[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / IR / Function.cpp
blob34aad7ddd0360a9678288e7ad28b48a460b208d6
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <string>
55 using namespace llvm;
56 using ProfileCount = Function::ProfileCount;
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits<BasicBlock>;
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
67 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
68 setName(Name);
71 void Argument::setParent(Function *parent) {
72 Parent = parent;
75 bool Argument::hasNonNullAttr() const {
76 if (!getType()->isPointerTy()) return false;
77 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
78 return true;
79 else if (getDereferenceableBytes() > 0 &&
80 !NullPointerIsDefined(getParent(),
81 getType()->getPointerAddressSpace()))
82 return true;
83 return false;
86 bool Argument::hasByValAttr() const {
87 if (!getType()->isPointerTy()) return false;
88 return hasAttribute(Attribute::ByVal);
91 bool Argument::hasSwiftSelfAttr() const {
92 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
95 bool Argument::hasSwiftErrorAttr() const {
96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
99 bool Argument::hasInAllocaAttr() const {
100 if (!getType()->isPointerTy()) return false;
101 return hasAttribute(Attribute::InAlloca);
104 bool Argument::hasByValOrInAllocaAttr() const {
105 if (!getType()->isPointerTy()) return false;
106 AttributeList Attrs = getParent()->getAttributes();
107 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
108 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
111 unsigned Argument::getParamAlignment() const {
112 assert(getType()->isPointerTy() && "Only pointers have alignments");
113 return getParent()->getParamAlignment(getArgNo());
116 Type *Argument::getParamByValType() const {
117 assert(getType()->isPointerTy() && "Only pointers have byval types");
118 return getParent()->getParamByValType(getArgNo());
121 uint64_t Argument::getDereferenceableBytes() const {
122 assert(getType()->isPointerTy() &&
123 "Only pointers have dereferenceable bytes");
124 return getParent()->getParamDereferenceableBytes(getArgNo());
127 uint64_t Argument::getDereferenceableOrNullBytes() const {
128 assert(getType()->isPointerTy() &&
129 "Only pointers have dereferenceable bytes");
130 return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
133 bool Argument::hasNestAttr() const {
134 if (!getType()->isPointerTy()) return false;
135 return hasAttribute(Attribute::Nest);
138 bool Argument::hasNoAliasAttr() const {
139 if (!getType()->isPointerTy()) return false;
140 return hasAttribute(Attribute::NoAlias);
143 bool Argument::hasNoCaptureAttr() const {
144 if (!getType()->isPointerTy()) return false;
145 return hasAttribute(Attribute::NoCapture);
148 bool Argument::hasStructRetAttr() const {
149 if (!getType()->isPointerTy()) return false;
150 return hasAttribute(Attribute::StructRet);
153 bool Argument::hasInRegAttr() const {
154 return hasAttribute(Attribute::InReg);
157 bool Argument::hasReturnedAttr() const {
158 return hasAttribute(Attribute::Returned);
161 bool Argument::hasZExtAttr() const {
162 return hasAttribute(Attribute::ZExt);
165 bool Argument::hasSExtAttr() const {
166 return hasAttribute(Attribute::SExt);
169 bool Argument::onlyReadsMemory() const {
170 AttributeList Attrs = getParent()->getAttributes();
171 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
172 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
175 void Argument::addAttrs(AttrBuilder &B) {
176 AttributeList AL = getParent()->getAttributes();
177 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
178 getParent()->setAttributes(AL);
181 void Argument::addAttr(Attribute::AttrKind Kind) {
182 getParent()->addParamAttr(getArgNo(), Kind);
185 void Argument::addAttr(Attribute Attr) {
186 getParent()->addParamAttr(getArgNo(), Attr);
189 void Argument::removeAttr(Attribute::AttrKind Kind) {
190 getParent()->removeParamAttr(getArgNo(), Kind);
193 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
194 return getParent()->hasParamAttribute(getArgNo(), Kind);
197 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
198 return getParent()->getParamAttribute(getArgNo(), Kind);
201 //===----------------------------------------------------------------------===//
202 // Helper Methods in Function
203 //===----------------------------------------------------------------------===//
205 LLVMContext &Function::getContext() const {
206 return getType()->getContext();
209 unsigned Function::getInstructionCount() const {
210 unsigned NumInstrs = 0;
211 for (const BasicBlock &BB : BasicBlocks)
212 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
213 BB.instructionsWithoutDebug().end());
214 return NumInstrs;
217 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
218 const Twine &N, Module &M) {
219 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
222 void Function::removeFromParent() {
223 getParent()->getFunctionList().remove(getIterator());
226 void Function::eraseFromParent() {
227 getParent()->getFunctionList().erase(getIterator());
230 //===----------------------------------------------------------------------===//
231 // Function Implementation
232 //===----------------------------------------------------------------------===//
234 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
235 // If AS == -1 and we are passed a valid module pointer we place the function
236 // in the program address space. Otherwise we default to AS0.
237 if (AddrSpace == static_cast<unsigned>(-1))
238 return M ? M->getDataLayout().getProgramAddressSpace() : 0;
239 return AddrSpace;
242 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
243 const Twine &name, Module *ParentModule)
244 : GlobalObject(Ty, Value::FunctionVal,
245 OperandTraits<Function>::op_begin(this), 0, Linkage, name,
246 computeAddrSpace(AddrSpace, ParentModule)),
247 NumArgs(Ty->getNumParams()) {
248 assert(FunctionType::isValidReturnType(getReturnType()) &&
249 "invalid return type");
250 setGlobalObjectSubClassData(0);
252 // We only need a symbol table for a function if the context keeps value names
253 if (!getContext().shouldDiscardValueNames())
254 SymTab = std::make_unique<ValueSymbolTable>();
256 // If the function has arguments, mark them as lazily built.
257 if (Ty->getNumParams())
258 setValueSubclassData(1); // Set the "has lazy arguments" bit.
260 if (ParentModule)
261 ParentModule->getFunctionList().push_back(this);
263 HasLLVMReservedName = getName().startswith("llvm.");
264 // Ensure intrinsics have the right parameter attributes.
265 // Note, the IntID field will have been set in Value::setName if this function
266 // name is a valid intrinsic ID.
267 if (IntID)
268 setAttributes(Intrinsic::getAttributes(getContext(), IntID));
271 Function::~Function() {
272 dropAllReferences(); // After this it is safe to delete instructions.
274 // Delete all of the method arguments and unlink from symbol table...
275 if (Arguments)
276 clearArguments();
278 // Remove the function from the on-the-side GC table.
279 clearGC();
282 void Function::BuildLazyArguments() const {
283 // Create the arguments vector, all arguments start out unnamed.
284 auto *FT = getFunctionType();
285 if (NumArgs > 0) {
286 Arguments = std::allocator<Argument>().allocate(NumArgs);
287 for (unsigned i = 0, e = NumArgs; i != e; ++i) {
288 Type *ArgTy = FT->getParamType(i);
289 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
290 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
294 // Clear the lazy arguments bit.
295 unsigned SDC = getSubclassDataFromValue();
296 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
297 assert(!hasLazyArguments());
300 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
301 return MutableArrayRef<Argument>(Args, Count);
304 void Function::clearArguments() {
305 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
306 A.setName("");
307 A.~Argument();
309 std::allocator<Argument>().deallocate(Arguments, NumArgs);
310 Arguments = nullptr;
313 void Function::stealArgumentListFrom(Function &Src) {
314 assert(isDeclaration() && "Expected no references to current arguments");
316 // Drop the current arguments, if any, and set the lazy argument bit.
317 if (!hasLazyArguments()) {
318 assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
319 [](const Argument &A) { return A.use_empty(); }) &&
320 "Expected arguments to be unused in declaration");
321 clearArguments();
322 setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
325 // Nothing to steal if Src has lazy arguments.
326 if (Src.hasLazyArguments())
327 return;
329 // Steal arguments from Src, and fix the lazy argument bits.
330 assert(arg_size() == Src.arg_size());
331 Arguments = Src.Arguments;
332 Src.Arguments = nullptr;
333 for (Argument &A : makeArgArray(Arguments, NumArgs)) {
334 // FIXME: This does the work of transferNodesFromList inefficiently.
335 SmallString<128> Name;
336 if (A.hasName())
337 Name = A.getName();
338 if (!Name.empty())
339 A.setName("");
340 A.setParent(this);
341 if (!Name.empty())
342 A.setName(Name);
345 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
346 assert(!hasLazyArguments());
347 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
350 // dropAllReferences() - This function causes all the subinstructions to "let
351 // go" of all references that they are maintaining. This allows one to
352 // 'delete' a whole class at a time, even though there may be circular
353 // references... first all references are dropped, and all use counts go to
354 // zero. Then everything is deleted for real. Note that no operations are
355 // valid on an object that has "dropped all references", except operator
356 // delete.
358 void Function::dropAllReferences() {
359 setIsMaterializable(false);
361 for (BasicBlock &BB : *this)
362 BB.dropAllReferences();
364 // Delete all basic blocks. They are now unused, except possibly by
365 // blockaddresses, but BasicBlock's destructor takes care of those.
366 while (!BasicBlocks.empty())
367 BasicBlocks.begin()->eraseFromParent();
369 // Drop uses of any optional data (real or placeholder).
370 if (getNumOperands()) {
371 User::dropAllReferences();
372 setNumHungOffUseOperands(0);
373 setValueSubclassData(getSubclassDataFromValue() & ~0xe);
376 // Metadata is stored in a side-table.
377 clearMetadata();
380 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
381 AttributeList PAL = getAttributes();
382 PAL = PAL.addAttribute(getContext(), i, Kind);
383 setAttributes(PAL);
386 void Function::addAttribute(unsigned i, Attribute Attr) {
387 AttributeList PAL = getAttributes();
388 PAL = PAL.addAttribute(getContext(), i, Attr);
389 setAttributes(PAL);
392 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
393 AttributeList PAL = getAttributes();
394 PAL = PAL.addAttributes(getContext(), i, Attrs);
395 setAttributes(PAL);
398 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
399 AttributeList PAL = getAttributes();
400 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
401 setAttributes(PAL);
404 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
405 AttributeList PAL = getAttributes();
406 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
407 setAttributes(PAL);
410 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
411 AttributeList PAL = getAttributes();
412 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
413 setAttributes(PAL);
416 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
417 AttributeList PAL = getAttributes();
418 PAL = PAL.removeAttribute(getContext(), i, Kind);
419 setAttributes(PAL);
422 void Function::removeAttribute(unsigned i, StringRef Kind) {
423 AttributeList PAL = getAttributes();
424 PAL = PAL.removeAttribute(getContext(), i, Kind);
425 setAttributes(PAL);
428 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
429 AttributeList PAL = getAttributes();
430 PAL = PAL.removeAttributes(getContext(), i, Attrs);
431 setAttributes(PAL);
434 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
435 AttributeList PAL = getAttributes();
436 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
437 setAttributes(PAL);
440 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
441 AttributeList PAL = getAttributes();
442 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
443 setAttributes(PAL);
446 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
447 AttributeList PAL = getAttributes();
448 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
449 setAttributes(PAL);
452 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
453 AttributeList PAL = getAttributes();
454 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
455 setAttributes(PAL);
458 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
459 AttributeList PAL = getAttributes();
460 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
461 setAttributes(PAL);
464 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
465 AttributeList PAL = getAttributes();
466 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
467 setAttributes(PAL);
470 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
471 uint64_t Bytes) {
472 AttributeList PAL = getAttributes();
473 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
474 setAttributes(PAL);
477 const std::string &Function::getGC() const {
478 assert(hasGC() && "Function has no collector");
479 return getContext().getGC(*this);
482 void Function::setGC(std::string Str) {
483 setValueSubclassDataBit(14, !Str.empty());
484 getContext().setGC(*this, std::move(Str));
487 void Function::clearGC() {
488 if (!hasGC())
489 return;
490 getContext().deleteGC(*this);
491 setValueSubclassDataBit(14, false);
494 /// Copy all additional attributes (those not needed to create a Function) from
495 /// the Function Src to this one.
496 void Function::copyAttributesFrom(const Function *Src) {
497 GlobalObject::copyAttributesFrom(Src);
498 setCallingConv(Src->getCallingConv());
499 setAttributes(Src->getAttributes());
500 if (Src->hasGC())
501 setGC(Src->getGC());
502 else
503 clearGC();
504 if (Src->hasPersonalityFn())
505 setPersonalityFn(Src->getPersonalityFn());
506 if (Src->hasPrefixData())
507 setPrefixData(Src->getPrefixData());
508 if (Src->hasPrologueData())
509 setPrologueData(Src->getPrologueData());
512 /// Table of string intrinsic names indexed by enum value.
513 static const char * const IntrinsicNameTable[] = {
514 "not_intrinsic",
515 #define GET_INTRINSIC_NAME_TABLE
516 #include "llvm/IR/IntrinsicImpl.inc"
517 #undef GET_INTRINSIC_NAME_TABLE
520 /// Table of per-target intrinsic name tables.
521 #define GET_INTRINSIC_TARGET_DATA
522 #include "llvm/IR/IntrinsicImpl.inc"
523 #undef GET_INTRINSIC_TARGET_DATA
525 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
526 /// target as \c Name, or the generic table if \c Name is not target specific.
528 /// Returns the relevant slice of \c IntrinsicNameTable
529 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
530 assert(Name.startswith("llvm."));
532 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
533 // Drop "llvm." and take the first dotted component. That will be the target
534 // if this is target specific.
535 StringRef Target = Name.drop_front(5).split('.').first;
536 auto It = partition_point(
537 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
538 // We've either found the target or just fall back to the generic set, which
539 // is always first.
540 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
541 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
544 /// This does the actual lookup of an intrinsic ID which
545 /// matches the given function name.
546 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
547 ArrayRef<const char *> NameTable = findTargetSubtable(Name);
548 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
549 if (Idx == -1)
550 return Intrinsic::not_intrinsic;
552 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
553 // an index into a sub-table.
554 int Adjust = NameTable.data() - IntrinsicNameTable;
555 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
557 // If the intrinsic is not overloaded, require an exact match. If it is
558 // overloaded, require either exact or prefix match.
559 const auto MatchSize = strlen(NameTable[Idx]);
560 assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
561 bool IsExactMatch = Name.size() == MatchSize;
562 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
565 void Function::recalculateIntrinsicID() {
566 StringRef Name = getName();
567 if (!Name.startswith("llvm.")) {
568 HasLLVMReservedName = false;
569 IntID = Intrinsic::not_intrinsic;
570 return;
572 HasLLVMReservedName = true;
573 IntID = lookupIntrinsicID(Name);
576 /// Returns a stable mangling for the type specified for use in the name
577 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling
578 /// of named types is simply their name. Manglings for unnamed types consist
579 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
580 /// combined with the mangling of their component types. A vararg function
581 /// type will have a suffix of 'vararg'. Since function types can contain
582 /// other function types, we close a function type mangling with suffix 'f'
583 /// which can't be confused with it's prefix. This ensures we don't have
584 /// collisions between two unrelated function types. Otherwise, you might
585 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.)
587 static std::string getMangledTypeStr(Type* Ty) {
588 std::string Result;
589 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
590 Result += "p" + utostr(PTyp->getAddressSpace()) +
591 getMangledTypeStr(PTyp->getElementType());
592 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
593 Result += "a" + utostr(ATyp->getNumElements()) +
594 getMangledTypeStr(ATyp->getElementType());
595 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
596 if (!STyp->isLiteral()) {
597 Result += "s_";
598 Result += STyp->getName();
599 } else {
600 Result += "sl_";
601 for (auto Elem : STyp->elements())
602 Result += getMangledTypeStr(Elem);
604 // Ensure nested structs are distinguishable.
605 Result += "s";
606 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
607 Result += "f_" + getMangledTypeStr(FT->getReturnType());
608 for (size_t i = 0; i < FT->getNumParams(); i++)
609 Result += getMangledTypeStr(FT->getParamType(i));
610 if (FT->isVarArg())
611 Result += "vararg";
612 // Ensure nested function types are distinguishable.
613 Result += "f";
614 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
615 if (VTy->isScalable())
616 Result += "nx";
617 Result += "v" + utostr(VTy->getVectorNumElements()) +
618 getMangledTypeStr(VTy->getVectorElementType());
619 } else if (Ty) {
620 switch (Ty->getTypeID()) {
621 default: llvm_unreachable("Unhandled type");
622 case Type::VoidTyID: Result += "isVoid"; break;
623 case Type::MetadataTyID: Result += "Metadata"; break;
624 case Type::HalfTyID: Result += "f16"; break;
625 case Type::FloatTyID: Result += "f32"; break;
626 case Type::DoubleTyID: Result += "f64"; break;
627 case Type::X86_FP80TyID: Result += "f80"; break;
628 case Type::FP128TyID: Result += "f128"; break;
629 case Type::PPC_FP128TyID: Result += "ppcf128"; break;
630 case Type::X86_MMXTyID: Result += "x86mmx"; break;
631 case Type::IntegerTyID:
632 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
633 break;
636 return Result;
639 StringRef Intrinsic::getName(ID id) {
640 assert(id < num_intrinsics && "Invalid intrinsic ID!");
641 assert(!isOverloaded(id) &&
642 "This version of getName does not support overloading");
643 return IntrinsicNameTable[id];
646 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
647 assert(id < num_intrinsics && "Invalid intrinsic ID!");
648 std::string Result(IntrinsicNameTable[id]);
649 for (Type *Ty : Tys) {
650 Result += "." + getMangledTypeStr(Ty);
652 return Result;
655 /// IIT_Info - These are enumerators that describe the entries returned by the
656 /// getIntrinsicInfoTableEntries function.
658 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
659 enum IIT_Info {
660 // Common values should be encoded with 0-15.
661 IIT_Done = 0,
662 IIT_I1 = 1,
663 IIT_I8 = 2,
664 IIT_I16 = 3,
665 IIT_I32 = 4,
666 IIT_I64 = 5,
667 IIT_F16 = 6,
668 IIT_F32 = 7,
669 IIT_F64 = 8,
670 IIT_V2 = 9,
671 IIT_V4 = 10,
672 IIT_V8 = 11,
673 IIT_V16 = 12,
674 IIT_V32 = 13,
675 IIT_PTR = 14,
676 IIT_ARG = 15,
678 // Values from 16+ are only encodable with the inefficient encoding.
679 IIT_V64 = 16,
680 IIT_MMX = 17,
681 IIT_TOKEN = 18,
682 IIT_METADATA = 19,
683 IIT_EMPTYSTRUCT = 20,
684 IIT_STRUCT2 = 21,
685 IIT_STRUCT3 = 22,
686 IIT_STRUCT4 = 23,
687 IIT_STRUCT5 = 24,
688 IIT_EXTEND_ARG = 25,
689 IIT_TRUNC_ARG = 26,
690 IIT_ANYPTR = 27,
691 IIT_V1 = 28,
692 IIT_VARARG = 29,
693 IIT_HALF_VEC_ARG = 30,
694 IIT_SAME_VEC_WIDTH_ARG = 31,
695 IIT_PTR_TO_ARG = 32,
696 IIT_PTR_TO_ELT = 33,
697 IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
698 IIT_I128 = 35,
699 IIT_V512 = 36,
700 IIT_V1024 = 37,
701 IIT_STRUCT6 = 38,
702 IIT_STRUCT7 = 39,
703 IIT_STRUCT8 = 40,
704 IIT_F128 = 41,
705 IIT_VEC_ELEMENT = 42,
706 IIT_SCALABLE_VEC = 43
709 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
710 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
711 using namespace Intrinsic;
713 IIT_Info Info = IIT_Info(Infos[NextElt++]);
714 unsigned StructElts = 2;
716 switch (Info) {
717 case IIT_Done:
718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
719 return;
720 case IIT_VARARG:
721 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
722 return;
723 case IIT_MMX:
724 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
725 return;
726 case IIT_TOKEN:
727 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
728 return;
729 case IIT_METADATA:
730 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
731 return;
732 case IIT_F16:
733 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
734 return;
735 case IIT_F32:
736 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
737 return;
738 case IIT_F64:
739 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
740 return;
741 case IIT_F128:
742 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
743 return;
744 case IIT_I1:
745 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
746 return;
747 case IIT_I8:
748 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
749 return;
750 case IIT_I16:
751 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
752 return;
753 case IIT_I32:
754 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
755 return;
756 case IIT_I64:
757 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
758 return;
759 case IIT_I128:
760 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
761 return;
762 case IIT_V1:
763 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
764 DecodeIITType(NextElt, Infos, OutputTable);
765 return;
766 case IIT_V2:
767 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
768 DecodeIITType(NextElt, Infos, OutputTable);
769 return;
770 case IIT_V4:
771 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
772 DecodeIITType(NextElt, Infos, OutputTable);
773 return;
774 case IIT_V8:
775 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
776 DecodeIITType(NextElt, Infos, OutputTable);
777 return;
778 case IIT_V16:
779 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
780 DecodeIITType(NextElt, Infos, OutputTable);
781 return;
782 case IIT_V32:
783 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
784 DecodeIITType(NextElt, Infos, OutputTable);
785 return;
786 case IIT_V64:
787 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
788 DecodeIITType(NextElt, Infos, OutputTable);
789 return;
790 case IIT_V512:
791 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
792 DecodeIITType(NextElt, Infos, OutputTable);
793 return;
794 case IIT_V1024:
795 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
796 DecodeIITType(NextElt, Infos, OutputTable);
797 return;
798 case IIT_PTR:
799 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
800 DecodeIITType(NextElt, Infos, OutputTable);
801 return;
802 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype]
803 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
804 Infos[NextElt++]));
805 DecodeIITType(NextElt, Infos, OutputTable);
806 return;
808 case IIT_ARG: {
809 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
810 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
811 return;
813 case IIT_EXTEND_ARG: {
814 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
815 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
816 ArgInfo));
817 return;
819 case IIT_TRUNC_ARG: {
820 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
821 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
822 ArgInfo));
823 return;
825 case IIT_HALF_VEC_ARG: {
826 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
827 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
828 ArgInfo));
829 return;
831 case IIT_SAME_VEC_WIDTH_ARG: {
832 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
833 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
834 ArgInfo));
835 return;
837 case IIT_PTR_TO_ARG: {
838 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
839 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
840 ArgInfo));
841 return;
843 case IIT_PTR_TO_ELT: {
844 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
845 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
846 return;
848 case IIT_VEC_OF_ANYPTRS_TO_ELT: {
849 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
850 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
851 OutputTable.push_back(
852 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
853 return;
855 case IIT_EMPTYSTRUCT:
856 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
857 return;
858 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
859 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
860 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
861 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
862 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
863 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
864 case IIT_STRUCT2: {
865 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
867 for (unsigned i = 0; i != StructElts; ++i)
868 DecodeIITType(NextElt, Infos, OutputTable);
869 return;
871 case IIT_VEC_ELEMENT: {
872 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
873 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
874 ArgInfo));
875 return;
877 case IIT_SCALABLE_VEC: {
878 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument,
879 0));
880 DecodeIITType(NextElt, Infos, OutputTable);
881 return;
884 llvm_unreachable("unhandled");
887 #define GET_INTRINSIC_GENERATOR_GLOBAL
888 #include "llvm/IR/IntrinsicImpl.inc"
889 #undef GET_INTRINSIC_GENERATOR_GLOBAL
891 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
892 SmallVectorImpl<IITDescriptor> &T){
893 // Check to see if the intrinsic's type was expressible by the table.
894 unsigned TableVal = IIT_Table[id-1];
896 // Decode the TableVal into an array of IITValues.
897 SmallVector<unsigned char, 8> IITValues;
898 ArrayRef<unsigned char> IITEntries;
899 unsigned NextElt = 0;
900 if ((TableVal >> 31) != 0) {
901 // This is an offset into the IIT_LongEncodingTable.
902 IITEntries = IIT_LongEncodingTable;
904 // Strip sentinel bit.
905 NextElt = (TableVal << 1) >> 1;
906 } else {
907 // Decode the TableVal into an array of IITValues. If the entry was encoded
908 // into a single word in the table itself, decode it now.
909 do {
910 IITValues.push_back(TableVal & 0xF);
911 TableVal >>= 4;
912 } while (TableVal);
914 IITEntries = IITValues;
915 NextElt = 0;
918 // Okay, decode the table into the output vector of IITDescriptors.
919 DecodeIITType(NextElt, IITEntries, T);
920 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
921 DecodeIITType(NextElt, IITEntries, T);
924 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
925 ArrayRef<Type*> Tys, LLVMContext &Context) {
926 using namespace Intrinsic;
928 IITDescriptor D = Infos.front();
929 Infos = Infos.slice(1);
931 switch (D.Kind) {
932 case IITDescriptor::Void: return Type::getVoidTy(Context);
933 case IITDescriptor::VarArg: return Type::getVoidTy(Context);
934 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
935 case IITDescriptor::Token: return Type::getTokenTy(Context);
936 case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
937 case IITDescriptor::Half: return Type::getHalfTy(Context);
938 case IITDescriptor::Float: return Type::getFloatTy(Context);
939 case IITDescriptor::Double: return Type::getDoubleTy(Context);
940 case IITDescriptor::Quad: return Type::getFP128Ty(Context);
942 case IITDescriptor::Integer:
943 return IntegerType::get(Context, D.Integer_Width);
944 case IITDescriptor::Vector:
945 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
946 case IITDescriptor::Pointer:
947 return PointerType::get(DecodeFixedType(Infos, Tys, Context),
948 D.Pointer_AddressSpace);
949 case IITDescriptor::Struct: {
950 SmallVector<Type *, 8> Elts;
951 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
952 Elts.push_back(DecodeFixedType(Infos, Tys, Context));
953 return StructType::get(Context, Elts);
955 case IITDescriptor::Argument:
956 return Tys[D.getArgumentNumber()];
957 case IITDescriptor::ExtendArgument: {
958 Type *Ty = Tys[D.getArgumentNumber()];
959 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
960 return VectorType::getExtendedElementVectorType(VTy);
962 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
964 case IITDescriptor::TruncArgument: {
965 Type *Ty = Tys[D.getArgumentNumber()];
966 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
967 return VectorType::getTruncatedElementVectorType(VTy);
969 IntegerType *ITy = cast<IntegerType>(Ty);
970 assert(ITy->getBitWidth() % 2 == 0);
971 return IntegerType::get(Context, ITy->getBitWidth() / 2);
973 case IITDescriptor::HalfVecArgument:
974 return VectorType::getHalfElementsVectorType(cast<VectorType>(
975 Tys[D.getArgumentNumber()]));
976 case IITDescriptor::SameVecWidthArgument: {
977 Type *EltTy = DecodeFixedType(Infos, Tys, Context);
978 Type *Ty = Tys[D.getArgumentNumber()];
979 if (auto *VTy = dyn_cast<VectorType>(Ty))
980 return VectorType::get(EltTy, VTy->getElementCount());
981 return EltTy;
983 case IITDescriptor::PtrToArgument: {
984 Type *Ty = Tys[D.getArgumentNumber()];
985 return PointerType::getUnqual(Ty);
987 case IITDescriptor::PtrToElt: {
988 Type *Ty = Tys[D.getArgumentNumber()];
989 VectorType *VTy = dyn_cast<VectorType>(Ty);
990 if (!VTy)
991 llvm_unreachable("Expected an argument of Vector Type");
992 Type *EltTy = VTy->getVectorElementType();
993 return PointerType::getUnqual(EltTy);
995 case IITDescriptor::VecElementArgument: {
996 Type *Ty = Tys[D.getArgumentNumber()];
997 if (VectorType *VTy = dyn_cast<VectorType>(Ty))
998 return VTy->getElementType();
999 llvm_unreachable("Expected an argument of Vector Type");
1001 case IITDescriptor::VecOfAnyPtrsToElt:
1002 // Return the overloaded type (which determines the pointers address space)
1003 return Tys[D.getOverloadArgNumber()];
1004 case IITDescriptor::ScalableVecArgument: {
1005 Type *Ty = DecodeFixedType(Infos, Tys, Context);
1006 return VectorType::get(Ty->getVectorElementType(),
1007 { Ty->getVectorNumElements(), true });
1010 llvm_unreachable("unhandled");
1013 FunctionType *Intrinsic::getType(LLVMContext &Context,
1014 ID id, ArrayRef<Type*> Tys) {
1015 SmallVector<IITDescriptor, 8> Table;
1016 getIntrinsicInfoTableEntries(id, Table);
1018 ArrayRef<IITDescriptor> TableRef = Table;
1019 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1021 SmallVector<Type*, 8> ArgTys;
1022 while (!TableRef.empty())
1023 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1025 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1026 // If we see void type as the type of the last argument, it is vararg intrinsic
1027 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1028 ArgTys.pop_back();
1029 return FunctionType::get(ResultTy, ArgTys, true);
1031 return FunctionType::get(ResultTy, ArgTys, false);
1034 bool Intrinsic::isOverloaded(ID id) {
1035 #define GET_INTRINSIC_OVERLOAD_TABLE
1036 #include "llvm/IR/IntrinsicImpl.inc"
1037 #undef GET_INTRINSIC_OVERLOAD_TABLE
1040 bool Intrinsic::isLeaf(ID id) {
1041 switch (id) {
1042 default:
1043 return true;
1045 case Intrinsic::experimental_gc_statepoint:
1046 case Intrinsic::experimental_patchpoint_void:
1047 case Intrinsic::experimental_patchpoint_i64:
1048 return false;
1052 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1053 #define GET_INTRINSIC_ATTRIBUTES
1054 #include "llvm/IR/IntrinsicImpl.inc"
1055 #undef GET_INTRINSIC_ATTRIBUTES
1057 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1058 // There can never be multiple globals with the same name of different types,
1059 // because intrinsics must be a specific type.
1060 return cast<Function>(
1061 M->getOrInsertFunction(getName(id, Tys),
1062 getType(M->getContext(), id, Tys))
1063 .getCallee());
1066 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1067 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1068 #include "llvm/IR/IntrinsicImpl.inc"
1069 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1071 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1072 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1073 #include "llvm/IR/IntrinsicImpl.inc"
1074 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1076 using DeferredIntrinsicMatchPair =
1077 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1079 static bool matchIntrinsicType(
1080 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1081 SmallVectorImpl<Type *> &ArgTys,
1082 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1083 bool IsDeferredCheck) {
1084 using namespace Intrinsic;
1086 // If we ran out of descriptors, there are too many arguments.
1087 if (Infos.empty()) return true;
1089 // Do this before slicing off the 'front' part
1090 auto InfosRef = Infos;
1091 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1092 DeferredChecks.emplace_back(T, InfosRef);
1093 return false;
1096 IITDescriptor D = Infos.front();
1097 Infos = Infos.slice(1);
1099 switch (D.Kind) {
1100 case IITDescriptor::Void: return !Ty->isVoidTy();
1101 case IITDescriptor::VarArg: return true;
1102 case IITDescriptor::MMX: return !Ty->isX86_MMXTy();
1103 case IITDescriptor::Token: return !Ty->isTokenTy();
1104 case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1105 case IITDescriptor::Half: return !Ty->isHalfTy();
1106 case IITDescriptor::Float: return !Ty->isFloatTy();
1107 case IITDescriptor::Double: return !Ty->isDoubleTy();
1108 case IITDescriptor::Quad: return !Ty->isFP128Ty();
1109 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1110 case IITDescriptor::Vector: {
1111 VectorType *VT = dyn_cast<VectorType>(Ty);
1112 return !VT || VT->getNumElements() != D.Vector_Width ||
1113 matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1114 DeferredChecks, IsDeferredCheck);
1116 case IITDescriptor::Pointer: {
1117 PointerType *PT = dyn_cast<PointerType>(Ty);
1118 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1119 matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1120 DeferredChecks, IsDeferredCheck);
1123 case IITDescriptor::Struct: {
1124 StructType *ST = dyn_cast<StructType>(Ty);
1125 if (!ST || ST->getNumElements() != D.Struct_NumElements)
1126 return true;
1128 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1129 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1130 DeferredChecks, IsDeferredCheck))
1131 return true;
1132 return false;
1135 case IITDescriptor::Argument:
1136 // If this is the second occurrence of an argument,
1137 // verify that the later instance matches the previous instance.
1138 if (D.getArgumentNumber() < ArgTys.size())
1139 return Ty != ArgTys[D.getArgumentNumber()];
1141 if (D.getArgumentNumber() > ArgTys.size() ||
1142 D.getArgumentKind() == IITDescriptor::AK_MatchType)
1143 return IsDeferredCheck || DeferCheck(Ty);
1145 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1146 "Table consistency error");
1147 ArgTys.push_back(Ty);
1149 switch (D.getArgumentKind()) {
1150 case IITDescriptor::AK_Any: return false; // Success
1151 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1152 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy();
1153 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty);
1154 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1155 default: break;
1157 llvm_unreachable("all argument kinds not covered");
1159 case IITDescriptor::ExtendArgument: {
1160 // If this is a forward reference, defer the check for later.
1161 if (D.getArgumentNumber() >= ArgTys.size())
1162 return IsDeferredCheck || DeferCheck(Ty);
1164 Type *NewTy = ArgTys[D.getArgumentNumber()];
1165 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1166 NewTy = VectorType::getExtendedElementVectorType(VTy);
1167 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1168 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1169 else
1170 return true;
1172 return Ty != NewTy;
1174 case IITDescriptor::TruncArgument: {
1175 // If this is a forward reference, defer the check for later.
1176 if (D.getArgumentNumber() >= ArgTys.size())
1177 return IsDeferredCheck || DeferCheck(Ty);
1179 Type *NewTy = ArgTys[D.getArgumentNumber()];
1180 if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1181 NewTy = VectorType::getTruncatedElementVectorType(VTy);
1182 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1183 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1184 else
1185 return true;
1187 return Ty != NewTy;
1189 case IITDescriptor::HalfVecArgument:
1190 // If this is a forward reference, defer the check for later.
1191 return D.getArgumentNumber() >= ArgTys.size() ||
1192 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1193 VectorType::getHalfElementsVectorType(
1194 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1195 case IITDescriptor::SameVecWidthArgument: {
1196 if (D.getArgumentNumber() >= ArgTys.size()) {
1197 // Defer check and subsequent check for the vector element type.
1198 Infos = Infos.slice(1);
1199 return IsDeferredCheck || DeferCheck(Ty);
1201 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1202 auto *ThisArgType = dyn_cast<VectorType>(Ty);
1203 // Both must be vectors of the same number of elements or neither.
1204 if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1205 return true;
1206 Type *EltTy = Ty;
1207 if (ThisArgType) {
1208 if (ReferenceType->getElementCount() !=
1209 ThisArgType->getElementCount())
1210 return true;
1211 EltTy = ThisArgType->getVectorElementType();
1213 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1214 IsDeferredCheck);
1216 case IITDescriptor::PtrToArgument: {
1217 if (D.getArgumentNumber() >= ArgTys.size())
1218 return IsDeferredCheck || DeferCheck(Ty);
1219 Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1220 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1221 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1223 case IITDescriptor::PtrToElt: {
1224 if (D.getArgumentNumber() >= ArgTys.size())
1225 return IsDeferredCheck || DeferCheck(Ty);
1226 VectorType * ReferenceType =
1227 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1228 PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1230 return (!ThisArgType || !ReferenceType ||
1231 ThisArgType->getElementType() != ReferenceType->getElementType());
1233 case IITDescriptor::VecOfAnyPtrsToElt: {
1234 unsigned RefArgNumber = D.getRefArgNumber();
1235 if (RefArgNumber >= ArgTys.size()) {
1236 if (IsDeferredCheck)
1237 return true;
1238 // If forward referencing, already add the pointer-vector type and
1239 // defer the checks for later.
1240 ArgTys.push_back(Ty);
1241 return DeferCheck(Ty);
1244 if (!IsDeferredCheck){
1245 assert(D.getOverloadArgNumber() == ArgTys.size() &&
1246 "Table consistency error");
1247 ArgTys.push_back(Ty);
1250 // Verify the overloaded type "matches" the Ref type.
1251 // i.e. Ty is a vector with the same width as Ref.
1252 // Composed of pointers to the same element type as Ref.
1253 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1254 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1255 if (!ThisArgVecTy || !ReferenceType ||
1256 (ReferenceType->getVectorNumElements() !=
1257 ThisArgVecTy->getVectorNumElements()))
1258 return true;
1259 PointerType *ThisArgEltTy =
1260 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1261 if (!ThisArgEltTy)
1262 return true;
1263 return ThisArgEltTy->getElementType() !=
1264 ReferenceType->getVectorElementType();
1266 case IITDescriptor::VecElementArgument: {
1267 if (D.getArgumentNumber() >= ArgTys.size())
1268 return IsDeferredCheck ? true : DeferCheck(Ty);
1269 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1270 return !ReferenceType || Ty != ReferenceType->getElementType();
1272 case IITDescriptor::ScalableVecArgument: {
1273 VectorType *VTy = dyn_cast<VectorType>(Ty);
1274 if (!VTy || !VTy->isScalable())
1275 return true;
1276 return matchIntrinsicType(VTy, Infos, ArgTys, DeferredChecks,
1277 IsDeferredCheck);
1280 llvm_unreachable("unhandled");
1283 Intrinsic::MatchIntrinsicTypesResult
1284 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1285 ArrayRef<Intrinsic::IITDescriptor> &Infos,
1286 SmallVectorImpl<Type *> &ArgTys) {
1287 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1288 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1289 false))
1290 return MatchIntrinsicTypes_NoMatchRet;
1292 unsigned NumDeferredReturnChecks = DeferredChecks.size();
1294 for (auto Ty : FTy->params())
1295 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1296 return MatchIntrinsicTypes_NoMatchArg;
1298 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1299 DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1300 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1301 true))
1302 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1303 : MatchIntrinsicTypes_NoMatchArg;
1306 return MatchIntrinsicTypes_Match;
1309 bool
1310 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1311 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1312 // If there are no descriptors left, then it can't be a vararg.
1313 if (Infos.empty())
1314 return isVarArg;
1316 // There should be only one descriptor remaining at this point.
1317 if (Infos.size() != 1)
1318 return true;
1320 // Check and verify the descriptor.
1321 IITDescriptor D = Infos.front();
1322 Infos = Infos.slice(1);
1323 if (D.Kind == IITDescriptor::VarArg)
1324 return !isVarArg;
1326 return true;
1329 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1330 Intrinsic::ID ID = F->getIntrinsicID();
1331 if (!ID)
1332 return None;
1334 FunctionType *FTy = F->getFunctionType();
1335 // Accumulate an array of overloaded types for the given intrinsic
1336 SmallVector<Type *, 4> ArgTys;
1338 SmallVector<Intrinsic::IITDescriptor, 8> Table;
1339 getIntrinsicInfoTableEntries(ID, Table);
1340 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1342 if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
1343 return None;
1344 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1345 return None;
1348 StringRef Name = F->getName();
1349 if (Name == Intrinsic::getName(ID, ArgTys))
1350 return None;
1352 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1353 NewDecl->setCallingConv(F->getCallingConv());
1354 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1355 return NewDecl;
1358 /// hasAddressTaken - returns true if there are any uses of this function
1359 /// other than direct calls or invokes to it.
1360 bool Function::hasAddressTaken(const User* *PutOffender) const {
1361 for (const Use &U : uses()) {
1362 const User *FU = U.getUser();
1363 if (isa<BlockAddress>(FU))
1364 continue;
1365 const auto *Call = dyn_cast<CallBase>(FU);
1366 if (!Call) {
1367 if (PutOffender)
1368 *PutOffender = FU;
1369 return true;
1371 if (!Call->isCallee(&U)) {
1372 if (PutOffender)
1373 *PutOffender = FU;
1374 return true;
1377 return false;
1380 bool Function::isDefTriviallyDead() const {
1381 // Check the linkage
1382 if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1383 !hasAvailableExternallyLinkage())
1384 return false;
1386 // Check if the function is used by anything other than a blockaddress.
1387 for (const User *U : users())
1388 if (!isa<BlockAddress>(U))
1389 return false;
1391 return true;
1394 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1395 /// setjmp or other function that gcc recognizes as "returning twice".
1396 bool Function::callsFunctionThatReturnsTwice() const {
1397 for (const Instruction &I : instructions(this))
1398 if (const auto *Call = dyn_cast<CallBase>(&I))
1399 if (Call->hasFnAttr(Attribute::ReturnsTwice))
1400 return true;
1402 return false;
1405 Constant *Function::getPersonalityFn() const {
1406 assert(hasPersonalityFn() && getNumOperands());
1407 return cast<Constant>(Op<0>());
1410 void Function::setPersonalityFn(Constant *Fn) {
1411 setHungoffOperand<0>(Fn);
1412 setValueSubclassDataBit(3, Fn != nullptr);
1415 Constant *Function::getPrefixData() const {
1416 assert(hasPrefixData() && getNumOperands());
1417 return cast<Constant>(Op<1>());
1420 void Function::setPrefixData(Constant *PrefixData) {
1421 setHungoffOperand<1>(PrefixData);
1422 setValueSubclassDataBit(1, PrefixData != nullptr);
1425 Constant *Function::getPrologueData() const {
1426 assert(hasPrologueData() && getNumOperands());
1427 return cast<Constant>(Op<2>());
1430 void Function::setPrologueData(Constant *PrologueData) {
1431 setHungoffOperand<2>(PrologueData);
1432 setValueSubclassDataBit(2, PrologueData != nullptr);
1435 void Function::allocHungoffUselist() {
1436 // If we've already allocated a uselist, stop here.
1437 if (getNumOperands())
1438 return;
1440 allocHungoffUses(3, /*IsPhi=*/ false);
1441 setNumHungOffUseOperands(3);
1443 // Initialize the uselist with placeholder operands to allow traversal.
1444 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1445 Op<0>().set(CPN);
1446 Op<1>().set(CPN);
1447 Op<2>().set(CPN);
1450 template <int Idx>
1451 void Function::setHungoffOperand(Constant *C) {
1452 if (C) {
1453 allocHungoffUselist();
1454 Op<Idx>().set(C);
1455 } else if (getNumOperands()) {
1456 Op<Idx>().set(
1457 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1461 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1462 assert(Bit < 16 && "SubclassData contains only 16 bits");
1463 if (On)
1464 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1465 else
1466 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1469 void Function::setEntryCount(ProfileCount Count,
1470 const DenseSet<GlobalValue::GUID> *S) {
1471 assert(Count.hasValue());
1472 #if !defined(NDEBUG)
1473 auto PrevCount = getEntryCount();
1474 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1475 #endif
1476 MDBuilder MDB(getContext());
1477 setMetadata(
1478 LLVMContext::MD_prof,
1479 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1482 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1483 const DenseSet<GlobalValue::GUID> *Imports) {
1484 setEntryCount(ProfileCount(Count, Type), Imports);
1487 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1488 MDNode *MD = getMetadata(LLVMContext::MD_prof);
1489 if (MD && MD->getOperand(0))
1490 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1491 if (MDS->getString().equals("function_entry_count")) {
1492 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1493 uint64_t Count = CI->getValue().getZExtValue();
1494 // A value of -1 is used for SamplePGO when there were no samples.
1495 // Treat this the same as unknown.
1496 if (Count == (uint64_t)-1)
1497 return ProfileCount::getInvalid();
1498 return ProfileCount(Count, PCT_Real);
1499 } else if (AllowSynthetic &&
1500 MDS->getString().equals("synthetic_function_entry_count")) {
1501 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1502 uint64_t Count = CI->getValue().getZExtValue();
1503 return ProfileCount(Count, PCT_Synthetic);
1506 return ProfileCount::getInvalid();
1509 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1510 DenseSet<GlobalValue::GUID> R;
1511 if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1512 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1513 if (MDS->getString().equals("function_entry_count"))
1514 for (unsigned i = 2; i < MD->getNumOperands(); i++)
1515 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1516 ->getValue()
1517 .getZExtValue());
1518 return R;
1521 void Function::setSectionPrefix(StringRef Prefix) {
1522 MDBuilder MDB(getContext());
1523 setMetadata(LLVMContext::MD_section_prefix,
1524 MDB.createFunctionSectionPrefix(Prefix));
1527 Optional<StringRef> Function::getSectionPrefix() const {
1528 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1529 assert(cast<MDString>(MD->getOperand(0))
1530 ->getString()
1531 .equals("function_section_prefix") &&
1532 "Metadata not match");
1533 return cast<MDString>(MD->getOperand(1))->getString();
1535 return None;
1538 bool Function::nullPointerIsDefined() const {
1539 return getFnAttribute("null-pointer-is-valid")
1540 .getValueAsString()
1541 .equals("true");
1544 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1545 if (F && F->nullPointerIsDefined())
1546 return true;
1548 if (AS != 0)
1549 return true;
1551 return false;