[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / IR / Type.cpp
blob8ece7f223dd2e273e1b0ff37a07ce2f970bea1e7
1 //===- Type.cpp - Implement the Type class --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Type class for the IR library.
11 //===----------------------------------------------------------------------===//
13 #include "llvm/IR/Type.h"
14 #include "LLVMContextImpl.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/LLVMContext.h"
24 #include "llvm/IR/Module.h"
25 #include "llvm/IR/Value.h"
26 #include "llvm/Support/Casting.h"
27 #include "llvm/Support/MathExtras.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <cassert>
30 #include <utility>
32 using namespace llvm;
34 //===----------------------------------------------------------------------===//
35 // Type Class Implementation
36 //===----------------------------------------------------------------------===//
38 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
39 switch (IDNumber) {
40 case VoidTyID : return getVoidTy(C);
41 case HalfTyID : return getHalfTy(C);
42 case FloatTyID : return getFloatTy(C);
43 case DoubleTyID : return getDoubleTy(C);
44 case X86_FP80TyID : return getX86_FP80Ty(C);
45 case FP128TyID : return getFP128Ty(C);
46 case PPC_FP128TyID : return getPPC_FP128Ty(C);
47 case LabelTyID : return getLabelTy(C);
48 case MetadataTyID : return getMetadataTy(C);
49 case X86_MMXTyID : return getX86_MMXTy(C);
50 case TokenTyID : return getTokenTy(C);
51 default:
52 return nullptr;
56 bool Type::isIntegerTy(unsigned Bitwidth) const {
57 return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
60 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
61 // Identity cast means no change so return true
62 if (this == Ty)
63 return true;
65 // They are not convertible unless they are at least first class types
66 if (!this->isFirstClassType() || !Ty->isFirstClassType())
67 return false;
69 // Vector -> Vector conversions are always lossless if the two vector types
70 // have the same size, otherwise not. Also, 64-bit vector types can be
71 // converted to x86mmx.
72 if (auto *thisPTy = dyn_cast<VectorType>(this)) {
73 if (auto *thatPTy = dyn_cast<VectorType>(Ty))
74 return thisPTy->getBitWidth() == thatPTy->getBitWidth();
75 if (Ty->getTypeID() == Type::X86_MMXTyID &&
76 thisPTy->getBitWidth() == 64)
77 return true;
80 if (this->getTypeID() == Type::X86_MMXTyID)
81 if (auto *thatPTy = dyn_cast<VectorType>(Ty))
82 if (thatPTy->getBitWidth() == 64)
83 return true;
85 // At this point we have only various mismatches of the first class types
86 // remaining and ptr->ptr. Just select the lossless conversions. Everything
87 // else is not lossless. Conservatively assume we can't losslessly convert
88 // between pointers with different address spaces.
89 if (auto *PTy = dyn_cast<PointerType>(this)) {
90 if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
91 return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
92 return false;
94 return false; // Other types have no identity values
97 bool Type::isEmptyTy() const {
98 if (auto *ATy = dyn_cast<ArrayType>(this)) {
99 unsigned NumElements = ATy->getNumElements();
100 return NumElements == 0 || ATy->getElementType()->isEmptyTy();
103 if (auto *STy = dyn_cast<StructType>(this)) {
104 unsigned NumElements = STy->getNumElements();
105 for (unsigned i = 0; i < NumElements; ++i)
106 if (!STy->getElementType(i)->isEmptyTy())
107 return false;
108 return true;
111 return false;
114 unsigned Type::getPrimitiveSizeInBits() const {
115 switch (getTypeID()) {
116 case Type::HalfTyID: return 16;
117 case Type::FloatTyID: return 32;
118 case Type::DoubleTyID: return 64;
119 case Type::X86_FP80TyID: return 80;
120 case Type::FP128TyID: return 128;
121 case Type::PPC_FP128TyID: return 128;
122 case Type::X86_MMXTyID: return 64;
123 case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
124 case Type::VectorTyID: return cast<VectorType>(this)->getBitWidth();
125 default: return 0;
129 unsigned Type::getScalarSizeInBits() const {
130 return getScalarType()->getPrimitiveSizeInBits();
133 int Type::getFPMantissaWidth() const {
134 if (auto *VTy = dyn_cast<VectorType>(this))
135 return VTy->getElementType()->getFPMantissaWidth();
136 assert(isFloatingPointTy() && "Not a floating point type!");
137 if (getTypeID() == HalfTyID) return 11;
138 if (getTypeID() == FloatTyID) return 24;
139 if (getTypeID() == DoubleTyID) return 53;
140 if (getTypeID() == X86_FP80TyID) return 64;
141 if (getTypeID() == FP128TyID) return 113;
142 assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
143 return -1;
146 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
147 if (auto *ATy = dyn_cast<ArrayType>(this))
148 return ATy->getElementType()->isSized(Visited);
150 if (auto *VTy = dyn_cast<VectorType>(this))
151 return VTy->getElementType()->isSized(Visited);
153 return cast<StructType>(this)->isSized(Visited);
156 //===----------------------------------------------------------------------===//
157 // Primitive 'Type' data
158 //===----------------------------------------------------------------------===//
160 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
161 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
162 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
163 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
164 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
165 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
166 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
167 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
168 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
169 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
170 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
172 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
173 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
174 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
175 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
176 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
177 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
179 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
180 return IntegerType::get(C, N);
183 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
184 return getHalfTy(C)->getPointerTo(AS);
187 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
188 return getFloatTy(C)->getPointerTo(AS);
191 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
192 return getDoubleTy(C)->getPointerTo(AS);
195 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
196 return getX86_FP80Ty(C)->getPointerTo(AS);
199 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
200 return getFP128Ty(C)->getPointerTo(AS);
203 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
204 return getPPC_FP128Ty(C)->getPointerTo(AS);
207 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
208 return getX86_MMXTy(C)->getPointerTo(AS);
211 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
212 return getIntNTy(C, N)->getPointerTo(AS);
215 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
216 return getInt1Ty(C)->getPointerTo(AS);
219 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
220 return getInt8Ty(C)->getPointerTo(AS);
223 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
224 return getInt16Ty(C)->getPointerTo(AS);
227 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
228 return getInt32Ty(C)->getPointerTo(AS);
231 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
232 return getInt64Ty(C)->getPointerTo(AS);
235 //===----------------------------------------------------------------------===//
236 // IntegerType Implementation
237 //===----------------------------------------------------------------------===//
239 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
240 assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
241 assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
243 // Check for the built-in integer types
244 switch (NumBits) {
245 case 1: return cast<IntegerType>(Type::getInt1Ty(C));
246 case 8: return cast<IntegerType>(Type::getInt8Ty(C));
247 case 16: return cast<IntegerType>(Type::getInt16Ty(C));
248 case 32: return cast<IntegerType>(Type::getInt32Ty(C));
249 case 64: return cast<IntegerType>(Type::getInt64Ty(C));
250 case 128: return cast<IntegerType>(Type::getInt128Ty(C));
251 default:
252 break;
255 IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
257 if (!Entry)
258 Entry = new (C.pImpl->Alloc) IntegerType(C, NumBits);
260 return Entry;
263 bool IntegerType::isPowerOf2ByteWidth() const {
264 unsigned BitWidth = getBitWidth();
265 return (BitWidth > 7) && isPowerOf2_32(BitWidth);
268 APInt IntegerType::getMask() const {
269 return APInt::getAllOnesValue(getBitWidth());
272 //===----------------------------------------------------------------------===//
273 // FunctionType Implementation
274 //===----------------------------------------------------------------------===//
276 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
277 bool IsVarArgs)
278 : Type(Result->getContext(), FunctionTyID) {
279 Type **SubTys = reinterpret_cast<Type**>(this+1);
280 assert(isValidReturnType(Result) && "invalid return type for function");
281 setSubclassData(IsVarArgs);
283 SubTys[0] = Result;
285 for (unsigned i = 0, e = Params.size(); i != e; ++i) {
286 assert(isValidArgumentType(Params[i]) &&
287 "Not a valid type for function argument!");
288 SubTys[i+1] = Params[i];
291 ContainedTys = SubTys;
292 NumContainedTys = Params.size() + 1; // + 1 for result type
295 // This is the factory function for the FunctionType class.
296 FunctionType *FunctionType::get(Type *ReturnType,
297 ArrayRef<Type*> Params, bool isVarArg) {
298 LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
299 const FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
300 FunctionType *FT;
301 // Since we only want to allocate a fresh function type in case none is found
302 // and we don't want to perform two lookups (one for checking if existent and
303 // one for inserting the newly allocated one), here we instead lookup based on
304 // Key and update the reference to the function type in-place to a newly
305 // allocated one if not found.
306 auto Insertion = pImpl->FunctionTypes.insert_as(nullptr, Key);
307 if (Insertion.second) {
308 // The function type was not found. Allocate one and update FunctionTypes
309 // in-place.
310 FT = (FunctionType *)pImpl->Alloc.Allocate(
311 sizeof(FunctionType) + sizeof(Type *) * (Params.size() + 1),
312 alignof(FunctionType));
313 new (FT) FunctionType(ReturnType, Params, isVarArg);
314 *Insertion.first = FT;
315 } else {
316 // The function type was found. Just return it.
317 FT = *Insertion.first;
319 return FT;
322 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
323 return get(Result, None, isVarArg);
326 bool FunctionType::isValidReturnType(Type *RetTy) {
327 return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
328 !RetTy->isMetadataTy();
331 bool FunctionType::isValidArgumentType(Type *ArgTy) {
332 return ArgTy->isFirstClassType();
335 //===----------------------------------------------------------------------===//
336 // StructType Implementation
337 //===----------------------------------------------------------------------===//
339 // Primitive Constructors.
341 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes,
342 bool isPacked) {
343 LLVMContextImpl *pImpl = Context.pImpl;
344 const AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
346 StructType *ST;
347 // Since we only want to allocate a fresh struct type in case none is found
348 // and we don't want to perform two lookups (one for checking if existent and
349 // one for inserting the newly allocated one), here we instead lookup based on
350 // Key and update the reference to the struct type in-place to a newly
351 // allocated one if not found.
352 auto Insertion = pImpl->AnonStructTypes.insert_as(nullptr, Key);
353 if (Insertion.second) {
354 // The struct type was not found. Allocate one and update AnonStructTypes
355 // in-place.
356 ST = new (Context.pImpl->Alloc) StructType(Context);
357 ST->setSubclassData(SCDB_IsLiteral); // Literal struct.
358 ST->setBody(ETypes, isPacked);
359 *Insertion.first = ST;
360 } else {
361 // The struct type was found. Just return it.
362 ST = *Insertion.first;
365 return ST;
368 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
369 assert(isOpaque() && "Struct body already set!");
371 setSubclassData(getSubclassData() | SCDB_HasBody);
372 if (isPacked)
373 setSubclassData(getSubclassData() | SCDB_Packed);
375 NumContainedTys = Elements.size();
377 if (Elements.empty()) {
378 ContainedTys = nullptr;
379 return;
382 ContainedTys = Elements.copy(getContext().pImpl->Alloc).data();
385 void StructType::setName(StringRef Name) {
386 if (Name == getName()) return;
388 StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
390 using EntryTy = StringMap<StructType *>::MapEntryTy;
392 // If this struct already had a name, remove its symbol table entry. Don't
393 // delete the data yet because it may be part of the new name.
394 if (SymbolTableEntry)
395 SymbolTable.remove((EntryTy *)SymbolTableEntry);
397 // If this is just removing the name, we're done.
398 if (Name.empty()) {
399 if (SymbolTableEntry) {
400 // Delete the old string data.
401 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
402 SymbolTableEntry = nullptr;
404 return;
407 // Look up the entry for the name.
408 auto IterBool =
409 getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
411 // While we have a name collision, try a random rename.
412 if (!IterBool.second) {
413 SmallString<64> TempStr(Name);
414 TempStr.push_back('.');
415 raw_svector_ostream TmpStream(TempStr);
416 unsigned NameSize = Name.size();
418 do {
419 TempStr.resize(NameSize + 1);
420 TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
422 IterBool = getContext().pImpl->NamedStructTypes.insert(
423 std::make_pair(TmpStream.str(), this));
424 } while (!IterBool.second);
427 // Delete the old string data.
428 if (SymbolTableEntry)
429 ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
430 SymbolTableEntry = &*IterBool.first;
433 //===----------------------------------------------------------------------===//
434 // StructType Helper functions.
436 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
437 StructType *ST = new (Context.pImpl->Alloc) StructType(Context);
438 if (!Name.empty())
439 ST->setName(Name);
440 return ST;
443 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
444 return get(Context, None, isPacked);
447 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
448 StringRef Name, bool isPacked) {
449 StructType *ST = create(Context, Name);
450 ST->setBody(Elements, isPacked);
451 return ST;
454 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
455 return create(Context, Elements, StringRef());
458 StructType *StructType::create(LLVMContext &Context) {
459 return create(Context, StringRef());
462 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
463 bool isPacked) {
464 assert(!Elements.empty() &&
465 "This method may not be invoked with an empty list");
466 return create(Elements[0]->getContext(), Elements, Name, isPacked);
469 StructType *StructType::create(ArrayRef<Type*> Elements) {
470 assert(!Elements.empty() &&
471 "This method may not be invoked with an empty list");
472 return create(Elements[0]->getContext(), Elements, StringRef());
475 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
476 if ((getSubclassData() & SCDB_IsSized) != 0)
477 return true;
478 if (isOpaque())
479 return false;
481 if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
482 return false;
484 // Okay, our struct is sized if all of the elements are, but if one of the
485 // elements is opaque, the struct isn't sized *yet*, but may become sized in
486 // the future, so just bail out without caching.
487 for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
488 if (!(*I)->isSized(Visited))
489 return false;
491 // Here we cheat a bit and cast away const-ness. The goal is to memoize when
492 // we find a sized type, as types can only move from opaque to sized, not the
493 // other way.
494 const_cast<StructType*>(this)->setSubclassData(
495 getSubclassData() | SCDB_IsSized);
496 return true;
499 StringRef StructType::getName() const {
500 assert(!isLiteral() && "Literal structs never have names");
501 if (!SymbolTableEntry) return StringRef();
503 return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
506 bool StructType::isValidElementType(Type *ElemTy) {
507 if (auto *VTy = dyn_cast<VectorType>(ElemTy))
508 return !VTy->isScalable();
509 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
510 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
511 !ElemTy->isTokenTy();
514 bool StructType::isLayoutIdentical(StructType *Other) const {
515 if (this == Other) return true;
517 if (isPacked() != Other->isPacked())
518 return false;
520 return elements() == Other->elements();
523 StructType *Module::getTypeByName(StringRef Name) const {
524 return getContext().pImpl->NamedStructTypes.lookup(Name);
527 //===----------------------------------------------------------------------===//
528 // CompositeType Implementation
529 //===----------------------------------------------------------------------===//
531 Type *CompositeType::getTypeAtIndex(const Value *V) const {
532 if (auto *STy = dyn_cast<StructType>(this)) {
533 unsigned Idx =
534 (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
535 assert(indexValid(Idx) && "Invalid structure index!");
536 return STy->getElementType(Idx);
539 return cast<SequentialType>(this)->getElementType();
542 Type *CompositeType::getTypeAtIndex(unsigned Idx) const{
543 if (auto *STy = dyn_cast<StructType>(this)) {
544 assert(indexValid(Idx) && "Invalid structure index!");
545 return STy->getElementType(Idx);
548 return cast<SequentialType>(this)->getElementType();
551 bool CompositeType::indexValid(const Value *V) const {
552 if (auto *STy = dyn_cast<StructType>(this)) {
553 // Structure indexes require (vectors of) 32-bit integer constants. In the
554 // vector case all of the indices must be equal.
555 if (!V->getType()->isIntOrIntVectorTy(32))
556 return false;
557 const Constant *C = dyn_cast<Constant>(V);
558 if (C && V->getType()->isVectorTy())
559 C = C->getSplatValue();
560 const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
561 return CU && CU->getZExtValue() < STy->getNumElements();
564 // Sequential types can be indexed by any integer.
565 return V->getType()->isIntOrIntVectorTy();
568 bool CompositeType::indexValid(unsigned Idx) const {
569 if (auto *STy = dyn_cast<StructType>(this))
570 return Idx < STy->getNumElements();
571 // Sequential types can be indexed by any integer.
572 return true;
575 //===----------------------------------------------------------------------===//
576 // ArrayType Implementation
577 //===----------------------------------------------------------------------===//
579 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
580 : SequentialType(ArrayTyID, ElType, NumEl) {}
582 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
583 assert(isValidElementType(ElementType) && "Invalid type for array element!");
585 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
586 ArrayType *&Entry =
587 pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
589 if (!Entry)
590 Entry = new (pImpl->Alloc) ArrayType(ElementType, NumElements);
591 return Entry;
594 bool ArrayType::isValidElementType(Type *ElemTy) {
595 if (auto *VTy = dyn_cast<VectorType>(ElemTy))
596 return !VTy->isScalable();
597 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
598 !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
599 !ElemTy->isTokenTy();
602 //===----------------------------------------------------------------------===//
603 // VectorType Implementation
604 //===----------------------------------------------------------------------===//
606 VectorType::VectorType(Type *ElType, ElementCount EC)
607 : SequentialType(VectorTyID, ElType, EC.Min), Scalable(EC.Scalable) {}
609 VectorType *VectorType::get(Type *ElementType, ElementCount EC) {
610 assert(EC.Min > 0 && "#Elements of a VectorType must be greater than 0");
611 assert(isValidElementType(ElementType) && "Element type of a VectorType must "
612 "be an integer, floating point, or "
613 "pointer type.");
615 LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
616 VectorType *&Entry = ElementType->getContext().pImpl
617 ->VectorTypes[std::make_pair(ElementType, EC)];
618 if (!Entry)
619 Entry = new (pImpl->Alloc) VectorType(ElementType, EC);
620 return Entry;
623 bool VectorType::isValidElementType(Type *ElemTy) {
624 return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
625 ElemTy->isPointerTy();
628 //===----------------------------------------------------------------------===//
629 // PointerType Implementation
630 //===----------------------------------------------------------------------===//
632 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
633 assert(EltTy && "Can't get a pointer to <null> type!");
634 assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
636 LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
638 // Since AddressSpace #0 is the common case, we special case it.
639 PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
640 : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
642 if (!Entry)
643 Entry = new (CImpl->Alloc) PointerType(EltTy, AddressSpace);
644 return Entry;
647 PointerType::PointerType(Type *E, unsigned AddrSpace)
648 : Type(E->getContext(), PointerTyID), PointeeTy(E) {
649 ContainedTys = &PointeeTy;
650 NumContainedTys = 1;
651 setSubclassData(AddrSpace);
654 PointerType *Type::getPointerTo(unsigned addrs) const {
655 return PointerType::get(const_cast<Type*>(this), addrs);
658 bool PointerType::isValidElementType(Type *ElemTy) {
659 return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
660 !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
663 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
664 return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();