[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / InstCombine / InstCombineInternal.h
blob91f5228b3700ea3bd3348e1a2ca82d73ce3f0bfc
1 //===- InstCombineInternal.h - InstCombine pass internals -------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 ///
11 /// This file provides internal interfaces used to implement the InstCombine.
13 //===----------------------------------------------------------------------===//
15 #ifndef LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
16 #define LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/Analysis/AliasAnalysis.h"
20 #include "llvm/Analysis/InstructionSimplify.h"
21 #include "llvm/Analysis/TargetFolder.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/Constant.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/IRBuilder.h"
29 #include "llvm/IR/InstVisitor.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/PatternMatch.h"
35 #include "llvm/IR/Use.h"
36 #include "llvm/IR/Value.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/Compiler.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/KnownBits.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/InstCombine/InstCombineWorklist.h"
43 #include "llvm/Transforms/Utils/Local.h"
44 #include <cassert>
45 #include <cstdint>
47 #define DEBUG_TYPE "instcombine"
49 using namespace llvm::PatternMatch;
51 namespace llvm {
53 class APInt;
54 class AssumptionCache;
55 class BlockFrequencyInfo;
56 class DataLayout;
57 class DominatorTree;
58 class GEPOperator;
59 class GlobalVariable;
60 class LoopInfo;
61 class OptimizationRemarkEmitter;
62 class ProfileSummaryInfo;
63 class TargetLibraryInfo;
64 class User;
66 /// Assign a complexity or rank value to LLVM Values. This is used to reduce
67 /// the amount of pattern matching needed for compares and commutative
68 /// instructions. For example, if we have:
69 /// icmp ugt X, Constant
70 /// or
71 /// xor (add X, Constant), cast Z
72 ///
73 /// We do not have to consider the commuted variants of these patterns because
74 /// canonicalization based on complexity guarantees the above ordering.
75 ///
76 /// This routine maps IR values to various complexity ranks:
77 /// 0 -> undef
78 /// 1 -> Constants
79 /// 2 -> Other non-instructions
80 /// 3 -> Arguments
81 /// 4 -> Cast and (f)neg/not instructions
82 /// 5 -> Other instructions
83 static inline unsigned getComplexity(Value *V) {
84 if (isa<Instruction>(V)) {
85 if (isa<CastInst>(V) || match(V, m_Neg(m_Value())) ||
86 match(V, m_Not(m_Value())) || match(V, m_FNeg(m_Value())))
87 return 4;
88 return 5;
90 if (isa<Argument>(V))
91 return 3;
92 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
95 /// Predicate canonicalization reduces the number of patterns that need to be
96 /// matched by other transforms. For example, we may swap the operands of a
97 /// conditional branch or select to create a compare with a canonical (inverted)
98 /// predicate which is then more likely to be matched with other values.
99 static inline bool isCanonicalPredicate(CmpInst::Predicate Pred) {
100 switch (Pred) {
101 case CmpInst::ICMP_NE:
102 case CmpInst::ICMP_ULE:
103 case CmpInst::ICMP_SLE:
104 case CmpInst::ICMP_UGE:
105 case CmpInst::ICMP_SGE:
106 // TODO: There are 16 FCMP predicates. Should others be (not) canonical?
107 case CmpInst::FCMP_ONE:
108 case CmpInst::FCMP_OLE:
109 case CmpInst::FCMP_OGE:
110 return false;
111 default:
112 return true;
116 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
117 getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred, Constant *C);
119 /// Return the source operand of a potentially bitcasted value while optionally
120 /// checking if it has one use. If there is no bitcast or the one use check is
121 /// not met, return the input value itself.
122 static inline Value *peekThroughBitcast(Value *V, bool OneUseOnly = false) {
123 if (auto *BitCast = dyn_cast<BitCastInst>(V))
124 if (!OneUseOnly || BitCast->hasOneUse())
125 return BitCast->getOperand(0);
127 // V is not a bitcast or V has more than one use and OneUseOnly is true.
128 return V;
131 /// Add one to a Constant
132 static inline Constant *AddOne(Constant *C) {
133 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
136 /// Subtract one from a Constant
137 static inline Constant *SubOne(Constant *C) {
138 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
141 /// Return true if the specified value is free to invert (apply ~ to).
142 /// This happens in cases where the ~ can be eliminated. If WillInvertAllUses
143 /// is true, work under the assumption that the caller intends to remove all
144 /// uses of V and only keep uses of ~V.
146 /// See also: canFreelyInvertAllUsersOf()
147 static inline bool isFreeToInvert(Value *V, bool WillInvertAllUses) {
148 // ~(~(X)) -> X.
149 if (match(V, m_Not(m_Value())))
150 return true;
152 // Constants can be considered to be not'ed values.
153 if (match(V, m_AnyIntegralConstant()))
154 return true;
156 // Compares can be inverted if all of their uses are being modified to use the
157 // ~V.
158 if (isa<CmpInst>(V))
159 return WillInvertAllUses;
161 // If `V` is of the form `A + Constant` then `-1 - V` can be folded into `(-1
162 // - Constant) - A` if we are willing to invert all of the uses.
163 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(V))
164 if (BO->getOpcode() == Instruction::Add ||
165 BO->getOpcode() == Instruction::Sub)
166 if (isa<Constant>(BO->getOperand(0)) || isa<Constant>(BO->getOperand(1)))
167 return WillInvertAllUses;
169 // Selects with invertible operands are freely invertible
170 if (match(V, m_Select(m_Value(), m_Not(m_Value()), m_Not(m_Value()))))
171 return WillInvertAllUses;
173 return false;
176 /// Given i1 V, can every user of V be freely adapted if V is changed to !V ?
178 /// See also: isFreeToInvert()
179 static inline bool canFreelyInvertAllUsersOf(Value *V, Value *IgnoredUser) {
180 // Look at every user of V.
181 for (User *U : V->users()) {
182 if (U == IgnoredUser)
183 continue; // Don't consider this user.
185 auto *I = cast<Instruction>(U);
186 switch (I->getOpcode()) {
187 case Instruction::Select:
188 case Instruction::Br:
189 break; // Free to invert by swapping true/false values/destinations.
190 case Instruction::Xor: // Can invert 'xor' if it's a 'not', by ignoring it.
191 if (!match(I, m_Not(m_Value())))
192 return false; // Not a 'not'.
193 break;
194 default:
195 return false; // Don't know, likely not freely invertible.
197 // So far all users were free to invert...
199 return true; // Can freely invert all users!
202 /// Some binary operators require special handling to avoid poison and undefined
203 /// behavior. If a constant vector has undef elements, replace those undefs with
204 /// identity constants if possible because those are always safe to execute.
205 /// If no identity constant exists, replace undef with some other safe constant.
206 static inline Constant *getSafeVectorConstantForBinop(
207 BinaryOperator::BinaryOps Opcode, Constant *In, bool IsRHSConstant) {
208 assert(In->getType()->isVectorTy() && "Not expecting scalars here");
210 Type *EltTy = In->getType()->getVectorElementType();
211 auto *SafeC = ConstantExpr::getBinOpIdentity(Opcode, EltTy, IsRHSConstant);
212 if (!SafeC) {
213 // TODO: Should this be available as a constant utility function? It is
214 // similar to getBinOpAbsorber().
215 if (IsRHSConstant) {
216 switch (Opcode) {
217 case Instruction::SRem: // X % 1 = 0
218 case Instruction::URem: // X %u 1 = 0
219 SafeC = ConstantInt::get(EltTy, 1);
220 break;
221 case Instruction::FRem: // X % 1.0 (doesn't simplify, but it is safe)
222 SafeC = ConstantFP::get(EltTy, 1.0);
223 break;
224 default:
225 llvm_unreachable("Only rem opcodes have no identity constant for RHS");
227 } else {
228 switch (Opcode) {
229 case Instruction::Shl: // 0 << X = 0
230 case Instruction::LShr: // 0 >>u X = 0
231 case Instruction::AShr: // 0 >> X = 0
232 case Instruction::SDiv: // 0 / X = 0
233 case Instruction::UDiv: // 0 /u X = 0
234 case Instruction::SRem: // 0 % X = 0
235 case Instruction::URem: // 0 %u X = 0
236 case Instruction::Sub: // 0 - X (doesn't simplify, but it is safe)
237 case Instruction::FSub: // 0.0 - X (doesn't simplify, but it is safe)
238 case Instruction::FDiv: // 0.0 / X (doesn't simplify, but it is safe)
239 case Instruction::FRem: // 0.0 % X = 0
240 SafeC = Constant::getNullValue(EltTy);
241 break;
242 default:
243 llvm_unreachable("Expected to find identity constant for opcode");
247 assert(SafeC && "Must have safe constant for binop");
248 unsigned NumElts = In->getType()->getVectorNumElements();
249 SmallVector<Constant *, 16> Out(NumElts);
250 for (unsigned i = 0; i != NumElts; ++i) {
251 Constant *C = In->getAggregateElement(i);
252 Out[i] = isa<UndefValue>(C) ? SafeC : C;
254 return ConstantVector::get(Out);
257 /// The core instruction combiner logic.
259 /// This class provides both the logic to recursively visit instructions and
260 /// combine them.
261 class LLVM_LIBRARY_VISIBILITY InstCombiner
262 : public InstVisitor<InstCombiner, Instruction *> {
263 // FIXME: These members shouldn't be public.
264 public:
265 /// A worklist of the instructions that need to be simplified.
266 InstCombineWorklist &Worklist;
268 /// An IRBuilder that automatically inserts new instructions into the
269 /// worklist.
270 using BuilderTy = IRBuilder<TargetFolder, IRBuilderCallbackInserter>;
271 BuilderTy &Builder;
273 private:
274 // Mode in which we are running the combiner.
275 const bool MinimizeSize;
277 /// Enable combines that trigger rarely but are costly in compiletime.
278 const bool ExpensiveCombines;
280 AliasAnalysis *AA;
282 // Required analyses.
283 AssumptionCache &AC;
284 TargetLibraryInfo &TLI;
285 DominatorTree &DT;
286 const DataLayout &DL;
287 const SimplifyQuery SQ;
288 OptimizationRemarkEmitter &ORE;
289 BlockFrequencyInfo *BFI;
290 ProfileSummaryInfo *PSI;
292 // Optional analyses. When non-null, these can both be used to do better
293 // combining and will be updated to reflect any changes.
294 LoopInfo *LI;
296 bool MadeIRChange = false;
298 public:
299 InstCombiner(InstCombineWorklist &Worklist, BuilderTy &Builder,
300 bool MinimizeSize, bool ExpensiveCombines, AliasAnalysis *AA,
301 AssumptionCache &AC, TargetLibraryInfo &TLI, DominatorTree &DT,
302 OptimizationRemarkEmitter &ORE, BlockFrequencyInfo *BFI,
303 ProfileSummaryInfo *PSI, const DataLayout &DL, LoopInfo *LI)
304 : Worklist(Worklist), Builder(Builder), MinimizeSize(MinimizeSize),
305 ExpensiveCombines(ExpensiveCombines), AA(AA), AC(AC), TLI(TLI), DT(DT),
306 DL(DL), SQ(DL, &TLI, &DT, &AC), ORE(ORE), BFI(BFI), PSI(PSI), LI(LI) {}
308 /// Run the combiner over the entire worklist until it is empty.
310 /// \returns true if the IR is changed.
311 bool run();
313 AssumptionCache &getAssumptionCache() const { return AC; }
315 const DataLayout &getDataLayout() const { return DL; }
317 DominatorTree &getDominatorTree() const { return DT; }
319 LoopInfo *getLoopInfo() const { return LI; }
321 TargetLibraryInfo &getTargetLibraryInfo() const { return TLI; }
323 // Visitation implementation - Implement instruction combining for different
324 // instruction types. The semantics are as follows:
325 // Return Value:
326 // null - No change was made
327 // I - Change was made, I is still valid, I may be dead though
328 // otherwise - Change was made, replace I with returned instruction
330 Instruction *visitFNeg(UnaryOperator &I);
331 Instruction *visitAdd(BinaryOperator &I);
332 Instruction *visitFAdd(BinaryOperator &I);
333 Value *OptimizePointerDifference(Value *LHS, Value *RHS, Type *Ty);
334 Instruction *visitSub(BinaryOperator &I);
335 Instruction *visitFSub(BinaryOperator &I);
336 Instruction *visitMul(BinaryOperator &I);
337 Instruction *visitFMul(BinaryOperator &I);
338 Instruction *visitURem(BinaryOperator &I);
339 Instruction *visitSRem(BinaryOperator &I);
340 Instruction *visitFRem(BinaryOperator &I);
341 bool simplifyDivRemOfSelectWithZeroOp(BinaryOperator &I);
342 Instruction *commonRemTransforms(BinaryOperator &I);
343 Instruction *commonIRemTransforms(BinaryOperator &I);
344 Instruction *commonDivTransforms(BinaryOperator &I);
345 Instruction *commonIDivTransforms(BinaryOperator &I);
346 Instruction *visitUDiv(BinaryOperator &I);
347 Instruction *visitSDiv(BinaryOperator &I);
348 Instruction *visitFDiv(BinaryOperator &I);
349 Value *simplifyRangeCheck(ICmpInst *Cmp0, ICmpInst *Cmp1, bool Inverted);
350 Instruction *visitAnd(BinaryOperator &I);
351 Instruction *visitOr(BinaryOperator &I);
352 Instruction *visitXor(BinaryOperator &I);
353 Instruction *visitShl(BinaryOperator &I);
354 Instruction *visitAShr(BinaryOperator &I);
355 Instruction *visitLShr(BinaryOperator &I);
356 Instruction *commonShiftTransforms(BinaryOperator &I);
357 Instruction *visitFCmpInst(FCmpInst &I);
358 Instruction *visitICmpInst(ICmpInst &I);
359 Instruction *FoldShiftByConstant(Value *Op0, Constant *Op1,
360 BinaryOperator &I);
361 Instruction *commonCastTransforms(CastInst &CI);
362 Instruction *commonPointerCastTransforms(CastInst &CI);
363 Instruction *visitTrunc(TruncInst &CI);
364 Instruction *visitZExt(ZExtInst &CI);
365 Instruction *visitSExt(SExtInst &CI);
366 Instruction *visitFPTrunc(FPTruncInst &CI);
367 Instruction *visitFPExt(CastInst &CI);
368 Instruction *visitFPToUI(FPToUIInst &FI);
369 Instruction *visitFPToSI(FPToSIInst &FI);
370 Instruction *visitUIToFP(CastInst &CI);
371 Instruction *visitSIToFP(CastInst &CI);
372 Instruction *visitPtrToInt(PtrToIntInst &CI);
373 Instruction *visitIntToPtr(IntToPtrInst &CI);
374 Instruction *visitBitCast(BitCastInst &CI);
375 Instruction *visitAddrSpaceCast(AddrSpaceCastInst &CI);
376 Instruction *FoldItoFPtoI(Instruction &FI);
377 Instruction *visitSelectInst(SelectInst &SI);
378 Instruction *visitCallInst(CallInst &CI);
379 Instruction *visitInvokeInst(InvokeInst &II);
380 Instruction *visitCallBrInst(CallBrInst &CBI);
382 Instruction *SliceUpIllegalIntegerPHI(PHINode &PN);
383 Instruction *visitPHINode(PHINode &PN);
384 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
385 Instruction *visitAllocaInst(AllocaInst &AI);
386 Instruction *visitAllocSite(Instruction &FI);
387 Instruction *visitFree(CallInst &FI);
388 Instruction *visitLoadInst(LoadInst &LI);
389 Instruction *visitStoreInst(StoreInst &SI);
390 Instruction *visitAtomicRMWInst(AtomicRMWInst &SI);
391 Instruction *visitBranchInst(BranchInst &BI);
392 Instruction *visitFenceInst(FenceInst &FI);
393 Instruction *visitSwitchInst(SwitchInst &SI);
394 Instruction *visitReturnInst(ReturnInst &RI);
395 Instruction *visitInsertValueInst(InsertValueInst &IV);
396 Instruction *visitInsertElementInst(InsertElementInst &IE);
397 Instruction *visitExtractElementInst(ExtractElementInst &EI);
398 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
399 Instruction *visitExtractValueInst(ExtractValueInst &EV);
400 Instruction *visitLandingPadInst(LandingPadInst &LI);
401 Instruction *visitVAStartInst(VAStartInst &I);
402 Instruction *visitVACopyInst(VACopyInst &I);
404 /// Specify what to return for unhandled instructions.
405 Instruction *visitInstruction(Instruction &I) { return nullptr; }
407 /// True when DB dominates all uses of DI except UI.
408 /// UI must be in the same block as DI.
409 /// The routine checks that the DI parent and DB are different.
410 bool dominatesAllUses(const Instruction *DI, const Instruction *UI,
411 const BasicBlock *DB) const;
413 /// Try to replace select with select operand SIOpd in SI-ICmp sequence.
414 bool replacedSelectWithOperand(SelectInst *SI, const ICmpInst *Icmp,
415 const unsigned SIOpd);
417 /// Try to replace instruction \p I with value \p V which are pointers
418 /// in different address space.
419 /// \return true if successful.
420 bool replacePointer(Instruction &I, Value *V);
422 private:
423 bool shouldChangeType(unsigned FromBitWidth, unsigned ToBitWidth) const;
424 bool shouldChangeType(Type *From, Type *To) const;
425 Value *dyn_castNegVal(Value *V) const;
426 Type *FindElementAtOffset(PointerType *PtrTy, int64_t Offset,
427 SmallVectorImpl<Value *> &NewIndices);
429 /// Classify whether a cast is worth optimizing.
431 /// This is a helper to decide whether the simplification of
432 /// logic(cast(A), cast(B)) to cast(logic(A, B)) should be performed.
434 /// \param CI The cast we are interested in.
436 /// \return true if this cast actually results in any code being generated and
437 /// if it cannot already be eliminated by some other transformation.
438 bool shouldOptimizeCast(CastInst *CI);
440 /// Try to optimize a sequence of instructions checking if an operation
441 /// on LHS and RHS overflows.
443 /// If this overflow check is done via one of the overflow check intrinsics,
444 /// then CtxI has to be the call instruction calling that intrinsic. If this
445 /// overflow check is done by arithmetic followed by a compare, then CtxI has
446 /// to be the arithmetic instruction.
448 /// If a simplification is possible, stores the simplified result of the
449 /// operation in OperationResult and result of the overflow check in
450 /// OverflowResult, and return true. If no simplification is possible,
451 /// returns false.
452 bool OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp, bool IsSigned,
453 Value *LHS, Value *RHS,
454 Instruction &CtxI, Value *&OperationResult,
455 Constant *&OverflowResult);
457 Instruction *visitCallBase(CallBase &Call);
458 Instruction *tryOptimizeCall(CallInst *CI);
459 bool transformConstExprCastCall(CallBase &Call);
460 Instruction *transformCallThroughTrampoline(CallBase &Call,
461 IntrinsicInst &Tramp);
463 Value *simplifyMaskedLoad(IntrinsicInst &II);
464 Instruction *simplifyMaskedStore(IntrinsicInst &II);
465 Instruction *simplifyMaskedGather(IntrinsicInst &II);
466 Instruction *simplifyMaskedScatter(IntrinsicInst &II);
468 /// Transform (zext icmp) to bitwise / integer operations in order to
469 /// eliminate it.
471 /// \param ICI The icmp of the (zext icmp) pair we are interested in.
472 /// \parem CI The zext of the (zext icmp) pair we are interested in.
473 /// \param DoTransform Pass false to just test whether the given (zext icmp)
474 /// would be transformed. Pass true to actually perform the transformation.
476 /// \return null if the transformation cannot be performed. If the
477 /// transformation can be performed the new instruction that replaces the
478 /// (zext icmp) pair will be returned (if \p DoTransform is false the
479 /// unmodified \p ICI will be returned in this case).
480 Instruction *transformZExtICmp(ICmpInst *ICI, ZExtInst &CI,
481 bool DoTransform = true);
483 Instruction *transformSExtICmp(ICmpInst *ICI, Instruction &CI);
485 bool willNotOverflowSignedAdd(const Value *LHS, const Value *RHS,
486 const Instruction &CxtI) const {
487 return computeOverflowForSignedAdd(LHS, RHS, &CxtI) ==
488 OverflowResult::NeverOverflows;
491 bool willNotOverflowUnsignedAdd(const Value *LHS, const Value *RHS,
492 const Instruction &CxtI) const {
493 return computeOverflowForUnsignedAdd(LHS, RHS, &CxtI) ==
494 OverflowResult::NeverOverflows;
497 bool willNotOverflowAdd(const Value *LHS, const Value *RHS,
498 const Instruction &CxtI, bool IsSigned) const {
499 return IsSigned ? willNotOverflowSignedAdd(LHS, RHS, CxtI)
500 : willNotOverflowUnsignedAdd(LHS, RHS, CxtI);
503 bool willNotOverflowSignedSub(const Value *LHS, const Value *RHS,
504 const Instruction &CxtI) const {
505 return computeOverflowForSignedSub(LHS, RHS, &CxtI) ==
506 OverflowResult::NeverOverflows;
509 bool willNotOverflowUnsignedSub(const Value *LHS, const Value *RHS,
510 const Instruction &CxtI) const {
511 return computeOverflowForUnsignedSub(LHS, RHS, &CxtI) ==
512 OverflowResult::NeverOverflows;
515 bool willNotOverflowSub(const Value *LHS, const Value *RHS,
516 const Instruction &CxtI, bool IsSigned) const {
517 return IsSigned ? willNotOverflowSignedSub(LHS, RHS, CxtI)
518 : willNotOverflowUnsignedSub(LHS, RHS, CxtI);
521 bool willNotOverflowSignedMul(const Value *LHS, const Value *RHS,
522 const Instruction &CxtI) const {
523 return computeOverflowForSignedMul(LHS, RHS, &CxtI) ==
524 OverflowResult::NeverOverflows;
527 bool willNotOverflowUnsignedMul(const Value *LHS, const Value *RHS,
528 const Instruction &CxtI) const {
529 return computeOverflowForUnsignedMul(LHS, RHS, &CxtI) ==
530 OverflowResult::NeverOverflows;
533 bool willNotOverflowMul(const Value *LHS, const Value *RHS,
534 const Instruction &CxtI, bool IsSigned) const {
535 return IsSigned ? willNotOverflowSignedMul(LHS, RHS, CxtI)
536 : willNotOverflowUnsignedMul(LHS, RHS, CxtI);
539 bool willNotOverflow(BinaryOperator::BinaryOps Opcode, const Value *LHS,
540 const Value *RHS, const Instruction &CxtI,
541 bool IsSigned) const {
542 switch (Opcode) {
543 case Instruction::Add: return willNotOverflowAdd(LHS, RHS, CxtI, IsSigned);
544 case Instruction::Sub: return willNotOverflowSub(LHS, RHS, CxtI, IsSigned);
545 case Instruction::Mul: return willNotOverflowMul(LHS, RHS, CxtI, IsSigned);
546 default: llvm_unreachable("Unexpected opcode for overflow query");
550 Value *EmitGEPOffset(User *GEP);
551 Instruction *scalarizePHI(ExtractElementInst &EI, PHINode *PN);
552 Instruction *foldCastedBitwiseLogic(BinaryOperator &I);
553 Instruction *narrowBinOp(TruncInst &Trunc);
554 Instruction *narrowMaskedBinOp(BinaryOperator &And);
555 Instruction *narrowMathIfNoOverflow(BinaryOperator &I);
556 Instruction *narrowRotate(TruncInst &Trunc);
557 Instruction *optimizeBitCastFromPhi(CastInst &CI, PHINode *PN);
559 /// Determine if a pair of casts can be replaced by a single cast.
561 /// \param CI1 The first of a pair of casts.
562 /// \param CI2 The second of a pair of casts.
564 /// \return 0 if the cast pair cannot be eliminated, otherwise returns an
565 /// Instruction::CastOps value for a cast that can replace the pair, casting
566 /// CI1->getSrcTy() to CI2->getDstTy().
568 /// \see CastInst::isEliminableCastPair
569 Instruction::CastOps isEliminableCastPair(const CastInst *CI1,
570 const CastInst *CI2);
572 Value *foldAndOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
573 Value *foldOrOfICmps(ICmpInst *LHS, ICmpInst *RHS, Instruction &CxtI);
574 Value *foldXorOfICmps(ICmpInst *LHS, ICmpInst *RHS, BinaryOperator &I);
576 /// Optimize (fcmp)&(fcmp) or (fcmp)|(fcmp).
577 /// NOTE: Unlike most of instcombine, this returns a Value which should
578 /// already be inserted into the function.
579 Value *foldLogicOfFCmps(FCmpInst *LHS, FCmpInst *RHS, bool IsAnd);
581 Value *foldAndOrOfICmpsOfAndWithPow2(ICmpInst *LHS, ICmpInst *RHS,
582 bool JoinedByAnd, Instruction &CxtI);
583 Value *matchSelectFromAndOr(Value *A, Value *B, Value *C, Value *D);
584 Value *getSelectCondition(Value *A, Value *B);
586 Instruction *foldIntrinsicWithOverflowCommon(IntrinsicInst *II);
588 public:
589 /// Inserts an instruction \p New before instruction \p Old
591 /// Also adds the new instruction to the worklist and returns \p New so that
592 /// it is suitable for use as the return from the visitation patterns.
593 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
594 assert(New && !New->getParent() &&
595 "New instruction already inserted into a basic block!");
596 BasicBlock *BB = Old.getParent();
597 BB->getInstList().insert(Old.getIterator(), New); // Insert inst
598 Worklist.Add(New);
599 return New;
602 /// Same as InsertNewInstBefore, but also sets the debug loc.
603 Instruction *InsertNewInstWith(Instruction *New, Instruction &Old) {
604 New->setDebugLoc(Old.getDebugLoc());
605 return InsertNewInstBefore(New, Old);
608 /// A combiner-aware RAUW-like routine.
610 /// This method is to be used when an instruction is found to be dead,
611 /// replaceable with another preexisting expression. Here we add all uses of
612 /// I to the worklist, replace all uses of I with the new value, then return
613 /// I, so that the inst combiner will know that I was modified.
614 Instruction *replaceInstUsesWith(Instruction &I, Value *V) {
615 // If there are no uses to replace, then we return nullptr to indicate that
616 // no changes were made to the program.
617 if (I.use_empty()) return nullptr;
619 Worklist.AddUsersToWorkList(I); // Add all modified instrs to worklist.
621 // If we are replacing the instruction with itself, this must be in a
622 // segment of unreachable code, so just clobber the instruction.
623 if (&I == V)
624 V = UndefValue::get(I.getType());
626 LLVM_DEBUG(dbgs() << "IC: Replacing " << I << "\n"
627 << " with " << *V << '\n');
629 I.replaceAllUsesWith(V);
630 return &I;
633 /// Creates a result tuple for an overflow intrinsic \p II with a given
634 /// \p Result and a constant \p Overflow value.
635 Instruction *CreateOverflowTuple(IntrinsicInst *II, Value *Result,
636 Constant *Overflow) {
637 Constant *V[] = {UndefValue::get(Result->getType()), Overflow};
638 StructType *ST = cast<StructType>(II->getType());
639 Constant *Struct = ConstantStruct::get(ST, V);
640 return InsertValueInst::Create(Struct, Result, 0);
643 /// Create and insert the idiom we use to indicate a block is unreachable
644 /// without having to rewrite the CFG from within InstCombine.
645 void CreateNonTerminatorUnreachable(Instruction *InsertAt) {
646 auto &Ctx = InsertAt->getContext();
647 new StoreInst(ConstantInt::getTrue(Ctx),
648 UndefValue::get(Type::getInt1PtrTy(Ctx)),
649 InsertAt);
653 /// Combiner aware instruction erasure.
655 /// When dealing with an instruction that has side effects or produces a void
656 /// value, we can't rely on DCE to delete the instruction. Instead, visit
657 /// methods should return the value returned by this function.
658 Instruction *eraseInstFromFunction(Instruction &I) {
659 LLVM_DEBUG(dbgs() << "IC: ERASE " << I << '\n');
660 assert(I.use_empty() && "Cannot erase instruction that is used!");
661 salvageDebugInfo(I);
663 // Make sure that we reprocess all operands now that we reduced their
664 // use counts.
665 if (I.getNumOperands() < 8) {
666 for (Use &Operand : I.operands())
667 if (auto *Inst = dyn_cast<Instruction>(Operand))
668 Worklist.Add(Inst);
670 Worklist.Remove(&I);
671 I.eraseFromParent();
672 MadeIRChange = true;
673 return nullptr; // Don't do anything with FI
676 void computeKnownBits(const Value *V, KnownBits &Known,
677 unsigned Depth, const Instruction *CxtI) const {
678 llvm::computeKnownBits(V, Known, DL, Depth, &AC, CxtI, &DT);
681 KnownBits computeKnownBits(const Value *V, unsigned Depth,
682 const Instruction *CxtI) const {
683 return llvm::computeKnownBits(V, DL, Depth, &AC, CxtI, &DT);
686 bool isKnownToBeAPowerOfTwo(const Value *V, bool OrZero = false,
687 unsigned Depth = 0,
688 const Instruction *CxtI = nullptr) {
689 return llvm::isKnownToBeAPowerOfTwo(V, DL, OrZero, Depth, &AC, CxtI, &DT);
692 bool MaskedValueIsZero(const Value *V, const APInt &Mask, unsigned Depth = 0,
693 const Instruction *CxtI = nullptr) const {
694 return llvm::MaskedValueIsZero(V, Mask, DL, Depth, &AC, CxtI, &DT);
697 unsigned ComputeNumSignBits(const Value *Op, unsigned Depth = 0,
698 const Instruction *CxtI = nullptr) const {
699 return llvm::ComputeNumSignBits(Op, DL, Depth, &AC, CxtI, &DT);
702 OverflowResult computeOverflowForUnsignedMul(const Value *LHS,
703 const Value *RHS,
704 const Instruction *CxtI) const {
705 return llvm::computeOverflowForUnsignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
708 OverflowResult computeOverflowForSignedMul(const Value *LHS,
709 const Value *RHS,
710 const Instruction *CxtI) const {
711 return llvm::computeOverflowForSignedMul(LHS, RHS, DL, &AC, CxtI, &DT);
714 OverflowResult computeOverflowForUnsignedAdd(const Value *LHS,
715 const Value *RHS,
716 const Instruction *CxtI) const {
717 return llvm::computeOverflowForUnsignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
720 OverflowResult computeOverflowForSignedAdd(const Value *LHS,
721 const Value *RHS,
722 const Instruction *CxtI) const {
723 return llvm::computeOverflowForSignedAdd(LHS, RHS, DL, &AC, CxtI, &DT);
726 OverflowResult computeOverflowForUnsignedSub(const Value *LHS,
727 const Value *RHS,
728 const Instruction *CxtI) const {
729 return llvm::computeOverflowForUnsignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
732 OverflowResult computeOverflowForSignedSub(const Value *LHS, const Value *RHS,
733 const Instruction *CxtI) const {
734 return llvm::computeOverflowForSignedSub(LHS, RHS, DL, &AC, CxtI, &DT);
737 OverflowResult computeOverflow(
738 Instruction::BinaryOps BinaryOp, bool IsSigned,
739 Value *LHS, Value *RHS, Instruction *CxtI) const;
741 /// Maximum size of array considered when transforming.
742 uint64_t MaxArraySizeForCombine = 0;
744 private:
745 /// Performs a few simplifications for operators which are associative
746 /// or commutative.
747 bool SimplifyAssociativeOrCommutative(BinaryOperator &I);
749 /// Tries to simplify binary operations which some other binary
750 /// operation distributes over.
752 /// It does this by either by factorizing out common terms (eg "(A*B)+(A*C)"
753 /// -> "A*(B+C)") or expanding out if this results in simplifications (eg: "A
754 /// & (B | C) -> (A&B) | (A&C)" if this is a win). Returns the simplified
755 /// value, or null if it didn't simplify.
756 Value *SimplifyUsingDistributiveLaws(BinaryOperator &I);
758 /// Tries to simplify add operations using the definition of remainder.
760 /// The definition of remainder is X % C = X - (X / C ) * C. The add
761 /// expression X % C0 + (( X / C0 ) % C1) * C0 can be simplified to
762 /// X % (C0 * C1)
763 Value *SimplifyAddWithRemainder(BinaryOperator &I);
765 // Binary Op helper for select operations where the expression can be
766 // efficiently reorganized.
767 Value *SimplifySelectsFeedingBinaryOp(BinaryOperator &I, Value *LHS,
768 Value *RHS);
770 /// This tries to simplify binary operations by factorizing out common terms
771 /// (e. g. "(A*B)+(A*C)" -> "A*(B+C)").
772 Value *tryFactorization(BinaryOperator &, Instruction::BinaryOps, Value *,
773 Value *, Value *, Value *);
775 /// Match a select chain which produces one of three values based on whether
776 /// the LHS is less than, equal to, or greater than RHS respectively.
777 /// Return true if we matched a three way compare idiom. The LHS, RHS, Less,
778 /// Equal and Greater values are saved in the matching process and returned to
779 /// the caller.
780 bool matchThreeWayIntCompare(SelectInst *SI, Value *&LHS, Value *&RHS,
781 ConstantInt *&Less, ConstantInt *&Equal,
782 ConstantInt *&Greater);
784 /// Attempts to replace V with a simpler value based on the demanded
785 /// bits.
786 Value *SimplifyDemandedUseBits(Value *V, APInt DemandedMask, KnownBits &Known,
787 unsigned Depth, Instruction *CxtI);
788 bool SimplifyDemandedBits(Instruction *I, unsigned Op,
789 const APInt &DemandedMask, KnownBits &Known,
790 unsigned Depth = 0);
792 /// Helper routine of SimplifyDemandedUseBits. It computes KnownZero/KnownOne
793 /// bits. It also tries to handle simplifications that can be done based on
794 /// DemandedMask, but without modifying the Instruction.
795 Value *SimplifyMultipleUseDemandedBits(Instruction *I,
796 const APInt &DemandedMask,
797 KnownBits &Known,
798 unsigned Depth, Instruction *CxtI);
800 /// Helper routine of SimplifyDemandedUseBits. It tries to simplify demanded
801 /// bit for "r1 = shr x, c1; r2 = shl r1, c2" instruction sequence.
802 Value *simplifyShrShlDemandedBits(
803 Instruction *Shr, const APInt &ShrOp1, Instruction *Shl,
804 const APInt &ShlOp1, const APInt &DemandedMask, KnownBits &Known);
806 /// Tries to simplify operands to an integer instruction based on its
807 /// demanded bits.
808 bool SimplifyDemandedInstructionBits(Instruction &Inst);
810 Value *simplifyAMDGCNMemoryIntrinsicDemanded(IntrinsicInst *II,
811 APInt DemandedElts,
812 int DmaskIdx = -1);
814 Value *SimplifyDemandedVectorElts(Value *V, APInt DemandedElts,
815 APInt &UndefElts, unsigned Depth = 0);
817 /// Canonicalize the position of binops relative to shufflevector.
818 Instruction *foldVectorBinop(BinaryOperator &Inst);
820 /// Given a binary operator, cast instruction, or select which has a PHI node
821 /// as operand #0, see if we can fold the instruction into the PHI (which is
822 /// only possible if all operands to the PHI are constants).
823 Instruction *foldOpIntoPhi(Instruction &I, PHINode *PN);
825 /// Given an instruction with a select as one operand and a constant as the
826 /// other operand, try to fold the binary operator into the select arguments.
827 /// This also works for Cast instructions, which obviously do not have a
828 /// second operand.
829 Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI);
831 /// This is a convenience wrapper function for the above two functions.
832 Instruction *foldBinOpIntoSelectOrPhi(BinaryOperator &I);
834 Instruction *foldAddWithConstant(BinaryOperator &Add);
836 /// Try to rotate an operation below a PHI node, using PHI nodes for
837 /// its operands.
838 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
839 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
840 Instruction *FoldPHIArgGEPIntoPHI(PHINode &PN);
841 Instruction *FoldPHIArgLoadIntoPHI(PHINode &PN);
842 Instruction *FoldPHIArgZextsIntoPHI(PHINode &PN);
844 /// If an integer typed PHI has only one use which is an IntToPtr operation,
845 /// replace the PHI with an existing pointer typed PHI if it exists. Otherwise
846 /// insert a new pointer typed PHI and replace the original one.
847 Instruction *FoldIntegerTypedPHI(PHINode &PN);
849 /// Helper function for FoldPHIArgXIntoPHI() to set debug location for the
850 /// folded operation.
851 void PHIArgMergedDebugLoc(Instruction *Inst, PHINode &PN);
853 Instruction *foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
854 ICmpInst::Predicate Cond, Instruction &I);
855 Instruction *foldAllocaCmp(ICmpInst &ICI, const AllocaInst *Alloca,
856 const Value *Other);
857 Instruction *foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
858 GlobalVariable *GV, CmpInst &ICI,
859 ConstantInt *AndCst = nullptr);
860 Instruction *foldFCmpIntToFPConst(FCmpInst &I, Instruction *LHSI,
861 Constant *RHSC);
862 Instruction *foldICmpAddOpConst(Value *X, const APInt &C,
863 ICmpInst::Predicate Pred);
864 Instruction *foldICmpWithCastOp(ICmpInst &ICI);
866 Instruction *foldICmpUsingKnownBits(ICmpInst &Cmp);
867 Instruction *foldICmpWithDominatingICmp(ICmpInst &Cmp);
868 Instruction *foldICmpWithConstant(ICmpInst &Cmp);
869 Instruction *foldICmpInstWithConstant(ICmpInst &Cmp);
870 Instruction *foldICmpInstWithConstantNotInt(ICmpInst &Cmp);
871 Instruction *foldICmpBinOp(ICmpInst &Cmp);
872 Instruction *foldICmpEquality(ICmpInst &Cmp);
873 Instruction *foldIRemByPowerOfTwoToBitTest(ICmpInst &I);
874 Instruction *foldICmpWithZero(ICmpInst &Cmp);
876 Value *foldUnsignedMultiplicationOverflowCheck(ICmpInst &Cmp);
878 Instruction *foldICmpSelectConstant(ICmpInst &Cmp, SelectInst *Select,
879 ConstantInt *C);
880 Instruction *foldICmpTruncConstant(ICmpInst &Cmp, TruncInst *Trunc,
881 const APInt &C);
882 Instruction *foldICmpAndConstant(ICmpInst &Cmp, BinaryOperator *And,
883 const APInt &C);
884 Instruction *foldICmpXorConstant(ICmpInst &Cmp, BinaryOperator *Xor,
885 const APInt &C);
886 Instruction *foldICmpOrConstant(ICmpInst &Cmp, BinaryOperator *Or,
887 const APInt &C);
888 Instruction *foldICmpMulConstant(ICmpInst &Cmp, BinaryOperator *Mul,
889 const APInt &C);
890 Instruction *foldICmpShlConstant(ICmpInst &Cmp, BinaryOperator *Shl,
891 const APInt &C);
892 Instruction *foldICmpShrConstant(ICmpInst &Cmp, BinaryOperator *Shr,
893 const APInt &C);
894 Instruction *foldICmpUDivConstant(ICmpInst &Cmp, BinaryOperator *UDiv,
895 const APInt &C);
896 Instruction *foldICmpDivConstant(ICmpInst &Cmp, BinaryOperator *Div,
897 const APInt &C);
898 Instruction *foldICmpSubConstant(ICmpInst &Cmp, BinaryOperator *Sub,
899 const APInt &C);
900 Instruction *foldICmpAddConstant(ICmpInst &Cmp, BinaryOperator *Add,
901 const APInt &C);
902 Instruction *foldICmpAndConstConst(ICmpInst &Cmp, BinaryOperator *And,
903 const APInt &C1);
904 Instruction *foldICmpAndShift(ICmpInst &Cmp, BinaryOperator *And,
905 const APInt &C1, const APInt &C2);
906 Instruction *foldICmpShrConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
907 const APInt &C2);
908 Instruction *foldICmpShlConstConst(ICmpInst &I, Value *ShAmt, const APInt &C1,
909 const APInt &C2);
911 Instruction *foldICmpBinOpEqualityWithConstant(ICmpInst &Cmp,
912 BinaryOperator *BO,
913 const APInt &C);
914 Instruction *foldICmpIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
915 const APInt &C);
916 Instruction *foldICmpEqIntrinsicWithConstant(ICmpInst &ICI, IntrinsicInst *II,
917 const APInt &C);
919 // Helpers of visitSelectInst().
920 Instruction *foldSelectExtConst(SelectInst &Sel);
921 Instruction *foldSelectOpOp(SelectInst &SI, Instruction *TI, Instruction *FI);
922 Instruction *foldSelectIntoOp(SelectInst &SI, Value *, Value *);
923 Instruction *foldSPFofSPF(Instruction *Inner, SelectPatternFlavor SPF1,
924 Value *A, Value *B, Instruction &Outer,
925 SelectPatternFlavor SPF2, Value *C);
926 Instruction *foldSelectInstWithICmp(SelectInst &SI, ICmpInst *ICI);
928 Instruction *OptAndOp(BinaryOperator *Op, ConstantInt *OpRHS,
929 ConstantInt *AndRHS, BinaryOperator &TheAnd);
931 Value *insertRangeTest(Value *V, const APInt &Lo, const APInt &Hi,
932 bool isSigned, bool Inside);
933 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocaInst &AI);
934 bool mergeStoreIntoSuccessor(StoreInst &SI);
936 /// Given an 'or' instruction, check to see if it is part of a bswap idiom.
937 /// If so, return the equivalent bswap intrinsic.
938 Instruction *matchBSwap(BinaryOperator &Or);
940 Instruction *SimplifyAnyMemTransfer(AnyMemTransferInst *MI);
941 Instruction *SimplifyAnyMemSet(AnyMemSetInst *MI);
943 Value *EvaluateInDifferentType(Value *V, Type *Ty, bool isSigned);
945 /// Returns a value X such that Val = X * Scale, or null if none.
947 /// If the multiplication is known not to overflow then NoSignedWrap is set.
948 Value *Descale(Value *Val, APInt Scale, bool &NoSignedWrap);
951 } // end namespace llvm
953 #undef DEBUG_TYPE
955 #endif // LLVM_LIB_TRANSFORMS_INSTCOMBINE_INSTCOMBINEINTERNAL_H