1 //===-- Verifier.cpp - Implement the Module Verifier -----------------------==//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file defines the function verifier interface, that can be used for some
10 // sanity checking of input to the system.
12 // Note that this does not provide full `Java style' security and verifications,
13 // instead it just tries to ensure that code is well-formed.
15 // * Both of a binary operator's parameters are of the same type
16 // * Verify that the indices of mem access instructions match other operands
17 // * Verify that arithmetic and other things are only performed on first-class
18 // types. Verify that shifts & logicals only happen on integrals f.e.
19 // * All of the constants in a switch statement are of the correct type
20 // * The code is in valid SSA form
21 // * It should be illegal to put a label into any other type (like a structure)
22 // or to return one. [except constant arrays!]
23 // * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
24 // * PHI nodes must have an entry for each predecessor, with no extras.
25 // * PHI nodes must be the first thing in a basic block, all grouped together
26 // * PHI nodes must have at least one entry
27 // * All basic blocks should only end with terminator insts, not contain them
28 // * The entry node to a function must not have predecessors
29 // * All Instructions must be embedded into a basic block
30 // * Functions cannot take a void-typed parameter
31 // * Verify that a function's argument list agrees with it's declared type.
32 // * It is illegal to specify a name for a void value.
33 // * It is illegal to have a internal global value with no initializer
34 // * It is illegal to have a ret instruction that returns a value that does not
35 // agree with the function return value type.
36 // * Function call argument types match the function prototype
37 // * A landing pad is defined by a landingpad instruction, and can be jumped to
38 // only by the unwind edge of an invoke instruction.
39 // * A landingpad instruction must be the first non-PHI instruction in the
41 // * Landingpad instructions must be in a function with a personality function.
42 // * All other things that are tested by asserts spread about the code...
44 //===----------------------------------------------------------------------===//
46 #include "llvm/IR/Verifier.h"
47 #include "llvm/ADT/APFloat.h"
48 #include "llvm/ADT/APInt.h"
49 #include "llvm/ADT/ArrayRef.h"
50 #include "llvm/ADT/DenseMap.h"
51 #include "llvm/ADT/MapVector.h"
52 #include "llvm/ADT/Optional.h"
53 #include "llvm/ADT/STLExtras.h"
54 #include "llvm/ADT/SmallPtrSet.h"
55 #include "llvm/ADT/SmallSet.h"
56 #include "llvm/ADT/SmallVector.h"
57 #include "llvm/ADT/StringExtras.h"
58 #include "llvm/ADT/StringMap.h"
59 #include "llvm/ADT/StringRef.h"
60 #include "llvm/ADT/Twine.h"
61 #include "llvm/ADT/ilist.h"
62 #include "llvm/BinaryFormat/Dwarf.h"
63 #include "llvm/IR/Argument.h"
64 #include "llvm/IR/Attributes.h"
65 #include "llvm/IR/BasicBlock.h"
66 #include "llvm/IR/CFG.h"
67 #include "llvm/IR/CallingConv.h"
68 #include "llvm/IR/Comdat.h"
69 #include "llvm/IR/Constant.h"
70 #include "llvm/IR/ConstantRange.h"
71 #include "llvm/IR/Constants.h"
72 #include "llvm/IR/DataLayout.h"
73 #include "llvm/IR/DebugInfo.h"
74 #include "llvm/IR/DebugInfoMetadata.h"
75 #include "llvm/IR/DebugLoc.h"
76 #include "llvm/IR/DerivedTypes.h"
77 #include "llvm/IR/Dominators.h"
78 #include "llvm/IR/Function.h"
79 #include "llvm/IR/GlobalAlias.h"
80 #include "llvm/IR/GlobalValue.h"
81 #include "llvm/IR/GlobalVariable.h"
82 #include "llvm/IR/InlineAsm.h"
83 #include "llvm/IR/InstVisitor.h"
84 #include "llvm/IR/InstrTypes.h"
85 #include "llvm/IR/Instruction.h"
86 #include "llvm/IR/Instructions.h"
87 #include "llvm/IR/IntrinsicInst.h"
88 #include "llvm/IR/Intrinsics.h"
89 #include "llvm/IR/LLVMContext.h"
90 #include "llvm/IR/Metadata.h"
91 #include "llvm/IR/Module.h"
92 #include "llvm/IR/ModuleSlotTracker.h"
93 #include "llvm/IR/PassManager.h"
94 #include "llvm/IR/Statepoint.h"
95 #include "llvm/IR/Type.h"
96 #include "llvm/IR/Use.h"
97 #include "llvm/IR/User.h"
98 #include "llvm/IR/Value.h"
99 #include "llvm/Pass.h"
100 #include "llvm/Support/AtomicOrdering.h"
101 #include "llvm/Support/Casting.h"
102 #include "llvm/Support/CommandLine.h"
103 #include "llvm/Support/Debug.h"
104 #include "llvm/Support/ErrorHandling.h"
105 #include "llvm/Support/MathExtras.h"
106 #include "llvm/Support/raw_ostream.h"
114 using namespace llvm
;
118 struct VerifierSupport
{
121 ModuleSlotTracker MST
;
123 const DataLayout
&DL
;
124 LLVMContext
&Context
;
126 /// Track the brokenness of the module while recursively visiting.
128 /// Broken debug info can be "recovered" from by stripping the debug info.
129 bool BrokenDebugInfo
= false;
130 /// Whether to treat broken debug info as an error.
131 bool TreatBrokenDebugInfoAsError
= true;
133 explicit VerifierSupport(raw_ostream
*OS
, const Module
&M
)
134 : OS(OS
), M(M
), MST(&M
), TT(M
.getTargetTriple()), DL(M
.getDataLayout()),
135 Context(M
.getContext()) {}
138 void Write(const Module
*M
) {
139 *OS
<< "; ModuleID = '" << M
->getModuleIdentifier() << "'\n";
142 void Write(const Value
*V
) {
147 void Write(const Value
&V
) {
148 if (isa
<Instruction
>(V
)) {
152 V
.printAsOperand(*OS
, true, MST
);
157 void Write(const Metadata
*MD
) {
160 MD
->print(*OS
, MST
, &M
);
164 template <class T
> void Write(const MDTupleTypedArrayWrapper
<T
> &MD
) {
168 void Write(const NamedMDNode
*NMD
) {
171 NMD
->print(*OS
, MST
);
175 void Write(Type
*T
) {
181 void Write(const Comdat
*C
) {
187 void Write(const APInt
*AI
) {
193 void Write(const unsigned i
) { *OS
<< i
<< '\n'; }
195 template <typename T
> void Write(ArrayRef
<T
> Vs
) {
196 for (const T
&V
: Vs
)
200 template <typename T1
, typename
... Ts
>
201 void WriteTs(const T1
&V1
, const Ts
&... Vs
) {
206 template <typename
... Ts
> void WriteTs() {}
209 /// A check failed, so printout out the condition and the message.
211 /// This provides a nice place to put a breakpoint if you want to see why
212 /// something is not correct.
213 void CheckFailed(const Twine
&Message
) {
215 *OS
<< Message
<< '\n';
219 /// A check failed (with values to print).
221 /// This calls the Message-only version so that the above is easier to set a
223 template <typename T1
, typename
... Ts
>
224 void CheckFailed(const Twine
&Message
, const T1
&V1
, const Ts
&... Vs
) {
225 CheckFailed(Message
);
230 /// A debug info check failed.
231 void DebugInfoCheckFailed(const Twine
&Message
) {
233 *OS
<< Message
<< '\n';
234 Broken
|= TreatBrokenDebugInfoAsError
;
235 BrokenDebugInfo
= true;
238 /// A debug info check failed (with values to print).
239 template <typename T1
, typename
... Ts
>
240 void DebugInfoCheckFailed(const Twine
&Message
, const T1
&V1
,
242 DebugInfoCheckFailed(Message
);
252 class Verifier
: public InstVisitor
<Verifier
>, VerifierSupport
{
253 friend class InstVisitor
<Verifier
>;
257 /// When verifying a basic block, keep track of all of the
258 /// instructions we have seen so far.
260 /// This allows us to do efficient dominance checks for the case when an
261 /// instruction has an operand that is an instruction in the same block.
262 SmallPtrSet
<Instruction
*, 16> InstsInThisBlock
;
264 /// Keep track of the metadata nodes that have been checked already.
265 SmallPtrSet
<const Metadata
*, 32> MDNodes
;
267 /// Keep track which DISubprogram is attached to which function.
268 DenseMap
<const DISubprogram
*, const Function
*> DISubprogramAttachments
;
270 /// Track all DICompileUnits visited.
271 SmallPtrSet
<const Metadata
*, 2> CUVisited
;
273 /// The result type for a landingpad.
274 Type
*LandingPadResultTy
;
276 /// Whether we've seen a call to @llvm.localescape in this function
280 /// Whether the current function has a DISubprogram attached to it.
281 bool HasDebugInfo
= false;
283 /// Whether source was present on the first DIFile encountered in each CU.
284 DenseMap
<const DICompileUnit
*, bool> HasSourceDebugInfo
;
286 /// Stores the count of how many objects were passed to llvm.localescape for a
287 /// given function and the largest index passed to llvm.localrecover.
288 DenseMap
<Function
*, std::pair
<unsigned, unsigned>> FrameEscapeInfo
;
290 // Maps catchswitches and cleanuppads that unwind to siblings to the
291 // terminators that indicate the unwind, used to detect cycles therein.
292 MapVector
<Instruction
*, Instruction
*> SiblingFuncletInfo
;
294 /// Cache of constants visited in search of ConstantExprs.
295 SmallPtrSet
<const Constant
*, 32> ConstantExprVisited
;
297 /// Cache of declarations of the llvm.experimental.deoptimize.<ty> intrinsic.
298 SmallVector
<const Function
*, 4> DeoptimizeDeclarations
;
300 // Verify that this GlobalValue is only used in this module.
301 // This map is used to avoid visiting uses twice. We can arrive at a user
302 // twice, if they have multiple operands. In particular for very large
303 // constant expressions, we can arrive at a particular user many times.
304 SmallPtrSet
<const Value
*, 32> GlobalValueVisited
;
306 // Keeps track of duplicate function argument debug info.
307 SmallVector
<const DILocalVariable
*, 16> DebugFnArgs
;
309 TBAAVerifier TBAAVerifyHelper
;
311 void checkAtomicMemAccessSize(Type
*Ty
, const Instruction
*I
);
314 explicit Verifier(raw_ostream
*OS
, bool ShouldTreatBrokenDebugInfoAsError
,
316 : VerifierSupport(OS
, M
), LandingPadResultTy(nullptr),
317 SawFrameEscape(false), TBAAVerifyHelper(this) {
318 TreatBrokenDebugInfoAsError
= ShouldTreatBrokenDebugInfoAsError
;
321 bool hasBrokenDebugInfo() const { return BrokenDebugInfo
; }
323 bool verify(const Function
&F
) {
324 assert(F
.getParent() == &M
&&
325 "An instance of this class only works with a specific module!");
327 // First ensure the function is well-enough formed to compute dominance
328 // information, and directly compute a dominance tree. We don't rely on the
329 // pass manager to provide this as it isolates us from a potentially
330 // out-of-date dominator tree and makes it significantly more complex to run
331 // this code outside of a pass manager.
332 // FIXME: It's really gross that we have to cast away constness here.
334 DT
.recalculate(const_cast<Function
&>(F
));
336 for (const BasicBlock
&BB
: F
) {
337 if (!BB
.empty() && BB
.back().isTerminator())
341 *OS
<< "Basic Block in function '" << F
.getName()
342 << "' does not have terminator!\n";
343 BB
.printAsOperand(*OS
, true, MST
);
350 // FIXME: We strip const here because the inst visitor strips const.
351 visit(const_cast<Function
&>(F
));
352 verifySiblingFuncletUnwinds();
353 InstsInThisBlock
.clear();
355 LandingPadResultTy
= nullptr;
356 SawFrameEscape
= false;
357 SiblingFuncletInfo
.clear();
362 /// Verify the module that this instance of \c Verifier was initialized with.
366 // Collect all declarations of the llvm.experimental.deoptimize intrinsic.
367 for (const Function
&F
: M
)
368 if (F
.getIntrinsicID() == Intrinsic::experimental_deoptimize
)
369 DeoptimizeDeclarations
.push_back(&F
);
371 // Now that we've visited every function, verify that we never asked to
372 // recover a frame index that wasn't escaped.
373 verifyFrameRecoverIndices();
374 for (const GlobalVariable
&GV
: M
.globals())
375 visitGlobalVariable(GV
);
377 for (const GlobalAlias
&GA
: M
.aliases())
378 visitGlobalAlias(GA
);
380 for (const NamedMDNode
&NMD
: M
.named_metadata())
381 visitNamedMDNode(NMD
);
383 for (const StringMapEntry
<Comdat
> &SMEC
: M
.getComdatSymbolTable())
384 visitComdat(SMEC
.getValue());
387 visitModuleIdents(M
);
388 visitModuleCommandLines(M
);
390 verifyCompileUnits();
392 verifyDeoptimizeCallingConvs();
393 DISubprogramAttachments
.clear();
398 // Verification methods...
399 void visitGlobalValue(const GlobalValue
&GV
);
400 void visitGlobalVariable(const GlobalVariable
&GV
);
401 void visitGlobalAlias(const GlobalAlias
&GA
);
402 void visitAliaseeSubExpr(const GlobalAlias
&A
, const Constant
&C
);
403 void visitAliaseeSubExpr(SmallPtrSetImpl
<const GlobalAlias
*> &Visited
,
404 const GlobalAlias
&A
, const Constant
&C
);
405 void visitNamedMDNode(const NamedMDNode
&NMD
);
406 void visitMDNode(const MDNode
&MD
);
407 void visitMetadataAsValue(const MetadataAsValue
&MD
, Function
*F
);
408 void visitValueAsMetadata(const ValueAsMetadata
&MD
, Function
*F
);
409 void visitComdat(const Comdat
&C
);
410 void visitModuleIdents(const Module
&M
);
411 void visitModuleCommandLines(const Module
&M
);
412 void visitModuleFlags(const Module
&M
);
413 void visitModuleFlag(const MDNode
*Op
,
414 DenseMap
<const MDString
*, const MDNode
*> &SeenIDs
,
415 SmallVectorImpl
<const MDNode
*> &Requirements
);
416 void visitModuleFlagCGProfileEntry(const MDOperand
&MDO
);
417 void visitFunction(const Function
&F
);
418 void visitBasicBlock(BasicBlock
&BB
);
419 void visitRangeMetadata(Instruction
&I
, MDNode
*Range
, Type
*Ty
);
420 void visitDereferenceableMetadata(Instruction
&I
, MDNode
*MD
);
421 void visitProfMetadata(Instruction
&I
, MDNode
*MD
);
423 template <class Ty
> bool isValidMetadataArray(const MDTuple
&N
);
424 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) void visit##CLASS(const CLASS &N);
425 #include "llvm/IR/Metadata.def"
426 void visitDIScope(const DIScope
&N
);
427 void visitDIVariable(const DIVariable
&N
);
428 void visitDILexicalBlockBase(const DILexicalBlockBase
&N
);
429 void visitDITemplateParameter(const DITemplateParameter
&N
);
431 void visitTemplateParams(const MDNode
&N
, const Metadata
&RawParams
);
433 // InstVisitor overrides...
434 using InstVisitor
<Verifier
>::visit
;
435 void visit(Instruction
&I
);
437 void visitTruncInst(TruncInst
&I
);
438 void visitZExtInst(ZExtInst
&I
);
439 void visitSExtInst(SExtInst
&I
);
440 void visitFPTruncInst(FPTruncInst
&I
);
441 void visitFPExtInst(FPExtInst
&I
);
442 void visitFPToUIInst(FPToUIInst
&I
);
443 void visitFPToSIInst(FPToSIInst
&I
);
444 void visitUIToFPInst(UIToFPInst
&I
);
445 void visitSIToFPInst(SIToFPInst
&I
);
446 void visitIntToPtrInst(IntToPtrInst
&I
);
447 void visitPtrToIntInst(PtrToIntInst
&I
);
448 void visitBitCastInst(BitCastInst
&I
);
449 void visitAddrSpaceCastInst(AddrSpaceCastInst
&I
);
450 void visitPHINode(PHINode
&PN
);
451 void visitCallBase(CallBase
&Call
);
452 void visitUnaryOperator(UnaryOperator
&U
);
453 void visitBinaryOperator(BinaryOperator
&B
);
454 void visitICmpInst(ICmpInst
&IC
);
455 void visitFCmpInst(FCmpInst
&FC
);
456 void visitExtractElementInst(ExtractElementInst
&EI
);
457 void visitInsertElementInst(InsertElementInst
&EI
);
458 void visitShuffleVectorInst(ShuffleVectorInst
&EI
);
459 void visitVAArgInst(VAArgInst
&VAA
) { visitInstruction(VAA
); }
460 void visitCallInst(CallInst
&CI
);
461 void visitInvokeInst(InvokeInst
&II
);
462 void visitGetElementPtrInst(GetElementPtrInst
&GEP
);
463 void visitLoadInst(LoadInst
&LI
);
464 void visitStoreInst(StoreInst
&SI
);
465 void verifyDominatesUse(Instruction
&I
, unsigned i
);
466 void visitInstruction(Instruction
&I
);
467 void visitTerminator(Instruction
&I
);
468 void visitBranchInst(BranchInst
&BI
);
469 void visitReturnInst(ReturnInst
&RI
);
470 void visitSwitchInst(SwitchInst
&SI
);
471 void visitIndirectBrInst(IndirectBrInst
&BI
);
472 void visitCallBrInst(CallBrInst
&CBI
);
473 void visitSelectInst(SelectInst
&SI
);
474 void visitUserOp1(Instruction
&I
);
475 void visitUserOp2(Instruction
&I
) { visitUserOp1(I
); }
476 void visitIntrinsicCall(Intrinsic::ID ID
, CallBase
&Call
);
477 void visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic
&FPI
);
478 void visitDbgIntrinsic(StringRef Kind
, DbgVariableIntrinsic
&DII
);
479 void visitDbgLabelIntrinsic(StringRef Kind
, DbgLabelInst
&DLI
);
480 void visitAtomicCmpXchgInst(AtomicCmpXchgInst
&CXI
);
481 void visitAtomicRMWInst(AtomicRMWInst
&RMWI
);
482 void visitFenceInst(FenceInst
&FI
);
483 void visitAllocaInst(AllocaInst
&AI
);
484 void visitExtractValueInst(ExtractValueInst
&EVI
);
485 void visitInsertValueInst(InsertValueInst
&IVI
);
486 void visitEHPadPredecessors(Instruction
&I
);
487 void visitLandingPadInst(LandingPadInst
&LPI
);
488 void visitResumeInst(ResumeInst
&RI
);
489 void visitCatchPadInst(CatchPadInst
&CPI
);
490 void visitCatchReturnInst(CatchReturnInst
&CatchReturn
);
491 void visitCleanupPadInst(CleanupPadInst
&CPI
);
492 void visitFuncletPadInst(FuncletPadInst
&FPI
);
493 void visitCatchSwitchInst(CatchSwitchInst
&CatchSwitch
);
494 void visitCleanupReturnInst(CleanupReturnInst
&CRI
);
496 void verifySwiftErrorCall(CallBase
&Call
, const Value
*SwiftErrorVal
);
497 void verifySwiftErrorValue(const Value
*SwiftErrorVal
);
498 void verifyMustTailCall(CallInst
&CI
);
499 bool performTypeCheck(Intrinsic::ID ID
, Function
*F
, Type
*Ty
, int VT
,
500 unsigned ArgNo
, std::string
&Suffix
);
501 bool verifyAttributeCount(AttributeList Attrs
, unsigned Params
);
502 void verifyAttributeTypes(AttributeSet Attrs
, bool IsFunction
,
504 void verifyParameterAttrs(AttributeSet Attrs
, Type
*Ty
, const Value
*V
);
505 void verifyFunctionAttrs(FunctionType
*FT
, AttributeList Attrs
,
506 const Value
*V
, bool IsIntrinsic
);
507 void verifyFunctionMetadata(ArrayRef
<std::pair
<unsigned, MDNode
*>> MDs
);
509 void visitConstantExprsRecursively(const Constant
*EntryC
);
510 void visitConstantExpr(const ConstantExpr
*CE
);
511 void verifyStatepoint(const CallBase
&Call
);
512 void verifyFrameRecoverIndices();
513 void verifySiblingFuncletUnwinds();
515 void verifyFragmentExpression(const DbgVariableIntrinsic
&I
);
516 template <typename ValueOrMetadata
>
517 void verifyFragmentExpression(const DIVariable
&V
,
518 DIExpression::FragmentInfo Fragment
,
519 ValueOrMetadata
*Desc
);
520 void verifyFnArgs(const DbgVariableIntrinsic
&I
);
522 /// Module-level debug info verification...
523 void verifyCompileUnits();
525 /// Module-level verification that all @llvm.experimental.deoptimize
526 /// declarations share the same calling convention.
527 void verifyDeoptimizeCallingConvs();
529 /// Verify all-or-nothing property of DIFile source attribute within a CU.
530 void verifySourceDebugInfo(const DICompileUnit
&U
, const DIFile
&F
);
533 } // end anonymous namespace
535 /// We know that cond should be true, if not print an error message.
536 #define Assert(C, ...) \
537 do { if (!(C)) { CheckFailed(__VA_ARGS__); return; } } while (false)
539 /// We know that a debug info condition should be true, if not print
540 /// an error message.
541 #define AssertDI(C, ...) \
542 do { if (!(C)) { DebugInfoCheckFailed(__VA_ARGS__); return; } } while (false)
544 void Verifier::visit(Instruction
&I
) {
545 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
)
546 Assert(I
.getOperand(i
) != nullptr, "Operand is null", &I
);
547 InstVisitor
<Verifier
>::visit(I
);
550 // Helper to recursively iterate over indirect users. By
551 // returning false, the callback can ask to stop recursing
553 static void forEachUser(const Value
*User
,
554 SmallPtrSet
<const Value
*, 32> &Visited
,
555 llvm::function_ref
<bool(const Value
*)> Callback
) {
556 if (!Visited
.insert(User
).second
)
558 for (const Value
*TheNextUser
: User
->materialized_users())
559 if (Callback(TheNextUser
))
560 forEachUser(TheNextUser
, Visited
, Callback
);
563 void Verifier::visitGlobalValue(const GlobalValue
&GV
) {
564 Assert(!GV
.isDeclaration() || GV
.hasValidDeclarationLinkage(),
565 "Global is external, but doesn't have external or weak linkage!", &GV
);
567 Assert(GV
.getAlignment() <= Value::MaximumAlignment
,
568 "huge alignment values are unsupported", &GV
);
569 Assert(!GV
.hasAppendingLinkage() || isa
<GlobalVariable
>(GV
),
570 "Only global variables can have appending linkage!", &GV
);
572 if (GV
.hasAppendingLinkage()) {
573 const GlobalVariable
*GVar
= dyn_cast
<GlobalVariable
>(&GV
);
574 Assert(GVar
&& GVar
->getValueType()->isArrayTy(),
575 "Only global arrays can have appending linkage!", GVar
);
578 if (GV
.isDeclarationForLinker())
579 Assert(!GV
.hasComdat(), "Declaration may not be in a Comdat!", &GV
);
581 if (GV
.hasDLLImportStorageClass()) {
582 Assert(!GV
.isDSOLocal(),
583 "GlobalValue with DLLImport Storage is dso_local!", &GV
);
585 Assert((GV
.isDeclaration() && GV
.hasExternalLinkage()) ||
586 GV
.hasAvailableExternallyLinkage(),
587 "Global is marked as dllimport, but not external", &GV
);
590 if (GV
.hasLocalLinkage())
591 Assert(GV
.isDSOLocal(),
592 "GlobalValue with private or internal linkage must be dso_local!",
595 if (!GV
.hasDefaultVisibility() && !GV
.hasExternalWeakLinkage())
596 Assert(GV
.isDSOLocal(),
597 "GlobalValue with non default visibility must be dso_local!", &GV
);
599 forEachUser(&GV
, GlobalValueVisited
, [&](const Value
*V
) -> bool {
600 if (const Instruction
*I
= dyn_cast
<Instruction
>(V
)) {
601 if (!I
->getParent() || !I
->getParent()->getParent())
602 CheckFailed("Global is referenced by parentless instruction!", &GV
, &M
,
604 else if (I
->getParent()->getParent()->getParent() != &M
)
605 CheckFailed("Global is referenced in a different module!", &GV
, &M
, I
,
606 I
->getParent()->getParent(),
607 I
->getParent()->getParent()->getParent());
609 } else if (const Function
*F
= dyn_cast
<Function
>(V
)) {
610 if (F
->getParent() != &M
)
611 CheckFailed("Global is used by function in a different module", &GV
, &M
,
619 void Verifier::visitGlobalVariable(const GlobalVariable
&GV
) {
620 if (GV
.hasInitializer()) {
621 Assert(GV
.getInitializer()->getType() == GV
.getValueType(),
622 "Global variable initializer type does not match global "
625 // If the global has common linkage, it must have a zero initializer and
626 // cannot be constant.
627 if (GV
.hasCommonLinkage()) {
628 Assert(GV
.getInitializer()->isNullValue(),
629 "'common' global must have a zero initializer!", &GV
);
630 Assert(!GV
.isConstant(), "'common' global may not be marked constant!",
632 Assert(!GV
.hasComdat(), "'common' global may not be in a Comdat!", &GV
);
636 if (GV
.hasName() && (GV
.getName() == "llvm.global_ctors" ||
637 GV
.getName() == "llvm.global_dtors")) {
638 Assert(!GV
.hasInitializer() || GV
.hasAppendingLinkage(),
639 "invalid linkage for intrinsic global variable", &GV
);
640 // Don't worry about emitting an error for it not being an array,
641 // visitGlobalValue will complain on appending non-array.
642 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(GV
.getValueType())) {
643 StructType
*STy
= dyn_cast
<StructType
>(ATy
->getElementType());
644 PointerType
*FuncPtrTy
=
645 FunctionType::get(Type::getVoidTy(Context
), false)->
646 getPointerTo(DL
.getProgramAddressSpace());
648 (STy
->getNumElements() == 2 || STy
->getNumElements() == 3) &&
649 STy
->getTypeAtIndex(0u)->isIntegerTy(32) &&
650 STy
->getTypeAtIndex(1) == FuncPtrTy
,
651 "wrong type for intrinsic global variable", &GV
);
652 Assert(STy
->getNumElements() == 3,
653 "the third field of the element type is mandatory, "
654 "specify i8* null to migrate from the obsoleted 2-field form");
655 Type
*ETy
= STy
->getTypeAtIndex(2);
656 Assert(ETy
->isPointerTy() &&
657 cast
<PointerType
>(ETy
)->getElementType()->isIntegerTy(8),
658 "wrong type for intrinsic global variable", &GV
);
662 if (GV
.hasName() && (GV
.getName() == "llvm.used" ||
663 GV
.getName() == "llvm.compiler.used")) {
664 Assert(!GV
.hasInitializer() || GV
.hasAppendingLinkage(),
665 "invalid linkage for intrinsic global variable", &GV
);
666 Type
*GVType
= GV
.getValueType();
667 if (ArrayType
*ATy
= dyn_cast
<ArrayType
>(GVType
)) {
668 PointerType
*PTy
= dyn_cast
<PointerType
>(ATy
->getElementType());
669 Assert(PTy
, "wrong type for intrinsic global variable", &GV
);
670 if (GV
.hasInitializer()) {
671 const Constant
*Init
= GV
.getInitializer();
672 const ConstantArray
*InitArray
= dyn_cast
<ConstantArray
>(Init
);
673 Assert(InitArray
, "wrong initalizer for intrinsic global variable",
675 for (Value
*Op
: InitArray
->operands()) {
676 Value
*V
= Op
->stripPointerCasts();
677 Assert(isa
<GlobalVariable
>(V
) || isa
<Function
>(V
) ||
679 "invalid llvm.used member", V
);
680 Assert(V
->hasName(), "members of llvm.used must be named", V
);
686 // Visit any debug info attachments.
687 SmallVector
<MDNode
*, 1> MDs
;
688 GV
.getMetadata(LLVMContext::MD_dbg
, MDs
);
689 for (auto *MD
: MDs
) {
690 if (auto *GVE
= dyn_cast
<DIGlobalVariableExpression
>(MD
))
691 visitDIGlobalVariableExpression(*GVE
);
693 AssertDI(false, "!dbg attachment of global variable must be a "
694 "DIGlobalVariableExpression");
697 // Scalable vectors cannot be global variables, since we don't know
698 // the runtime size. If the global is a struct or an array containing
699 // scalable vectors, that will be caught by the isValidElementType methods
700 // in StructType or ArrayType instead.
701 if (auto *VTy
= dyn_cast
<VectorType
>(GV
.getValueType()))
702 Assert(!VTy
->isScalable(), "Globals cannot contain scalable vectors", &GV
);
704 if (!GV
.hasInitializer()) {
705 visitGlobalValue(GV
);
709 // Walk any aggregate initializers looking for bitcasts between address spaces
710 visitConstantExprsRecursively(GV
.getInitializer());
712 visitGlobalValue(GV
);
715 void Verifier::visitAliaseeSubExpr(const GlobalAlias
&GA
, const Constant
&C
) {
716 SmallPtrSet
<const GlobalAlias
*, 4> Visited
;
718 visitAliaseeSubExpr(Visited
, GA
, C
);
721 void Verifier::visitAliaseeSubExpr(SmallPtrSetImpl
<const GlobalAlias
*> &Visited
,
722 const GlobalAlias
&GA
, const Constant
&C
) {
723 if (const auto *GV
= dyn_cast
<GlobalValue
>(&C
)) {
724 Assert(!GV
->isDeclarationForLinker(), "Alias must point to a definition",
727 if (const auto *GA2
= dyn_cast
<GlobalAlias
>(GV
)) {
728 Assert(Visited
.insert(GA2
).second
, "Aliases cannot form a cycle", &GA
);
730 Assert(!GA2
->isInterposable(), "Alias cannot point to an interposable alias",
733 // Only continue verifying subexpressions of GlobalAliases.
734 // Do not recurse into global initializers.
739 if (const auto *CE
= dyn_cast
<ConstantExpr
>(&C
))
740 visitConstantExprsRecursively(CE
);
742 for (const Use
&U
: C
.operands()) {
744 if (const auto *GA2
= dyn_cast
<GlobalAlias
>(V
))
745 visitAliaseeSubExpr(Visited
, GA
, *GA2
->getAliasee());
746 else if (const auto *C2
= dyn_cast
<Constant
>(V
))
747 visitAliaseeSubExpr(Visited
, GA
, *C2
);
751 void Verifier::visitGlobalAlias(const GlobalAlias
&GA
) {
752 Assert(GlobalAlias::isValidLinkage(GA
.getLinkage()),
753 "Alias should have private, internal, linkonce, weak, linkonce_odr, "
754 "weak_odr, or external linkage!",
756 const Constant
*Aliasee
= GA
.getAliasee();
757 Assert(Aliasee
, "Aliasee cannot be NULL!", &GA
);
758 Assert(GA
.getType() == Aliasee
->getType(),
759 "Alias and aliasee types should match!", &GA
);
761 Assert(isa
<GlobalValue
>(Aliasee
) || isa
<ConstantExpr
>(Aliasee
),
762 "Aliasee should be either GlobalValue or ConstantExpr", &GA
);
764 visitAliaseeSubExpr(GA
, *Aliasee
);
766 visitGlobalValue(GA
);
769 void Verifier::visitNamedMDNode(const NamedMDNode
&NMD
) {
770 // There used to be various other llvm.dbg.* nodes, but we don't support
771 // upgrading them and we want to reserve the namespace for future uses.
772 if (NMD
.getName().startswith("llvm.dbg."))
773 AssertDI(NMD
.getName() == "llvm.dbg.cu",
774 "unrecognized named metadata node in the llvm.dbg namespace",
776 for (const MDNode
*MD
: NMD
.operands()) {
777 if (NMD
.getName() == "llvm.dbg.cu")
778 AssertDI(MD
&& isa
<DICompileUnit
>(MD
), "invalid compile unit", &NMD
, MD
);
787 void Verifier::visitMDNode(const MDNode
&MD
) {
788 // Only visit each node once. Metadata can be mutually recursive, so this
789 // avoids infinite recursion here, as well as being an optimization.
790 if (!MDNodes
.insert(&MD
).second
)
793 switch (MD
.getMetadataID()) {
795 llvm_unreachable("Invalid MDNode subclass");
796 case Metadata::MDTupleKind
:
798 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \
799 case Metadata::CLASS##Kind: \
800 visit##CLASS(cast<CLASS>(MD)); \
802 #include "llvm/IR/Metadata.def"
805 for (const Metadata
*Op
: MD
.operands()) {
808 Assert(!isa
<LocalAsMetadata
>(Op
), "Invalid operand for global metadata!",
810 if (auto *N
= dyn_cast
<MDNode
>(Op
)) {
814 if (auto *V
= dyn_cast
<ValueAsMetadata
>(Op
)) {
815 visitValueAsMetadata(*V
, nullptr);
820 // Check these last, so we diagnose problems in operands first.
821 Assert(!MD
.isTemporary(), "Expected no forward declarations!", &MD
);
822 Assert(MD
.isResolved(), "All nodes should be resolved!", &MD
);
825 void Verifier::visitValueAsMetadata(const ValueAsMetadata
&MD
, Function
*F
) {
826 Assert(MD
.getValue(), "Expected valid value", &MD
);
827 Assert(!MD
.getValue()->getType()->isMetadataTy(),
828 "Unexpected metadata round-trip through values", &MD
, MD
.getValue());
830 auto *L
= dyn_cast
<LocalAsMetadata
>(&MD
);
834 Assert(F
, "function-local metadata used outside a function", L
);
836 // If this was an instruction, bb, or argument, verify that it is in the
837 // function that we expect.
838 Function
*ActualF
= nullptr;
839 if (Instruction
*I
= dyn_cast
<Instruction
>(L
->getValue())) {
840 Assert(I
->getParent(), "function-local metadata not in basic block", L
, I
);
841 ActualF
= I
->getParent()->getParent();
842 } else if (BasicBlock
*BB
= dyn_cast
<BasicBlock
>(L
->getValue()))
843 ActualF
= BB
->getParent();
844 else if (Argument
*A
= dyn_cast
<Argument
>(L
->getValue()))
845 ActualF
= A
->getParent();
846 assert(ActualF
&& "Unimplemented function local metadata case!");
848 Assert(ActualF
== F
, "function-local metadata used in wrong function", L
);
851 void Verifier::visitMetadataAsValue(const MetadataAsValue
&MDV
, Function
*F
) {
852 Metadata
*MD
= MDV
.getMetadata();
853 if (auto *N
= dyn_cast
<MDNode
>(MD
)) {
858 // Only visit each node once. Metadata can be mutually recursive, so this
859 // avoids infinite recursion here, as well as being an optimization.
860 if (!MDNodes
.insert(MD
).second
)
863 if (auto *V
= dyn_cast
<ValueAsMetadata
>(MD
))
864 visitValueAsMetadata(*V
, F
);
867 static bool isType(const Metadata
*MD
) { return !MD
|| isa
<DIType
>(MD
); }
868 static bool isScope(const Metadata
*MD
) { return !MD
|| isa
<DIScope
>(MD
); }
869 static bool isDINode(const Metadata
*MD
) { return !MD
|| isa
<DINode
>(MD
); }
871 void Verifier::visitDILocation(const DILocation
&N
) {
872 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
873 "location requires a valid scope", &N
, N
.getRawScope());
874 if (auto *IA
= N
.getRawInlinedAt())
875 AssertDI(isa
<DILocation
>(IA
), "inlined-at should be a location", &N
, IA
);
876 if (auto *SP
= dyn_cast
<DISubprogram
>(N
.getRawScope()))
877 AssertDI(SP
->isDefinition(), "scope points into the type hierarchy", &N
);
880 void Verifier::visitGenericDINode(const GenericDINode
&N
) {
881 AssertDI(N
.getTag(), "invalid tag", &N
);
884 void Verifier::visitDIScope(const DIScope
&N
) {
885 if (auto *F
= N
.getRawFile())
886 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
889 void Verifier::visitDISubrange(const DISubrange
&N
) {
890 AssertDI(N
.getTag() == dwarf::DW_TAG_subrange_type
, "invalid tag", &N
);
891 auto Count
= N
.getCount();
892 AssertDI(Count
, "Count must either be a signed constant or a DIVariable",
894 AssertDI(!Count
.is
<ConstantInt
*>() ||
895 Count
.get
<ConstantInt
*>()->getSExtValue() >= -1,
896 "invalid subrange count", &N
);
899 void Verifier::visitDIEnumerator(const DIEnumerator
&N
) {
900 AssertDI(N
.getTag() == dwarf::DW_TAG_enumerator
, "invalid tag", &N
);
903 void Verifier::visitDIBasicType(const DIBasicType
&N
) {
904 AssertDI(N
.getTag() == dwarf::DW_TAG_base_type
||
905 N
.getTag() == dwarf::DW_TAG_unspecified_type
,
907 AssertDI(!(N
.isBigEndian() && N
.isLittleEndian()) ,
908 "has conflicting flags", &N
);
911 void Verifier::visitDIDerivedType(const DIDerivedType
&N
) {
912 // Common scope checks.
915 AssertDI(N
.getTag() == dwarf::DW_TAG_typedef
||
916 N
.getTag() == dwarf::DW_TAG_pointer_type
||
917 N
.getTag() == dwarf::DW_TAG_ptr_to_member_type
||
918 N
.getTag() == dwarf::DW_TAG_reference_type
||
919 N
.getTag() == dwarf::DW_TAG_rvalue_reference_type
||
920 N
.getTag() == dwarf::DW_TAG_const_type
||
921 N
.getTag() == dwarf::DW_TAG_volatile_type
||
922 N
.getTag() == dwarf::DW_TAG_restrict_type
||
923 N
.getTag() == dwarf::DW_TAG_atomic_type
||
924 N
.getTag() == dwarf::DW_TAG_member
||
925 N
.getTag() == dwarf::DW_TAG_inheritance
||
926 N
.getTag() == dwarf::DW_TAG_friend
,
928 if (N
.getTag() == dwarf::DW_TAG_ptr_to_member_type
) {
929 AssertDI(isType(N
.getRawExtraData()), "invalid pointer to member type", &N
,
930 N
.getRawExtraData());
933 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
934 AssertDI(isType(N
.getRawBaseType()), "invalid base type", &N
,
937 if (N
.getDWARFAddressSpace()) {
938 AssertDI(N
.getTag() == dwarf::DW_TAG_pointer_type
||
939 N
.getTag() == dwarf::DW_TAG_reference_type
||
940 N
.getTag() == dwarf::DW_TAG_rvalue_reference_type
,
941 "DWARF address space only applies to pointer or reference types",
946 /// Detect mutually exclusive flags.
947 static bool hasConflictingReferenceFlags(unsigned Flags
) {
948 return ((Flags
& DINode::FlagLValueReference
) &&
949 (Flags
& DINode::FlagRValueReference
)) ||
950 ((Flags
& DINode::FlagTypePassByValue
) &&
951 (Flags
& DINode::FlagTypePassByReference
));
954 void Verifier::visitTemplateParams(const MDNode
&N
, const Metadata
&RawParams
) {
955 auto *Params
= dyn_cast
<MDTuple
>(&RawParams
);
956 AssertDI(Params
, "invalid template params", &N
, &RawParams
);
957 for (Metadata
*Op
: Params
->operands()) {
958 AssertDI(Op
&& isa
<DITemplateParameter
>(Op
), "invalid template parameter",
963 void Verifier::visitDICompositeType(const DICompositeType
&N
) {
964 // Common scope checks.
967 AssertDI(N
.getTag() == dwarf::DW_TAG_array_type
||
968 N
.getTag() == dwarf::DW_TAG_structure_type
||
969 N
.getTag() == dwarf::DW_TAG_union_type
||
970 N
.getTag() == dwarf::DW_TAG_enumeration_type
||
971 N
.getTag() == dwarf::DW_TAG_class_type
||
972 N
.getTag() == dwarf::DW_TAG_variant_part
,
975 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
976 AssertDI(isType(N
.getRawBaseType()), "invalid base type", &N
,
979 AssertDI(!N
.getRawElements() || isa
<MDTuple
>(N
.getRawElements()),
980 "invalid composite elements", &N
, N
.getRawElements());
981 AssertDI(isType(N
.getRawVTableHolder()), "invalid vtable holder", &N
,
982 N
.getRawVTableHolder());
983 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
984 "invalid reference flags", &N
);
987 const DINodeArray Elements
= N
.getElements();
988 AssertDI(Elements
.size() == 1 &&
989 Elements
[0]->getTag() == dwarf::DW_TAG_subrange_type
,
990 "invalid vector, expected one element of type subrange", &N
);
993 if (auto *Params
= N
.getRawTemplateParams())
994 visitTemplateParams(N
, *Params
);
996 if (N
.getTag() == dwarf::DW_TAG_class_type
||
997 N
.getTag() == dwarf::DW_TAG_union_type
) {
998 AssertDI(N
.getFile() && !N
.getFile()->getFilename().empty(),
999 "class/union requires a filename", &N
, N
.getFile());
1002 if (auto *D
= N
.getRawDiscriminator()) {
1003 AssertDI(isa
<DIDerivedType
>(D
) && N
.getTag() == dwarf::DW_TAG_variant_part
,
1004 "discriminator can only appear on variant part");
1008 void Verifier::visitDISubroutineType(const DISubroutineType
&N
) {
1009 AssertDI(N
.getTag() == dwarf::DW_TAG_subroutine_type
, "invalid tag", &N
);
1010 if (auto *Types
= N
.getRawTypeArray()) {
1011 AssertDI(isa
<MDTuple
>(Types
), "invalid composite elements", &N
, Types
);
1012 for (Metadata
*Ty
: N
.getTypeArray()->operands()) {
1013 AssertDI(isType(Ty
), "invalid subroutine type ref", &N
, Types
, Ty
);
1016 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
1017 "invalid reference flags", &N
);
1020 void Verifier::visitDIFile(const DIFile
&N
) {
1021 AssertDI(N
.getTag() == dwarf::DW_TAG_file_type
, "invalid tag", &N
);
1022 Optional
<DIFile::ChecksumInfo
<StringRef
>> Checksum
= N
.getChecksum();
1024 AssertDI(Checksum
->Kind
<= DIFile::ChecksumKind::CSK_Last
,
1025 "invalid checksum kind", &N
);
1027 switch (Checksum
->Kind
) {
1028 case DIFile::CSK_MD5
:
1031 case DIFile::CSK_SHA1
:
1035 AssertDI(Checksum
->Value
.size() == Size
, "invalid checksum length", &N
);
1036 AssertDI(Checksum
->Value
.find_if_not(llvm::isHexDigit
) == StringRef::npos
,
1037 "invalid checksum", &N
);
1041 void Verifier::visitDICompileUnit(const DICompileUnit
&N
) {
1042 AssertDI(N
.isDistinct(), "compile units must be distinct", &N
);
1043 AssertDI(N
.getTag() == dwarf::DW_TAG_compile_unit
, "invalid tag", &N
);
1045 // Don't bother verifying the compilation directory or producer string
1046 // as those could be empty.
1047 AssertDI(N
.getRawFile() && isa
<DIFile
>(N
.getRawFile()), "invalid file", &N
,
1049 AssertDI(!N
.getFile()->getFilename().empty(), "invalid filename", &N
,
1052 verifySourceDebugInfo(N
, *N
.getFile());
1054 AssertDI((N
.getEmissionKind() <= DICompileUnit::LastEmissionKind
),
1055 "invalid emission kind", &N
);
1057 if (auto *Array
= N
.getRawEnumTypes()) {
1058 AssertDI(isa
<MDTuple
>(Array
), "invalid enum list", &N
, Array
);
1059 for (Metadata
*Op
: N
.getEnumTypes()->operands()) {
1060 auto *Enum
= dyn_cast_or_null
<DICompositeType
>(Op
);
1061 AssertDI(Enum
&& Enum
->getTag() == dwarf::DW_TAG_enumeration_type
,
1062 "invalid enum type", &N
, N
.getEnumTypes(), Op
);
1065 if (auto *Array
= N
.getRawRetainedTypes()) {
1066 AssertDI(isa
<MDTuple
>(Array
), "invalid retained type list", &N
, Array
);
1067 for (Metadata
*Op
: N
.getRetainedTypes()->operands()) {
1068 AssertDI(Op
&& (isa
<DIType
>(Op
) ||
1069 (isa
<DISubprogram
>(Op
) &&
1070 !cast
<DISubprogram
>(Op
)->isDefinition())),
1071 "invalid retained type", &N
, Op
);
1074 if (auto *Array
= N
.getRawGlobalVariables()) {
1075 AssertDI(isa
<MDTuple
>(Array
), "invalid global variable list", &N
, Array
);
1076 for (Metadata
*Op
: N
.getGlobalVariables()->operands()) {
1077 AssertDI(Op
&& (isa
<DIGlobalVariableExpression
>(Op
)),
1078 "invalid global variable ref", &N
, Op
);
1081 if (auto *Array
= N
.getRawImportedEntities()) {
1082 AssertDI(isa
<MDTuple
>(Array
), "invalid imported entity list", &N
, Array
);
1083 for (Metadata
*Op
: N
.getImportedEntities()->operands()) {
1084 AssertDI(Op
&& isa
<DIImportedEntity
>(Op
), "invalid imported entity ref",
1088 if (auto *Array
= N
.getRawMacros()) {
1089 AssertDI(isa
<MDTuple
>(Array
), "invalid macro list", &N
, Array
);
1090 for (Metadata
*Op
: N
.getMacros()->operands()) {
1091 AssertDI(Op
&& isa
<DIMacroNode
>(Op
), "invalid macro ref", &N
, Op
);
1094 CUVisited
.insert(&N
);
1097 void Verifier::visitDISubprogram(const DISubprogram
&N
) {
1098 AssertDI(N
.getTag() == dwarf::DW_TAG_subprogram
, "invalid tag", &N
);
1099 AssertDI(isScope(N
.getRawScope()), "invalid scope", &N
, N
.getRawScope());
1100 if (auto *F
= N
.getRawFile())
1101 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1103 AssertDI(N
.getLine() == 0, "line specified with no file", &N
, N
.getLine());
1104 if (auto *T
= N
.getRawType())
1105 AssertDI(isa
<DISubroutineType
>(T
), "invalid subroutine type", &N
, T
);
1106 AssertDI(isType(N
.getRawContainingType()), "invalid containing type", &N
,
1107 N
.getRawContainingType());
1108 if (auto *Params
= N
.getRawTemplateParams())
1109 visitTemplateParams(N
, *Params
);
1110 if (auto *S
= N
.getRawDeclaration())
1111 AssertDI(isa
<DISubprogram
>(S
) && !cast
<DISubprogram
>(S
)->isDefinition(),
1112 "invalid subprogram declaration", &N
, S
);
1113 if (auto *RawNode
= N
.getRawRetainedNodes()) {
1114 auto *Node
= dyn_cast
<MDTuple
>(RawNode
);
1115 AssertDI(Node
, "invalid retained nodes list", &N
, RawNode
);
1116 for (Metadata
*Op
: Node
->operands()) {
1117 AssertDI(Op
&& (isa
<DILocalVariable
>(Op
) || isa
<DILabel
>(Op
)),
1118 "invalid retained nodes, expected DILocalVariable or DILabel",
1122 AssertDI(!hasConflictingReferenceFlags(N
.getFlags()),
1123 "invalid reference flags", &N
);
1125 auto *Unit
= N
.getRawUnit();
1126 if (N
.isDefinition()) {
1127 // Subprogram definitions (not part of the type hierarchy).
1128 AssertDI(N
.isDistinct(), "subprogram definitions must be distinct", &N
);
1129 AssertDI(Unit
, "subprogram definitions must have a compile unit", &N
);
1130 AssertDI(isa
<DICompileUnit
>(Unit
), "invalid unit type", &N
, Unit
);
1132 verifySourceDebugInfo(*N
.getUnit(), *N
.getFile());
1134 // Subprogram declarations (part of the type hierarchy).
1135 AssertDI(!Unit
, "subprogram declarations must not have a compile unit", &N
);
1138 if (auto *RawThrownTypes
= N
.getRawThrownTypes()) {
1139 auto *ThrownTypes
= dyn_cast
<MDTuple
>(RawThrownTypes
);
1140 AssertDI(ThrownTypes
, "invalid thrown types list", &N
, RawThrownTypes
);
1141 for (Metadata
*Op
: ThrownTypes
->operands())
1142 AssertDI(Op
&& isa
<DIType
>(Op
), "invalid thrown type", &N
, ThrownTypes
,
1146 if (N
.areAllCallsDescribed())
1147 AssertDI(N
.isDefinition(),
1148 "DIFlagAllCallsDescribed must be attached to a definition");
1151 void Verifier::visitDILexicalBlockBase(const DILexicalBlockBase
&N
) {
1152 AssertDI(N
.getTag() == dwarf::DW_TAG_lexical_block
, "invalid tag", &N
);
1153 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1154 "invalid local scope", &N
, N
.getRawScope());
1155 if (auto *SP
= dyn_cast
<DISubprogram
>(N
.getRawScope()))
1156 AssertDI(SP
->isDefinition(), "scope points into the type hierarchy", &N
);
1159 void Verifier::visitDILexicalBlock(const DILexicalBlock
&N
) {
1160 visitDILexicalBlockBase(N
);
1162 AssertDI(N
.getLine() || !N
.getColumn(),
1163 "cannot have column info without line info", &N
);
1166 void Verifier::visitDILexicalBlockFile(const DILexicalBlockFile
&N
) {
1167 visitDILexicalBlockBase(N
);
1170 void Verifier::visitDICommonBlock(const DICommonBlock
&N
) {
1171 AssertDI(N
.getTag() == dwarf::DW_TAG_common_block
, "invalid tag", &N
);
1172 if (auto *S
= N
.getRawScope())
1173 AssertDI(isa
<DIScope
>(S
), "invalid scope ref", &N
, S
);
1174 if (auto *S
= N
.getRawDecl())
1175 AssertDI(isa
<DIGlobalVariable
>(S
), "invalid declaration", &N
, S
);
1178 void Verifier::visitDINamespace(const DINamespace
&N
) {
1179 AssertDI(N
.getTag() == dwarf::DW_TAG_namespace
, "invalid tag", &N
);
1180 if (auto *S
= N
.getRawScope())
1181 AssertDI(isa
<DIScope
>(S
), "invalid scope ref", &N
, S
);
1184 void Verifier::visitDIMacro(const DIMacro
&N
) {
1185 AssertDI(N
.getMacinfoType() == dwarf::DW_MACINFO_define
||
1186 N
.getMacinfoType() == dwarf::DW_MACINFO_undef
,
1187 "invalid macinfo type", &N
);
1188 AssertDI(!N
.getName().empty(), "anonymous macro", &N
);
1189 if (!N
.getValue().empty()) {
1190 assert(N
.getValue().data()[0] != ' ' && "Macro value has a space prefix");
1194 void Verifier::visitDIMacroFile(const DIMacroFile
&N
) {
1195 AssertDI(N
.getMacinfoType() == dwarf::DW_MACINFO_start_file
,
1196 "invalid macinfo type", &N
);
1197 if (auto *F
= N
.getRawFile())
1198 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1200 if (auto *Array
= N
.getRawElements()) {
1201 AssertDI(isa
<MDTuple
>(Array
), "invalid macro list", &N
, Array
);
1202 for (Metadata
*Op
: N
.getElements()->operands()) {
1203 AssertDI(Op
&& isa
<DIMacroNode
>(Op
), "invalid macro ref", &N
, Op
);
1208 void Verifier::visitDIModule(const DIModule
&N
) {
1209 AssertDI(N
.getTag() == dwarf::DW_TAG_module
, "invalid tag", &N
);
1210 AssertDI(!N
.getName().empty(), "anonymous module", &N
);
1213 void Verifier::visitDITemplateParameter(const DITemplateParameter
&N
) {
1214 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1217 void Verifier::visitDITemplateTypeParameter(const DITemplateTypeParameter
&N
) {
1218 visitDITemplateParameter(N
);
1220 AssertDI(N
.getTag() == dwarf::DW_TAG_template_type_parameter
, "invalid tag",
1224 void Verifier::visitDITemplateValueParameter(
1225 const DITemplateValueParameter
&N
) {
1226 visitDITemplateParameter(N
);
1228 AssertDI(N
.getTag() == dwarf::DW_TAG_template_value_parameter
||
1229 N
.getTag() == dwarf::DW_TAG_GNU_template_template_param
||
1230 N
.getTag() == dwarf::DW_TAG_GNU_template_parameter_pack
,
1234 void Verifier::visitDIVariable(const DIVariable
&N
) {
1235 if (auto *S
= N
.getRawScope())
1236 AssertDI(isa
<DIScope
>(S
), "invalid scope", &N
, S
);
1237 if (auto *F
= N
.getRawFile())
1238 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1241 void Verifier::visitDIGlobalVariable(const DIGlobalVariable
&N
) {
1242 // Checks common to all variables.
1245 AssertDI(N
.getTag() == dwarf::DW_TAG_variable
, "invalid tag", &N
);
1246 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1247 AssertDI(N
.getType(), "missing global variable type", &N
);
1248 if (auto *Member
= N
.getRawStaticDataMemberDeclaration()) {
1249 AssertDI(isa
<DIDerivedType
>(Member
),
1250 "invalid static data member declaration", &N
, Member
);
1254 void Verifier::visitDILocalVariable(const DILocalVariable
&N
) {
1255 // Checks common to all variables.
1258 AssertDI(isType(N
.getRawType()), "invalid type ref", &N
, N
.getRawType());
1259 AssertDI(N
.getTag() == dwarf::DW_TAG_variable
, "invalid tag", &N
);
1260 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1261 "local variable requires a valid scope", &N
, N
.getRawScope());
1262 if (auto Ty
= N
.getType())
1263 AssertDI(!isa
<DISubroutineType
>(Ty
), "invalid type", &N
, N
.getType());
1266 void Verifier::visitDILabel(const DILabel
&N
) {
1267 if (auto *S
= N
.getRawScope())
1268 AssertDI(isa
<DIScope
>(S
), "invalid scope", &N
, S
);
1269 if (auto *F
= N
.getRawFile())
1270 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1272 AssertDI(N
.getTag() == dwarf::DW_TAG_label
, "invalid tag", &N
);
1273 AssertDI(N
.getRawScope() && isa
<DILocalScope
>(N
.getRawScope()),
1274 "label requires a valid scope", &N
, N
.getRawScope());
1277 void Verifier::visitDIExpression(const DIExpression
&N
) {
1278 AssertDI(N
.isValid(), "invalid expression", &N
);
1281 void Verifier::visitDIGlobalVariableExpression(
1282 const DIGlobalVariableExpression
&GVE
) {
1283 AssertDI(GVE
.getVariable(), "missing variable");
1284 if (auto *Var
= GVE
.getVariable())
1285 visitDIGlobalVariable(*Var
);
1286 if (auto *Expr
= GVE
.getExpression()) {
1287 visitDIExpression(*Expr
);
1288 if (auto Fragment
= Expr
->getFragmentInfo())
1289 verifyFragmentExpression(*GVE
.getVariable(), *Fragment
, &GVE
);
1293 void Verifier::visitDIObjCProperty(const DIObjCProperty
&N
) {
1294 AssertDI(N
.getTag() == dwarf::DW_TAG_APPLE_property
, "invalid tag", &N
);
1295 if (auto *T
= N
.getRawType())
1296 AssertDI(isType(T
), "invalid type ref", &N
, T
);
1297 if (auto *F
= N
.getRawFile())
1298 AssertDI(isa
<DIFile
>(F
), "invalid file", &N
, F
);
1301 void Verifier::visitDIImportedEntity(const DIImportedEntity
&N
) {
1302 AssertDI(N
.getTag() == dwarf::DW_TAG_imported_module
||
1303 N
.getTag() == dwarf::DW_TAG_imported_declaration
,
1305 if (auto *S
= N
.getRawScope())
1306 AssertDI(isa
<DIScope
>(S
), "invalid scope for imported entity", &N
, S
);
1307 AssertDI(isDINode(N
.getRawEntity()), "invalid imported entity", &N
,
1311 void Verifier::visitComdat(const Comdat
&C
) {
1312 // In COFF the Module is invalid if the GlobalValue has private linkage.
1313 // Entities with private linkage don't have entries in the symbol table.
1314 if (TT
.isOSBinFormatCOFF())
1315 if (const GlobalValue
*GV
= M
.getNamedValue(C
.getName()))
1316 Assert(!GV
->hasPrivateLinkage(),
1317 "comdat global value has private linkage", GV
);
1320 void Verifier::visitModuleIdents(const Module
&M
) {
1321 const NamedMDNode
*Idents
= M
.getNamedMetadata("llvm.ident");
1325 // llvm.ident takes a list of metadata entry. Each entry has only one string.
1326 // Scan each llvm.ident entry and make sure that this requirement is met.
1327 for (const MDNode
*N
: Idents
->operands()) {
1328 Assert(N
->getNumOperands() == 1,
1329 "incorrect number of operands in llvm.ident metadata", N
);
1330 Assert(dyn_cast_or_null
<MDString
>(N
->getOperand(0)),
1331 ("invalid value for llvm.ident metadata entry operand"
1332 "(the operand should be a string)"),
1337 void Verifier::visitModuleCommandLines(const Module
&M
) {
1338 const NamedMDNode
*CommandLines
= M
.getNamedMetadata("llvm.commandline");
1342 // llvm.commandline takes a list of metadata entry. Each entry has only one
1343 // string. Scan each llvm.commandline entry and make sure that this
1344 // requirement is met.
1345 for (const MDNode
*N
: CommandLines
->operands()) {
1346 Assert(N
->getNumOperands() == 1,
1347 "incorrect number of operands in llvm.commandline metadata", N
);
1348 Assert(dyn_cast_or_null
<MDString
>(N
->getOperand(0)),
1349 ("invalid value for llvm.commandline metadata entry operand"
1350 "(the operand should be a string)"),
1355 void Verifier::visitModuleFlags(const Module
&M
) {
1356 const NamedMDNode
*Flags
= M
.getModuleFlagsMetadata();
1359 // Scan each flag, and track the flags and requirements.
1360 DenseMap
<const MDString
*, const MDNode
*> SeenIDs
;
1361 SmallVector
<const MDNode
*, 16> Requirements
;
1362 for (const MDNode
*MDN
: Flags
->operands())
1363 visitModuleFlag(MDN
, SeenIDs
, Requirements
);
1365 // Validate that the requirements in the module are valid.
1366 for (const MDNode
*Requirement
: Requirements
) {
1367 const MDString
*Flag
= cast
<MDString
>(Requirement
->getOperand(0));
1368 const Metadata
*ReqValue
= Requirement
->getOperand(1);
1370 const MDNode
*Op
= SeenIDs
.lookup(Flag
);
1372 CheckFailed("invalid requirement on flag, flag is not present in module",
1377 if (Op
->getOperand(2) != ReqValue
) {
1378 CheckFailed(("invalid requirement on flag, "
1379 "flag does not have the required value"),
1387 Verifier::visitModuleFlag(const MDNode
*Op
,
1388 DenseMap
<const MDString
*, const MDNode
*> &SeenIDs
,
1389 SmallVectorImpl
<const MDNode
*> &Requirements
) {
1390 // Each module flag should have three arguments, the merge behavior (a
1391 // constant int), the flag ID (an MDString), and the value.
1392 Assert(Op
->getNumOperands() == 3,
1393 "incorrect number of operands in module flag", Op
);
1394 Module::ModFlagBehavior MFB
;
1395 if (!Module::isValidModFlagBehavior(Op
->getOperand(0), MFB
)) {
1397 mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(0)),
1398 "invalid behavior operand in module flag (expected constant integer)",
1401 "invalid behavior operand in module flag (unexpected constant)",
1404 MDString
*ID
= dyn_cast_or_null
<MDString
>(Op
->getOperand(1));
1405 Assert(ID
, "invalid ID operand in module flag (expected metadata string)",
1408 // Sanity check the values for behaviors with additional requirements.
1411 case Module::Warning
:
1412 case Module::Override
:
1413 // These behavior types accept any value.
1417 Assert(mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2)),
1418 "invalid value for 'max' module flag (expected constant integer)",
1423 case Module::Require
: {
1424 // The value should itself be an MDNode with two operands, a flag ID (an
1425 // MDString), and a value.
1426 MDNode
*Value
= dyn_cast
<MDNode
>(Op
->getOperand(2));
1427 Assert(Value
&& Value
->getNumOperands() == 2,
1428 "invalid value for 'require' module flag (expected metadata pair)",
1430 Assert(isa
<MDString
>(Value
->getOperand(0)),
1431 ("invalid value for 'require' module flag "
1432 "(first value operand should be a string)"),
1433 Value
->getOperand(0));
1435 // Append it to the list of requirements, to check once all module flags are
1437 Requirements
.push_back(Value
);
1441 case Module::Append
:
1442 case Module::AppendUnique
: {
1443 // These behavior types require the operand be an MDNode.
1444 Assert(isa
<MDNode
>(Op
->getOperand(2)),
1445 "invalid value for 'append'-type module flag "
1446 "(expected a metadata node)",
1452 // Unless this is a "requires" flag, check the ID is unique.
1453 if (MFB
!= Module::Require
) {
1454 bool Inserted
= SeenIDs
.insert(std::make_pair(ID
, Op
)).second
;
1456 "module flag identifiers must be unique (or of 'require' type)", ID
);
1459 if (ID
->getString() == "wchar_size") {
1461 = mdconst::dyn_extract_or_null
<ConstantInt
>(Op
->getOperand(2));
1462 Assert(Value
, "wchar_size metadata requires constant integer argument");
1465 if (ID
->getString() == "Linker Options") {
1466 // If the llvm.linker.options named metadata exists, we assume that the
1467 // bitcode reader has upgraded the module flag. Otherwise the flag might
1468 // have been created by a client directly.
1469 Assert(M
.getNamedMetadata("llvm.linker.options"),
1470 "'Linker Options' named metadata no longer supported");
1473 if (ID
->getString() == "CG Profile") {
1474 for (const MDOperand
&MDO
: cast
<MDNode
>(Op
->getOperand(2))->operands())
1475 visitModuleFlagCGProfileEntry(MDO
);
1479 void Verifier::visitModuleFlagCGProfileEntry(const MDOperand
&MDO
) {
1480 auto CheckFunction
= [&](const MDOperand
&FuncMDO
) {
1483 auto F
= dyn_cast
<ValueAsMetadata
>(FuncMDO
);
1484 Assert(F
&& isa
<Function
>(F
->getValue()), "expected a Function or null",
1487 auto Node
= dyn_cast_or_null
<MDNode
>(MDO
);
1488 Assert(Node
&& Node
->getNumOperands() == 3, "expected a MDNode triple", MDO
);
1489 CheckFunction(Node
->getOperand(0));
1490 CheckFunction(Node
->getOperand(1));
1491 auto Count
= dyn_cast_or_null
<ConstantAsMetadata
>(Node
->getOperand(2));
1492 Assert(Count
&& Count
->getType()->isIntegerTy(),
1493 "expected an integer constant", Node
->getOperand(2));
1496 /// Return true if this attribute kind only applies to functions.
1497 static bool isFuncOnlyAttr(Attribute::AttrKind Kind
) {
1499 case Attribute::NoReturn
:
1500 case Attribute::NoSync
:
1501 case Attribute::WillReturn
:
1502 case Attribute::NoCfCheck
:
1503 case Attribute::NoUnwind
:
1504 case Attribute::NoInline
:
1505 case Attribute::NoFree
:
1506 case Attribute::AlwaysInline
:
1507 case Attribute::OptimizeForSize
:
1508 case Attribute::StackProtect
:
1509 case Attribute::StackProtectReq
:
1510 case Attribute::StackProtectStrong
:
1511 case Attribute::SafeStack
:
1512 case Attribute::ShadowCallStack
:
1513 case Attribute::NoRedZone
:
1514 case Attribute::NoImplicitFloat
:
1515 case Attribute::Naked
:
1516 case Attribute::InlineHint
:
1517 case Attribute::StackAlignment
:
1518 case Attribute::UWTable
:
1519 case Attribute::NonLazyBind
:
1520 case Attribute::ReturnsTwice
:
1521 case Attribute::SanitizeAddress
:
1522 case Attribute::SanitizeHWAddress
:
1523 case Attribute::SanitizeMemTag
:
1524 case Attribute::SanitizeThread
:
1525 case Attribute::SanitizeMemory
:
1526 case Attribute::MinSize
:
1527 case Attribute::NoDuplicate
:
1528 case Attribute::Builtin
:
1529 case Attribute::NoBuiltin
:
1530 case Attribute::Cold
:
1531 case Attribute::OptForFuzzing
:
1532 case Attribute::OptimizeNone
:
1533 case Attribute::JumpTable
:
1534 case Attribute::Convergent
:
1535 case Attribute::ArgMemOnly
:
1536 case Attribute::NoRecurse
:
1537 case Attribute::InaccessibleMemOnly
:
1538 case Attribute::InaccessibleMemOrArgMemOnly
:
1539 case Attribute::AllocSize
:
1540 case Attribute::SpeculativeLoadHardening
:
1541 case Attribute::Speculatable
:
1542 case Attribute::StrictFP
:
1550 /// Return true if this is a function attribute that can also appear on
1552 static bool isFuncOrArgAttr(Attribute::AttrKind Kind
) {
1553 return Kind
== Attribute::ReadOnly
|| Kind
== Attribute::WriteOnly
||
1554 Kind
== Attribute::ReadNone
;
1557 void Verifier::verifyAttributeTypes(AttributeSet Attrs
, bool IsFunction
,
1559 for (Attribute A
: Attrs
) {
1560 if (A
.isStringAttribute())
1563 if (isFuncOnlyAttr(A
.getKindAsEnum())) {
1565 CheckFailed("Attribute '" + A
.getAsString() +
1566 "' only applies to functions!",
1570 } else if (IsFunction
&& !isFuncOrArgAttr(A
.getKindAsEnum())) {
1571 CheckFailed("Attribute '" + A
.getAsString() +
1572 "' does not apply to functions!",
1579 // VerifyParameterAttrs - Check the given attributes for an argument or return
1580 // value of the specified type. The value V is printed in error messages.
1581 void Verifier::verifyParameterAttrs(AttributeSet Attrs
, Type
*Ty
,
1583 if (!Attrs
.hasAttributes())
1586 verifyAttributeTypes(Attrs
, /*IsFunction=*/false, V
);
1588 if (Attrs
.hasAttribute(Attribute::ImmArg
)) {
1589 Assert(Attrs
.getNumAttributes() == 1,
1590 "Attribute 'immarg' is incompatible with other attributes", V
);
1593 // Check for mutually incompatible attributes. Only inreg is compatible with
1595 unsigned AttrCount
= 0;
1596 AttrCount
+= Attrs
.hasAttribute(Attribute::ByVal
);
1597 AttrCount
+= Attrs
.hasAttribute(Attribute::InAlloca
);
1598 AttrCount
+= Attrs
.hasAttribute(Attribute::StructRet
) ||
1599 Attrs
.hasAttribute(Attribute::InReg
);
1600 AttrCount
+= Attrs
.hasAttribute(Attribute::Nest
);
1601 Assert(AttrCount
<= 1, "Attributes 'byval', 'inalloca', 'inreg', 'nest', "
1602 "and 'sret' are incompatible!",
1605 Assert(!(Attrs
.hasAttribute(Attribute::InAlloca
) &&
1606 Attrs
.hasAttribute(Attribute::ReadOnly
)),
1608 "'inalloca and readonly' are incompatible!",
1611 Assert(!(Attrs
.hasAttribute(Attribute::StructRet
) &&
1612 Attrs
.hasAttribute(Attribute::Returned
)),
1614 "'sret and returned' are incompatible!",
1617 Assert(!(Attrs
.hasAttribute(Attribute::ZExt
) &&
1618 Attrs
.hasAttribute(Attribute::SExt
)),
1620 "'zeroext and signext' are incompatible!",
1623 Assert(!(Attrs
.hasAttribute(Attribute::ReadNone
) &&
1624 Attrs
.hasAttribute(Attribute::ReadOnly
)),
1626 "'readnone and readonly' are incompatible!",
1629 Assert(!(Attrs
.hasAttribute(Attribute::ReadNone
) &&
1630 Attrs
.hasAttribute(Attribute::WriteOnly
)),
1632 "'readnone and writeonly' are incompatible!",
1635 Assert(!(Attrs
.hasAttribute(Attribute::ReadOnly
) &&
1636 Attrs
.hasAttribute(Attribute::WriteOnly
)),
1638 "'readonly and writeonly' are incompatible!",
1641 Assert(!(Attrs
.hasAttribute(Attribute::NoInline
) &&
1642 Attrs
.hasAttribute(Attribute::AlwaysInline
)),
1644 "'noinline and alwaysinline' are incompatible!",
1647 if (Attrs
.hasAttribute(Attribute::ByVal
) && Attrs
.getByValType()) {
1648 Assert(Attrs
.getByValType() == cast
<PointerType
>(Ty
)->getElementType(),
1649 "Attribute 'byval' type does not match parameter!", V
);
1652 AttrBuilder IncompatibleAttrs
= AttributeFuncs::typeIncompatible(Ty
);
1653 Assert(!AttrBuilder(Attrs
).overlaps(IncompatibleAttrs
),
1654 "Wrong types for attribute: " +
1655 AttributeSet::get(Context
, IncompatibleAttrs
).getAsString(),
1658 if (PointerType
*PTy
= dyn_cast
<PointerType
>(Ty
)) {
1659 SmallPtrSet
<Type
*, 4> Visited
;
1660 if (!PTy
->getElementType()->isSized(&Visited
)) {
1661 Assert(!Attrs
.hasAttribute(Attribute::ByVal
) &&
1662 !Attrs
.hasAttribute(Attribute::InAlloca
),
1663 "Attributes 'byval' and 'inalloca' do not support unsized types!",
1666 if (!isa
<PointerType
>(PTy
->getElementType()))
1667 Assert(!Attrs
.hasAttribute(Attribute::SwiftError
),
1668 "Attribute 'swifterror' only applies to parameters "
1669 "with pointer to pointer type!",
1672 Assert(!Attrs
.hasAttribute(Attribute::ByVal
),
1673 "Attribute 'byval' only applies to parameters with pointer type!",
1675 Assert(!Attrs
.hasAttribute(Attribute::SwiftError
),
1676 "Attribute 'swifterror' only applies to parameters "
1677 "with pointer type!",
1682 // Check parameter attributes against a function type.
1683 // The value V is printed in error messages.
1684 void Verifier::verifyFunctionAttrs(FunctionType
*FT
, AttributeList Attrs
,
1685 const Value
*V
, bool IsIntrinsic
) {
1686 if (Attrs
.isEmpty())
1689 bool SawNest
= false;
1690 bool SawReturned
= false;
1691 bool SawSRet
= false;
1692 bool SawSwiftSelf
= false;
1693 bool SawSwiftError
= false;
1695 // Verify return value attributes.
1696 AttributeSet RetAttrs
= Attrs
.getRetAttributes();
1697 Assert((!RetAttrs
.hasAttribute(Attribute::ByVal
) &&
1698 !RetAttrs
.hasAttribute(Attribute::Nest
) &&
1699 !RetAttrs
.hasAttribute(Attribute::StructRet
) &&
1700 !RetAttrs
.hasAttribute(Attribute::NoCapture
) &&
1701 !RetAttrs
.hasAttribute(Attribute::Returned
) &&
1702 !RetAttrs
.hasAttribute(Attribute::InAlloca
) &&
1703 !RetAttrs
.hasAttribute(Attribute::SwiftSelf
) &&
1704 !RetAttrs
.hasAttribute(Attribute::SwiftError
)),
1705 "Attributes 'byval', 'inalloca', 'nest', 'sret', 'nocapture', "
1706 "'returned', 'swiftself', and 'swifterror' do not apply to return "
1709 Assert((!RetAttrs
.hasAttribute(Attribute::ReadOnly
) &&
1710 !RetAttrs
.hasAttribute(Attribute::WriteOnly
) &&
1711 !RetAttrs
.hasAttribute(Attribute::ReadNone
)),
1712 "Attribute '" + RetAttrs
.getAsString() +
1713 "' does not apply to function returns",
1715 verifyParameterAttrs(RetAttrs
, FT
->getReturnType(), V
);
1717 // Verify parameter attributes.
1718 for (unsigned i
= 0, e
= FT
->getNumParams(); i
!= e
; ++i
) {
1719 Type
*Ty
= FT
->getParamType(i
);
1720 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(i
);
1723 Assert(!ArgAttrs
.hasAttribute(Attribute::ImmArg
),
1724 "immarg attribute only applies to intrinsics",V
);
1727 verifyParameterAttrs(ArgAttrs
, Ty
, V
);
1729 if (ArgAttrs
.hasAttribute(Attribute::Nest
)) {
1730 Assert(!SawNest
, "More than one parameter has attribute nest!", V
);
1734 if (ArgAttrs
.hasAttribute(Attribute::Returned
)) {
1735 Assert(!SawReturned
, "More than one parameter has attribute returned!",
1737 Assert(Ty
->canLosslesslyBitCastTo(FT
->getReturnType()),
1738 "Incompatible argument and return types for 'returned' attribute",
1743 if (ArgAttrs
.hasAttribute(Attribute::StructRet
)) {
1744 Assert(!SawSRet
, "Cannot have multiple 'sret' parameters!", V
);
1745 Assert(i
== 0 || i
== 1,
1746 "Attribute 'sret' is not on first or second parameter!", V
);
1750 if (ArgAttrs
.hasAttribute(Attribute::SwiftSelf
)) {
1751 Assert(!SawSwiftSelf
, "Cannot have multiple 'swiftself' parameters!", V
);
1752 SawSwiftSelf
= true;
1755 if (ArgAttrs
.hasAttribute(Attribute::SwiftError
)) {
1756 Assert(!SawSwiftError
, "Cannot have multiple 'swifterror' parameters!",
1758 SawSwiftError
= true;
1761 if (ArgAttrs
.hasAttribute(Attribute::InAlloca
)) {
1762 Assert(i
== FT
->getNumParams() - 1,
1763 "inalloca isn't on the last parameter!", V
);
1767 if (!Attrs
.hasAttributes(AttributeList::FunctionIndex
))
1770 verifyAttributeTypes(Attrs
.getFnAttributes(), /*IsFunction=*/true, V
);
1772 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1773 Attrs
.hasFnAttribute(Attribute::ReadOnly
)),
1774 "Attributes 'readnone and readonly' are incompatible!", V
);
1776 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1777 Attrs
.hasFnAttribute(Attribute::WriteOnly
)),
1778 "Attributes 'readnone and writeonly' are incompatible!", V
);
1780 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadOnly
) &&
1781 Attrs
.hasFnAttribute(Attribute::WriteOnly
)),
1782 "Attributes 'readonly and writeonly' are incompatible!", V
);
1784 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1785 Attrs
.hasFnAttribute(Attribute::InaccessibleMemOrArgMemOnly
)),
1786 "Attributes 'readnone and inaccessiblemem_or_argmemonly' are "
1790 Assert(!(Attrs
.hasFnAttribute(Attribute::ReadNone
) &&
1791 Attrs
.hasFnAttribute(Attribute::InaccessibleMemOnly
)),
1792 "Attributes 'readnone and inaccessiblememonly' are incompatible!", V
);
1794 Assert(!(Attrs
.hasFnAttribute(Attribute::NoInline
) &&
1795 Attrs
.hasFnAttribute(Attribute::AlwaysInline
)),
1796 "Attributes 'noinline and alwaysinline' are incompatible!", V
);
1798 if (Attrs
.hasFnAttribute(Attribute::OptimizeNone
)) {
1799 Assert(Attrs
.hasFnAttribute(Attribute::NoInline
),
1800 "Attribute 'optnone' requires 'noinline'!", V
);
1802 Assert(!Attrs
.hasFnAttribute(Attribute::OptimizeForSize
),
1803 "Attributes 'optsize and optnone' are incompatible!", V
);
1805 Assert(!Attrs
.hasFnAttribute(Attribute::MinSize
),
1806 "Attributes 'minsize and optnone' are incompatible!", V
);
1809 if (Attrs
.hasFnAttribute(Attribute::JumpTable
)) {
1810 const GlobalValue
*GV
= cast
<GlobalValue
>(V
);
1811 Assert(GV
->hasGlobalUnnamedAddr(),
1812 "Attribute 'jumptable' requires 'unnamed_addr'", V
);
1815 if (Attrs
.hasFnAttribute(Attribute::AllocSize
)) {
1816 std::pair
<unsigned, Optional
<unsigned>> Args
=
1817 Attrs
.getAllocSizeArgs(AttributeList::FunctionIndex
);
1819 auto CheckParam
= [&](StringRef Name
, unsigned ParamNo
) {
1820 if (ParamNo
>= FT
->getNumParams()) {
1821 CheckFailed("'allocsize' " + Name
+ " argument is out of bounds", V
);
1825 if (!FT
->getParamType(ParamNo
)->isIntegerTy()) {
1826 CheckFailed("'allocsize' " + Name
+
1827 " argument must refer to an integer parameter",
1835 if (!CheckParam("element size", Args
.first
))
1838 if (Args
.second
&& !CheckParam("number of elements", *Args
.second
))
1843 void Verifier::verifyFunctionMetadata(
1844 ArrayRef
<std::pair
<unsigned, MDNode
*>> MDs
) {
1845 for (const auto &Pair
: MDs
) {
1846 if (Pair
.first
== LLVMContext::MD_prof
) {
1847 MDNode
*MD
= Pair
.second
;
1848 Assert(MD
->getNumOperands() >= 2,
1849 "!prof annotations should have no less than 2 operands", MD
);
1851 // Check first operand.
1852 Assert(MD
->getOperand(0) != nullptr, "first operand should not be null",
1854 Assert(isa
<MDString
>(MD
->getOperand(0)),
1855 "expected string with name of the !prof annotation", MD
);
1856 MDString
*MDS
= cast
<MDString
>(MD
->getOperand(0));
1857 StringRef ProfName
= MDS
->getString();
1858 Assert(ProfName
.equals("function_entry_count") ||
1859 ProfName
.equals("synthetic_function_entry_count"),
1860 "first operand should be 'function_entry_count'"
1861 " or 'synthetic_function_entry_count'",
1864 // Check second operand.
1865 Assert(MD
->getOperand(1) != nullptr, "second operand should not be null",
1867 Assert(isa
<ConstantAsMetadata
>(MD
->getOperand(1)),
1868 "expected integer argument to function_entry_count", MD
);
1873 void Verifier::visitConstantExprsRecursively(const Constant
*EntryC
) {
1874 if (!ConstantExprVisited
.insert(EntryC
).second
)
1877 SmallVector
<const Constant
*, 16> Stack
;
1878 Stack
.push_back(EntryC
);
1880 while (!Stack
.empty()) {
1881 const Constant
*C
= Stack
.pop_back_val();
1883 // Check this constant expression.
1884 if (const auto *CE
= dyn_cast
<ConstantExpr
>(C
))
1885 visitConstantExpr(CE
);
1887 if (const auto *GV
= dyn_cast
<GlobalValue
>(C
)) {
1888 // Global Values get visited separately, but we do need to make sure
1889 // that the global value is in the correct module
1890 Assert(GV
->getParent() == &M
, "Referencing global in another module!",
1891 EntryC
, &M
, GV
, GV
->getParent());
1895 // Visit all sub-expressions.
1896 for (const Use
&U
: C
->operands()) {
1897 const auto *OpC
= dyn_cast
<Constant
>(U
);
1900 if (!ConstantExprVisited
.insert(OpC
).second
)
1902 Stack
.push_back(OpC
);
1907 void Verifier::visitConstantExpr(const ConstantExpr
*CE
) {
1908 if (CE
->getOpcode() == Instruction::BitCast
)
1909 Assert(CastInst::castIsValid(Instruction::BitCast
, CE
->getOperand(0),
1911 "Invalid bitcast", CE
);
1913 if (CE
->getOpcode() == Instruction::IntToPtr
||
1914 CE
->getOpcode() == Instruction::PtrToInt
) {
1915 auto *PtrTy
= CE
->getOpcode() == Instruction::IntToPtr
1917 : CE
->getOperand(0)->getType();
1918 StringRef Msg
= CE
->getOpcode() == Instruction::IntToPtr
1919 ? "inttoptr not supported for non-integral pointers"
1920 : "ptrtoint not supported for non-integral pointers";
1922 !DL
.isNonIntegralPointerType(cast
<PointerType
>(PtrTy
->getScalarType())),
1927 bool Verifier::verifyAttributeCount(AttributeList Attrs
, unsigned Params
) {
1928 // There shouldn't be more attribute sets than there are parameters plus the
1929 // function and return value.
1930 return Attrs
.getNumAttrSets() <= Params
+ 2;
1933 /// Verify that statepoint intrinsic is well formed.
1934 void Verifier::verifyStatepoint(const CallBase
&Call
) {
1935 assert(Call
.getCalledFunction() &&
1936 Call
.getCalledFunction()->getIntrinsicID() ==
1937 Intrinsic::experimental_gc_statepoint
);
1939 Assert(!Call
.doesNotAccessMemory() && !Call
.onlyReadsMemory() &&
1940 !Call
.onlyAccessesArgMemory(),
1941 "gc.statepoint must read and write all memory to preserve "
1942 "reordering restrictions required by safepoint semantics",
1945 const int64_t NumPatchBytes
=
1946 cast
<ConstantInt
>(Call
.getArgOperand(1))->getSExtValue();
1947 assert(isInt
<32>(NumPatchBytes
) && "NumPatchBytesV is an i32!");
1948 Assert(NumPatchBytes
>= 0,
1949 "gc.statepoint number of patchable bytes must be "
1953 const Value
*Target
= Call
.getArgOperand(2);
1954 auto *PT
= dyn_cast
<PointerType
>(Target
->getType());
1955 Assert(PT
&& PT
->getElementType()->isFunctionTy(),
1956 "gc.statepoint callee must be of function pointer type", Call
, Target
);
1957 FunctionType
*TargetFuncType
= cast
<FunctionType
>(PT
->getElementType());
1959 const int NumCallArgs
= cast
<ConstantInt
>(Call
.getArgOperand(3))->getZExtValue();
1960 Assert(NumCallArgs
>= 0,
1961 "gc.statepoint number of arguments to underlying call "
1964 const int NumParams
= (int)TargetFuncType
->getNumParams();
1965 if (TargetFuncType
->isVarArg()) {
1966 Assert(NumCallArgs
>= NumParams
,
1967 "gc.statepoint mismatch in number of vararg call args", Call
);
1969 // TODO: Remove this limitation
1970 Assert(TargetFuncType
->getReturnType()->isVoidTy(),
1971 "gc.statepoint doesn't support wrapping non-void "
1972 "vararg functions yet",
1975 Assert(NumCallArgs
== NumParams
,
1976 "gc.statepoint mismatch in number of call args", Call
);
1978 const uint64_t Flags
1979 = cast
<ConstantInt
>(Call
.getArgOperand(4))->getZExtValue();
1980 Assert((Flags
& ~(uint64_t)StatepointFlags::MaskAll
) == 0,
1981 "unknown flag used in gc.statepoint flags argument", Call
);
1983 // Verify that the types of the call parameter arguments match
1984 // the type of the wrapped callee.
1985 AttributeList Attrs
= Call
.getAttributes();
1986 for (int i
= 0; i
< NumParams
; i
++) {
1987 Type
*ParamType
= TargetFuncType
->getParamType(i
);
1988 Type
*ArgType
= Call
.getArgOperand(5 + i
)->getType();
1989 Assert(ArgType
== ParamType
,
1990 "gc.statepoint call argument does not match wrapped "
1994 if (TargetFuncType
->isVarArg()) {
1995 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(5 + i
);
1996 Assert(!ArgAttrs
.hasAttribute(Attribute::StructRet
),
1997 "Attribute 'sret' cannot be used for vararg call arguments!",
2002 const int EndCallArgsInx
= 4 + NumCallArgs
;
2004 const Value
*NumTransitionArgsV
= Call
.getArgOperand(EndCallArgsInx
+ 1);
2005 Assert(isa
<ConstantInt
>(NumTransitionArgsV
),
2006 "gc.statepoint number of transition arguments "
2007 "must be constant integer",
2009 const int NumTransitionArgs
=
2010 cast
<ConstantInt
>(NumTransitionArgsV
)->getZExtValue();
2011 Assert(NumTransitionArgs
>= 0,
2012 "gc.statepoint number of transition arguments must be positive", Call
);
2013 const int EndTransitionArgsInx
= EndCallArgsInx
+ 1 + NumTransitionArgs
;
2015 const Value
*NumDeoptArgsV
= Call
.getArgOperand(EndTransitionArgsInx
+ 1);
2016 Assert(isa
<ConstantInt
>(NumDeoptArgsV
),
2017 "gc.statepoint number of deoptimization arguments "
2018 "must be constant integer",
2020 const int NumDeoptArgs
= cast
<ConstantInt
>(NumDeoptArgsV
)->getZExtValue();
2021 Assert(NumDeoptArgs
>= 0,
2022 "gc.statepoint number of deoptimization arguments "
2026 const int ExpectedNumArgs
=
2027 7 + NumCallArgs
+ NumTransitionArgs
+ NumDeoptArgs
;
2028 Assert(ExpectedNumArgs
<= (int)Call
.arg_size(),
2029 "gc.statepoint too few arguments according to length fields", Call
);
2031 // Check that the only uses of this gc.statepoint are gc.result or
2032 // gc.relocate calls which are tied to this statepoint and thus part
2033 // of the same statepoint sequence
2034 for (const User
*U
: Call
.users()) {
2035 const CallInst
*UserCall
= dyn_cast
<const CallInst
>(U
);
2036 Assert(UserCall
, "illegal use of statepoint token", Call
, U
);
2039 Assert(isa
<GCRelocateInst
>(UserCall
) || isa
<GCResultInst
>(UserCall
),
2040 "gc.result or gc.relocate are the only value uses "
2041 "of a gc.statepoint",
2043 if (isa
<GCResultInst
>(UserCall
)) {
2044 Assert(UserCall
->getArgOperand(0) == &Call
,
2045 "gc.result connected to wrong gc.statepoint", Call
, UserCall
);
2046 } else if (isa
<GCRelocateInst
>(Call
)) {
2047 Assert(UserCall
->getArgOperand(0) == &Call
,
2048 "gc.relocate connected to wrong gc.statepoint", Call
, UserCall
);
2052 // Note: It is legal for a single derived pointer to be listed multiple
2053 // times. It's non-optimal, but it is legal. It can also happen after
2054 // insertion if we strip a bitcast away.
2055 // Note: It is really tempting to check that each base is relocated and
2056 // that a derived pointer is never reused as a base pointer. This turns
2057 // out to be problematic since optimizations run after safepoint insertion
2058 // can recognize equality properties that the insertion logic doesn't know
2059 // about. See example statepoint.ll in the verifier subdirectory
2062 void Verifier::verifyFrameRecoverIndices() {
2063 for (auto &Counts
: FrameEscapeInfo
) {
2064 Function
*F
= Counts
.first
;
2065 unsigned EscapedObjectCount
= Counts
.second
.first
;
2066 unsigned MaxRecoveredIndex
= Counts
.second
.second
;
2067 Assert(MaxRecoveredIndex
<= EscapedObjectCount
,
2068 "all indices passed to llvm.localrecover must be less than the "
2069 "number of arguments passed to llvm.localescape in the parent "
2075 static Instruction
*getSuccPad(Instruction
*Terminator
) {
2076 BasicBlock
*UnwindDest
;
2077 if (auto *II
= dyn_cast
<InvokeInst
>(Terminator
))
2078 UnwindDest
= II
->getUnwindDest();
2079 else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(Terminator
))
2080 UnwindDest
= CSI
->getUnwindDest();
2082 UnwindDest
= cast
<CleanupReturnInst
>(Terminator
)->getUnwindDest();
2083 return UnwindDest
->getFirstNonPHI();
2086 void Verifier::verifySiblingFuncletUnwinds() {
2087 SmallPtrSet
<Instruction
*, 8> Visited
;
2088 SmallPtrSet
<Instruction
*, 8> Active
;
2089 for (const auto &Pair
: SiblingFuncletInfo
) {
2090 Instruction
*PredPad
= Pair
.first
;
2091 if (Visited
.count(PredPad
))
2093 Active
.insert(PredPad
);
2094 Instruction
*Terminator
= Pair
.second
;
2096 Instruction
*SuccPad
= getSuccPad(Terminator
);
2097 if (Active
.count(SuccPad
)) {
2098 // Found a cycle; report error
2099 Instruction
*CyclePad
= SuccPad
;
2100 SmallVector
<Instruction
*, 8> CycleNodes
;
2102 CycleNodes
.push_back(CyclePad
);
2103 Instruction
*CycleTerminator
= SiblingFuncletInfo
[CyclePad
];
2104 if (CycleTerminator
!= CyclePad
)
2105 CycleNodes
.push_back(CycleTerminator
);
2106 CyclePad
= getSuccPad(CycleTerminator
);
2107 } while (CyclePad
!= SuccPad
);
2108 Assert(false, "EH pads can't handle each other's exceptions",
2109 ArrayRef
<Instruction
*>(CycleNodes
));
2111 // Don't re-walk a node we've already checked
2112 if (!Visited
.insert(SuccPad
).second
)
2114 // Walk to this successor if it has a map entry.
2116 auto TermI
= SiblingFuncletInfo
.find(PredPad
);
2117 if (TermI
== SiblingFuncletInfo
.end())
2119 Terminator
= TermI
->second
;
2120 Active
.insert(PredPad
);
2122 // Each node only has one successor, so we've walked all the active
2123 // nodes' successors.
2128 // visitFunction - Verify that a function is ok.
2130 void Verifier::visitFunction(const Function
&F
) {
2131 visitGlobalValue(F
);
2133 // Check function arguments.
2134 FunctionType
*FT
= F
.getFunctionType();
2135 unsigned NumArgs
= F
.arg_size();
2137 Assert(&Context
== &F
.getContext(),
2138 "Function context does not match Module context!", &F
);
2140 Assert(!F
.hasCommonLinkage(), "Functions may not have common linkage", &F
);
2141 Assert(FT
->getNumParams() == NumArgs
,
2142 "# formal arguments must match # of arguments for function type!", &F
,
2144 Assert(F
.getReturnType()->isFirstClassType() ||
2145 F
.getReturnType()->isVoidTy() || F
.getReturnType()->isStructTy(),
2146 "Functions cannot return aggregate values!", &F
);
2148 Assert(!F
.hasStructRetAttr() || F
.getReturnType()->isVoidTy(),
2149 "Invalid struct return type!", &F
);
2151 AttributeList Attrs
= F
.getAttributes();
2153 Assert(verifyAttributeCount(Attrs
, FT
->getNumParams()),
2154 "Attribute after last parameter!", &F
);
2156 bool isLLVMdotName
= F
.getName().size() >= 5 &&
2157 F
.getName().substr(0, 5) == "llvm.";
2159 // Check function attributes.
2160 verifyFunctionAttrs(FT
, Attrs
, &F
, isLLVMdotName
);
2162 // On function declarations/definitions, we do not support the builtin
2163 // attribute. We do not check this in VerifyFunctionAttrs since that is
2164 // checking for Attributes that can/can not ever be on functions.
2165 Assert(!Attrs
.hasFnAttribute(Attribute::Builtin
),
2166 "Attribute 'builtin' can only be applied to a callsite.", &F
);
2168 // Check that this function meets the restrictions on this calling convention.
2169 // Sometimes varargs is used for perfectly forwarding thunks, so some of these
2170 // restrictions can be lifted.
2171 switch (F
.getCallingConv()) {
2173 case CallingConv::C
:
2175 case CallingConv::AMDGPU_KERNEL
:
2176 case CallingConv::SPIR_KERNEL
:
2177 Assert(F
.getReturnType()->isVoidTy(),
2178 "Calling convention requires void return type", &F
);
2180 case CallingConv::AMDGPU_VS
:
2181 case CallingConv::AMDGPU_HS
:
2182 case CallingConv::AMDGPU_GS
:
2183 case CallingConv::AMDGPU_PS
:
2184 case CallingConv::AMDGPU_CS
:
2185 Assert(!F
.hasStructRetAttr(),
2186 "Calling convention does not allow sret", &F
);
2188 case CallingConv::Fast
:
2189 case CallingConv::Cold
:
2190 case CallingConv::Intel_OCL_BI
:
2191 case CallingConv::PTX_Kernel
:
2192 case CallingConv::PTX_Device
:
2193 Assert(!F
.isVarArg(), "Calling convention does not support varargs or "
2194 "perfect forwarding!",
2199 // Check that the argument values match the function type for this function...
2201 for (const Argument
&Arg
: F
.args()) {
2202 Assert(Arg
.getType() == FT
->getParamType(i
),
2203 "Argument value does not match function argument type!", &Arg
,
2204 FT
->getParamType(i
));
2205 Assert(Arg
.getType()->isFirstClassType(),
2206 "Function arguments must have first-class types!", &Arg
);
2207 if (!isLLVMdotName
) {
2208 Assert(!Arg
.getType()->isMetadataTy(),
2209 "Function takes metadata but isn't an intrinsic", &Arg
, &F
);
2210 Assert(!Arg
.getType()->isTokenTy(),
2211 "Function takes token but isn't an intrinsic", &Arg
, &F
);
2214 // Check that swifterror argument is only used by loads and stores.
2215 if (Attrs
.hasParamAttribute(i
, Attribute::SwiftError
)) {
2216 verifySwiftErrorValue(&Arg
);
2222 Assert(!F
.getReturnType()->isTokenTy(),
2223 "Functions returns a token but isn't an intrinsic", &F
);
2225 // Get the function metadata attachments.
2226 SmallVector
<std::pair
<unsigned, MDNode
*>, 4> MDs
;
2227 F
.getAllMetadata(MDs
);
2228 assert(F
.hasMetadata() != MDs
.empty() && "Bit out-of-sync");
2229 verifyFunctionMetadata(MDs
);
2231 // Check validity of the personality function
2232 if (F
.hasPersonalityFn()) {
2233 auto *Per
= dyn_cast
<Function
>(F
.getPersonalityFn()->stripPointerCasts());
2235 Assert(Per
->getParent() == F
.getParent(),
2236 "Referencing personality function in another module!",
2237 &F
, F
.getParent(), Per
, Per
->getParent());
2240 if (F
.isMaterializable()) {
2241 // Function has a body somewhere we can't see.
2242 Assert(MDs
.empty(), "unmaterialized function cannot have metadata", &F
,
2243 MDs
.empty() ? nullptr : MDs
.front().second
);
2244 } else if (F
.isDeclaration()) {
2245 for (const auto &I
: MDs
) {
2246 // This is used for call site debug information.
2247 AssertDI(I
.first
!= LLVMContext::MD_dbg
||
2248 !cast
<DISubprogram
>(I
.second
)->isDistinct(),
2249 "function declaration may only have a unique !dbg attachment",
2251 Assert(I
.first
!= LLVMContext::MD_prof
,
2252 "function declaration may not have a !prof attachment", &F
);
2254 // Verify the metadata itself.
2255 visitMDNode(*I
.second
);
2257 Assert(!F
.hasPersonalityFn(),
2258 "Function declaration shouldn't have a personality routine", &F
);
2260 // Verify that this function (which has a body) is not named "llvm.*". It
2261 // is not legal to define intrinsics.
2262 Assert(!isLLVMdotName
, "llvm intrinsics cannot be defined!", &F
);
2264 // Check the entry node
2265 const BasicBlock
*Entry
= &F
.getEntryBlock();
2266 Assert(pred_empty(Entry
),
2267 "Entry block to function must not have predecessors!", Entry
);
2269 // The address of the entry block cannot be taken, unless it is dead.
2270 if (Entry
->hasAddressTaken()) {
2271 Assert(!BlockAddress::lookup(Entry
)->isConstantUsed(),
2272 "blockaddress may not be used with the entry block!", Entry
);
2275 unsigned NumDebugAttachments
= 0, NumProfAttachments
= 0;
2276 // Visit metadata attachments.
2277 for (const auto &I
: MDs
) {
2278 // Verify that the attachment is legal.
2282 case LLVMContext::MD_dbg
: {
2283 ++NumDebugAttachments
;
2284 AssertDI(NumDebugAttachments
== 1,
2285 "function must have a single !dbg attachment", &F
, I
.second
);
2286 AssertDI(isa
<DISubprogram
>(I
.second
),
2287 "function !dbg attachment must be a subprogram", &F
, I
.second
);
2288 auto *SP
= cast
<DISubprogram
>(I
.second
);
2289 const Function
*&AttachedTo
= DISubprogramAttachments
[SP
];
2290 AssertDI(!AttachedTo
|| AttachedTo
== &F
,
2291 "DISubprogram attached to more than one function", SP
, &F
);
2295 case LLVMContext::MD_prof
:
2296 ++NumProfAttachments
;
2297 Assert(NumProfAttachments
== 1,
2298 "function must have a single !prof attachment", &F
, I
.second
);
2302 // Verify the metadata itself.
2303 visitMDNode(*I
.second
);
2307 // If this function is actually an intrinsic, verify that it is only used in
2308 // direct call/invokes, never having its "address taken".
2309 // Only do this if the module is materialized, otherwise we don't have all the
2311 if (F
.getIntrinsicID() && F
.getParent()->isMaterialized()) {
2313 if (F
.hasAddressTaken(&U
))
2314 Assert(false, "Invalid user of intrinsic instruction!", U
);
2317 auto *N
= F
.getSubprogram();
2318 HasDebugInfo
= (N
!= nullptr);
2322 // Check that all !dbg attachments lead to back to N (or, at least, another
2323 // subprogram that describes the same function).
2325 // FIXME: Check this incrementally while visiting !dbg attachments.
2326 // FIXME: Only check when N is the canonical subprogram for F.
2327 SmallPtrSet
<const MDNode
*, 32> Seen
;
2328 auto VisitDebugLoc
= [&](const Instruction
&I
, const MDNode
*Node
) {
2329 // Be careful about using DILocation here since we might be dealing with
2330 // broken code (this is the Verifier after all).
2331 const DILocation
*DL
= dyn_cast_or_null
<DILocation
>(Node
);
2334 if (!Seen
.insert(DL
).second
)
2337 Metadata
*Parent
= DL
->getRawScope();
2338 AssertDI(Parent
&& isa
<DILocalScope
>(Parent
),
2339 "DILocation's scope must be a DILocalScope", N
, &F
, &I
, DL
,
2341 DILocalScope
*Scope
= DL
->getInlinedAtScope();
2342 if (Scope
&& !Seen
.insert(Scope
).second
)
2345 DISubprogram
*SP
= Scope
? Scope
->getSubprogram() : nullptr;
2347 // Scope and SP could be the same MDNode and we don't want to skip
2348 // validation in that case
2349 if (SP
&& ((Scope
!= SP
) && !Seen
.insert(SP
).second
))
2352 // FIXME: Once N is canonical, check "SP == &N".
2353 AssertDI(SP
->describes(&F
),
2354 "!dbg attachment points at wrong subprogram for function", N
, &F
,
2358 for (auto &I
: BB
) {
2359 VisitDebugLoc(I
, I
.getDebugLoc().getAsMDNode());
2360 // The llvm.loop annotations also contain two DILocations.
2361 if (auto MD
= I
.getMetadata(LLVMContext::MD_loop
))
2362 for (unsigned i
= 1; i
< MD
->getNumOperands(); ++i
)
2363 VisitDebugLoc(I
, dyn_cast_or_null
<MDNode
>(MD
->getOperand(i
)));
2364 if (BrokenDebugInfo
)
2369 // verifyBasicBlock - Verify that a basic block is well formed...
2371 void Verifier::visitBasicBlock(BasicBlock
&BB
) {
2372 InstsInThisBlock
.clear();
2374 // Ensure that basic blocks have terminators!
2375 Assert(BB
.getTerminator(), "Basic Block does not have terminator!", &BB
);
2377 // Check constraints that this basic block imposes on all of the PHI nodes in
2379 if (isa
<PHINode
>(BB
.front())) {
2380 SmallVector
<BasicBlock
*, 8> Preds(pred_begin(&BB
), pred_end(&BB
));
2381 SmallVector
<std::pair
<BasicBlock
*, Value
*>, 8> Values
;
2383 for (const PHINode
&PN
: BB
.phis()) {
2384 // Ensure that PHI nodes have at least one entry!
2385 Assert(PN
.getNumIncomingValues() != 0,
2386 "PHI nodes must have at least one entry. If the block is dead, "
2387 "the PHI should be removed!",
2389 Assert(PN
.getNumIncomingValues() == Preds
.size(),
2390 "PHINode should have one entry for each predecessor of its "
2391 "parent basic block!",
2394 // Get and sort all incoming values in the PHI node...
2396 Values
.reserve(PN
.getNumIncomingValues());
2397 for (unsigned i
= 0, e
= PN
.getNumIncomingValues(); i
!= e
; ++i
)
2399 std::make_pair(PN
.getIncomingBlock(i
), PN
.getIncomingValue(i
)));
2402 for (unsigned i
= 0, e
= Values
.size(); i
!= e
; ++i
) {
2403 // Check to make sure that if there is more than one entry for a
2404 // particular basic block in this PHI node, that the incoming values are
2407 Assert(i
== 0 || Values
[i
].first
!= Values
[i
- 1].first
||
2408 Values
[i
].second
== Values
[i
- 1].second
,
2409 "PHI node has multiple entries for the same basic block with "
2410 "different incoming values!",
2411 &PN
, Values
[i
].first
, Values
[i
].second
, Values
[i
- 1].second
);
2413 // Check to make sure that the predecessors and PHI node entries are
2415 Assert(Values
[i
].first
== Preds
[i
],
2416 "PHI node entries do not match predecessors!", &PN
,
2417 Values
[i
].first
, Preds
[i
]);
2422 // Check that all instructions have their parent pointers set up correctly.
2425 Assert(I
.getParent() == &BB
, "Instruction has bogus parent pointer!");
2429 void Verifier::visitTerminator(Instruction
&I
) {
2430 // Ensure that terminators only exist at the end of the basic block.
2431 Assert(&I
== I
.getParent()->getTerminator(),
2432 "Terminator found in the middle of a basic block!", I
.getParent());
2433 visitInstruction(I
);
2436 void Verifier::visitBranchInst(BranchInst
&BI
) {
2437 if (BI
.isConditional()) {
2438 Assert(BI
.getCondition()->getType()->isIntegerTy(1),
2439 "Branch condition is not 'i1' type!", &BI
, BI
.getCondition());
2441 visitTerminator(BI
);
2444 void Verifier::visitReturnInst(ReturnInst
&RI
) {
2445 Function
*F
= RI
.getParent()->getParent();
2446 unsigned N
= RI
.getNumOperands();
2447 if (F
->getReturnType()->isVoidTy())
2449 "Found return instr that returns non-void in Function of void "
2451 &RI
, F
->getReturnType());
2453 Assert(N
== 1 && F
->getReturnType() == RI
.getOperand(0)->getType(),
2454 "Function return type does not match operand "
2455 "type of return inst!",
2456 &RI
, F
->getReturnType());
2458 // Check to make sure that the return value has necessary properties for
2460 visitTerminator(RI
);
2463 void Verifier::visitSwitchInst(SwitchInst
&SI
) {
2464 // Check to make sure that all of the constants in the switch instruction
2465 // have the same type as the switched-on value.
2466 Type
*SwitchTy
= SI
.getCondition()->getType();
2467 SmallPtrSet
<ConstantInt
*, 32> Constants
;
2468 for (auto &Case
: SI
.cases()) {
2469 Assert(Case
.getCaseValue()->getType() == SwitchTy
,
2470 "Switch constants must all be same type as switch value!", &SI
);
2471 Assert(Constants
.insert(Case
.getCaseValue()).second
,
2472 "Duplicate integer as switch case", &SI
, Case
.getCaseValue());
2475 visitTerminator(SI
);
2478 void Verifier::visitIndirectBrInst(IndirectBrInst
&BI
) {
2479 Assert(BI
.getAddress()->getType()->isPointerTy(),
2480 "Indirectbr operand must have pointer type!", &BI
);
2481 for (unsigned i
= 0, e
= BI
.getNumDestinations(); i
!= e
; ++i
)
2482 Assert(BI
.getDestination(i
)->getType()->isLabelTy(),
2483 "Indirectbr destinations must all have pointer type!", &BI
);
2485 visitTerminator(BI
);
2488 void Verifier::visitCallBrInst(CallBrInst
&CBI
) {
2489 Assert(CBI
.isInlineAsm(), "Callbr is currently only used for asm-goto!",
2491 Assert(CBI
.getType()->isVoidTy(), "Callbr return value is not supported!",
2493 for (unsigned i
= 0, e
= CBI
.getNumSuccessors(); i
!= e
; ++i
)
2494 Assert(CBI
.getSuccessor(i
)->getType()->isLabelTy(),
2495 "Callbr successors must all have pointer type!", &CBI
);
2496 for (unsigned i
= 0, e
= CBI
.getNumOperands(); i
!= e
; ++i
) {
2497 Assert(i
>= CBI
.getNumArgOperands() || !isa
<BasicBlock
>(CBI
.getOperand(i
)),
2498 "Using an unescaped label as a callbr argument!", &CBI
);
2499 if (isa
<BasicBlock
>(CBI
.getOperand(i
)))
2500 for (unsigned j
= i
+ 1; j
!= e
; ++j
)
2501 Assert(CBI
.getOperand(i
) != CBI
.getOperand(j
),
2502 "Duplicate callbr destination!", &CBI
);
2505 visitTerminator(CBI
);
2508 void Verifier::visitSelectInst(SelectInst
&SI
) {
2509 Assert(!SelectInst::areInvalidOperands(SI
.getOperand(0), SI
.getOperand(1),
2511 "Invalid operands for select instruction!", &SI
);
2513 Assert(SI
.getTrueValue()->getType() == SI
.getType(),
2514 "Select values must have same type as select instruction!", &SI
);
2515 visitInstruction(SI
);
2518 /// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
2519 /// a pass, if any exist, it's an error.
2521 void Verifier::visitUserOp1(Instruction
&I
) {
2522 Assert(false, "User-defined operators should not live outside of a pass!", &I
);
2525 void Verifier::visitTruncInst(TruncInst
&I
) {
2526 // Get the source and destination types
2527 Type
*SrcTy
= I
.getOperand(0)->getType();
2528 Type
*DestTy
= I
.getType();
2530 // Get the size of the types in bits, we'll need this later
2531 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2532 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2534 Assert(SrcTy
->isIntOrIntVectorTy(), "Trunc only operates on integer", &I
);
2535 Assert(DestTy
->isIntOrIntVectorTy(), "Trunc only produces integer", &I
);
2536 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2537 "trunc source and destination must both be a vector or neither", &I
);
2538 Assert(SrcBitSize
> DestBitSize
, "DestTy too big for Trunc", &I
);
2540 visitInstruction(I
);
2543 void Verifier::visitZExtInst(ZExtInst
&I
) {
2544 // Get the source and destination types
2545 Type
*SrcTy
= I
.getOperand(0)->getType();
2546 Type
*DestTy
= I
.getType();
2548 // Get the size of the types in bits, we'll need this later
2549 Assert(SrcTy
->isIntOrIntVectorTy(), "ZExt only operates on integer", &I
);
2550 Assert(DestTy
->isIntOrIntVectorTy(), "ZExt only produces an integer", &I
);
2551 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2552 "zext source and destination must both be a vector or neither", &I
);
2553 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2554 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2556 Assert(SrcBitSize
< DestBitSize
, "Type too small for ZExt", &I
);
2558 visitInstruction(I
);
2561 void Verifier::visitSExtInst(SExtInst
&I
) {
2562 // Get the source and destination types
2563 Type
*SrcTy
= I
.getOperand(0)->getType();
2564 Type
*DestTy
= I
.getType();
2566 // Get the size of the types in bits, we'll need this later
2567 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2568 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2570 Assert(SrcTy
->isIntOrIntVectorTy(), "SExt only operates on integer", &I
);
2571 Assert(DestTy
->isIntOrIntVectorTy(), "SExt only produces an integer", &I
);
2572 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2573 "sext source and destination must both be a vector or neither", &I
);
2574 Assert(SrcBitSize
< DestBitSize
, "Type too small for SExt", &I
);
2576 visitInstruction(I
);
2579 void Verifier::visitFPTruncInst(FPTruncInst
&I
) {
2580 // Get the source and destination types
2581 Type
*SrcTy
= I
.getOperand(0)->getType();
2582 Type
*DestTy
= I
.getType();
2583 // Get the size of the types in bits, we'll need this later
2584 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2585 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2587 Assert(SrcTy
->isFPOrFPVectorTy(), "FPTrunc only operates on FP", &I
);
2588 Assert(DestTy
->isFPOrFPVectorTy(), "FPTrunc only produces an FP", &I
);
2589 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2590 "fptrunc source and destination must both be a vector or neither", &I
);
2591 Assert(SrcBitSize
> DestBitSize
, "DestTy too big for FPTrunc", &I
);
2593 visitInstruction(I
);
2596 void Verifier::visitFPExtInst(FPExtInst
&I
) {
2597 // Get the source and destination types
2598 Type
*SrcTy
= I
.getOperand(0)->getType();
2599 Type
*DestTy
= I
.getType();
2601 // Get the size of the types in bits, we'll need this later
2602 unsigned SrcBitSize
= SrcTy
->getScalarSizeInBits();
2603 unsigned DestBitSize
= DestTy
->getScalarSizeInBits();
2605 Assert(SrcTy
->isFPOrFPVectorTy(), "FPExt only operates on FP", &I
);
2606 Assert(DestTy
->isFPOrFPVectorTy(), "FPExt only produces an FP", &I
);
2607 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(),
2608 "fpext source and destination must both be a vector or neither", &I
);
2609 Assert(SrcBitSize
< DestBitSize
, "DestTy too small for FPExt", &I
);
2611 visitInstruction(I
);
2614 void Verifier::visitUIToFPInst(UIToFPInst
&I
) {
2615 // Get the source and destination types
2616 Type
*SrcTy
= I
.getOperand(0)->getType();
2617 Type
*DestTy
= I
.getType();
2619 bool SrcVec
= SrcTy
->isVectorTy();
2620 bool DstVec
= DestTy
->isVectorTy();
2622 Assert(SrcVec
== DstVec
,
2623 "UIToFP source and dest must both be vector or scalar", &I
);
2624 Assert(SrcTy
->isIntOrIntVectorTy(),
2625 "UIToFP source must be integer or integer vector", &I
);
2626 Assert(DestTy
->isFPOrFPVectorTy(), "UIToFP result must be FP or FP vector",
2629 if (SrcVec
&& DstVec
)
2630 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2631 cast
<VectorType
>(DestTy
)->getNumElements(),
2632 "UIToFP source and dest vector length mismatch", &I
);
2634 visitInstruction(I
);
2637 void Verifier::visitSIToFPInst(SIToFPInst
&I
) {
2638 // Get the source and destination types
2639 Type
*SrcTy
= I
.getOperand(0)->getType();
2640 Type
*DestTy
= I
.getType();
2642 bool SrcVec
= SrcTy
->isVectorTy();
2643 bool DstVec
= DestTy
->isVectorTy();
2645 Assert(SrcVec
== DstVec
,
2646 "SIToFP source and dest must both be vector or scalar", &I
);
2647 Assert(SrcTy
->isIntOrIntVectorTy(),
2648 "SIToFP source must be integer or integer vector", &I
);
2649 Assert(DestTy
->isFPOrFPVectorTy(), "SIToFP result must be FP or FP vector",
2652 if (SrcVec
&& DstVec
)
2653 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2654 cast
<VectorType
>(DestTy
)->getNumElements(),
2655 "SIToFP source and dest vector length mismatch", &I
);
2657 visitInstruction(I
);
2660 void Verifier::visitFPToUIInst(FPToUIInst
&I
) {
2661 // Get the source and destination types
2662 Type
*SrcTy
= I
.getOperand(0)->getType();
2663 Type
*DestTy
= I
.getType();
2665 bool SrcVec
= SrcTy
->isVectorTy();
2666 bool DstVec
= DestTy
->isVectorTy();
2668 Assert(SrcVec
== DstVec
,
2669 "FPToUI source and dest must both be vector or scalar", &I
);
2670 Assert(SrcTy
->isFPOrFPVectorTy(), "FPToUI source must be FP or FP vector",
2672 Assert(DestTy
->isIntOrIntVectorTy(),
2673 "FPToUI result must be integer or integer vector", &I
);
2675 if (SrcVec
&& DstVec
)
2676 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2677 cast
<VectorType
>(DestTy
)->getNumElements(),
2678 "FPToUI source and dest vector length mismatch", &I
);
2680 visitInstruction(I
);
2683 void Verifier::visitFPToSIInst(FPToSIInst
&I
) {
2684 // Get the source and destination types
2685 Type
*SrcTy
= I
.getOperand(0)->getType();
2686 Type
*DestTy
= I
.getType();
2688 bool SrcVec
= SrcTy
->isVectorTy();
2689 bool DstVec
= DestTy
->isVectorTy();
2691 Assert(SrcVec
== DstVec
,
2692 "FPToSI source and dest must both be vector or scalar", &I
);
2693 Assert(SrcTy
->isFPOrFPVectorTy(), "FPToSI source must be FP or FP vector",
2695 Assert(DestTy
->isIntOrIntVectorTy(),
2696 "FPToSI result must be integer or integer vector", &I
);
2698 if (SrcVec
&& DstVec
)
2699 Assert(cast
<VectorType
>(SrcTy
)->getNumElements() ==
2700 cast
<VectorType
>(DestTy
)->getNumElements(),
2701 "FPToSI source and dest vector length mismatch", &I
);
2703 visitInstruction(I
);
2706 void Verifier::visitPtrToIntInst(PtrToIntInst
&I
) {
2707 // Get the source and destination types
2708 Type
*SrcTy
= I
.getOperand(0)->getType();
2709 Type
*DestTy
= I
.getType();
2711 Assert(SrcTy
->isPtrOrPtrVectorTy(), "PtrToInt source must be pointer", &I
);
2713 if (auto *PTy
= dyn_cast
<PointerType
>(SrcTy
->getScalarType()))
2714 Assert(!DL
.isNonIntegralPointerType(PTy
),
2715 "ptrtoint not supported for non-integral pointers");
2717 Assert(DestTy
->isIntOrIntVectorTy(), "PtrToInt result must be integral", &I
);
2718 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(), "PtrToInt type mismatch",
2721 if (SrcTy
->isVectorTy()) {
2722 VectorType
*VSrc
= dyn_cast
<VectorType
>(SrcTy
);
2723 VectorType
*VDest
= dyn_cast
<VectorType
>(DestTy
);
2724 Assert(VSrc
->getNumElements() == VDest
->getNumElements(),
2725 "PtrToInt Vector width mismatch", &I
);
2728 visitInstruction(I
);
2731 void Verifier::visitIntToPtrInst(IntToPtrInst
&I
) {
2732 // Get the source and destination types
2733 Type
*SrcTy
= I
.getOperand(0)->getType();
2734 Type
*DestTy
= I
.getType();
2736 Assert(SrcTy
->isIntOrIntVectorTy(),
2737 "IntToPtr source must be an integral", &I
);
2738 Assert(DestTy
->isPtrOrPtrVectorTy(), "IntToPtr result must be a pointer", &I
);
2740 if (auto *PTy
= dyn_cast
<PointerType
>(DestTy
->getScalarType()))
2741 Assert(!DL
.isNonIntegralPointerType(PTy
),
2742 "inttoptr not supported for non-integral pointers");
2744 Assert(SrcTy
->isVectorTy() == DestTy
->isVectorTy(), "IntToPtr type mismatch",
2746 if (SrcTy
->isVectorTy()) {
2747 VectorType
*VSrc
= dyn_cast
<VectorType
>(SrcTy
);
2748 VectorType
*VDest
= dyn_cast
<VectorType
>(DestTy
);
2749 Assert(VSrc
->getNumElements() == VDest
->getNumElements(),
2750 "IntToPtr Vector width mismatch", &I
);
2752 visitInstruction(I
);
2755 void Verifier::visitBitCastInst(BitCastInst
&I
) {
2757 CastInst::castIsValid(Instruction::BitCast
, I
.getOperand(0), I
.getType()),
2758 "Invalid bitcast", &I
);
2759 visitInstruction(I
);
2762 void Verifier::visitAddrSpaceCastInst(AddrSpaceCastInst
&I
) {
2763 Type
*SrcTy
= I
.getOperand(0)->getType();
2764 Type
*DestTy
= I
.getType();
2766 Assert(SrcTy
->isPtrOrPtrVectorTy(), "AddrSpaceCast source must be a pointer",
2768 Assert(DestTy
->isPtrOrPtrVectorTy(), "AddrSpaceCast result must be a pointer",
2770 Assert(SrcTy
->getPointerAddressSpace() != DestTy
->getPointerAddressSpace(),
2771 "AddrSpaceCast must be between different address spaces", &I
);
2772 if (SrcTy
->isVectorTy())
2773 Assert(SrcTy
->getVectorNumElements() == DestTy
->getVectorNumElements(),
2774 "AddrSpaceCast vector pointer number of elements mismatch", &I
);
2775 visitInstruction(I
);
2778 /// visitPHINode - Ensure that a PHI node is well formed.
2780 void Verifier::visitPHINode(PHINode
&PN
) {
2781 // Ensure that the PHI nodes are all grouped together at the top of the block.
2782 // This can be tested by checking whether the instruction before this is
2783 // either nonexistent (because this is begin()) or is a PHI node. If not,
2784 // then there is some other instruction before a PHI.
2785 Assert(&PN
== &PN
.getParent()->front() ||
2786 isa
<PHINode
>(--BasicBlock::iterator(&PN
)),
2787 "PHI nodes not grouped at top of basic block!", &PN
, PN
.getParent());
2789 // Check that a PHI doesn't yield a Token.
2790 Assert(!PN
.getType()->isTokenTy(), "PHI nodes cannot have token type!");
2792 // Check that all of the values of the PHI node have the same type as the
2793 // result, and that the incoming blocks are really basic blocks.
2794 for (Value
*IncValue
: PN
.incoming_values()) {
2795 Assert(PN
.getType() == IncValue
->getType(),
2796 "PHI node operands are not the same type as the result!", &PN
);
2799 // All other PHI node constraints are checked in the visitBasicBlock method.
2801 visitInstruction(PN
);
2804 void Verifier::visitCallBase(CallBase
&Call
) {
2805 Assert(Call
.getCalledValue()->getType()->isPointerTy(),
2806 "Called function must be a pointer!", Call
);
2807 PointerType
*FPTy
= cast
<PointerType
>(Call
.getCalledValue()->getType());
2809 Assert(FPTy
->getElementType()->isFunctionTy(),
2810 "Called function is not pointer to function type!", Call
);
2812 Assert(FPTy
->getElementType() == Call
.getFunctionType(),
2813 "Called function is not the same type as the call!", Call
);
2815 FunctionType
*FTy
= Call
.getFunctionType();
2817 // Verify that the correct number of arguments are being passed
2818 if (FTy
->isVarArg())
2819 Assert(Call
.arg_size() >= FTy
->getNumParams(),
2820 "Called function requires more parameters than were provided!",
2823 Assert(Call
.arg_size() == FTy
->getNumParams(),
2824 "Incorrect number of arguments passed to called function!", Call
);
2826 // Verify that all arguments to the call match the function type.
2827 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
)
2828 Assert(Call
.getArgOperand(i
)->getType() == FTy
->getParamType(i
),
2829 "Call parameter type does not match function signature!",
2830 Call
.getArgOperand(i
), FTy
->getParamType(i
), Call
);
2832 AttributeList Attrs
= Call
.getAttributes();
2834 Assert(verifyAttributeCount(Attrs
, Call
.arg_size()),
2835 "Attribute after last parameter!", Call
);
2837 bool IsIntrinsic
= Call
.getCalledFunction() &&
2838 Call
.getCalledFunction()->getName().startswith("llvm.");
2841 = dyn_cast
<Function
>(Call
.getCalledValue()->stripPointerCasts());
2843 if (Attrs
.hasAttribute(AttributeList::FunctionIndex
, Attribute::Speculatable
)) {
2844 // Don't allow speculatable on call sites, unless the underlying function
2845 // declaration is also speculatable.
2846 Assert(Callee
&& Callee
->isSpeculatable(),
2847 "speculatable attribute may not apply to call sites", Call
);
2850 // Verify call attributes.
2851 verifyFunctionAttrs(FTy
, Attrs
, &Call
, IsIntrinsic
);
2853 // Conservatively check the inalloca argument.
2854 // We have a bug if we can find that there is an underlying alloca without
2856 if (Call
.hasInAllocaArgument()) {
2857 Value
*InAllocaArg
= Call
.getArgOperand(FTy
->getNumParams() - 1);
2858 if (auto AI
= dyn_cast
<AllocaInst
>(InAllocaArg
->stripInBoundsOffsets()))
2859 Assert(AI
->isUsedWithInAlloca(),
2860 "inalloca argument for call has mismatched alloca", AI
, Call
);
2863 // For each argument of the callsite, if it has the swifterror argument,
2864 // make sure the underlying alloca/parameter it comes from has a swifterror as
2866 for (unsigned i
= 0, e
= FTy
->getNumParams(); i
!= e
; ++i
) {
2867 if (Call
.paramHasAttr(i
, Attribute::SwiftError
)) {
2868 Value
*SwiftErrorArg
= Call
.getArgOperand(i
);
2869 if (auto AI
= dyn_cast
<AllocaInst
>(SwiftErrorArg
->stripInBoundsOffsets())) {
2870 Assert(AI
->isSwiftError(),
2871 "swifterror argument for call has mismatched alloca", AI
, Call
);
2874 auto ArgI
= dyn_cast
<Argument
>(SwiftErrorArg
);
2876 "swifterror argument should come from an alloca or parameter",
2877 SwiftErrorArg
, Call
);
2878 Assert(ArgI
->hasSwiftErrorAttr(),
2879 "swifterror argument for call has mismatched parameter", ArgI
,
2883 if (Attrs
.hasParamAttribute(i
, Attribute::ImmArg
)) {
2884 // Don't allow immarg on call sites, unless the underlying declaration
2885 // also has the matching immarg.
2886 Assert(Callee
&& Callee
->hasParamAttribute(i
, Attribute::ImmArg
),
2887 "immarg may not apply only to call sites",
2888 Call
.getArgOperand(i
), Call
);
2891 if (Call
.paramHasAttr(i
, Attribute::ImmArg
)) {
2892 Value
*ArgVal
= Call
.getArgOperand(i
);
2893 Assert(isa
<ConstantInt
>(ArgVal
) || isa
<ConstantFP
>(ArgVal
),
2894 "immarg operand has non-immediate parameter", ArgVal
, Call
);
2898 if (FTy
->isVarArg()) {
2899 // FIXME? is 'nest' even legal here?
2900 bool SawNest
= false;
2901 bool SawReturned
= false;
2903 for (unsigned Idx
= 0; Idx
< FTy
->getNumParams(); ++Idx
) {
2904 if (Attrs
.hasParamAttribute(Idx
, Attribute::Nest
))
2906 if (Attrs
.hasParamAttribute(Idx
, Attribute::Returned
))
2910 // Check attributes on the varargs part.
2911 for (unsigned Idx
= FTy
->getNumParams(); Idx
< Call
.arg_size(); ++Idx
) {
2912 Type
*Ty
= Call
.getArgOperand(Idx
)->getType();
2913 AttributeSet ArgAttrs
= Attrs
.getParamAttributes(Idx
);
2914 verifyParameterAttrs(ArgAttrs
, Ty
, &Call
);
2916 if (ArgAttrs
.hasAttribute(Attribute::Nest
)) {
2917 Assert(!SawNest
, "More than one parameter has attribute nest!", Call
);
2921 if (ArgAttrs
.hasAttribute(Attribute::Returned
)) {
2922 Assert(!SawReturned
, "More than one parameter has attribute returned!",
2924 Assert(Ty
->canLosslesslyBitCastTo(FTy
->getReturnType()),
2925 "Incompatible argument and return types for 'returned' "
2931 // Statepoint intrinsic is vararg but the wrapped function may be not.
2932 // Allow sret here and check the wrapped function in verifyStatepoint.
2933 if (!Call
.getCalledFunction() ||
2934 Call
.getCalledFunction()->getIntrinsicID() !=
2935 Intrinsic::experimental_gc_statepoint
)
2936 Assert(!ArgAttrs
.hasAttribute(Attribute::StructRet
),
2937 "Attribute 'sret' cannot be used for vararg call arguments!",
2940 if (ArgAttrs
.hasAttribute(Attribute::InAlloca
))
2941 Assert(Idx
== Call
.arg_size() - 1,
2942 "inalloca isn't on the last argument!", Call
);
2946 // Verify that there's no metadata unless it's a direct call to an intrinsic.
2948 for (Type
*ParamTy
: FTy
->params()) {
2949 Assert(!ParamTy
->isMetadataTy(),
2950 "Function has metadata parameter but isn't an intrinsic", Call
);
2951 Assert(!ParamTy
->isTokenTy(),
2952 "Function has token parameter but isn't an intrinsic", Call
);
2956 // Verify that indirect calls don't return tokens.
2957 if (!Call
.getCalledFunction())
2958 Assert(!FTy
->getReturnType()->isTokenTy(),
2959 "Return type cannot be token for indirect call!");
2961 if (Function
*F
= Call
.getCalledFunction())
2962 if (Intrinsic::ID ID
= (Intrinsic::ID
)F
->getIntrinsicID())
2963 visitIntrinsicCall(ID
, Call
);
2965 // Verify that a callsite has at most one "deopt", at most one "funclet" and
2966 // at most one "gc-transition" operand bundle.
2967 bool FoundDeoptBundle
= false, FoundFuncletBundle
= false,
2968 FoundGCTransitionBundle
= false;
2969 for (unsigned i
= 0, e
= Call
.getNumOperandBundles(); i
< e
; ++i
) {
2970 OperandBundleUse BU
= Call
.getOperandBundleAt(i
);
2971 uint32_t Tag
= BU
.getTagID();
2972 if (Tag
== LLVMContext::OB_deopt
) {
2973 Assert(!FoundDeoptBundle
, "Multiple deopt operand bundles", Call
);
2974 FoundDeoptBundle
= true;
2975 } else if (Tag
== LLVMContext::OB_gc_transition
) {
2976 Assert(!FoundGCTransitionBundle
, "Multiple gc-transition operand bundles",
2978 FoundGCTransitionBundle
= true;
2979 } else if (Tag
== LLVMContext::OB_funclet
) {
2980 Assert(!FoundFuncletBundle
, "Multiple funclet operand bundles", Call
);
2981 FoundFuncletBundle
= true;
2982 Assert(BU
.Inputs
.size() == 1,
2983 "Expected exactly one funclet bundle operand", Call
);
2984 Assert(isa
<FuncletPadInst
>(BU
.Inputs
.front()),
2985 "Funclet bundle operands should correspond to a FuncletPadInst",
2990 // Verify that each inlinable callsite of a debug-info-bearing function in a
2991 // debug-info-bearing function has a debug location attached to it. Failure to
2992 // do so causes assertion failures when the inliner sets up inline scope info.
2993 if (Call
.getFunction()->getSubprogram() && Call
.getCalledFunction() &&
2994 Call
.getCalledFunction()->getSubprogram())
2995 AssertDI(Call
.getDebugLoc(),
2996 "inlinable function call in a function with "
2997 "debug info must have a !dbg location",
3000 visitInstruction(Call
);
3003 /// Two types are "congruent" if they are identical, or if they are both pointer
3004 /// types with different pointee types and the same address space.
3005 static bool isTypeCongruent(Type
*L
, Type
*R
) {
3008 PointerType
*PL
= dyn_cast
<PointerType
>(L
);
3009 PointerType
*PR
= dyn_cast
<PointerType
>(R
);
3012 return PL
->getAddressSpace() == PR
->getAddressSpace();
3015 static AttrBuilder
getParameterABIAttributes(int I
, AttributeList Attrs
) {
3016 static const Attribute::AttrKind ABIAttrs
[] = {
3017 Attribute::StructRet
, Attribute::ByVal
, Attribute::InAlloca
,
3018 Attribute::InReg
, Attribute::Returned
, Attribute::SwiftSelf
,
3019 Attribute::SwiftError
};
3021 for (auto AK
: ABIAttrs
) {
3022 if (Attrs
.hasParamAttribute(I
, AK
))
3023 Copy
.addAttribute(AK
);
3025 if (Attrs
.hasParamAttribute(I
, Attribute::Alignment
))
3026 Copy
.addAlignmentAttr(Attrs
.getParamAlignment(I
));
3030 void Verifier::verifyMustTailCall(CallInst
&CI
) {
3031 Assert(!CI
.isInlineAsm(), "cannot use musttail call with inline asm", &CI
);
3033 // - The caller and callee prototypes must match. Pointer types of
3034 // parameters or return types may differ in pointee type, but not
3036 Function
*F
= CI
.getParent()->getParent();
3037 FunctionType
*CallerTy
= F
->getFunctionType();
3038 FunctionType
*CalleeTy
= CI
.getFunctionType();
3039 if (!CI
.getCalledFunction() || !CI
.getCalledFunction()->isIntrinsic()) {
3040 Assert(CallerTy
->getNumParams() == CalleeTy
->getNumParams(),
3041 "cannot guarantee tail call due to mismatched parameter counts",
3043 for (int I
= 0, E
= CallerTy
->getNumParams(); I
!= E
; ++I
) {
3045 isTypeCongruent(CallerTy
->getParamType(I
), CalleeTy
->getParamType(I
)),
3046 "cannot guarantee tail call due to mismatched parameter types", &CI
);
3049 Assert(CallerTy
->isVarArg() == CalleeTy
->isVarArg(),
3050 "cannot guarantee tail call due to mismatched varargs", &CI
);
3051 Assert(isTypeCongruent(CallerTy
->getReturnType(), CalleeTy
->getReturnType()),
3052 "cannot guarantee tail call due to mismatched return types", &CI
);
3054 // - The calling conventions of the caller and callee must match.
3055 Assert(F
->getCallingConv() == CI
.getCallingConv(),
3056 "cannot guarantee tail call due to mismatched calling conv", &CI
);
3058 // - All ABI-impacting function attributes, such as sret, byval, inreg,
3059 // returned, and inalloca, must match.
3060 AttributeList CallerAttrs
= F
->getAttributes();
3061 AttributeList CalleeAttrs
= CI
.getAttributes();
3062 for (int I
= 0, E
= CallerTy
->getNumParams(); I
!= E
; ++I
) {
3063 AttrBuilder CallerABIAttrs
= getParameterABIAttributes(I
, CallerAttrs
);
3064 AttrBuilder CalleeABIAttrs
= getParameterABIAttributes(I
, CalleeAttrs
);
3065 Assert(CallerABIAttrs
== CalleeABIAttrs
,
3066 "cannot guarantee tail call due to mismatched ABI impacting "
3067 "function attributes",
3068 &CI
, CI
.getOperand(I
));
3071 // - The call must immediately precede a :ref:`ret <i_ret>` instruction,
3072 // or a pointer bitcast followed by a ret instruction.
3073 // - The ret instruction must return the (possibly bitcasted) value
3074 // produced by the call or void.
3075 Value
*RetVal
= &CI
;
3076 Instruction
*Next
= CI
.getNextNode();
3078 // Handle the optional bitcast.
3079 if (BitCastInst
*BI
= dyn_cast_or_null
<BitCastInst
>(Next
)) {
3080 Assert(BI
->getOperand(0) == RetVal
,
3081 "bitcast following musttail call must use the call", BI
);
3083 Next
= BI
->getNextNode();
3086 // Check the return.
3087 ReturnInst
*Ret
= dyn_cast_or_null
<ReturnInst
>(Next
);
3088 Assert(Ret
, "musttail call must precede a ret with an optional bitcast",
3090 Assert(!Ret
->getReturnValue() || Ret
->getReturnValue() == RetVal
,
3091 "musttail call result must be returned", Ret
);
3094 void Verifier::visitCallInst(CallInst
&CI
) {
3097 if (CI
.isMustTailCall())
3098 verifyMustTailCall(CI
);
3101 void Verifier::visitInvokeInst(InvokeInst
&II
) {
3104 // Verify that the first non-PHI instruction of the unwind destination is an
3105 // exception handling instruction.
3107 II
.getUnwindDest()->isEHPad(),
3108 "The unwind destination does not have an exception handling instruction!",
3111 visitTerminator(II
);
3114 /// visitUnaryOperator - Check the argument to the unary operator.
3116 void Verifier::visitUnaryOperator(UnaryOperator
&U
) {
3117 Assert(U
.getType() == U
.getOperand(0)->getType(),
3118 "Unary operators must have same type for"
3119 "operands and result!",
3122 switch (U
.getOpcode()) {
3123 // Check that floating-point arithmetic operators are only used with
3124 // floating-point operands.
3125 case Instruction::FNeg
:
3126 Assert(U
.getType()->isFPOrFPVectorTy(),
3127 "FNeg operator only works with float types!", &U
);
3130 llvm_unreachable("Unknown UnaryOperator opcode!");
3133 visitInstruction(U
);
3136 /// visitBinaryOperator - Check that both arguments to the binary operator are
3137 /// of the same type!
3139 void Verifier::visitBinaryOperator(BinaryOperator
&B
) {
3140 Assert(B
.getOperand(0)->getType() == B
.getOperand(1)->getType(),
3141 "Both operands to a binary operator are not of the same type!", &B
);
3143 switch (B
.getOpcode()) {
3144 // Check that integer arithmetic operators are only used with
3145 // integral operands.
3146 case Instruction::Add
:
3147 case Instruction::Sub
:
3148 case Instruction::Mul
:
3149 case Instruction::SDiv
:
3150 case Instruction::UDiv
:
3151 case Instruction::SRem
:
3152 case Instruction::URem
:
3153 Assert(B
.getType()->isIntOrIntVectorTy(),
3154 "Integer arithmetic operators only work with integral types!", &B
);
3155 Assert(B
.getType() == B
.getOperand(0)->getType(),
3156 "Integer arithmetic operators must have same type "
3157 "for operands and result!",
3160 // Check that floating-point arithmetic operators are only used with
3161 // floating-point operands.
3162 case Instruction::FAdd
:
3163 case Instruction::FSub
:
3164 case Instruction::FMul
:
3165 case Instruction::FDiv
:
3166 case Instruction::FRem
:
3167 Assert(B
.getType()->isFPOrFPVectorTy(),
3168 "Floating-point arithmetic operators only work with "
3169 "floating-point types!",
3171 Assert(B
.getType() == B
.getOperand(0)->getType(),
3172 "Floating-point arithmetic operators must have same type "
3173 "for operands and result!",
3176 // Check that logical operators are only used with integral operands.
3177 case Instruction::And
:
3178 case Instruction::Or
:
3179 case Instruction::Xor
:
3180 Assert(B
.getType()->isIntOrIntVectorTy(),
3181 "Logical operators only work with integral types!", &B
);
3182 Assert(B
.getType() == B
.getOperand(0)->getType(),
3183 "Logical operators must have same type for operands and result!",
3186 case Instruction::Shl
:
3187 case Instruction::LShr
:
3188 case Instruction::AShr
:
3189 Assert(B
.getType()->isIntOrIntVectorTy(),
3190 "Shifts only work with integral types!", &B
);
3191 Assert(B
.getType() == B
.getOperand(0)->getType(),
3192 "Shift return type must be same as operands!", &B
);
3195 llvm_unreachable("Unknown BinaryOperator opcode!");
3198 visitInstruction(B
);
3201 void Verifier::visitICmpInst(ICmpInst
&IC
) {
3202 // Check that the operands are the same type
3203 Type
*Op0Ty
= IC
.getOperand(0)->getType();
3204 Type
*Op1Ty
= IC
.getOperand(1)->getType();
3205 Assert(Op0Ty
== Op1Ty
,
3206 "Both operands to ICmp instruction are not of the same type!", &IC
);
3207 // Check that the operands are the right type
3208 Assert(Op0Ty
->isIntOrIntVectorTy() || Op0Ty
->isPtrOrPtrVectorTy(),
3209 "Invalid operand types for ICmp instruction", &IC
);
3210 // Check that the predicate is valid.
3211 Assert(IC
.isIntPredicate(),
3212 "Invalid predicate in ICmp instruction!", &IC
);
3214 visitInstruction(IC
);
3217 void Verifier::visitFCmpInst(FCmpInst
&FC
) {
3218 // Check that the operands are the same type
3219 Type
*Op0Ty
= FC
.getOperand(0)->getType();
3220 Type
*Op1Ty
= FC
.getOperand(1)->getType();
3221 Assert(Op0Ty
== Op1Ty
,
3222 "Both operands to FCmp instruction are not of the same type!", &FC
);
3223 // Check that the operands are the right type
3224 Assert(Op0Ty
->isFPOrFPVectorTy(),
3225 "Invalid operand types for FCmp instruction", &FC
);
3226 // Check that the predicate is valid.
3227 Assert(FC
.isFPPredicate(),
3228 "Invalid predicate in FCmp instruction!", &FC
);
3230 visitInstruction(FC
);
3233 void Verifier::visitExtractElementInst(ExtractElementInst
&EI
) {
3235 ExtractElementInst::isValidOperands(EI
.getOperand(0), EI
.getOperand(1)),
3236 "Invalid extractelement operands!", &EI
);
3237 visitInstruction(EI
);
3240 void Verifier::visitInsertElementInst(InsertElementInst
&IE
) {
3241 Assert(InsertElementInst::isValidOperands(IE
.getOperand(0), IE
.getOperand(1),
3243 "Invalid insertelement operands!", &IE
);
3244 visitInstruction(IE
);
3247 void Verifier::visitShuffleVectorInst(ShuffleVectorInst
&SV
) {
3248 Assert(ShuffleVectorInst::isValidOperands(SV
.getOperand(0), SV
.getOperand(1),
3250 "Invalid shufflevector operands!", &SV
);
3251 visitInstruction(SV
);
3254 void Verifier::visitGetElementPtrInst(GetElementPtrInst
&GEP
) {
3255 Type
*TargetTy
= GEP
.getPointerOperandType()->getScalarType();
3257 Assert(isa
<PointerType
>(TargetTy
),
3258 "GEP base pointer is not a vector or a vector of pointers", &GEP
);
3259 Assert(GEP
.getSourceElementType()->isSized(), "GEP into unsized type!", &GEP
);
3261 SmallVector
<Value
*, 16> Idxs(GEP
.idx_begin(), GEP
.idx_end());
3263 Idxs
, [](Value
* V
) { return V
->getType()->isIntOrIntVectorTy(); }),
3264 "GEP indexes must be integers", &GEP
);
3266 GetElementPtrInst::getIndexedType(GEP
.getSourceElementType(), Idxs
);
3267 Assert(ElTy
, "Invalid indices for GEP pointer type!", &GEP
);
3269 Assert(GEP
.getType()->isPtrOrPtrVectorTy() &&
3270 GEP
.getResultElementType() == ElTy
,
3271 "GEP is not of right type for indices!", &GEP
, ElTy
);
3273 if (GEP
.getType()->isVectorTy()) {
3274 // Additional checks for vector GEPs.
3275 unsigned GEPWidth
= GEP
.getType()->getVectorNumElements();
3276 if (GEP
.getPointerOperandType()->isVectorTy())
3277 Assert(GEPWidth
== GEP
.getPointerOperandType()->getVectorNumElements(),
3278 "Vector GEP result width doesn't match operand's", &GEP
);
3279 for (Value
*Idx
: Idxs
) {
3280 Type
*IndexTy
= Idx
->getType();
3281 if (IndexTy
->isVectorTy()) {
3282 unsigned IndexWidth
= IndexTy
->getVectorNumElements();
3283 Assert(IndexWidth
== GEPWidth
, "Invalid GEP index vector width", &GEP
);
3285 Assert(IndexTy
->isIntOrIntVectorTy(),
3286 "All GEP indices should be of integer type");
3290 if (auto *PTy
= dyn_cast
<PointerType
>(GEP
.getType())) {
3291 Assert(GEP
.getAddressSpace() == PTy
->getAddressSpace(),
3292 "GEP address space doesn't match type", &GEP
);
3295 visitInstruction(GEP
);
3298 static bool isContiguous(const ConstantRange
&A
, const ConstantRange
&B
) {
3299 return A
.getUpper() == B
.getLower() || A
.getLower() == B
.getUpper();
3302 void Verifier::visitRangeMetadata(Instruction
&I
, MDNode
*Range
, Type
*Ty
) {
3303 assert(Range
&& Range
== I
.getMetadata(LLVMContext::MD_range
) &&
3304 "precondition violation");
3306 unsigned NumOperands
= Range
->getNumOperands();
3307 Assert(NumOperands
% 2 == 0, "Unfinished range!", Range
);
3308 unsigned NumRanges
= NumOperands
/ 2;
3309 Assert(NumRanges
>= 1, "It should have at least one range!", Range
);
3311 ConstantRange
LastRange(1, true); // Dummy initial value
3312 for (unsigned i
= 0; i
< NumRanges
; ++i
) {
3314 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(2 * i
));
3315 Assert(Low
, "The lower limit must be an integer!", Low
);
3317 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(2 * i
+ 1));
3318 Assert(High
, "The upper limit must be an integer!", High
);
3319 Assert(High
->getType() == Low
->getType() && High
->getType() == Ty
,
3320 "Range types must match instruction type!", &I
);
3322 APInt HighV
= High
->getValue();
3323 APInt LowV
= Low
->getValue();
3324 ConstantRange
CurRange(LowV
, HighV
);
3325 Assert(!CurRange
.isEmptySet() && !CurRange
.isFullSet(),
3326 "Range must not be empty!", Range
);
3328 Assert(CurRange
.intersectWith(LastRange
).isEmptySet(),
3329 "Intervals are overlapping", Range
);
3330 Assert(LowV
.sgt(LastRange
.getLower()), "Intervals are not in order",
3332 Assert(!isContiguous(CurRange
, LastRange
), "Intervals are contiguous",
3335 LastRange
= ConstantRange(LowV
, HighV
);
3337 if (NumRanges
> 2) {
3339 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(0))->getValue();
3341 mdconst::dyn_extract
<ConstantInt
>(Range
->getOperand(1))->getValue();
3342 ConstantRange
FirstRange(FirstLow
, FirstHigh
);
3343 Assert(FirstRange
.intersectWith(LastRange
).isEmptySet(),
3344 "Intervals are overlapping", Range
);
3345 Assert(!isContiguous(FirstRange
, LastRange
), "Intervals are contiguous",
3350 void Verifier::checkAtomicMemAccessSize(Type
*Ty
, const Instruction
*I
) {
3351 unsigned Size
= DL
.getTypeSizeInBits(Ty
);
3352 Assert(Size
>= 8, "atomic memory access' size must be byte-sized", Ty
, I
);
3353 Assert(!(Size
& (Size
- 1)),
3354 "atomic memory access' operand must have a power-of-two size", Ty
, I
);
3357 void Verifier::visitLoadInst(LoadInst
&LI
) {
3358 PointerType
*PTy
= dyn_cast
<PointerType
>(LI
.getOperand(0)->getType());
3359 Assert(PTy
, "Load operand must be a pointer.", &LI
);
3360 Type
*ElTy
= LI
.getType();
3361 Assert(LI
.getAlignment() <= Value::MaximumAlignment
,
3362 "huge alignment values are unsupported", &LI
);
3363 Assert(ElTy
->isSized(), "loading unsized types is not allowed", &LI
);
3364 if (LI
.isAtomic()) {
3365 Assert(LI
.getOrdering() != AtomicOrdering::Release
&&
3366 LI
.getOrdering() != AtomicOrdering::AcquireRelease
,
3367 "Load cannot have Release ordering", &LI
);
3368 Assert(LI
.getAlignment() != 0,
3369 "Atomic load must specify explicit alignment", &LI
);
3370 Assert(ElTy
->isIntOrPtrTy() || ElTy
->isFloatingPointTy(),
3371 "atomic load operand must have integer, pointer, or floating point "
3374 checkAtomicMemAccessSize(ElTy
, &LI
);
3376 Assert(LI
.getSyncScopeID() == SyncScope::System
,
3377 "Non-atomic load cannot have SynchronizationScope specified", &LI
);
3380 visitInstruction(LI
);
3383 void Verifier::visitStoreInst(StoreInst
&SI
) {
3384 PointerType
*PTy
= dyn_cast
<PointerType
>(SI
.getOperand(1)->getType());
3385 Assert(PTy
, "Store operand must be a pointer.", &SI
);
3386 Type
*ElTy
= PTy
->getElementType();
3387 Assert(ElTy
== SI
.getOperand(0)->getType(),
3388 "Stored value type does not match pointer operand type!", &SI
, ElTy
);
3389 Assert(SI
.getAlignment() <= Value::MaximumAlignment
,
3390 "huge alignment values are unsupported", &SI
);
3391 Assert(ElTy
->isSized(), "storing unsized types is not allowed", &SI
);
3392 if (SI
.isAtomic()) {
3393 Assert(SI
.getOrdering() != AtomicOrdering::Acquire
&&
3394 SI
.getOrdering() != AtomicOrdering::AcquireRelease
,
3395 "Store cannot have Acquire ordering", &SI
);
3396 Assert(SI
.getAlignment() != 0,
3397 "Atomic store must specify explicit alignment", &SI
);
3398 Assert(ElTy
->isIntOrPtrTy() || ElTy
->isFloatingPointTy(),
3399 "atomic store operand must have integer, pointer, or floating point "
3402 checkAtomicMemAccessSize(ElTy
, &SI
);
3404 Assert(SI
.getSyncScopeID() == SyncScope::System
,
3405 "Non-atomic store cannot have SynchronizationScope specified", &SI
);
3407 visitInstruction(SI
);
3410 /// Check that SwiftErrorVal is used as a swifterror argument in CS.
3411 void Verifier::verifySwiftErrorCall(CallBase
&Call
,
3412 const Value
*SwiftErrorVal
) {
3414 for (auto I
= Call
.arg_begin(), E
= Call
.arg_end(); I
!= E
; ++I
, ++Idx
) {
3415 if (*I
== SwiftErrorVal
) {
3416 Assert(Call
.paramHasAttr(Idx
, Attribute::SwiftError
),
3417 "swifterror value when used in a callsite should be marked "
3418 "with swifterror attribute",
3419 SwiftErrorVal
, Call
);
3424 void Verifier::verifySwiftErrorValue(const Value
*SwiftErrorVal
) {
3425 // Check that swifterror value is only used by loads, stores, or as
3426 // a swifterror argument.
3427 for (const User
*U
: SwiftErrorVal
->users()) {
3428 Assert(isa
<LoadInst
>(U
) || isa
<StoreInst
>(U
) || isa
<CallInst
>(U
) ||
3430 "swifterror value can only be loaded and stored from, or "
3431 "as a swifterror argument!",
3433 // If it is used by a store, check it is the second operand.
3434 if (auto StoreI
= dyn_cast
<StoreInst
>(U
))
3435 Assert(StoreI
->getOperand(1) == SwiftErrorVal
,
3436 "swifterror value should be the second operand when used "
3437 "by stores", SwiftErrorVal
, U
);
3438 if (auto *Call
= dyn_cast
<CallBase
>(U
))
3439 verifySwiftErrorCall(*const_cast<CallBase
*>(Call
), SwiftErrorVal
);
3443 void Verifier::visitAllocaInst(AllocaInst
&AI
) {
3444 SmallPtrSet
<Type
*, 4> Visited
;
3445 PointerType
*PTy
= AI
.getType();
3446 // TODO: Relax this restriction?
3447 Assert(PTy
->getAddressSpace() == DL
.getAllocaAddrSpace(),
3448 "Allocation instruction pointer not in the stack address space!",
3450 Assert(AI
.getAllocatedType()->isSized(&Visited
),
3451 "Cannot allocate unsized type", &AI
);
3452 Assert(AI
.getArraySize()->getType()->isIntegerTy(),
3453 "Alloca array size must have integer type", &AI
);
3454 Assert(AI
.getAlignment() <= Value::MaximumAlignment
,
3455 "huge alignment values are unsupported", &AI
);
3457 if (AI
.isSwiftError()) {
3458 verifySwiftErrorValue(&AI
);
3461 visitInstruction(AI
);
3464 void Verifier::visitAtomicCmpXchgInst(AtomicCmpXchgInst
&CXI
) {
3466 // FIXME: more conditions???
3467 Assert(CXI
.getSuccessOrdering() != AtomicOrdering::NotAtomic
,
3468 "cmpxchg instructions must be atomic.", &CXI
);
3469 Assert(CXI
.getFailureOrdering() != AtomicOrdering::NotAtomic
,
3470 "cmpxchg instructions must be atomic.", &CXI
);
3471 Assert(CXI
.getSuccessOrdering() != AtomicOrdering::Unordered
,
3472 "cmpxchg instructions cannot be unordered.", &CXI
);
3473 Assert(CXI
.getFailureOrdering() != AtomicOrdering::Unordered
,
3474 "cmpxchg instructions cannot be unordered.", &CXI
);
3475 Assert(!isStrongerThan(CXI
.getFailureOrdering(), CXI
.getSuccessOrdering()),
3476 "cmpxchg instructions failure argument shall be no stronger than the "
3479 Assert(CXI
.getFailureOrdering() != AtomicOrdering::Release
&&
3480 CXI
.getFailureOrdering() != AtomicOrdering::AcquireRelease
,
3481 "cmpxchg failure ordering cannot include release semantics", &CXI
);
3483 PointerType
*PTy
= dyn_cast
<PointerType
>(CXI
.getOperand(0)->getType());
3484 Assert(PTy
, "First cmpxchg operand must be a pointer.", &CXI
);
3485 Type
*ElTy
= PTy
->getElementType();
3486 Assert(ElTy
->isIntOrPtrTy(),
3487 "cmpxchg operand must have integer or pointer type", ElTy
, &CXI
);
3488 checkAtomicMemAccessSize(ElTy
, &CXI
);
3489 Assert(ElTy
== CXI
.getOperand(1)->getType(),
3490 "Expected value type does not match pointer operand type!", &CXI
,
3492 Assert(ElTy
== CXI
.getOperand(2)->getType(),
3493 "Stored value type does not match pointer operand type!", &CXI
, ElTy
);
3494 visitInstruction(CXI
);
3497 void Verifier::visitAtomicRMWInst(AtomicRMWInst
&RMWI
) {
3498 Assert(RMWI
.getOrdering() != AtomicOrdering::NotAtomic
,
3499 "atomicrmw instructions must be atomic.", &RMWI
);
3500 Assert(RMWI
.getOrdering() != AtomicOrdering::Unordered
,
3501 "atomicrmw instructions cannot be unordered.", &RMWI
);
3502 auto Op
= RMWI
.getOperation();
3503 PointerType
*PTy
= dyn_cast
<PointerType
>(RMWI
.getOperand(0)->getType());
3504 Assert(PTy
, "First atomicrmw operand must be a pointer.", &RMWI
);
3505 Type
*ElTy
= PTy
->getElementType();
3506 if (Op
== AtomicRMWInst::Xchg
) {
3507 Assert(ElTy
->isIntegerTy() || ElTy
->isFloatingPointTy(), "atomicrmw " +
3508 AtomicRMWInst::getOperationName(Op
) +
3509 " operand must have integer or floating point type!",
3511 } else if (AtomicRMWInst::isFPOperation(Op
)) {
3512 Assert(ElTy
->isFloatingPointTy(), "atomicrmw " +
3513 AtomicRMWInst::getOperationName(Op
) +
3514 " operand must have floating point type!",
3517 Assert(ElTy
->isIntegerTy(), "atomicrmw " +
3518 AtomicRMWInst::getOperationName(Op
) +
3519 " operand must have integer type!",
3522 checkAtomicMemAccessSize(ElTy
, &RMWI
);
3523 Assert(ElTy
== RMWI
.getOperand(1)->getType(),
3524 "Argument value type does not match pointer operand type!", &RMWI
,
3526 Assert(AtomicRMWInst::FIRST_BINOP
<= Op
&& Op
<= AtomicRMWInst::LAST_BINOP
,
3527 "Invalid binary operation!", &RMWI
);
3528 visitInstruction(RMWI
);
3531 void Verifier::visitFenceInst(FenceInst
&FI
) {
3532 const AtomicOrdering Ordering
= FI
.getOrdering();
3533 Assert(Ordering
== AtomicOrdering::Acquire
||
3534 Ordering
== AtomicOrdering::Release
||
3535 Ordering
== AtomicOrdering::AcquireRelease
||
3536 Ordering
== AtomicOrdering::SequentiallyConsistent
,
3537 "fence instructions may only have acquire, release, acq_rel, or "
3538 "seq_cst ordering.",
3540 visitInstruction(FI
);
3543 void Verifier::visitExtractValueInst(ExtractValueInst
&EVI
) {
3544 Assert(ExtractValueInst::getIndexedType(EVI
.getAggregateOperand()->getType(),
3545 EVI
.getIndices()) == EVI
.getType(),
3546 "Invalid ExtractValueInst operands!", &EVI
);
3548 visitInstruction(EVI
);
3551 void Verifier::visitInsertValueInst(InsertValueInst
&IVI
) {
3552 Assert(ExtractValueInst::getIndexedType(IVI
.getAggregateOperand()->getType(),
3553 IVI
.getIndices()) ==
3554 IVI
.getOperand(1)->getType(),
3555 "Invalid InsertValueInst operands!", &IVI
);
3557 visitInstruction(IVI
);
3560 static Value
*getParentPad(Value
*EHPad
) {
3561 if (auto *FPI
= dyn_cast
<FuncletPadInst
>(EHPad
))
3562 return FPI
->getParentPad();
3564 return cast
<CatchSwitchInst
>(EHPad
)->getParentPad();
3567 void Verifier::visitEHPadPredecessors(Instruction
&I
) {
3568 assert(I
.isEHPad());
3570 BasicBlock
*BB
= I
.getParent();
3571 Function
*F
= BB
->getParent();
3573 Assert(BB
!= &F
->getEntryBlock(), "EH pad cannot be in entry block.", &I
);
3575 if (auto *LPI
= dyn_cast
<LandingPadInst
>(&I
)) {
3576 // The landingpad instruction defines its parent as a landing pad block. The
3577 // landing pad block may be branched to only by the unwind edge of an
3579 for (BasicBlock
*PredBB
: predecessors(BB
)) {
3580 const auto *II
= dyn_cast
<InvokeInst
>(PredBB
->getTerminator());
3581 Assert(II
&& II
->getUnwindDest() == BB
&& II
->getNormalDest() != BB
,
3582 "Block containing LandingPadInst must be jumped to "
3583 "only by the unwind edge of an invoke.",
3588 if (auto *CPI
= dyn_cast
<CatchPadInst
>(&I
)) {
3589 if (!pred_empty(BB
))
3590 Assert(BB
->getUniquePredecessor() == CPI
->getCatchSwitch()->getParent(),
3591 "Block containg CatchPadInst must be jumped to "
3592 "only by its catchswitch.",
3594 Assert(BB
!= CPI
->getCatchSwitch()->getUnwindDest(),
3595 "Catchswitch cannot unwind to one of its catchpads",
3596 CPI
->getCatchSwitch(), CPI
);
3600 // Verify that each pred has a legal terminator with a legal to/from EH
3601 // pad relationship.
3602 Instruction
*ToPad
= &I
;
3603 Value
*ToPadParent
= getParentPad(ToPad
);
3604 for (BasicBlock
*PredBB
: predecessors(BB
)) {
3605 Instruction
*TI
= PredBB
->getTerminator();
3607 if (auto *II
= dyn_cast
<InvokeInst
>(TI
)) {
3608 Assert(II
->getUnwindDest() == BB
&& II
->getNormalDest() != BB
,
3609 "EH pad must be jumped to via an unwind edge", ToPad
, II
);
3610 if (auto Bundle
= II
->getOperandBundle(LLVMContext::OB_funclet
))
3611 FromPad
= Bundle
->Inputs
[0];
3613 FromPad
= ConstantTokenNone::get(II
->getContext());
3614 } else if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(TI
)) {
3615 FromPad
= CRI
->getOperand(0);
3616 Assert(FromPad
!= ToPadParent
, "A cleanupret must exit its cleanup", CRI
);
3617 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(TI
)) {
3620 Assert(false, "EH pad must be jumped to via an unwind edge", ToPad
, TI
);
3623 // The edge may exit from zero or more nested pads.
3624 SmallSet
<Value
*, 8> Seen
;
3625 for (;; FromPad
= getParentPad(FromPad
)) {
3626 Assert(FromPad
!= ToPad
,
3627 "EH pad cannot handle exceptions raised within it", FromPad
, TI
);
3628 if (FromPad
== ToPadParent
) {
3629 // This is a legal unwind edge.
3632 Assert(!isa
<ConstantTokenNone
>(FromPad
),
3633 "A single unwind edge may only enter one EH pad", TI
);
3634 Assert(Seen
.insert(FromPad
).second
,
3635 "EH pad jumps through a cycle of pads", FromPad
);
3640 void Verifier::visitLandingPadInst(LandingPadInst
&LPI
) {
3641 // The landingpad instruction is ill-formed if it doesn't have any clauses and
3643 Assert(LPI
.getNumClauses() > 0 || LPI
.isCleanup(),
3644 "LandingPadInst needs at least one clause or to be a cleanup.", &LPI
);
3646 visitEHPadPredecessors(LPI
);
3648 if (!LandingPadResultTy
)
3649 LandingPadResultTy
= LPI
.getType();
3651 Assert(LandingPadResultTy
== LPI
.getType(),
3652 "The landingpad instruction should have a consistent result type "
3653 "inside a function.",
3656 Function
*F
= LPI
.getParent()->getParent();
3657 Assert(F
->hasPersonalityFn(),
3658 "LandingPadInst needs to be in a function with a personality.", &LPI
);
3660 // The landingpad instruction must be the first non-PHI instruction in the
3662 Assert(LPI
.getParent()->getLandingPadInst() == &LPI
,
3663 "LandingPadInst not the first non-PHI instruction in the block.",
3666 for (unsigned i
= 0, e
= LPI
.getNumClauses(); i
< e
; ++i
) {
3667 Constant
*Clause
= LPI
.getClause(i
);
3668 if (LPI
.isCatch(i
)) {
3669 Assert(isa
<PointerType
>(Clause
->getType()),
3670 "Catch operand does not have pointer type!", &LPI
);
3672 Assert(LPI
.isFilter(i
), "Clause is neither catch nor filter!", &LPI
);
3673 Assert(isa
<ConstantArray
>(Clause
) || isa
<ConstantAggregateZero
>(Clause
),
3674 "Filter operand is not an array of constants!", &LPI
);
3678 visitInstruction(LPI
);
3681 void Verifier::visitResumeInst(ResumeInst
&RI
) {
3682 Assert(RI
.getFunction()->hasPersonalityFn(),
3683 "ResumeInst needs to be in a function with a personality.", &RI
);
3685 if (!LandingPadResultTy
)
3686 LandingPadResultTy
= RI
.getValue()->getType();
3688 Assert(LandingPadResultTy
== RI
.getValue()->getType(),
3689 "The resume instruction should have a consistent result type "
3690 "inside a function.",
3693 visitTerminator(RI
);
3696 void Verifier::visitCatchPadInst(CatchPadInst
&CPI
) {
3697 BasicBlock
*BB
= CPI
.getParent();
3699 Function
*F
= BB
->getParent();
3700 Assert(F
->hasPersonalityFn(),
3701 "CatchPadInst needs to be in a function with a personality.", &CPI
);
3703 Assert(isa
<CatchSwitchInst
>(CPI
.getParentPad()),
3704 "CatchPadInst needs to be directly nested in a CatchSwitchInst.",
3705 CPI
.getParentPad());
3707 // The catchpad instruction must be the first non-PHI instruction in the
3709 Assert(BB
->getFirstNonPHI() == &CPI
,
3710 "CatchPadInst not the first non-PHI instruction in the block.", &CPI
);
3712 visitEHPadPredecessors(CPI
);
3713 visitFuncletPadInst(CPI
);
3716 void Verifier::visitCatchReturnInst(CatchReturnInst
&CatchReturn
) {
3717 Assert(isa
<CatchPadInst
>(CatchReturn
.getOperand(0)),
3718 "CatchReturnInst needs to be provided a CatchPad", &CatchReturn
,
3719 CatchReturn
.getOperand(0));
3721 visitTerminator(CatchReturn
);
3724 void Verifier::visitCleanupPadInst(CleanupPadInst
&CPI
) {
3725 BasicBlock
*BB
= CPI
.getParent();
3727 Function
*F
= BB
->getParent();
3728 Assert(F
->hasPersonalityFn(),
3729 "CleanupPadInst needs to be in a function with a personality.", &CPI
);
3731 // The cleanuppad instruction must be the first non-PHI instruction in the
3733 Assert(BB
->getFirstNonPHI() == &CPI
,
3734 "CleanupPadInst not the first non-PHI instruction in the block.",
3737 auto *ParentPad
= CPI
.getParentPad();
3738 Assert(isa
<ConstantTokenNone
>(ParentPad
) || isa
<FuncletPadInst
>(ParentPad
),
3739 "CleanupPadInst has an invalid parent.", &CPI
);
3741 visitEHPadPredecessors(CPI
);
3742 visitFuncletPadInst(CPI
);
3745 void Verifier::visitFuncletPadInst(FuncletPadInst
&FPI
) {
3746 User
*FirstUser
= nullptr;
3747 Value
*FirstUnwindPad
= nullptr;
3748 SmallVector
<FuncletPadInst
*, 8> Worklist({&FPI
});
3749 SmallSet
<FuncletPadInst
*, 8> Seen
;
3751 while (!Worklist
.empty()) {
3752 FuncletPadInst
*CurrentPad
= Worklist
.pop_back_val();
3753 Assert(Seen
.insert(CurrentPad
).second
,
3754 "FuncletPadInst must not be nested within itself", CurrentPad
);
3755 Value
*UnresolvedAncestorPad
= nullptr;
3756 for (User
*U
: CurrentPad
->users()) {
3757 BasicBlock
*UnwindDest
;
3758 if (auto *CRI
= dyn_cast
<CleanupReturnInst
>(U
)) {
3759 UnwindDest
= CRI
->getUnwindDest();
3760 } else if (auto *CSI
= dyn_cast
<CatchSwitchInst
>(U
)) {
3761 // We allow catchswitch unwind to caller to nest
3762 // within an outer pad that unwinds somewhere else,
3763 // because catchswitch doesn't have a nounwind variant.
3764 // See e.g. SimplifyCFGOpt::SimplifyUnreachable.
3765 if (CSI
->unwindsToCaller())
3767 UnwindDest
= CSI
->getUnwindDest();
3768 } else if (auto *II
= dyn_cast
<InvokeInst
>(U
)) {
3769 UnwindDest
= II
->getUnwindDest();
3770 } else if (isa
<CallInst
>(U
)) {
3771 // Calls which don't unwind may be found inside funclet
3772 // pads that unwind somewhere else. We don't *require*
3773 // such calls to be annotated nounwind.
3775 } else if (auto *CPI
= dyn_cast
<CleanupPadInst
>(U
)) {
3776 // The unwind dest for a cleanup can only be found by
3777 // recursive search. Add it to the worklist, and we'll
3778 // search for its first use that determines where it unwinds.
3779 Worklist
.push_back(CPI
);
3782 Assert(isa
<CatchReturnInst
>(U
), "Bogus funclet pad use", U
);
3789 UnwindPad
= UnwindDest
->getFirstNonPHI();
3790 if (!cast
<Instruction
>(UnwindPad
)->isEHPad())
3792 Value
*UnwindParent
= getParentPad(UnwindPad
);
3793 // Ignore unwind edges that don't exit CurrentPad.
3794 if (UnwindParent
== CurrentPad
)
3796 // Determine whether the original funclet pad is exited,
3797 // and if we are scanning nested pads determine how many
3798 // of them are exited so we can stop searching their
3800 Value
*ExitedPad
= CurrentPad
;
3803 if (ExitedPad
== &FPI
) {
3805 // Now we can resolve any ancestors of CurrentPad up to
3806 // FPI, but not including FPI since we need to make sure
3807 // to check all direct users of FPI for consistency.
3808 UnresolvedAncestorPad
= &FPI
;
3811 Value
*ExitedParent
= getParentPad(ExitedPad
);
3812 if (ExitedParent
== UnwindParent
) {
3813 // ExitedPad is the ancestor-most pad which this unwind
3814 // edge exits, so we can resolve up to it, meaning that
3815 // ExitedParent is the first ancestor still unresolved.
3816 UnresolvedAncestorPad
= ExitedParent
;
3819 ExitedPad
= ExitedParent
;
3820 } while (!isa
<ConstantTokenNone
>(ExitedPad
));
3822 // Unwinding to caller exits all pads.
3823 UnwindPad
= ConstantTokenNone::get(FPI
.getContext());
3825 UnresolvedAncestorPad
= &FPI
;
3829 // This unwind edge exits FPI. Make sure it agrees with other
3832 Assert(UnwindPad
== FirstUnwindPad
, "Unwind edges out of a funclet "
3833 "pad must have the same unwind "
3835 &FPI
, U
, FirstUser
);
3838 FirstUnwindPad
= UnwindPad
;
3839 // Record cleanup sibling unwinds for verifySiblingFuncletUnwinds
3840 if (isa
<CleanupPadInst
>(&FPI
) && !isa
<ConstantTokenNone
>(UnwindPad
) &&
3841 getParentPad(UnwindPad
) == getParentPad(&FPI
))
3842 SiblingFuncletInfo
[&FPI
] = cast
<Instruction
>(U
);
3845 // Make sure we visit all uses of FPI, but for nested pads stop as
3846 // soon as we know where they unwind to.
3847 if (CurrentPad
!= &FPI
)
3850 if (UnresolvedAncestorPad
) {
3851 if (CurrentPad
== UnresolvedAncestorPad
) {
3852 // When CurrentPad is FPI itself, we don't mark it as resolved even if
3853 // we've found an unwind edge that exits it, because we need to verify
3854 // all direct uses of FPI.
3855 assert(CurrentPad
== &FPI
);
3858 // Pop off the worklist any nested pads that we've found an unwind
3859 // destination for. The pads on the worklist are the uncles,
3860 // great-uncles, etc. of CurrentPad. We've found an unwind destination
3861 // for all ancestors of CurrentPad up to but not including
3862 // UnresolvedAncestorPad.
3863 Value
*ResolvedPad
= CurrentPad
;
3864 while (!Worklist
.empty()) {
3865 Value
*UnclePad
= Worklist
.back();
3866 Value
*AncestorPad
= getParentPad(UnclePad
);
3867 // Walk ResolvedPad up the ancestor list until we either find the
3868 // uncle's parent or the last resolved ancestor.
3869 while (ResolvedPad
!= AncestorPad
) {
3870 Value
*ResolvedParent
= getParentPad(ResolvedPad
);
3871 if (ResolvedParent
== UnresolvedAncestorPad
) {
3874 ResolvedPad
= ResolvedParent
;
3876 // If the resolved ancestor search didn't find the uncle's parent,
3877 // then the uncle is not yet resolved.
3878 if (ResolvedPad
!= AncestorPad
)
3880 // This uncle is resolved, so pop it from the worklist.
3881 Worklist
.pop_back();
3886 if (FirstUnwindPad
) {
3887 if (auto *CatchSwitch
= dyn_cast
<CatchSwitchInst
>(FPI
.getParentPad())) {
3888 BasicBlock
*SwitchUnwindDest
= CatchSwitch
->getUnwindDest();
3889 Value
*SwitchUnwindPad
;
3890 if (SwitchUnwindDest
)
3891 SwitchUnwindPad
= SwitchUnwindDest
->getFirstNonPHI();
3893 SwitchUnwindPad
= ConstantTokenNone::get(FPI
.getContext());
3894 Assert(SwitchUnwindPad
== FirstUnwindPad
,
3895 "Unwind edges out of a catch must have the same unwind dest as "
3896 "the parent catchswitch",
3897 &FPI
, FirstUser
, CatchSwitch
);
3901 visitInstruction(FPI
);
3904 void Verifier::visitCatchSwitchInst(CatchSwitchInst
&CatchSwitch
) {
3905 BasicBlock
*BB
= CatchSwitch
.getParent();
3907 Function
*F
= BB
->getParent();
3908 Assert(F
->hasPersonalityFn(),
3909 "CatchSwitchInst needs to be in a function with a personality.",
3912 // The catchswitch instruction must be the first non-PHI instruction in the
3914 Assert(BB
->getFirstNonPHI() == &CatchSwitch
,
3915 "CatchSwitchInst not the first non-PHI instruction in the block.",
3918 auto *ParentPad
= CatchSwitch
.getParentPad();
3919 Assert(isa
<ConstantTokenNone
>(ParentPad
) || isa
<FuncletPadInst
>(ParentPad
),
3920 "CatchSwitchInst has an invalid parent.", ParentPad
);
3922 if (BasicBlock
*UnwindDest
= CatchSwitch
.getUnwindDest()) {
3923 Instruction
*I
= UnwindDest
->getFirstNonPHI();
3924 Assert(I
->isEHPad() && !isa
<LandingPadInst
>(I
),
3925 "CatchSwitchInst must unwind to an EH block which is not a "
3929 // Record catchswitch sibling unwinds for verifySiblingFuncletUnwinds
3930 if (getParentPad(I
) == ParentPad
)
3931 SiblingFuncletInfo
[&CatchSwitch
] = &CatchSwitch
;
3934 Assert(CatchSwitch
.getNumHandlers() != 0,
3935 "CatchSwitchInst cannot have empty handler list", &CatchSwitch
);
3937 for (BasicBlock
*Handler
: CatchSwitch
.handlers()) {
3938 Assert(isa
<CatchPadInst
>(Handler
->getFirstNonPHI()),
3939 "CatchSwitchInst handlers must be catchpads", &CatchSwitch
, Handler
);
3942 visitEHPadPredecessors(CatchSwitch
);
3943 visitTerminator(CatchSwitch
);
3946 void Verifier::visitCleanupReturnInst(CleanupReturnInst
&CRI
) {
3947 Assert(isa
<CleanupPadInst
>(CRI
.getOperand(0)),
3948 "CleanupReturnInst needs to be provided a CleanupPad", &CRI
,
3951 if (BasicBlock
*UnwindDest
= CRI
.getUnwindDest()) {
3952 Instruction
*I
= UnwindDest
->getFirstNonPHI();
3953 Assert(I
->isEHPad() && !isa
<LandingPadInst
>(I
),
3954 "CleanupReturnInst must unwind to an EH block which is not a "
3959 visitTerminator(CRI
);
3962 void Verifier::verifyDominatesUse(Instruction
&I
, unsigned i
) {
3963 Instruction
*Op
= cast
<Instruction
>(I
.getOperand(i
));
3964 // If the we have an invalid invoke, don't try to compute the dominance.
3965 // We already reject it in the invoke specific checks and the dominance
3966 // computation doesn't handle multiple edges.
3967 if (InvokeInst
*II
= dyn_cast
<InvokeInst
>(Op
)) {
3968 if (II
->getNormalDest() == II
->getUnwindDest())
3972 // Quick check whether the def has already been encountered in the same block.
3973 // PHI nodes are not checked to prevent accepting preceding PHIs, because PHI
3974 // uses are defined to happen on the incoming edge, not at the instruction.
3976 // FIXME: If this operand is a MetadataAsValue (wrapping a LocalAsMetadata)
3977 // wrapping an SSA value, assert that we've already encountered it. See
3978 // related FIXME in Mapper::mapLocalAsMetadata in ValueMapper.cpp.
3979 if (!isa
<PHINode
>(I
) && InstsInThisBlock
.count(Op
))
3982 const Use
&U
= I
.getOperandUse(i
);
3983 Assert(DT
.dominates(Op
, U
),
3984 "Instruction does not dominate all uses!", Op
, &I
);
3987 void Verifier::visitDereferenceableMetadata(Instruction
& I
, MDNode
* MD
) {
3988 Assert(I
.getType()->isPointerTy(), "dereferenceable, dereferenceable_or_null "
3989 "apply only to pointer types", &I
);
3990 Assert((isa
<LoadInst
>(I
) || isa
<IntToPtrInst
>(I
)),
3991 "dereferenceable, dereferenceable_or_null apply only to load"
3992 " and inttoptr instructions, use attributes for calls or invokes", &I
);
3993 Assert(MD
->getNumOperands() == 1, "dereferenceable, dereferenceable_or_null "
3994 "take one operand!", &I
);
3995 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(0));
3996 Assert(CI
&& CI
->getType()->isIntegerTy(64), "dereferenceable, "
3997 "dereferenceable_or_null metadata value must be an i64!", &I
);
4000 void Verifier::visitProfMetadata(Instruction
&I
, MDNode
*MD
) {
4001 Assert(MD
->getNumOperands() >= 2,
4002 "!prof annotations should have no less than 2 operands", MD
);
4004 // Check first operand.
4005 Assert(MD
->getOperand(0) != nullptr, "first operand should not be null", MD
);
4006 Assert(isa
<MDString
>(MD
->getOperand(0)),
4007 "expected string with name of the !prof annotation", MD
);
4008 MDString
*MDS
= cast
<MDString
>(MD
->getOperand(0));
4009 StringRef ProfName
= MDS
->getString();
4011 // Check consistency of !prof branch_weights metadata.
4012 if (ProfName
.equals("branch_weights")) {
4013 unsigned ExpectedNumOperands
= 0;
4014 if (BranchInst
*BI
= dyn_cast
<BranchInst
>(&I
))
4015 ExpectedNumOperands
= BI
->getNumSuccessors();
4016 else if (SwitchInst
*SI
= dyn_cast
<SwitchInst
>(&I
))
4017 ExpectedNumOperands
= SI
->getNumSuccessors();
4018 else if (isa
<CallInst
>(&I
) || isa
<InvokeInst
>(&I
))
4019 ExpectedNumOperands
= 1;
4020 else if (IndirectBrInst
*IBI
= dyn_cast
<IndirectBrInst
>(&I
))
4021 ExpectedNumOperands
= IBI
->getNumDestinations();
4022 else if (isa
<SelectInst
>(&I
))
4023 ExpectedNumOperands
= 2;
4025 CheckFailed("!prof branch_weights are not allowed for this instruction",
4028 Assert(MD
->getNumOperands() == 1 + ExpectedNumOperands
,
4029 "Wrong number of operands", MD
);
4030 for (unsigned i
= 1; i
< MD
->getNumOperands(); ++i
) {
4031 auto &MDO
= MD
->getOperand(i
);
4032 Assert(MDO
, "second operand should not be null", MD
);
4033 Assert(mdconst::dyn_extract
<ConstantInt
>(MDO
),
4034 "!prof brunch_weights operand is not a const int");
4039 /// verifyInstruction - Verify that an instruction is well formed.
4041 void Verifier::visitInstruction(Instruction
&I
) {
4042 BasicBlock
*BB
= I
.getParent();
4043 Assert(BB
, "Instruction not embedded in basic block!", &I
);
4045 if (!isa
<PHINode
>(I
)) { // Check that non-phi nodes are not self referential
4046 for (User
*U
: I
.users()) {
4047 Assert(U
!= (User
*)&I
|| !DT
.isReachableFromEntry(BB
),
4048 "Only PHI nodes may reference their own value!", &I
);
4052 // Check that void typed values don't have names
4053 Assert(!I
.getType()->isVoidTy() || !I
.hasName(),
4054 "Instruction has a name, but provides a void value!", &I
);
4056 // Check that the return value of the instruction is either void or a legal
4058 Assert(I
.getType()->isVoidTy() || I
.getType()->isFirstClassType(),
4059 "Instruction returns a non-scalar type!", &I
);
4061 // Check that the instruction doesn't produce metadata. Calls are already
4062 // checked against the callee type.
4063 Assert(!I
.getType()->isMetadataTy() || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
4064 "Invalid use of metadata!", &I
);
4066 // Check that all uses of the instruction, if they are instructions
4067 // themselves, actually have parent basic blocks. If the use is not an
4068 // instruction, it is an error!
4069 for (Use
&U
: I
.uses()) {
4070 if (Instruction
*Used
= dyn_cast
<Instruction
>(U
.getUser()))
4071 Assert(Used
->getParent() != nullptr,
4072 "Instruction referencing"
4073 " instruction not embedded in a basic block!",
4076 CheckFailed("Use of instruction is not an instruction!", U
);
4081 // Get a pointer to the call base of the instruction if it is some form of
4083 const CallBase
*CBI
= dyn_cast
<CallBase
>(&I
);
4085 for (unsigned i
= 0, e
= I
.getNumOperands(); i
!= e
; ++i
) {
4086 Assert(I
.getOperand(i
) != nullptr, "Instruction has null operand!", &I
);
4088 // Check to make sure that only first-class-values are operands to
4090 if (!I
.getOperand(i
)->getType()->isFirstClassType()) {
4091 Assert(false, "Instruction operands must be first-class values!", &I
);
4094 if (Function
*F
= dyn_cast
<Function
>(I
.getOperand(i
))) {
4095 // Check to make sure that the "address of" an intrinsic function is never
4097 Assert(!F
->isIntrinsic() ||
4098 (CBI
&& &CBI
->getCalledOperandUse() == &I
.getOperandUse(i
)),
4099 "Cannot take the address of an intrinsic!", &I
);
4101 !F
->isIntrinsic() || isa
<CallInst
>(I
) ||
4102 F
->getIntrinsicID() == Intrinsic::donothing
||
4103 F
->getIntrinsicID() == Intrinsic::coro_resume
||
4104 F
->getIntrinsicID() == Intrinsic::coro_destroy
||
4105 F
->getIntrinsicID() == Intrinsic::experimental_patchpoint_void
||
4106 F
->getIntrinsicID() == Intrinsic::experimental_patchpoint_i64
||
4107 F
->getIntrinsicID() == Intrinsic::experimental_gc_statepoint
||
4108 F
->getIntrinsicID() == Intrinsic::wasm_rethrow_in_catch
,
4109 "Cannot invoke an intrinsic other than donothing, patchpoint, "
4110 "statepoint, coro_resume or coro_destroy",
4112 Assert(F
->getParent() == &M
, "Referencing function in another module!",
4113 &I
, &M
, F
, F
->getParent());
4114 } else if (BasicBlock
*OpBB
= dyn_cast
<BasicBlock
>(I
.getOperand(i
))) {
4115 Assert(OpBB
->getParent() == BB
->getParent(),
4116 "Referring to a basic block in another function!", &I
);
4117 } else if (Argument
*OpArg
= dyn_cast
<Argument
>(I
.getOperand(i
))) {
4118 Assert(OpArg
->getParent() == BB
->getParent(),
4119 "Referring to an argument in another function!", &I
);
4120 } else if (GlobalValue
*GV
= dyn_cast
<GlobalValue
>(I
.getOperand(i
))) {
4121 Assert(GV
->getParent() == &M
, "Referencing global in another module!", &I
,
4122 &M
, GV
, GV
->getParent());
4123 } else if (isa
<Instruction
>(I
.getOperand(i
))) {
4124 verifyDominatesUse(I
, i
);
4125 } else if (isa
<InlineAsm
>(I
.getOperand(i
))) {
4126 Assert(CBI
&& &CBI
->getCalledOperandUse() == &I
.getOperandUse(i
),
4127 "Cannot take the address of an inline asm!", &I
);
4128 } else if (ConstantExpr
*CE
= dyn_cast
<ConstantExpr
>(I
.getOperand(i
))) {
4129 if (CE
->getType()->isPtrOrPtrVectorTy() ||
4130 !DL
.getNonIntegralAddressSpaces().empty()) {
4131 // If we have a ConstantExpr pointer, we need to see if it came from an
4132 // illegal bitcast. If the datalayout string specifies non-integral
4133 // address spaces then we also need to check for illegal ptrtoint and
4134 // inttoptr expressions.
4135 visitConstantExprsRecursively(CE
);
4140 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_fpmath
)) {
4141 Assert(I
.getType()->isFPOrFPVectorTy(),
4142 "fpmath requires a floating point result!", &I
);
4143 Assert(MD
->getNumOperands() == 1, "fpmath takes one operand!", &I
);
4144 if (ConstantFP
*CFP0
=
4145 mdconst::dyn_extract_or_null
<ConstantFP
>(MD
->getOperand(0))) {
4146 const APFloat
&Accuracy
= CFP0
->getValueAPF();
4147 Assert(&Accuracy
.getSemantics() == &APFloat::IEEEsingle(),
4148 "fpmath accuracy must have float type", &I
);
4149 Assert(Accuracy
.isFiniteNonZero() && !Accuracy
.isNegative(),
4150 "fpmath accuracy not a positive number!", &I
);
4152 Assert(false, "invalid fpmath accuracy!", &I
);
4156 if (MDNode
*Range
= I
.getMetadata(LLVMContext::MD_range
)) {
4157 Assert(isa
<LoadInst
>(I
) || isa
<CallInst
>(I
) || isa
<InvokeInst
>(I
),
4158 "Ranges are only for loads, calls and invokes!", &I
);
4159 visitRangeMetadata(I
, Range
, I
.getType());
4162 if (I
.getMetadata(LLVMContext::MD_nonnull
)) {
4163 Assert(I
.getType()->isPointerTy(), "nonnull applies only to pointer types",
4165 Assert(isa
<LoadInst
>(I
),
4166 "nonnull applies only to load instructions, use attributes"
4167 " for calls or invokes",
4171 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_dereferenceable
))
4172 visitDereferenceableMetadata(I
, MD
);
4174 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_dereferenceable_or_null
))
4175 visitDereferenceableMetadata(I
, MD
);
4177 if (MDNode
*TBAA
= I
.getMetadata(LLVMContext::MD_tbaa
))
4178 TBAAVerifyHelper
.visitTBAAMetadata(I
, TBAA
);
4180 if (MDNode
*AlignMD
= I
.getMetadata(LLVMContext::MD_align
)) {
4181 Assert(I
.getType()->isPointerTy(), "align applies only to pointer types",
4183 Assert(isa
<LoadInst
>(I
), "align applies only to load instructions, "
4184 "use attributes for calls or invokes", &I
);
4185 Assert(AlignMD
->getNumOperands() == 1, "align takes one operand!", &I
);
4186 ConstantInt
*CI
= mdconst::dyn_extract
<ConstantInt
>(AlignMD
->getOperand(0));
4187 Assert(CI
&& CI
->getType()->isIntegerTy(64),
4188 "align metadata value must be an i64!", &I
);
4189 uint64_t Align
= CI
->getZExtValue();
4190 Assert(isPowerOf2_64(Align
),
4191 "align metadata value must be a power of 2!", &I
);
4192 Assert(Align
<= Value::MaximumAlignment
,
4193 "alignment is larger that implementation defined limit", &I
);
4196 if (MDNode
*MD
= I
.getMetadata(LLVMContext::MD_prof
))
4197 visitProfMetadata(I
, MD
);
4199 if (MDNode
*N
= I
.getDebugLoc().getAsMDNode()) {
4200 AssertDI(isa
<DILocation
>(N
), "invalid !dbg metadata attachment", &I
, N
);
4204 if (auto *DII
= dyn_cast
<DbgVariableIntrinsic
>(&I
))
4205 verifyFragmentExpression(*DII
);
4207 InstsInThisBlock
.insert(&I
);
4210 /// Allow intrinsics to be verified in different ways.
4211 void Verifier::visitIntrinsicCall(Intrinsic::ID ID
, CallBase
&Call
) {
4212 Function
*IF
= Call
.getCalledFunction();
4213 Assert(IF
->isDeclaration(), "Intrinsic functions should never be defined!",
4216 // Verify that the intrinsic prototype lines up with what the .td files
4218 FunctionType
*IFTy
= IF
->getFunctionType();
4219 bool IsVarArg
= IFTy
->isVarArg();
4221 SmallVector
<Intrinsic::IITDescriptor
, 8> Table
;
4222 getIntrinsicInfoTableEntries(ID
, Table
);
4223 ArrayRef
<Intrinsic::IITDescriptor
> TableRef
= Table
;
4225 // Walk the descriptors to extract overloaded types.
4226 SmallVector
<Type
*, 4> ArgTys
;
4227 Intrinsic::MatchIntrinsicTypesResult Res
=
4228 Intrinsic::matchIntrinsicSignature(IFTy
, TableRef
, ArgTys
);
4229 Assert(Res
!= Intrinsic::MatchIntrinsicTypes_NoMatchRet
,
4230 "Intrinsic has incorrect return type!", IF
);
4231 Assert(Res
!= Intrinsic::MatchIntrinsicTypes_NoMatchArg
,
4232 "Intrinsic has incorrect argument type!", IF
);
4234 // Verify if the intrinsic call matches the vararg property.
4236 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg
, TableRef
),
4237 "Intrinsic was not defined with variable arguments!", IF
);
4239 Assert(!Intrinsic::matchIntrinsicVarArg(IsVarArg
, TableRef
),
4240 "Callsite was not defined with variable arguments!", IF
);
4242 // All descriptors should be absorbed by now.
4243 Assert(TableRef
.empty(), "Intrinsic has too few arguments!", IF
);
4245 // Now that we have the intrinsic ID and the actual argument types (and we
4246 // know they are legal for the intrinsic!) get the intrinsic name through the
4247 // usual means. This allows us to verify the mangling of argument types into
4249 const std::string ExpectedName
= Intrinsic::getName(ID
, ArgTys
);
4250 Assert(ExpectedName
== IF
->getName(),
4251 "Intrinsic name not mangled correctly for type arguments! "
4256 // If the intrinsic takes MDNode arguments, verify that they are either global
4257 // or are local to *this* function.
4258 for (Value
*V
: Call
.args())
4259 if (auto *MD
= dyn_cast
<MetadataAsValue
>(V
))
4260 visitMetadataAsValue(*MD
, Call
.getCaller());
4265 case Intrinsic::coro_id
: {
4266 auto *InfoArg
= Call
.getArgOperand(3)->stripPointerCasts();
4267 if (isa
<ConstantPointerNull
>(InfoArg
))
4269 auto *GV
= dyn_cast
<GlobalVariable
>(InfoArg
);
4270 Assert(GV
&& GV
->isConstant() && GV
->hasDefinitiveInitializer(),
4271 "info argument of llvm.coro.begin must refer to an initialized "
4273 Constant
*Init
= GV
->getInitializer();
4274 Assert(isa
<ConstantStruct
>(Init
) || isa
<ConstantArray
>(Init
),
4275 "info argument of llvm.coro.begin must refer to either a struct or "
4279 case Intrinsic::experimental_constrained_fadd
:
4280 case Intrinsic::experimental_constrained_fsub
:
4281 case Intrinsic::experimental_constrained_fmul
:
4282 case Intrinsic::experimental_constrained_fdiv
:
4283 case Intrinsic::experimental_constrained_frem
:
4284 case Intrinsic::experimental_constrained_fma
:
4285 case Intrinsic::experimental_constrained_fptosi
:
4286 case Intrinsic::experimental_constrained_fptoui
:
4287 case Intrinsic::experimental_constrained_fptrunc
:
4288 case Intrinsic::experimental_constrained_fpext
:
4289 case Intrinsic::experimental_constrained_sqrt
:
4290 case Intrinsic::experimental_constrained_pow
:
4291 case Intrinsic::experimental_constrained_powi
:
4292 case Intrinsic::experimental_constrained_sin
:
4293 case Intrinsic::experimental_constrained_cos
:
4294 case Intrinsic::experimental_constrained_exp
:
4295 case Intrinsic::experimental_constrained_exp2
:
4296 case Intrinsic::experimental_constrained_log
:
4297 case Intrinsic::experimental_constrained_log10
:
4298 case Intrinsic::experimental_constrained_log2
:
4299 case Intrinsic::experimental_constrained_rint
:
4300 case Intrinsic::experimental_constrained_nearbyint
:
4301 case Intrinsic::experimental_constrained_maxnum
:
4302 case Intrinsic::experimental_constrained_minnum
:
4303 case Intrinsic::experimental_constrained_ceil
:
4304 case Intrinsic::experimental_constrained_floor
:
4305 case Intrinsic::experimental_constrained_round
:
4306 case Intrinsic::experimental_constrained_trunc
:
4307 visitConstrainedFPIntrinsic(cast
<ConstrainedFPIntrinsic
>(Call
));
4309 case Intrinsic::dbg_declare
: // llvm.dbg.declare
4310 Assert(isa
<MetadataAsValue
>(Call
.getArgOperand(0)),
4311 "invalid llvm.dbg.declare intrinsic call 1", Call
);
4312 visitDbgIntrinsic("declare", cast
<DbgVariableIntrinsic
>(Call
));
4314 case Intrinsic::dbg_addr
: // llvm.dbg.addr
4315 visitDbgIntrinsic("addr", cast
<DbgVariableIntrinsic
>(Call
));
4317 case Intrinsic::dbg_value
: // llvm.dbg.value
4318 visitDbgIntrinsic("value", cast
<DbgVariableIntrinsic
>(Call
));
4320 case Intrinsic::dbg_label
: // llvm.dbg.label
4321 visitDbgLabelIntrinsic("label", cast
<DbgLabelInst
>(Call
));
4323 case Intrinsic::memcpy
:
4324 case Intrinsic::memmove
:
4325 case Intrinsic::memset
: {
4326 const auto *MI
= cast
<MemIntrinsic
>(&Call
);
4327 auto IsValidAlignment
= [&](unsigned Alignment
) -> bool {
4328 return Alignment
== 0 || isPowerOf2_32(Alignment
);
4330 Assert(IsValidAlignment(MI
->getDestAlignment()),
4331 "alignment of arg 0 of memory intrinsic must be 0 or a power of 2",
4333 if (const auto *MTI
= dyn_cast
<MemTransferInst
>(MI
)) {
4334 Assert(IsValidAlignment(MTI
->getSourceAlignment()),
4335 "alignment of arg 1 of memory intrinsic must be 0 or a power of 2",
4341 case Intrinsic::memcpy_element_unordered_atomic
:
4342 case Intrinsic::memmove_element_unordered_atomic
:
4343 case Intrinsic::memset_element_unordered_atomic
: {
4344 const auto *AMI
= cast
<AtomicMemIntrinsic
>(&Call
);
4346 ConstantInt
*ElementSizeCI
=
4347 cast
<ConstantInt
>(AMI
->getRawElementSizeInBytes());
4348 const APInt
&ElementSizeVal
= ElementSizeCI
->getValue();
4349 Assert(ElementSizeVal
.isPowerOf2(),
4350 "element size of the element-wise atomic memory intrinsic "
4351 "must be a power of 2",
4354 if (auto *LengthCI
= dyn_cast
<ConstantInt
>(AMI
->getLength())) {
4355 uint64_t Length
= LengthCI
->getZExtValue();
4356 uint64_t ElementSize
= AMI
->getElementSizeInBytes();
4357 Assert((Length
% ElementSize
) == 0,
4358 "constant length must be a multiple of the element size in the "
4359 "element-wise atomic memory intrinsic",
4363 auto IsValidAlignment
= [&](uint64_t Alignment
) {
4364 return isPowerOf2_64(Alignment
) && ElementSizeVal
.ule(Alignment
);
4366 uint64_t DstAlignment
= AMI
->getDestAlignment();
4367 Assert(IsValidAlignment(DstAlignment
),
4368 "incorrect alignment of the destination argument", Call
);
4369 if (const auto *AMT
= dyn_cast
<AtomicMemTransferInst
>(AMI
)) {
4370 uint64_t SrcAlignment
= AMT
->getSourceAlignment();
4371 Assert(IsValidAlignment(SrcAlignment
),
4372 "incorrect alignment of the source argument", Call
);
4376 case Intrinsic::gcroot
:
4377 case Intrinsic::gcwrite
:
4378 case Intrinsic::gcread
:
4379 if (ID
== Intrinsic::gcroot
) {
4381 dyn_cast
<AllocaInst
>(Call
.getArgOperand(0)->stripPointerCasts());
4382 Assert(AI
, "llvm.gcroot parameter #1 must be an alloca.", Call
);
4383 Assert(isa
<Constant
>(Call
.getArgOperand(1)),
4384 "llvm.gcroot parameter #2 must be a constant.", Call
);
4385 if (!AI
->getAllocatedType()->isPointerTy()) {
4386 Assert(!isa
<ConstantPointerNull
>(Call
.getArgOperand(1)),
4387 "llvm.gcroot parameter #1 must either be a pointer alloca, "
4388 "or argument #2 must be a non-null constant.",
4393 Assert(Call
.getParent()->getParent()->hasGC(),
4394 "Enclosing function does not use GC.", Call
);
4396 case Intrinsic::init_trampoline
:
4397 Assert(isa
<Function
>(Call
.getArgOperand(1)->stripPointerCasts()),
4398 "llvm.init_trampoline parameter #2 must resolve to a function.",
4401 case Intrinsic::prefetch
:
4402 Assert(cast
<ConstantInt
>(Call
.getArgOperand(1))->getZExtValue() < 2 &&
4403 cast
<ConstantInt
>(Call
.getArgOperand(2))->getZExtValue() < 4,
4404 "invalid arguments to llvm.prefetch", Call
);
4406 case Intrinsic::stackprotector
:
4407 Assert(isa
<AllocaInst
>(Call
.getArgOperand(1)->stripPointerCasts()),
4408 "llvm.stackprotector parameter #2 must resolve to an alloca.", Call
);
4410 case Intrinsic::localescape
: {
4411 BasicBlock
*BB
= Call
.getParent();
4412 Assert(BB
== &BB
->getParent()->front(),
4413 "llvm.localescape used outside of entry block", Call
);
4414 Assert(!SawFrameEscape
,
4415 "multiple calls to llvm.localescape in one function", Call
);
4416 for (Value
*Arg
: Call
.args()) {
4417 if (isa
<ConstantPointerNull
>(Arg
))
4418 continue; // Null values are allowed as placeholders.
4419 auto *AI
= dyn_cast
<AllocaInst
>(Arg
->stripPointerCasts());
4420 Assert(AI
&& AI
->isStaticAlloca(),
4421 "llvm.localescape only accepts static allocas", Call
);
4423 FrameEscapeInfo
[BB
->getParent()].first
= Call
.getNumArgOperands();
4424 SawFrameEscape
= true;
4427 case Intrinsic::localrecover
: {
4428 Value
*FnArg
= Call
.getArgOperand(0)->stripPointerCasts();
4429 Function
*Fn
= dyn_cast
<Function
>(FnArg
);
4430 Assert(Fn
&& !Fn
->isDeclaration(),
4431 "llvm.localrecover first "
4432 "argument must be function defined in this module",
4434 auto *IdxArg
= cast
<ConstantInt
>(Call
.getArgOperand(2));
4435 auto &Entry
= FrameEscapeInfo
[Fn
];
4436 Entry
.second
= unsigned(
4437 std::max(uint64_t(Entry
.second
), IdxArg
->getLimitedValue(~0U) + 1));
4441 case Intrinsic::experimental_gc_statepoint
:
4442 if (auto *CI
= dyn_cast
<CallInst
>(&Call
))
4443 Assert(!CI
->isInlineAsm(),
4444 "gc.statepoint support for inline assembly unimplemented", CI
);
4445 Assert(Call
.getParent()->getParent()->hasGC(),
4446 "Enclosing function does not use GC.", Call
);
4448 verifyStatepoint(Call
);
4450 case Intrinsic::experimental_gc_result
: {
4451 Assert(Call
.getParent()->getParent()->hasGC(),
4452 "Enclosing function does not use GC.", Call
);
4453 // Are we tied to a statepoint properly?
4454 const auto *StatepointCall
= dyn_cast
<CallBase
>(Call
.getArgOperand(0));
4455 const Function
*StatepointFn
=
4456 StatepointCall
? StatepointCall
->getCalledFunction() : nullptr;
4457 Assert(StatepointFn
&& StatepointFn
->isDeclaration() &&
4458 StatepointFn
->getIntrinsicID() ==
4459 Intrinsic::experimental_gc_statepoint
,
4460 "gc.result operand #1 must be from a statepoint", Call
,
4461 Call
.getArgOperand(0));
4463 // Assert that result type matches wrapped callee.
4464 const Value
*Target
= StatepointCall
->getArgOperand(2);
4465 auto *PT
= cast
<PointerType
>(Target
->getType());
4466 auto *TargetFuncType
= cast
<FunctionType
>(PT
->getElementType());
4467 Assert(Call
.getType() == TargetFuncType
->getReturnType(),
4468 "gc.result result type does not match wrapped callee", Call
);
4471 case Intrinsic::experimental_gc_relocate
: {
4472 Assert(Call
.getNumArgOperands() == 3, "wrong number of arguments", Call
);
4474 Assert(isa
<PointerType
>(Call
.getType()->getScalarType()),
4475 "gc.relocate must return a pointer or a vector of pointers", Call
);
4477 // Check that this relocate is correctly tied to the statepoint
4479 // This is case for relocate on the unwinding path of an invoke statepoint
4480 if (LandingPadInst
*LandingPad
=
4481 dyn_cast
<LandingPadInst
>(Call
.getArgOperand(0))) {
4483 const BasicBlock
*InvokeBB
=
4484 LandingPad
->getParent()->getUniquePredecessor();
4486 // Landingpad relocates should have only one predecessor with invoke
4487 // statepoint terminator
4488 Assert(InvokeBB
, "safepoints should have unique landingpads",
4489 LandingPad
->getParent());
4490 Assert(InvokeBB
->getTerminator(), "safepoint block should be well formed",
4492 Assert(isStatepoint(InvokeBB
->getTerminator()),
4493 "gc relocate should be linked to a statepoint", InvokeBB
);
4495 // In all other cases relocate should be tied to the statepoint directly.
4496 // This covers relocates on a normal return path of invoke statepoint and
4497 // relocates of a call statepoint.
4498 auto Token
= Call
.getArgOperand(0);
4499 Assert(isa
<Instruction
>(Token
) && isStatepoint(cast
<Instruction
>(Token
)),
4500 "gc relocate is incorrectly tied to the statepoint", Call
, Token
);
4503 // Verify rest of the relocate arguments.
4504 const CallBase
&StatepointCall
=
4505 *cast
<CallBase
>(cast
<GCRelocateInst
>(Call
).getStatepoint());
4507 // Both the base and derived must be piped through the safepoint.
4508 Value
*Base
= Call
.getArgOperand(1);
4509 Assert(isa
<ConstantInt
>(Base
),
4510 "gc.relocate operand #2 must be integer offset", Call
);
4512 Value
*Derived
= Call
.getArgOperand(2);
4513 Assert(isa
<ConstantInt
>(Derived
),
4514 "gc.relocate operand #3 must be integer offset", Call
);
4516 const int BaseIndex
= cast
<ConstantInt
>(Base
)->getZExtValue();
4517 const int DerivedIndex
= cast
<ConstantInt
>(Derived
)->getZExtValue();
4519 Assert(0 <= BaseIndex
&& BaseIndex
< (int)StatepointCall
.arg_size(),
4520 "gc.relocate: statepoint base index out of bounds", Call
);
4521 Assert(0 <= DerivedIndex
&& DerivedIndex
< (int)StatepointCall
.arg_size(),
4522 "gc.relocate: statepoint derived index out of bounds", Call
);
4524 // Check that BaseIndex and DerivedIndex fall within the 'gc parameters'
4525 // section of the statepoint's argument.
4526 Assert(StatepointCall
.arg_size() > 0,
4527 "gc.statepoint: insufficient arguments");
4528 Assert(isa
<ConstantInt
>(StatepointCall
.getArgOperand(3)),
4529 "gc.statement: number of call arguments must be constant integer");
4530 const unsigned NumCallArgs
=
4531 cast
<ConstantInt
>(StatepointCall
.getArgOperand(3))->getZExtValue();
4532 Assert(StatepointCall
.arg_size() > NumCallArgs
+ 5,
4533 "gc.statepoint: mismatch in number of call arguments");
4534 Assert(isa
<ConstantInt
>(StatepointCall
.getArgOperand(NumCallArgs
+ 5)),
4535 "gc.statepoint: number of transition arguments must be "
4536 "a constant integer");
4537 const int NumTransitionArgs
=
4538 cast
<ConstantInt
>(StatepointCall
.getArgOperand(NumCallArgs
+ 5))
4540 const int DeoptArgsStart
= 4 + NumCallArgs
+ 1 + NumTransitionArgs
+ 1;
4541 Assert(isa
<ConstantInt
>(StatepointCall
.getArgOperand(DeoptArgsStart
)),
4542 "gc.statepoint: number of deoptimization arguments must be "
4543 "a constant integer");
4544 const int NumDeoptArgs
=
4545 cast
<ConstantInt
>(StatepointCall
.getArgOperand(DeoptArgsStart
))
4547 const int GCParamArgsStart
= DeoptArgsStart
+ 1 + NumDeoptArgs
;
4548 const int GCParamArgsEnd
= StatepointCall
.arg_size();
4549 Assert(GCParamArgsStart
<= BaseIndex
&& BaseIndex
< GCParamArgsEnd
,
4550 "gc.relocate: statepoint base index doesn't fall within the "
4551 "'gc parameters' section of the statepoint call",
4553 Assert(GCParamArgsStart
<= DerivedIndex
&& DerivedIndex
< GCParamArgsEnd
,
4554 "gc.relocate: statepoint derived index doesn't fall within the "
4555 "'gc parameters' section of the statepoint call",
4558 // Relocated value must be either a pointer type or vector-of-pointer type,
4559 // but gc_relocate does not need to return the same pointer type as the
4560 // relocated pointer. It can be casted to the correct type later if it's
4561 // desired. However, they must have the same address space and 'vectorness'
4562 GCRelocateInst
&Relocate
= cast
<GCRelocateInst
>(Call
);
4563 Assert(Relocate
.getDerivedPtr()->getType()->isPtrOrPtrVectorTy(),
4564 "gc.relocate: relocated value must be a gc pointer", Call
);
4566 auto ResultType
= Call
.getType();
4567 auto DerivedType
= Relocate
.getDerivedPtr()->getType();
4568 Assert(ResultType
->isVectorTy() == DerivedType
->isVectorTy(),
4569 "gc.relocate: vector relocates to vector and pointer to pointer",
4572 ResultType
->getPointerAddressSpace() ==
4573 DerivedType
->getPointerAddressSpace(),
4574 "gc.relocate: relocating a pointer shouldn't change its address space",
4578 case Intrinsic::eh_exceptioncode
:
4579 case Intrinsic::eh_exceptionpointer
: {
4580 Assert(isa
<CatchPadInst
>(Call
.getArgOperand(0)),
4581 "eh.exceptionpointer argument must be a catchpad", Call
);
4584 case Intrinsic::masked_load
: {
4585 Assert(Call
.getType()->isVectorTy(), "masked_load: must return a vector",
4588 Value
*Ptr
= Call
.getArgOperand(0);
4589 ConstantInt
*Alignment
= cast
<ConstantInt
>(Call
.getArgOperand(1));
4590 Value
*Mask
= Call
.getArgOperand(2);
4591 Value
*PassThru
= Call
.getArgOperand(3);
4592 Assert(Mask
->getType()->isVectorTy(), "masked_load: mask must be vector",
4594 Assert(Alignment
->getValue().isPowerOf2(),
4595 "masked_load: alignment must be a power of 2", Call
);
4597 // DataTy is the overloaded type
4598 Type
*DataTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
4599 Assert(DataTy
== Call
.getType(),
4600 "masked_load: return must match pointer type", Call
);
4601 Assert(PassThru
->getType() == DataTy
,
4602 "masked_load: pass through and data type must match", Call
);
4603 Assert(Mask
->getType()->getVectorNumElements() ==
4604 DataTy
->getVectorNumElements(),
4605 "masked_load: vector mask must be same length as data", Call
);
4608 case Intrinsic::masked_store
: {
4609 Value
*Val
= Call
.getArgOperand(0);
4610 Value
*Ptr
= Call
.getArgOperand(1);
4611 ConstantInt
*Alignment
= cast
<ConstantInt
>(Call
.getArgOperand(2));
4612 Value
*Mask
= Call
.getArgOperand(3);
4613 Assert(Mask
->getType()->isVectorTy(), "masked_store: mask must be vector",
4615 Assert(Alignment
->getValue().isPowerOf2(),
4616 "masked_store: alignment must be a power of 2", Call
);
4618 // DataTy is the overloaded type
4619 Type
*DataTy
= cast
<PointerType
>(Ptr
->getType())->getElementType();
4620 Assert(DataTy
== Val
->getType(),
4621 "masked_store: storee must match pointer type", Call
);
4622 Assert(Mask
->getType()->getVectorNumElements() ==
4623 DataTy
->getVectorNumElements(),
4624 "masked_store: vector mask must be same length as data", Call
);
4628 case Intrinsic::experimental_guard
: {
4629 Assert(isa
<CallInst
>(Call
), "experimental_guard cannot be invoked", Call
);
4630 Assert(Call
.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1,
4631 "experimental_guard must have exactly one "
4632 "\"deopt\" operand bundle");
4636 case Intrinsic::experimental_deoptimize
: {
4637 Assert(isa
<CallInst
>(Call
), "experimental_deoptimize cannot be invoked",
4639 Assert(Call
.countOperandBundlesOfType(LLVMContext::OB_deopt
) == 1,
4640 "experimental_deoptimize must have exactly one "
4641 "\"deopt\" operand bundle");
4642 Assert(Call
.getType() == Call
.getFunction()->getReturnType(),
4643 "experimental_deoptimize return type must match caller return type");
4645 if (isa
<CallInst
>(Call
)) {
4646 auto *RI
= dyn_cast
<ReturnInst
>(Call
.getNextNode());
4648 "calls to experimental_deoptimize must be followed by a return");
4650 if (!Call
.getType()->isVoidTy() && RI
)
4651 Assert(RI
->getReturnValue() == &Call
,
4652 "calls to experimental_deoptimize must be followed by a return "
4653 "of the value computed by experimental_deoptimize");
4658 case Intrinsic::sadd_sat
:
4659 case Intrinsic::uadd_sat
:
4660 case Intrinsic::ssub_sat
:
4661 case Intrinsic::usub_sat
: {
4662 Value
*Op1
= Call
.getArgOperand(0);
4663 Value
*Op2
= Call
.getArgOperand(1);
4664 Assert(Op1
->getType()->isIntOrIntVectorTy(),
4665 "first operand of [us][add|sub]_sat must be an int type or vector "
4667 Assert(Op2
->getType()->isIntOrIntVectorTy(),
4668 "second operand of [us][add|sub]_sat must be an int type or vector "
4672 case Intrinsic::smul_fix
:
4673 case Intrinsic::smul_fix_sat
:
4674 case Intrinsic::umul_fix
: {
4675 Value
*Op1
= Call
.getArgOperand(0);
4676 Value
*Op2
= Call
.getArgOperand(1);
4677 Assert(Op1
->getType()->isIntOrIntVectorTy(),
4678 "first operand of [us]mul_fix[_sat] must be an int type or vector "
4680 Assert(Op2
->getType()->isIntOrIntVectorTy(),
4681 "second operand of [us]mul_fix_[sat] must be an int type or vector "
4684 auto *Op3
= cast
<ConstantInt
>(Call
.getArgOperand(2));
4685 Assert(Op3
->getType()->getBitWidth() <= 32,
4686 "third argument of [us]mul_fix[_sat] must fit within 32 bits");
4688 if (ID
== Intrinsic::smul_fix
|| ID
== Intrinsic::smul_fix_sat
) {
4690 Op3
->getZExtValue() < Op1
->getType()->getScalarSizeInBits(),
4691 "the scale of smul_fix[_sat] must be less than the width of the operands");
4693 Assert(Op3
->getZExtValue() <= Op1
->getType()->getScalarSizeInBits(),
4694 "the scale of umul_fix[_sat] must be less than or equal to the width of "
4699 case Intrinsic::lround
:
4700 case Intrinsic::llround
:
4701 case Intrinsic::lrint
:
4702 case Intrinsic::llrint
: {
4703 Type
*ValTy
= Call
.getArgOperand(0)->getType();
4704 Type
*ResultTy
= Call
.getType();
4705 Assert(!ValTy
->isVectorTy() && !ResultTy
->isVectorTy(),
4706 "Intrinsic does not support vectors", &Call
);
4712 /// Carefully grab the subprogram from a local scope.
4714 /// This carefully grabs the subprogram from a local scope, avoiding the
4715 /// built-in assertions that would typically fire.
4716 static DISubprogram
*getSubprogram(Metadata
*LocalScope
) {
4720 if (auto *SP
= dyn_cast
<DISubprogram
>(LocalScope
))
4723 if (auto *LB
= dyn_cast
<DILexicalBlockBase
>(LocalScope
))
4724 return getSubprogram(LB
->getRawScope());
4726 // Just return null; broken scope chains are checked elsewhere.
4727 assert(!isa
<DILocalScope
>(LocalScope
) && "Unknown type of local scope");
4731 void Verifier::visitConstrainedFPIntrinsic(ConstrainedFPIntrinsic
&FPI
) {
4732 unsigned NumOperands
= FPI
.getNumArgOperands();
4733 bool HasExceptionMD
= false;
4734 bool HasRoundingMD
= false;
4735 switch (FPI
.getIntrinsicID()) {
4736 case Intrinsic::experimental_constrained_sqrt
:
4737 case Intrinsic::experimental_constrained_sin
:
4738 case Intrinsic::experimental_constrained_cos
:
4739 case Intrinsic::experimental_constrained_exp
:
4740 case Intrinsic::experimental_constrained_exp2
:
4741 case Intrinsic::experimental_constrained_log
:
4742 case Intrinsic::experimental_constrained_log10
:
4743 case Intrinsic::experimental_constrained_log2
:
4744 case Intrinsic::experimental_constrained_rint
:
4745 case Intrinsic::experimental_constrained_nearbyint
:
4746 case Intrinsic::experimental_constrained_ceil
:
4747 case Intrinsic::experimental_constrained_floor
:
4748 case Intrinsic::experimental_constrained_round
:
4749 case Intrinsic::experimental_constrained_trunc
:
4750 Assert((NumOperands
== 3), "invalid arguments for constrained FP intrinsic",
4752 HasExceptionMD
= true;
4753 HasRoundingMD
= true;
4756 case Intrinsic::experimental_constrained_fma
:
4757 Assert((NumOperands
== 5), "invalid arguments for constrained FP intrinsic",
4759 HasExceptionMD
= true;
4760 HasRoundingMD
= true;
4763 case Intrinsic::experimental_constrained_fadd
:
4764 case Intrinsic::experimental_constrained_fsub
:
4765 case Intrinsic::experimental_constrained_fmul
:
4766 case Intrinsic::experimental_constrained_fdiv
:
4767 case Intrinsic::experimental_constrained_frem
:
4768 case Intrinsic::experimental_constrained_pow
:
4769 case Intrinsic::experimental_constrained_powi
:
4770 case Intrinsic::experimental_constrained_maxnum
:
4771 case Intrinsic::experimental_constrained_minnum
:
4772 Assert((NumOperands
== 4), "invalid arguments for constrained FP intrinsic",
4774 HasExceptionMD
= true;
4775 HasRoundingMD
= true;
4778 case Intrinsic::experimental_constrained_fptosi
:
4779 case Intrinsic::experimental_constrained_fptoui
: {
4780 Assert((NumOperands
== 2),
4781 "invalid arguments for constrained FP intrinsic", &FPI
);
4782 HasExceptionMD
= true;
4784 Value
*Operand
= FPI
.getArgOperand(0);
4785 uint64_t NumSrcElem
= 0;
4786 Assert(Operand
->getType()->isFPOrFPVectorTy(),
4787 "Intrinsic first argument must be floating point", &FPI
);
4788 if (auto *OperandT
= dyn_cast
<VectorType
>(Operand
->getType())) {
4789 NumSrcElem
= OperandT
->getNumElements();
4793 Assert((NumSrcElem
> 0) == Operand
->getType()->isVectorTy(),
4794 "Intrinsic first argument and result disagree on vector use", &FPI
);
4795 Assert(Operand
->getType()->isIntOrIntVectorTy(),
4796 "Intrinsic result must be an integer", &FPI
);
4797 if (auto *OperandT
= dyn_cast
<VectorType
>(Operand
->getType())) {
4798 Assert(NumSrcElem
== OperandT
->getNumElements(),
4799 "Intrinsic first argument and result vector lengths must be equal",
4805 case Intrinsic::experimental_constrained_fptrunc
:
4806 case Intrinsic::experimental_constrained_fpext
: {
4807 if (FPI
.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc
) {
4808 Assert((NumOperands
== 3),
4809 "invalid arguments for constrained FP intrinsic", &FPI
);
4810 HasRoundingMD
= true;
4812 Assert((NumOperands
== 2),
4813 "invalid arguments for constrained FP intrinsic", &FPI
);
4815 HasExceptionMD
= true;
4817 Value
*Operand
= FPI
.getArgOperand(0);
4818 Type
*OperandTy
= Operand
->getType();
4819 Value
*Result
= &FPI
;
4820 Type
*ResultTy
= Result
->getType();
4821 Assert(OperandTy
->isFPOrFPVectorTy(),
4822 "Intrinsic first argument must be FP or FP vector", &FPI
);
4823 Assert(ResultTy
->isFPOrFPVectorTy(),
4824 "Intrinsic result must be FP or FP vector", &FPI
);
4825 Assert(OperandTy
->isVectorTy() == ResultTy
->isVectorTy(),
4826 "Intrinsic first argument and result disagree on vector use", &FPI
);
4827 if (OperandTy
->isVectorTy()) {
4828 auto *OperandVecTy
= cast
<VectorType
>(OperandTy
);
4829 auto *ResultVecTy
= cast
<VectorType
>(ResultTy
);
4830 Assert(OperandVecTy
->getNumElements() == ResultVecTy
->getNumElements(),
4831 "Intrinsic first argument and result vector lengths must be equal",
4834 if (FPI
.getIntrinsicID() == Intrinsic::experimental_constrained_fptrunc
) {
4835 Assert(OperandTy
->getScalarSizeInBits() > ResultTy
->getScalarSizeInBits(),
4836 "Intrinsic first argument's type must be larger than result type",
4839 Assert(OperandTy
->getScalarSizeInBits() < ResultTy
->getScalarSizeInBits(),
4840 "Intrinsic first argument's type must be smaller than result type",
4847 llvm_unreachable("Invalid constrained FP intrinsic!");
4850 // If a non-metadata argument is passed in a metadata slot then the
4851 // error will be caught earlier when the incorrect argument doesn't
4852 // match the specification in the intrinsic call table. Thus, no
4853 // argument type check is needed here.
4855 if (HasExceptionMD
) {
4856 Assert(FPI
.getExceptionBehavior().hasValue(),
4857 "invalid exception behavior argument", &FPI
);
4859 if (HasRoundingMD
) {
4860 Assert(FPI
.getRoundingMode().hasValue(),
4861 "invalid rounding mode argument", &FPI
);
4865 void Verifier::visitDbgIntrinsic(StringRef Kind
, DbgVariableIntrinsic
&DII
) {
4866 auto *MD
= cast
<MetadataAsValue
>(DII
.getArgOperand(0))->getMetadata();
4867 AssertDI(isa
<ValueAsMetadata
>(MD
) ||
4868 (isa
<MDNode
>(MD
) && !cast
<MDNode
>(MD
)->getNumOperands()),
4869 "invalid llvm.dbg." + Kind
+ " intrinsic address/value", &DII
, MD
);
4870 AssertDI(isa
<DILocalVariable
>(DII
.getRawVariable()),
4871 "invalid llvm.dbg." + Kind
+ " intrinsic variable", &DII
,
4872 DII
.getRawVariable());
4873 AssertDI(isa
<DIExpression
>(DII
.getRawExpression()),
4874 "invalid llvm.dbg." + Kind
+ " intrinsic expression", &DII
,
4875 DII
.getRawExpression());
4877 // Ignore broken !dbg attachments; they're checked elsewhere.
4878 if (MDNode
*N
= DII
.getDebugLoc().getAsMDNode())
4879 if (!isa
<DILocation
>(N
))
4882 BasicBlock
*BB
= DII
.getParent();
4883 Function
*F
= BB
? BB
->getParent() : nullptr;
4885 // The scopes for variables and !dbg attachments must agree.
4886 DILocalVariable
*Var
= DII
.getVariable();
4887 DILocation
*Loc
= DII
.getDebugLoc();
4888 AssertDI(Loc
, "llvm.dbg." + Kind
+ " intrinsic requires a !dbg attachment",
4891 DISubprogram
*VarSP
= getSubprogram(Var
->getRawScope());
4892 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
4893 if (!VarSP
|| !LocSP
)
4894 return; // Broken scope chains are checked elsewhere.
4896 AssertDI(VarSP
== LocSP
, "mismatched subprogram between llvm.dbg." + Kind
+
4897 " variable and !dbg attachment",
4898 &DII
, BB
, F
, Var
, Var
->getScope()->getSubprogram(), Loc
,
4899 Loc
->getScope()->getSubprogram());
4901 // This check is redundant with one in visitLocalVariable().
4902 AssertDI(isType(Var
->getRawType()), "invalid type ref", Var
,
4904 if (auto *Type
= dyn_cast_or_null
<DIType
>(Var
->getRawType()))
4905 if (Type
->isBlockByrefStruct())
4906 AssertDI(DII
.getExpression() && DII
.getExpression()->getNumElements(),
4907 "BlockByRef variable without complex expression", Var
, &DII
);
4912 void Verifier::visitDbgLabelIntrinsic(StringRef Kind
, DbgLabelInst
&DLI
) {
4913 AssertDI(isa
<DILabel
>(DLI
.getRawLabel()),
4914 "invalid llvm.dbg." + Kind
+ " intrinsic variable", &DLI
,
4917 // Ignore broken !dbg attachments; they're checked elsewhere.
4918 if (MDNode
*N
= DLI
.getDebugLoc().getAsMDNode())
4919 if (!isa
<DILocation
>(N
))
4922 BasicBlock
*BB
= DLI
.getParent();
4923 Function
*F
= BB
? BB
->getParent() : nullptr;
4925 // The scopes for variables and !dbg attachments must agree.
4926 DILabel
*Label
= DLI
.getLabel();
4927 DILocation
*Loc
= DLI
.getDebugLoc();
4928 Assert(Loc
, "llvm.dbg." + Kind
+ " intrinsic requires a !dbg attachment",
4931 DISubprogram
*LabelSP
= getSubprogram(Label
->getRawScope());
4932 DISubprogram
*LocSP
= getSubprogram(Loc
->getRawScope());
4933 if (!LabelSP
|| !LocSP
)
4936 AssertDI(LabelSP
== LocSP
, "mismatched subprogram between llvm.dbg." + Kind
+
4937 " label and !dbg attachment",
4938 &DLI
, BB
, F
, Label
, Label
->getScope()->getSubprogram(), Loc
,
4939 Loc
->getScope()->getSubprogram());
4942 void Verifier::verifyFragmentExpression(const DbgVariableIntrinsic
&I
) {
4943 DILocalVariable
*V
= dyn_cast_or_null
<DILocalVariable
>(I
.getRawVariable());
4944 DIExpression
*E
= dyn_cast_or_null
<DIExpression
>(I
.getRawExpression());
4946 // We don't know whether this intrinsic verified correctly.
4947 if (!V
|| !E
|| !E
->isValid())
4950 // Nothing to do if this isn't a DW_OP_LLVM_fragment expression.
4951 auto Fragment
= E
->getFragmentInfo();
4955 // The frontend helps out GDB by emitting the members of local anonymous
4956 // unions as artificial local variables with shared storage. When SROA splits
4957 // the storage for artificial local variables that are smaller than the entire
4958 // union, the overhang piece will be outside of the allotted space for the
4959 // variable and this check fails.
4960 // FIXME: Remove this check as soon as clang stops doing this; it hides bugs.
4961 if (V
->isArtificial())
4964 verifyFragmentExpression(*V
, *Fragment
, &I
);
4967 template <typename ValueOrMetadata
>
4968 void Verifier::verifyFragmentExpression(const DIVariable
&V
,
4969 DIExpression::FragmentInfo Fragment
,
4970 ValueOrMetadata
*Desc
) {
4971 // If there's no size, the type is broken, but that should be checked
4973 auto VarSize
= V
.getSizeInBits();
4977 unsigned FragSize
= Fragment
.SizeInBits
;
4978 unsigned FragOffset
= Fragment
.OffsetInBits
;
4979 AssertDI(FragSize
+ FragOffset
<= *VarSize
,
4980 "fragment is larger than or outside of variable", Desc
, &V
);
4981 AssertDI(FragSize
!= *VarSize
, "fragment covers entire variable", Desc
, &V
);
4984 void Verifier::verifyFnArgs(const DbgVariableIntrinsic
&I
) {
4985 // This function does not take the scope of noninlined function arguments into
4986 // account. Don't run it if current function is nodebug, because it may
4987 // contain inlined debug intrinsics.
4991 // For performance reasons only check non-inlined ones.
4992 if (I
.getDebugLoc()->getInlinedAt())
4995 DILocalVariable
*Var
= I
.getVariable();
4996 AssertDI(Var
, "dbg intrinsic without variable");
4998 unsigned ArgNo
= Var
->getArg();
5002 // Verify there are no duplicate function argument debug info entries.
5003 // These will cause hard-to-debug assertions in the DWARF backend.
5004 if (DebugFnArgs
.size() < ArgNo
)
5005 DebugFnArgs
.resize(ArgNo
, nullptr);
5007 auto *Prev
= DebugFnArgs
[ArgNo
- 1];
5008 DebugFnArgs
[ArgNo
- 1] = Var
;
5009 AssertDI(!Prev
|| (Prev
== Var
), "conflicting debug info for argument", &I
,
5013 void Verifier::verifyCompileUnits() {
5014 // When more than one Module is imported into the same context, such as during
5015 // an LTO build before linking the modules, ODR type uniquing may cause types
5016 // to point to a different CU. This check does not make sense in this case.
5017 if (M
.getContext().isODRUniquingDebugTypes())
5019 auto *CUs
= M
.getNamedMetadata("llvm.dbg.cu");
5020 SmallPtrSet
<const Metadata
*, 2> Listed
;
5022 Listed
.insert(CUs
->op_begin(), CUs
->op_end());
5023 for (auto *CU
: CUVisited
)
5024 AssertDI(Listed
.count(CU
), "DICompileUnit not listed in llvm.dbg.cu", CU
);
5028 void Verifier::verifyDeoptimizeCallingConvs() {
5029 if (DeoptimizeDeclarations
.empty())
5032 const Function
*First
= DeoptimizeDeclarations
[0];
5033 for (auto *F
: makeArrayRef(DeoptimizeDeclarations
).slice(1)) {
5034 Assert(First
->getCallingConv() == F
->getCallingConv(),
5035 "All llvm.experimental.deoptimize declarations must have the same "
5036 "calling convention",
5041 void Verifier::verifySourceDebugInfo(const DICompileUnit
&U
, const DIFile
&F
) {
5042 bool HasSource
= F
.getSource().hasValue();
5043 if (!HasSourceDebugInfo
.count(&U
))
5044 HasSourceDebugInfo
[&U
] = HasSource
;
5045 AssertDI(HasSource
== HasSourceDebugInfo
[&U
],
5046 "inconsistent use of embedded source");
5049 //===----------------------------------------------------------------------===//
5050 // Implement the public interfaces to this file...
5051 //===----------------------------------------------------------------------===//
5053 bool llvm::verifyFunction(const Function
&f
, raw_ostream
*OS
) {
5054 Function
&F
= const_cast<Function
&>(f
);
5056 // Don't use a raw_null_ostream. Printing IR is expensive.
5057 Verifier
V(OS
, /*ShouldTreatBrokenDebugInfoAsError=*/true, *f
.getParent());
5059 // Note that this function's return value is inverted from what you would
5060 // expect of a function called "verify".
5061 return !V
.verify(F
);
5064 bool llvm::verifyModule(const Module
&M
, raw_ostream
*OS
,
5065 bool *BrokenDebugInfo
) {
5066 // Don't use a raw_null_ostream. Printing IR is expensive.
5067 Verifier
V(OS
, /*ShouldTreatBrokenDebugInfoAsError=*/!BrokenDebugInfo
, M
);
5069 bool Broken
= false;
5070 for (const Function
&F
: M
)
5071 Broken
|= !V
.verify(F
);
5073 Broken
|= !V
.verify();
5074 if (BrokenDebugInfo
)
5075 *BrokenDebugInfo
= V
.hasBrokenDebugInfo();
5076 // Note that this function's return value is inverted from what you would
5077 // expect of a function called "verify".
5083 struct VerifierLegacyPass
: public FunctionPass
{
5086 std::unique_ptr
<Verifier
> V
;
5087 bool FatalErrors
= true;
5089 VerifierLegacyPass() : FunctionPass(ID
) {
5090 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5092 explicit VerifierLegacyPass(bool FatalErrors
)
5094 FatalErrors(FatalErrors
) {
5095 initializeVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
5098 bool doInitialization(Module
&M
) override
{
5099 V
= std::make_unique
<Verifier
>(
5100 &dbgs(), /*ShouldTreatBrokenDebugInfoAsError=*/false, M
);
5104 bool runOnFunction(Function
&F
) override
{
5105 if (!V
->verify(F
) && FatalErrors
) {
5106 errs() << "in function " << F
.getName() << '\n';
5107 report_fatal_error("Broken function found, compilation aborted!");
5112 bool doFinalization(Module
&M
) override
{
5113 bool HasErrors
= false;
5114 for (Function
&F
: M
)
5115 if (F
.isDeclaration())
5116 HasErrors
|= !V
->verify(F
);
5118 HasErrors
|= !V
->verify();
5119 if (FatalErrors
&& (HasErrors
|| V
->hasBrokenDebugInfo()))
5120 report_fatal_error("Broken module found, compilation aborted!");
5124 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
5125 AU
.setPreservesAll();
5129 } // end anonymous namespace
5131 /// Helper to issue failure from the TBAA verification
5132 template <typename
... Tys
> void TBAAVerifier::CheckFailed(Tys
&&... Args
) {
5134 return Diagnostic
->CheckFailed(Args
...);
5137 #define AssertTBAA(C, ...) \
5140 CheckFailed(__VA_ARGS__); \
5145 /// Verify that \p BaseNode can be used as the "base type" in the struct-path
5146 /// TBAA scheme. This means \p BaseNode is either a scalar node, or a
5147 /// struct-type node describing an aggregate data structure (like a struct).
5148 TBAAVerifier::TBAABaseNodeSummary
5149 TBAAVerifier::verifyTBAABaseNode(Instruction
&I
, const MDNode
*BaseNode
,
5151 if (BaseNode
->getNumOperands() < 2) {
5152 CheckFailed("Base nodes must have at least two operands", &I
, BaseNode
);
5156 auto Itr
= TBAABaseNodes
.find(BaseNode
);
5157 if (Itr
!= TBAABaseNodes
.end())
5160 auto Result
= verifyTBAABaseNodeImpl(I
, BaseNode
, IsNewFormat
);
5161 auto InsertResult
= TBAABaseNodes
.insert({BaseNode
, Result
});
5163 assert(InsertResult
.second
&& "We just checked!");
5167 TBAAVerifier::TBAABaseNodeSummary
5168 TBAAVerifier::verifyTBAABaseNodeImpl(Instruction
&I
, const MDNode
*BaseNode
,
5170 const TBAAVerifier::TBAABaseNodeSummary InvalidNode
= {true, ~0u};
5172 if (BaseNode
->getNumOperands() == 2) {
5173 // Scalar nodes can only be accessed at offset 0.
5174 return isValidScalarTBAANode(BaseNode
)
5175 ? TBAAVerifier::TBAABaseNodeSummary({false, 0})
5180 if (BaseNode
->getNumOperands() % 3 != 0) {
5181 CheckFailed("Access tag nodes must have the number of operands that is a "
5182 "multiple of 3!", BaseNode
);
5186 if (BaseNode
->getNumOperands() % 2 != 1) {
5187 CheckFailed("Struct tag nodes must have an odd number of operands!",
5193 // Check the type size field.
5195 auto *TypeSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5196 BaseNode
->getOperand(1));
5197 if (!TypeSizeNode
) {
5198 CheckFailed("Type size nodes must be constants!", &I
, BaseNode
);
5203 // Check the type name field. In the new format it can be anything.
5204 if (!IsNewFormat
&& !isa
<MDString
>(BaseNode
->getOperand(0))) {
5205 CheckFailed("Struct tag nodes have a string as their first operand",
5210 bool Failed
= false;
5212 Optional
<APInt
> PrevOffset
;
5213 unsigned BitWidth
= ~0u;
5215 // We've already checked that BaseNode is not a degenerate root node with one
5216 // operand in \c verifyTBAABaseNode, so this loop should run at least once.
5217 unsigned FirstFieldOpNo
= IsNewFormat
? 3 : 1;
5218 unsigned NumOpsPerField
= IsNewFormat
? 3 : 2;
5219 for (unsigned Idx
= FirstFieldOpNo
; Idx
< BaseNode
->getNumOperands();
5220 Idx
+= NumOpsPerField
) {
5221 const MDOperand
&FieldTy
= BaseNode
->getOperand(Idx
);
5222 const MDOperand
&FieldOffset
= BaseNode
->getOperand(Idx
+ 1);
5223 if (!isa
<MDNode
>(FieldTy
)) {
5224 CheckFailed("Incorrect field entry in struct type node!", &I
, BaseNode
);
5229 auto *OffsetEntryCI
=
5230 mdconst::dyn_extract_or_null
<ConstantInt
>(FieldOffset
);
5231 if (!OffsetEntryCI
) {
5232 CheckFailed("Offset entries must be constants!", &I
, BaseNode
);
5237 if (BitWidth
== ~0u)
5238 BitWidth
= OffsetEntryCI
->getBitWidth();
5240 if (OffsetEntryCI
->getBitWidth() != BitWidth
) {
5242 "Bitwidth between the offsets and struct type entries must match", &I
,
5248 // NB! As far as I can tell, we generate a non-strictly increasing offset
5249 // sequence only from structs that have zero size bit fields. When
5250 // recursing into a contained struct in \c getFieldNodeFromTBAABaseNode we
5251 // pick the field lexically the latest in struct type metadata node. This
5252 // mirrors the actual behavior of the alias analysis implementation.
5254 !PrevOffset
|| PrevOffset
->ule(OffsetEntryCI
->getValue());
5257 CheckFailed("Offsets must be increasing!", &I
, BaseNode
);
5261 PrevOffset
= OffsetEntryCI
->getValue();
5264 auto *MemberSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5265 BaseNode
->getOperand(Idx
+ 2));
5266 if (!MemberSizeNode
) {
5267 CheckFailed("Member size entries must be constants!", &I
, BaseNode
);
5274 return Failed
? InvalidNode
5275 : TBAAVerifier::TBAABaseNodeSummary(false, BitWidth
);
5278 static bool IsRootTBAANode(const MDNode
*MD
) {
5279 return MD
->getNumOperands() < 2;
5282 static bool IsScalarTBAANodeImpl(const MDNode
*MD
,
5283 SmallPtrSetImpl
<const MDNode
*> &Visited
) {
5284 if (MD
->getNumOperands() != 2 && MD
->getNumOperands() != 3)
5287 if (!isa
<MDString
>(MD
->getOperand(0)))
5290 if (MD
->getNumOperands() == 3) {
5291 auto *Offset
= mdconst::dyn_extract
<ConstantInt
>(MD
->getOperand(2));
5292 if (!(Offset
&& Offset
->isZero() && isa
<MDString
>(MD
->getOperand(0))))
5296 auto *Parent
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(1));
5297 return Parent
&& Visited
.insert(Parent
).second
&&
5298 (IsRootTBAANode(Parent
) || IsScalarTBAANodeImpl(Parent
, Visited
));
5301 bool TBAAVerifier::isValidScalarTBAANode(const MDNode
*MD
) {
5302 auto ResultIt
= TBAAScalarNodes
.find(MD
);
5303 if (ResultIt
!= TBAAScalarNodes
.end())
5304 return ResultIt
->second
;
5306 SmallPtrSet
<const MDNode
*, 4> Visited
;
5307 bool Result
= IsScalarTBAANodeImpl(MD
, Visited
);
5308 auto InsertResult
= TBAAScalarNodes
.insert({MD
, Result
});
5310 assert(InsertResult
.second
&& "Just checked!");
5315 /// Returns the field node at the offset \p Offset in \p BaseNode. Update \p
5316 /// Offset in place to be the offset within the field node returned.
5318 /// We assume we've okayed \p BaseNode via \c verifyTBAABaseNode.
5319 MDNode
*TBAAVerifier::getFieldNodeFromTBAABaseNode(Instruction
&I
,
5320 const MDNode
*BaseNode
,
5323 assert(BaseNode
->getNumOperands() >= 2 && "Invalid base node!");
5325 // Scalar nodes have only one possible "field" -- their parent in the access
5326 // hierarchy. Offset must be zero at this point, but our caller is supposed
5328 if (BaseNode
->getNumOperands() == 2)
5329 return cast
<MDNode
>(BaseNode
->getOperand(1));
5331 unsigned FirstFieldOpNo
= IsNewFormat
? 3 : 1;
5332 unsigned NumOpsPerField
= IsNewFormat
? 3 : 2;
5333 for (unsigned Idx
= FirstFieldOpNo
; Idx
< BaseNode
->getNumOperands();
5334 Idx
+= NumOpsPerField
) {
5335 auto *OffsetEntryCI
=
5336 mdconst::extract
<ConstantInt
>(BaseNode
->getOperand(Idx
+ 1));
5337 if (OffsetEntryCI
->getValue().ugt(Offset
)) {
5338 if (Idx
== FirstFieldOpNo
) {
5339 CheckFailed("Could not find TBAA parent in struct type node", &I
,
5344 unsigned PrevIdx
= Idx
- NumOpsPerField
;
5345 auto *PrevOffsetEntryCI
=
5346 mdconst::extract
<ConstantInt
>(BaseNode
->getOperand(PrevIdx
+ 1));
5347 Offset
-= PrevOffsetEntryCI
->getValue();
5348 return cast
<MDNode
>(BaseNode
->getOperand(PrevIdx
));
5352 unsigned LastIdx
= BaseNode
->getNumOperands() - NumOpsPerField
;
5353 auto *LastOffsetEntryCI
= mdconst::extract
<ConstantInt
>(
5354 BaseNode
->getOperand(LastIdx
+ 1));
5355 Offset
-= LastOffsetEntryCI
->getValue();
5356 return cast
<MDNode
>(BaseNode
->getOperand(LastIdx
));
5359 static bool isNewFormatTBAATypeNode(llvm::MDNode
*Type
) {
5360 if (!Type
|| Type
->getNumOperands() < 3)
5363 // In the new format type nodes shall have a reference to the parent type as
5364 // its first operand.
5365 MDNode
*Parent
= dyn_cast_or_null
<MDNode
>(Type
->getOperand(0));
5372 bool TBAAVerifier::visitTBAAMetadata(Instruction
&I
, const MDNode
*MD
) {
5373 AssertTBAA(isa
<LoadInst
>(I
) || isa
<StoreInst
>(I
) || isa
<CallInst
>(I
) ||
5374 isa
<VAArgInst
>(I
) || isa
<AtomicRMWInst
>(I
) ||
5375 isa
<AtomicCmpXchgInst
>(I
),
5376 "This instruction shall not have a TBAA access tag!", &I
);
5378 bool IsStructPathTBAA
=
5379 isa
<MDNode
>(MD
->getOperand(0)) && MD
->getNumOperands() >= 3;
5383 "Old-style TBAA is no longer allowed, use struct-path TBAA instead", &I
);
5385 MDNode
*BaseNode
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(0));
5386 MDNode
*AccessType
= dyn_cast_or_null
<MDNode
>(MD
->getOperand(1));
5388 bool IsNewFormat
= isNewFormatTBAATypeNode(AccessType
);
5391 AssertTBAA(MD
->getNumOperands() == 4 || MD
->getNumOperands() == 5,
5392 "Access tag metadata must have either 4 or 5 operands", &I
, MD
);
5394 AssertTBAA(MD
->getNumOperands() < 5,
5395 "Struct tag metadata must have either 3 or 4 operands", &I
, MD
);
5398 // Check the access size field.
5400 auto *AccessSizeNode
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5402 AssertTBAA(AccessSizeNode
, "Access size field must be a constant", &I
, MD
);
5405 // Check the immutability flag.
5406 unsigned ImmutabilityFlagOpNo
= IsNewFormat
? 4 : 3;
5407 if (MD
->getNumOperands() == ImmutabilityFlagOpNo
+ 1) {
5408 auto *IsImmutableCI
= mdconst::dyn_extract_or_null
<ConstantInt
>(
5409 MD
->getOperand(ImmutabilityFlagOpNo
));
5410 AssertTBAA(IsImmutableCI
,
5411 "Immutability tag on struct tag metadata must be a constant",
5414 IsImmutableCI
->isZero() || IsImmutableCI
->isOne(),
5415 "Immutability part of the struct tag metadata must be either 0 or 1",
5419 AssertTBAA(BaseNode
&& AccessType
,
5420 "Malformed struct tag metadata: base and access-type "
5421 "should be non-null and point to Metadata nodes",
5422 &I
, MD
, BaseNode
, AccessType
);
5425 AssertTBAA(isValidScalarTBAANode(AccessType
),
5426 "Access type node must be a valid scalar type", &I
, MD
,
5430 auto *OffsetCI
= mdconst::dyn_extract_or_null
<ConstantInt
>(MD
->getOperand(2));
5431 AssertTBAA(OffsetCI
, "Offset must be constant integer", &I
, MD
);
5433 APInt Offset
= OffsetCI
->getValue();
5434 bool SeenAccessTypeInPath
= false;
5436 SmallPtrSet
<MDNode
*, 4> StructPath
;
5438 for (/* empty */; BaseNode
&& !IsRootTBAANode(BaseNode
);
5439 BaseNode
= getFieldNodeFromTBAABaseNode(I
, BaseNode
, Offset
,
5441 if (!StructPath
.insert(BaseNode
).second
) {
5442 CheckFailed("Cycle detected in struct path", &I
, MD
);
5447 unsigned BaseNodeBitWidth
;
5448 std::tie(Invalid
, BaseNodeBitWidth
) = verifyTBAABaseNode(I
, BaseNode
,
5451 // If the base node is invalid in itself, then we've already printed all the
5452 // errors we wanted to print.
5456 SeenAccessTypeInPath
|= BaseNode
== AccessType
;
5458 if (isValidScalarTBAANode(BaseNode
) || BaseNode
== AccessType
)
5459 AssertTBAA(Offset
== 0, "Offset not zero at the point of scalar access",
5462 AssertTBAA(BaseNodeBitWidth
== Offset
.getBitWidth() ||
5463 (BaseNodeBitWidth
== 0 && Offset
== 0) ||
5464 (IsNewFormat
&& BaseNodeBitWidth
== ~0u),
5465 "Access bit-width not the same as description bit-width", &I
, MD
,
5466 BaseNodeBitWidth
, Offset
.getBitWidth());
5468 if (IsNewFormat
&& SeenAccessTypeInPath
)
5472 AssertTBAA(SeenAccessTypeInPath
, "Did not see access type in access path!",
5477 char VerifierLegacyPass::ID
= 0;
5478 INITIALIZE_PASS(VerifierLegacyPass
, "verify", "Module Verifier", false, false)
5480 FunctionPass
*llvm::createVerifierPass(bool FatalErrors
) {
5481 return new VerifierLegacyPass(FatalErrors
);
5484 AnalysisKey
VerifierAnalysis::Key
;
5485 VerifierAnalysis::Result
VerifierAnalysis::run(Module
&M
,
5486 ModuleAnalysisManager
&) {
5488 Res
.IRBroken
= llvm::verifyModule(M
, &dbgs(), &Res
.DebugInfoBroken
);
5492 VerifierAnalysis::Result
VerifierAnalysis::run(Function
&F
,
5493 FunctionAnalysisManager
&) {
5494 return { llvm::verifyFunction(F
, &dbgs()), false };
5497 PreservedAnalyses
VerifierPass::run(Module
&M
, ModuleAnalysisManager
&AM
) {
5498 auto Res
= AM
.getResult
<VerifierAnalysis
>(M
);
5499 if (FatalErrors
&& (Res
.IRBroken
|| Res
.DebugInfoBroken
))
5500 report_fatal_error("Broken module found, compilation aborted!");
5502 return PreservedAnalyses::all();
5505 PreservedAnalyses
VerifierPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
5506 auto res
= AM
.getResult
<VerifierAnalysis
>(F
);
5507 if (res
.IRBroken
&& FatalErrors
)
5508 report_fatal_error("Broken function found, compilation aborted!");
5510 return PreservedAnalyses::all();