[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / IPO / Attributor.cpp
blobcdd7958c3710a1e9b000b21b836fcd4fb64a7668
1 //===- Attributor.cpp - Module-wide attribute deduction -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements an inter procedural pass that deduces and/or propagating
10 // attributes. This is done in an abstract interpretation style fixpoint
11 // iteration. See the Attributor.h file comment and the class descriptions in
12 // that file for more information.
14 //===----------------------------------------------------------------------===//
16 #include "llvm/Transforms/IPO/Attributor.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallPtrSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Analysis/CaptureTracking.h"
24 #include "llvm/Analysis/EHPersonalities.h"
25 #include "llvm/Analysis/GlobalsModRef.h"
26 #include "llvm/Analysis/Loads.h"
27 #include "llvm/Analysis/ValueTracking.h"
28 #include "llvm/IR/Argument.h"
29 #include "llvm/IR/Attributes.h"
30 #include "llvm/IR/CFG.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/Support/CommandLine.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
37 #include "llvm/Transforms/Utils/Local.h"
39 #include <cassert>
41 using namespace llvm;
43 #define DEBUG_TYPE "attributor"
45 STATISTIC(NumFnWithExactDefinition,
46 "Number of function with exact definitions");
47 STATISTIC(NumFnWithoutExactDefinition,
48 "Number of function without exact definitions");
49 STATISTIC(NumAttributesTimedOut,
50 "Number of abstract attributes timed out before fixpoint");
51 STATISTIC(NumAttributesValidFixpoint,
52 "Number of abstract attributes in a valid fixpoint state");
53 STATISTIC(NumAttributesManifested,
54 "Number of abstract attributes manifested in IR");
56 // Some helper macros to deal with statistics tracking.
58 // Usage:
59 // For simple IR attribute tracking overload trackStatistics in the abstract
60 // attribute and choose the right STATS_DECLTRACK_********* macro,
61 // e.g.,:
62 // void trackStatistics() const override {
63 // STATS_DECLTRACK_ARG_ATTR(returned)
64 // }
65 // If there is a single "increment" side one can use the macro
66 // STATS_DECLTRACK with a custom message. If there are multiple increment
67 // sides, STATS_DECL and STATS_TRACK can also be used separatly.
69 #define BUILD_STAT_MSG_IR_ATTR(TYPE, NAME) \
70 ("Number of " #TYPE " marked '" #NAME "'")
71 #define BUILD_STAT_NAME(NAME, TYPE) NumIR##TYPE##_##NAME
72 #define STATS_DECL_(NAME, MSG) STATISTIC(NAME, MSG);
73 #define STATS_DECL(NAME, TYPE, MSG) \
74 STATS_DECL_(BUILD_STAT_NAME(NAME, TYPE), MSG);
75 #define STATS_TRACK(NAME, TYPE) ++(BUILD_STAT_NAME(NAME, TYPE));
76 #define STATS_DECLTRACK(NAME, TYPE, MSG) \
77 { \
78 STATS_DECL(NAME, TYPE, MSG) \
79 STATS_TRACK(NAME, TYPE) \
81 #define STATS_DECLTRACK_ARG_ATTR(NAME) \
82 STATS_DECLTRACK(NAME, Arguments, BUILD_STAT_MSG_IR_ATTR(arguments, NAME))
83 #define STATS_DECLTRACK_CSARG_ATTR(NAME) \
84 STATS_DECLTRACK(NAME, CSArguments, \
85 BUILD_STAT_MSG_IR_ATTR(call site arguments, NAME))
86 #define STATS_DECLTRACK_FN_ATTR(NAME) \
87 STATS_DECLTRACK(NAME, Function, BUILD_STAT_MSG_IR_ATTR(functions, NAME))
88 #define STATS_DECLTRACK_CS_ATTR(NAME) \
89 STATS_DECLTRACK(NAME, CS, BUILD_STAT_MSG_IR_ATTR(call site, NAME))
90 #define STATS_DECLTRACK_FNRET_ATTR(NAME) \
91 STATS_DECLTRACK(NAME, FunctionReturn, \
92 BUILD_STAT_MSG_IR_ATTR(function returns, NAME))
93 #define STATS_DECLTRACK_CSRET_ATTR(NAME) \
94 STATS_DECLTRACK(NAME, CSReturn, \
95 BUILD_STAT_MSG_IR_ATTR(call site returns, NAME))
96 #define STATS_DECLTRACK_FLOATING_ATTR(NAME) \
97 STATS_DECLTRACK(NAME, Floating, \
98 ("Number of floating values known to be '" #NAME "'"))
100 // TODO: Determine a good default value.
102 // In the LLVM-TS and SPEC2006, 32 seems to not induce compile time overheads
103 // (when run with the first 5 abstract attributes). The results also indicate
104 // that we never reach 32 iterations but always find a fixpoint sooner.
106 // This will become more evolved once we perform two interleaved fixpoint
107 // iterations: bottom-up and top-down.
108 static cl::opt<unsigned>
109 MaxFixpointIterations("attributor-max-iterations", cl::Hidden,
110 cl::desc("Maximal number of fixpoint iterations."),
111 cl::init(32));
112 static cl::opt<bool> VerifyMaxFixpointIterations(
113 "attributor-max-iterations-verify", cl::Hidden,
114 cl::desc("Verify that max-iterations is a tight bound for a fixpoint"),
115 cl::init(false));
117 static cl::opt<bool> DisableAttributor(
118 "attributor-disable", cl::Hidden,
119 cl::desc("Disable the attributor inter-procedural deduction pass."),
120 cl::init(true));
122 static cl::opt<bool> ManifestInternal(
123 "attributor-manifest-internal", cl::Hidden,
124 cl::desc("Manifest Attributor internal string attributes."),
125 cl::init(false));
127 static cl::opt<bool> VerifyAttributor(
128 "attributor-verify", cl::Hidden,
129 cl::desc("Verify the Attributor deduction and "
130 "manifestation of attributes -- may issue false-positive errors"),
131 cl::init(false));
133 static cl::opt<unsigned> DepRecInterval(
134 "attributor-dependence-recompute-interval", cl::Hidden,
135 cl::desc("Number of iterations until dependences are recomputed."),
136 cl::init(4));
138 /// Logic operators for the change status enum class.
140 ///{
141 ChangeStatus llvm::operator|(ChangeStatus l, ChangeStatus r) {
142 return l == ChangeStatus::CHANGED ? l : r;
144 ChangeStatus llvm::operator&(ChangeStatus l, ChangeStatus r) {
145 return l == ChangeStatus::UNCHANGED ? l : r;
147 ///}
149 /// Recursively visit all values that might become \p IRP at some point. This
150 /// will be done by looking through cast instructions, selects, phis, and calls
151 /// with the "returned" attribute. Once we cannot look through the value any
152 /// further, the callback \p VisitValueCB is invoked and passed the current
153 /// value, the \p State, and a flag to indicate if we stripped anything. To
154 /// limit how much effort is invested, we will never visit more values than
155 /// specified by \p MaxValues.
156 template <typename AAType, typename StateTy>
157 bool genericValueTraversal(
158 Attributor &A, IRPosition IRP, const AAType &QueryingAA, StateTy &State,
159 const function_ref<bool(Value &, StateTy &, bool)> &VisitValueCB,
160 int MaxValues = 8) {
162 const AAIsDead *LivenessAA = nullptr;
163 if (IRP.getAnchorScope())
164 LivenessAA = &A.getAAFor<AAIsDead>(
165 QueryingAA, IRPosition::function(*IRP.getAnchorScope()),
166 /* TrackDependence */ false);
167 bool AnyDead = false;
169 // TODO: Use Positions here to allow context sensitivity in VisitValueCB
170 SmallPtrSet<Value *, 16> Visited;
171 SmallVector<Value *, 16> Worklist;
172 Worklist.push_back(&IRP.getAssociatedValue());
174 int Iteration = 0;
175 do {
176 Value *V = Worklist.pop_back_val();
178 // Check if we should process the current value. To prevent endless
179 // recursion keep a record of the values we followed!
180 if (!Visited.insert(V).second)
181 continue;
183 // Make sure we limit the compile time for complex expressions.
184 if (Iteration++ >= MaxValues)
185 return false;
187 // Explicitly look through calls with a "returned" attribute if we do
188 // not have a pointer as stripPointerCasts only works on them.
189 Value *NewV = nullptr;
190 if (V->getType()->isPointerTy()) {
191 NewV = V->stripPointerCasts();
192 } else {
193 CallSite CS(V);
194 if (CS && CS.getCalledFunction()) {
195 for (Argument &Arg : CS.getCalledFunction()->args())
196 if (Arg.hasReturnedAttr()) {
197 NewV = CS.getArgOperand(Arg.getArgNo());
198 break;
202 if (NewV && NewV != V) {
203 Worklist.push_back(NewV);
204 continue;
207 // Look through select instructions, visit both potential values.
208 if (auto *SI = dyn_cast<SelectInst>(V)) {
209 Worklist.push_back(SI->getTrueValue());
210 Worklist.push_back(SI->getFalseValue());
211 continue;
214 // Look through phi nodes, visit all live operands.
215 if (auto *PHI = dyn_cast<PHINode>(V)) {
216 assert(LivenessAA &&
217 "Expected liveness in the presence of instructions!");
218 for (unsigned u = 0, e = PHI->getNumIncomingValues(); u < e; u++) {
219 const BasicBlock *IncomingBB = PHI->getIncomingBlock(u);
220 if (LivenessAA->isAssumedDead(IncomingBB->getTerminator())) {
221 AnyDead =true;
222 continue;
224 Worklist.push_back(PHI->getIncomingValue(u));
226 continue;
229 // Once a leaf is reached we inform the user through the callback.
230 if (!VisitValueCB(*V, State, Iteration > 1))
231 return false;
232 } while (!Worklist.empty());
234 // If we actually used liveness information so we have to record a dependence.
235 if (AnyDead)
236 A.recordDependence(*LivenessAA, QueryingAA);
238 // All values have been visited.
239 return true;
242 /// Return true if \p New is equal or worse than \p Old.
243 static bool isEqualOrWorse(const Attribute &New, const Attribute &Old) {
244 if (!Old.isIntAttribute())
245 return true;
247 return Old.getValueAsInt() >= New.getValueAsInt();
250 /// Return true if the information provided by \p Attr was added to the
251 /// attribute list \p Attrs. This is only the case if it was not already present
252 /// in \p Attrs at the position describe by \p PK and \p AttrIdx.
253 static bool addIfNotExistent(LLVMContext &Ctx, const Attribute &Attr,
254 AttributeList &Attrs, int AttrIdx) {
256 if (Attr.isEnumAttribute()) {
257 Attribute::AttrKind Kind = Attr.getKindAsEnum();
258 if (Attrs.hasAttribute(AttrIdx, Kind))
259 if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
260 return false;
261 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
262 return true;
264 if (Attr.isStringAttribute()) {
265 StringRef Kind = Attr.getKindAsString();
266 if (Attrs.hasAttribute(AttrIdx, Kind))
267 if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
268 return false;
269 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
270 return true;
272 if (Attr.isIntAttribute()) {
273 Attribute::AttrKind Kind = Attr.getKindAsEnum();
274 if (Attrs.hasAttribute(AttrIdx, Kind))
275 if (isEqualOrWorse(Attr, Attrs.getAttribute(AttrIdx, Kind)))
276 return false;
277 Attrs = Attrs.removeAttribute(Ctx, AttrIdx, Kind);
278 Attrs = Attrs.addAttribute(Ctx, AttrIdx, Attr);
279 return true;
282 llvm_unreachable("Expected enum or string attribute!");
285 ChangeStatus AbstractAttribute::update(Attributor &A) {
286 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
287 if (getState().isAtFixpoint())
288 return HasChanged;
290 LLVM_DEBUG(dbgs() << "[Attributor] Update: " << *this << "\n");
292 HasChanged = updateImpl(A);
294 LLVM_DEBUG(dbgs() << "[Attributor] Update " << HasChanged << " " << *this
295 << "\n");
297 return HasChanged;
300 ChangeStatus
301 IRAttributeManifest::manifestAttrs(Attributor &A, IRPosition &IRP,
302 const ArrayRef<Attribute> &DeducedAttrs) {
303 Function *ScopeFn = IRP.getAssociatedFunction();
304 IRPosition::Kind PK = IRP.getPositionKind();
306 // In the following some generic code that will manifest attributes in
307 // DeducedAttrs if they improve the current IR. Due to the different
308 // annotation positions we use the underlying AttributeList interface.
310 AttributeList Attrs;
311 switch (PK) {
312 case IRPosition::IRP_INVALID:
313 case IRPosition::IRP_FLOAT:
314 return ChangeStatus::UNCHANGED;
315 case IRPosition::IRP_ARGUMENT:
316 case IRPosition::IRP_FUNCTION:
317 case IRPosition::IRP_RETURNED:
318 Attrs = ScopeFn->getAttributes();
319 break;
320 case IRPosition::IRP_CALL_SITE:
321 case IRPosition::IRP_CALL_SITE_RETURNED:
322 case IRPosition::IRP_CALL_SITE_ARGUMENT:
323 Attrs = ImmutableCallSite(&IRP.getAnchorValue()).getAttributes();
324 break;
327 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
328 LLVMContext &Ctx = IRP.getAnchorValue().getContext();
329 for (const Attribute &Attr : DeducedAttrs) {
330 if (!addIfNotExistent(Ctx, Attr, Attrs, IRP.getAttrIdx()))
331 continue;
333 HasChanged = ChangeStatus::CHANGED;
336 if (HasChanged == ChangeStatus::UNCHANGED)
337 return HasChanged;
339 switch (PK) {
340 case IRPosition::IRP_ARGUMENT:
341 case IRPosition::IRP_FUNCTION:
342 case IRPosition::IRP_RETURNED:
343 ScopeFn->setAttributes(Attrs);
344 break;
345 case IRPosition::IRP_CALL_SITE:
346 case IRPosition::IRP_CALL_SITE_RETURNED:
347 case IRPosition::IRP_CALL_SITE_ARGUMENT:
348 CallSite(&IRP.getAnchorValue()).setAttributes(Attrs);
349 break;
350 case IRPosition::IRP_INVALID:
351 case IRPosition::IRP_FLOAT:
352 break;
355 return HasChanged;
358 const IRPosition IRPosition::EmptyKey(255);
359 const IRPosition IRPosition::TombstoneKey(256);
361 SubsumingPositionIterator::SubsumingPositionIterator(const IRPosition &IRP) {
362 IRPositions.emplace_back(IRP);
364 ImmutableCallSite ICS(&IRP.getAnchorValue());
365 switch (IRP.getPositionKind()) {
366 case IRPosition::IRP_INVALID:
367 case IRPosition::IRP_FLOAT:
368 case IRPosition::IRP_FUNCTION:
369 return;
370 case IRPosition::IRP_ARGUMENT:
371 case IRPosition::IRP_RETURNED:
372 IRPositions.emplace_back(
373 IRPosition::function(*IRP.getAssociatedFunction()));
374 return;
375 case IRPosition::IRP_CALL_SITE:
376 assert(ICS && "Expected call site!");
377 // TODO: We need to look at the operand bundles similar to the redirection
378 // in CallBase.
379 if (!ICS.hasOperandBundles())
380 if (const Function *Callee = ICS.getCalledFunction())
381 IRPositions.emplace_back(IRPosition::function(*Callee));
382 return;
383 case IRPosition::IRP_CALL_SITE_RETURNED:
384 assert(ICS && "Expected call site!");
385 // TODO: We need to look at the operand bundles similar to the redirection
386 // in CallBase.
387 if (!ICS.hasOperandBundles()) {
388 if (const Function *Callee = ICS.getCalledFunction()) {
389 IRPositions.emplace_back(IRPosition::returned(*Callee));
390 IRPositions.emplace_back(IRPosition::function(*Callee));
393 IRPositions.emplace_back(
394 IRPosition::callsite_function(cast<CallBase>(*ICS.getInstruction())));
395 return;
396 case IRPosition::IRP_CALL_SITE_ARGUMENT: {
397 int ArgNo = IRP.getArgNo();
398 assert(ICS && ArgNo >= 0 && "Expected call site!");
399 // TODO: We need to look at the operand bundles similar to the redirection
400 // in CallBase.
401 if (!ICS.hasOperandBundles()) {
402 const Function *Callee = ICS.getCalledFunction();
403 if (Callee && Callee->arg_size() > unsigned(ArgNo))
404 IRPositions.emplace_back(IRPosition::argument(*Callee->getArg(ArgNo)));
405 if (Callee)
406 IRPositions.emplace_back(IRPosition::function(*Callee));
408 IRPositions.emplace_back(IRPosition::value(IRP.getAssociatedValue()));
409 return;
414 bool IRPosition::hasAttr(ArrayRef<Attribute::AttrKind> AKs) const {
415 for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this))
416 for (Attribute::AttrKind AK : AKs)
417 if (EquivIRP.getAttr(AK).getKindAsEnum() == AK)
418 return true;
419 return false;
422 void IRPosition::getAttrs(ArrayRef<Attribute::AttrKind> AKs,
423 SmallVectorImpl<Attribute> &Attrs) const {
424 for (const IRPosition &EquivIRP : SubsumingPositionIterator(*this))
425 for (Attribute::AttrKind AK : AKs) {
426 const Attribute &Attr = EquivIRP.getAttr(AK);
427 if (Attr.getKindAsEnum() == AK)
428 Attrs.push_back(Attr);
432 void IRPosition::verify() {
433 switch (KindOrArgNo) {
434 default:
435 assert(KindOrArgNo >= 0 && "Expected argument or call site argument!");
436 assert((isa<CallBase>(AnchorVal) || isa<Argument>(AnchorVal)) &&
437 "Expected call base or argument for positive attribute index!");
438 if (isa<Argument>(AnchorVal)) {
439 assert(cast<Argument>(AnchorVal)->getArgNo() == unsigned(getArgNo()) &&
440 "Argument number mismatch!");
441 assert(cast<Argument>(AnchorVal) == &getAssociatedValue() &&
442 "Associated value mismatch!");
443 } else {
444 assert(cast<CallBase>(*AnchorVal).arg_size() > unsigned(getArgNo()) &&
445 "Call site argument number mismatch!");
446 assert(cast<CallBase>(*AnchorVal).getArgOperand(getArgNo()) ==
447 &getAssociatedValue() &&
448 "Associated value mismatch!");
450 break;
451 case IRP_INVALID:
452 assert(!AnchorVal && "Expected no value for an invalid position!");
453 break;
454 case IRP_FLOAT:
455 assert((!isa<CallBase>(&getAssociatedValue()) &&
456 !isa<Argument>(&getAssociatedValue())) &&
457 "Expected specialized kind for call base and argument values!");
458 break;
459 case IRP_RETURNED:
460 assert(isa<Function>(AnchorVal) &&
461 "Expected function for a 'returned' position!");
462 assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
463 break;
464 case IRP_CALL_SITE_RETURNED:
465 assert((isa<CallBase>(AnchorVal)) &&
466 "Expected call base for 'call site returned' position!");
467 assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
468 break;
469 case IRP_CALL_SITE:
470 assert((isa<CallBase>(AnchorVal)) &&
471 "Expected call base for 'call site function' position!");
472 assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
473 break;
474 case IRP_FUNCTION:
475 assert(isa<Function>(AnchorVal) &&
476 "Expected function for a 'function' position!");
477 assert(AnchorVal == &getAssociatedValue() && "Associated value mismatch!");
478 break;
482 /// Helper functions to clamp a state \p S of type \p StateType with the
483 /// information in \p R and indicate/return if \p S did change (as-in update is
484 /// required to be run again).
486 ///{
487 template <typename StateType>
488 ChangeStatus clampStateAndIndicateChange(StateType &S, const StateType &R);
490 template <>
491 ChangeStatus clampStateAndIndicateChange<IntegerState>(IntegerState &S,
492 const IntegerState &R) {
493 auto Assumed = S.getAssumed();
494 S ^= R;
495 return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
496 : ChangeStatus::CHANGED;
499 template <>
500 ChangeStatus clampStateAndIndicateChange<BooleanState>(BooleanState &S,
501 const BooleanState &R) {
502 return clampStateAndIndicateChange<IntegerState>(S, R);
504 ///}
506 /// Clamp the information known for all returned values of a function
507 /// (identified by \p QueryingAA) into \p S.
508 template <typename AAType, typename StateType = typename AAType::StateType>
509 static void clampReturnedValueStates(Attributor &A, const AAType &QueryingAA,
510 StateType &S) {
511 LLVM_DEBUG(dbgs() << "[Attributor] Clamp return value states for "
512 << static_cast<const AbstractAttribute &>(QueryingAA)
513 << " into " << S << "\n");
515 assert((QueryingAA.getIRPosition().getPositionKind() ==
516 IRPosition::IRP_RETURNED ||
517 QueryingAA.getIRPosition().getPositionKind() ==
518 IRPosition::IRP_CALL_SITE_RETURNED) &&
519 "Can only clamp returned value states for a function returned or call "
520 "site returned position!");
522 // Use an optional state as there might not be any return values and we want
523 // to join (IntegerState::operator&) the state of all there are.
524 Optional<StateType> T;
526 // Callback for each possibly returned value.
527 auto CheckReturnValue = [&](Value &RV) -> bool {
528 const IRPosition &RVPos = IRPosition::value(RV);
529 const AAType &AA = A.getAAFor<AAType>(QueryingAA, RVPos);
530 LLVM_DEBUG(dbgs() << "[Attributor] RV: " << RV << " AA: " << AA.getAsStr()
531 << " @ " << RVPos << "\n");
532 const StateType &AAS = static_cast<const StateType &>(AA.getState());
533 if (T.hasValue())
534 *T &= AAS;
535 else
536 T = AAS;
537 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " RV State: " << T
538 << "\n");
539 return T->isValidState();
542 if (!A.checkForAllReturnedValues(CheckReturnValue, QueryingAA))
543 S.indicatePessimisticFixpoint();
544 else if (T.hasValue())
545 S ^= *T;
548 /// Helper class for generic deduction: return value -> returned position.
549 template <typename AAType, typename Base,
550 typename StateType = typename AAType::StateType>
551 struct AAReturnedFromReturnedValues : public Base {
552 AAReturnedFromReturnedValues(const IRPosition &IRP) : Base(IRP) {}
554 /// See AbstractAttribute::updateImpl(...).
555 ChangeStatus updateImpl(Attributor &A) override {
556 StateType S;
557 clampReturnedValueStates<AAType, StateType>(A, *this, S);
558 // TODO: If we know we visited all returned values, thus no are assumed
559 // dead, we can take the known information from the state T.
560 return clampStateAndIndicateChange<StateType>(this->getState(), S);
564 /// Clamp the information known at all call sites for a given argument
565 /// (identified by \p QueryingAA) into \p S.
566 template <typename AAType, typename StateType = typename AAType::StateType>
567 static void clampCallSiteArgumentStates(Attributor &A, const AAType &QueryingAA,
568 StateType &S) {
569 LLVM_DEBUG(dbgs() << "[Attributor] Clamp call site argument states for "
570 << static_cast<const AbstractAttribute &>(QueryingAA)
571 << " into " << S << "\n");
573 assert(QueryingAA.getIRPosition().getPositionKind() ==
574 IRPosition::IRP_ARGUMENT &&
575 "Can only clamp call site argument states for an argument position!");
577 // Use an optional state as there might not be any return values and we want
578 // to join (IntegerState::operator&) the state of all there are.
579 Optional<StateType> T;
581 // The argument number which is also the call site argument number.
582 unsigned ArgNo = QueryingAA.getIRPosition().getArgNo();
584 auto CallSiteCheck = [&](CallSite CS) {
585 const IRPosition &CSArgPos = IRPosition::callsite_argument(CS, ArgNo);
586 const AAType &AA = A.getAAFor<AAType>(QueryingAA, CSArgPos);
587 LLVM_DEBUG(dbgs() << "[Attributor] CS: " << *CS.getInstruction()
588 << " AA: " << AA.getAsStr() << " @" << CSArgPos << "\n");
589 const StateType &AAS = static_cast<const StateType &>(AA.getState());
590 if (T.hasValue())
591 *T &= AAS;
592 else
593 T = AAS;
594 LLVM_DEBUG(dbgs() << "[Attributor] AA State: " << AAS << " CSA State: " << T
595 << "\n");
596 return T->isValidState();
599 if (!A.checkForAllCallSites(CallSiteCheck, QueryingAA, true))
600 S.indicatePessimisticFixpoint();
601 else if (T.hasValue())
602 S ^= *T;
605 /// Helper class for generic deduction: call site argument -> argument position.
606 template <typename AAType, typename Base,
607 typename StateType = typename AAType::StateType>
608 struct AAArgumentFromCallSiteArguments : public Base {
609 AAArgumentFromCallSiteArguments(const IRPosition &IRP) : Base(IRP) {}
611 /// See AbstractAttribute::updateImpl(...).
612 ChangeStatus updateImpl(Attributor &A) override {
613 StateType S;
614 clampCallSiteArgumentStates<AAType, StateType>(A, *this, S);
615 // TODO: If we know we visited all incoming values, thus no are assumed
616 // dead, we can take the known information from the state T.
617 return clampStateAndIndicateChange<StateType>(this->getState(), S);
621 /// Helper class for generic replication: function returned -> cs returned.
622 template <typename AAType, typename Base>
623 struct AACallSiteReturnedFromReturned : public Base {
624 AACallSiteReturnedFromReturned(const IRPosition &IRP) : Base(IRP) {}
626 /// See AbstractAttribute::updateImpl(...).
627 ChangeStatus updateImpl(Attributor &A) override {
628 assert(this->getIRPosition().getPositionKind() ==
629 IRPosition::IRP_CALL_SITE_RETURNED &&
630 "Can only wrap function returned positions for call site returned "
631 "positions!");
632 auto &S = this->getState();
634 const Function *AssociatedFunction =
635 this->getIRPosition().getAssociatedFunction();
636 if (!AssociatedFunction)
637 return S.indicatePessimisticFixpoint();
639 IRPosition FnPos = IRPosition::returned(*AssociatedFunction);
640 const AAType &AA = A.getAAFor<AAType>(*this, FnPos);
641 return clampStateAndIndicateChange(
642 S, static_cast<const typename AAType::StateType &>(AA.getState()));
646 /// -----------------------NoUnwind Function Attribute--------------------------
648 struct AANoUnwindImpl : AANoUnwind {
649 AANoUnwindImpl(const IRPosition &IRP) : AANoUnwind(IRP) {}
651 const std::string getAsStr() const override {
652 return getAssumed() ? "nounwind" : "may-unwind";
655 /// See AbstractAttribute::updateImpl(...).
656 ChangeStatus updateImpl(Attributor &A) override {
657 auto Opcodes = {
658 (unsigned)Instruction::Invoke, (unsigned)Instruction::CallBr,
659 (unsigned)Instruction::Call, (unsigned)Instruction::CleanupRet,
660 (unsigned)Instruction::CatchSwitch, (unsigned)Instruction::Resume};
662 auto CheckForNoUnwind = [&](Instruction &I) {
663 if (!I.mayThrow())
664 return true;
666 if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
667 const auto &NoUnwindAA =
668 A.getAAFor<AANoUnwind>(*this, IRPosition::callsite_function(ICS));
669 return NoUnwindAA.isAssumedNoUnwind();
671 return false;
674 if (!A.checkForAllInstructions(CheckForNoUnwind, *this, Opcodes))
675 return indicatePessimisticFixpoint();
677 return ChangeStatus::UNCHANGED;
681 struct AANoUnwindFunction final : public AANoUnwindImpl {
682 AANoUnwindFunction(const IRPosition &IRP) : AANoUnwindImpl(IRP) {}
684 /// See AbstractAttribute::trackStatistics()
685 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nounwind) }
688 /// NoUnwind attribute deduction for a call sites.
689 struct AANoUnwindCallSite final : AANoUnwindImpl {
690 AANoUnwindCallSite(const IRPosition &IRP) : AANoUnwindImpl(IRP) {}
692 /// See AbstractAttribute::initialize(...).
693 void initialize(Attributor &A) override {
694 AANoUnwindImpl::initialize(A);
695 Function *F = getAssociatedFunction();
696 if (!F)
697 indicatePessimisticFixpoint();
700 /// See AbstractAttribute::updateImpl(...).
701 ChangeStatus updateImpl(Attributor &A) override {
702 // TODO: Once we have call site specific value information we can provide
703 // call site specific liveness information and then it makes
704 // sense to specialize attributes for call sites arguments instead of
705 // redirecting requests to the callee argument.
706 Function *F = getAssociatedFunction();
707 const IRPosition &FnPos = IRPosition::function(*F);
708 auto &FnAA = A.getAAFor<AANoUnwind>(*this, FnPos);
709 return clampStateAndIndicateChange(
710 getState(),
711 static_cast<const AANoUnwind::StateType &>(FnAA.getState()));
714 /// See AbstractAttribute::trackStatistics()
715 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nounwind); }
718 /// --------------------- Function Return Values -------------------------------
720 /// "Attribute" that collects all potential returned values and the return
721 /// instructions that they arise from.
723 /// If there is a unique returned value R, the manifest method will:
724 /// - mark R with the "returned" attribute, if R is an argument.
725 class AAReturnedValuesImpl : public AAReturnedValues, public AbstractState {
727 /// Mapping of values potentially returned by the associated function to the
728 /// return instructions that might return them.
729 MapVector<Value *, SmallSetVector<ReturnInst *, 4>> ReturnedValues;
731 /// Mapping to remember the number of returned values for a call site such
732 /// that we can avoid updates if nothing changed.
733 DenseMap<const CallBase *, unsigned> NumReturnedValuesPerKnownAA;
735 /// Set of unresolved calls returned by the associated function.
736 SmallSetVector<CallBase *, 4> UnresolvedCalls;
738 /// State flags
740 ///{
741 bool IsFixed = false;
742 bool IsValidState = true;
743 ///}
745 public:
746 AAReturnedValuesImpl(const IRPosition &IRP) : AAReturnedValues(IRP) {}
748 /// See AbstractAttribute::initialize(...).
749 void initialize(Attributor &A) override {
750 // Reset the state.
751 IsFixed = false;
752 IsValidState = true;
753 ReturnedValues.clear();
755 Function *F = getAssociatedFunction();
756 if (!F) {
757 indicatePessimisticFixpoint();
758 return;
761 // The map from instruction opcodes to those instructions in the function.
762 auto &OpcodeInstMap = A.getInfoCache().getOpcodeInstMapForFunction(*F);
764 // Look through all arguments, if one is marked as returned we are done.
765 for (Argument &Arg : F->args()) {
766 if (Arg.hasReturnedAttr()) {
767 auto &ReturnInstSet = ReturnedValues[&Arg];
768 for (Instruction *RI : OpcodeInstMap[Instruction::Ret])
769 ReturnInstSet.insert(cast<ReturnInst>(RI));
771 indicateOptimisticFixpoint();
772 return;
776 if (!F->hasExactDefinition())
777 indicatePessimisticFixpoint();
780 /// See AbstractAttribute::manifest(...).
781 ChangeStatus manifest(Attributor &A) override;
783 /// See AbstractAttribute::getState(...).
784 AbstractState &getState() override { return *this; }
786 /// See AbstractAttribute::getState(...).
787 const AbstractState &getState() const override { return *this; }
789 /// See AbstractAttribute::updateImpl(Attributor &A).
790 ChangeStatus updateImpl(Attributor &A) override;
792 llvm::iterator_range<iterator> returned_values() override {
793 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
796 llvm::iterator_range<const_iterator> returned_values() const override {
797 return llvm::make_range(ReturnedValues.begin(), ReturnedValues.end());
800 const SmallSetVector<CallBase *, 4> &getUnresolvedCalls() const override {
801 return UnresolvedCalls;
804 /// Return the number of potential return values, -1 if unknown.
805 size_t getNumReturnValues() const override {
806 return isValidState() ? ReturnedValues.size() : -1;
809 /// Return an assumed unique return value if a single candidate is found. If
810 /// there cannot be one, return a nullptr. If it is not clear yet, return the
811 /// Optional::NoneType.
812 Optional<Value *> getAssumedUniqueReturnValue(Attributor &A) const;
814 /// See AbstractState::checkForAllReturnedValues(...).
815 bool checkForAllReturnedValuesAndReturnInsts(
816 const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)>
817 &Pred) const override;
819 /// Pretty print the attribute similar to the IR representation.
820 const std::string getAsStr() const override;
822 /// See AbstractState::isAtFixpoint().
823 bool isAtFixpoint() const override { return IsFixed; }
825 /// See AbstractState::isValidState().
826 bool isValidState() const override { return IsValidState; }
828 /// See AbstractState::indicateOptimisticFixpoint(...).
829 ChangeStatus indicateOptimisticFixpoint() override {
830 IsFixed = true;
831 return ChangeStatus::UNCHANGED;
834 ChangeStatus indicatePessimisticFixpoint() override {
835 IsFixed = true;
836 IsValidState = false;
837 return ChangeStatus::CHANGED;
841 ChangeStatus AAReturnedValuesImpl::manifest(Attributor &A) {
842 ChangeStatus Changed = ChangeStatus::UNCHANGED;
844 // Bookkeeping.
845 assert(isValidState());
846 STATS_DECLTRACK(KnownReturnValues, FunctionReturn,
847 "Number of function with known return values");
849 // Check if we have an assumed unique return value that we could manifest.
850 Optional<Value *> UniqueRV = getAssumedUniqueReturnValue(A);
852 if (!UniqueRV.hasValue() || !UniqueRV.getValue())
853 return Changed;
855 // Bookkeeping.
856 STATS_DECLTRACK(UniqueReturnValue, FunctionReturn,
857 "Number of function with unique return");
859 // Callback to replace the uses of CB with the constant C.
860 auto ReplaceCallSiteUsersWith = [](CallBase &CB, Constant &C) {
861 if (CB.getNumUses() == 0)
862 return ChangeStatus::UNCHANGED;
863 CB.replaceAllUsesWith(&C);
864 return ChangeStatus::CHANGED;
867 // If the assumed unique return value is an argument, annotate it.
868 if (auto *UniqueRVArg = dyn_cast<Argument>(UniqueRV.getValue())) {
869 getIRPosition() = IRPosition::argument(*UniqueRVArg);
870 Changed = IRAttribute::manifest(A);
871 } else if (auto *RVC = dyn_cast<Constant>(UniqueRV.getValue())) {
872 // We can replace the returned value with the unique returned constant.
873 Value &AnchorValue = getAnchorValue();
874 if (Function *F = dyn_cast<Function>(&AnchorValue)) {
875 for (const Use &U : F->uses())
876 if (CallBase *CB = dyn_cast<CallBase>(U.getUser()))
877 if (CB->isCallee(&U))
878 Changed = ReplaceCallSiteUsersWith(*CB, *RVC) | Changed;
879 } else {
880 assert(isa<CallBase>(AnchorValue) &&
881 "Expcected a function or call base anchor!");
882 Changed = ReplaceCallSiteUsersWith(cast<CallBase>(AnchorValue), *RVC);
884 if (Changed == ChangeStatus::CHANGED)
885 STATS_DECLTRACK(UniqueConstantReturnValue, FunctionReturn,
886 "Number of function returns replaced by constant return");
889 return Changed;
892 const std::string AAReturnedValuesImpl::getAsStr() const {
893 return (isAtFixpoint() ? "returns(#" : "may-return(#") +
894 (isValidState() ? std::to_string(getNumReturnValues()) : "?") +
895 ")[#UC: " + std::to_string(UnresolvedCalls.size()) + "]";
898 Optional<Value *>
899 AAReturnedValuesImpl::getAssumedUniqueReturnValue(Attributor &A) const {
900 // If checkForAllReturnedValues provides a unique value, ignoring potential
901 // undef values that can also be present, it is assumed to be the actual
902 // return value and forwarded to the caller of this method. If there are
903 // multiple, a nullptr is returned indicating there cannot be a unique
904 // returned value.
905 Optional<Value *> UniqueRV;
907 auto Pred = [&](Value &RV) -> bool {
908 // If we found a second returned value and neither the current nor the saved
909 // one is an undef, there is no unique returned value. Undefs are special
910 // since we can pretend they have any value.
911 if (UniqueRV.hasValue() && UniqueRV != &RV &&
912 !(isa<UndefValue>(RV) || isa<UndefValue>(UniqueRV.getValue()))) {
913 UniqueRV = nullptr;
914 return false;
917 // Do not overwrite a value with an undef.
918 if (!UniqueRV.hasValue() || !isa<UndefValue>(RV))
919 UniqueRV = &RV;
921 return true;
924 if (!A.checkForAllReturnedValues(Pred, *this))
925 UniqueRV = nullptr;
927 return UniqueRV;
930 bool AAReturnedValuesImpl::checkForAllReturnedValuesAndReturnInsts(
931 const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)>
932 &Pred) const {
933 if (!isValidState())
934 return false;
936 // Check all returned values but ignore call sites as long as we have not
937 // encountered an overdefined one during an update.
938 for (auto &It : ReturnedValues) {
939 Value *RV = It.first;
941 CallBase *CB = dyn_cast<CallBase>(RV);
942 if (CB && !UnresolvedCalls.count(CB))
943 continue;
945 if (!Pred(*RV, It.second))
946 return false;
949 return true;
952 ChangeStatus AAReturnedValuesImpl::updateImpl(Attributor &A) {
953 size_t NumUnresolvedCalls = UnresolvedCalls.size();
954 bool Changed = false;
956 // State used in the value traversals starting in returned values.
957 struct RVState {
958 // The map in which we collect return values -> return instrs.
959 decltype(ReturnedValues) &RetValsMap;
960 // The flag to indicate a change.
961 bool &Changed;
962 // The return instrs we come from.
963 SmallSetVector<ReturnInst *, 4> RetInsts;
966 // Callback for a leaf value returned by the associated function.
967 auto VisitValueCB = [](Value &Val, RVState &RVS, bool) -> bool {
968 auto Size = RVS.RetValsMap[&Val].size();
969 RVS.RetValsMap[&Val].insert(RVS.RetInsts.begin(), RVS.RetInsts.end());
970 bool Inserted = RVS.RetValsMap[&Val].size() != Size;
971 RVS.Changed |= Inserted;
972 LLVM_DEBUG({
973 if (Inserted)
974 dbgs() << "[AAReturnedValues] 1 Add new returned value " << Val
975 << " => " << RVS.RetInsts.size() << "\n";
977 return true;
980 // Helper method to invoke the generic value traversal.
981 auto VisitReturnedValue = [&](Value &RV, RVState &RVS) {
982 IRPosition RetValPos = IRPosition::value(RV);
983 return genericValueTraversal<AAReturnedValues, RVState>(A, RetValPos, *this,
984 RVS, VisitValueCB);
987 // Callback for all "return intructions" live in the associated function.
988 auto CheckReturnInst = [this, &VisitReturnedValue, &Changed](Instruction &I) {
989 ReturnInst &Ret = cast<ReturnInst>(I);
990 RVState RVS({ReturnedValues, Changed, {}});
991 RVS.RetInsts.insert(&Ret);
992 return VisitReturnedValue(*Ret.getReturnValue(), RVS);
995 // Start by discovering returned values from all live returned instructions in
996 // the associated function.
997 if (!A.checkForAllInstructions(CheckReturnInst, *this, {Instruction::Ret}))
998 return indicatePessimisticFixpoint();
1000 // Once returned values "directly" present in the code are handled we try to
1001 // resolve returned calls.
1002 decltype(ReturnedValues) NewRVsMap;
1003 for (auto &It : ReturnedValues) {
1004 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Returned value: " << *It.first
1005 << " by #" << It.second.size() << " RIs\n");
1006 CallBase *CB = dyn_cast<CallBase>(It.first);
1007 if (!CB || UnresolvedCalls.count(CB))
1008 continue;
1010 if (!CB->getCalledFunction()) {
1011 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1012 << "\n");
1013 UnresolvedCalls.insert(CB);
1014 continue;
1017 // TODO: use the function scope once we have call site AAReturnedValues.
1018 const auto &RetValAA = A.getAAFor<AAReturnedValues>(
1019 *this, IRPosition::function(*CB->getCalledFunction()));
1020 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Found another AAReturnedValues: "
1021 << static_cast<const AbstractAttribute &>(RetValAA)
1022 << "\n");
1024 // Skip dead ends, thus if we do not know anything about the returned
1025 // call we mark it as unresolved and it will stay that way.
1026 if (!RetValAA.getState().isValidState()) {
1027 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Unresolved call: " << *CB
1028 << "\n");
1029 UnresolvedCalls.insert(CB);
1030 continue;
1033 // Do not try to learn partial information. If the callee has unresolved
1034 // return values we will treat the call as unresolved/opaque.
1035 auto &RetValAAUnresolvedCalls = RetValAA.getUnresolvedCalls();
1036 if (!RetValAAUnresolvedCalls.empty()) {
1037 UnresolvedCalls.insert(CB);
1038 continue;
1041 // Now check if we can track transitively returned values. If possible, thus
1042 // if all return value can be represented in the current scope, do so.
1043 bool Unresolved = false;
1044 for (auto &RetValAAIt : RetValAA.returned_values()) {
1045 Value *RetVal = RetValAAIt.first;
1046 if (isa<Argument>(RetVal) || isa<CallBase>(RetVal) ||
1047 isa<Constant>(RetVal))
1048 continue;
1049 // Anything that did not fit in the above categories cannot be resolved,
1050 // mark the call as unresolved.
1051 LLVM_DEBUG(dbgs() << "[AAReturnedValues] transitively returned value "
1052 "cannot be translated: "
1053 << *RetVal << "\n");
1054 UnresolvedCalls.insert(CB);
1055 Unresolved = true;
1056 break;
1059 if (Unresolved)
1060 continue;
1062 // Now track transitively returned values.
1063 unsigned &NumRetAA = NumReturnedValuesPerKnownAA[CB];
1064 if (NumRetAA == RetValAA.getNumReturnValues()) {
1065 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Skip call as it has not "
1066 "changed since it was seen last\n");
1067 continue;
1069 NumRetAA = RetValAA.getNumReturnValues();
1071 for (auto &RetValAAIt : RetValAA.returned_values()) {
1072 Value *RetVal = RetValAAIt.first;
1073 if (Argument *Arg = dyn_cast<Argument>(RetVal)) {
1074 // Arguments are mapped to call site operands and we begin the traversal
1075 // again.
1076 bool Unused = false;
1077 RVState RVS({NewRVsMap, Unused, RetValAAIt.second});
1078 VisitReturnedValue(*CB->getArgOperand(Arg->getArgNo()), RVS);
1079 continue;
1080 } else if (isa<CallBase>(RetVal)) {
1081 // Call sites are resolved by the callee attribute over time, no need to
1082 // do anything for us.
1083 continue;
1084 } else if (isa<Constant>(RetVal)) {
1085 // Constants are valid everywhere, we can simply take them.
1086 NewRVsMap[RetVal].insert(It.second.begin(), It.second.end());
1087 continue;
1092 // To avoid modifications to the ReturnedValues map while we iterate over it
1093 // we kept record of potential new entries in a copy map, NewRVsMap.
1094 for (auto &It : NewRVsMap) {
1095 assert(!It.second.empty() && "Entry does not add anything.");
1096 auto &ReturnInsts = ReturnedValues[It.first];
1097 for (ReturnInst *RI : It.second)
1098 if (ReturnInsts.insert(RI)) {
1099 LLVM_DEBUG(dbgs() << "[AAReturnedValues] Add new returned value "
1100 << *It.first << " => " << *RI << "\n");
1101 Changed = true;
1105 Changed |= (NumUnresolvedCalls != UnresolvedCalls.size());
1106 return Changed ? ChangeStatus::CHANGED : ChangeStatus::UNCHANGED;
1109 struct AAReturnedValuesFunction final : public AAReturnedValuesImpl {
1110 AAReturnedValuesFunction(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {}
1112 /// See AbstractAttribute::trackStatistics()
1113 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(returned) }
1116 /// Returned values information for a call sites.
1117 struct AAReturnedValuesCallSite final : AAReturnedValuesImpl {
1118 AAReturnedValuesCallSite(const IRPosition &IRP) : AAReturnedValuesImpl(IRP) {}
1120 /// See AbstractAttribute::initialize(...).
1121 void initialize(Attributor &A) override {
1122 // TODO: Once we have call site specific value information we can provide
1123 // call site specific liveness information and then it makes
1124 // sense to specialize attributes for call sites instead of
1125 // redirecting requests to the callee.
1126 llvm_unreachable("Abstract attributes for returned values are not "
1127 "supported for call sites yet!");
1130 /// See AbstractAttribute::updateImpl(...).
1131 ChangeStatus updateImpl(Attributor &A) override {
1132 return indicatePessimisticFixpoint();
1135 /// See AbstractAttribute::trackStatistics()
1136 void trackStatistics() const override {}
1139 /// ------------------------ NoSync Function Attribute -------------------------
1141 struct AANoSyncImpl : AANoSync {
1142 AANoSyncImpl(const IRPosition &IRP) : AANoSync(IRP) {}
1144 const std::string getAsStr() const override {
1145 return getAssumed() ? "nosync" : "may-sync";
1148 /// See AbstractAttribute::updateImpl(...).
1149 ChangeStatus updateImpl(Attributor &A) override;
1151 /// Helper function used to determine whether an instruction is non-relaxed
1152 /// atomic. In other words, if an atomic instruction does not have unordered
1153 /// or monotonic ordering
1154 static bool isNonRelaxedAtomic(Instruction *I);
1156 /// Helper function used to determine whether an instruction is volatile.
1157 static bool isVolatile(Instruction *I);
1159 /// Helper function uset to check if intrinsic is volatile (memcpy, memmove,
1160 /// memset).
1161 static bool isNoSyncIntrinsic(Instruction *I);
1164 bool AANoSyncImpl::isNonRelaxedAtomic(Instruction *I) {
1165 if (!I->isAtomic())
1166 return false;
1168 AtomicOrdering Ordering;
1169 switch (I->getOpcode()) {
1170 case Instruction::AtomicRMW:
1171 Ordering = cast<AtomicRMWInst>(I)->getOrdering();
1172 break;
1173 case Instruction::Store:
1174 Ordering = cast<StoreInst>(I)->getOrdering();
1175 break;
1176 case Instruction::Load:
1177 Ordering = cast<LoadInst>(I)->getOrdering();
1178 break;
1179 case Instruction::Fence: {
1180 auto *FI = cast<FenceInst>(I);
1181 if (FI->getSyncScopeID() == SyncScope::SingleThread)
1182 return false;
1183 Ordering = FI->getOrdering();
1184 break;
1186 case Instruction::AtomicCmpXchg: {
1187 AtomicOrdering Success = cast<AtomicCmpXchgInst>(I)->getSuccessOrdering();
1188 AtomicOrdering Failure = cast<AtomicCmpXchgInst>(I)->getFailureOrdering();
1189 // Only if both are relaxed, than it can be treated as relaxed.
1190 // Otherwise it is non-relaxed.
1191 if (Success != AtomicOrdering::Unordered &&
1192 Success != AtomicOrdering::Monotonic)
1193 return true;
1194 if (Failure != AtomicOrdering::Unordered &&
1195 Failure != AtomicOrdering::Monotonic)
1196 return true;
1197 return false;
1199 default:
1200 llvm_unreachable(
1201 "New atomic operations need to be known in the attributor.");
1204 // Relaxed.
1205 if (Ordering == AtomicOrdering::Unordered ||
1206 Ordering == AtomicOrdering::Monotonic)
1207 return false;
1208 return true;
1211 /// Checks if an intrinsic is nosync. Currently only checks mem* intrinsics.
1212 /// FIXME: We should ipmrove the handling of intrinsics.
1213 bool AANoSyncImpl::isNoSyncIntrinsic(Instruction *I) {
1214 if (auto *II = dyn_cast<IntrinsicInst>(I)) {
1215 switch (II->getIntrinsicID()) {
1216 /// Element wise atomic memory intrinsics are can only be unordered,
1217 /// therefore nosync.
1218 case Intrinsic::memset_element_unordered_atomic:
1219 case Intrinsic::memmove_element_unordered_atomic:
1220 case Intrinsic::memcpy_element_unordered_atomic:
1221 return true;
1222 case Intrinsic::memset:
1223 case Intrinsic::memmove:
1224 case Intrinsic::memcpy:
1225 if (!cast<MemIntrinsic>(II)->isVolatile())
1226 return true;
1227 return false;
1228 default:
1229 return false;
1232 return false;
1235 bool AANoSyncImpl::isVolatile(Instruction *I) {
1236 assert(!ImmutableCallSite(I) && !isa<CallBase>(I) &&
1237 "Calls should not be checked here");
1239 switch (I->getOpcode()) {
1240 case Instruction::AtomicRMW:
1241 return cast<AtomicRMWInst>(I)->isVolatile();
1242 case Instruction::Store:
1243 return cast<StoreInst>(I)->isVolatile();
1244 case Instruction::Load:
1245 return cast<LoadInst>(I)->isVolatile();
1246 case Instruction::AtomicCmpXchg:
1247 return cast<AtomicCmpXchgInst>(I)->isVolatile();
1248 default:
1249 return false;
1253 ChangeStatus AANoSyncImpl::updateImpl(Attributor &A) {
1255 auto CheckRWInstForNoSync = [&](Instruction &I) {
1256 /// We are looking for volatile instructions or Non-Relaxed atomics.
1257 /// FIXME: We should ipmrove the handling of intrinsics.
1259 if (isa<IntrinsicInst>(&I) && isNoSyncIntrinsic(&I))
1260 return true;
1262 if (ImmutableCallSite ICS = ImmutableCallSite(&I)) {
1263 if (ICS.hasFnAttr(Attribute::NoSync))
1264 return true;
1266 const auto &NoSyncAA =
1267 A.getAAFor<AANoSync>(*this, IRPosition::callsite_function(ICS));
1268 if (NoSyncAA.isAssumedNoSync())
1269 return true;
1270 return false;
1273 if (!isVolatile(&I) && !isNonRelaxedAtomic(&I))
1274 return true;
1276 return false;
1279 auto CheckForNoSync = [&](Instruction &I) {
1280 // At this point we handled all read/write effects and they are all
1281 // nosync, so they can be skipped.
1282 if (I.mayReadOrWriteMemory())
1283 return true;
1285 // non-convergent and readnone imply nosync.
1286 return !ImmutableCallSite(&I).isConvergent();
1289 if (!A.checkForAllReadWriteInstructions(CheckRWInstForNoSync, *this) ||
1290 !A.checkForAllCallLikeInstructions(CheckForNoSync, *this))
1291 return indicatePessimisticFixpoint();
1293 return ChangeStatus::UNCHANGED;
1296 struct AANoSyncFunction final : public AANoSyncImpl {
1297 AANoSyncFunction(const IRPosition &IRP) : AANoSyncImpl(IRP) {}
1299 /// See AbstractAttribute::trackStatistics()
1300 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nosync) }
1303 /// NoSync attribute deduction for a call sites.
1304 struct AANoSyncCallSite final : AANoSyncImpl {
1305 AANoSyncCallSite(const IRPosition &IRP) : AANoSyncImpl(IRP) {}
1307 /// See AbstractAttribute::initialize(...).
1308 void initialize(Attributor &A) override {
1309 AANoSyncImpl::initialize(A);
1310 Function *F = getAssociatedFunction();
1311 if (!F)
1312 indicatePessimisticFixpoint();
1315 /// See AbstractAttribute::updateImpl(...).
1316 ChangeStatus updateImpl(Attributor &A) override {
1317 // TODO: Once we have call site specific value information we can provide
1318 // call site specific liveness information and then it makes
1319 // sense to specialize attributes for call sites arguments instead of
1320 // redirecting requests to the callee argument.
1321 Function *F = getAssociatedFunction();
1322 const IRPosition &FnPos = IRPosition::function(*F);
1323 auto &FnAA = A.getAAFor<AANoSync>(*this, FnPos);
1324 return clampStateAndIndicateChange(
1325 getState(), static_cast<const AANoSync::StateType &>(FnAA.getState()));
1328 /// See AbstractAttribute::trackStatistics()
1329 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nosync); }
1332 /// ------------------------ No-Free Attributes ----------------------------
1334 struct AANoFreeImpl : public AANoFree {
1335 AANoFreeImpl(const IRPosition &IRP) : AANoFree(IRP) {}
1337 /// See AbstractAttribute::updateImpl(...).
1338 ChangeStatus updateImpl(Attributor &A) override {
1339 auto CheckForNoFree = [&](Instruction &I) {
1340 ImmutableCallSite ICS(&I);
1341 if (ICS.hasFnAttr(Attribute::NoFree))
1342 return true;
1344 const auto &NoFreeAA =
1345 A.getAAFor<AANoFree>(*this, IRPosition::callsite_function(ICS));
1346 return NoFreeAA.isAssumedNoFree();
1349 if (!A.checkForAllCallLikeInstructions(CheckForNoFree, *this))
1350 return indicatePessimisticFixpoint();
1351 return ChangeStatus::UNCHANGED;
1354 /// See AbstractAttribute::getAsStr().
1355 const std::string getAsStr() const override {
1356 return getAssumed() ? "nofree" : "may-free";
1360 struct AANoFreeFunction final : public AANoFreeImpl {
1361 AANoFreeFunction(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
1363 /// See AbstractAttribute::trackStatistics()
1364 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(nofree) }
1367 /// NoFree attribute deduction for a call sites.
1368 struct AANoFreeCallSite final : AANoFreeImpl {
1369 AANoFreeCallSite(const IRPosition &IRP) : AANoFreeImpl(IRP) {}
1371 /// See AbstractAttribute::initialize(...).
1372 void initialize(Attributor &A) override {
1373 AANoFreeImpl::initialize(A);
1374 Function *F = getAssociatedFunction();
1375 if (!F)
1376 indicatePessimisticFixpoint();
1379 /// See AbstractAttribute::updateImpl(...).
1380 ChangeStatus updateImpl(Attributor &A) override {
1381 // TODO: Once we have call site specific value information we can provide
1382 // call site specific liveness information and then it makes
1383 // sense to specialize attributes for call sites arguments instead of
1384 // redirecting requests to the callee argument.
1385 Function *F = getAssociatedFunction();
1386 const IRPosition &FnPos = IRPosition::function(*F);
1387 auto &FnAA = A.getAAFor<AANoFree>(*this, FnPos);
1388 return clampStateAndIndicateChange(
1389 getState(), static_cast<const AANoFree::StateType &>(FnAA.getState()));
1392 /// See AbstractAttribute::trackStatistics()
1393 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(nofree); }
1396 /// ------------------------ NonNull Argument Attribute ------------------------
1397 struct AANonNullImpl : AANonNull {
1398 AANonNullImpl(const IRPosition &IRP) : AANonNull(IRP) {}
1400 /// See AbstractAttribute::initialize(...).
1401 void initialize(Attributor &A) override {
1402 if (hasAttr({Attribute::NonNull, Attribute::Dereferenceable}))
1403 indicateOptimisticFixpoint();
1404 else
1405 AANonNull::initialize(A);
1408 /// See AbstractAttribute::getAsStr().
1409 const std::string getAsStr() const override {
1410 return getAssumed() ? "nonnull" : "may-null";
1414 /// NonNull attribute for a floating value.
1415 struct AANonNullFloating : AANonNullImpl {
1416 AANonNullFloating(const IRPosition &IRP) : AANonNullImpl(IRP) {}
1418 /// See AbstractAttribute::initialize(...).
1419 void initialize(Attributor &A) override {
1420 AANonNullImpl::initialize(A);
1422 if (isAtFixpoint())
1423 return;
1425 const IRPosition &IRP = getIRPosition();
1426 const Value &V = IRP.getAssociatedValue();
1427 const DataLayout &DL = A.getDataLayout();
1429 // TODO: This context sensitive query should be removed once we can do
1430 // context sensitive queries in the genericValueTraversal below.
1431 if (isKnownNonZero(&V, DL, 0, /* TODO: AC */ nullptr, IRP.getCtxI(),
1432 /* TODO: DT */ nullptr))
1433 indicateOptimisticFixpoint();
1436 /// See AbstractAttribute::updateImpl(...).
1437 ChangeStatus updateImpl(Attributor &A) override {
1438 const DataLayout &DL = A.getDataLayout();
1440 auto VisitValueCB = [&](Value &V, AAAlign::StateType &T,
1441 bool Stripped) -> bool {
1442 const auto &AA = A.getAAFor<AANonNull>(*this, IRPosition::value(V));
1443 if (!Stripped && this == &AA) {
1444 if (!isKnownNonZero(&V, DL, 0, /* TODO: AC */ nullptr,
1445 /* TODO: CtxI */ nullptr,
1446 /* TODO: DT */ nullptr))
1447 T.indicatePessimisticFixpoint();
1448 } else {
1449 // Use abstract attribute information.
1450 const AANonNull::StateType &NS =
1451 static_cast<const AANonNull::StateType &>(AA.getState());
1452 T ^= NS;
1454 return T.isValidState();
1457 StateType T;
1458 if (!genericValueTraversal<AANonNull, StateType>(A, getIRPosition(), *this,
1459 T, VisitValueCB))
1460 return indicatePessimisticFixpoint();
1462 return clampStateAndIndicateChange(getState(), T);
1465 /// See AbstractAttribute::trackStatistics()
1466 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1469 /// NonNull attribute for function return value.
1470 struct AANonNullReturned final
1471 : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl> {
1472 AANonNullReturned(const IRPosition &IRP)
1473 : AAReturnedFromReturnedValues<AANonNull, AANonNullImpl>(IRP) {}
1475 /// See AbstractAttribute::trackStatistics()
1476 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(nonnull) }
1479 /// NonNull attribute for function argument.
1480 struct AANonNullArgument final
1481 : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl> {
1482 AANonNullArgument(const IRPosition &IRP)
1483 : AAArgumentFromCallSiteArguments<AANonNull, AANonNullImpl>(IRP) {}
1485 /// See AbstractAttribute::trackStatistics()
1486 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nonnull) }
1489 struct AANonNullCallSiteArgument final : AANonNullFloating {
1490 AANonNullCallSiteArgument(const IRPosition &IRP) : AANonNullFloating(IRP) {}
1492 /// See AbstractAttribute::trackStatistics()
1493 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(nonnull) }
1496 /// NonNull attribute for a call site return position.
1497 struct AANonNullCallSiteReturned final
1498 : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl> {
1499 AANonNullCallSiteReturned(const IRPosition &IRP)
1500 : AACallSiteReturnedFromReturned<AANonNull, AANonNullImpl>(IRP) {}
1502 /// See AbstractAttribute::trackStatistics()
1503 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(nonnull) }
1506 /// ------------------------ No-Recurse Attributes ----------------------------
1508 struct AANoRecurseImpl : public AANoRecurse {
1509 AANoRecurseImpl(const IRPosition &IRP) : AANoRecurse(IRP) {}
1511 /// See AbstractAttribute::getAsStr()
1512 const std::string getAsStr() const override {
1513 return getAssumed() ? "norecurse" : "may-recurse";
1517 struct AANoRecurseFunction final : AANoRecurseImpl {
1518 AANoRecurseFunction(const IRPosition &IRP) : AANoRecurseImpl(IRP) {}
1520 /// See AbstractAttribute::updateImpl(...).
1521 ChangeStatus updateImpl(Attributor &A) override {
1522 // TODO: Implement this.
1523 return indicatePessimisticFixpoint();
1526 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(norecurse) }
1529 /// NoRecurse attribute deduction for a call sites.
1530 struct AANoRecurseCallSite final : AANoRecurseImpl {
1531 AANoRecurseCallSite(const IRPosition &IRP) : AANoRecurseImpl(IRP) {}
1533 /// See AbstractAttribute::initialize(...).
1534 void initialize(Attributor &A) override {
1535 AANoRecurseImpl::initialize(A);
1536 Function *F = getAssociatedFunction();
1537 if (!F)
1538 indicatePessimisticFixpoint();
1541 /// See AbstractAttribute::updateImpl(...).
1542 ChangeStatus updateImpl(Attributor &A) override {
1543 // TODO: Once we have call site specific value information we can provide
1544 // call site specific liveness information and then it makes
1545 // sense to specialize attributes for call sites arguments instead of
1546 // redirecting requests to the callee argument.
1547 Function *F = getAssociatedFunction();
1548 const IRPosition &FnPos = IRPosition::function(*F);
1549 auto &FnAA = A.getAAFor<AANoRecurse>(*this, FnPos);
1550 return clampStateAndIndicateChange(
1551 getState(),
1552 static_cast<const AANoRecurse::StateType &>(FnAA.getState()));
1555 /// See AbstractAttribute::trackStatistics()
1556 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(norecurse); }
1559 /// ------------------------ Will-Return Attributes ----------------------------
1561 // Helper function that checks whether a function has any cycle.
1562 // TODO: Replace with more efficent code
1563 static bool containsCycle(Function &F) {
1564 SmallPtrSet<BasicBlock *, 32> Visited;
1566 // Traverse BB by dfs and check whether successor is already visited.
1567 for (BasicBlock *BB : depth_first(&F)) {
1568 Visited.insert(BB);
1569 for (auto *SuccBB : successors(BB)) {
1570 if (Visited.count(SuccBB))
1571 return true;
1574 return false;
1577 // Helper function that checks the function have a loop which might become an
1578 // endless loop
1579 // FIXME: Any cycle is regarded as endless loop for now.
1580 // We have to allow some patterns.
1581 static bool containsPossiblyEndlessLoop(Function *F) {
1582 return !F || !F->hasExactDefinition() || containsCycle(*F);
1585 struct AAWillReturnImpl : public AAWillReturn {
1586 AAWillReturnImpl(const IRPosition &IRP) : AAWillReturn(IRP) {}
1588 /// See AbstractAttribute::initialize(...).
1589 void initialize(Attributor &A) override {
1590 AAWillReturn::initialize(A);
1592 Function *F = getAssociatedFunction();
1593 if (containsPossiblyEndlessLoop(F))
1594 indicatePessimisticFixpoint();
1597 /// See AbstractAttribute::updateImpl(...).
1598 ChangeStatus updateImpl(Attributor &A) override {
1599 auto CheckForWillReturn = [&](Instruction &I) {
1600 IRPosition IPos = IRPosition::callsite_function(ImmutableCallSite(&I));
1601 const auto &WillReturnAA = A.getAAFor<AAWillReturn>(*this, IPos);
1602 if (WillReturnAA.isKnownWillReturn())
1603 return true;
1604 if (!WillReturnAA.isAssumedWillReturn())
1605 return false;
1606 const auto &NoRecurseAA = A.getAAFor<AANoRecurse>(*this, IPos);
1607 return NoRecurseAA.isAssumedNoRecurse();
1610 if (!A.checkForAllCallLikeInstructions(CheckForWillReturn, *this))
1611 return indicatePessimisticFixpoint();
1613 return ChangeStatus::UNCHANGED;
1616 /// See AbstractAttribute::getAsStr()
1617 const std::string getAsStr() const override {
1618 return getAssumed() ? "willreturn" : "may-noreturn";
1622 struct AAWillReturnFunction final : AAWillReturnImpl {
1623 AAWillReturnFunction(const IRPosition &IRP) : AAWillReturnImpl(IRP) {}
1625 /// See AbstractAttribute::trackStatistics()
1626 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(willreturn) }
1629 /// WillReturn attribute deduction for a call sites.
1630 struct AAWillReturnCallSite final : AAWillReturnImpl {
1631 AAWillReturnCallSite(const IRPosition &IRP) : AAWillReturnImpl(IRP) {}
1633 /// See AbstractAttribute::initialize(...).
1634 void initialize(Attributor &A) override {
1635 AAWillReturnImpl::initialize(A);
1636 Function *F = getAssociatedFunction();
1637 if (!F)
1638 indicatePessimisticFixpoint();
1641 /// See AbstractAttribute::updateImpl(...).
1642 ChangeStatus updateImpl(Attributor &A) override {
1643 // TODO: Once we have call site specific value information we can provide
1644 // call site specific liveness information and then it makes
1645 // sense to specialize attributes for call sites arguments instead of
1646 // redirecting requests to the callee argument.
1647 Function *F = getAssociatedFunction();
1648 const IRPosition &FnPos = IRPosition::function(*F);
1649 auto &FnAA = A.getAAFor<AAWillReturn>(*this, FnPos);
1650 return clampStateAndIndicateChange(
1651 getState(),
1652 static_cast<const AAWillReturn::StateType &>(FnAA.getState()));
1655 /// See AbstractAttribute::trackStatistics()
1656 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(willreturn); }
1659 /// ------------------------ NoAlias Argument Attribute ------------------------
1661 struct AANoAliasImpl : AANoAlias {
1662 AANoAliasImpl(const IRPosition &IRP) : AANoAlias(IRP) {}
1664 const std::string getAsStr() const override {
1665 return getAssumed() ? "noalias" : "may-alias";
1669 /// NoAlias attribute for a floating value.
1670 struct AANoAliasFloating final : AANoAliasImpl {
1671 AANoAliasFloating(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
1673 /// See AbstractAttribute::initialize(...).
1674 void initialize(Attributor &A) override {
1675 // TODO: It isn't sound to initialize as the same with `AANoAliasImpl`
1676 // because `noalias` may not be valid in the current position.
1679 /// See AbstractAttribute::updateImpl(...).
1680 ChangeStatus updateImpl(Attributor &A) override {
1681 // TODO: Implement this.
1682 return indicatePessimisticFixpoint();
1685 /// See AbstractAttribute::trackStatistics()
1686 void trackStatistics() const override {
1687 STATS_DECLTRACK_FLOATING_ATTR(noalias)
1691 /// NoAlias attribute for an argument.
1692 struct AANoAliasArgument final
1693 : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl> {
1694 AANoAliasArgument(const IRPosition &IRP)
1695 : AAArgumentFromCallSiteArguments<AANoAlias, AANoAliasImpl>(IRP) {}
1697 /// See AbstractAttribute::trackStatistics()
1698 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(noalias) }
1701 struct AANoAliasCallSiteArgument final : AANoAliasImpl {
1702 AANoAliasCallSiteArgument(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
1704 /// See AbstractAttribute::initialize(...).
1705 void initialize(Attributor &A) override {
1706 // See callsite argument attribute and callee argument attribute.
1707 ImmutableCallSite ICS(&getAnchorValue());
1708 if (ICS.paramHasAttr(getArgNo(), Attribute::NoAlias))
1709 indicateOptimisticFixpoint();
1712 /// See AbstractAttribute::updateImpl(...).
1713 ChangeStatus updateImpl(Attributor &A) override {
1714 // TODO: Implement this.
1715 return indicatePessimisticFixpoint();
1718 /// See AbstractAttribute::trackStatistics()
1719 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(noalias) }
1722 /// NoAlias attribute for function return value.
1723 struct AANoAliasReturned final : AANoAliasImpl {
1724 AANoAliasReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
1726 /// See AbstractAttribute::updateImpl(...).
1727 virtual ChangeStatus updateImpl(Attributor &A) override {
1729 auto CheckReturnValue = [&](Value &RV) -> bool {
1730 if (Constant *C = dyn_cast<Constant>(&RV))
1731 if (C->isNullValue() || isa<UndefValue>(C))
1732 return true;
1734 /// For now, we can only deduce noalias if we have call sites.
1735 /// FIXME: add more support.
1736 ImmutableCallSite ICS(&RV);
1737 if (!ICS)
1738 return false;
1740 const IRPosition &RVPos = IRPosition::value(RV);
1741 const auto &NoAliasAA = A.getAAFor<AANoAlias>(*this, RVPos);
1742 if (!NoAliasAA.isAssumedNoAlias())
1743 return false;
1745 const auto &NoCaptureAA = A.getAAFor<AANoCapture>(*this, RVPos);
1746 return NoCaptureAA.isAssumedNoCaptureMaybeReturned();
1749 if (!A.checkForAllReturnedValues(CheckReturnValue, *this))
1750 return indicatePessimisticFixpoint();
1752 return ChangeStatus::UNCHANGED;
1755 /// See AbstractAttribute::trackStatistics()
1756 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(noalias) }
1759 /// NoAlias attribute deduction for a call site return value.
1760 struct AANoAliasCallSiteReturned final : AANoAliasImpl {
1761 AANoAliasCallSiteReturned(const IRPosition &IRP) : AANoAliasImpl(IRP) {}
1763 /// See AbstractAttribute::initialize(...).
1764 void initialize(Attributor &A) override {
1765 AANoAliasImpl::initialize(A);
1766 Function *F = getAssociatedFunction();
1767 if (!F)
1768 indicatePessimisticFixpoint();
1771 /// See AbstractAttribute::updateImpl(...).
1772 ChangeStatus updateImpl(Attributor &A) override {
1773 // TODO: Once we have call site specific value information we can provide
1774 // call site specific liveness information and then it makes
1775 // sense to specialize attributes for call sites arguments instead of
1776 // redirecting requests to the callee argument.
1777 Function *F = getAssociatedFunction();
1778 const IRPosition &FnPos = IRPosition::returned(*F);
1779 auto &FnAA = A.getAAFor<AANoAlias>(*this, FnPos);
1780 return clampStateAndIndicateChange(
1781 getState(), static_cast<const AANoAlias::StateType &>(FnAA.getState()));
1784 /// See AbstractAttribute::trackStatistics()
1785 void trackStatistics() const override { STATS_DECLTRACK_CSRET_ATTR(noalias); }
1788 /// -------------------AAIsDead Function Attribute-----------------------
1790 struct AAIsDeadImpl : public AAIsDead {
1791 AAIsDeadImpl(const IRPosition &IRP) : AAIsDead(IRP) {}
1793 void initialize(Attributor &A) override {
1794 const Function *F = getAssociatedFunction();
1795 if (F && !F->isDeclaration())
1796 exploreFromEntry(A, F);
1799 void exploreFromEntry(Attributor &A, const Function *F) {
1800 ToBeExploredPaths.insert(&(F->getEntryBlock().front()));
1801 assumeLive(A, F->getEntryBlock());
1803 for (size_t i = 0; i < ToBeExploredPaths.size(); ++i)
1804 if (const Instruction *NextNoReturnI =
1805 findNextNoReturn(A, ToBeExploredPaths[i]))
1806 NoReturnCalls.insert(NextNoReturnI);
1809 /// Find the next assumed noreturn instruction in the block of \p I starting
1810 /// from, thus including, \p I.
1812 /// The caller is responsible to monitor the ToBeExploredPaths set as new
1813 /// instructions discovered in other basic block will be placed in there.
1815 /// \returns The next assumed noreturn instructions in the block of \p I
1816 /// starting from, thus including, \p I.
1817 const Instruction *findNextNoReturn(Attributor &A, const Instruction *I);
1819 /// See AbstractAttribute::getAsStr().
1820 const std::string getAsStr() const override {
1821 return "Live[#BB " + std::to_string(AssumedLiveBlocks.size()) + "/" +
1822 std::to_string(getAssociatedFunction()->size()) + "][#NRI " +
1823 std::to_string(NoReturnCalls.size()) + "]";
1826 /// See AbstractAttribute::manifest(...).
1827 ChangeStatus manifest(Attributor &A) override {
1828 assert(getState().isValidState() &&
1829 "Attempted to manifest an invalid state!");
1831 ChangeStatus HasChanged = ChangeStatus::UNCHANGED;
1832 Function &F = *getAssociatedFunction();
1834 if (AssumedLiveBlocks.empty()) {
1835 A.deleteAfterManifest(F);
1836 return ChangeStatus::CHANGED;
1839 // Flag to determine if we can change an invoke to a call assuming the
1840 // callee is nounwind. This is not possible if the personality of the
1841 // function allows to catch asynchronous exceptions.
1842 bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
1844 for (const Instruction *NRC : NoReturnCalls) {
1845 Instruction *I = const_cast<Instruction *>(NRC);
1846 BasicBlock *BB = I->getParent();
1847 Instruction *SplitPos = I->getNextNode();
1848 // TODO: mark stuff before unreachable instructions as dead.
1849 if (isa_and_nonnull<UnreachableInst>(SplitPos))
1850 continue;
1852 if (auto *II = dyn_cast<InvokeInst>(I)) {
1853 // If we keep the invoke the split position is at the beginning of the
1854 // normal desitination block (it invokes a noreturn function after all).
1855 BasicBlock *NormalDestBB = II->getNormalDest();
1856 SplitPos = &NormalDestBB->front();
1858 /// Invoke is replaced with a call and unreachable is placed after it if
1859 /// the callee is nounwind and noreturn. Otherwise, we keep the invoke
1860 /// and only place an unreachable in the normal successor.
1861 if (Invoke2CallAllowed) {
1862 if (II->getCalledFunction()) {
1863 const IRPosition &IPos = IRPosition::callsite_function(*II);
1864 const auto &AANoUnw = A.getAAFor<AANoUnwind>(*this, IPos);
1865 if (AANoUnw.isAssumedNoUnwind()) {
1866 LLVM_DEBUG(dbgs()
1867 << "[AAIsDead] Replace invoke with call inst\n");
1868 // We do not need an invoke (II) but instead want a call followed
1869 // by an unreachable. However, we do not remove II as other
1870 // abstract attributes might have it cached as part of their
1871 // results. Given that we modify the CFG anyway, we simply keep II
1872 // around but in a new dead block. To avoid II being live through
1873 // a different edge we have to ensure the block we place it in is
1874 // only reached from the current block of II and then not reached
1875 // at all when we insert the unreachable.
1876 SplitBlockPredecessors(NormalDestBB, {BB}, ".i2c");
1877 CallInst *CI = createCallMatchingInvoke(II);
1878 CI->insertBefore(II);
1879 CI->takeName(II);
1880 II->replaceAllUsesWith(CI);
1881 SplitPos = CI->getNextNode();
1886 if (SplitPos == &NormalDestBB->front()) {
1887 // If this is an invoke of a noreturn function the edge to the normal
1888 // destination block is dead but not necessarily the block itself.
1889 // TODO: We need to move to an edge based system during deduction and
1890 // also manifest.
1891 assert(!NormalDestBB->isLandingPad() &&
1892 "Expected the normal destination not to be a landingpad!");
1893 BasicBlock *SplitBB =
1894 SplitBlockPredecessors(NormalDestBB, {BB}, ".dead");
1895 // The split block is live even if it contains only an unreachable
1896 // instruction at the end.
1897 assumeLive(A, *SplitBB);
1898 SplitPos = SplitBB->getTerminator();
1902 BB = SplitPos->getParent();
1903 SplitBlock(BB, SplitPos);
1904 changeToUnreachable(BB->getTerminator(), /* UseLLVMTrap */ false);
1905 HasChanged = ChangeStatus::CHANGED;
1908 for (BasicBlock &BB : F)
1909 if (!AssumedLiveBlocks.count(&BB))
1910 A.deleteAfterManifest(BB);
1912 return HasChanged;
1915 /// See AbstractAttribute::updateImpl(...).
1916 ChangeStatus updateImpl(Attributor &A) override;
1918 /// See AAIsDead::isAssumedDead(BasicBlock *).
1919 bool isAssumedDead(const BasicBlock *BB) const override {
1920 assert(BB->getParent() == getAssociatedFunction() &&
1921 "BB must be in the same anchor scope function.");
1923 if (!getAssumed())
1924 return false;
1925 return !AssumedLiveBlocks.count(BB);
1928 /// See AAIsDead::isKnownDead(BasicBlock *).
1929 bool isKnownDead(const BasicBlock *BB) const override {
1930 return getKnown() && isAssumedDead(BB);
1933 /// See AAIsDead::isAssumed(Instruction *I).
1934 bool isAssumedDead(const Instruction *I) const override {
1935 assert(I->getParent()->getParent() == getAssociatedFunction() &&
1936 "Instruction must be in the same anchor scope function.");
1938 if (!getAssumed())
1939 return false;
1941 // If it is not in AssumedLiveBlocks then it for sure dead.
1942 // Otherwise, it can still be after noreturn call in a live block.
1943 if (!AssumedLiveBlocks.count(I->getParent()))
1944 return true;
1946 // If it is not after a noreturn call, than it is live.
1947 return isAfterNoReturn(I);
1950 /// See AAIsDead::isKnownDead(Instruction *I).
1951 bool isKnownDead(const Instruction *I) const override {
1952 return getKnown() && isAssumedDead(I);
1955 /// Check if instruction is after noreturn call, in other words, assumed dead.
1956 bool isAfterNoReturn(const Instruction *I) const;
1958 /// Determine if \p F might catch asynchronous exceptions.
1959 static bool mayCatchAsynchronousExceptions(const Function &F) {
1960 return F.hasPersonalityFn() && !canSimplifyInvokeNoUnwind(&F);
1963 /// Assume \p BB is (partially) live now and indicate to the Attributor \p A
1964 /// that internal function called from \p BB should now be looked at.
1965 void assumeLive(Attributor &A, const BasicBlock &BB) {
1966 if (!AssumedLiveBlocks.insert(&BB).second)
1967 return;
1969 // We assume that all of BB is (probably) live now and if there are calls to
1970 // internal functions we will assume that those are now live as well. This
1971 // is a performance optimization for blocks with calls to a lot of internal
1972 // functions. It can however cause dead functions to be treated as live.
1973 for (const Instruction &I : BB)
1974 if (ImmutableCallSite ICS = ImmutableCallSite(&I))
1975 if (const Function *F = ICS.getCalledFunction())
1976 if (F->hasInternalLinkage())
1977 A.markLiveInternalFunction(*F);
1980 /// Collection of to be explored paths.
1981 SmallSetVector<const Instruction *, 8> ToBeExploredPaths;
1983 /// Collection of all assumed live BasicBlocks.
1984 DenseSet<const BasicBlock *> AssumedLiveBlocks;
1986 /// Collection of calls with noreturn attribute, assumed or knwon.
1987 SmallSetVector<const Instruction *, 4> NoReturnCalls;
1990 struct AAIsDeadFunction final : public AAIsDeadImpl {
1991 AAIsDeadFunction(const IRPosition &IRP) : AAIsDeadImpl(IRP) {}
1993 /// See AbstractAttribute::trackStatistics()
1994 void trackStatistics() const override {
1995 STATS_DECL(PartiallyDeadBlocks, Function,
1996 "Number of basic blocks classified as partially dead");
1997 BUILD_STAT_NAME(PartiallyDeadBlocks, Function) += NoReturnCalls.size();
2001 bool AAIsDeadImpl::isAfterNoReturn(const Instruction *I) const {
2002 const Instruction *PrevI = I->getPrevNode();
2003 while (PrevI) {
2004 if (NoReturnCalls.count(PrevI))
2005 return true;
2006 PrevI = PrevI->getPrevNode();
2008 return false;
2011 const Instruction *AAIsDeadImpl::findNextNoReturn(Attributor &A,
2012 const Instruction *I) {
2013 const BasicBlock *BB = I->getParent();
2014 const Function &F = *BB->getParent();
2016 // Flag to determine if we can change an invoke to a call assuming the callee
2017 // is nounwind. This is not possible if the personality of the function allows
2018 // to catch asynchronous exceptions.
2019 bool Invoke2CallAllowed = !mayCatchAsynchronousExceptions(F);
2021 // TODO: We should have a function that determines if an "edge" is dead.
2022 // Edges could be from an instruction to the next or from a terminator
2023 // to the successor. For now, we need to special case the unwind block
2024 // of InvokeInst below.
2026 while (I) {
2027 ImmutableCallSite ICS(I);
2029 if (ICS) {
2030 const IRPosition &IPos = IRPosition::callsite_function(ICS);
2031 // Regarless of the no-return property of an invoke instruction we only
2032 // learn that the regular successor is not reachable through this
2033 // instruction but the unwind block might still be.
2034 if (auto *Invoke = dyn_cast<InvokeInst>(I)) {
2035 // Use nounwind to justify the unwind block is dead as well.
2036 const auto &AANoUnw = A.getAAFor<AANoUnwind>(*this, IPos);
2037 if (!Invoke2CallAllowed || !AANoUnw.isAssumedNoUnwind()) {
2038 assumeLive(A, *Invoke->getUnwindDest());
2039 ToBeExploredPaths.insert(&Invoke->getUnwindDest()->front());
2043 const auto &NoReturnAA = A.getAAFor<AANoReturn>(*this, IPos);
2044 if (NoReturnAA.isAssumedNoReturn())
2045 return I;
2048 I = I->getNextNode();
2051 // get new paths (reachable blocks).
2052 for (const BasicBlock *SuccBB : successors(BB)) {
2053 assumeLive(A, *SuccBB);
2054 ToBeExploredPaths.insert(&SuccBB->front());
2057 // No noreturn instruction found.
2058 return nullptr;
2061 ChangeStatus AAIsDeadImpl::updateImpl(Attributor &A) {
2062 ChangeStatus Status = ChangeStatus::UNCHANGED;
2064 // Temporary collection to iterate over existing noreturn instructions. This
2065 // will alow easier modification of NoReturnCalls collection
2066 SmallVector<const Instruction *, 8> NoReturnChanged;
2068 for (const Instruction *I : NoReturnCalls)
2069 NoReturnChanged.push_back(I);
2071 for (const Instruction *I : NoReturnChanged) {
2072 size_t Size = ToBeExploredPaths.size();
2074 const Instruction *NextNoReturnI = findNextNoReturn(A, I);
2075 if (NextNoReturnI != I) {
2076 Status = ChangeStatus::CHANGED;
2077 NoReturnCalls.remove(I);
2078 if (NextNoReturnI)
2079 NoReturnCalls.insert(NextNoReturnI);
2082 // Explore new paths.
2083 while (Size != ToBeExploredPaths.size()) {
2084 Status = ChangeStatus::CHANGED;
2085 if (const Instruction *NextNoReturnI =
2086 findNextNoReturn(A, ToBeExploredPaths[Size++]))
2087 NoReturnCalls.insert(NextNoReturnI);
2091 LLVM_DEBUG(dbgs() << "[AAIsDead] AssumedLiveBlocks: "
2092 << AssumedLiveBlocks.size() << " Total number of blocks: "
2093 << getAssociatedFunction()->size() << "\n");
2095 // If we know everything is live there is no need to query for liveness.
2096 if (NoReturnCalls.empty() &&
2097 getAssociatedFunction()->size() == AssumedLiveBlocks.size()) {
2098 // Indicating a pessimistic fixpoint will cause the state to be "invalid"
2099 // which will cause the Attributor to not return the AAIsDead on request,
2100 // which will prevent us from querying isAssumedDead().
2101 indicatePessimisticFixpoint();
2102 assert(!isValidState() && "Expected an invalid state!");
2103 Status = ChangeStatus::CHANGED;
2106 return Status;
2109 /// Liveness information for a call sites.
2110 struct AAIsDeadCallSite final : AAIsDeadImpl {
2111 AAIsDeadCallSite(const IRPosition &IRP) : AAIsDeadImpl(IRP) {}
2113 /// See AbstractAttribute::initialize(...).
2114 void initialize(Attributor &A) override {
2115 // TODO: Once we have call site specific value information we can provide
2116 // call site specific liveness information and then it makes
2117 // sense to specialize attributes for call sites instead of
2118 // redirecting requests to the callee.
2119 llvm_unreachable("Abstract attributes for liveness are not "
2120 "supported for call sites yet!");
2123 /// See AbstractAttribute::updateImpl(...).
2124 ChangeStatus updateImpl(Attributor &A) override {
2125 return indicatePessimisticFixpoint();
2128 /// See AbstractAttribute::trackStatistics()
2129 void trackStatistics() const override {}
2132 /// -------------------- Dereferenceable Argument Attribute --------------------
2134 template <>
2135 ChangeStatus clampStateAndIndicateChange<DerefState>(DerefState &S,
2136 const DerefState &R) {
2137 ChangeStatus CS0 = clampStateAndIndicateChange<IntegerState>(
2138 S.DerefBytesState, R.DerefBytesState);
2139 ChangeStatus CS1 =
2140 clampStateAndIndicateChange<IntegerState>(S.GlobalState, R.GlobalState);
2141 return CS0 | CS1;
2144 struct AADereferenceableImpl : AADereferenceable {
2145 AADereferenceableImpl(const IRPosition &IRP) : AADereferenceable(IRP) {}
2146 using StateType = DerefState;
2148 void initialize(Attributor &A) override {
2149 SmallVector<Attribute, 4> Attrs;
2150 getAttrs({Attribute::Dereferenceable, Attribute::DereferenceableOrNull},
2151 Attrs);
2152 for (const Attribute &Attr : Attrs)
2153 takeKnownDerefBytesMaximum(Attr.getValueAsInt());
2155 NonNullAA = &A.getAAFor<AANonNull>(*this, getIRPosition());
2157 const IRPosition &IRP = this->getIRPosition();
2158 bool IsFnInterface = IRP.isFnInterfaceKind();
2159 const Function *FnScope = IRP.getAnchorScope();
2160 if (IsFnInterface && (!FnScope || !FnScope->hasExactDefinition()))
2161 indicatePessimisticFixpoint();
2164 /// See AbstractAttribute::getState()
2165 /// {
2166 StateType &getState() override { return *this; }
2167 const StateType &getState() const override { return *this; }
2168 /// }
2170 void getDeducedAttributes(LLVMContext &Ctx,
2171 SmallVectorImpl<Attribute> &Attrs) const override {
2172 // TODO: Add *_globally support
2173 if (isAssumedNonNull())
2174 Attrs.emplace_back(Attribute::getWithDereferenceableBytes(
2175 Ctx, getAssumedDereferenceableBytes()));
2176 else
2177 Attrs.emplace_back(Attribute::getWithDereferenceableOrNullBytes(
2178 Ctx, getAssumedDereferenceableBytes()));
2181 /// See AbstractAttribute::getAsStr().
2182 const std::string getAsStr() const override {
2183 if (!getAssumedDereferenceableBytes())
2184 return "unknown-dereferenceable";
2185 return std::string("dereferenceable") +
2186 (isAssumedNonNull() ? "" : "_or_null") +
2187 (isAssumedGlobal() ? "_globally" : "") + "<" +
2188 std::to_string(getKnownDereferenceableBytes()) + "-" +
2189 std::to_string(getAssumedDereferenceableBytes()) + ">";
2193 /// Dereferenceable attribute for a floating value.
2194 struct AADereferenceableFloating : AADereferenceableImpl {
2195 AADereferenceableFloating(const IRPosition &IRP)
2196 : AADereferenceableImpl(IRP) {}
2198 /// See AbstractAttribute::updateImpl(...).
2199 ChangeStatus updateImpl(Attributor &A) override {
2200 const DataLayout &DL = A.getDataLayout();
2202 auto VisitValueCB = [&](Value &V, DerefState &T, bool Stripped) -> bool {
2203 unsigned IdxWidth =
2204 DL.getIndexSizeInBits(V.getType()->getPointerAddressSpace());
2205 APInt Offset(IdxWidth, 0);
2206 const Value *Base =
2207 V.stripAndAccumulateInBoundsConstantOffsets(DL, Offset);
2209 const auto &AA =
2210 A.getAAFor<AADereferenceable>(*this, IRPosition::value(*Base));
2211 int64_t DerefBytes = 0;
2212 if (!Stripped && this == &AA) {
2213 // Use IR information if we did not strip anything.
2214 // TODO: track globally.
2215 bool CanBeNull;
2216 DerefBytes = Base->getPointerDereferenceableBytes(DL, CanBeNull);
2217 T.GlobalState.indicatePessimisticFixpoint();
2218 } else {
2219 const DerefState &DS = static_cast<const DerefState &>(AA.getState());
2220 DerefBytes = DS.DerefBytesState.getAssumed();
2221 T.GlobalState &= DS.GlobalState;
2224 // For now we do not try to "increase" dereferenceability due to negative
2225 // indices as we first have to come up with code to deal with loops and
2226 // for overflows of the dereferenceable bytes.
2227 int64_t OffsetSExt = Offset.getSExtValue();
2228 if (OffsetSExt < 0)
2229 Offset = 0;
2231 T.takeAssumedDerefBytesMinimum(
2232 std::max(int64_t(0), DerefBytes - OffsetSExt));
2234 if (this == &AA) {
2235 if (!Stripped) {
2236 // If nothing was stripped IR information is all we got.
2237 T.takeKnownDerefBytesMaximum(
2238 std::max(int64_t(0), DerefBytes - OffsetSExt));
2239 T.indicatePessimisticFixpoint();
2240 } else if (OffsetSExt > 0) {
2241 // If something was stripped but there is circular reasoning we look
2242 // for the offset. If it is positive we basically decrease the
2243 // dereferenceable bytes in a circluar loop now, which will simply
2244 // drive them down to the known value in a very slow way which we
2245 // can accelerate.
2246 T.indicatePessimisticFixpoint();
2250 return T.isValidState();
2253 DerefState T;
2254 if (!genericValueTraversal<AADereferenceable, DerefState>(
2255 A, getIRPosition(), *this, T, VisitValueCB))
2256 return indicatePessimisticFixpoint();
2258 return clampStateAndIndicateChange(getState(), T);
2261 /// See AbstractAttribute::trackStatistics()
2262 void trackStatistics() const override {
2263 STATS_DECLTRACK_FLOATING_ATTR(dereferenceable)
2267 /// Dereferenceable attribute for a return value.
2268 struct AADereferenceableReturned final
2269 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl,
2270 DerefState> {
2271 AADereferenceableReturned(const IRPosition &IRP)
2272 : AAReturnedFromReturnedValues<AADereferenceable, AADereferenceableImpl,
2273 DerefState>(IRP) {}
2275 /// See AbstractAttribute::trackStatistics()
2276 void trackStatistics() const override {
2277 STATS_DECLTRACK_FNRET_ATTR(dereferenceable)
2281 /// Dereferenceable attribute for an argument
2282 struct AADereferenceableArgument final
2283 : AAArgumentFromCallSiteArguments<AADereferenceable, AADereferenceableImpl,
2284 DerefState> {
2285 AADereferenceableArgument(const IRPosition &IRP)
2286 : AAArgumentFromCallSiteArguments<AADereferenceable,
2287 AADereferenceableImpl, DerefState>(
2288 IRP) {}
2290 /// See AbstractAttribute::trackStatistics()
2291 void trackStatistics() const override {
2292 STATS_DECLTRACK_ARG_ATTR(dereferenceable)
2296 /// Dereferenceable attribute for a call site argument.
2297 struct AADereferenceableCallSiteArgument final : AADereferenceableFloating {
2298 AADereferenceableCallSiteArgument(const IRPosition &IRP)
2299 : AADereferenceableFloating(IRP) {}
2301 /// See AbstractAttribute::trackStatistics()
2302 void trackStatistics() const override {
2303 STATS_DECLTRACK_CSARG_ATTR(dereferenceable)
2307 /// Dereferenceable attribute deduction for a call site return value.
2308 struct AADereferenceableCallSiteReturned final : AADereferenceableImpl {
2309 AADereferenceableCallSiteReturned(const IRPosition &IRP)
2310 : AADereferenceableImpl(IRP) {}
2312 /// See AbstractAttribute::initialize(...).
2313 void initialize(Attributor &A) override {
2314 AADereferenceableImpl::initialize(A);
2315 Function *F = getAssociatedFunction();
2316 if (!F)
2317 indicatePessimisticFixpoint();
2320 /// See AbstractAttribute::updateImpl(...).
2321 ChangeStatus updateImpl(Attributor &A) override {
2322 // TODO: Once we have call site specific value information we can provide
2323 // call site specific liveness information and then it makes
2324 // sense to specialize attributes for call sites arguments instead of
2325 // redirecting requests to the callee argument.
2326 Function *F = getAssociatedFunction();
2327 const IRPosition &FnPos = IRPosition::returned(*F);
2328 auto &FnAA = A.getAAFor<AADereferenceable>(*this, FnPos);
2329 return clampStateAndIndicateChange(
2330 getState(), static_cast<const DerefState &>(FnAA.getState()));
2333 /// See AbstractAttribute::trackStatistics()
2334 void trackStatistics() const override {
2335 STATS_DECLTRACK_CS_ATTR(dereferenceable);
2339 // ------------------------ Align Argument Attribute ------------------------
2341 struct AAAlignImpl : AAAlign {
2342 AAAlignImpl(const IRPosition &IRP) : AAAlign(IRP) {}
2344 // Max alignemnt value allowed in IR
2345 static const unsigned MAX_ALIGN = 1U << 29;
2347 /// See AbstractAttribute::initialize(...).
2348 void initialize(Attributor &A) override {
2349 takeAssumedMinimum(MAX_ALIGN);
2351 SmallVector<Attribute, 4> Attrs;
2352 getAttrs({Attribute::Alignment}, Attrs);
2353 for (const Attribute &Attr : Attrs)
2354 takeKnownMaximum(Attr.getValueAsInt());
2356 if (getIRPosition().isFnInterfaceKind() &&
2357 (!getAssociatedFunction() ||
2358 !getAssociatedFunction()->hasExactDefinition()))
2359 indicatePessimisticFixpoint();
2362 /// See AbstractAttribute::manifest(...).
2363 ChangeStatus manifest(Attributor &A) override {
2364 ChangeStatus Changed = ChangeStatus::UNCHANGED;
2366 // Check for users that allow alignment annotations.
2367 Value &AnchorVal = getIRPosition().getAnchorValue();
2368 for (const Use &U : AnchorVal.uses()) {
2369 if (auto *SI = dyn_cast<StoreInst>(U.getUser())) {
2370 if (SI->getPointerOperand() == &AnchorVal)
2371 if (SI->getAlignment() < getAssumedAlign()) {
2372 STATS_DECLTRACK(AAAlign, Store,
2373 "Number of times alignemnt added to a store");
2374 SI->setAlignment(getAssumedAlign());
2375 Changed = ChangeStatus::CHANGED;
2377 } else if (auto *LI = dyn_cast<LoadInst>(U.getUser())) {
2378 if (LI->getPointerOperand() == &AnchorVal)
2379 if (LI->getAlignment() < getAssumedAlign()) {
2380 LI->setAlignment(getAssumedAlign());
2381 STATS_DECLTRACK(AAAlign, Load,
2382 "Number of times alignemnt added to a load");
2383 Changed = ChangeStatus::CHANGED;
2388 return AAAlign::manifest(A) | Changed;
2391 // TODO: Provide a helper to determine the implied ABI alignment and check in
2392 // the existing manifest method and a new one for AAAlignImpl that value
2393 // to avoid making the alignment explicit if it did not improve.
2395 /// See AbstractAttribute::getDeducedAttributes
2396 virtual void
2397 getDeducedAttributes(LLVMContext &Ctx,
2398 SmallVectorImpl<Attribute> &Attrs) const override {
2399 if (getAssumedAlign() > 1)
2400 Attrs.emplace_back(Attribute::getWithAlignment(Ctx, getAssumedAlign()));
2403 /// See AbstractAttribute::getAsStr().
2404 const std::string getAsStr() const override {
2405 return getAssumedAlign() ? ("align<" + std::to_string(getKnownAlign()) +
2406 "-" + std::to_string(getAssumedAlign()) + ">")
2407 : "unknown-align";
2411 /// Align attribute for a floating value.
2412 struct AAAlignFloating : AAAlignImpl {
2413 AAAlignFloating(const IRPosition &IRP) : AAAlignImpl(IRP) {}
2415 /// See AbstractAttribute::updateImpl(...).
2416 ChangeStatus updateImpl(Attributor &A) override {
2417 const DataLayout &DL = A.getDataLayout();
2419 auto VisitValueCB = [&](Value &V, AAAlign::StateType &T,
2420 bool Stripped) -> bool {
2421 const auto &AA = A.getAAFor<AAAlign>(*this, IRPosition::value(V));
2422 if (!Stripped && this == &AA) {
2423 // Use only IR information if we did not strip anything.
2424 T.takeKnownMaximum(V.getPointerAlignment(DL));
2425 T.indicatePessimisticFixpoint();
2426 } else {
2427 // Use abstract attribute information.
2428 const AAAlign::StateType &DS =
2429 static_cast<const AAAlign::StateType &>(AA.getState());
2430 T ^= DS;
2432 return T.isValidState();
2435 StateType T;
2436 if (!genericValueTraversal<AAAlign, StateType>(A, getIRPosition(), *this, T,
2437 VisitValueCB))
2438 return indicatePessimisticFixpoint();
2440 // TODO: If we know we visited all incoming values, thus no are assumed
2441 // dead, we can take the known information from the state T.
2442 return clampStateAndIndicateChange(getState(), T);
2445 /// See AbstractAttribute::trackStatistics()
2446 void trackStatistics() const override { STATS_DECLTRACK_FLOATING_ATTR(align) }
2449 /// Align attribute for function return value.
2450 struct AAAlignReturned final
2451 : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl> {
2452 AAAlignReturned(const IRPosition &IRP)
2453 : AAReturnedFromReturnedValues<AAAlign, AAAlignImpl>(IRP) {}
2455 /// See AbstractAttribute::trackStatistics()
2456 void trackStatistics() const override { STATS_DECLTRACK_FNRET_ATTR(aligned) }
2459 /// Align attribute for function argument.
2460 struct AAAlignArgument final
2461 : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl> {
2462 AAAlignArgument(const IRPosition &IRP)
2463 : AAArgumentFromCallSiteArguments<AAAlign, AAAlignImpl>(IRP) {}
2465 /// See AbstractAttribute::trackStatistics()
2466 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(aligned) }
2469 struct AAAlignCallSiteArgument final : AAAlignFloating {
2470 AAAlignCallSiteArgument(const IRPosition &IRP) : AAAlignFloating(IRP) {}
2472 /// See AbstractAttribute::manifest(...).
2473 ChangeStatus manifest(Attributor &A) override {
2474 return AAAlignImpl::manifest(A);
2477 /// See AbstractAttribute::trackStatistics()
2478 void trackStatistics() const override { STATS_DECLTRACK_CSARG_ATTR(aligned) }
2481 /// Align attribute deduction for a call site return value.
2482 struct AAAlignCallSiteReturned final : AAAlignImpl {
2483 AAAlignCallSiteReturned(const IRPosition &IRP) : AAAlignImpl(IRP) {}
2485 /// See AbstractAttribute::initialize(...).
2486 void initialize(Attributor &A) override {
2487 AAAlignImpl::initialize(A);
2488 Function *F = getAssociatedFunction();
2489 if (!F)
2490 indicatePessimisticFixpoint();
2493 /// See AbstractAttribute::updateImpl(...).
2494 ChangeStatus updateImpl(Attributor &A) override {
2495 // TODO: Once we have call site specific value information we can provide
2496 // call site specific liveness information and then it makes
2497 // sense to specialize attributes for call sites arguments instead of
2498 // redirecting requests to the callee argument.
2499 Function *F = getAssociatedFunction();
2500 const IRPosition &FnPos = IRPosition::returned(*F);
2501 auto &FnAA = A.getAAFor<AAAlign>(*this, FnPos);
2502 return clampStateAndIndicateChange(
2503 getState(), static_cast<const AAAlign::StateType &>(FnAA.getState()));
2506 /// See AbstractAttribute::trackStatistics()
2507 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(align); }
2510 /// ------------------ Function No-Return Attribute ----------------------------
2511 struct AANoReturnImpl : public AANoReturn {
2512 AANoReturnImpl(const IRPosition &IRP) : AANoReturn(IRP) {}
2514 /// See AbstractAttribute::getAsStr().
2515 const std::string getAsStr() const override {
2516 return getAssumed() ? "noreturn" : "may-return";
2519 /// See AbstractAttribute::updateImpl(Attributor &A).
2520 virtual ChangeStatus updateImpl(Attributor &A) override {
2521 auto CheckForNoReturn = [](Instruction &) { return false; };
2522 if (!A.checkForAllInstructions(CheckForNoReturn, *this,
2523 {(unsigned)Instruction::Ret}))
2524 return indicatePessimisticFixpoint();
2525 return ChangeStatus::UNCHANGED;
2529 struct AANoReturnFunction final : AANoReturnImpl {
2530 AANoReturnFunction(const IRPosition &IRP) : AANoReturnImpl(IRP) {}
2532 /// See AbstractAttribute::trackStatistics()
2533 void trackStatistics() const override { STATS_DECLTRACK_FN_ATTR(noreturn) }
2536 /// NoReturn attribute deduction for a call sites.
2537 struct AANoReturnCallSite final : AANoReturnImpl {
2538 AANoReturnCallSite(const IRPosition &IRP) : AANoReturnImpl(IRP) {}
2540 /// See AbstractAttribute::initialize(...).
2541 void initialize(Attributor &A) override {
2542 AANoReturnImpl::initialize(A);
2543 Function *F = getAssociatedFunction();
2544 if (!F)
2545 indicatePessimisticFixpoint();
2548 /// See AbstractAttribute::updateImpl(...).
2549 ChangeStatus updateImpl(Attributor &A) override {
2550 // TODO: Once we have call site specific value information we can provide
2551 // call site specific liveness information and then it makes
2552 // sense to specialize attributes for call sites arguments instead of
2553 // redirecting requests to the callee argument.
2554 Function *F = getAssociatedFunction();
2555 const IRPosition &FnPos = IRPosition::function(*F);
2556 auto &FnAA = A.getAAFor<AANoReturn>(*this, FnPos);
2557 return clampStateAndIndicateChange(
2558 getState(),
2559 static_cast<const AANoReturn::StateType &>(FnAA.getState()));
2562 /// See AbstractAttribute::trackStatistics()
2563 void trackStatistics() const override { STATS_DECLTRACK_CS_ATTR(noreturn); }
2566 /// ----------------------- Variable Capturing ---------------------------------
2568 /// A class to hold the state of for no-capture attributes.
2569 struct AANoCaptureImpl : public AANoCapture {
2570 AANoCaptureImpl(const IRPosition &IRP) : AANoCapture(IRP) {}
2572 /// See AbstractAttribute::initialize(...).
2573 void initialize(Attributor &A) override {
2574 AANoCapture::initialize(A);
2576 const IRPosition &IRP = getIRPosition();
2577 const Function *F =
2578 getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
2580 // Check what state the associated function can actually capture.
2581 if (F)
2582 determineFunctionCaptureCapabilities(*F, *this);
2583 else
2584 indicatePessimisticFixpoint();
2587 /// See AbstractAttribute::updateImpl(...).
2588 ChangeStatus updateImpl(Attributor &A) override;
2590 /// see AbstractAttribute::isAssumedNoCaptureMaybeReturned(...).
2591 virtual void
2592 getDeducedAttributes(LLVMContext &Ctx,
2593 SmallVectorImpl<Attribute> &Attrs) const override {
2594 if (!isAssumedNoCaptureMaybeReturned())
2595 return;
2597 if (isAssumedNoCapture())
2598 Attrs.emplace_back(Attribute::get(Ctx, Attribute::NoCapture));
2599 else if (ManifestInternal)
2600 Attrs.emplace_back(Attribute::get(Ctx, "no-capture-maybe-returned"));
2603 /// Set the NOT_CAPTURED_IN_MEM and NOT_CAPTURED_IN_RET bits in \p Known
2604 /// depending on the ability of the function associated with \p IRP to capture
2605 /// state in memory and through "returning/throwing", respectively.
2606 static void determineFunctionCaptureCapabilities(const Function &F,
2607 IntegerState &State) {
2608 // TODO: Once we have memory behavior attributes we should use them here.
2610 // If we know we cannot communicate or write to memory, we do not care about
2611 // ptr2int anymore.
2612 if (F.onlyReadsMemory() && F.doesNotThrow() &&
2613 F.getReturnType()->isVoidTy()) {
2614 State.addKnownBits(NO_CAPTURE);
2615 return;
2618 // A function cannot capture state in memory if it only reads memory, it can
2619 // however return/throw state and the state might be influenced by the
2620 // pointer value, e.g., loading from a returned pointer might reveal a bit.
2621 if (F.onlyReadsMemory())
2622 State.addKnownBits(NOT_CAPTURED_IN_MEM);
2624 // A function cannot communicate state back if it does not through
2625 // exceptions and doesn not return values.
2626 if (F.doesNotThrow() && F.getReturnType()->isVoidTy())
2627 State.addKnownBits(NOT_CAPTURED_IN_RET);
2630 /// See AbstractState::getAsStr().
2631 const std::string getAsStr() const override {
2632 if (isKnownNoCapture())
2633 return "known not-captured";
2634 if (isAssumedNoCapture())
2635 return "assumed not-captured";
2636 if (isKnownNoCaptureMaybeReturned())
2637 return "known not-captured-maybe-returned";
2638 if (isAssumedNoCaptureMaybeReturned())
2639 return "assumed not-captured-maybe-returned";
2640 return "assumed-captured";
2644 /// Attributor-aware capture tracker.
2645 struct AACaptureUseTracker final : public CaptureTracker {
2647 /// Create a capture tracker that can lookup in-flight abstract attributes
2648 /// through the Attributor \p A.
2650 /// If a use leads to a potential capture, \p CapturedInMemory is set and the
2651 /// search is stopped. If a use leads to a return instruction,
2652 /// \p CommunicatedBack is set to true and \p CapturedInMemory is not changed.
2653 /// If a use leads to a ptr2int which may capture the value,
2654 /// \p CapturedInInteger is set. If a use is found that is currently assumed
2655 /// "no-capture-maybe-returned", the user is added to the \p PotentialCopies
2656 /// set. All values in \p PotentialCopies are later tracked as well. For every
2657 /// explored use we decrement \p RemainingUsesToExplore. Once it reaches 0,
2658 /// the search is stopped with \p CapturedInMemory and \p CapturedInInteger
2659 /// conservatively set to true.
2660 AACaptureUseTracker(Attributor &A, AANoCapture &NoCaptureAA,
2661 const AAIsDead &IsDeadAA, IntegerState &State,
2662 SmallVectorImpl<const Value *> &PotentialCopies,
2663 unsigned &RemainingUsesToExplore)
2664 : A(A), NoCaptureAA(NoCaptureAA), IsDeadAA(IsDeadAA), State(State),
2665 PotentialCopies(PotentialCopies),
2666 RemainingUsesToExplore(RemainingUsesToExplore) {}
2668 /// Determine if \p V maybe captured. *Also updates the state!*
2669 bool valueMayBeCaptured(const Value *V) {
2670 if (V->getType()->isPointerTy()) {
2671 PointerMayBeCaptured(V, this);
2672 } else {
2673 State.indicatePessimisticFixpoint();
2675 return State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
2678 /// See CaptureTracker::tooManyUses().
2679 void tooManyUses() override {
2680 State.removeAssumedBits(AANoCapture::NO_CAPTURE);
2683 bool isDereferenceableOrNull(Value *O, const DataLayout &DL) override {
2684 if (CaptureTracker::isDereferenceableOrNull(O, DL))
2685 return true;
2686 const auto &DerefAA =
2687 A.getAAFor<AADereferenceable>(NoCaptureAA, IRPosition::value(*O));
2688 return DerefAA.getAssumedDereferenceableBytes();
2691 /// See CaptureTracker::captured(...).
2692 bool captured(const Use *U) override {
2693 Instruction *UInst = cast<Instruction>(U->getUser());
2694 LLVM_DEBUG(dbgs() << "Check use: " << *U->get() << " in " << *UInst
2695 << "\n");
2697 // Because we may reuse the tracker multiple times we keep track of the
2698 // number of explored uses ourselves as well.
2699 if (RemainingUsesToExplore-- == 0) {
2700 LLVM_DEBUG(dbgs() << " - too many uses to explore!\n");
2701 return isCapturedIn(/* Memory */ true, /* Integer */ true,
2702 /* Return */ true);
2705 // Deal with ptr2int by following uses.
2706 if (isa<PtrToIntInst>(UInst)) {
2707 LLVM_DEBUG(dbgs() << " - ptr2int assume the worst!\n");
2708 return valueMayBeCaptured(UInst);
2711 // Explicitly catch return instructions.
2712 if (isa<ReturnInst>(UInst))
2713 return isCapturedIn(/* Memory */ false, /* Integer */ false,
2714 /* Return */ true);
2716 // For now we only use special logic for call sites. However, the tracker
2717 // itself knows about a lot of other non-capturing cases already.
2718 CallSite CS(UInst);
2719 if (!CS || !CS.isArgOperand(U))
2720 return isCapturedIn(/* Memory */ true, /* Integer */ true,
2721 /* Return */ true);
2723 unsigned ArgNo = CS.getArgumentNo(U);
2724 const IRPosition &CSArgPos = IRPosition::callsite_argument(CS, ArgNo);
2725 // If we have a abstract no-capture attribute for the argument we can use
2726 // it to justify a non-capture attribute here. This allows recursion!
2727 auto &ArgNoCaptureAA = A.getAAFor<AANoCapture>(NoCaptureAA, CSArgPos);
2728 if (ArgNoCaptureAA.isAssumedNoCapture())
2729 return isCapturedIn(/* Memory */ false, /* Integer */ false,
2730 /* Return */ false);
2731 if (ArgNoCaptureAA.isAssumedNoCaptureMaybeReturned()) {
2732 addPotentialCopy(CS);
2733 return isCapturedIn(/* Memory */ false, /* Integer */ false,
2734 /* Return */ false);
2737 // Lastly, we could not find a reason no-capture can be assumed so we don't.
2738 return isCapturedIn(/* Memory */ true, /* Integer */ true,
2739 /* Return */ true);
2742 /// Register \p CS as potential copy of the value we are checking.
2743 void addPotentialCopy(CallSite CS) {
2744 PotentialCopies.push_back(CS.getInstruction());
2747 /// See CaptureTracker::shouldExplore(...).
2748 bool shouldExplore(const Use *U) override {
2749 // Check liveness.
2750 return !IsDeadAA.isAssumedDead(cast<Instruction>(U->getUser()));
2753 /// Update the state according to \p CapturedInMem, \p CapturedInInt, and
2754 /// \p CapturedInRet, then return the appropriate value for use in the
2755 /// CaptureTracker::captured() interface.
2756 bool isCapturedIn(bool CapturedInMem, bool CapturedInInt,
2757 bool CapturedInRet) {
2758 LLVM_DEBUG(dbgs() << " - captures [Mem " << CapturedInMem << "|Int "
2759 << CapturedInInt << "|Ret " << CapturedInRet << "]\n");
2760 if (CapturedInMem)
2761 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_MEM);
2762 if (CapturedInInt)
2763 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_INT);
2764 if (CapturedInRet)
2765 State.removeAssumedBits(AANoCapture::NOT_CAPTURED_IN_RET);
2766 return !State.isAssumed(AANoCapture::NO_CAPTURE_MAYBE_RETURNED);
2769 private:
2770 /// The attributor providing in-flight abstract attributes.
2771 Attributor &A;
2773 /// The abstract attribute currently updated.
2774 AANoCapture &NoCaptureAA;
2776 /// The abstract liveness state.
2777 const AAIsDead &IsDeadAA;
2779 /// The state currently updated.
2780 IntegerState &State;
2782 /// Set of potential copies of the tracked value.
2783 SmallVectorImpl<const Value *> &PotentialCopies;
2785 /// Global counter to limit the number of explored uses.
2786 unsigned &RemainingUsesToExplore;
2789 ChangeStatus AANoCaptureImpl::updateImpl(Attributor &A) {
2790 const IRPosition &IRP = getIRPosition();
2791 const Value *V =
2792 getArgNo() >= 0 ? IRP.getAssociatedArgument() : &IRP.getAssociatedValue();
2793 if (!V)
2794 return indicatePessimisticFixpoint();
2796 const Function *F =
2797 getArgNo() >= 0 ? IRP.getAssociatedFunction() : IRP.getAnchorScope();
2798 assert(F && "Expected a function!");
2799 const auto &IsDeadAA = A.getAAFor<AAIsDead>(*this, IRPosition::function(*F));
2801 AANoCapture::StateType T;
2802 // TODO: Once we have memory behavior attributes we should use them here
2803 // similar to the reasoning in
2804 // AANoCaptureImpl::determineFunctionCaptureCapabilities(...).
2806 // TODO: Use the AAReturnedValues to learn if the argument can return or
2807 // not.
2809 // Use the CaptureTracker interface and logic with the specialized tracker,
2810 // defined in AACaptureUseTracker, that can look at in-flight abstract
2811 // attributes and directly updates the assumed state.
2812 SmallVector<const Value *, 4> PotentialCopies;
2813 unsigned RemainingUsesToExplore = DefaultMaxUsesToExplore;
2814 AACaptureUseTracker Tracker(A, *this, IsDeadAA, T, PotentialCopies,
2815 RemainingUsesToExplore);
2817 // Check all potential copies of the associated value until we can assume
2818 // none will be captured or we have to assume at least one might be.
2819 unsigned Idx = 0;
2820 PotentialCopies.push_back(V);
2821 while (T.isAssumed(NO_CAPTURE_MAYBE_RETURNED) && Idx < PotentialCopies.size())
2822 Tracker.valueMayBeCaptured(PotentialCopies[Idx++]);
2824 AAAlign::StateType &S = getState();
2825 auto Assumed = S.getAssumed();
2826 S.intersectAssumedBits(T.getAssumed());
2827 return Assumed == S.getAssumed() ? ChangeStatus::UNCHANGED
2828 : ChangeStatus::CHANGED;
2831 /// NoCapture attribute for function arguments.
2832 struct AANoCaptureArgument final : AANoCaptureImpl {
2833 AANoCaptureArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
2835 /// See AbstractAttribute::trackStatistics()
2836 void trackStatistics() const override { STATS_DECLTRACK_ARG_ATTR(nocapture) }
2839 /// NoCapture attribute for call site arguments.
2840 struct AANoCaptureCallSiteArgument final : AANoCaptureImpl {
2841 AANoCaptureCallSiteArgument(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
2843 /// See AbstractAttribute::updateImpl(...).
2844 ChangeStatus updateImpl(Attributor &A) override {
2845 // TODO: Once we have call site specific value information we can provide
2846 // call site specific liveness information and then it makes
2847 // sense to specialize attributes for call sites arguments instead of
2848 // redirecting requests to the callee argument.
2849 Argument *Arg = getAssociatedArgument();
2850 if (!Arg)
2851 return indicatePessimisticFixpoint();
2852 const IRPosition &ArgPos = IRPosition::argument(*Arg);
2853 auto &ArgAA = A.getAAFor<AANoCapture>(*this, ArgPos);
2854 return clampStateAndIndicateChange(
2855 getState(),
2856 static_cast<const AANoCapture::StateType &>(ArgAA.getState()));
2859 /// See AbstractAttribute::trackStatistics()
2860 void trackStatistics() const override{STATS_DECLTRACK_CSARG_ATTR(nocapture)};
2863 /// NoCapture attribute for floating values.
2864 struct AANoCaptureFloating final : AANoCaptureImpl {
2865 AANoCaptureFloating(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
2867 /// See AbstractAttribute::trackStatistics()
2868 void trackStatistics() const override {
2869 STATS_DECLTRACK_FLOATING_ATTR(nocapture)
2873 /// NoCapture attribute for function return value.
2874 struct AANoCaptureReturned final : AANoCaptureImpl {
2875 AANoCaptureReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {
2876 llvm_unreachable("NoCapture is not applicable to function returns!");
2879 /// See AbstractAttribute::initialize(...).
2880 void initialize(Attributor &A) override {
2881 llvm_unreachable("NoCapture is not applicable to function returns!");
2884 /// See AbstractAttribute::updateImpl(...).
2885 ChangeStatus updateImpl(Attributor &A) override {
2886 llvm_unreachable("NoCapture is not applicable to function returns!");
2889 /// See AbstractAttribute::trackStatistics()
2890 void trackStatistics() const override {}
2893 /// NoCapture attribute deduction for a call site return value.
2894 struct AANoCaptureCallSiteReturned final : AANoCaptureImpl {
2895 AANoCaptureCallSiteReturned(const IRPosition &IRP) : AANoCaptureImpl(IRP) {}
2897 /// See AbstractAttribute::trackStatistics()
2898 void trackStatistics() const override {
2899 STATS_DECLTRACK_CSRET_ATTR(nocapture)
2903 /// ----------------------------------------------------------------------------
2904 /// Attributor
2905 /// ----------------------------------------------------------------------------
2907 bool Attributor::isAssumedDead(const AbstractAttribute &AA,
2908 const AAIsDead *LivenessAA) {
2909 const Instruction *CtxI = AA.getIRPosition().getCtxI();
2910 if (!CtxI)
2911 return false;
2913 if (!LivenessAA)
2914 LivenessAA =
2915 &getAAFor<AAIsDead>(AA, IRPosition::function(*CtxI->getFunction()),
2916 /* TrackDependence */ false);
2918 // Don't check liveness for AAIsDead.
2919 if (&AA == LivenessAA)
2920 return false;
2922 if (!LivenessAA->isAssumedDead(CtxI))
2923 return false;
2925 // We actually used liveness information so we have to record a dependence.
2926 recordDependence(*LivenessAA, AA);
2928 return true;
2931 bool Attributor::checkForAllCallSites(const function_ref<bool(CallSite)> &Pred,
2932 const AbstractAttribute &QueryingAA,
2933 bool RequireAllCallSites) {
2934 // We can try to determine information from
2935 // the call sites. However, this is only possible all call sites are known,
2936 // hence the function has internal linkage.
2937 const IRPosition &IRP = QueryingAA.getIRPosition();
2938 const Function *AssociatedFunction = IRP.getAssociatedFunction();
2939 if (!AssociatedFunction)
2940 return false;
2942 if (RequireAllCallSites && !AssociatedFunction->hasInternalLinkage()) {
2943 LLVM_DEBUG(
2944 dbgs()
2945 << "[Attributor] Function " << AssociatedFunction->getName()
2946 << " has no internal linkage, hence not all call sites are known\n");
2947 return false;
2950 for (const Use &U : AssociatedFunction->uses()) {
2951 Instruction *I = dyn_cast<Instruction>(U.getUser());
2952 // TODO: Deal with abstract call sites here.
2953 if (!I)
2954 return false;
2956 Function *Caller = I->getFunction();
2958 const auto &LivenessAA = getAAFor<AAIsDead>(
2959 QueryingAA, IRPosition::function(*Caller), /* TrackDependence */ false);
2961 // Skip dead calls.
2962 if (LivenessAA.isAssumedDead(I)) {
2963 // We actually used liveness information so we have to record a
2964 // dependence.
2965 recordDependence(LivenessAA, QueryingAA);
2966 continue;
2969 CallSite CS(U.getUser());
2970 if (!CS || !CS.isCallee(&U)) {
2971 if (!RequireAllCallSites)
2972 continue;
2974 LLVM_DEBUG(dbgs() << "[Attributor] User " << *U.getUser()
2975 << " is an invalid use of "
2976 << AssociatedFunction->getName() << "\n");
2977 return false;
2980 if (Pred(CS))
2981 continue;
2983 LLVM_DEBUG(dbgs() << "[Attributor] Call site callback failed for "
2984 << *CS.getInstruction() << "\n");
2985 return false;
2988 return true;
2991 bool Attributor::checkForAllReturnedValuesAndReturnInsts(
2992 const function_ref<bool(Value &, const SmallSetVector<ReturnInst *, 4> &)>
2993 &Pred,
2994 const AbstractAttribute &QueryingAA) {
2996 const IRPosition &IRP = QueryingAA.getIRPosition();
2997 // Since we need to provide return instructions we have to have an exact
2998 // definition.
2999 const Function *AssociatedFunction = IRP.getAssociatedFunction();
3000 if (!AssociatedFunction)
3001 return false;
3003 // If this is a call site query we use the call site specific return values
3004 // and liveness information.
3005 // TODO: use the function scope once we have call site AAReturnedValues.
3006 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
3007 const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
3008 if (!AARetVal.getState().isValidState())
3009 return false;
3011 return AARetVal.checkForAllReturnedValuesAndReturnInsts(Pred);
3014 bool Attributor::checkForAllReturnedValues(
3015 const function_ref<bool(Value &)> &Pred,
3016 const AbstractAttribute &QueryingAA) {
3018 const IRPosition &IRP = QueryingAA.getIRPosition();
3019 const Function *AssociatedFunction = IRP.getAssociatedFunction();
3020 if (!AssociatedFunction)
3021 return false;
3023 // TODO: use the function scope once we have call site AAReturnedValues.
3024 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
3025 const auto &AARetVal = getAAFor<AAReturnedValues>(QueryingAA, QueryIRP);
3026 if (!AARetVal.getState().isValidState())
3027 return false;
3029 return AARetVal.checkForAllReturnedValuesAndReturnInsts(
3030 [&](Value &RV, const SmallSetVector<ReturnInst *, 4> &) {
3031 return Pred(RV);
3035 bool Attributor::checkForAllInstructions(
3036 const llvm::function_ref<bool(Instruction &)> &Pred,
3037 const AbstractAttribute &QueryingAA, const ArrayRef<unsigned> &Opcodes) {
3039 const IRPosition &IRP = QueryingAA.getIRPosition();
3040 // Since we need to provide instructions we have to have an exact definition.
3041 const Function *AssociatedFunction = IRP.getAssociatedFunction();
3042 if (!AssociatedFunction)
3043 return false;
3045 // TODO: use the function scope once we have call site AAReturnedValues.
3046 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
3047 const auto &LivenessAA =
3048 getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
3049 bool AnyDead = false;
3051 auto &OpcodeInstMap =
3052 InfoCache.getOpcodeInstMapForFunction(*AssociatedFunction);
3053 for (unsigned Opcode : Opcodes) {
3054 for (Instruction *I : OpcodeInstMap[Opcode]) {
3055 // Skip dead instructions.
3056 if (LivenessAA.isAssumedDead(I)) {
3057 AnyDead = true;
3058 continue;
3061 if (!Pred(*I))
3062 return false;
3066 // If we actually used liveness information so we have to record a dependence.
3067 if (AnyDead)
3068 recordDependence(LivenessAA, QueryingAA);
3070 return true;
3073 bool Attributor::checkForAllReadWriteInstructions(
3074 const llvm::function_ref<bool(Instruction &)> &Pred,
3075 AbstractAttribute &QueryingAA) {
3077 const Function *AssociatedFunction =
3078 QueryingAA.getIRPosition().getAssociatedFunction();
3079 if (!AssociatedFunction)
3080 return false;
3082 // TODO: use the function scope once we have call site AAReturnedValues.
3083 const IRPosition &QueryIRP = IRPosition::function(*AssociatedFunction);
3084 const auto &LivenessAA =
3085 getAAFor<AAIsDead>(QueryingAA, QueryIRP, /* TrackDependence */ false);
3086 bool AnyDead = false;
3088 for (Instruction *I :
3089 InfoCache.getReadOrWriteInstsForFunction(*AssociatedFunction)) {
3090 // Skip dead instructions.
3091 if (LivenessAA.isAssumedDead(I)) {
3092 AnyDead = true;
3093 continue;
3096 if (!Pred(*I))
3097 return false;
3100 // If we actually used liveness information so we have to record a dependence.
3101 if (AnyDead)
3102 recordDependence(LivenessAA, QueryingAA);
3104 return true;
3107 ChangeStatus Attributor::run(Module &M) {
3108 LLVM_DEBUG(dbgs() << "[Attributor] Identified and initialized "
3109 << AllAbstractAttributes.size()
3110 << " abstract attributes.\n");
3112 // Now that all abstract attributes are collected and initialized we start
3113 // the abstract analysis.
3115 unsigned IterationCounter = 1;
3117 SmallVector<AbstractAttribute *, 64> ChangedAAs;
3118 SetVector<AbstractAttribute *> Worklist;
3119 Worklist.insert(AllAbstractAttributes.begin(), AllAbstractAttributes.end());
3121 bool RecomputeDependences = false;
3123 do {
3124 // Remember the size to determine new attributes.
3125 size_t NumAAs = AllAbstractAttributes.size();
3126 LLVM_DEBUG(dbgs() << "\n\n[Attributor] #Iteration: " << IterationCounter
3127 << ", Worklist size: " << Worklist.size() << "\n");
3129 // If dependences (=QueryMap) are recomputed we have to look at all abstract
3130 // attributes again, regardless of what changed in the last iteration.
3131 if (RecomputeDependences) {
3132 LLVM_DEBUG(
3133 dbgs() << "[Attributor] Run all AAs to recompute dependences\n");
3134 QueryMap.clear();
3135 ChangedAAs.clear();
3136 Worklist.insert(AllAbstractAttributes.begin(),
3137 AllAbstractAttributes.end());
3140 // Add all abstract attributes that are potentially dependent on one that
3141 // changed to the work list.
3142 for (AbstractAttribute *ChangedAA : ChangedAAs) {
3143 auto &QuerriedAAs = QueryMap[ChangedAA];
3144 Worklist.insert(QuerriedAAs.begin(), QuerriedAAs.end());
3147 LLVM_DEBUG(dbgs() << "[Attributor] #Iteration: " << IterationCounter
3148 << ", Worklist+Dependent size: " << Worklist.size()
3149 << "\n");
3151 // Reset the changed set.
3152 ChangedAAs.clear();
3154 // Update all abstract attribute in the work list and record the ones that
3155 // changed.
3156 for (AbstractAttribute *AA : Worklist)
3157 if (!isAssumedDead(*AA, nullptr))
3158 if (AA->update(*this) == ChangeStatus::CHANGED)
3159 ChangedAAs.push_back(AA);
3161 // Check if we recompute the dependences in the next iteration.
3162 RecomputeDependences = (DepRecomputeInterval > 0 &&
3163 IterationCounter % DepRecomputeInterval == 0);
3165 // Add attributes to the changed set if they have been created in the last
3166 // iteration.
3167 ChangedAAs.append(AllAbstractAttributes.begin() + NumAAs,
3168 AllAbstractAttributes.end());
3170 // Reset the work list and repopulate with the changed abstract attributes.
3171 // Note that dependent ones are added above.
3172 Worklist.clear();
3173 Worklist.insert(ChangedAAs.begin(), ChangedAAs.end());
3175 } while (!Worklist.empty() && (IterationCounter++ < MaxFixpointIterations ||
3176 VerifyMaxFixpointIterations));
3178 LLVM_DEBUG(dbgs() << "\n[Attributor] Fixpoint iteration done after: "
3179 << IterationCounter << "/" << MaxFixpointIterations
3180 << " iterations\n");
3182 size_t NumFinalAAs = AllAbstractAttributes.size();
3184 bool FinishedAtFixpoint = Worklist.empty();
3186 // Reset abstract arguments not settled in a sound fixpoint by now. This
3187 // happens when we stopped the fixpoint iteration early. Note that only the
3188 // ones marked as "changed" *and* the ones transitively depending on them
3189 // need to be reverted to a pessimistic state. Others might not be in a
3190 // fixpoint state but we can use the optimistic results for them anyway.
3191 SmallPtrSet<AbstractAttribute *, 32> Visited;
3192 for (unsigned u = 0; u < ChangedAAs.size(); u++) {
3193 AbstractAttribute *ChangedAA = ChangedAAs[u];
3194 if (!Visited.insert(ChangedAA).second)
3195 continue;
3197 AbstractState &State = ChangedAA->getState();
3198 if (!State.isAtFixpoint()) {
3199 State.indicatePessimisticFixpoint();
3201 NumAttributesTimedOut++;
3204 auto &QuerriedAAs = QueryMap[ChangedAA];
3205 ChangedAAs.append(QuerriedAAs.begin(), QuerriedAAs.end());
3208 LLVM_DEBUG({
3209 if (!Visited.empty())
3210 dbgs() << "\n[Attributor] Finalized " << Visited.size()
3211 << " abstract attributes.\n";
3214 unsigned NumManifested = 0;
3215 unsigned NumAtFixpoint = 0;
3216 ChangeStatus ManifestChange = ChangeStatus::UNCHANGED;
3217 for (AbstractAttribute *AA : AllAbstractAttributes) {
3218 AbstractState &State = AA->getState();
3220 // If there is not already a fixpoint reached, we can now take the
3221 // optimistic state. This is correct because we enforced a pessimistic one
3222 // on abstract attributes that were transitively dependent on a changed one
3223 // already above.
3224 if (!State.isAtFixpoint())
3225 State.indicateOptimisticFixpoint();
3227 // If the state is invalid, we do not try to manifest it.
3228 if (!State.isValidState())
3229 continue;
3231 // Skip dead code.
3232 if (isAssumedDead(*AA, nullptr))
3233 continue;
3234 // Manifest the state and record if we changed the IR.
3235 ChangeStatus LocalChange = AA->manifest(*this);
3236 if (LocalChange == ChangeStatus::CHANGED && AreStatisticsEnabled())
3237 AA->trackStatistics();
3239 ManifestChange = ManifestChange | LocalChange;
3241 NumAtFixpoint++;
3242 NumManifested += (LocalChange == ChangeStatus::CHANGED);
3245 (void)NumManifested;
3246 (void)NumAtFixpoint;
3247 LLVM_DEBUG(dbgs() << "\n[Attributor] Manifested " << NumManifested
3248 << " arguments while " << NumAtFixpoint
3249 << " were in a valid fixpoint state\n");
3251 // If verification is requested, we finished this run at a fixpoint, and the
3252 // IR was changed, we re-run the whole fixpoint analysis, starting at
3253 // re-initialization of the arguments. This re-run should not result in an IR
3254 // change. Though, the (virtual) state of attributes at the end of the re-run
3255 // might be more optimistic than the known state or the IR state if the better
3256 // state cannot be manifested.
3257 if (VerifyAttributor && FinishedAtFixpoint &&
3258 ManifestChange == ChangeStatus::CHANGED) {
3259 VerifyAttributor = false;
3260 ChangeStatus VerifyStatus = run(M);
3261 if (VerifyStatus != ChangeStatus::UNCHANGED)
3262 llvm_unreachable(
3263 "Attributor verification failed, re-run did result in an IR change "
3264 "even after a fixpoint was reached in the original run. (False "
3265 "positives possible!)");
3266 VerifyAttributor = true;
3269 NumAttributesManifested += NumManifested;
3270 NumAttributesValidFixpoint += NumAtFixpoint;
3272 (void)NumFinalAAs;
3273 assert(
3274 NumFinalAAs == AllAbstractAttributes.size() &&
3275 "Expected the final number of abstract attributes to remain unchanged!");
3277 // Delete stuff at the end to avoid invalid references and a nice order.
3279 LLVM_DEBUG(dbgs() << "\n[Attributor] Delete at least "
3280 << ToBeDeletedFunctions.size() << " functions and "
3281 << ToBeDeletedBlocks.size() << " blocks and "
3282 << ToBeDeletedInsts.size() << " instructions\n");
3283 for (Instruction *I : ToBeDeletedInsts) {
3284 if (!I->use_empty())
3285 I->replaceAllUsesWith(UndefValue::get(I->getType()));
3286 I->eraseFromParent();
3289 if (unsigned NumDeadBlocks = ToBeDeletedBlocks.size()) {
3290 SmallVector<BasicBlock *, 8> ToBeDeletedBBs;
3291 ToBeDeletedBBs.reserve(NumDeadBlocks);
3292 ToBeDeletedBBs.append(ToBeDeletedBlocks.begin(), ToBeDeletedBlocks.end());
3293 DeleteDeadBlocks(ToBeDeletedBBs);
3294 STATS_DECLTRACK(AAIsDead, BasicBlock,
3295 "Number of dead basic blocks deleted.");
3298 STATS_DECL(AAIsDead, Function, "Number of dead functions deleted.");
3299 for (Function *Fn : ToBeDeletedFunctions) {
3300 Fn->replaceAllUsesWith(UndefValue::get(Fn->getType()));
3301 Fn->eraseFromParent();
3302 STATS_TRACK(AAIsDead, Function);
3305 // Identify dead internal functions and delete them. This happens outside
3306 // the other fixpoint analysis as we might treat potentially dead functions
3307 // as live to lower the number of iterations. If they happen to be dead, the
3308 // below fixpoint loop will identify and eliminate them.
3309 SmallVector<Function *, 8> InternalFns;
3310 for (Function &F : M)
3311 if (F.hasInternalLinkage())
3312 InternalFns.push_back(&F);
3314 bool FoundDeadFn = true;
3315 while (FoundDeadFn) {
3316 FoundDeadFn = false;
3317 for (unsigned u = 0, e = InternalFns.size(); u < e; ++u) {
3318 Function *F = InternalFns[u];
3319 if (!F)
3320 continue;
3322 const auto *LivenessAA =
3323 lookupAAFor<AAIsDead>(IRPosition::function(*F));
3324 if (LivenessAA &&
3325 !checkForAllCallSites([](CallSite CS) { return false; },
3326 *LivenessAA, true))
3327 continue;
3329 STATS_TRACK(AAIsDead, Function);
3330 F->replaceAllUsesWith(UndefValue::get(F->getType()));
3331 F->eraseFromParent();
3332 InternalFns[u] = nullptr;
3333 FoundDeadFn = true;
3338 if (VerifyMaxFixpointIterations &&
3339 IterationCounter != MaxFixpointIterations) {
3340 errs() << "\n[Attributor] Fixpoint iteration done after: "
3341 << IterationCounter << "/" << MaxFixpointIterations
3342 << " iterations\n";
3343 llvm_unreachable("The fixpoint was not reached with exactly the number of "
3344 "specified iterations!");
3347 return ManifestChange;
3350 void Attributor::identifyDefaultAbstractAttributes(Function &F) {
3351 if (!VisitedFunctions.insert(&F).second)
3352 return;
3354 IRPosition FPos = IRPosition::function(F);
3356 // Check for dead BasicBlocks in every function.
3357 // We need dead instruction detection because we do not want to deal with
3358 // broken IR in which SSA rules do not apply.
3359 getOrCreateAAFor<AAIsDead>(FPos);
3361 // Every function might be "will-return".
3362 getOrCreateAAFor<AAWillReturn>(FPos);
3364 // Every function can be nounwind.
3365 getOrCreateAAFor<AANoUnwind>(FPos);
3367 // Every function might be marked "nosync"
3368 getOrCreateAAFor<AANoSync>(FPos);
3370 // Every function might be "no-free".
3371 getOrCreateAAFor<AANoFree>(FPos);
3373 // Every function might be "no-return".
3374 getOrCreateAAFor<AANoReturn>(FPos);
3376 // Return attributes are only appropriate if the return type is non void.
3377 Type *ReturnType = F.getReturnType();
3378 if (!ReturnType->isVoidTy()) {
3379 // Argument attribute "returned" --- Create only one per function even
3380 // though it is an argument attribute.
3381 getOrCreateAAFor<AAReturnedValues>(FPos);
3383 if (ReturnType->isPointerTy()) {
3384 IRPosition RetPos = IRPosition::returned(F);
3386 // Every function with pointer return type might be marked align.
3387 getOrCreateAAFor<AAAlign>(RetPos);
3389 // Every function with pointer return type might be marked nonnull.
3390 getOrCreateAAFor<AANonNull>(RetPos);
3392 // Every function with pointer return type might be marked noalias.
3393 getOrCreateAAFor<AANoAlias>(RetPos);
3395 // Every function with pointer return type might be marked
3396 // dereferenceable.
3397 getOrCreateAAFor<AADereferenceable>(RetPos);
3401 for (Argument &Arg : F.args()) {
3402 if (Arg.getType()->isPointerTy()) {
3403 IRPosition ArgPos = IRPosition::argument(Arg);
3404 // Every argument with pointer type might be marked nonnull.
3405 getOrCreateAAFor<AANonNull>(ArgPos);
3407 // Every argument with pointer type might be marked noalias.
3408 getOrCreateAAFor<AANoAlias>(ArgPos);
3410 // Every argument with pointer type might be marked dereferenceable.
3411 getOrCreateAAFor<AADereferenceable>(ArgPos);
3413 // Every argument with pointer type might be marked align.
3414 getOrCreateAAFor<AAAlign>(ArgPos);
3416 // Every argument with pointer type might be marked nocapture.
3417 getOrCreateAAFor<AANoCapture>(ArgPos);
3421 // Walk all instructions to find more attribute opportunities and also
3422 // interesting instructions that might be queried by abstract attributes
3423 // during their initialization or update.
3424 auto &ReadOrWriteInsts = InfoCache.FuncRWInstsMap[&F];
3425 auto &InstOpcodeMap = InfoCache.FuncInstOpcodeMap[&F];
3427 for (Instruction &I : instructions(&F)) {
3428 bool IsInterestingOpcode = false;
3430 // To allow easy access to all instructions in a function with a given
3431 // opcode we store them in the InfoCache. As not all opcodes are interesting
3432 // to concrete attributes we only cache the ones that are as identified in
3433 // the following switch.
3434 // Note: There are no concrete attributes now so this is initially empty.
3435 switch (I.getOpcode()) {
3436 default:
3437 assert((!ImmutableCallSite(&I)) && (!isa<CallBase>(&I)) &&
3438 "New call site/base instruction type needs to be known int the "
3439 "attributor.");
3440 break;
3441 case Instruction::Load:
3442 // The alignment of a pointer is interesting for loads.
3443 getOrCreateAAFor<AAAlign>(
3444 IRPosition::value(*cast<LoadInst>(I).getPointerOperand()));
3445 break;
3446 case Instruction::Store:
3447 // The alignment of a pointer is interesting for stores.
3448 getOrCreateAAFor<AAAlign>(
3449 IRPosition::value(*cast<StoreInst>(I).getPointerOperand()));
3450 break;
3451 case Instruction::Call:
3452 case Instruction::CallBr:
3453 case Instruction::Invoke:
3454 case Instruction::CleanupRet:
3455 case Instruction::CatchSwitch:
3456 case Instruction::Resume:
3457 case Instruction::Ret:
3458 IsInterestingOpcode = true;
3460 if (IsInterestingOpcode)
3461 InstOpcodeMap[I.getOpcode()].push_back(&I);
3462 if (I.mayReadOrWriteMemory())
3463 ReadOrWriteInsts.push_back(&I);
3465 CallSite CS(&I);
3466 if (CS && CS.getCalledFunction()) {
3467 for (int i = 0, e = CS.getCalledFunction()->arg_size(); i < e; i++) {
3468 if (!CS.getArgument(i)->getType()->isPointerTy())
3469 continue;
3470 IRPosition CSArgPos = IRPosition::callsite_argument(CS, i);
3472 // Call site argument attribute "non-null".
3473 getOrCreateAAFor<AANonNull>(CSArgPos);
3475 // Call site argument attribute "no-alias".
3476 getOrCreateAAFor<AANoAlias>(CSArgPos);
3478 // Call site argument attribute "dereferenceable".
3479 getOrCreateAAFor<AADereferenceable>(CSArgPos);
3481 // Call site argument attribute "align".
3482 getOrCreateAAFor<AAAlign>(CSArgPos);
3488 /// Helpers to ease debugging through output streams and print calls.
3490 ///{
3491 raw_ostream &llvm::operator<<(raw_ostream &OS, ChangeStatus S) {
3492 return OS << (S == ChangeStatus::CHANGED ? "changed" : "unchanged");
3495 raw_ostream &llvm::operator<<(raw_ostream &OS, IRPosition::Kind AP) {
3496 switch (AP) {
3497 case IRPosition::IRP_INVALID:
3498 return OS << "inv";
3499 case IRPosition::IRP_FLOAT:
3500 return OS << "flt";
3501 case IRPosition::IRP_RETURNED:
3502 return OS << "fn_ret";
3503 case IRPosition::IRP_CALL_SITE_RETURNED:
3504 return OS << "cs_ret";
3505 case IRPosition::IRP_FUNCTION:
3506 return OS << "fn";
3507 case IRPosition::IRP_CALL_SITE:
3508 return OS << "cs";
3509 case IRPosition::IRP_ARGUMENT:
3510 return OS << "arg";
3511 case IRPosition::IRP_CALL_SITE_ARGUMENT:
3512 return OS << "cs_arg";
3514 llvm_unreachable("Unknown attribute position!");
3517 raw_ostream &llvm::operator<<(raw_ostream &OS, const IRPosition &Pos) {
3518 const Value &AV = Pos.getAssociatedValue();
3519 return OS << "{" << Pos.getPositionKind() << ":" << AV.getName() << " ["
3520 << Pos.getAnchorValue().getName() << "@" << Pos.getArgNo() << "]}";
3523 raw_ostream &llvm::operator<<(raw_ostream &OS, const IntegerState &S) {
3524 return OS << "(" << S.getKnown() << "-" << S.getAssumed() << ")"
3525 << static_cast<const AbstractState &>(S);
3528 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractState &S) {
3529 return OS << (!S.isValidState() ? "top" : (S.isAtFixpoint() ? "fix" : ""));
3532 raw_ostream &llvm::operator<<(raw_ostream &OS, const AbstractAttribute &AA) {
3533 AA.print(OS);
3534 return OS;
3537 void AbstractAttribute::print(raw_ostream &OS) const {
3538 OS << "[P: " << getIRPosition() << "][" << getAsStr() << "][S: " << getState()
3539 << "]";
3541 ///}
3543 /// ----------------------------------------------------------------------------
3544 /// Pass (Manager) Boilerplate
3545 /// ----------------------------------------------------------------------------
3547 static bool runAttributorOnModule(Module &M) {
3548 if (DisableAttributor)
3549 return false;
3551 LLVM_DEBUG(dbgs() << "[Attributor] Run on module with " << M.size()
3552 << " functions.\n");
3554 // Create an Attributor and initially empty information cache that is filled
3555 // while we identify default attribute opportunities.
3556 InformationCache InfoCache(M.getDataLayout());
3557 Attributor A(InfoCache, DepRecInterval);
3559 for (Function &F : M) {
3560 if (F.hasExactDefinition())
3561 NumFnWithExactDefinition++;
3562 else
3563 NumFnWithoutExactDefinition++;
3565 // For now we ignore naked and optnone functions.
3566 if (F.hasFnAttribute(Attribute::Naked) ||
3567 F.hasFnAttribute(Attribute::OptimizeNone))
3568 continue;
3570 // We look at internal functions only on-demand but if any use is not a
3571 // direct call, we have to do it eagerly.
3572 if (F.hasInternalLinkage()) {
3573 if (llvm::all_of(F.uses(), [](const Use &U) {
3574 return ImmutableCallSite(U.getUser()) &&
3575 ImmutableCallSite(U.getUser()).isCallee(&U);
3577 continue;
3580 // Populate the Attributor with abstract attribute opportunities in the
3581 // function and the information cache with IR information.
3582 A.identifyDefaultAbstractAttributes(F);
3585 return A.run(M) == ChangeStatus::CHANGED;
3588 PreservedAnalyses AttributorPass::run(Module &M, ModuleAnalysisManager &AM) {
3589 if (runAttributorOnModule(M)) {
3590 // FIXME: Think about passes we will preserve and add them here.
3591 return PreservedAnalyses::none();
3593 return PreservedAnalyses::all();
3596 namespace {
3598 struct AttributorLegacyPass : public ModulePass {
3599 static char ID;
3601 AttributorLegacyPass() : ModulePass(ID) {
3602 initializeAttributorLegacyPassPass(*PassRegistry::getPassRegistry());
3605 bool runOnModule(Module &M) override {
3606 if (skipModule(M))
3607 return false;
3608 return runAttributorOnModule(M);
3611 void getAnalysisUsage(AnalysisUsage &AU) const override {
3612 // FIXME: Think about passes we will preserve and add them here.
3616 } // end anonymous namespace
3618 Pass *llvm::createAttributorLegacyPass() { return new AttributorLegacyPass(); }
3620 char AttributorLegacyPass::ID = 0;
3622 const char AAReturnedValues::ID = 0;
3623 const char AANoUnwind::ID = 0;
3624 const char AANoSync::ID = 0;
3625 const char AANoFree::ID = 0;
3626 const char AANonNull::ID = 0;
3627 const char AANoRecurse::ID = 0;
3628 const char AAWillReturn::ID = 0;
3629 const char AANoAlias::ID = 0;
3630 const char AANoReturn::ID = 0;
3631 const char AAIsDead::ID = 0;
3632 const char AADereferenceable::ID = 0;
3633 const char AAAlign::ID = 0;
3634 const char AANoCapture::ID = 0;
3636 // Macro magic to create the static generator function for attributes that
3637 // follow the naming scheme.
3639 #define SWITCH_PK_INV(CLASS, PK, POS_NAME) \
3640 case IRPosition::PK: \
3641 llvm_unreachable("Cannot create " #CLASS " for a " POS_NAME " position!");
3643 #define SWITCH_PK_CREATE(CLASS, IRP, PK, SUFFIX) \
3644 case IRPosition::PK: \
3645 AA = new CLASS##SUFFIX(IRP); \
3646 break;
3648 #define CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
3649 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
3650 CLASS *AA = nullptr; \
3651 switch (IRP.getPositionKind()) { \
3652 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
3653 SWITCH_PK_INV(CLASS, IRP_FLOAT, "floating") \
3654 SWITCH_PK_INV(CLASS, IRP_ARGUMENT, "argument") \
3655 SWITCH_PK_INV(CLASS, IRP_RETURNED, "returned") \
3656 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_RETURNED, "call site returned") \
3657 SWITCH_PK_INV(CLASS, IRP_CALL_SITE_ARGUMENT, "call site argument") \
3658 SWITCH_PK_CREATE(CLASS, IRP, IRP_FUNCTION, Function) \
3659 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE, CallSite) \
3661 return *AA; \
3664 #define CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(CLASS) \
3665 CLASS &CLASS::createForPosition(const IRPosition &IRP, Attributor &A) { \
3666 CLASS *AA = nullptr; \
3667 switch (IRP.getPositionKind()) { \
3668 SWITCH_PK_INV(CLASS, IRP_INVALID, "invalid") \
3669 SWITCH_PK_INV(CLASS, IRP_FUNCTION, "function") \
3670 SWITCH_PK_INV(CLASS, IRP_CALL_SITE, "call site") \
3671 SWITCH_PK_CREATE(CLASS, IRP, IRP_FLOAT, Floating) \
3672 SWITCH_PK_CREATE(CLASS, IRP, IRP_ARGUMENT, Argument) \
3673 SWITCH_PK_CREATE(CLASS, IRP, IRP_RETURNED, Returned) \
3674 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_RETURNED, CallSiteReturned) \
3675 SWITCH_PK_CREATE(CLASS, IRP, IRP_CALL_SITE_ARGUMENT, CallSiteArgument) \
3677 return *AA; \
3680 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoUnwind)
3681 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoSync)
3682 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoFree)
3683 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoRecurse)
3684 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAWillReturn)
3685 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoReturn)
3686 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAIsDead)
3687 CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAReturnedValues)
3689 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANonNull)
3690 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoAlias)
3691 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AADereferenceable)
3692 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AAAlign)
3693 CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION(AANoCapture)
3695 #undef CREATE_FUNCTION_ABSTRACT_ATTRIBUTE_FOR_POSITION
3696 #undef CREATE_VALUE_ABSTRACT_ATTRIBUTE_FOR_POSITION
3697 #undef SWITCH_PK_CREATE
3698 #undef SWITCH_PK_INV
3700 INITIALIZE_PASS_BEGIN(AttributorLegacyPass, "attributor",
3701 "Deduce and propagate attributes", false, false)
3702 INITIALIZE_PASS_END(AttributorLegacyPass, "attributor",
3703 "Deduce and propagate attributes", false, false)