[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / IPO / FunctionAttrs.cpp
blob5ccd8bc4b0fbdf396c12bab7621911ae6b8034d7
1 //===- FunctionAttrs.cpp - Pass which marks functions attributes ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This file implements interprocedural passes which walk the
11 /// call-graph deducing and/or propagating function attributes.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Transforms/IPO/FunctionAttrs.h"
16 #include "llvm/ADT/SCCIterator.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/Analysis/AliasAnalysis.h"
23 #include "llvm/Analysis/AssumptionCache.h"
24 #include "llvm/Analysis/BasicAliasAnalysis.h"
25 #include "llvm/Analysis/CGSCCPassManager.h"
26 #include "llvm/Analysis/CallGraph.h"
27 #include "llvm/Analysis/CallGraphSCCPass.h"
28 #include "llvm/Analysis/CaptureTracking.h"
29 #include "llvm/Analysis/LazyCallGraph.h"
30 #include "llvm/Analysis/MemoryBuiltins.h"
31 #include "llvm/Analysis/MemoryLocation.h"
32 #include "llvm/Analysis/ValueTracking.h"
33 #include "llvm/IR/Argument.h"
34 #include "llvm/IR/Attributes.h"
35 #include "llvm/IR/BasicBlock.h"
36 #include "llvm/IR/CallSite.h"
37 #include "llvm/IR/Constant.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/InstIterator.h"
41 #include "llvm/IR/InstrTypes.h"
42 #include "llvm/IR/Instruction.h"
43 #include "llvm/IR/Instructions.h"
44 #include "llvm/IR/IntrinsicInst.h"
45 #include "llvm/IR/Metadata.h"
46 #include "llvm/IR/PassManager.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/IR/Use.h"
49 #include "llvm/IR/User.h"
50 #include "llvm/IR/Value.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/Casting.h"
53 #include "llvm/Support/CommandLine.h"
54 #include "llvm/Support/Compiler.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/ErrorHandling.h"
57 #include "llvm/Support/raw_ostream.h"
58 #include "llvm/Transforms/IPO.h"
59 #include <cassert>
60 #include <iterator>
61 #include <map>
62 #include <vector>
64 using namespace llvm;
66 #define DEBUG_TYPE "functionattrs"
68 STATISTIC(NumReadNone, "Number of functions marked readnone");
69 STATISTIC(NumReadOnly, "Number of functions marked readonly");
70 STATISTIC(NumWriteOnly, "Number of functions marked writeonly");
71 STATISTIC(NumNoCapture, "Number of arguments marked nocapture");
72 STATISTIC(NumReturned, "Number of arguments marked returned");
73 STATISTIC(NumReadNoneArg, "Number of arguments marked readnone");
74 STATISTIC(NumReadOnlyArg, "Number of arguments marked readonly");
75 STATISTIC(NumNoAlias, "Number of function returns marked noalias");
76 STATISTIC(NumNonNullReturn, "Number of function returns marked nonnull");
77 STATISTIC(NumNoRecurse, "Number of functions marked as norecurse");
78 STATISTIC(NumNoUnwind, "Number of functions marked as nounwind");
79 STATISTIC(NumNoFree, "Number of functions marked as nofree");
81 // FIXME: This is disabled by default to avoid exposing security vulnerabilities
82 // in C/C++ code compiled by clang:
83 // http://lists.llvm.org/pipermail/cfe-dev/2017-January/052066.html
84 static cl::opt<bool> EnableNonnullArgPropagation(
85 "enable-nonnull-arg-prop", cl::Hidden,
86 cl::desc("Try to propagate nonnull argument attributes from callsites to "
87 "caller functions."));
89 static cl::opt<bool> DisableNoUnwindInference(
90 "disable-nounwind-inference", cl::Hidden,
91 cl::desc("Stop inferring nounwind attribute during function-attrs pass"));
93 static cl::opt<bool> DisableNoFreeInference(
94 "disable-nofree-inference", cl::Hidden,
95 cl::desc("Stop inferring nofree attribute during function-attrs pass"));
97 namespace {
99 using SCCNodeSet = SmallSetVector<Function *, 8>;
101 } // end anonymous namespace
103 /// Returns the memory access attribute for function F using AAR for AA results,
104 /// where SCCNodes is the current SCC.
106 /// If ThisBody is true, this function may examine the function body and will
107 /// return a result pertaining to this copy of the function. If it is false, the
108 /// result will be based only on AA results for the function declaration; it
109 /// will be assumed that some other (perhaps less optimized) version of the
110 /// function may be selected at link time.
111 static MemoryAccessKind checkFunctionMemoryAccess(Function &F, bool ThisBody,
112 AAResults &AAR,
113 const SCCNodeSet &SCCNodes) {
114 FunctionModRefBehavior MRB = AAR.getModRefBehavior(&F);
115 if (MRB == FMRB_DoesNotAccessMemory)
116 // Already perfect!
117 return MAK_ReadNone;
119 if (!ThisBody) {
120 if (AliasAnalysis::onlyReadsMemory(MRB))
121 return MAK_ReadOnly;
123 if (AliasAnalysis::doesNotReadMemory(MRB))
124 return MAK_WriteOnly;
126 // Conservatively assume it reads and writes to memory.
127 return MAK_MayWrite;
130 // Scan the function body for instructions that may read or write memory.
131 bool ReadsMemory = false;
132 bool WritesMemory = false;
133 for (inst_iterator II = inst_begin(F), E = inst_end(F); II != E; ++II) {
134 Instruction *I = &*II;
136 // Some instructions can be ignored even if they read or write memory.
137 // Detect these now, skipping to the next instruction if one is found.
138 if (auto *Call = dyn_cast<CallBase>(I)) {
139 // Ignore calls to functions in the same SCC, as long as the call sites
140 // don't have operand bundles. Calls with operand bundles are allowed to
141 // have memory effects not described by the memory effects of the call
142 // target.
143 if (!Call->hasOperandBundles() && Call->getCalledFunction() &&
144 SCCNodes.count(Call->getCalledFunction()))
145 continue;
146 FunctionModRefBehavior MRB = AAR.getModRefBehavior(Call);
147 ModRefInfo MRI = createModRefInfo(MRB);
149 // If the call doesn't access memory, we're done.
150 if (isNoModRef(MRI))
151 continue;
153 if (!AliasAnalysis::onlyAccessesArgPointees(MRB)) {
154 // The call could access any memory. If that includes writes, note it.
155 if (isModSet(MRI))
156 WritesMemory = true;
157 // If it reads, note it.
158 if (isRefSet(MRI))
159 ReadsMemory = true;
160 continue;
163 // Check whether all pointer arguments point to local memory, and
164 // ignore calls that only access local memory.
165 for (CallSite::arg_iterator CI = Call->arg_begin(), CE = Call->arg_end();
166 CI != CE; ++CI) {
167 Value *Arg = *CI;
168 if (!Arg->getType()->isPtrOrPtrVectorTy())
169 continue;
171 AAMDNodes AAInfo;
172 I->getAAMetadata(AAInfo);
173 MemoryLocation Loc(Arg, LocationSize::unknown(), AAInfo);
175 // Skip accesses to local or constant memory as they don't impact the
176 // externally visible mod/ref behavior.
177 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
178 continue;
180 if (isModSet(MRI))
181 // Writes non-local memory.
182 WritesMemory = true;
183 if (isRefSet(MRI))
184 // Ok, it reads non-local memory.
185 ReadsMemory = true;
187 continue;
188 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
189 // Ignore non-volatile loads from local memory. (Atomic is okay here.)
190 if (!LI->isVolatile()) {
191 MemoryLocation Loc = MemoryLocation::get(LI);
192 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
193 continue;
195 } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
196 // Ignore non-volatile stores to local memory. (Atomic is okay here.)
197 if (!SI->isVolatile()) {
198 MemoryLocation Loc = MemoryLocation::get(SI);
199 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
200 continue;
202 } else if (VAArgInst *VI = dyn_cast<VAArgInst>(I)) {
203 // Ignore vaargs on local memory.
204 MemoryLocation Loc = MemoryLocation::get(VI);
205 if (AAR.pointsToConstantMemory(Loc, /*OrLocal=*/true))
206 continue;
209 // Any remaining instructions need to be taken seriously! Check if they
210 // read or write memory.
212 // Writes memory, remember that.
213 WritesMemory |= I->mayWriteToMemory();
215 // If this instruction may read memory, remember that.
216 ReadsMemory |= I->mayReadFromMemory();
219 if (WritesMemory) {
220 if (!ReadsMemory)
221 return MAK_WriteOnly;
222 else
223 return MAK_MayWrite;
226 return ReadsMemory ? MAK_ReadOnly : MAK_ReadNone;
229 MemoryAccessKind llvm::computeFunctionBodyMemoryAccess(Function &F,
230 AAResults &AAR) {
231 return checkFunctionMemoryAccess(F, /*ThisBody=*/true, AAR, {});
234 /// Deduce readonly/readnone attributes for the SCC.
235 template <typename AARGetterT>
236 static bool addReadAttrs(const SCCNodeSet &SCCNodes, AARGetterT &&AARGetter) {
237 // Check if any of the functions in the SCC read or write memory. If they
238 // write memory then they can't be marked readnone or readonly.
239 bool ReadsMemory = false;
240 bool WritesMemory = false;
241 for (Function *F : SCCNodes) {
242 // Call the callable parameter to look up AA results for this function.
243 AAResults &AAR = AARGetter(*F);
245 // Non-exact function definitions may not be selected at link time, and an
246 // alternative version that writes to memory may be selected. See the
247 // comment on GlobalValue::isDefinitionExact for more details.
248 switch (checkFunctionMemoryAccess(*F, F->hasExactDefinition(),
249 AAR, SCCNodes)) {
250 case MAK_MayWrite:
251 return false;
252 case MAK_ReadOnly:
253 ReadsMemory = true;
254 break;
255 case MAK_WriteOnly:
256 WritesMemory = true;
257 break;
258 case MAK_ReadNone:
259 // Nothing to do!
260 break;
264 // If the SCC contains both functions that read and functions that write, then
265 // we cannot add readonly attributes.
266 if (ReadsMemory && WritesMemory)
267 return false;
269 // Success! Functions in this SCC do not access memory, or only read memory.
270 // Give them the appropriate attribute.
271 bool MadeChange = false;
273 for (Function *F : SCCNodes) {
274 if (F->doesNotAccessMemory())
275 // Already perfect!
276 continue;
278 if (F->onlyReadsMemory() && ReadsMemory)
279 // No change.
280 continue;
282 if (F->doesNotReadMemory() && WritesMemory)
283 continue;
285 MadeChange = true;
287 // Clear out any existing attributes.
288 F->removeFnAttr(Attribute::ReadOnly);
289 F->removeFnAttr(Attribute::ReadNone);
290 F->removeFnAttr(Attribute::WriteOnly);
292 if (!WritesMemory && !ReadsMemory) {
293 // Clear out any "access range attributes" if readnone was deduced.
294 F->removeFnAttr(Attribute::ArgMemOnly);
295 F->removeFnAttr(Attribute::InaccessibleMemOnly);
296 F->removeFnAttr(Attribute::InaccessibleMemOrArgMemOnly);
299 // Add in the new attribute.
300 if (WritesMemory && !ReadsMemory)
301 F->addFnAttr(Attribute::WriteOnly);
302 else
303 F->addFnAttr(ReadsMemory ? Attribute::ReadOnly : Attribute::ReadNone);
305 if (WritesMemory && !ReadsMemory)
306 ++NumWriteOnly;
307 else if (ReadsMemory)
308 ++NumReadOnly;
309 else
310 ++NumReadNone;
313 return MadeChange;
316 namespace {
318 /// For a given pointer Argument, this retains a list of Arguments of functions
319 /// in the same SCC that the pointer data flows into. We use this to build an
320 /// SCC of the arguments.
321 struct ArgumentGraphNode {
322 Argument *Definition;
323 SmallVector<ArgumentGraphNode *, 4> Uses;
326 class ArgumentGraph {
327 // We store pointers to ArgumentGraphNode objects, so it's important that
328 // that they not move around upon insert.
329 using ArgumentMapTy = std::map<Argument *, ArgumentGraphNode>;
331 ArgumentMapTy ArgumentMap;
333 // There is no root node for the argument graph, in fact:
334 // void f(int *x, int *y) { if (...) f(x, y); }
335 // is an example where the graph is disconnected. The SCCIterator requires a
336 // single entry point, so we maintain a fake ("synthetic") root node that
337 // uses every node. Because the graph is directed and nothing points into
338 // the root, it will not participate in any SCCs (except for its own).
339 ArgumentGraphNode SyntheticRoot;
341 public:
342 ArgumentGraph() { SyntheticRoot.Definition = nullptr; }
344 using iterator = SmallVectorImpl<ArgumentGraphNode *>::iterator;
346 iterator begin() { return SyntheticRoot.Uses.begin(); }
347 iterator end() { return SyntheticRoot.Uses.end(); }
348 ArgumentGraphNode *getEntryNode() { return &SyntheticRoot; }
350 ArgumentGraphNode *operator[](Argument *A) {
351 ArgumentGraphNode &Node = ArgumentMap[A];
352 Node.Definition = A;
353 SyntheticRoot.Uses.push_back(&Node);
354 return &Node;
358 /// This tracker checks whether callees are in the SCC, and if so it does not
359 /// consider that a capture, instead adding it to the "Uses" list and
360 /// continuing with the analysis.
361 struct ArgumentUsesTracker : public CaptureTracker {
362 ArgumentUsesTracker(const SCCNodeSet &SCCNodes) : SCCNodes(SCCNodes) {}
364 void tooManyUses() override { Captured = true; }
366 bool captured(const Use *U) override {
367 CallSite CS(U->getUser());
368 if (!CS.getInstruction()) {
369 Captured = true;
370 return true;
373 Function *F = CS.getCalledFunction();
374 if (!F || !F->hasExactDefinition() || !SCCNodes.count(F)) {
375 Captured = true;
376 return true;
379 // Note: the callee and the two successor blocks *follow* the argument
380 // operands. This means there is no need to adjust UseIndex to account for
381 // these.
383 unsigned UseIndex =
384 std::distance(const_cast<const Use *>(CS.arg_begin()), U);
386 assert(UseIndex < CS.data_operands_size() &&
387 "Indirect function calls should have been filtered above!");
389 if (UseIndex >= CS.getNumArgOperands()) {
390 // Data operand, but not a argument operand -- must be a bundle operand
391 assert(CS.hasOperandBundles() && "Must be!");
393 // CaptureTracking told us that we're being captured by an operand bundle
394 // use. In this case it does not matter if the callee is within our SCC
395 // or not -- we've been captured in some unknown way, and we have to be
396 // conservative.
397 Captured = true;
398 return true;
401 if (UseIndex >= F->arg_size()) {
402 assert(F->isVarArg() && "More params than args in non-varargs call");
403 Captured = true;
404 return true;
407 Uses.push_back(&*std::next(F->arg_begin(), UseIndex));
408 return false;
411 // True only if certainly captured (used outside our SCC).
412 bool Captured = false;
414 // Uses within our SCC.
415 SmallVector<Argument *, 4> Uses;
417 const SCCNodeSet &SCCNodes;
420 } // end anonymous namespace
422 namespace llvm {
424 template <> struct GraphTraits<ArgumentGraphNode *> {
425 using NodeRef = ArgumentGraphNode *;
426 using ChildIteratorType = SmallVectorImpl<ArgumentGraphNode *>::iterator;
428 static NodeRef getEntryNode(NodeRef A) { return A; }
429 static ChildIteratorType child_begin(NodeRef N) { return N->Uses.begin(); }
430 static ChildIteratorType child_end(NodeRef N) { return N->Uses.end(); }
433 template <>
434 struct GraphTraits<ArgumentGraph *> : public GraphTraits<ArgumentGraphNode *> {
435 static NodeRef getEntryNode(ArgumentGraph *AG) { return AG->getEntryNode(); }
437 static ChildIteratorType nodes_begin(ArgumentGraph *AG) {
438 return AG->begin();
441 static ChildIteratorType nodes_end(ArgumentGraph *AG) { return AG->end(); }
444 } // end namespace llvm
446 /// Returns Attribute::None, Attribute::ReadOnly or Attribute::ReadNone.
447 static Attribute::AttrKind
448 determinePointerReadAttrs(Argument *A,
449 const SmallPtrSet<Argument *, 8> &SCCNodes) {
450 SmallVector<Use *, 32> Worklist;
451 SmallPtrSet<Use *, 32> Visited;
453 // inalloca arguments are always clobbered by the call.
454 if (A->hasInAllocaAttr())
455 return Attribute::None;
457 bool IsRead = false;
458 // We don't need to track IsWritten. If A is written to, return immediately.
460 for (Use &U : A->uses()) {
461 Visited.insert(&U);
462 Worklist.push_back(&U);
465 while (!Worklist.empty()) {
466 Use *U = Worklist.pop_back_val();
467 Instruction *I = cast<Instruction>(U->getUser());
469 switch (I->getOpcode()) {
470 case Instruction::BitCast:
471 case Instruction::GetElementPtr:
472 case Instruction::PHI:
473 case Instruction::Select:
474 case Instruction::AddrSpaceCast:
475 // The original value is not read/written via this if the new value isn't.
476 for (Use &UU : I->uses())
477 if (Visited.insert(&UU).second)
478 Worklist.push_back(&UU);
479 break;
481 case Instruction::Call:
482 case Instruction::Invoke: {
483 bool Captures = true;
485 if (I->getType()->isVoidTy())
486 Captures = false;
488 auto AddUsersToWorklistIfCapturing = [&] {
489 if (Captures)
490 for (Use &UU : I->uses())
491 if (Visited.insert(&UU).second)
492 Worklist.push_back(&UU);
495 CallSite CS(I);
496 if (CS.doesNotAccessMemory()) {
497 AddUsersToWorklistIfCapturing();
498 continue;
501 Function *F = CS.getCalledFunction();
502 if (!F) {
503 if (CS.onlyReadsMemory()) {
504 IsRead = true;
505 AddUsersToWorklistIfCapturing();
506 continue;
508 return Attribute::None;
511 // Note: the callee and the two successor blocks *follow* the argument
512 // operands. This means there is no need to adjust UseIndex to account
513 // for these.
515 unsigned UseIndex = std::distance(CS.arg_begin(), U);
517 // U cannot be the callee operand use: since we're exploring the
518 // transitive uses of an Argument, having such a use be a callee would
519 // imply the CallSite is an indirect call or invoke; and we'd take the
520 // early exit above.
521 assert(UseIndex < CS.data_operands_size() &&
522 "Data operand use expected!");
524 bool IsOperandBundleUse = UseIndex >= CS.getNumArgOperands();
526 if (UseIndex >= F->arg_size() && !IsOperandBundleUse) {
527 assert(F->isVarArg() && "More params than args in non-varargs call");
528 return Attribute::None;
531 Captures &= !CS.doesNotCapture(UseIndex);
533 // Since the optimizer (by design) cannot see the data flow corresponding
534 // to a operand bundle use, these cannot participate in the optimistic SCC
535 // analysis. Instead, we model the operand bundle uses as arguments in
536 // call to a function external to the SCC.
537 if (IsOperandBundleUse ||
538 !SCCNodes.count(&*std::next(F->arg_begin(), UseIndex))) {
540 // The accessors used on CallSite here do the right thing for calls and
541 // invokes with operand bundles.
543 if (!CS.onlyReadsMemory() && !CS.onlyReadsMemory(UseIndex))
544 return Attribute::None;
545 if (!CS.doesNotAccessMemory(UseIndex))
546 IsRead = true;
549 AddUsersToWorklistIfCapturing();
550 break;
553 case Instruction::Load:
554 // A volatile load has side effects beyond what readonly can be relied
555 // upon.
556 if (cast<LoadInst>(I)->isVolatile())
557 return Attribute::None;
559 IsRead = true;
560 break;
562 case Instruction::ICmp:
563 case Instruction::Ret:
564 break;
566 default:
567 return Attribute::None;
571 return IsRead ? Attribute::ReadOnly : Attribute::ReadNone;
574 /// Deduce returned attributes for the SCC.
575 static bool addArgumentReturnedAttrs(const SCCNodeSet &SCCNodes) {
576 bool Changed = false;
578 // Check each function in turn, determining if an argument is always returned.
579 for (Function *F : SCCNodes) {
580 // We can infer and propagate function attributes only when we know that the
581 // definition we'll get at link time is *exactly* the definition we see now.
582 // For more details, see GlobalValue::mayBeDerefined.
583 if (!F->hasExactDefinition())
584 continue;
586 if (F->getReturnType()->isVoidTy())
587 continue;
589 // There is nothing to do if an argument is already marked as 'returned'.
590 if (llvm::any_of(F->args(),
591 [](const Argument &Arg) { return Arg.hasReturnedAttr(); }))
592 continue;
594 auto FindRetArg = [&]() -> Value * {
595 Value *RetArg = nullptr;
596 for (BasicBlock &BB : *F)
597 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator())) {
598 // Note that stripPointerCasts should look through functions with
599 // returned arguments.
600 Value *RetVal = Ret->getReturnValue()->stripPointerCasts();
601 if (!isa<Argument>(RetVal) || RetVal->getType() != F->getReturnType())
602 return nullptr;
604 if (!RetArg)
605 RetArg = RetVal;
606 else if (RetArg != RetVal)
607 return nullptr;
610 return RetArg;
613 if (Value *RetArg = FindRetArg()) {
614 auto *A = cast<Argument>(RetArg);
615 A->addAttr(Attribute::Returned);
616 ++NumReturned;
617 Changed = true;
621 return Changed;
624 /// If a callsite has arguments that are also arguments to the parent function,
625 /// try to propagate attributes from the callsite's arguments to the parent's
626 /// arguments. This may be important because inlining can cause information loss
627 /// when attribute knowledge disappears with the inlined call.
628 static bool addArgumentAttrsFromCallsites(Function &F) {
629 if (!EnableNonnullArgPropagation)
630 return false;
632 bool Changed = false;
634 // For an argument attribute to transfer from a callsite to the parent, the
635 // call must be guaranteed to execute every time the parent is called.
636 // Conservatively, just check for calls in the entry block that are guaranteed
637 // to execute.
638 // TODO: This could be enhanced by testing if the callsite post-dominates the
639 // entry block or by doing simple forward walks or backward walks to the
640 // callsite.
641 BasicBlock &Entry = F.getEntryBlock();
642 for (Instruction &I : Entry) {
643 if (auto CS = CallSite(&I)) {
644 if (auto *CalledFunc = CS.getCalledFunction()) {
645 for (auto &CSArg : CalledFunc->args()) {
646 if (!CSArg.hasNonNullAttr())
647 continue;
649 // If the non-null callsite argument operand is an argument to 'F'
650 // (the caller) and the call is guaranteed to execute, then the value
651 // must be non-null throughout 'F'.
652 auto *FArg = dyn_cast<Argument>(CS.getArgOperand(CSArg.getArgNo()));
653 if (FArg && !FArg->hasNonNullAttr()) {
654 FArg->addAttr(Attribute::NonNull);
655 Changed = true;
660 if (!isGuaranteedToTransferExecutionToSuccessor(&I))
661 break;
664 return Changed;
667 /// Deduce nocapture attributes for the SCC.
668 static bool addArgumentAttrs(const SCCNodeSet &SCCNodes) {
669 bool Changed = false;
671 ArgumentGraph AG;
673 // Check each function in turn, determining which pointer arguments are not
674 // captured.
675 for (Function *F : SCCNodes) {
676 // We can infer and propagate function attributes only when we know that the
677 // definition we'll get at link time is *exactly* the definition we see now.
678 // For more details, see GlobalValue::mayBeDerefined.
679 if (!F->hasExactDefinition())
680 continue;
682 Changed |= addArgumentAttrsFromCallsites(*F);
684 // Functions that are readonly (or readnone) and nounwind and don't return
685 // a value can't capture arguments. Don't analyze them.
686 if (F->onlyReadsMemory() && F->doesNotThrow() &&
687 F->getReturnType()->isVoidTy()) {
688 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
689 ++A) {
690 if (A->getType()->isPointerTy() && !A->hasNoCaptureAttr()) {
691 A->addAttr(Attribute::NoCapture);
692 ++NumNoCapture;
693 Changed = true;
696 continue;
699 for (Function::arg_iterator A = F->arg_begin(), E = F->arg_end(); A != E;
700 ++A) {
701 if (!A->getType()->isPointerTy())
702 continue;
703 bool HasNonLocalUses = false;
704 if (!A->hasNoCaptureAttr()) {
705 ArgumentUsesTracker Tracker(SCCNodes);
706 PointerMayBeCaptured(&*A, &Tracker);
707 if (!Tracker.Captured) {
708 if (Tracker.Uses.empty()) {
709 // If it's trivially not captured, mark it nocapture now.
710 A->addAttr(Attribute::NoCapture);
711 ++NumNoCapture;
712 Changed = true;
713 } else {
714 // If it's not trivially captured and not trivially not captured,
715 // then it must be calling into another function in our SCC. Save
716 // its particulars for Argument-SCC analysis later.
717 ArgumentGraphNode *Node = AG[&*A];
718 for (Argument *Use : Tracker.Uses) {
719 Node->Uses.push_back(AG[Use]);
720 if (Use != &*A)
721 HasNonLocalUses = true;
725 // Otherwise, it's captured. Don't bother doing SCC analysis on it.
727 if (!HasNonLocalUses && !A->onlyReadsMemory()) {
728 // Can we determine that it's readonly/readnone without doing an SCC?
729 // Note that we don't allow any calls at all here, or else our result
730 // will be dependent on the iteration order through the functions in the
731 // SCC.
732 SmallPtrSet<Argument *, 8> Self;
733 Self.insert(&*A);
734 Attribute::AttrKind R = determinePointerReadAttrs(&*A, Self);
735 if (R != Attribute::None) {
736 A->addAttr(R);
737 Changed = true;
738 R == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
744 // The graph we've collected is partial because we stopped scanning for
745 // argument uses once we solved the argument trivially. These partial nodes
746 // show up as ArgumentGraphNode objects with an empty Uses list, and for
747 // these nodes the final decision about whether they capture has already been
748 // made. If the definition doesn't have a 'nocapture' attribute by now, it
749 // captures.
751 for (scc_iterator<ArgumentGraph *> I = scc_begin(&AG); !I.isAtEnd(); ++I) {
752 const std::vector<ArgumentGraphNode *> &ArgumentSCC = *I;
753 if (ArgumentSCC.size() == 1) {
754 if (!ArgumentSCC[0]->Definition)
755 continue; // synthetic root node
757 // eg. "void f(int* x) { if (...) f(x); }"
758 if (ArgumentSCC[0]->Uses.size() == 1 &&
759 ArgumentSCC[0]->Uses[0] == ArgumentSCC[0]) {
760 Argument *A = ArgumentSCC[0]->Definition;
761 A->addAttr(Attribute::NoCapture);
762 ++NumNoCapture;
763 Changed = true;
765 continue;
768 bool SCCCaptured = false;
769 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
770 I != E && !SCCCaptured; ++I) {
771 ArgumentGraphNode *Node = *I;
772 if (Node->Uses.empty()) {
773 if (!Node->Definition->hasNoCaptureAttr())
774 SCCCaptured = true;
777 if (SCCCaptured)
778 continue;
780 SmallPtrSet<Argument *, 8> ArgumentSCCNodes;
781 // Fill ArgumentSCCNodes with the elements of the ArgumentSCC. Used for
782 // quickly looking up whether a given Argument is in this ArgumentSCC.
783 for (ArgumentGraphNode *I : ArgumentSCC) {
784 ArgumentSCCNodes.insert(I->Definition);
787 for (auto I = ArgumentSCC.begin(), E = ArgumentSCC.end();
788 I != E && !SCCCaptured; ++I) {
789 ArgumentGraphNode *N = *I;
790 for (ArgumentGraphNode *Use : N->Uses) {
791 Argument *A = Use->Definition;
792 if (A->hasNoCaptureAttr() || ArgumentSCCNodes.count(A))
793 continue;
794 SCCCaptured = true;
795 break;
798 if (SCCCaptured)
799 continue;
801 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
802 Argument *A = ArgumentSCC[i]->Definition;
803 A->addAttr(Attribute::NoCapture);
804 ++NumNoCapture;
805 Changed = true;
808 // We also want to compute readonly/readnone. With a small number of false
809 // negatives, we can assume that any pointer which is captured isn't going
810 // to be provably readonly or readnone, since by definition we can't
811 // analyze all uses of a captured pointer.
813 // The false negatives happen when the pointer is captured by a function
814 // that promises readonly/readnone behaviour on the pointer, then the
815 // pointer's lifetime ends before anything that writes to arbitrary memory.
816 // Also, a readonly/readnone pointer may be returned, but returning a
817 // pointer is capturing it.
819 Attribute::AttrKind ReadAttr = Attribute::ReadNone;
820 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
821 Argument *A = ArgumentSCC[i]->Definition;
822 Attribute::AttrKind K = determinePointerReadAttrs(A, ArgumentSCCNodes);
823 if (K == Attribute::ReadNone)
824 continue;
825 if (K == Attribute::ReadOnly) {
826 ReadAttr = Attribute::ReadOnly;
827 continue;
829 ReadAttr = K;
830 break;
833 if (ReadAttr != Attribute::None) {
834 for (unsigned i = 0, e = ArgumentSCC.size(); i != e; ++i) {
835 Argument *A = ArgumentSCC[i]->Definition;
836 // Clear out existing readonly/readnone attributes
837 A->removeAttr(Attribute::ReadOnly);
838 A->removeAttr(Attribute::ReadNone);
839 A->addAttr(ReadAttr);
840 ReadAttr == Attribute::ReadOnly ? ++NumReadOnlyArg : ++NumReadNoneArg;
841 Changed = true;
846 return Changed;
849 /// Tests whether a function is "malloc-like".
851 /// A function is "malloc-like" if it returns either null or a pointer that
852 /// doesn't alias any other pointer visible to the caller.
853 static bool isFunctionMallocLike(Function *F, const SCCNodeSet &SCCNodes) {
854 SmallSetVector<Value *, 8> FlowsToReturn;
855 for (BasicBlock &BB : *F)
856 if (ReturnInst *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
857 FlowsToReturn.insert(Ret->getReturnValue());
859 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
860 Value *RetVal = FlowsToReturn[i];
862 if (Constant *C = dyn_cast<Constant>(RetVal)) {
863 if (!C->isNullValue() && !isa<UndefValue>(C))
864 return false;
866 continue;
869 if (isa<Argument>(RetVal))
870 return false;
872 if (Instruction *RVI = dyn_cast<Instruction>(RetVal))
873 switch (RVI->getOpcode()) {
874 // Extend the analysis by looking upwards.
875 case Instruction::BitCast:
876 case Instruction::GetElementPtr:
877 case Instruction::AddrSpaceCast:
878 FlowsToReturn.insert(RVI->getOperand(0));
879 continue;
880 case Instruction::Select: {
881 SelectInst *SI = cast<SelectInst>(RVI);
882 FlowsToReturn.insert(SI->getTrueValue());
883 FlowsToReturn.insert(SI->getFalseValue());
884 continue;
886 case Instruction::PHI: {
887 PHINode *PN = cast<PHINode>(RVI);
888 for (Value *IncValue : PN->incoming_values())
889 FlowsToReturn.insert(IncValue);
890 continue;
893 // Check whether the pointer came from an allocation.
894 case Instruction::Alloca:
895 break;
896 case Instruction::Call:
897 case Instruction::Invoke: {
898 CallSite CS(RVI);
899 if (CS.hasRetAttr(Attribute::NoAlias))
900 break;
901 if (CS.getCalledFunction() && SCCNodes.count(CS.getCalledFunction()))
902 break;
903 LLVM_FALLTHROUGH;
905 default:
906 return false; // Did not come from an allocation.
909 if (PointerMayBeCaptured(RetVal, false, /*StoreCaptures=*/false))
910 return false;
913 return true;
916 /// Deduce noalias attributes for the SCC.
917 static bool addNoAliasAttrs(const SCCNodeSet &SCCNodes) {
918 // Check each function in turn, determining which functions return noalias
919 // pointers.
920 for (Function *F : SCCNodes) {
921 // Already noalias.
922 if (F->returnDoesNotAlias())
923 continue;
925 // We can infer and propagate function attributes only when we know that the
926 // definition we'll get at link time is *exactly* the definition we see now.
927 // For more details, see GlobalValue::mayBeDerefined.
928 if (!F->hasExactDefinition())
929 return false;
931 // We annotate noalias return values, which are only applicable to
932 // pointer types.
933 if (!F->getReturnType()->isPointerTy())
934 continue;
936 if (!isFunctionMallocLike(F, SCCNodes))
937 return false;
940 bool MadeChange = false;
941 for (Function *F : SCCNodes) {
942 if (F->returnDoesNotAlias() ||
943 !F->getReturnType()->isPointerTy())
944 continue;
946 F->setReturnDoesNotAlias();
947 ++NumNoAlias;
948 MadeChange = true;
951 return MadeChange;
954 /// Tests whether this function is known to not return null.
956 /// Requires that the function returns a pointer.
958 /// Returns true if it believes the function will not return a null, and sets
959 /// \p Speculative based on whether the returned conclusion is a speculative
960 /// conclusion due to SCC calls.
961 static bool isReturnNonNull(Function *F, const SCCNodeSet &SCCNodes,
962 bool &Speculative) {
963 assert(F->getReturnType()->isPointerTy() &&
964 "nonnull only meaningful on pointer types");
965 Speculative = false;
967 SmallSetVector<Value *, 8> FlowsToReturn;
968 for (BasicBlock &BB : *F)
969 if (auto *Ret = dyn_cast<ReturnInst>(BB.getTerminator()))
970 FlowsToReturn.insert(Ret->getReturnValue());
972 auto &DL = F->getParent()->getDataLayout();
974 for (unsigned i = 0; i != FlowsToReturn.size(); ++i) {
975 Value *RetVal = FlowsToReturn[i];
977 // If this value is locally known to be non-null, we're good
978 if (isKnownNonZero(RetVal, DL))
979 continue;
981 // Otherwise, we need to look upwards since we can't make any local
982 // conclusions.
983 Instruction *RVI = dyn_cast<Instruction>(RetVal);
984 if (!RVI)
985 return false;
986 switch (RVI->getOpcode()) {
987 // Extend the analysis by looking upwards.
988 case Instruction::BitCast:
989 case Instruction::GetElementPtr:
990 case Instruction::AddrSpaceCast:
991 FlowsToReturn.insert(RVI->getOperand(0));
992 continue;
993 case Instruction::Select: {
994 SelectInst *SI = cast<SelectInst>(RVI);
995 FlowsToReturn.insert(SI->getTrueValue());
996 FlowsToReturn.insert(SI->getFalseValue());
997 continue;
999 case Instruction::PHI: {
1000 PHINode *PN = cast<PHINode>(RVI);
1001 for (int i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
1002 FlowsToReturn.insert(PN->getIncomingValue(i));
1003 continue;
1005 case Instruction::Call:
1006 case Instruction::Invoke: {
1007 CallSite CS(RVI);
1008 Function *Callee = CS.getCalledFunction();
1009 // A call to a node within the SCC is assumed to return null until
1010 // proven otherwise
1011 if (Callee && SCCNodes.count(Callee)) {
1012 Speculative = true;
1013 continue;
1015 return false;
1017 default:
1018 return false; // Unknown source, may be null
1020 llvm_unreachable("should have either continued or returned");
1023 return true;
1026 /// Deduce nonnull attributes for the SCC.
1027 static bool addNonNullAttrs(const SCCNodeSet &SCCNodes) {
1028 // Speculative that all functions in the SCC return only nonnull
1029 // pointers. We may refute this as we analyze functions.
1030 bool SCCReturnsNonNull = true;
1032 bool MadeChange = false;
1034 // Check each function in turn, determining which functions return nonnull
1035 // pointers.
1036 for (Function *F : SCCNodes) {
1037 // Already nonnull.
1038 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1039 Attribute::NonNull))
1040 continue;
1042 // We can infer and propagate function attributes only when we know that the
1043 // definition we'll get at link time is *exactly* the definition we see now.
1044 // For more details, see GlobalValue::mayBeDerefined.
1045 if (!F->hasExactDefinition())
1046 return false;
1048 // We annotate nonnull return values, which are only applicable to
1049 // pointer types.
1050 if (!F->getReturnType()->isPointerTy())
1051 continue;
1053 bool Speculative = false;
1054 if (isReturnNonNull(F, SCCNodes, Speculative)) {
1055 if (!Speculative) {
1056 // Mark the function eagerly since we may discover a function
1057 // which prevents us from speculating about the entire SCC
1058 LLVM_DEBUG(dbgs() << "Eagerly marking " << F->getName()
1059 << " as nonnull\n");
1060 F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1061 ++NumNonNullReturn;
1062 MadeChange = true;
1064 continue;
1066 // At least one function returns something which could be null, can't
1067 // speculate any more.
1068 SCCReturnsNonNull = false;
1071 if (SCCReturnsNonNull) {
1072 for (Function *F : SCCNodes) {
1073 if (F->getAttributes().hasAttribute(AttributeList::ReturnIndex,
1074 Attribute::NonNull) ||
1075 !F->getReturnType()->isPointerTy())
1076 continue;
1078 LLVM_DEBUG(dbgs() << "SCC marking " << F->getName() << " as nonnull\n");
1079 F->addAttribute(AttributeList::ReturnIndex, Attribute::NonNull);
1080 ++NumNonNullReturn;
1081 MadeChange = true;
1085 return MadeChange;
1088 namespace {
1090 /// Collects a set of attribute inference requests and performs them all in one
1091 /// go on a single SCC Node. Inference involves scanning function bodies
1092 /// looking for instructions that violate attribute assumptions.
1093 /// As soon as all the bodies are fine we are free to set the attribute.
1094 /// Customization of inference for individual attributes is performed by
1095 /// providing a handful of predicates for each attribute.
1096 class AttributeInferer {
1097 public:
1098 /// Describes a request for inference of a single attribute.
1099 struct InferenceDescriptor {
1101 /// Returns true if this function does not have to be handled.
1102 /// General intent for this predicate is to provide an optimization
1103 /// for functions that do not need this attribute inference at all
1104 /// (say, for functions that already have the attribute).
1105 std::function<bool(const Function &)> SkipFunction;
1107 /// Returns true if this instruction violates attribute assumptions.
1108 std::function<bool(Instruction &)> InstrBreaksAttribute;
1110 /// Sets the inferred attribute for this function.
1111 std::function<void(Function &)> SetAttribute;
1113 /// Attribute we derive.
1114 Attribute::AttrKind AKind;
1116 /// If true, only "exact" definitions can be used to infer this attribute.
1117 /// See GlobalValue::isDefinitionExact.
1118 bool RequiresExactDefinition;
1120 InferenceDescriptor(Attribute::AttrKind AK,
1121 std::function<bool(const Function &)> SkipFunc,
1122 std::function<bool(Instruction &)> InstrScan,
1123 std::function<void(Function &)> SetAttr,
1124 bool ReqExactDef)
1125 : SkipFunction(SkipFunc), InstrBreaksAttribute(InstrScan),
1126 SetAttribute(SetAttr), AKind(AK),
1127 RequiresExactDefinition(ReqExactDef) {}
1130 private:
1131 SmallVector<InferenceDescriptor, 4> InferenceDescriptors;
1133 public:
1134 void registerAttrInference(InferenceDescriptor AttrInference) {
1135 InferenceDescriptors.push_back(AttrInference);
1138 bool run(const SCCNodeSet &SCCNodes);
1141 /// Perform all the requested attribute inference actions according to the
1142 /// attribute predicates stored before.
1143 bool AttributeInferer::run(const SCCNodeSet &SCCNodes) {
1144 SmallVector<InferenceDescriptor, 4> InferInSCC = InferenceDescriptors;
1145 // Go through all the functions in SCC and check corresponding attribute
1146 // assumptions for each of them. Attributes that are invalid for this SCC
1147 // will be removed from InferInSCC.
1148 for (Function *F : SCCNodes) {
1150 // No attributes whose assumptions are still valid - done.
1151 if (InferInSCC.empty())
1152 return false;
1154 // Check if our attributes ever need scanning/can be scanned.
1155 llvm::erase_if(InferInSCC, [F](const InferenceDescriptor &ID) {
1156 if (ID.SkipFunction(*F))
1157 return false;
1159 // Remove from further inference (invalidate) when visiting a function
1160 // that has no instructions to scan/has an unsuitable definition.
1161 return F->isDeclaration() ||
1162 (ID.RequiresExactDefinition && !F->hasExactDefinition());
1165 // For each attribute still in InferInSCC that doesn't explicitly skip F,
1166 // set up the F instructions scan to verify assumptions of the attribute.
1167 SmallVector<InferenceDescriptor, 4> InferInThisFunc;
1168 llvm::copy_if(
1169 InferInSCC, std::back_inserter(InferInThisFunc),
1170 [F](const InferenceDescriptor &ID) { return !ID.SkipFunction(*F); });
1172 if (InferInThisFunc.empty())
1173 continue;
1175 // Start instruction scan.
1176 for (Instruction &I : instructions(*F)) {
1177 llvm::erase_if(InferInThisFunc, [&](const InferenceDescriptor &ID) {
1178 if (!ID.InstrBreaksAttribute(I))
1179 return false;
1180 // Remove attribute from further inference on any other functions
1181 // because attribute assumptions have just been violated.
1182 llvm::erase_if(InferInSCC, [&ID](const InferenceDescriptor &D) {
1183 return D.AKind == ID.AKind;
1185 // Remove attribute from the rest of current instruction scan.
1186 return true;
1189 if (InferInThisFunc.empty())
1190 break;
1194 if (InferInSCC.empty())
1195 return false;
1197 bool Changed = false;
1198 for (Function *F : SCCNodes)
1199 // At this point InferInSCC contains only functions that were either:
1200 // - explicitly skipped from scan/inference, or
1201 // - verified to have no instructions that break attribute assumptions.
1202 // Hence we just go and force the attribute for all non-skipped functions.
1203 for (auto &ID : InferInSCC) {
1204 if (ID.SkipFunction(*F))
1205 continue;
1206 Changed = true;
1207 ID.SetAttribute(*F);
1209 return Changed;
1212 } // end anonymous namespace
1214 /// Helper for non-Convergent inference predicate InstrBreaksAttribute.
1215 static bool InstrBreaksNonConvergent(Instruction &I,
1216 const SCCNodeSet &SCCNodes) {
1217 const CallSite CS(&I);
1218 // Breaks non-convergent assumption if CS is a convergent call to a function
1219 // not in the SCC.
1220 return CS && CS.isConvergent() && SCCNodes.count(CS.getCalledFunction()) == 0;
1223 /// Helper for NoUnwind inference predicate InstrBreaksAttribute.
1224 static bool InstrBreaksNonThrowing(Instruction &I, const SCCNodeSet &SCCNodes) {
1225 if (!I.mayThrow())
1226 return false;
1227 if (const auto *CI = dyn_cast<CallInst>(&I)) {
1228 if (Function *Callee = CI->getCalledFunction()) {
1229 // I is a may-throw call to a function inside our SCC. This doesn't
1230 // invalidate our current working assumption that the SCC is no-throw; we
1231 // just have to scan that other function.
1232 if (SCCNodes.count(Callee) > 0)
1233 return false;
1236 return true;
1239 /// Helper for NoFree inference predicate InstrBreaksAttribute.
1240 static bool InstrBreaksNoFree(Instruction &I, const SCCNodeSet &SCCNodes) {
1241 CallSite CS(&I);
1242 if (!CS)
1243 return false;
1245 Function *Callee = CS.getCalledFunction();
1246 if (!Callee)
1247 return true;
1249 if (Callee->doesNotFreeMemory())
1250 return false;
1252 if (SCCNodes.count(Callee) > 0)
1253 return false;
1255 return true;
1258 /// Infer attributes from all functions in the SCC by scanning every
1259 /// instruction for compliance to the attribute assumptions. Currently it
1260 /// does:
1261 /// - removal of Convergent attribute
1262 /// - addition of NoUnwind attribute
1264 /// Returns true if any changes to function attributes were made.
1265 static bool inferAttrsFromFunctionBodies(const SCCNodeSet &SCCNodes) {
1267 AttributeInferer AI;
1269 // Request to remove the convergent attribute from all functions in the SCC
1270 // if every callsite within the SCC is not convergent (except for calls
1271 // to functions within the SCC).
1272 // Note: Removal of the attr from the callsites will happen in
1273 // InstCombineCalls separately.
1274 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1275 Attribute::Convergent,
1276 // Skip non-convergent functions.
1277 [](const Function &F) { return !F.isConvergent(); },
1278 // Instructions that break non-convergent assumption.
1279 [SCCNodes](Instruction &I) {
1280 return InstrBreaksNonConvergent(I, SCCNodes);
1282 [](Function &F) {
1283 LLVM_DEBUG(dbgs() << "Removing convergent attr from fn " << F.getName()
1284 << "\n");
1285 F.setNotConvergent();
1287 /* RequiresExactDefinition= */ false});
1289 if (!DisableNoUnwindInference)
1290 // Request to infer nounwind attribute for all the functions in the SCC if
1291 // every callsite within the SCC is not throwing (except for calls to
1292 // functions within the SCC). Note that nounwind attribute suffers from
1293 // derefinement - results may change depending on how functions are
1294 // optimized. Thus it can be inferred only from exact definitions.
1295 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1296 Attribute::NoUnwind,
1297 // Skip non-throwing functions.
1298 [](const Function &F) { return F.doesNotThrow(); },
1299 // Instructions that break non-throwing assumption.
1300 [SCCNodes](Instruction &I) {
1301 return InstrBreaksNonThrowing(I, SCCNodes);
1303 [](Function &F) {
1304 LLVM_DEBUG(dbgs()
1305 << "Adding nounwind attr to fn " << F.getName() << "\n");
1306 F.setDoesNotThrow();
1307 ++NumNoUnwind;
1309 /* RequiresExactDefinition= */ true});
1311 if (!DisableNoFreeInference)
1312 // Request to infer nofree attribute for all the functions in the SCC if
1313 // every callsite within the SCC does not directly or indirectly free
1314 // memory (except for calls to functions within the SCC). Note that nofree
1315 // attribute suffers from derefinement - results may change depending on
1316 // how functions are optimized. Thus it can be inferred only from exact
1317 // definitions.
1318 AI.registerAttrInference(AttributeInferer::InferenceDescriptor{
1319 Attribute::NoFree,
1320 // Skip functions known not to free memory.
1321 [](const Function &F) { return F.doesNotFreeMemory(); },
1322 // Instructions that break non-deallocating assumption.
1323 [SCCNodes](Instruction &I) {
1324 return InstrBreaksNoFree(I, SCCNodes);
1326 [](Function &F) {
1327 LLVM_DEBUG(dbgs()
1328 << "Adding nofree attr to fn " << F.getName() << "\n");
1329 F.setDoesNotFreeMemory();
1330 ++NumNoFree;
1332 /* RequiresExactDefinition= */ true});
1334 // Perform all the requested attribute inference actions.
1335 return AI.run(SCCNodes);
1338 static bool setDoesNotRecurse(Function &F) {
1339 if (F.doesNotRecurse())
1340 return false;
1341 F.setDoesNotRecurse();
1342 ++NumNoRecurse;
1343 return true;
1346 static bool addNoRecurseAttrs(const SCCNodeSet &SCCNodes) {
1347 // Try and identify functions that do not recurse.
1349 // If the SCC contains multiple nodes we know for sure there is recursion.
1350 if (SCCNodes.size() != 1)
1351 return false;
1353 Function *F = *SCCNodes.begin();
1354 if (!F || !F->hasExactDefinition() || F->doesNotRecurse())
1355 return false;
1357 // If all of the calls in F are identifiable and are to norecurse functions, F
1358 // is norecurse. This check also detects self-recursion as F is not currently
1359 // marked norecurse, so any called from F to F will not be marked norecurse.
1360 for (auto &BB : *F)
1361 for (auto &I : BB.instructionsWithoutDebug())
1362 if (auto CS = CallSite(&I)) {
1363 Function *Callee = CS.getCalledFunction();
1364 if (!Callee || Callee == F || !Callee->doesNotRecurse())
1365 // Function calls a potentially recursive function.
1366 return false;
1369 // Every call was to a non-recursive function other than this function, and
1370 // we have no indirect recursion as the SCC size is one. This function cannot
1371 // recurse.
1372 return setDoesNotRecurse(*F);
1375 template <typename AARGetterT>
1376 static bool deriveAttrsInPostOrder(SCCNodeSet &SCCNodes,
1377 AARGetterT &&AARGetter,
1378 bool HasUnknownCall) {
1379 bool Changed = false;
1381 // Bail if the SCC only contains optnone functions.
1382 if (SCCNodes.empty())
1383 return Changed;
1385 Changed |= addArgumentReturnedAttrs(SCCNodes);
1386 Changed |= addReadAttrs(SCCNodes, AARGetter);
1387 Changed |= addArgumentAttrs(SCCNodes);
1389 // If we have no external nodes participating in the SCC, we can deduce some
1390 // more precise attributes as well.
1391 if (!HasUnknownCall) {
1392 Changed |= addNoAliasAttrs(SCCNodes);
1393 Changed |= addNonNullAttrs(SCCNodes);
1394 Changed |= inferAttrsFromFunctionBodies(SCCNodes);
1395 Changed |= addNoRecurseAttrs(SCCNodes);
1398 return Changed;
1401 PreservedAnalyses PostOrderFunctionAttrsPass::run(LazyCallGraph::SCC &C,
1402 CGSCCAnalysisManager &AM,
1403 LazyCallGraph &CG,
1404 CGSCCUpdateResult &) {
1405 FunctionAnalysisManager &FAM =
1406 AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
1408 // We pass a lambda into functions to wire them up to the analysis manager
1409 // for getting function analyses.
1410 auto AARGetter = [&](Function &F) -> AAResults & {
1411 return FAM.getResult<AAManager>(F);
1414 // Fill SCCNodes with the elements of the SCC. Also track whether there are
1415 // any external or opt-none nodes that will prevent us from optimizing any
1416 // part of the SCC.
1417 SCCNodeSet SCCNodes;
1418 bool HasUnknownCall = false;
1419 for (LazyCallGraph::Node &N : C) {
1420 Function &F = N.getFunction();
1421 if (F.hasOptNone() || F.hasFnAttribute(Attribute::Naked)) {
1422 // Treat any function we're trying not to optimize as if it were an
1423 // indirect call and omit it from the node set used below.
1424 HasUnknownCall = true;
1425 continue;
1427 // Track whether any functions in this SCC have an unknown call edge.
1428 // Note: if this is ever a performance hit, we can common it with
1429 // subsequent routines which also do scans over the instructions of the
1430 // function.
1431 if (!HasUnknownCall)
1432 for (Instruction &I : instructions(F))
1433 if (auto CS = CallSite(&I))
1434 if (!CS.getCalledFunction()) {
1435 HasUnknownCall = true;
1436 break;
1439 SCCNodes.insert(&F);
1442 if (deriveAttrsInPostOrder(SCCNodes, AARGetter, HasUnknownCall))
1443 return PreservedAnalyses::none();
1445 return PreservedAnalyses::all();
1448 namespace {
1450 struct PostOrderFunctionAttrsLegacyPass : public CallGraphSCCPass {
1451 // Pass identification, replacement for typeid
1452 static char ID;
1454 PostOrderFunctionAttrsLegacyPass() : CallGraphSCCPass(ID) {
1455 initializePostOrderFunctionAttrsLegacyPassPass(
1456 *PassRegistry::getPassRegistry());
1459 bool runOnSCC(CallGraphSCC &SCC) override;
1461 void getAnalysisUsage(AnalysisUsage &AU) const override {
1462 AU.setPreservesCFG();
1463 AU.addRequired<AssumptionCacheTracker>();
1464 getAAResultsAnalysisUsage(AU);
1465 CallGraphSCCPass::getAnalysisUsage(AU);
1469 } // end anonymous namespace
1471 char PostOrderFunctionAttrsLegacyPass::ID = 0;
1472 INITIALIZE_PASS_BEGIN(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1473 "Deduce function attributes", false, false)
1474 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
1475 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1476 INITIALIZE_PASS_END(PostOrderFunctionAttrsLegacyPass, "functionattrs",
1477 "Deduce function attributes", false, false)
1479 Pass *llvm::createPostOrderFunctionAttrsLegacyPass() {
1480 return new PostOrderFunctionAttrsLegacyPass();
1483 template <typename AARGetterT>
1484 static bool runImpl(CallGraphSCC &SCC, AARGetterT AARGetter) {
1486 // Fill SCCNodes with the elements of the SCC. Used for quickly looking up
1487 // whether a given CallGraphNode is in this SCC. Also track whether there are
1488 // any external or opt-none nodes that will prevent us from optimizing any
1489 // part of the SCC.
1490 SCCNodeSet SCCNodes;
1491 bool ExternalNode = false;
1492 for (CallGraphNode *I : SCC) {
1493 Function *F = I->getFunction();
1494 if (!F || F->hasOptNone() || F->hasFnAttribute(Attribute::Naked)) {
1495 // External node or function we're trying not to optimize - we both avoid
1496 // transform them and avoid leveraging information they provide.
1497 ExternalNode = true;
1498 continue;
1501 SCCNodes.insert(F);
1504 return deriveAttrsInPostOrder(SCCNodes, AARGetter, ExternalNode);
1507 bool PostOrderFunctionAttrsLegacyPass::runOnSCC(CallGraphSCC &SCC) {
1508 if (skipSCC(SCC))
1509 return false;
1510 return runImpl(SCC, LegacyAARGetter(*this));
1513 namespace {
1515 struct ReversePostOrderFunctionAttrsLegacyPass : public ModulePass {
1516 // Pass identification, replacement for typeid
1517 static char ID;
1519 ReversePostOrderFunctionAttrsLegacyPass() : ModulePass(ID) {
1520 initializeReversePostOrderFunctionAttrsLegacyPassPass(
1521 *PassRegistry::getPassRegistry());
1524 bool runOnModule(Module &M) override;
1526 void getAnalysisUsage(AnalysisUsage &AU) const override {
1527 AU.setPreservesCFG();
1528 AU.addRequired<CallGraphWrapperPass>();
1529 AU.addPreserved<CallGraphWrapperPass>();
1533 } // end anonymous namespace
1535 char ReversePostOrderFunctionAttrsLegacyPass::ID = 0;
1537 INITIALIZE_PASS_BEGIN(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1538 "Deduce function attributes in RPO", false, false)
1539 INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)
1540 INITIALIZE_PASS_END(ReversePostOrderFunctionAttrsLegacyPass, "rpo-functionattrs",
1541 "Deduce function attributes in RPO", false, false)
1543 Pass *llvm::createReversePostOrderFunctionAttrsPass() {
1544 return new ReversePostOrderFunctionAttrsLegacyPass();
1547 static bool addNoRecurseAttrsTopDown(Function &F) {
1548 // We check the preconditions for the function prior to calling this to avoid
1549 // the cost of building up a reversible post-order list. We assert them here
1550 // to make sure none of the invariants this relies on were violated.
1551 assert(!F.isDeclaration() && "Cannot deduce norecurse without a definition!");
1552 assert(!F.doesNotRecurse() &&
1553 "This function has already been deduced as norecurs!");
1554 assert(F.hasInternalLinkage() &&
1555 "Can only do top-down deduction for internal linkage functions!");
1557 // If F is internal and all of its uses are calls from a non-recursive
1558 // functions, then none of its calls could in fact recurse without going
1559 // through a function marked norecurse, and so we can mark this function too
1560 // as norecurse. Note that the uses must actually be calls -- otherwise
1561 // a pointer to this function could be returned from a norecurse function but
1562 // this function could be recursively (indirectly) called. Note that this
1563 // also detects if F is directly recursive as F is not yet marked as
1564 // a norecurse function.
1565 for (auto *U : F.users()) {
1566 auto *I = dyn_cast<Instruction>(U);
1567 if (!I)
1568 return false;
1569 CallSite CS(I);
1570 if (!CS || !CS.getParent()->getParent()->doesNotRecurse())
1571 return false;
1573 return setDoesNotRecurse(F);
1576 static bool deduceFunctionAttributeInRPO(Module &M, CallGraph &CG) {
1577 // We only have a post-order SCC traversal (because SCCs are inherently
1578 // discovered in post-order), so we accumulate them in a vector and then walk
1579 // it in reverse. This is simpler than using the RPO iterator infrastructure
1580 // because we need to combine SCC detection and the PO walk of the call
1581 // graph. We can also cheat egregiously because we're primarily interested in
1582 // synthesizing norecurse and so we can only save the singular SCCs as SCCs
1583 // with multiple functions in them will clearly be recursive.
1584 SmallVector<Function *, 16> Worklist;
1585 for (scc_iterator<CallGraph *> I = scc_begin(&CG); !I.isAtEnd(); ++I) {
1586 if (I->size() != 1)
1587 continue;
1589 Function *F = I->front()->getFunction();
1590 if (F && !F->isDeclaration() && !F->doesNotRecurse() &&
1591 F->hasInternalLinkage())
1592 Worklist.push_back(F);
1595 bool Changed = false;
1596 for (auto *F : llvm::reverse(Worklist))
1597 Changed |= addNoRecurseAttrsTopDown(*F);
1599 return Changed;
1602 bool ReversePostOrderFunctionAttrsLegacyPass::runOnModule(Module &M) {
1603 if (skipModule(M))
1604 return false;
1606 auto &CG = getAnalysis<CallGraphWrapperPass>().getCallGraph();
1608 return deduceFunctionAttributeInRPO(M, CG);
1611 PreservedAnalyses
1612 ReversePostOrderFunctionAttrsPass::run(Module &M, ModuleAnalysisManager &AM) {
1613 auto &CG = AM.getResult<CallGraphAnalysis>(M);
1615 if (!deduceFunctionAttributeInRPO(M, CG))
1616 return PreservedAnalyses::all();
1618 PreservedAnalyses PA;
1619 PA.preserve<CallGraphAnalysis>();
1620 return PA;