::expandCTPOP(SDNode *Node, SDValue &Result,
5895 SelectionDAG &DAG) const {
5896 SDLoc dl(Node);
5897 EVT VT = Node->getValueType(0);
5898 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5899 SDValue Op = Node->getOperand(0);
5900 unsigned Len = VT.getScalarSizeInBits();
5901 assert(VT.isInteger() && "CTPOP not implemented for this type.");
5903 // TODO: Add support for irregular type lengths.
5904 if (!(Len <= 128 && Len % 8 == 0))
5905 return false;
5907 // Only expand vector types if we have the appropriate vector bit operations.
5908 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::ADD, VT) ||
5909 !isOperationLegalOrCustom(ISD::SUB, VT) ||
5910 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5911 (Len != 8 && !isOperationLegalOrCustom(ISD::MUL, VT)) ||
5912 !isOperationLegalOrCustomOrPromote(ISD::AND, VT)))
5913 return false;
5915 // This is the "best" algorithm from
5916 // http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
5917 SDValue Mask55 =
5918 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x55)), dl, VT);
5919 SDValue Mask33 =
5920 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x33)), dl, VT);
5921 SDValue Mask0F =
5922 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x0F)), dl, VT);
5923 SDValue Mask01 =
5924 DAG.getConstant(APInt::getSplat(Len, APInt(8, 0x01)), dl, VT);
5926 // v = v - ((v >> 1) & 0x55555555...)
5927 Op = DAG.getNode(ISD::SUB, dl, VT, Op,
5928 DAG.getNode(ISD::AND, dl, VT,
5929 DAG.getNode(ISD::SRL, dl, VT, Op,
5930 DAG.getConstant(1, dl, ShVT)),
5931 Mask55));
5932 // v = (v & 0x33333333...) + ((v >> 2) & 0x33333333...)
5933 Op = DAG.getNode(ISD::ADD, dl, VT, DAG.getNode(ISD::AND, dl, VT, Op, Mask33),
5934 DAG.getNode(ISD::AND, dl, VT,
5935 DAG.getNode(ISD::SRL, dl, VT, Op,
5936 DAG.getConstant(2, dl, ShVT)),
5937 Mask33));
5938 // v = (v + (v >> 4)) & 0x0F0F0F0F...
5939 Op = DAG.getNode(ISD::AND, dl, VT,
5940 DAG.getNode(ISD::ADD, dl, VT, Op,
5941 DAG.getNode(ISD::SRL, dl, VT, Op,
5942 DAG.getConstant(4, dl, ShVT))),
5943 Mask0F);
5944 // v = (v * 0x01010101...) >> (Len - 8)
5945 if (Len > 8)
5946 Op =
5947 DAG.getNode(ISD::SRL, dl, VT, DAG.getNode(ISD::MUL, dl, VT, Op, Mask01),
5948 DAG.getConstant(Len - 8, dl, ShVT));
5950 Result = Op;
5951 return true;
5954 bool TargetLowering::expandCTLZ(SDNode *Node, SDValue &Result,
5955 SelectionDAG &DAG) const {
5956 SDLoc dl(Node);
5957 EVT VT = Node->getValueType(0);
5958 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
5959 SDValue Op = Node->getOperand(0);
5960 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
5962 // If the non-ZERO_UNDEF version is supported we can use that instead.
5963 if (Node->getOpcode() == ISD::CTLZ_ZERO_UNDEF &&
5964 isOperationLegalOrCustom(ISD::CTLZ, VT)) {
5965 Result = DAG.getNode(ISD::CTLZ, dl, VT, Op);
5966 return true;
5969 // If the ZERO_UNDEF version is supported use that and handle the zero case.
5970 if (isOperationLegalOrCustom(ISD::CTLZ_ZERO_UNDEF, VT)) {
5971 EVT SetCCVT =
5972 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
5973 SDValue CTLZ = DAG.getNode(ISD::CTLZ_ZERO_UNDEF, dl, VT, Op);
5974 SDValue Zero = DAG.getConstant(0, dl, VT);
5975 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
5976 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
5977 DAG.getConstant(NumBitsPerElt, dl, VT), CTLZ);
5978 return true;
5981 // Only expand vector types if we have the appropriate vector bit operations.
5982 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
5983 !isOperationLegalOrCustom(ISD::CTPOP, VT) ||
5984 !isOperationLegalOrCustom(ISD::SRL, VT) ||
5985 !isOperationLegalOrCustomOrPromote(ISD::OR, VT)))
5986 return false;
5988 // for now, we do this:
5989 // x = x | (x >> 1);
5990 // x = x | (x >> 2);
5991 // ...
5992 // x = x | (x >>16);
5993 // x = x | (x >>32); // for 64-bit input
5994 // return popcount(~x);
5996 // Ref: "Hacker's Delight" by Henry Warren
5997 for (unsigned i = 0; (1U << i) <= (NumBitsPerElt / 2); ++i) {
5998 SDValue Tmp = DAG.getConstant(1ULL << i, dl, ShVT);
5999 Op = DAG.getNode(ISD::OR, dl, VT, Op,
6000 DAG.getNode(ISD::SRL, dl, VT, Op, Tmp));
6002 Op = DAG.getNOT(dl, Op, VT);
6003 Result = DAG.getNode(ISD::CTPOP, dl, VT, Op);
6004 return true;
6007 bool TargetLowering::expandCTTZ(SDNode *Node, SDValue &Result,
6008 SelectionDAG &DAG) const {
6009 SDLoc dl(Node);
6010 EVT VT = Node->getValueType(0);
6011 SDValue Op = Node->getOperand(0);
6012 unsigned NumBitsPerElt = VT.getScalarSizeInBits();
6014 // If the non-ZERO_UNDEF version is supported we can use that instead.
6015 if (Node->getOpcode() == ISD::CTTZ_ZERO_UNDEF &&
6016 isOperationLegalOrCustom(ISD::CTTZ, VT)) {
6017 Result = DAG.getNode(ISD::CTTZ, dl, VT, Op);
6018 return true;
6021 // If the ZERO_UNDEF version is supported use that and handle the zero case.
6022 if (isOperationLegalOrCustom(ISD::CTTZ_ZERO_UNDEF, VT)) {
6023 EVT SetCCVT =
6024 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6025 SDValue CTTZ = DAG.getNode(ISD::CTTZ_ZERO_UNDEF, dl, VT, Op);
6026 SDValue Zero = DAG.getConstant(0, dl, VT);
6027 SDValue SrcIsZero = DAG.getSetCC(dl, SetCCVT, Op, Zero, ISD::SETEQ);
6028 Result = DAG.getNode(ISD::SELECT, dl, VT, SrcIsZero,
6029 DAG.getConstant(NumBitsPerElt, dl, VT), CTTZ);
6030 return true;
6033 // Only expand vector types if we have the appropriate vector bit operations.
6034 if (VT.isVector() && (!isPowerOf2_32(NumBitsPerElt) ||
6035 (!isOperationLegalOrCustom(ISD::CTPOP, VT) &&
6036 !isOperationLegalOrCustom(ISD::CTLZ, VT)) ||
6037 !isOperationLegalOrCustom(ISD::SUB, VT) ||
6038 !isOperationLegalOrCustomOrPromote(ISD::AND, VT) ||
6039 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6040 return false;
6042 // for now, we use: { return popcount(~x & (x - 1)); }
6043 // unless the target has ctlz but not ctpop, in which case we use:
6044 // { return 32 - nlz(~x & (x-1)); }
6045 // Ref: "Hacker's Delight" by Henry Warren
6046 SDValue Tmp = DAG.getNode(
6047 ISD::AND, dl, VT, DAG.getNOT(dl, Op, VT),
6048 DAG.getNode(ISD::SUB, dl, VT, Op, DAG.getConstant(1, dl, VT)));
6050 // If ISD::CTLZ is legal and CTPOP isn't, then do that instead.
6051 if (isOperationLegal(ISD::CTLZ, VT) && !isOperationLegal(ISD::CTPOP, VT)) {
6052 Result =
6053 DAG.getNode(ISD::SUB, dl, VT, DAG.getConstant(NumBitsPerElt, dl, VT),
6054 DAG.getNode(ISD::CTLZ, dl, VT, Tmp));
6055 return true;
6058 Result = DAG.getNode(ISD::CTPOP, dl, VT, Tmp);
6059 return true;
6062 bool TargetLowering::expandABS(SDNode *N, SDValue &Result,
6063 SelectionDAG &DAG) const {
6064 SDLoc dl(N);
6065 EVT VT = N->getValueType(0);
6066 EVT ShVT = getShiftAmountTy(VT, DAG.getDataLayout());
6067 SDValue Op = N->getOperand(0);
6069 // Only expand vector types if we have the appropriate vector operations.
6070 if (VT.isVector() && (!isOperationLegalOrCustom(ISD::SRA, VT) ||
6071 !isOperationLegalOrCustom(ISD::ADD, VT) ||
6072 !isOperationLegalOrCustomOrPromote(ISD::XOR, VT)))
6073 return false;
6075 SDValue Shift =
6076 DAG.getNode(ISD::SRA, dl, VT, Op,
6077 DAG.getConstant(VT.getScalarSizeInBits() - 1, dl, ShVT));
6078 SDValue Add = DAG.getNode(ISD::ADD, dl, VT, Op, Shift);
6079 Result = DAG.getNode(ISD::XOR, dl, VT, Add, Shift);
6080 return true;
6083 SDValue TargetLowering::scalarizeVectorLoad(LoadSDNode *LD,
6084 SelectionDAG &DAG) const {
6085 SDLoc SL(LD);
6086 SDValue Chain = LD->getChain();
6087 SDValue BasePTR = LD->getBasePtr();
6088 EVT SrcVT = LD->getMemoryVT();
6089 ISD::LoadExtType ExtType = LD->getExtensionType();
6091 unsigned NumElem = SrcVT.getVectorNumElements();
6093 EVT SrcEltVT = SrcVT.getScalarType();
6094 EVT DstEltVT = LD->getValueType(0).getScalarType();
6096 unsigned Stride = SrcEltVT.getSizeInBits() / 8;
6097 assert(SrcEltVT.isByteSized());
6099 SmallVector<SDValue, 8> Vals;
6100 SmallVector<SDValue, 8> LoadChains;
6102 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6103 SDValue ScalarLoad =
6104 DAG.getExtLoad(ExtType, SL, DstEltVT, Chain, BasePTR,
6105 LD->getPointerInfo().getWithOffset(Idx * Stride),
6106 SrcEltVT, MinAlign(LD->getAlignment(), Idx * Stride),
6107 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6109 BasePTR = DAG.getObjectPtrOffset(SL, BasePTR, Stride);
6111 Vals.push_back(ScalarLoad.getValue(0));
6112 LoadChains.push_back(ScalarLoad.getValue(1));
6115 SDValue NewChain = DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoadChains);
6116 SDValue Value = DAG.getBuildVector(LD->getValueType(0), SL, Vals);
6118 return DAG.getMergeValues({Value, NewChain}, SL);
6121 SDValue TargetLowering::scalarizeVectorStore(StoreSDNode *ST,
6122 SelectionDAG &DAG) const {
6123 SDLoc SL(ST);
6125 SDValue Chain = ST->getChain();
6126 SDValue BasePtr = ST->getBasePtr();
6127 SDValue Value = ST->getValue();
6128 EVT StVT = ST->getMemoryVT();
6130 // The type of the data we want to save
6131 EVT RegVT = Value.getValueType();
6132 EVT RegSclVT = RegVT.getScalarType();
6134 // The type of data as saved in memory.
6135 EVT MemSclVT = StVT.getScalarType();
6137 EVT IdxVT = getVectorIdxTy(DAG.getDataLayout());
6138 unsigned NumElem = StVT.getVectorNumElements();
6140 // A vector must always be stored in memory as-is, i.e. without any padding
6141 // between the elements, since various code depend on it, e.g. in the
6142 // handling of a bitcast of a vector type to int, which may be done with a
6143 // vector store followed by an integer load. A vector that does not have
6144 // elements that are byte-sized must therefore be stored as an integer
6145 // built out of the extracted vector elements.
6146 if (!MemSclVT.isByteSized()) {
6147 unsigned NumBits = StVT.getSizeInBits();
6148 EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), NumBits);
6150 SDValue CurrVal = DAG.getConstant(0, SL, IntVT);
6152 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6153 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6154 DAG.getConstant(Idx, SL, IdxVT));
6155 SDValue Trunc = DAG.getNode(ISD::TRUNCATE, SL, MemSclVT, Elt);
6156 SDValue ExtElt = DAG.getNode(ISD::ZERO_EXTEND, SL, IntVT, Trunc);
6157 unsigned ShiftIntoIdx =
6158 (DAG.getDataLayout().isBigEndian() ? (NumElem - 1) - Idx : Idx);
6159 SDValue ShiftAmount =
6160 DAG.getConstant(ShiftIntoIdx * MemSclVT.getSizeInBits(), SL, IntVT);
6161 SDValue ShiftedElt =
6162 DAG.getNode(ISD::SHL, SL, IntVT, ExtElt, ShiftAmount);
6163 CurrVal = DAG.getNode(ISD::OR, SL, IntVT, CurrVal, ShiftedElt);
6166 return DAG.getStore(Chain, SL, CurrVal, BasePtr, ST->getPointerInfo(),
6167 ST->getAlignment(), ST->getMemOperand()->getFlags(),
6168 ST->getAAInfo());
6171 // Store Stride in bytes
6172 unsigned Stride = MemSclVT.getSizeInBits() / 8;
6173 assert(Stride && "Zero stride!");
6174 // Extract each of the elements from the original vector and save them into
6175 // memory individually.
6176 SmallVector<SDValue, 8> Stores;
6177 for (unsigned Idx = 0; Idx < NumElem; ++Idx) {
6178 SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, RegSclVT, Value,
6179 DAG.getConstant(Idx, SL, IdxVT));
6181 SDValue Ptr = DAG.getObjectPtrOffset(SL, BasePtr, Idx * Stride);
6183 // This scalar TruncStore may be illegal, but we legalize it later.
6184 SDValue Store = DAG.getTruncStore(
6185 Chain, SL, Elt, Ptr, ST->getPointerInfo().getWithOffset(Idx * Stride),
6186 MemSclVT, MinAlign(ST->getAlignment(), Idx * Stride),
6187 ST->getMemOperand()->getFlags(), ST->getAAInfo());
6189 Stores.push_back(Store);
6192 return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Stores);
6195 std::pair<SDValue, SDValue>
6196 TargetLowering::expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const {
6197 assert(LD->getAddressingMode() == ISD::UNINDEXED &&
6198 "unaligned indexed loads not implemented!");
6199 SDValue Chain = LD->getChain();
6200 SDValue Ptr = LD->getBasePtr();
6201 EVT VT = LD->getValueType(0);
6202 EVT LoadedVT = LD->getMemoryVT();
6203 SDLoc dl(LD);
6204 auto &MF = DAG.getMachineFunction();
6206 if (VT.isFloatingPoint() || VT.isVector()) {
6207 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), LoadedVT.getSizeInBits());
6208 if (isTypeLegal(intVT) && isTypeLegal(LoadedVT)) {
6209 if (!isOperationLegalOrCustom(ISD::LOAD, intVT) &&
6210 LoadedVT.isVector()) {
6211 // Scalarize the load and let the individual components be handled.
6212 SDValue Scalarized = scalarizeVectorLoad(LD, DAG);
6213 if (Scalarized->getOpcode() == ISD::MERGE_VALUES)
6214 return std::make_pair(Scalarized.getOperand(0), Scalarized.getOperand(1));
6215 return std::make_pair(Scalarized.getValue(0), Scalarized.getValue(1));
6218 // Expand to a (misaligned) integer load of the same size,
6219 // then bitconvert to floating point or vector.
6220 SDValue newLoad = DAG.getLoad(intVT, dl, Chain, Ptr,
6221 LD->getMemOperand());
6222 SDValue Result = DAG.getNode(ISD::BITCAST, dl, LoadedVT, newLoad);
6223 if (LoadedVT != VT)
6224 Result = DAG.getNode(VT.isFloatingPoint() ? ISD::FP_EXTEND :
6225 ISD::ANY_EXTEND, dl, VT, Result);
6227 return std::make_pair(Result, newLoad.getValue(1));
6230 // Copy the value to a (aligned) stack slot using (unaligned) integer
6231 // loads and stores, then do a (aligned) load from the stack slot.
6232 MVT RegVT = getRegisterType(*DAG.getContext(), intVT);
6233 unsigned LoadedBytes = LoadedVT.getStoreSize();
6234 unsigned RegBytes = RegVT.getSizeInBits() / 8;
6235 unsigned NumRegs = (LoadedBytes + RegBytes - 1) / RegBytes;
6237 // Make sure the stack slot is also aligned for the register type.
6238 SDValue StackBase = DAG.CreateStackTemporary(LoadedVT, RegVT);
6239 auto FrameIndex = cast<FrameIndexSDNode>(StackBase.getNode())->getIndex();
6240 SmallVector<SDValue, 8> Stores;
6241 SDValue StackPtr = StackBase;
6242 unsigned Offset = 0;
6244 EVT PtrVT = Ptr.getValueType();
6245 EVT StackPtrVT = StackPtr.getValueType();
6247 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6248 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6250 // Do all but one copies using the full register width.
6251 for (unsigned i = 1; i < NumRegs; i++) {
6252 // Load one integer register's worth from the original location.
6253 SDValue Load = DAG.getLoad(
6254 RegVT, dl, Chain, Ptr, LD->getPointerInfo().getWithOffset(Offset),
6255 MinAlign(LD->getAlignment(), Offset), LD->getMemOperand()->getFlags(),
6256 LD->getAAInfo());
6257 // Follow the load with a store to the stack slot. Remember the store.
6258 Stores.push_back(DAG.getStore(
6259 Load.getValue(1), dl, Load, StackPtr,
6260 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset)));
6261 // Increment the pointers.
6262 Offset += RegBytes;
6264 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6265 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6268 // The last copy may be partial. Do an extending load.
6269 EVT MemVT = EVT::getIntegerVT(*DAG.getContext(),
6270 8 * (LoadedBytes - Offset));
6271 SDValue Load =
6272 DAG.getExtLoad(ISD::EXTLOAD, dl, RegVT, Chain, Ptr,
6273 LD->getPointerInfo().getWithOffset(Offset), MemVT,
6274 MinAlign(LD->getAlignment(), Offset),
6275 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6276 // Follow the load with a store to the stack slot. Remember the store.
6277 // On big-endian machines this requires a truncating store to ensure
6278 // that the bits end up in the right place.
6279 Stores.push_back(DAG.getTruncStore(
6280 Load.getValue(1), dl, Load, StackPtr,
6281 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), MemVT));
6283 // The order of the stores doesn't matter - say it with a TokenFactor.
6284 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6286 // Finally, perform the original load only redirected to the stack slot.
6287 Load = DAG.getExtLoad(LD->getExtensionType(), dl, VT, TF, StackBase,
6288 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0),
6289 LoadedVT);
6291 // Callers expect a MERGE_VALUES node.
6292 return std::make_pair(Load, TF);
6295 assert(LoadedVT.isInteger() && !LoadedVT.isVector() &&
6296 "Unaligned load of unsupported type.");
6298 // Compute the new VT that is half the size of the old one. This is an
6299 // integer MVT.
6300 unsigned NumBits = LoadedVT.getSizeInBits();
6301 EVT NewLoadedVT;
6302 NewLoadedVT = EVT::getIntegerVT(*DAG.getContext(), NumBits/2);
6303 NumBits >>= 1;
6305 unsigned Alignment = LD->getAlignment();
6306 unsigned IncrementSize = NumBits / 8;
6307 ISD::LoadExtType HiExtType = LD->getExtensionType();
6309 // If the original load is NON_EXTLOAD, the hi part load must be ZEXTLOAD.
6310 if (HiExtType == ISD::NON_EXTLOAD)
6311 HiExtType = ISD::ZEXTLOAD;
6313 // Load the value in two parts
6314 SDValue Lo, Hi;
6315 if (DAG.getDataLayout().isLittleEndian()) {
6316 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6317 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6318 LD->getAAInfo());
6320 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6321 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr,
6322 LD->getPointerInfo().getWithOffset(IncrementSize),
6323 NewLoadedVT, MinAlign(Alignment, IncrementSize),
6324 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6325 } else {
6326 Hi = DAG.getExtLoad(HiExtType, dl, VT, Chain, Ptr, LD->getPointerInfo(),
6327 NewLoadedVT, Alignment, LD->getMemOperand()->getFlags(),
6328 LD->getAAInfo());
6330 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6331 Lo = DAG.getExtLoad(ISD::ZEXTLOAD, dl, VT, Chain, Ptr,
6332 LD->getPointerInfo().getWithOffset(IncrementSize),
6333 NewLoadedVT, MinAlign(Alignment, IncrementSize),
6334 LD->getMemOperand()->getFlags(), LD->getAAInfo());
6337 // aggregate the two parts
6338 SDValue ShiftAmount =
6339 DAG.getConstant(NumBits, dl, getShiftAmountTy(Hi.getValueType(),
6340 DAG.getDataLayout()));
6341 SDValue Result = DAG.getNode(ISD::SHL, dl, VT, Hi, ShiftAmount);
6342 Result = DAG.getNode(ISD::OR, dl, VT, Result, Lo);
6344 SDValue TF = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Lo.getValue(1),
6345 Hi.getValue(1));
6347 return std::make_pair(Result, TF);
6350 SDValue TargetLowering::expandUnalignedStore(StoreSDNode *ST,
6351 SelectionDAG &DAG) const {
6352 assert(ST->getAddressingMode() == ISD::UNINDEXED &&
6353 "unaligned indexed stores not implemented!");
6354 SDValue Chain = ST->getChain();
6355 SDValue Ptr = ST->getBasePtr();
6356 SDValue Val = ST->getValue();
6357 EVT VT = Val.getValueType();
6358 int Alignment = ST->getAlignment();
6359 auto &MF = DAG.getMachineFunction();
6360 EVT StoreMemVT = ST->getMemoryVT();
6362 SDLoc dl(ST);
6363 if (StoreMemVT.isFloatingPoint() || StoreMemVT.isVector()) {
6364 EVT intVT = EVT::getIntegerVT(*DAG.getContext(), VT.getSizeInBits());
6365 if (isTypeLegal(intVT)) {
6366 if (!isOperationLegalOrCustom(ISD::STORE, intVT) &&
6367 StoreMemVT.isVector()) {
6368 // Scalarize the store and let the individual components be handled.
6369 SDValue Result = scalarizeVectorStore(ST, DAG);
6370 return Result;
6372 // Expand to a bitconvert of the value to the integer type of the
6373 // same size, then a (misaligned) int store.
6374 // FIXME: Does not handle truncating floating point stores!
6375 SDValue Result = DAG.getNode(ISD::BITCAST, dl, intVT, Val);
6376 Result = DAG.getStore(Chain, dl, Result, Ptr, ST->getPointerInfo(),
6377 Alignment, ST->getMemOperand()->getFlags());
6378 return Result;
6380 // Do a (aligned) store to a stack slot, then copy from the stack slot
6381 // to the final destination using (unaligned) integer loads and stores.
6382 MVT RegVT = getRegisterType(
6383 *DAG.getContext(),
6384 EVT::getIntegerVT(*DAG.getContext(), StoreMemVT.getSizeInBits()));
6385 EVT PtrVT = Ptr.getValueType();
6386 unsigned StoredBytes = StoreMemVT.getStoreSize();
6387 unsigned RegBytes = RegVT.getSizeInBits() / 8;
6388 unsigned NumRegs = (StoredBytes + RegBytes - 1) / RegBytes;
6390 // Make sure the stack slot is also aligned for the register type.
6391 SDValue StackPtr = DAG.CreateStackTemporary(StoreMemVT, RegVT);
6392 auto FrameIndex = cast<FrameIndexSDNode>(StackPtr.getNode())->getIndex();
6394 // Perform the original store, only redirected to the stack slot.
6395 SDValue Store = DAG.getTruncStore(
6396 Chain, dl, Val, StackPtr,
6397 MachinePointerInfo::getFixedStack(MF, FrameIndex, 0), StoreMemVT);
6399 EVT StackPtrVT = StackPtr.getValueType();
6401 SDValue PtrIncrement = DAG.getConstant(RegBytes, dl, PtrVT);
6402 SDValue StackPtrIncrement = DAG.getConstant(RegBytes, dl, StackPtrVT);
6403 SmallVector<SDValue, 8> Stores;
6404 unsigned Offset = 0;
6406 // Do all but one copies using the full register width.
6407 for (unsigned i = 1; i < NumRegs; i++) {
6408 // Load one integer register's worth from the stack slot.
6409 SDValue Load = DAG.getLoad(
6410 RegVT, dl, Store, StackPtr,
6411 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset));
6412 // Store it to the final location. Remember the store.
6413 Stores.push_back(DAG.getStore(Load.getValue(1), dl, Load, Ptr,
6414 ST->getPointerInfo().getWithOffset(Offset),
6415 MinAlign(ST->getAlignment(), Offset),
6416 ST->getMemOperand()->getFlags()));
6417 // Increment the pointers.
6418 Offset += RegBytes;
6419 StackPtr = DAG.getObjectPtrOffset(dl, StackPtr, StackPtrIncrement);
6420 Ptr = DAG.getObjectPtrOffset(dl, Ptr, PtrIncrement);
6423 // The last store may be partial. Do a truncating store. On big-endian
6424 // machines this requires an extending load from the stack slot to ensure
6425 // that the bits are in the right place.
6426 EVT LoadMemVT =
6427 EVT::getIntegerVT(*DAG.getContext(), 8 * (StoredBytes - Offset));
6429 // Load from the stack slot.
6430 SDValue Load = DAG.getExtLoad(
6431 ISD::EXTLOAD, dl, RegVT, Store, StackPtr,
6432 MachinePointerInfo::getFixedStack(MF, FrameIndex, Offset), LoadMemVT);
6434 Stores.push_back(
6435 DAG.getTruncStore(Load.getValue(1), dl, Load, Ptr,
6436 ST->getPointerInfo().getWithOffset(Offset), LoadMemVT,
6437 MinAlign(ST->getAlignment(), Offset),
6438 ST->getMemOperand()->getFlags(), ST->getAAInfo()));
6439 // The order of the stores doesn't matter - say it with a TokenFactor.
6440 SDValue Result = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
6441 return Result;
6444 assert(StoreMemVT.isInteger() && !StoreMemVT.isVector() &&
6445 "Unaligned store of unknown type.");
6446 // Get the half-size VT
6447 EVT NewStoredVT = StoreMemVT.getHalfSizedIntegerVT(*DAG.getContext());
6448 int NumBits = NewStoredVT.getSizeInBits();
6449 int IncrementSize = NumBits / 8;
6451 // Divide the stored value in two parts.
6452 SDValue ShiftAmount = DAG.getConstant(
6453 NumBits, dl, getShiftAmountTy(Val.getValueType(), DAG.getDataLayout()));
6454 SDValue Lo = Val;
6455 SDValue Hi = DAG.getNode(ISD::SRL, dl, VT, Val, ShiftAmount);
6457 // Store the two parts
6458 SDValue Store1, Store2;
6459 Store1 = DAG.getTruncStore(Chain, dl,
6460 DAG.getDataLayout().isLittleEndian() ? Lo : Hi,
6461 Ptr, ST->getPointerInfo(), NewStoredVT, Alignment,
6462 ST->getMemOperand()->getFlags());
6464 Ptr = DAG.getObjectPtrOffset(dl, Ptr, IncrementSize);
6465 Alignment = MinAlign(Alignment, IncrementSize);
6466 Store2 = DAG.getTruncStore(
6467 Chain, dl, DAG.getDataLayout().isLittleEndian() ? Hi : Lo, Ptr,
6468 ST->getPointerInfo().getWithOffset(IncrementSize), NewStoredVT, Alignment,
6469 ST->getMemOperand()->getFlags(), ST->getAAInfo());
6471 SDValue Result =
6472 DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Store1, Store2);
6473 return Result;
6476 SDValue
6477 TargetLowering::IncrementMemoryAddress(SDValue Addr, SDValue Mask,
6478 const SDLoc &DL, EVT DataVT,
6479 SelectionDAG &DAG,
6480 bool IsCompressedMemory) const {
6481 SDValue Increment;
6482 EVT AddrVT = Addr.getValueType();
6483 EVT MaskVT = Mask.getValueType();
6484 assert(DataVT.getVectorNumElements() == MaskVT.getVectorNumElements() &&
6485 "Incompatible types of Data and Mask");
6486 if (IsCompressedMemory) {
6487 // Incrementing the pointer according to number of '1's in the mask.
6488 EVT MaskIntVT = EVT::getIntegerVT(*DAG.getContext(), MaskVT.getSizeInBits());
6489 SDValue MaskInIntReg = DAG.getBitcast(MaskIntVT, Mask);
6490 if (MaskIntVT.getSizeInBits() < 32) {
6491 MaskInIntReg = DAG.getNode(ISD::ZERO_EXTEND, DL, MVT::i32, MaskInIntReg);
6492 MaskIntVT = MVT::i32;
6495 // Count '1's with POPCNT.
6496 Increment = DAG.getNode(ISD::CTPOP, DL, MaskIntVT, MaskInIntReg);
6497 Increment = DAG.getZExtOrTrunc(Increment, DL, AddrVT);
6498 // Scale is an element size in bytes.
6499 SDValue Scale = DAG.getConstant(DataVT.getScalarSizeInBits() / 8, DL,
6500 AddrVT);
6501 Increment = DAG.getNode(ISD::MUL, DL, AddrVT, Increment, Scale);
6502 } else
6503 Increment = DAG.getConstant(DataVT.getStoreSize(), DL, AddrVT);
6505 return DAG.getNode(ISD::ADD, DL, AddrVT, Addr, Increment);
6508 static SDValue clampDynamicVectorIndex(SelectionDAG &DAG,
6509 SDValue Idx,
6510 EVT VecVT,
6511 const SDLoc &dl) {
6512 if (isa<ConstantSDNode>(Idx))
6513 return Idx;
6515 EVT IdxVT = Idx.getValueType();
6516 unsigned NElts = VecVT.getVectorNumElements();
6517 if (isPowerOf2_32(NElts)) {
6518 APInt Imm = APInt::getLowBitsSet(IdxVT.getSizeInBits(),
6519 Log2_32(NElts));
6520 return DAG.getNode(ISD::AND, dl, IdxVT, Idx,
6521 DAG.getConstant(Imm, dl, IdxVT));
6524 return DAG.getNode(ISD::UMIN, dl, IdxVT, Idx,
6525 DAG.getConstant(NElts - 1, dl, IdxVT));
6528 SDValue TargetLowering::getVectorElementPointer(SelectionDAG &DAG,
6529 SDValue VecPtr, EVT VecVT,
6530 SDValue Index) const {
6531 SDLoc dl(Index);
6532 // Make sure the index type is big enough to compute in.
6533 Index = DAG.getZExtOrTrunc(Index, dl, VecPtr.getValueType());
6535 EVT EltVT = VecVT.getVectorElementType();
6537 // Calculate the element offset and add it to the pointer.
6538 unsigned EltSize = EltVT.getSizeInBits() / 8; // FIXME: should be ABI size.
6539 assert(EltSize * 8 == EltVT.getSizeInBits() &&
6540 "Converting bits to bytes lost precision");
6542 Index = clampDynamicVectorIndex(DAG, Index, VecVT, dl);
6544 EVT IdxVT = Index.getValueType();
6546 Index = DAG.getNode(ISD::MUL, dl, IdxVT, Index,
6547 DAG.getConstant(EltSize, dl, IdxVT));
6548 return DAG.getNode(ISD::ADD, dl, IdxVT, VecPtr, Index);
6551 //===----------------------------------------------------------------------===//
6552 // Implementation of Emulated TLS Model
6553 //===----------------------------------------------------------------------===//
6555 SDValue TargetLowering::LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA,
6556 SelectionDAG &DAG) const {
6557 // Access to address of TLS varialbe xyz is lowered to a function call:
6558 // __emutls_get_address( address of global variable named "__emutls_v.xyz" )
6559 EVT PtrVT = getPointerTy(DAG.getDataLayout());
6560 PointerType *VoidPtrType = Type::getInt8PtrTy(*DAG.getContext());
6561 SDLoc dl(GA);
6563 ArgListTy Args;
6564 ArgListEntry Entry;
6565 std::string NameString = ("__emutls_v." + GA->getGlobal()->getName()).str();
6566 Module *VariableModule = const_cast<Module*>(GA->getGlobal()->getParent());
6567 StringRef EmuTlsVarName(NameString);
6568 GlobalVariable *EmuTlsVar = VariableModule->getNamedGlobal(EmuTlsVarName);
6569 assert(EmuTlsVar && "Cannot find EmuTlsVar ");
6570 Entry.Node = DAG.getGlobalAddress(EmuTlsVar, dl, PtrVT);
6571 Entry.Ty = VoidPtrType;
6572 Args.push_back(Entry);
6574 SDValue EmuTlsGetAddr = DAG.getExternalSymbol("__emutls_get_address", PtrVT);
6576 TargetLowering::CallLoweringInfo CLI(DAG);
6577 CLI.setDebugLoc(dl).setChain(DAG.getEntryNode());
6578 CLI.setLibCallee(CallingConv::C, VoidPtrType, EmuTlsGetAddr, std::move(Args));
6579 std::pair<SDValue, SDValue> CallResult = LowerCallTo(CLI);
6581 // TLSADDR will be codegen'ed as call. Inform MFI that function has calls.
6582 // At last for X86 targets, maybe good for other targets too?
6583 MachineFrameInfo &MFI = DAG.getMachineFunction().getFrameInfo();
6584 MFI.setAdjustsStack(true); // Is this only for X86 target?
6585 MFI.setHasCalls(true);
6587 assert((GA->getOffset() == 0) &&
6588 "Emulated TLS must have zero offset in GlobalAddressSDNode");
6589 return CallResult.first;
6592 SDValue TargetLowering::lowerCmpEqZeroToCtlzSrl(SDValue Op,
6593 SelectionDAG &DAG) const {
6594 assert((Op->getOpcode() == ISD::SETCC) && "Input has to be a SETCC node.");
6595 if (!isCtlzFast())
6596 return SDValue();
6597 ISD::CondCode CC = cast<CondCodeSDNode>(Op.getOperand(2))->get();
6598 SDLoc dl(Op);
6599 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
6600 if (C->isNullValue() && CC == ISD::SETEQ) {
6601 EVT VT = Op.getOperand(0).getValueType();
6602 SDValue Zext = Op.getOperand(0);
6603 if (VT.bitsLT(MVT::i32)) {
6604 VT = MVT::i32;
6605 Zext = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Op.getOperand(0));
6607 unsigned Log2b = Log2_32(VT.getSizeInBits());
6608 SDValue Clz = DAG.getNode(ISD::CTLZ, dl, VT, Zext);
6609 SDValue Scc = DAG.getNode(ISD::SRL, dl, VT, Clz,
6610 DAG.getConstant(Log2b, dl, MVT::i32));
6611 return DAG.getNode(ISD::TRUNCATE, dl, MVT::i32, Scc);
6614 return SDValue();
6617 SDValue TargetLowering::expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const {
6618 unsigned Opcode = Node->getOpcode();
6619 SDValue LHS = Node->getOperand(0);
6620 SDValue RHS = Node->getOperand(1);
6621 EVT VT = LHS.getValueType();
6622 SDLoc dl(Node);
6624 assert(VT == RHS.getValueType() && "Expected operands to be the same type");
6625 assert(VT.isInteger() && "Expected operands to be integers");
6627 // usub.sat(a, b) -> umax(a, b) - b
6628 if (Opcode == ISD::USUBSAT && isOperationLegalOrCustom(ISD::UMAX, VT)) {
6629 SDValue Max = DAG.getNode(ISD::UMAX, dl, VT, LHS, RHS);
6630 return DAG.getNode(ISD::SUB, dl, VT, Max, RHS);
6633 if (Opcode == ISD::UADDSAT && isOperationLegalOrCustom(ISD::UMIN, VT)) {
6634 SDValue InvRHS = DAG.getNOT(dl, RHS, VT);
6635 SDValue Min = DAG.getNode(ISD::UMIN, dl, VT, LHS, InvRHS);
6636 return DAG.getNode(ISD::ADD, dl, VT, Min, RHS);
6639 unsigned OverflowOp;
6640 switch (Opcode) {
6641 case ISD::SADDSAT:
6642 OverflowOp = ISD::SADDO;
6643 break;
6644 case ISD::UADDSAT:
6645 OverflowOp = ISD::UADDO;
6646 break;
6647 case ISD::SSUBSAT:
6648 OverflowOp = ISD::SSUBO;
6649 break;
6650 case ISD::USUBSAT:
6651 OverflowOp = ISD::USUBO;
6652 break;
6653 default:
6654 llvm_unreachable("Expected method to receive signed or unsigned saturation "
6655 "addition or subtraction node.");
6658 unsigned BitWidth = LHS.getScalarValueSizeInBits();
6659 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6660 SDValue Result = DAG.getNode(OverflowOp, dl, DAG.getVTList(VT, BoolVT),
6661 LHS, RHS);
6662 SDValue SumDiff = Result.getValue(0);
6663 SDValue Overflow = Result.getValue(1);
6664 SDValue Zero = DAG.getConstant(0, dl, VT);
6665 SDValue AllOnes = DAG.getAllOnesConstant(dl, VT);
6667 if (Opcode == ISD::UADDSAT) {
6668 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6669 // (LHS + RHS) | OverflowMask
6670 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6671 return DAG.getNode(ISD::OR, dl, VT, SumDiff, OverflowMask);
6673 // Overflow ? 0xffff.... : (LHS + RHS)
6674 return DAG.getSelect(dl, VT, Overflow, AllOnes, SumDiff);
6675 } else if (Opcode == ISD::USUBSAT) {
6676 if (getBooleanContents(VT) == ZeroOrNegativeOneBooleanContent) {
6677 // (LHS - RHS) & ~OverflowMask
6678 SDValue OverflowMask = DAG.getSExtOrTrunc(Overflow, dl, VT);
6679 SDValue Not = DAG.getNOT(dl, OverflowMask, VT);
6680 return DAG.getNode(ISD::AND, dl, VT, SumDiff, Not);
6682 // Overflow ? 0 : (LHS - RHS)
6683 return DAG.getSelect(dl, VT, Overflow, Zero, SumDiff);
6684 } else {
6685 // SatMax -> Overflow && SumDiff < 0
6686 // SatMin -> Overflow && SumDiff >= 0
6687 APInt MinVal = APInt::getSignedMinValue(BitWidth);
6688 APInt MaxVal = APInt::getSignedMaxValue(BitWidth);
6689 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6690 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6691 SDValue SumNeg = DAG.getSetCC(dl, BoolVT, SumDiff, Zero, ISD::SETLT);
6692 Result = DAG.getSelect(dl, VT, SumNeg, SatMax, SatMin);
6693 return DAG.getSelect(dl, VT, Overflow, Result, SumDiff);
6697 SDValue
6698 TargetLowering::expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const {
6699 assert((Node->getOpcode() == ISD::SMULFIX ||
6700 Node->getOpcode() == ISD::UMULFIX ||
6701 Node->getOpcode() == ISD::SMULFIXSAT) &&
6702 "Expected a fixed point multiplication opcode");
6704 SDLoc dl(Node);
6705 SDValue LHS = Node->getOperand(0);
6706 SDValue RHS = Node->getOperand(1);
6707 EVT VT = LHS.getValueType();
6708 unsigned Scale = Node->getConstantOperandVal(2);
6709 bool Saturating = Node->getOpcode() == ISD::SMULFIXSAT;
6710 EVT BoolVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6711 unsigned VTSize = VT.getScalarSizeInBits();
6713 if (!Scale) {
6714 // [us]mul.fix(a, b, 0) -> mul(a, b)
6715 if (!Saturating && isOperationLegalOrCustom(ISD::MUL, VT)) {
6716 return DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6717 } else if (Saturating && isOperationLegalOrCustom(ISD::SMULO, VT)) {
6718 SDValue Result =
6719 DAG.getNode(ISD::SMULO, dl, DAG.getVTList(VT, BoolVT), LHS, RHS);
6720 SDValue Product = Result.getValue(0);
6721 SDValue Overflow = Result.getValue(1);
6722 SDValue Zero = DAG.getConstant(0, dl, VT);
6724 APInt MinVal = APInt::getSignedMinValue(VTSize);
6725 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6726 SDValue SatMin = DAG.getConstant(MinVal, dl, VT);
6727 SDValue SatMax = DAG.getConstant(MaxVal, dl, VT);
6728 SDValue ProdNeg = DAG.getSetCC(dl, BoolVT, Product, Zero, ISD::SETLT);
6729 Result = DAG.getSelect(dl, VT, ProdNeg, SatMax, SatMin);
6730 return DAG.getSelect(dl, VT, Overflow, Result, Product);
6734 bool Signed =
6735 Node->getOpcode() == ISD::SMULFIX || Node->getOpcode() == ISD::SMULFIXSAT;
6736 assert(((Signed && Scale < VTSize) || (!Signed && Scale <= VTSize)) &&
6737 "Expected scale to be less than the number of bits if signed or at "
6738 "most the number of bits if unsigned.");
6739 assert(LHS.getValueType() == RHS.getValueType() &&
6740 "Expected both operands to be the same type");
6742 // Get the upper and lower bits of the result.
6743 SDValue Lo, Hi;
6744 unsigned LoHiOp = Signed ? ISD::SMUL_LOHI : ISD::UMUL_LOHI;
6745 unsigned HiOp = Signed ? ISD::MULHS : ISD::MULHU;
6746 if (isOperationLegalOrCustom(LoHiOp, VT)) {
6747 SDValue Result = DAG.getNode(LoHiOp, dl, DAG.getVTList(VT, VT), LHS, RHS);
6748 Lo = Result.getValue(0);
6749 Hi = Result.getValue(1);
6750 } else if (isOperationLegalOrCustom(HiOp, VT)) {
6751 Lo = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6752 Hi = DAG.getNode(HiOp, dl, VT, LHS, RHS);
6753 } else if (VT.isVector()) {
6754 return SDValue();
6755 } else {
6756 report_fatal_error("Unable to expand fixed point multiplication.");
6759 if (Scale == VTSize)
6760 // Result is just the top half since we'd be shifting by the width of the
6761 // operand.
6762 return Hi;
6764 // The result will need to be shifted right by the scale since both operands
6765 // are scaled. The result is given to us in 2 halves, so we only want part of
6766 // both in the result.
6767 EVT ShiftTy = getShiftAmountTy(VT, DAG.getDataLayout());
6768 SDValue Result = DAG.getNode(ISD::FSHR, dl, VT, Hi, Lo,
6769 DAG.getConstant(Scale, dl, ShiftTy));
6770 if (!Saturating)
6771 return Result;
6773 unsigned OverflowBits = VTSize - Scale + 1; // +1 for the sign
6774 SDValue HiMask =
6775 DAG.getConstant(APInt::getHighBitsSet(VTSize, OverflowBits), dl, VT);
6776 SDValue LoMask = DAG.getConstant(
6777 APInt::getLowBitsSet(VTSize, VTSize - OverflowBits), dl, VT);
6778 APInt MaxVal = APInt::getSignedMaxValue(VTSize);
6779 APInt MinVal = APInt::getSignedMinValue(VTSize);
6781 Result = DAG.getSelectCC(dl, Hi, LoMask,
6782 DAG.getConstant(MaxVal, dl, VT), Result,
6783 ISD::SETGT);
6784 return DAG.getSelectCC(dl, Hi, HiMask,
6785 DAG.getConstant(MinVal, dl, VT), Result,
6786 ISD::SETLT);
6789 void TargetLowering::expandUADDSUBO(
6790 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6791 SDLoc dl(Node);
6792 SDValue LHS = Node->getOperand(0);
6793 SDValue RHS = Node->getOperand(1);
6794 bool IsAdd = Node->getOpcode() == ISD::UADDO;
6796 // If ADD/SUBCARRY is legal, use that instead.
6797 unsigned OpcCarry = IsAdd ? ISD::ADDCARRY : ISD::SUBCARRY;
6798 if (isOperationLegalOrCustom(OpcCarry, Node->getValueType(0))) {
6799 SDValue CarryIn = DAG.getConstant(0, dl, Node->getValueType(1));
6800 SDValue NodeCarry = DAG.getNode(OpcCarry, dl, Node->getVTList(),
6801 { LHS, RHS, CarryIn });
6802 Result = SDValue(NodeCarry.getNode(), 0);
6803 Overflow = SDValue(NodeCarry.getNode(), 1);
6804 return;
6807 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6808 LHS.getValueType(), LHS, RHS);
6810 EVT ResultType = Node->getValueType(1);
6811 EVT SetCCType = getSetCCResultType(
6812 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6813 ISD::CondCode CC = IsAdd ? ISD::SETULT : ISD::SETUGT;
6814 SDValue SetCC = DAG.getSetCC(dl, SetCCType, Result, LHS, CC);
6815 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6818 void TargetLowering::expandSADDSUBO(
6819 SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const {
6820 SDLoc dl(Node);
6821 SDValue LHS = Node->getOperand(0);
6822 SDValue RHS = Node->getOperand(1);
6823 bool IsAdd = Node->getOpcode() == ISD::SADDO;
6825 Result = DAG.getNode(IsAdd ? ISD::ADD : ISD::SUB, dl,
6826 LHS.getValueType(), LHS, RHS);
6828 EVT ResultType = Node->getValueType(1);
6829 EVT OType = getSetCCResultType(
6830 DAG.getDataLayout(), *DAG.getContext(), Node->getValueType(0));
6832 // If SADDSAT/SSUBSAT is legal, compare results to detect overflow.
6833 unsigned OpcSat = IsAdd ? ISD::SADDSAT : ISD::SSUBSAT;
6834 if (isOperationLegalOrCustom(OpcSat, LHS.getValueType())) {
6835 SDValue Sat = DAG.getNode(OpcSat, dl, LHS.getValueType(), LHS, RHS);
6836 SDValue SetCC = DAG.getSetCC(dl, OType, Result, Sat, ISD::SETNE);
6837 Overflow = DAG.getBoolExtOrTrunc(SetCC, dl, ResultType, ResultType);
6838 return;
6841 SDValue Zero = DAG.getConstant(0, dl, LHS.getValueType());
6843 // LHSSign -> LHS >= 0
6844 // RHSSign -> RHS >= 0
6845 // SumSign -> Result >= 0
6847 // Add:
6848 // Overflow -> (LHSSign == RHSSign) && (LHSSign != SumSign)
6849 // Sub:
6850 // Overflow -> (LHSSign != RHSSign) && (LHSSign != SumSign)
6851 SDValue LHSSign = DAG.getSetCC(dl, OType, LHS, Zero, ISD::SETGE);
6852 SDValue RHSSign = DAG.getSetCC(dl, OType, RHS, Zero, ISD::SETGE);
6853 SDValue SignsMatch = DAG.getSetCC(dl, OType, LHSSign, RHSSign,
6854 IsAdd ? ISD::SETEQ : ISD::SETNE);
6856 SDValue SumSign = DAG.getSetCC(dl, OType, Result, Zero, ISD::SETGE);
6857 SDValue SumSignNE = DAG.getSetCC(dl, OType, LHSSign, SumSign, ISD::SETNE);
6859 SDValue Cmp = DAG.getNode(ISD::AND, dl, OType, SignsMatch, SumSignNE);
6860 Overflow = DAG.getBoolExtOrTrunc(Cmp, dl, ResultType, ResultType);
6863 bool TargetLowering::expandMULO(SDNode *Node, SDValue &Result,
6864 SDValue &Overflow, SelectionDAG &DAG) const {
6865 SDLoc dl(Node);
6866 EVT VT = Node->getValueType(0);
6867 EVT SetCCVT = getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), VT);
6868 SDValue LHS = Node->getOperand(0);
6869 SDValue RHS = Node->getOperand(1);
6870 bool isSigned = Node->getOpcode() == ISD::SMULO;
6872 // For power-of-two multiplications we can use a simpler shift expansion.
6873 if (ConstantSDNode *RHSC = isConstOrConstSplat(RHS)) {
6874 const APInt &C = RHSC->getAPIntValue();
6875 // mulo(X, 1 << S) -> { X << S, (X << S) >> S != X }
6876 if (C.isPowerOf2()) {
6877 // smulo(x, signed_min) is same as umulo(x, signed_min).
6878 bool UseArithShift = isSigned && !C.isMinSignedValue();
6879 EVT ShiftAmtTy = getShiftAmountTy(VT, DAG.getDataLayout());
6880 SDValue ShiftAmt = DAG.getConstant(C.logBase2(), dl, ShiftAmtTy);
6881 Result = DAG.getNode(ISD::SHL, dl, VT, LHS, ShiftAmt);
6882 Overflow = DAG.getSetCC(dl, SetCCVT,
6883 DAG.getNode(UseArithShift ? ISD::SRA : ISD::SRL,
6884 dl, VT, Result, ShiftAmt),
6885 LHS, ISD::SETNE);
6886 return true;
6890 EVT WideVT = EVT::getIntegerVT(*DAG.getContext(), VT.getScalarSizeInBits() * 2);
6891 if (VT.isVector())
6892 WideVT = EVT::getVectorVT(*DAG.getContext(), WideVT,
6893 VT.getVectorNumElements());
6895 SDValue BottomHalf;
6896 SDValue TopHalf;
6897 static const unsigned Ops[2][3] =
6898 { { ISD::MULHU, ISD::UMUL_LOHI, ISD::ZERO_EXTEND },
6899 { ISD::MULHS, ISD::SMUL_LOHI, ISD::SIGN_EXTEND }};
6900 if (isOperationLegalOrCustom(Ops[isSigned][0], VT)) {
6901 BottomHalf = DAG.getNode(ISD::MUL, dl, VT, LHS, RHS);
6902 TopHalf = DAG.getNode(Ops[isSigned][0], dl, VT, LHS, RHS);
6903 } else if (isOperationLegalOrCustom(Ops[isSigned][1], VT)) {
6904 BottomHalf = DAG.getNode(Ops[isSigned][1], dl, DAG.getVTList(VT, VT), LHS,
6905 RHS);
6906 TopHalf = BottomHalf.getValue(1);
6907 } else if (isTypeLegal(WideVT)) {
6908 LHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, LHS);
6909 RHS = DAG.getNode(Ops[isSigned][2], dl, WideVT, RHS);
6910 SDValue Mul = DAG.getNode(ISD::MUL, dl, WideVT, LHS, RHS);
6911 BottomHalf = DAG.getNode(ISD::TRUNCATE, dl, VT, Mul);
6912 SDValue ShiftAmt = DAG.getConstant(VT.getScalarSizeInBits(), dl,
6913 getShiftAmountTy(WideVT, DAG.getDataLayout()));
6914 TopHalf = DAG.getNode(ISD::TRUNCATE, dl, VT,
6915 DAG.getNode(ISD::SRL, dl, WideVT, Mul, ShiftAmt));
6916 } else {
6917 if (VT.isVector())
6918 return false;
6920 // We can fall back to a libcall with an illegal type for the MUL if we
6921 // have a libcall big enough.
6922 // Also, we can fall back to a division in some cases, but that's a big
6923 // performance hit in the general case.
6924 RTLIB::Libcall LC = RTLIB::UNKNOWN_LIBCALL;
6925 if (WideVT == MVT::i16)
6926 LC = RTLIB::MUL_I16;
6927 else if (WideVT == MVT::i32)
6928 LC = RTLIB::MUL_I32;
6929 else if (WideVT == MVT::i64)
6930 LC = RTLIB::MUL_I64;
6931 else if (WideVT == MVT::i128)
6932 LC = RTLIB::MUL_I128;
6933 assert(LC != RTLIB::UNKNOWN_LIBCALL && "Cannot expand this operation!");
6935 SDValue HiLHS;
6936 SDValue HiRHS;
6937 if (isSigned) {
6938 // The high part is obtained by SRA'ing all but one of the bits of low
6939 // part.
6940 unsigned LoSize = VT.getSizeInBits();
6941 HiLHS =
6942 DAG.getNode(ISD::SRA, dl, VT, LHS,
6943 DAG.getConstant(LoSize - 1, dl,
6944 getPointerTy(DAG.getDataLayout())));
6945 HiRHS =
6946 DAG.getNode(ISD::SRA, dl, VT, RHS,
6947 DAG.getConstant(LoSize - 1, dl,
6948 getPointerTy(DAG.getDataLayout())));
6949 } else {
6950 HiLHS = DAG.getConstant(0, dl, VT);
6951 HiRHS = DAG.getConstant(0, dl, VT);
6954 // Here we're passing the 2 arguments explicitly as 4 arguments that are
6955 // pre-lowered to the correct types. This all depends upon WideVT not
6956 // being a legal type for the architecture and thus has to be split to
6957 // two arguments.
6958 SDValue Ret;
6959 TargetLowering::MakeLibCallOptions CallOptions;
6960 CallOptions.setSExt(isSigned);
6961 CallOptions.setIsPostTypeLegalization(true);
6962 if (shouldSplitFunctionArgumentsAsLittleEndian(DAG.getDataLayout())) {
6963 // Halves of WideVT are packed into registers in different order
6964 // depending on platform endianness. This is usually handled by
6965 // the C calling convention, but we can't defer to it in
6966 // the legalizer.
6967 SDValue Args[] = { LHS, HiLHS, RHS, HiRHS };
6968 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
6969 } else {
6970 SDValue Args[] = { HiLHS, LHS, HiRHS, RHS };
6971 Ret = makeLibCall(DAG, LC, WideVT, Args, CallOptions, dl).first;
6973 assert(Ret.getOpcode() == ISD::MERGE_VALUES &&
6974 "Ret value is a collection of constituent nodes holding result.");
6975 if (DAG.getDataLayout().isLittleEndian()) {
6976 // Same as above.
6977 BottomHalf = Ret.getOperand(0);
6978 TopHalf = Ret.getOperand(1);
6979 } else {
6980 BottomHalf = Ret.getOperand(1);
6981 TopHalf = Ret.getOperand(0);
6985 Result = BottomHalf;
6986 if (isSigned) {
6987 SDValue ShiftAmt = DAG.getConstant(
6988 VT.getScalarSizeInBits() - 1, dl,
6989 getShiftAmountTy(BottomHalf.getValueType(), DAG.getDataLayout()));
6990 SDValue Sign = DAG.getNode(ISD::SRA, dl, VT, BottomHalf, ShiftAmt);
6991 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf, Sign, ISD::SETNE);
6992 } else {
6993 Overflow = DAG.getSetCC(dl, SetCCVT, TopHalf,
6994 DAG.getConstant(0, dl, VT), ISD::SETNE);
6997 // Truncate the result if SetCC returns a larger type than needed.
6998 EVT RType = Node->getValueType(1);
6999 if (RType.getSizeInBits() < Overflow.getValueSizeInBits())
7000 Overflow = DAG.getNode(ISD::TRUNCATE, dl, RType, Overflow);
7002 assert(RType.getSizeInBits() == Overflow.getValueSizeInBits() &&
7003 "Unexpected result type for S/UMULO legalization");
7004 return true;
7007 SDValue TargetLowering::expandVecReduce(SDNode *Node, SelectionDAG &DAG) const {
7008 SDLoc dl(Node);
7009 bool NoNaN = Node->getFlags().hasNoNaNs();
7010 unsigned BaseOpcode = 0;
7011 switch (Node->getOpcode()) {
7012 default: llvm_unreachable("Expected VECREDUCE opcode");
7013 case ISD::VECREDUCE_FADD: BaseOpcode = ISD::FADD; break;
7014 case ISD::VECREDUCE_FMUL: BaseOpcode = ISD::FMUL; break;
7015 case ISD::VECREDUCE_ADD: BaseOpcode = ISD::ADD; break;
7016 case ISD::VECREDUCE_MUL: BaseOpcode = ISD::MUL; break;
7017 case ISD::VECREDUCE_AND: BaseOpcode = ISD::AND; break;
7018 case ISD::VECREDUCE_OR: BaseOpcode = ISD::OR; break;
7019 case ISD::VECREDUCE_XOR: BaseOpcode = ISD::XOR; break;
7020 case ISD::VECREDUCE_SMAX: BaseOpcode = ISD::SMAX; break;
7021 case ISD::VECREDUCE_SMIN: BaseOpcode = ISD::SMIN; break;
7022 case ISD::VECREDUCE_UMAX: BaseOpcode = ISD::UMAX; break;
7023 case ISD::VECREDUCE_UMIN: BaseOpcode = ISD::UMIN; break;
7024 case ISD::VECREDUCE_FMAX:
7025 BaseOpcode = NoNaN ? ISD::FMAXNUM : ISD::FMAXIMUM;
7026 break;
7027 case ISD::VECREDUCE_FMIN:
7028 BaseOpcode = NoNaN ? ISD::FMINNUM : ISD::FMINIMUM;
7029 break;
7032 SDValue Op = Node->getOperand(0);
7033 EVT VT = Op.getValueType();
7035 // Try to use a shuffle reduction for power of two vectors.
7036 if (VT.isPow2VectorType()) {
7037 while (VT.getVectorNumElements() > 1) {
7038 EVT HalfVT = VT.getHalfNumVectorElementsVT(*DAG.getContext());
7039 if (!isOperationLegalOrCustom(BaseOpcode, HalfVT))
7040 break;
7042 SDValue Lo, Hi;
7043 std::tie(Lo, Hi) = DAG.SplitVector(Op, dl);
7044 Op = DAG.getNode(BaseOpcode, dl, HalfVT, Lo, Hi);
7045 VT = HalfVT;
7049 EVT EltVT = VT.getVectorElementType();
7050 unsigned NumElts = VT.getVectorNumElements();
7052 SmallVector<SDValue, 8> Ops;
7053 DAG.ExtractVectorElements(Op, Ops, 0, NumElts);
7055 SDValue Res = Ops[0];
7056 for (unsigned i = 1; i < NumElts; i++)
7057 Res = DAG.getNode(BaseOpcode, dl, EltVT, Res, Ops[i], Node->getFlags());
7059 // Result type may be wider than element type.
7060 if (EltVT != Node->getValueType(0))
7061 Res = DAG.getNode(ISD::ANY_EXTEND, dl, Node->getValueType(0), Res);
7062 return Res;