[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineAddSub.cpp
blob9d640e849dc1d2aa389a23e5221e5c5c3bad5dd2
1 //===- InstCombineAddSub.cpp ------------------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visit functions for add, fadd, sub, and fsub.
11 //===----------------------------------------------------------------------===//
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APFloat.h"
15 #include "llvm/ADT/APInt.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/ValueTracking.h"
20 #include "llvm/IR/Constant.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/InstrTypes.h"
23 #include "llvm/IR/Instruction.h"
24 #include "llvm/IR/Instructions.h"
25 #include "llvm/IR/Operator.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/IR/Type.h"
28 #include "llvm/IR/Value.h"
29 #include "llvm/Support/AlignOf.h"
30 #include "llvm/Support/Casting.h"
31 #include "llvm/Support/KnownBits.h"
32 #include <cassert>
33 #include <utility>
35 using namespace llvm;
36 using namespace PatternMatch;
38 #define DEBUG_TYPE "instcombine"
40 namespace {
42 /// Class representing coefficient of floating-point addend.
43 /// This class needs to be highly efficient, which is especially true for
44 /// the constructor. As of I write this comment, the cost of the default
45 /// constructor is merely 4-byte-store-zero (Assuming compiler is able to
46 /// perform write-merging).
47 ///
48 class FAddendCoef {
49 public:
50 // The constructor has to initialize a APFloat, which is unnecessary for
51 // most addends which have coefficient either 1 or -1. So, the constructor
52 // is expensive. In order to avoid the cost of the constructor, we should
53 // reuse some instances whenever possible. The pre-created instances
54 // FAddCombine::Add[0-5] embodies this idea.
55 FAddendCoef() = default;
56 ~FAddendCoef();
58 // If possible, don't define operator+/operator- etc because these
59 // operators inevitably call FAddendCoef's constructor which is not cheap.
60 void operator=(const FAddendCoef &A);
61 void operator+=(const FAddendCoef &A);
62 void operator*=(const FAddendCoef &S);
64 void set(short C) {
65 assert(!insaneIntVal(C) && "Insane coefficient");
66 IsFp = false; IntVal = C;
69 void set(const APFloat& C);
71 void negate();
73 bool isZero() const { return isInt() ? !IntVal : getFpVal().isZero(); }
74 Value *getValue(Type *) const;
76 bool isOne() const { return isInt() && IntVal == 1; }
77 bool isTwo() const { return isInt() && IntVal == 2; }
78 bool isMinusOne() const { return isInt() && IntVal == -1; }
79 bool isMinusTwo() const { return isInt() && IntVal == -2; }
81 private:
82 bool insaneIntVal(int V) { return V > 4 || V < -4; }
84 APFloat *getFpValPtr()
85 { return reinterpret_cast<APFloat *>(&FpValBuf.buffer[0]); }
87 const APFloat *getFpValPtr() const
88 { return reinterpret_cast<const APFloat *>(&FpValBuf.buffer[0]); }
90 const APFloat &getFpVal() const {
91 assert(IsFp && BufHasFpVal && "Incorret state");
92 return *getFpValPtr();
95 APFloat &getFpVal() {
96 assert(IsFp && BufHasFpVal && "Incorret state");
97 return *getFpValPtr();
100 bool isInt() const { return !IsFp; }
102 // If the coefficient is represented by an integer, promote it to a
103 // floating point.
104 void convertToFpType(const fltSemantics &Sem);
106 // Construct an APFloat from a signed integer.
107 // TODO: We should get rid of this function when APFloat can be constructed
108 // from an *SIGNED* integer.
109 APFloat createAPFloatFromInt(const fltSemantics &Sem, int Val);
111 bool IsFp = false;
113 // True iff FpValBuf contains an instance of APFloat.
114 bool BufHasFpVal = false;
116 // The integer coefficient of an individual addend is either 1 or -1,
117 // and we try to simplify at most 4 addends from neighboring at most
118 // two instructions. So the range of <IntVal> falls in [-4, 4]. APInt
119 // is overkill of this end.
120 short IntVal = 0;
122 AlignedCharArrayUnion<APFloat> FpValBuf;
125 /// FAddend is used to represent floating-point addend. An addend is
126 /// represented as <C, V>, where the V is a symbolic value, and C is a
127 /// constant coefficient. A constant addend is represented as <C, 0>.
128 class FAddend {
129 public:
130 FAddend() = default;
132 void operator+=(const FAddend &T) {
133 assert((Val == T.Val) && "Symbolic-values disagree");
134 Coeff += T.Coeff;
137 Value *getSymVal() const { return Val; }
138 const FAddendCoef &getCoef() const { return Coeff; }
140 bool isConstant() const { return Val == nullptr; }
141 bool isZero() const { return Coeff.isZero(); }
143 void set(short Coefficient, Value *V) {
144 Coeff.set(Coefficient);
145 Val = V;
147 void set(const APFloat &Coefficient, Value *V) {
148 Coeff.set(Coefficient);
149 Val = V;
151 void set(const ConstantFP *Coefficient, Value *V) {
152 Coeff.set(Coefficient->getValueAPF());
153 Val = V;
156 void negate() { Coeff.negate(); }
158 /// Drill down the U-D chain one step to find the definition of V, and
159 /// try to break the definition into one or two addends.
160 static unsigned drillValueDownOneStep(Value* V, FAddend &A0, FAddend &A1);
162 /// Similar to FAddend::drillDownOneStep() except that the value being
163 /// splitted is the addend itself.
164 unsigned drillAddendDownOneStep(FAddend &Addend0, FAddend &Addend1) const;
166 private:
167 void Scale(const FAddendCoef& ScaleAmt) { Coeff *= ScaleAmt; }
169 // This addend has the value of "Coeff * Val".
170 Value *Val = nullptr;
171 FAddendCoef Coeff;
174 /// FAddCombine is the class for optimizing an unsafe fadd/fsub along
175 /// with its neighboring at most two instructions.
177 class FAddCombine {
178 public:
179 FAddCombine(InstCombiner::BuilderTy &B) : Builder(B) {}
181 Value *simplify(Instruction *FAdd);
183 private:
184 using AddendVect = SmallVector<const FAddend *, 4>;
186 Value *simplifyFAdd(AddendVect& V, unsigned InstrQuota);
188 /// Convert given addend to a Value
189 Value *createAddendVal(const FAddend &A, bool& NeedNeg);
191 /// Return the number of instructions needed to emit the N-ary addition.
192 unsigned calcInstrNumber(const AddendVect& Vect);
194 Value *createFSub(Value *Opnd0, Value *Opnd1);
195 Value *createFAdd(Value *Opnd0, Value *Opnd1);
196 Value *createFMul(Value *Opnd0, Value *Opnd1);
197 Value *createFNeg(Value *V);
198 Value *createNaryFAdd(const AddendVect& Opnds, unsigned InstrQuota);
199 void createInstPostProc(Instruction *NewInst, bool NoNumber = false);
201 // Debugging stuff are clustered here.
202 #ifndef NDEBUG
203 unsigned CreateInstrNum;
204 void initCreateInstNum() { CreateInstrNum = 0; }
205 void incCreateInstNum() { CreateInstrNum++; }
206 #else
207 void initCreateInstNum() {}
208 void incCreateInstNum() {}
209 #endif
211 InstCombiner::BuilderTy &Builder;
212 Instruction *Instr = nullptr;
215 } // end anonymous namespace
217 //===----------------------------------------------------------------------===//
219 // Implementation of
220 // {FAddendCoef, FAddend, FAddition, FAddCombine}.
222 //===----------------------------------------------------------------------===//
223 FAddendCoef::~FAddendCoef() {
224 if (BufHasFpVal)
225 getFpValPtr()->~APFloat();
228 void FAddendCoef::set(const APFloat& C) {
229 APFloat *P = getFpValPtr();
231 if (isInt()) {
232 // As the buffer is meanless byte stream, we cannot call
233 // APFloat::operator=().
234 new(P) APFloat(C);
235 } else
236 *P = C;
238 IsFp = BufHasFpVal = true;
241 void FAddendCoef::convertToFpType(const fltSemantics &Sem) {
242 if (!isInt())
243 return;
245 APFloat *P = getFpValPtr();
246 if (IntVal > 0)
247 new(P) APFloat(Sem, IntVal);
248 else {
249 new(P) APFloat(Sem, 0 - IntVal);
250 P->changeSign();
252 IsFp = BufHasFpVal = true;
255 APFloat FAddendCoef::createAPFloatFromInt(const fltSemantics &Sem, int Val) {
256 if (Val >= 0)
257 return APFloat(Sem, Val);
259 APFloat T(Sem, 0 - Val);
260 T.changeSign();
262 return T;
265 void FAddendCoef::operator=(const FAddendCoef &That) {
266 if (That.isInt())
267 set(That.IntVal);
268 else
269 set(That.getFpVal());
272 void FAddendCoef::operator+=(const FAddendCoef &That) {
273 enum APFloat::roundingMode RndMode = APFloat::rmNearestTiesToEven;
274 if (isInt() == That.isInt()) {
275 if (isInt())
276 IntVal += That.IntVal;
277 else
278 getFpVal().add(That.getFpVal(), RndMode);
279 return;
282 if (isInt()) {
283 const APFloat &T = That.getFpVal();
284 convertToFpType(T.getSemantics());
285 getFpVal().add(T, RndMode);
286 return;
289 APFloat &T = getFpVal();
290 T.add(createAPFloatFromInt(T.getSemantics(), That.IntVal), RndMode);
293 void FAddendCoef::operator*=(const FAddendCoef &That) {
294 if (That.isOne())
295 return;
297 if (That.isMinusOne()) {
298 negate();
299 return;
302 if (isInt() && That.isInt()) {
303 int Res = IntVal * (int)That.IntVal;
304 assert(!insaneIntVal(Res) && "Insane int value");
305 IntVal = Res;
306 return;
309 const fltSemantics &Semantic =
310 isInt() ? That.getFpVal().getSemantics() : getFpVal().getSemantics();
312 if (isInt())
313 convertToFpType(Semantic);
314 APFloat &F0 = getFpVal();
316 if (That.isInt())
317 F0.multiply(createAPFloatFromInt(Semantic, That.IntVal),
318 APFloat::rmNearestTiesToEven);
319 else
320 F0.multiply(That.getFpVal(), APFloat::rmNearestTiesToEven);
323 void FAddendCoef::negate() {
324 if (isInt())
325 IntVal = 0 - IntVal;
326 else
327 getFpVal().changeSign();
330 Value *FAddendCoef::getValue(Type *Ty) const {
331 return isInt() ?
332 ConstantFP::get(Ty, float(IntVal)) :
333 ConstantFP::get(Ty->getContext(), getFpVal());
336 // The definition of <Val> Addends
337 // =========================================
338 // A + B <1, A>, <1,B>
339 // A - B <1, A>, <1,B>
340 // 0 - B <-1, B>
341 // C * A, <C, A>
342 // A + C <1, A> <C, NULL>
343 // 0 +/- 0 <0, NULL> (corner case)
345 // Legend: A and B are not constant, C is constant
346 unsigned FAddend::drillValueDownOneStep
347 (Value *Val, FAddend &Addend0, FAddend &Addend1) {
348 Instruction *I = nullptr;
349 if (!Val || !(I = dyn_cast<Instruction>(Val)))
350 return 0;
352 unsigned Opcode = I->getOpcode();
354 if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub) {
355 ConstantFP *C0, *C1;
356 Value *Opnd0 = I->getOperand(0);
357 Value *Opnd1 = I->getOperand(1);
358 if ((C0 = dyn_cast<ConstantFP>(Opnd0)) && C0->isZero())
359 Opnd0 = nullptr;
361 if ((C1 = dyn_cast<ConstantFP>(Opnd1)) && C1->isZero())
362 Opnd1 = nullptr;
364 if (Opnd0) {
365 if (!C0)
366 Addend0.set(1, Opnd0);
367 else
368 Addend0.set(C0, nullptr);
371 if (Opnd1) {
372 FAddend &Addend = Opnd0 ? Addend1 : Addend0;
373 if (!C1)
374 Addend.set(1, Opnd1);
375 else
376 Addend.set(C1, nullptr);
377 if (Opcode == Instruction::FSub)
378 Addend.negate();
381 if (Opnd0 || Opnd1)
382 return Opnd0 && Opnd1 ? 2 : 1;
384 // Both operands are zero. Weird!
385 Addend0.set(APFloat(C0->getValueAPF().getSemantics()), nullptr);
386 return 1;
389 if (I->getOpcode() == Instruction::FMul) {
390 Value *V0 = I->getOperand(0);
391 Value *V1 = I->getOperand(1);
392 if (ConstantFP *C = dyn_cast<ConstantFP>(V0)) {
393 Addend0.set(C, V1);
394 return 1;
397 if (ConstantFP *C = dyn_cast<ConstantFP>(V1)) {
398 Addend0.set(C, V0);
399 return 1;
403 return 0;
406 // Try to break *this* addend into two addends. e.g. Suppose this addend is
407 // <2.3, V>, and V = X + Y, by calling this function, we obtain two addends,
408 // i.e. <2.3, X> and <2.3, Y>.
409 unsigned FAddend::drillAddendDownOneStep
410 (FAddend &Addend0, FAddend &Addend1) const {
411 if (isConstant())
412 return 0;
414 unsigned BreakNum = FAddend::drillValueDownOneStep(Val, Addend0, Addend1);
415 if (!BreakNum || Coeff.isOne())
416 return BreakNum;
418 Addend0.Scale(Coeff);
420 if (BreakNum == 2)
421 Addend1.Scale(Coeff);
423 return BreakNum;
426 Value *FAddCombine::simplify(Instruction *I) {
427 assert(I->hasAllowReassoc() && I->hasNoSignedZeros() &&
428 "Expected 'reassoc'+'nsz' instruction");
430 // Currently we are not able to handle vector type.
431 if (I->getType()->isVectorTy())
432 return nullptr;
434 assert((I->getOpcode() == Instruction::FAdd ||
435 I->getOpcode() == Instruction::FSub) && "Expect add/sub");
437 // Save the instruction before calling other member-functions.
438 Instr = I;
440 FAddend Opnd0, Opnd1, Opnd0_0, Opnd0_1, Opnd1_0, Opnd1_1;
442 unsigned OpndNum = FAddend::drillValueDownOneStep(I, Opnd0, Opnd1);
444 // Step 1: Expand the 1st addend into Opnd0_0 and Opnd0_1.
445 unsigned Opnd0_ExpNum = 0;
446 unsigned Opnd1_ExpNum = 0;
448 if (!Opnd0.isConstant())
449 Opnd0_ExpNum = Opnd0.drillAddendDownOneStep(Opnd0_0, Opnd0_1);
451 // Step 2: Expand the 2nd addend into Opnd1_0 and Opnd1_1.
452 if (OpndNum == 2 && !Opnd1.isConstant())
453 Opnd1_ExpNum = Opnd1.drillAddendDownOneStep(Opnd1_0, Opnd1_1);
455 // Step 3: Try to optimize Opnd0_0 + Opnd0_1 + Opnd1_0 + Opnd1_1
456 if (Opnd0_ExpNum && Opnd1_ExpNum) {
457 AddendVect AllOpnds;
458 AllOpnds.push_back(&Opnd0_0);
459 AllOpnds.push_back(&Opnd1_0);
460 if (Opnd0_ExpNum == 2)
461 AllOpnds.push_back(&Opnd0_1);
462 if (Opnd1_ExpNum == 2)
463 AllOpnds.push_back(&Opnd1_1);
465 // Compute instruction quota. We should save at least one instruction.
466 unsigned InstQuota = 0;
468 Value *V0 = I->getOperand(0);
469 Value *V1 = I->getOperand(1);
470 InstQuota = ((!isa<Constant>(V0) && V0->hasOneUse()) &&
471 (!isa<Constant>(V1) && V1->hasOneUse())) ? 2 : 1;
473 if (Value *R = simplifyFAdd(AllOpnds, InstQuota))
474 return R;
477 if (OpndNum != 2) {
478 // The input instruction is : "I=0.0 +/- V". If the "V" were able to be
479 // splitted into two addends, say "V = X - Y", the instruction would have
480 // been optimized into "I = Y - X" in the previous steps.
482 const FAddendCoef &CE = Opnd0.getCoef();
483 return CE.isOne() ? Opnd0.getSymVal() : nullptr;
486 // step 4: Try to optimize Opnd0 + Opnd1_0 [+ Opnd1_1]
487 if (Opnd1_ExpNum) {
488 AddendVect AllOpnds;
489 AllOpnds.push_back(&Opnd0);
490 AllOpnds.push_back(&Opnd1_0);
491 if (Opnd1_ExpNum == 2)
492 AllOpnds.push_back(&Opnd1_1);
494 if (Value *R = simplifyFAdd(AllOpnds, 1))
495 return R;
498 // step 5: Try to optimize Opnd1 + Opnd0_0 [+ Opnd0_1]
499 if (Opnd0_ExpNum) {
500 AddendVect AllOpnds;
501 AllOpnds.push_back(&Opnd1);
502 AllOpnds.push_back(&Opnd0_0);
503 if (Opnd0_ExpNum == 2)
504 AllOpnds.push_back(&Opnd0_1);
506 if (Value *R = simplifyFAdd(AllOpnds, 1))
507 return R;
510 return nullptr;
513 Value *FAddCombine::simplifyFAdd(AddendVect& Addends, unsigned InstrQuota) {
514 unsigned AddendNum = Addends.size();
515 assert(AddendNum <= 4 && "Too many addends");
517 // For saving intermediate results;
518 unsigned NextTmpIdx = 0;
519 FAddend TmpResult[3];
521 // Points to the constant addend of the resulting simplified expression.
522 // If the resulting expr has constant-addend, this constant-addend is
523 // desirable to reside at the top of the resulting expression tree. Placing
524 // constant close to supper-expr(s) will potentially reveal some optimization
525 // opportunities in super-expr(s).
526 const FAddend *ConstAdd = nullptr;
528 // Simplified addends are placed <SimpVect>.
529 AddendVect SimpVect;
531 // The outer loop works on one symbolic-value at a time. Suppose the input
532 // addends are : <a1, x>, <b1, y>, <a2, x>, <c1, z>, <b2, y>, ...
533 // The symbolic-values will be processed in this order: x, y, z.
534 for (unsigned SymIdx = 0; SymIdx < AddendNum; SymIdx++) {
536 const FAddend *ThisAddend = Addends[SymIdx];
537 if (!ThisAddend) {
538 // This addend was processed before.
539 continue;
542 Value *Val = ThisAddend->getSymVal();
543 unsigned StartIdx = SimpVect.size();
544 SimpVect.push_back(ThisAddend);
546 // The inner loop collects addends sharing same symbolic-value, and these
547 // addends will be later on folded into a single addend. Following above
548 // example, if the symbolic value "y" is being processed, the inner loop
549 // will collect two addends "<b1,y>" and "<b2,Y>". These two addends will
550 // be later on folded into "<b1+b2, y>".
551 for (unsigned SameSymIdx = SymIdx + 1;
552 SameSymIdx < AddendNum; SameSymIdx++) {
553 const FAddend *T = Addends[SameSymIdx];
554 if (T && T->getSymVal() == Val) {
555 // Set null such that next iteration of the outer loop will not process
556 // this addend again.
557 Addends[SameSymIdx] = nullptr;
558 SimpVect.push_back(T);
562 // If multiple addends share same symbolic value, fold them together.
563 if (StartIdx + 1 != SimpVect.size()) {
564 FAddend &R = TmpResult[NextTmpIdx ++];
565 R = *SimpVect[StartIdx];
566 for (unsigned Idx = StartIdx + 1; Idx < SimpVect.size(); Idx++)
567 R += *SimpVect[Idx];
569 // Pop all addends being folded and push the resulting folded addend.
570 SimpVect.resize(StartIdx);
571 if (Val) {
572 if (!R.isZero()) {
573 SimpVect.push_back(&R);
575 } else {
576 // Don't push constant addend at this time. It will be the last element
577 // of <SimpVect>.
578 ConstAdd = &R;
583 assert((NextTmpIdx <= array_lengthof(TmpResult) + 1) &&
584 "out-of-bound access");
586 if (ConstAdd)
587 SimpVect.push_back(ConstAdd);
589 Value *Result;
590 if (!SimpVect.empty())
591 Result = createNaryFAdd(SimpVect, InstrQuota);
592 else {
593 // The addition is folded to 0.0.
594 Result = ConstantFP::get(Instr->getType(), 0.0);
597 return Result;
600 Value *FAddCombine::createNaryFAdd
601 (const AddendVect &Opnds, unsigned InstrQuota) {
602 assert(!Opnds.empty() && "Expect at least one addend");
604 // Step 1: Check if the # of instructions needed exceeds the quota.
606 unsigned InstrNeeded = calcInstrNumber(Opnds);
607 if (InstrNeeded > InstrQuota)
608 return nullptr;
610 initCreateInstNum();
612 // step 2: Emit the N-ary addition.
613 // Note that at most three instructions are involved in Fadd-InstCombine: the
614 // addition in question, and at most two neighboring instructions.
615 // The resulting optimized addition should have at least one less instruction
616 // than the original addition expression tree. This implies that the resulting
617 // N-ary addition has at most two instructions, and we don't need to worry
618 // about tree-height when constructing the N-ary addition.
620 Value *LastVal = nullptr;
621 bool LastValNeedNeg = false;
623 // Iterate the addends, creating fadd/fsub using adjacent two addends.
624 for (const FAddend *Opnd : Opnds) {
625 bool NeedNeg;
626 Value *V = createAddendVal(*Opnd, NeedNeg);
627 if (!LastVal) {
628 LastVal = V;
629 LastValNeedNeg = NeedNeg;
630 continue;
633 if (LastValNeedNeg == NeedNeg) {
634 LastVal = createFAdd(LastVal, V);
635 continue;
638 if (LastValNeedNeg)
639 LastVal = createFSub(V, LastVal);
640 else
641 LastVal = createFSub(LastVal, V);
643 LastValNeedNeg = false;
646 if (LastValNeedNeg) {
647 LastVal = createFNeg(LastVal);
650 #ifndef NDEBUG
651 assert(CreateInstrNum == InstrNeeded &&
652 "Inconsistent in instruction numbers");
653 #endif
655 return LastVal;
658 Value *FAddCombine::createFSub(Value *Opnd0, Value *Opnd1) {
659 Value *V = Builder.CreateFSub(Opnd0, Opnd1);
660 if (Instruction *I = dyn_cast<Instruction>(V))
661 createInstPostProc(I);
662 return V;
665 Value *FAddCombine::createFNeg(Value *V) {
666 Value *Zero = cast<Value>(ConstantFP::getZeroValueForNegation(V->getType()));
667 Value *NewV = createFSub(Zero, V);
668 if (Instruction *I = dyn_cast<Instruction>(NewV))
669 createInstPostProc(I, true); // fneg's don't receive instruction numbers.
670 return NewV;
673 Value *FAddCombine::createFAdd(Value *Opnd0, Value *Opnd1) {
674 Value *V = Builder.CreateFAdd(Opnd0, Opnd1);
675 if (Instruction *I = dyn_cast<Instruction>(V))
676 createInstPostProc(I);
677 return V;
680 Value *FAddCombine::createFMul(Value *Opnd0, Value *Opnd1) {
681 Value *V = Builder.CreateFMul(Opnd0, Opnd1);
682 if (Instruction *I = dyn_cast<Instruction>(V))
683 createInstPostProc(I);
684 return V;
687 void FAddCombine::createInstPostProc(Instruction *NewInstr, bool NoNumber) {
688 NewInstr->setDebugLoc(Instr->getDebugLoc());
690 // Keep track of the number of instruction created.
691 if (!NoNumber)
692 incCreateInstNum();
694 // Propagate fast-math flags
695 NewInstr->setFastMathFlags(Instr->getFastMathFlags());
698 // Return the number of instruction needed to emit the N-ary addition.
699 // NOTE: Keep this function in sync with createAddendVal().
700 unsigned FAddCombine::calcInstrNumber(const AddendVect &Opnds) {
701 unsigned OpndNum = Opnds.size();
702 unsigned InstrNeeded = OpndNum - 1;
704 // The number of addends in the form of "(-1)*x".
705 unsigned NegOpndNum = 0;
707 // Adjust the number of instructions needed to emit the N-ary add.
708 for (const FAddend *Opnd : Opnds) {
709 if (Opnd->isConstant())
710 continue;
712 // The constant check above is really for a few special constant
713 // coefficients.
714 if (isa<UndefValue>(Opnd->getSymVal()))
715 continue;
717 const FAddendCoef &CE = Opnd->getCoef();
718 if (CE.isMinusOne() || CE.isMinusTwo())
719 NegOpndNum++;
721 // Let the addend be "c * x". If "c == +/-1", the value of the addend
722 // is immediately available; otherwise, it needs exactly one instruction
723 // to evaluate the value.
724 if (!CE.isMinusOne() && !CE.isOne())
725 InstrNeeded++;
727 if (NegOpndNum == OpndNum)
728 InstrNeeded++;
729 return InstrNeeded;
732 // Input Addend Value NeedNeg(output)
733 // ================================================================
734 // Constant C C false
735 // <+/-1, V> V coefficient is -1
736 // <2/-2, V> "fadd V, V" coefficient is -2
737 // <C, V> "fmul V, C" false
739 // NOTE: Keep this function in sync with FAddCombine::calcInstrNumber.
740 Value *FAddCombine::createAddendVal(const FAddend &Opnd, bool &NeedNeg) {
741 const FAddendCoef &Coeff = Opnd.getCoef();
743 if (Opnd.isConstant()) {
744 NeedNeg = false;
745 return Coeff.getValue(Instr->getType());
748 Value *OpndVal = Opnd.getSymVal();
750 if (Coeff.isMinusOne() || Coeff.isOne()) {
751 NeedNeg = Coeff.isMinusOne();
752 return OpndVal;
755 if (Coeff.isTwo() || Coeff.isMinusTwo()) {
756 NeedNeg = Coeff.isMinusTwo();
757 return createFAdd(OpndVal, OpndVal);
760 NeedNeg = false;
761 return createFMul(OpndVal, Coeff.getValue(Instr->getType()));
764 // Checks if any operand is negative and we can convert add to sub.
765 // This function checks for following negative patterns
766 // ADD(XOR(OR(Z, NOT(C)), C)), 1) == NEG(AND(Z, C))
767 // ADD(XOR(AND(Z, C), C), 1) == NEG(OR(Z, ~C))
768 // XOR(AND(Z, C), (C + 1)) == NEG(OR(Z, ~C)) if C is even
769 static Value *checkForNegativeOperand(BinaryOperator &I,
770 InstCombiner::BuilderTy &Builder) {
771 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
773 // This function creates 2 instructions to replace ADD, we need at least one
774 // of LHS or RHS to have one use to ensure benefit in transform.
775 if (!LHS->hasOneUse() && !RHS->hasOneUse())
776 return nullptr;
778 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
779 const APInt *C1 = nullptr, *C2 = nullptr;
781 // if ONE is on other side, swap
782 if (match(RHS, m_Add(m_Value(X), m_One())))
783 std::swap(LHS, RHS);
785 if (match(LHS, m_Add(m_Value(X), m_One()))) {
786 // if XOR on other side, swap
787 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
788 std::swap(X, RHS);
790 if (match(X, m_Xor(m_Value(Y), m_APInt(C1)))) {
791 // X = XOR(Y, C1), Y = OR(Z, C2), C2 = NOT(C1) ==> X == NOT(AND(Z, C1))
792 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, AND(Z, C1))
793 if (match(Y, m_Or(m_Value(Z), m_APInt(C2))) && (*C2 == ~(*C1))) {
794 Value *NewAnd = Builder.CreateAnd(Z, *C1);
795 return Builder.CreateSub(RHS, NewAnd, "sub");
796 } else if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && (*C1 == *C2)) {
797 // X = XOR(Y, C1), Y = AND(Z, C2), C2 == C1 ==> X == NOT(OR(Z, ~C1))
798 // ADD(ADD(X, 1), RHS) == ADD(X, ADD(RHS, 1)) == SUB(RHS, OR(Z, ~C1))
799 Value *NewOr = Builder.CreateOr(Z, ~(*C1));
800 return Builder.CreateSub(RHS, NewOr, "sub");
805 // Restore LHS and RHS
806 LHS = I.getOperand(0);
807 RHS = I.getOperand(1);
809 // if XOR is on other side, swap
810 if (match(RHS, m_Xor(m_Value(Y), m_APInt(C1))))
811 std::swap(LHS, RHS);
813 // C2 is ODD
814 // LHS = XOR(Y, C1), Y = AND(Z, C2), C1 == (C2 + 1) => LHS == NEG(OR(Z, ~C2))
815 // ADD(LHS, RHS) == SUB(RHS, OR(Z, ~C2))
816 if (match(LHS, m_Xor(m_Value(Y), m_APInt(C1))))
817 if (C1->countTrailingZeros() == 0)
818 if (match(Y, m_And(m_Value(Z), m_APInt(C2))) && *C1 == (*C2 + 1)) {
819 Value *NewOr = Builder.CreateOr(Z, ~(*C2));
820 return Builder.CreateSub(RHS, NewOr, "sub");
822 return nullptr;
825 /// Wrapping flags may allow combining constants separated by an extend.
826 static Instruction *foldNoWrapAdd(BinaryOperator &Add,
827 InstCombiner::BuilderTy &Builder) {
828 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
829 Type *Ty = Add.getType();
830 Constant *Op1C;
831 if (!match(Op1, m_Constant(Op1C)))
832 return nullptr;
834 // Try this match first because it results in an add in the narrow type.
835 // (zext (X +nuw C2)) + C1 --> zext (X + (C2 + trunc(C1)))
836 Value *X;
837 const APInt *C1, *C2;
838 if (match(Op1, m_APInt(C1)) &&
839 match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_APInt(C2))))) &&
840 C1->isNegative() && C1->sge(-C2->sext(C1->getBitWidth()))) {
841 Constant *NewC =
842 ConstantInt::get(X->getType(), *C2 + C1->trunc(C2->getBitWidth()));
843 return new ZExtInst(Builder.CreateNUWAdd(X, NewC), Ty);
846 // More general combining of constants in the wide type.
847 // (sext (X +nsw NarrowC)) + C --> (sext X) + (sext(NarrowC) + C)
848 Constant *NarrowC;
849 if (match(Op0, m_OneUse(m_SExt(m_NSWAdd(m_Value(X), m_Constant(NarrowC)))))) {
850 Constant *WideC = ConstantExpr::getSExt(NarrowC, Ty);
851 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
852 Value *WideX = Builder.CreateSExt(X, Ty);
853 return BinaryOperator::CreateAdd(WideX, NewC);
855 // (zext (X +nuw NarrowC)) + C --> (zext X) + (zext(NarrowC) + C)
856 if (match(Op0, m_OneUse(m_ZExt(m_NUWAdd(m_Value(X), m_Constant(NarrowC)))))) {
857 Constant *WideC = ConstantExpr::getZExt(NarrowC, Ty);
858 Constant *NewC = ConstantExpr::getAdd(WideC, Op1C);
859 Value *WideX = Builder.CreateZExt(X, Ty);
860 return BinaryOperator::CreateAdd(WideX, NewC);
863 return nullptr;
866 Instruction *InstCombiner::foldAddWithConstant(BinaryOperator &Add) {
867 Value *Op0 = Add.getOperand(0), *Op1 = Add.getOperand(1);
868 Constant *Op1C;
869 if (!match(Op1, m_Constant(Op1C)))
870 return nullptr;
872 if (Instruction *NV = foldBinOpIntoSelectOrPhi(Add))
873 return NV;
875 Value *X;
876 Constant *Op00C;
878 // add (sub C1, X), C2 --> sub (add C1, C2), X
879 if (match(Op0, m_Sub(m_Constant(Op00C), m_Value(X))))
880 return BinaryOperator::CreateSub(ConstantExpr::getAdd(Op00C, Op1C), X);
882 Value *Y;
884 // add (sub X, Y), -1 --> add (not Y), X
885 if (match(Op0, m_OneUse(m_Sub(m_Value(X), m_Value(Y)))) &&
886 match(Op1, m_AllOnes()))
887 return BinaryOperator::CreateAdd(Builder.CreateNot(Y), X);
889 // zext(bool) + C -> bool ? C + 1 : C
890 if (match(Op0, m_ZExt(m_Value(X))) &&
891 X->getType()->getScalarSizeInBits() == 1)
892 return SelectInst::Create(X, AddOne(Op1C), Op1);
894 // ~X + C --> (C-1) - X
895 if (match(Op0, m_Not(m_Value(X))))
896 return BinaryOperator::CreateSub(SubOne(Op1C), X);
898 const APInt *C;
899 if (!match(Op1, m_APInt(C)))
900 return nullptr;
902 // (X | C2) + C --> (X | C2) ^ C2 iff (C2 == -C)
903 const APInt *C2;
904 if (match(Op0, m_Or(m_Value(), m_APInt(C2))) && *C2 == -*C)
905 return BinaryOperator::CreateXor(Op0, ConstantInt::get(Add.getType(), *C2));
907 if (C->isSignMask()) {
908 // If wrapping is not allowed, then the addition must set the sign bit:
909 // X + (signmask) --> X | signmask
910 if (Add.hasNoSignedWrap() || Add.hasNoUnsignedWrap())
911 return BinaryOperator::CreateOr(Op0, Op1);
913 // If wrapping is allowed, then the addition flips the sign bit of LHS:
914 // X + (signmask) --> X ^ signmask
915 return BinaryOperator::CreateXor(Op0, Op1);
918 // Is this add the last step in a convoluted sext?
919 // add(zext(xor i16 X, -32768), -32768) --> sext X
920 Type *Ty = Add.getType();
921 if (match(Op0, m_ZExt(m_Xor(m_Value(X), m_APInt(C2)))) &&
922 C2->isMinSignedValue() && C2->sext(Ty->getScalarSizeInBits()) == *C)
923 return CastInst::Create(Instruction::SExt, X, Ty);
925 if (C->isOneValue() && Op0->hasOneUse()) {
926 // add (sext i1 X), 1 --> zext (not X)
927 // TODO: The smallest IR representation is (select X, 0, 1), and that would
928 // not require the one-use check. But we need to remove a transform in
929 // visitSelect and make sure that IR value tracking for select is equal or
930 // better than for these ops.
931 if (match(Op0, m_SExt(m_Value(X))) &&
932 X->getType()->getScalarSizeInBits() == 1)
933 return new ZExtInst(Builder.CreateNot(X), Ty);
935 // Shifts and add used to flip and mask off the low bit:
936 // add (ashr (shl i32 X, 31), 31), 1 --> and (not X), 1
937 const APInt *C3;
938 if (match(Op0, m_AShr(m_Shl(m_Value(X), m_APInt(C2)), m_APInt(C3))) &&
939 C2 == C3 && *C2 == Ty->getScalarSizeInBits() - 1) {
940 Value *NotX = Builder.CreateNot(X);
941 return BinaryOperator::CreateAnd(NotX, ConstantInt::get(Ty, 1));
945 return nullptr;
948 // Matches multiplication expression Op * C where C is a constant. Returns the
949 // constant value in C and the other operand in Op. Returns true if such a
950 // match is found.
951 static bool MatchMul(Value *E, Value *&Op, APInt &C) {
952 const APInt *AI;
953 if (match(E, m_Mul(m_Value(Op), m_APInt(AI)))) {
954 C = *AI;
955 return true;
957 if (match(E, m_Shl(m_Value(Op), m_APInt(AI)))) {
958 C = APInt(AI->getBitWidth(), 1);
959 C <<= *AI;
960 return true;
962 return false;
965 // Matches remainder expression Op % C where C is a constant. Returns the
966 // constant value in C and the other operand in Op. Returns the signedness of
967 // the remainder operation in IsSigned. Returns true if such a match is
968 // found.
969 static bool MatchRem(Value *E, Value *&Op, APInt &C, bool &IsSigned) {
970 const APInt *AI;
971 IsSigned = false;
972 if (match(E, m_SRem(m_Value(Op), m_APInt(AI)))) {
973 IsSigned = true;
974 C = *AI;
975 return true;
977 if (match(E, m_URem(m_Value(Op), m_APInt(AI)))) {
978 C = *AI;
979 return true;
981 if (match(E, m_And(m_Value(Op), m_APInt(AI))) && (*AI + 1).isPowerOf2()) {
982 C = *AI + 1;
983 return true;
985 return false;
988 // Matches division expression Op / C with the given signedness as indicated
989 // by IsSigned, where C is a constant. Returns the constant value in C and the
990 // other operand in Op. Returns true if such a match is found.
991 static bool MatchDiv(Value *E, Value *&Op, APInt &C, bool IsSigned) {
992 const APInt *AI;
993 if (IsSigned && match(E, m_SDiv(m_Value(Op), m_APInt(AI)))) {
994 C = *AI;
995 return true;
997 if (!IsSigned) {
998 if (match(E, m_UDiv(m_Value(Op), m_APInt(AI)))) {
999 C = *AI;
1000 return true;
1002 if (match(E, m_LShr(m_Value(Op), m_APInt(AI)))) {
1003 C = APInt(AI->getBitWidth(), 1);
1004 C <<= *AI;
1005 return true;
1008 return false;
1011 // Returns whether C0 * C1 with the given signedness overflows.
1012 static bool MulWillOverflow(APInt &C0, APInt &C1, bool IsSigned) {
1013 bool overflow;
1014 if (IsSigned)
1015 (void)C0.smul_ov(C1, overflow);
1016 else
1017 (void)C0.umul_ov(C1, overflow);
1018 return overflow;
1021 // Simplifies X % C0 + (( X / C0 ) % C1) * C0 to X % (C0 * C1), where (C0 * C1)
1022 // does not overflow.
1023 Value *InstCombiner::SimplifyAddWithRemainder(BinaryOperator &I) {
1024 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1025 Value *X, *MulOpV;
1026 APInt C0, MulOpC;
1027 bool IsSigned;
1028 // Match I = X % C0 + MulOpV * C0
1029 if (((MatchRem(LHS, X, C0, IsSigned) && MatchMul(RHS, MulOpV, MulOpC)) ||
1030 (MatchRem(RHS, X, C0, IsSigned) && MatchMul(LHS, MulOpV, MulOpC))) &&
1031 C0 == MulOpC) {
1032 Value *RemOpV;
1033 APInt C1;
1034 bool Rem2IsSigned;
1035 // Match MulOpC = RemOpV % C1
1036 if (MatchRem(MulOpV, RemOpV, C1, Rem2IsSigned) &&
1037 IsSigned == Rem2IsSigned) {
1038 Value *DivOpV;
1039 APInt DivOpC;
1040 // Match RemOpV = X / C0
1041 if (MatchDiv(RemOpV, DivOpV, DivOpC, IsSigned) && X == DivOpV &&
1042 C0 == DivOpC && !MulWillOverflow(C0, C1, IsSigned)) {
1043 Value *NewDivisor =
1044 ConstantInt::get(X->getType()->getContext(), C0 * C1);
1045 return IsSigned ? Builder.CreateSRem(X, NewDivisor, "srem")
1046 : Builder.CreateURem(X, NewDivisor, "urem");
1051 return nullptr;
1054 /// Fold
1055 /// (1 << NBits) - 1
1056 /// Into:
1057 /// ~(-(1 << NBits))
1058 /// Because a 'not' is better for bit-tracking analysis and other transforms
1059 /// than an 'add'. The new shl is always nsw, and is nuw if old `and` was.
1060 static Instruction *canonicalizeLowbitMask(BinaryOperator &I,
1061 InstCombiner::BuilderTy &Builder) {
1062 Value *NBits;
1063 if (!match(&I, m_Add(m_OneUse(m_Shl(m_One(), m_Value(NBits))), m_AllOnes())))
1064 return nullptr;
1066 Constant *MinusOne = Constant::getAllOnesValue(NBits->getType());
1067 Value *NotMask = Builder.CreateShl(MinusOne, NBits, "notmask");
1068 // Be wary of constant folding.
1069 if (auto *BOp = dyn_cast<BinaryOperator>(NotMask)) {
1070 // Always NSW. But NUW propagates from `add`.
1071 BOp->setHasNoSignedWrap();
1072 BOp->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1075 return BinaryOperator::CreateNot(NotMask, I.getName());
1078 static Instruction *foldToUnsignedSaturatedAdd(BinaryOperator &I) {
1079 assert(I.getOpcode() == Instruction::Add && "Expecting add instruction");
1080 Type *Ty = I.getType();
1081 auto getUAddSat = [&]() {
1082 return Intrinsic::getDeclaration(I.getModule(), Intrinsic::uadd_sat, Ty);
1085 // add (umin X, ~Y), Y --> uaddsat X, Y
1086 Value *X, *Y;
1087 if (match(&I, m_c_Add(m_c_UMin(m_Value(X), m_Not(m_Value(Y))),
1088 m_Deferred(Y))))
1089 return CallInst::Create(getUAddSat(), { X, Y });
1091 // add (umin X, ~C), C --> uaddsat X, C
1092 const APInt *C, *NotC;
1093 if (match(&I, m_Add(m_UMin(m_Value(X), m_APInt(NotC)), m_APInt(C))) &&
1094 *C == ~*NotC)
1095 return CallInst::Create(getUAddSat(), { X, ConstantInt::get(Ty, *C) });
1097 return nullptr;
1100 Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1101 if (Value *V = SimplifyAddInst(I.getOperand(0), I.getOperand(1),
1102 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1103 SQ.getWithInstruction(&I)))
1104 return replaceInstUsesWith(I, V);
1106 if (SimplifyAssociativeOrCommutative(I))
1107 return &I;
1109 if (Instruction *X = foldVectorBinop(I))
1110 return X;
1112 // (A*B)+(A*C) -> A*(B+C) etc
1113 if (Value *V = SimplifyUsingDistributiveLaws(I))
1114 return replaceInstUsesWith(I, V);
1116 if (Instruction *X = foldAddWithConstant(I))
1117 return X;
1119 if (Instruction *X = foldNoWrapAdd(I, Builder))
1120 return X;
1122 // FIXME: This should be moved into the above helper function to allow these
1123 // transforms for general constant or constant splat vectors.
1124 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1125 Type *Ty = I.getType();
1126 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
1127 Value *XorLHS = nullptr; ConstantInt *XorRHS = nullptr;
1128 if (match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1129 unsigned TySizeBits = Ty->getScalarSizeInBits();
1130 const APInt &RHSVal = CI->getValue();
1131 unsigned ExtendAmt = 0;
1132 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1133 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1134 if (XorRHS->getValue() == -RHSVal) {
1135 if (RHSVal.isPowerOf2())
1136 ExtendAmt = TySizeBits - RHSVal.logBase2() - 1;
1137 else if (XorRHS->getValue().isPowerOf2())
1138 ExtendAmt = TySizeBits - XorRHS->getValue().logBase2() - 1;
1141 if (ExtendAmt) {
1142 APInt Mask = APInt::getHighBitsSet(TySizeBits, ExtendAmt);
1143 if (!MaskedValueIsZero(XorLHS, Mask, 0, &I))
1144 ExtendAmt = 0;
1147 if (ExtendAmt) {
1148 Constant *ShAmt = ConstantInt::get(Ty, ExtendAmt);
1149 Value *NewShl = Builder.CreateShl(XorLHS, ShAmt, "sext");
1150 return BinaryOperator::CreateAShr(NewShl, ShAmt);
1153 // If this is a xor that was canonicalized from a sub, turn it back into
1154 // a sub and fuse this add with it.
1155 if (LHS->hasOneUse() && (XorRHS->getValue()+1).isPowerOf2()) {
1156 KnownBits LHSKnown = computeKnownBits(XorLHS, 0, &I);
1157 if ((XorRHS->getValue() | LHSKnown.Zero).isAllOnesValue())
1158 return BinaryOperator::CreateSub(ConstantExpr::getAdd(XorRHS, CI),
1159 XorLHS);
1161 // (X + signmask) + C could have gotten canonicalized to (X^signmask) + C,
1162 // transform them into (X + (signmask ^ C))
1163 if (XorRHS->getValue().isSignMask())
1164 return BinaryOperator::CreateAdd(XorLHS,
1165 ConstantExpr::getXor(XorRHS, CI));
1169 if (Ty->isIntOrIntVectorTy(1))
1170 return BinaryOperator::CreateXor(LHS, RHS);
1172 // X + X --> X << 1
1173 if (LHS == RHS) {
1174 auto *Shl = BinaryOperator::CreateShl(LHS, ConstantInt::get(Ty, 1));
1175 Shl->setHasNoSignedWrap(I.hasNoSignedWrap());
1176 Shl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap());
1177 return Shl;
1180 Value *A, *B;
1181 if (match(LHS, m_Neg(m_Value(A)))) {
1182 // -A + -B --> -(A + B)
1183 if (match(RHS, m_Neg(m_Value(B))))
1184 return BinaryOperator::CreateNeg(Builder.CreateAdd(A, B));
1186 // -A + B --> B - A
1187 return BinaryOperator::CreateSub(RHS, A);
1190 // Canonicalize sext to zext for better value tracking potential.
1191 // add A, sext(B) --> sub A, zext(B)
1192 if (match(&I, m_c_Add(m_Value(A), m_OneUse(m_SExt(m_Value(B))))) &&
1193 B->getType()->isIntOrIntVectorTy(1))
1194 return BinaryOperator::CreateSub(A, Builder.CreateZExt(B, Ty));
1196 // A + -B --> A - B
1197 if (match(RHS, m_Neg(m_Value(B))))
1198 return BinaryOperator::CreateSub(LHS, B);
1200 if (Value *V = checkForNegativeOperand(I, Builder))
1201 return replaceInstUsesWith(I, V);
1203 // (A + 1) + ~B --> A - B
1204 // ~B + (A + 1) --> A - B
1205 // (~B + A) + 1 --> A - B
1206 // (A + ~B) + 1 --> A - B
1207 if (match(&I, m_c_BinOp(m_Add(m_Value(A), m_One()), m_Not(m_Value(B)))) ||
1208 match(&I, m_BinOp(m_c_Add(m_Not(m_Value(B)), m_Value(A)), m_One())))
1209 return BinaryOperator::CreateSub(A, B);
1211 // X % C0 + (( X / C0 ) % C1) * C0 => X % (C0 * C1)
1212 if (Value *V = SimplifyAddWithRemainder(I)) return replaceInstUsesWith(I, V);
1214 // A+B --> A|B iff A and B have no bits set in common.
1215 if (haveNoCommonBitsSet(LHS, RHS, DL, &AC, &I, &DT))
1216 return BinaryOperator::CreateOr(LHS, RHS);
1218 // FIXME: We already did a check for ConstantInt RHS above this.
1219 // FIXME: Is this pattern covered by another fold? No regression tests fail on
1220 // removal.
1221 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
1222 // (X & FF00) + xx00 -> (X+xx00) & FF00
1223 Value *X;
1224 ConstantInt *C2;
1225 if (LHS->hasOneUse() &&
1226 match(LHS, m_And(m_Value(X), m_ConstantInt(C2))) &&
1227 CRHS->getValue() == (CRHS->getValue() & C2->getValue())) {
1228 // See if all bits from the first bit set in the Add RHS up are included
1229 // in the mask. First, get the rightmost bit.
1230 const APInt &AddRHSV = CRHS->getValue();
1232 // Form a mask of all bits from the lowest bit added through the top.
1233 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
1235 // See if the and mask includes all of these bits.
1236 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
1238 if (AddRHSHighBits == AddRHSHighBitsAnd) {
1239 // Okay, the xform is safe. Insert the new add pronto.
1240 Value *NewAdd = Builder.CreateAdd(X, CRHS, LHS->getName());
1241 return BinaryOperator::CreateAnd(NewAdd, C2);
1246 // add (select X 0 (sub n A)) A --> select X A n
1248 SelectInst *SI = dyn_cast<SelectInst>(LHS);
1249 Value *A = RHS;
1250 if (!SI) {
1251 SI = dyn_cast<SelectInst>(RHS);
1252 A = LHS;
1254 if (SI && SI->hasOneUse()) {
1255 Value *TV = SI->getTrueValue();
1256 Value *FV = SI->getFalseValue();
1257 Value *N;
1259 // Can we fold the add into the argument of the select?
1260 // We check both true and false select arguments for a matching subtract.
1261 if (match(FV, m_Zero()) && match(TV, m_Sub(m_Value(N), m_Specific(A))))
1262 // Fold the add into the true select value.
1263 return SelectInst::Create(SI->getCondition(), N, A);
1265 if (match(TV, m_Zero()) && match(FV, m_Sub(m_Value(N), m_Specific(A))))
1266 // Fold the add into the false select value.
1267 return SelectInst::Create(SI->getCondition(), A, N);
1271 if (Instruction *Ext = narrowMathIfNoOverflow(I))
1272 return Ext;
1274 // (add (xor A, B) (and A, B)) --> (or A, B)
1275 // (add (and A, B) (xor A, B)) --> (or A, B)
1276 if (match(&I, m_c_BinOp(m_Xor(m_Value(A), m_Value(B)),
1277 m_c_And(m_Deferred(A), m_Deferred(B)))))
1278 return BinaryOperator::CreateOr(A, B);
1280 // (add (or A, B) (and A, B)) --> (add A, B)
1281 // (add (and A, B) (or A, B)) --> (add A, B)
1282 if (match(&I, m_c_BinOp(m_Or(m_Value(A), m_Value(B)),
1283 m_c_And(m_Deferred(A), m_Deferred(B))))) {
1284 I.setOperand(0, A);
1285 I.setOperand(1, B);
1286 return &I;
1289 // TODO(jingyue): Consider willNotOverflowSignedAdd and
1290 // willNotOverflowUnsignedAdd to reduce the number of invocations of
1291 // computeKnownBits.
1292 bool Changed = false;
1293 if (!I.hasNoSignedWrap() && willNotOverflowSignedAdd(LHS, RHS, I)) {
1294 Changed = true;
1295 I.setHasNoSignedWrap(true);
1297 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedAdd(LHS, RHS, I)) {
1298 Changed = true;
1299 I.setHasNoUnsignedWrap(true);
1302 if (Instruction *V = canonicalizeLowbitMask(I, Builder))
1303 return V;
1305 if (Instruction *SatAdd = foldToUnsignedSaturatedAdd(I))
1306 return SatAdd;
1308 return Changed ? &I : nullptr;
1311 /// Eliminate an op from a linear interpolation (lerp) pattern.
1312 static Instruction *factorizeLerp(BinaryOperator &I,
1313 InstCombiner::BuilderTy &Builder) {
1314 Value *X, *Y, *Z;
1315 if (!match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_Value(Y),
1316 m_OneUse(m_FSub(m_FPOne(),
1317 m_Value(Z))))),
1318 m_OneUse(m_c_FMul(m_Value(X), m_Deferred(Z))))))
1319 return nullptr;
1321 // (Y * (1.0 - Z)) + (X * Z) --> Y + Z * (X - Y) [8 commuted variants]
1322 Value *XY = Builder.CreateFSubFMF(X, Y, &I);
1323 Value *MulZ = Builder.CreateFMulFMF(Z, XY, &I);
1324 return BinaryOperator::CreateFAddFMF(Y, MulZ, &I);
1327 /// Factor a common operand out of fadd/fsub of fmul/fdiv.
1328 static Instruction *factorizeFAddFSub(BinaryOperator &I,
1329 InstCombiner::BuilderTy &Builder) {
1330 assert((I.getOpcode() == Instruction::FAdd ||
1331 I.getOpcode() == Instruction::FSub) && "Expecting fadd/fsub");
1332 assert(I.hasAllowReassoc() && I.hasNoSignedZeros() &&
1333 "FP factorization requires FMF");
1335 if (Instruction *Lerp = factorizeLerp(I, Builder))
1336 return Lerp;
1338 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1339 Value *X, *Y, *Z;
1340 bool IsFMul;
1341 if ((match(Op0, m_OneUse(m_FMul(m_Value(X), m_Value(Z)))) &&
1342 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))) ||
1343 (match(Op0, m_OneUse(m_FMul(m_Value(Z), m_Value(X)))) &&
1344 match(Op1, m_OneUse(m_c_FMul(m_Value(Y), m_Specific(Z))))))
1345 IsFMul = true;
1346 else if (match(Op0, m_OneUse(m_FDiv(m_Value(X), m_Value(Z)))) &&
1347 match(Op1, m_OneUse(m_FDiv(m_Value(Y), m_Specific(Z)))))
1348 IsFMul = false;
1349 else
1350 return nullptr;
1352 // (X * Z) + (Y * Z) --> (X + Y) * Z
1353 // (X * Z) - (Y * Z) --> (X - Y) * Z
1354 // (X / Z) + (Y / Z) --> (X + Y) / Z
1355 // (X / Z) - (Y / Z) --> (X - Y) / Z
1356 bool IsFAdd = I.getOpcode() == Instruction::FAdd;
1357 Value *XY = IsFAdd ? Builder.CreateFAddFMF(X, Y, &I)
1358 : Builder.CreateFSubFMF(X, Y, &I);
1360 // Bail out if we just created a denormal constant.
1361 // TODO: This is copied from a previous implementation. Is it necessary?
1362 const APFloat *C;
1363 if (match(XY, m_APFloat(C)) && !C->isNormal())
1364 return nullptr;
1366 return IsFMul ? BinaryOperator::CreateFMulFMF(XY, Z, &I)
1367 : BinaryOperator::CreateFDivFMF(XY, Z, &I);
1370 Instruction *InstCombiner::visitFAdd(BinaryOperator &I) {
1371 if (Value *V = SimplifyFAddInst(I.getOperand(0), I.getOperand(1),
1372 I.getFastMathFlags(),
1373 SQ.getWithInstruction(&I)))
1374 return replaceInstUsesWith(I, V);
1376 if (SimplifyAssociativeOrCommutative(I))
1377 return &I;
1379 if (Instruction *X = foldVectorBinop(I))
1380 return X;
1382 if (Instruction *FoldedFAdd = foldBinOpIntoSelectOrPhi(I))
1383 return FoldedFAdd;
1385 // (-X) + Y --> Y - X
1386 Value *X, *Y;
1387 if (match(&I, m_c_FAdd(m_FNeg(m_Value(X)), m_Value(Y))))
1388 return BinaryOperator::CreateFSubFMF(Y, X, &I);
1390 // Similar to above, but look through fmul/fdiv for the negated term.
1391 // (-X * Y) + Z --> Z - (X * Y) [4 commuted variants]
1392 Value *Z;
1393 if (match(&I, m_c_FAdd(m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))),
1394 m_Value(Z)))) {
1395 Value *XY = Builder.CreateFMulFMF(X, Y, &I);
1396 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1398 // (-X / Y) + Z --> Z - (X / Y) [2 commuted variants]
1399 // (X / -Y) + Z --> Z - (X / Y) [2 commuted variants]
1400 if (match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y))),
1401 m_Value(Z))) ||
1402 match(&I, m_c_FAdd(m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))),
1403 m_Value(Z)))) {
1404 Value *XY = Builder.CreateFDivFMF(X, Y, &I);
1405 return BinaryOperator::CreateFSubFMF(Z, XY, &I);
1408 // Check for (fadd double (sitofp x), y), see if we can merge this into an
1409 // integer add followed by a promotion.
1410 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1411 if (SIToFPInst *LHSConv = dyn_cast<SIToFPInst>(LHS)) {
1412 Value *LHSIntVal = LHSConv->getOperand(0);
1413 Type *FPType = LHSConv->getType();
1415 // TODO: This check is overly conservative. In many cases known bits
1416 // analysis can tell us that the result of the addition has less significant
1417 // bits than the integer type can hold.
1418 auto IsValidPromotion = [](Type *FTy, Type *ITy) {
1419 Type *FScalarTy = FTy->getScalarType();
1420 Type *IScalarTy = ITy->getScalarType();
1422 // Do we have enough bits in the significand to represent the result of
1423 // the integer addition?
1424 unsigned MaxRepresentableBits =
1425 APFloat::semanticsPrecision(FScalarTy->getFltSemantics());
1426 return IScalarTy->getIntegerBitWidth() <= MaxRepresentableBits;
1429 // (fadd double (sitofp x), fpcst) --> (sitofp (add int x, intcst))
1430 // ... if the constant fits in the integer value. This is useful for things
1431 // like (double)(x & 1234) + 4.0 -> (double)((X & 1234)+4) which no longer
1432 // requires a constant pool load, and generally allows the add to be better
1433 // instcombined.
1434 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHS))
1435 if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1436 Constant *CI =
1437 ConstantExpr::getFPToSI(CFP, LHSIntVal->getType());
1438 if (LHSConv->hasOneUse() &&
1439 ConstantExpr::getSIToFP(CI, I.getType()) == CFP &&
1440 willNotOverflowSignedAdd(LHSIntVal, CI, I)) {
1441 // Insert the new integer add.
1442 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, CI, "addconv");
1443 return new SIToFPInst(NewAdd, I.getType());
1447 // (fadd double (sitofp x), (sitofp y)) --> (sitofp (add int x, y))
1448 if (SIToFPInst *RHSConv = dyn_cast<SIToFPInst>(RHS)) {
1449 Value *RHSIntVal = RHSConv->getOperand(0);
1450 // It's enough to check LHS types only because we require int types to
1451 // be the same for this transform.
1452 if (IsValidPromotion(FPType, LHSIntVal->getType())) {
1453 // Only do this if x/y have the same type, if at least one of them has a
1454 // single use (so we don't increase the number of int->fp conversions),
1455 // and if the integer add will not overflow.
1456 if (LHSIntVal->getType() == RHSIntVal->getType() &&
1457 (LHSConv->hasOneUse() || RHSConv->hasOneUse()) &&
1458 willNotOverflowSignedAdd(LHSIntVal, RHSIntVal, I)) {
1459 // Insert the new integer add.
1460 Value *NewAdd = Builder.CreateNSWAdd(LHSIntVal, RHSIntVal, "addconv");
1461 return new SIToFPInst(NewAdd, I.getType());
1467 // Handle specials cases for FAdd with selects feeding the operation
1468 if (Value *V = SimplifySelectsFeedingBinaryOp(I, LHS, RHS))
1469 return replaceInstUsesWith(I, V);
1471 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
1472 if (Instruction *F = factorizeFAddFSub(I, Builder))
1473 return F;
1474 if (Value *V = FAddCombine(Builder).simplify(&I))
1475 return replaceInstUsesWith(I, V);
1478 return nullptr;
1481 /// Optimize pointer differences into the same array into a size. Consider:
1482 /// &A[10] - &A[0]: we should compile this to "10". LHS/RHS are the pointer
1483 /// operands to the ptrtoint instructions for the LHS/RHS of the subtract.
1484 Value *InstCombiner::OptimizePointerDifference(Value *LHS, Value *RHS,
1485 Type *Ty) {
1486 // If LHS is a gep based on RHS or RHS is a gep based on LHS, we can optimize
1487 // this.
1488 bool Swapped = false;
1489 GEPOperator *GEP1 = nullptr, *GEP2 = nullptr;
1491 // For now we require one side to be the base pointer "A" or a constant
1492 // GEP derived from it.
1493 if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1494 // (gep X, ...) - X
1495 if (LHSGEP->getOperand(0) == RHS) {
1496 GEP1 = LHSGEP;
1497 Swapped = false;
1498 } else if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1499 // (gep X, ...) - (gep X, ...)
1500 if (LHSGEP->getOperand(0)->stripPointerCasts() ==
1501 RHSGEP->getOperand(0)->stripPointerCasts()) {
1502 GEP2 = RHSGEP;
1503 GEP1 = LHSGEP;
1504 Swapped = false;
1509 if (GEPOperator *RHSGEP = dyn_cast<GEPOperator>(RHS)) {
1510 // X - (gep X, ...)
1511 if (RHSGEP->getOperand(0) == LHS) {
1512 GEP1 = RHSGEP;
1513 Swapped = true;
1514 } else if (GEPOperator *LHSGEP = dyn_cast<GEPOperator>(LHS)) {
1515 // (gep X, ...) - (gep X, ...)
1516 if (RHSGEP->getOperand(0)->stripPointerCasts() ==
1517 LHSGEP->getOperand(0)->stripPointerCasts()) {
1518 GEP2 = LHSGEP;
1519 GEP1 = RHSGEP;
1520 Swapped = true;
1525 if (!GEP1)
1526 // No GEP found.
1527 return nullptr;
1529 if (GEP2) {
1530 // (gep X, ...) - (gep X, ...)
1532 // Avoid duplicating the arithmetic if there are more than one non-constant
1533 // indices between the two GEPs and either GEP has a non-constant index and
1534 // multiple users. If zero non-constant index, the result is a constant and
1535 // there is no duplication. If one non-constant index, the result is an add
1536 // or sub with a constant, which is no larger than the original code, and
1537 // there's no duplicated arithmetic, even if either GEP has multiple
1538 // users. If more than one non-constant indices combined, as long as the GEP
1539 // with at least one non-constant index doesn't have multiple users, there
1540 // is no duplication.
1541 unsigned NumNonConstantIndices1 = GEP1->countNonConstantIndices();
1542 unsigned NumNonConstantIndices2 = GEP2->countNonConstantIndices();
1543 if (NumNonConstantIndices1 + NumNonConstantIndices2 > 1 &&
1544 ((NumNonConstantIndices1 > 0 && !GEP1->hasOneUse()) ||
1545 (NumNonConstantIndices2 > 0 && !GEP2->hasOneUse()))) {
1546 return nullptr;
1550 // Emit the offset of the GEP and an intptr_t.
1551 Value *Result = EmitGEPOffset(GEP1);
1553 // If we had a constant expression GEP on the other side offsetting the
1554 // pointer, subtract it from the offset we have.
1555 if (GEP2) {
1556 Value *Offset = EmitGEPOffset(GEP2);
1557 Result = Builder.CreateSub(Result, Offset);
1560 // If we have p - gep(p, ...) then we have to negate the result.
1561 if (Swapped)
1562 Result = Builder.CreateNeg(Result, "diff.neg");
1564 return Builder.CreateIntCast(Result, Ty, true);
1567 Instruction *InstCombiner::visitSub(BinaryOperator &I) {
1568 if (Value *V = SimplifySubInst(I.getOperand(0), I.getOperand(1),
1569 I.hasNoSignedWrap(), I.hasNoUnsignedWrap(),
1570 SQ.getWithInstruction(&I)))
1571 return replaceInstUsesWith(I, V);
1573 if (Instruction *X = foldVectorBinop(I))
1574 return X;
1576 // (A*B)-(A*C) -> A*(B-C) etc
1577 if (Value *V = SimplifyUsingDistributiveLaws(I))
1578 return replaceInstUsesWith(I, V);
1580 // If this is a 'B = x-(-A)', change to B = x+A.
1581 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1582 if (Value *V = dyn_castNegVal(Op1)) {
1583 BinaryOperator *Res = BinaryOperator::CreateAdd(Op0, V);
1585 if (const auto *BO = dyn_cast<BinaryOperator>(Op1)) {
1586 assert(BO->getOpcode() == Instruction::Sub &&
1587 "Expected a subtraction operator!");
1588 if (BO->hasNoSignedWrap() && I.hasNoSignedWrap())
1589 Res->setHasNoSignedWrap(true);
1590 } else {
1591 if (cast<Constant>(Op1)->isNotMinSignedValue() && I.hasNoSignedWrap())
1592 Res->setHasNoSignedWrap(true);
1595 return Res;
1598 if (I.getType()->isIntOrIntVectorTy(1))
1599 return BinaryOperator::CreateXor(Op0, Op1);
1601 // Replace (-1 - A) with (~A).
1602 if (match(Op0, m_AllOnes()))
1603 return BinaryOperator::CreateNot(Op1);
1605 // (~X) - (~Y) --> Y - X
1606 Value *X, *Y;
1607 if (match(Op0, m_Not(m_Value(X))) && match(Op1, m_Not(m_Value(Y))))
1608 return BinaryOperator::CreateSub(Y, X);
1610 // (X + -1) - Y --> ~Y + X
1611 if (match(Op0, m_OneUse(m_Add(m_Value(X), m_AllOnes()))))
1612 return BinaryOperator::CreateAdd(Builder.CreateNot(Op1), X);
1614 // Y - (X + 1) --> ~X + Y
1615 if (match(Op1, m_OneUse(m_Add(m_Value(X), m_One()))))
1616 return BinaryOperator::CreateAdd(Builder.CreateNot(X), Op0);
1618 // Y - ~X --> (X + 1) + Y
1619 if (match(Op1, m_OneUse(m_Not(m_Value(X))))) {
1620 return BinaryOperator::CreateAdd(
1621 Builder.CreateAdd(Op0, ConstantInt::get(I.getType(), 1)), X);
1624 if (Constant *C = dyn_cast<Constant>(Op0)) {
1625 bool IsNegate = match(C, m_ZeroInt());
1626 Value *X;
1627 if (match(Op1, m_ZExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1628 // 0 - (zext bool) --> sext bool
1629 // C - (zext bool) --> bool ? C - 1 : C
1630 if (IsNegate)
1631 return CastInst::CreateSExtOrBitCast(X, I.getType());
1632 return SelectInst::Create(X, SubOne(C), C);
1634 if (match(Op1, m_SExt(m_Value(X))) && X->getType()->isIntOrIntVectorTy(1)) {
1635 // 0 - (sext bool) --> zext bool
1636 // C - (sext bool) --> bool ? C + 1 : C
1637 if (IsNegate)
1638 return CastInst::CreateZExtOrBitCast(X, I.getType());
1639 return SelectInst::Create(X, AddOne(C), C);
1642 // C - ~X == X + (1+C)
1643 if (match(Op1, m_Not(m_Value(X))))
1644 return BinaryOperator::CreateAdd(X, AddOne(C));
1646 // Try to fold constant sub into select arguments.
1647 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
1648 if (Instruction *R = FoldOpIntoSelect(I, SI))
1649 return R;
1651 // Try to fold constant sub into PHI values.
1652 if (PHINode *PN = dyn_cast<PHINode>(Op1))
1653 if (Instruction *R = foldOpIntoPhi(I, PN))
1654 return R;
1656 Constant *C2;
1658 // C-(C2-X) --> X+(C-C2)
1659 if (match(Op1, m_Sub(m_Constant(C2), m_Value(X))))
1660 return BinaryOperator::CreateAdd(X, ConstantExpr::getSub(C, C2));
1662 // C-(X+C2) --> (C-C2)-X
1663 if (match(Op1, m_Add(m_Value(X), m_Constant(C2))))
1664 return BinaryOperator::CreateSub(ConstantExpr::getSub(C, C2), X);
1667 const APInt *Op0C;
1668 if (match(Op0, m_APInt(Op0C))) {
1669 unsigned BitWidth = I.getType()->getScalarSizeInBits();
1671 // -(X >>u 31) -> (X >>s 31)
1672 // -(X >>s 31) -> (X >>u 31)
1673 if (Op0C->isNullValue()) {
1674 Value *X;
1675 const APInt *ShAmt;
1676 if (match(Op1, m_LShr(m_Value(X), m_APInt(ShAmt))) &&
1677 *ShAmt == BitWidth - 1) {
1678 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1679 return BinaryOperator::CreateAShr(X, ShAmtOp);
1681 if (match(Op1, m_AShr(m_Value(X), m_APInt(ShAmt))) &&
1682 *ShAmt == BitWidth - 1) {
1683 Value *ShAmtOp = cast<Instruction>(Op1)->getOperand(1);
1684 return BinaryOperator::CreateLShr(X, ShAmtOp);
1687 if (Op1->hasOneUse()) {
1688 Value *LHS, *RHS;
1689 SelectPatternFlavor SPF = matchSelectPattern(Op1, LHS, RHS).Flavor;
1690 if (SPF == SPF_ABS || SPF == SPF_NABS) {
1691 // This is a negate of an ABS/NABS pattern. Just swap the operands
1692 // of the select.
1693 cast<SelectInst>(Op1)->swapValues();
1694 // Don't swap prof metadata, we didn't change the branch behavior.
1695 return replaceInstUsesWith(I, Op1);
1700 // Turn this into a xor if LHS is 2^n-1 and the remaining bits are known
1701 // zero.
1702 if (Op0C->isMask()) {
1703 KnownBits RHSKnown = computeKnownBits(Op1, 0, &I);
1704 if ((*Op0C | RHSKnown.Zero).isAllOnesValue())
1705 return BinaryOperator::CreateXor(Op1, Op0);
1710 Value *Y;
1711 // X-(X+Y) == -Y X-(Y+X) == -Y
1712 if (match(Op1, m_c_Add(m_Specific(Op0), m_Value(Y))))
1713 return BinaryOperator::CreateNeg(Y);
1715 // (X-Y)-X == -Y
1716 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(Y))))
1717 return BinaryOperator::CreateNeg(Y);
1720 // (sub (or A, B) (and A, B)) --> (xor A, B)
1722 Value *A, *B;
1723 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
1724 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1725 return BinaryOperator::CreateXor(A, B);
1728 // (sub (and A, B) (or A, B)) --> neg (xor A, B)
1730 Value *A, *B;
1731 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
1732 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1733 (Op0->hasOneUse() || Op1->hasOneUse()))
1734 return BinaryOperator::CreateNeg(Builder.CreateXor(A, B));
1737 // (sub (or A, B), (xor A, B)) --> (and A, B)
1739 Value *A, *B;
1740 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
1741 match(Op0, m_c_Or(m_Specific(A), m_Specific(B))))
1742 return BinaryOperator::CreateAnd(A, B);
1745 // (sub (xor A, B) (or A, B)) --> neg (and A, B)
1747 Value *A, *B;
1748 if (match(Op0, m_Xor(m_Value(A), m_Value(B))) &&
1749 match(Op1, m_c_Or(m_Specific(A), m_Specific(B))) &&
1750 (Op0->hasOneUse() || Op1->hasOneUse()))
1751 return BinaryOperator::CreateNeg(Builder.CreateAnd(A, B));
1755 Value *Y;
1756 // ((X | Y) - X) --> (~X & Y)
1757 if (match(Op0, m_OneUse(m_c_Or(m_Value(Y), m_Specific(Op1)))))
1758 return BinaryOperator::CreateAnd(
1759 Y, Builder.CreateNot(Op1, Op1->getName() + ".not"));
1762 if (Op1->hasOneUse()) {
1763 Value *X = nullptr, *Y = nullptr, *Z = nullptr;
1764 Constant *C = nullptr;
1766 // (X - (Y - Z)) --> (X + (Z - Y)).
1767 if (match(Op1, m_Sub(m_Value(Y), m_Value(Z))))
1768 return BinaryOperator::CreateAdd(Op0,
1769 Builder.CreateSub(Z, Y, Op1->getName()));
1771 // (X - (X & Y)) --> (X & ~Y)
1772 if (match(Op1, m_c_And(m_Value(Y), m_Specific(Op0))))
1773 return BinaryOperator::CreateAnd(Op0,
1774 Builder.CreateNot(Y, Y->getName() + ".not"));
1776 // 0 - (X sdiv C) -> (X sdiv -C) provided the negation doesn't overflow.
1777 // TODO: This could be extended to match arbitrary vector constants.
1778 const APInt *DivC;
1779 if (match(Op0, m_Zero()) && match(Op1, m_SDiv(m_Value(X), m_APInt(DivC))) &&
1780 !DivC->isMinSignedValue() && *DivC != 1) {
1781 Constant *NegDivC = ConstantInt::get(I.getType(), -(*DivC));
1782 Instruction *BO = BinaryOperator::CreateSDiv(X, NegDivC);
1783 BO->setIsExact(cast<BinaryOperator>(Op1)->isExact());
1784 return BO;
1787 // 0 - (X << Y) -> (-X << Y) when X is freely negatable.
1788 if (match(Op1, m_Shl(m_Value(X), m_Value(Y))) && match(Op0, m_Zero()))
1789 if (Value *XNeg = dyn_castNegVal(X))
1790 return BinaryOperator::CreateShl(XNeg, Y);
1792 // Subtracting -1/0 is the same as adding 1/0:
1793 // sub [nsw] Op0, sext(bool Y) -> add [nsw] Op0, zext(bool Y)
1794 // 'nuw' is dropped in favor of the canonical form.
1795 if (match(Op1, m_SExt(m_Value(Y))) &&
1796 Y->getType()->getScalarSizeInBits() == 1) {
1797 Value *Zext = Builder.CreateZExt(Y, I.getType());
1798 BinaryOperator *Add = BinaryOperator::CreateAdd(Op0, Zext);
1799 Add->setHasNoSignedWrap(I.hasNoSignedWrap());
1800 return Add;
1803 // X - A*-B -> X + A*B
1804 // X - -A*B -> X + A*B
1805 Value *A, *B;
1806 if (match(Op1, m_c_Mul(m_Value(A), m_Neg(m_Value(B)))))
1807 return BinaryOperator::CreateAdd(Op0, Builder.CreateMul(A, B));
1809 // X - A*C -> X + A*-C
1810 // No need to handle commuted multiply because multiply handling will
1811 // ensure constant will be move to the right hand side.
1812 if (match(Op1, m_Mul(m_Value(A), m_Constant(C))) && !isa<ConstantExpr>(C)) {
1813 Value *NewMul = Builder.CreateMul(A, ConstantExpr::getNeg(C));
1814 return BinaryOperator::CreateAdd(Op0, NewMul);
1819 // ~A - Min/Max(~A, O) -> Max/Min(A, ~O) - A
1820 // ~A - Min/Max(O, ~A) -> Max/Min(A, ~O) - A
1821 // Min/Max(~A, O) - ~A -> A - Max/Min(A, ~O)
1822 // Min/Max(O, ~A) - ~A -> A - Max/Min(A, ~O)
1823 // So long as O here is freely invertible, this will be neutral or a win.
1824 Value *LHS, *RHS, *A;
1825 Value *NotA = Op0, *MinMax = Op1;
1826 SelectPatternFlavor SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1827 if (!SelectPatternResult::isMinOrMax(SPF)) {
1828 NotA = Op1;
1829 MinMax = Op0;
1830 SPF = matchSelectPattern(MinMax, LHS, RHS).Flavor;
1832 if (SelectPatternResult::isMinOrMax(SPF) &&
1833 match(NotA, m_Not(m_Value(A))) && (NotA == LHS || NotA == RHS)) {
1834 if (NotA == LHS)
1835 std::swap(LHS, RHS);
1836 // LHS is now O above and expected to have at least 2 uses (the min/max)
1837 // NotA is epected to have 2 uses from the min/max and 1 from the sub.
1838 if (isFreeToInvert(LHS, !LHS->hasNUsesOrMore(3)) &&
1839 !NotA->hasNUsesOrMore(4)) {
1840 // Note: We don't generate the inverse max/min, just create the not of
1841 // it and let other folds do the rest.
1842 Value *Not = Builder.CreateNot(MinMax);
1843 if (NotA == Op0)
1844 return BinaryOperator::CreateSub(Not, A);
1845 else
1846 return BinaryOperator::CreateSub(A, Not);
1851 // Optimize pointer differences into the same array into a size. Consider:
1852 // &A[10] - &A[0]: we should compile this to "10".
1853 Value *LHSOp, *RHSOp;
1854 if (match(Op0, m_PtrToInt(m_Value(LHSOp))) &&
1855 match(Op1, m_PtrToInt(m_Value(RHSOp))))
1856 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1857 return replaceInstUsesWith(I, Res);
1859 // trunc(p)-trunc(q) -> trunc(p-q)
1860 if (match(Op0, m_Trunc(m_PtrToInt(m_Value(LHSOp)))) &&
1861 match(Op1, m_Trunc(m_PtrToInt(m_Value(RHSOp)))))
1862 if (Value *Res = OptimizePointerDifference(LHSOp, RHSOp, I.getType()))
1863 return replaceInstUsesWith(I, Res);
1865 // Canonicalize a shifty way to code absolute value to the common pattern.
1866 // There are 2 potential commuted variants.
1867 // We're relying on the fact that we only do this transform when the shift has
1868 // exactly 2 uses and the xor has exactly 1 use (otherwise, we might increase
1869 // instructions).
1870 Value *A;
1871 const APInt *ShAmt;
1872 Type *Ty = I.getType();
1873 if (match(Op1, m_AShr(m_Value(A), m_APInt(ShAmt))) &&
1874 Op1->hasNUses(2) && *ShAmt == Ty->getScalarSizeInBits() - 1 &&
1875 match(Op0, m_OneUse(m_c_Xor(m_Specific(A), m_Specific(Op1))))) {
1876 // B = ashr i32 A, 31 ; smear the sign bit
1877 // sub (xor A, B), B ; flip bits if negative and subtract -1 (add 1)
1878 // --> (A < 0) ? -A : A
1879 Value *Cmp = Builder.CreateICmpSLT(A, ConstantInt::getNullValue(Ty));
1880 // Copy the nuw/nsw flags from the sub to the negate.
1881 Value *Neg = Builder.CreateNeg(A, "", I.hasNoUnsignedWrap(),
1882 I.hasNoSignedWrap());
1883 return SelectInst::Create(Cmp, Neg, A);
1886 if (Instruction *Ext = narrowMathIfNoOverflow(I))
1887 return Ext;
1889 bool Changed = false;
1890 if (!I.hasNoSignedWrap() && willNotOverflowSignedSub(Op0, Op1, I)) {
1891 Changed = true;
1892 I.setHasNoSignedWrap(true);
1894 if (!I.hasNoUnsignedWrap() && willNotOverflowUnsignedSub(Op0, Op1, I)) {
1895 Changed = true;
1896 I.setHasNoUnsignedWrap(true);
1899 return Changed ? &I : nullptr;
1902 /// This eliminates floating-point negation in either 'fneg(X)' or
1903 /// 'fsub(-0.0, X)' form by combining into a constant operand.
1904 static Instruction *foldFNegIntoConstant(Instruction &I) {
1905 Value *X;
1906 Constant *C;
1908 // Fold negation into constant operand. This is limited with one-use because
1909 // fneg is assumed better for analysis and cheaper in codegen than fmul/fdiv.
1910 // -(X * C) --> X * (-C)
1911 // FIXME: It's arguable whether these should be m_OneUse or not. The current
1912 // belief is that the FNeg allows for better reassociation opportunities.
1913 if (match(&I, m_FNeg(m_OneUse(m_FMul(m_Value(X), m_Constant(C))))))
1914 return BinaryOperator::CreateFMulFMF(X, ConstantExpr::getFNeg(C), &I);
1915 // -(X / C) --> X / (-C)
1916 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Value(X), m_Constant(C))))))
1917 return BinaryOperator::CreateFDivFMF(X, ConstantExpr::getFNeg(C), &I);
1918 // -(C / X) --> (-C) / X
1919 if (match(&I, m_FNeg(m_OneUse(m_FDiv(m_Constant(C), m_Value(X))))))
1920 return BinaryOperator::CreateFDivFMF(ConstantExpr::getFNeg(C), X, &I);
1922 return nullptr;
1925 static Instruction *hoistFNegAboveFMulFDiv(Instruction &I,
1926 InstCombiner::BuilderTy &Builder) {
1927 Value *FNeg;
1928 if (!match(&I, m_FNeg(m_Value(FNeg))))
1929 return nullptr;
1931 Value *X, *Y;
1932 if (match(FNeg, m_OneUse(m_FMul(m_Value(X), m_Value(Y)))))
1933 return BinaryOperator::CreateFMulFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
1935 if (match(FNeg, m_OneUse(m_FDiv(m_Value(X), m_Value(Y)))))
1936 return BinaryOperator::CreateFDivFMF(Builder.CreateFNegFMF(X, &I), Y, &I);
1938 return nullptr;
1941 Instruction *InstCombiner::visitFNeg(UnaryOperator &I) {
1942 Value *Op = I.getOperand(0);
1944 if (Value *V = SimplifyFNegInst(Op, I.getFastMathFlags(),
1945 SQ.getWithInstruction(&I)))
1946 return replaceInstUsesWith(I, V);
1948 if (Instruction *X = foldFNegIntoConstant(I))
1949 return X;
1951 Value *X, *Y;
1953 // If we can ignore the sign of zeros: -(X - Y) --> (Y - X)
1954 if (I.hasNoSignedZeros() &&
1955 match(Op, m_OneUse(m_FSub(m_Value(X), m_Value(Y)))))
1956 return BinaryOperator::CreateFSubFMF(Y, X, &I);
1958 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
1959 return R;
1961 return nullptr;
1964 Instruction *InstCombiner::visitFSub(BinaryOperator &I) {
1965 if (Value *V = SimplifyFSubInst(I.getOperand(0), I.getOperand(1),
1966 I.getFastMathFlags(),
1967 SQ.getWithInstruction(&I)))
1968 return replaceInstUsesWith(I, V);
1970 if (Instruction *X = foldVectorBinop(I))
1971 return X;
1973 // Subtraction from -0.0 is the canonical form of fneg.
1974 // fsub nsz 0, X ==> fsub nsz -0.0, X
1975 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
1976 if (I.hasNoSignedZeros() && match(Op0, m_PosZeroFP()))
1977 return BinaryOperator::CreateFNegFMF(Op1, &I);
1979 if (Instruction *X = foldFNegIntoConstant(I))
1980 return X;
1982 if (Instruction *R = hoistFNegAboveFMulFDiv(I, Builder))
1983 return R;
1985 Value *X, *Y;
1986 Constant *C;
1988 // If Op0 is not -0.0 or we can ignore -0.0: Z - (X - Y) --> Z + (Y - X)
1989 // Canonicalize to fadd to make analysis easier.
1990 // This can also help codegen because fadd is commutative.
1991 // Note that if this fsub was really an fneg, the fadd with -0.0 will get
1992 // killed later. We still limit that particular transform with 'hasOneUse'
1993 // because an fneg is assumed better/cheaper than a generic fsub.
1994 if (I.hasNoSignedZeros() || CannotBeNegativeZero(Op0, SQ.TLI)) {
1995 if (match(Op1, m_OneUse(m_FSub(m_Value(X), m_Value(Y))))) {
1996 Value *NewSub = Builder.CreateFSubFMF(Y, X, &I);
1997 return BinaryOperator::CreateFAddFMF(Op0, NewSub, &I);
2001 if (isa<Constant>(Op0))
2002 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2003 if (Instruction *NV = FoldOpIntoSelect(I, SI))
2004 return NV;
2006 // X - C --> X + (-C)
2007 // But don't transform constant expressions because there's an inverse fold
2008 // for X + (-Y) --> X - Y.
2009 if (match(Op1, m_Constant(C)) && !isa<ConstantExpr>(Op1))
2010 return BinaryOperator::CreateFAddFMF(Op0, ConstantExpr::getFNeg(C), &I);
2012 // X - (-Y) --> X + Y
2013 if (match(Op1, m_FNeg(m_Value(Y))))
2014 return BinaryOperator::CreateFAddFMF(Op0, Y, &I);
2016 // Similar to above, but look through a cast of the negated value:
2017 // X - (fptrunc(-Y)) --> X + fptrunc(Y)
2018 Type *Ty = I.getType();
2019 if (match(Op1, m_OneUse(m_FPTrunc(m_FNeg(m_Value(Y))))))
2020 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPTrunc(Y, Ty), &I);
2022 // X - (fpext(-Y)) --> X + fpext(Y)
2023 if (match(Op1, m_OneUse(m_FPExt(m_FNeg(m_Value(Y))))))
2024 return BinaryOperator::CreateFAddFMF(Op0, Builder.CreateFPExt(Y, Ty), &I);
2026 // Similar to above, but look through fmul/fdiv of the negated value:
2027 // Op0 - (-X * Y) --> Op0 + (X * Y)
2028 // Op0 - (Y * -X) --> Op0 + (X * Y)
2029 if (match(Op1, m_OneUse(m_c_FMul(m_FNeg(m_Value(X)), m_Value(Y))))) {
2030 Value *FMul = Builder.CreateFMulFMF(X, Y, &I);
2031 return BinaryOperator::CreateFAddFMF(Op0, FMul, &I);
2033 // Op0 - (-X / Y) --> Op0 + (X / Y)
2034 // Op0 - (X / -Y) --> Op0 + (X / Y)
2035 if (match(Op1, m_OneUse(m_FDiv(m_FNeg(m_Value(X)), m_Value(Y)))) ||
2036 match(Op1, m_OneUse(m_FDiv(m_Value(X), m_FNeg(m_Value(Y)))))) {
2037 Value *FDiv = Builder.CreateFDivFMF(X, Y, &I);
2038 return BinaryOperator::CreateFAddFMF(Op0, FDiv, &I);
2041 // Handle special cases for FSub with selects feeding the operation
2042 if (Value *V = SimplifySelectsFeedingBinaryOp(I, Op0, Op1))
2043 return replaceInstUsesWith(I, V);
2045 if (I.hasAllowReassoc() && I.hasNoSignedZeros()) {
2046 // (Y - X) - Y --> -X
2047 if (match(Op0, m_FSub(m_Specific(Op1), m_Value(X))))
2048 return BinaryOperator::CreateFNegFMF(X, &I);
2050 // Y - (X + Y) --> -X
2051 // Y - (Y + X) --> -X
2052 if (match(Op1, m_c_FAdd(m_Specific(Op0), m_Value(X))))
2053 return BinaryOperator::CreateFNegFMF(X, &I);
2055 // (X * C) - X --> X * (C - 1.0)
2056 if (match(Op0, m_FMul(m_Specific(Op1), m_Constant(C)))) {
2057 Constant *CSubOne = ConstantExpr::getFSub(C, ConstantFP::get(Ty, 1.0));
2058 return BinaryOperator::CreateFMulFMF(Op1, CSubOne, &I);
2060 // X - (X * C) --> X * (1.0 - C)
2061 if (match(Op1, m_FMul(m_Specific(Op0), m_Constant(C)))) {
2062 Constant *OneSubC = ConstantExpr::getFSub(ConstantFP::get(Ty, 1.0), C);
2063 return BinaryOperator::CreateFMulFMF(Op0, OneSubC, &I);
2066 if (Instruction *F = factorizeFAddFSub(I, Builder))
2067 return F;
2069 // TODO: This performs reassociative folds for FP ops. Some fraction of the
2070 // functionality has been subsumed by simple pattern matching here and in
2071 // InstSimplify. We should let a dedicated reassociation pass handle more
2072 // complex pattern matching and remove this from InstCombine.
2073 if (Value *V = FAddCombine(Builder).simplify(&I))
2074 return replaceInstUsesWith(I, V);
2077 return nullptr;