[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / Scalar / Float2Int.cpp
blob4f83e869b30322351c6f4dcfc20b0148d764c2fe
1 //===- Float2Int.cpp - Demote floating point ops to work on integers ------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Float2Int pass, which aims to demote floating
10 // point operations to work on integers, where that is losslessly possible.
12 //===----------------------------------------------------------------------===//
14 #define DEBUG_TYPE "float2int"
16 #include "llvm/Transforms/Scalar/Float2Int.h"
17 #include "llvm/ADT/APInt.h"
18 #include "llvm/ADT/APSInt.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/GlobalsModRef.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/IRBuilder.h"
24 #include "llvm/IR/InstIterator.h"
25 #include "llvm/IR/Instructions.h"
26 #include "llvm/IR/Module.h"
27 #include "llvm/Pass.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/raw_ostream.h"
30 #include "llvm/Transforms/Scalar.h"
31 #include <deque>
32 #include <functional> // For std::function
33 using namespace llvm;
35 // The algorithm is simple. Start at instructions that convert from the
36 // float to the int domain: fptoui, fptosi and fcmp. Walk up the def-use
37 // graph, using an equivalence datastructure to unify graphs that interfere.
39 // Mappable instructions are those with an integer corrollary that, given
40 // integer domain inputs, produce an integer output; fadd, for example.
42 // If a non-mappable instruction is seen, this entire def-use graph is marked
43 // as non-transformable. If we see an instruction that converts from the
44 // integer domain to FP domain (uitofp,sitofp), we terminate our walk.
46 /// The largest integer type worth dealing with.
47 static cl::opt<unsigned>
48 MaxIntegerBW("float2int-max-integer-bw", cl::init(64), cl::Hidden,
49 cl::desc("Max integer bitwidth to consider in float2int"
50 "(default=64)"));
52 namespace {
53 struct Float2IntLegacyPass : public FunctionPass {
54 static char ID; // Pass identification, replacement for typeid
55 Float2IntLegacyPass() : FunctionPass(ID) {
56 initializeFloat2IntLegacyPassPass(*PassRegistry::getPassRegistry());
59 bool runOnFunction(Function &F) override {
60 if (skipFunction(F))
61 return false;
63 return Impl.runImpl(F);
66 void getAnalysisUsage(AnalysisUsage &AU) const override {
67 AU.setPreservesCFG();
68 AU.addPreserved<GlobalsAAWrapperPass>();
71 private:
72 Float2IntPass Impl;
76 char Float2IntLegacyPass::ID = 0;
77 INITIALIZE_PASS(Float2IntLegacyPass, "float2int", "Float to int", false, false)
79 // Given a FCmp predicate, return a matching ICmp predicate if one
80 // exists, otherwise return BAD_ICMP_PREDICATE.
81 static CmpInst::Predicate mapFCmpPred(CmpInst::Predicate P) {
82 switch (P) {
83 case CmpInst::FCMP_OEQ:
84 case CmpInst::FCMP_UEQ:
85 return CmpInst::ICMP_EQ;
86 case CmpInst::FCMP_OGT:
87 case CmpInst::FCMP_UGT:
88 return CmpInst::ICMP_SGT;
89 case CmpInst::FCMP_OGE:
90 case CmpInst::FCMP_UGE:
91 return CmpInst::ICMP_SGE;
92 case CmpInst::FCMP_OLT:
93 case CmpInst::FCMP_ULT:
94 return CmpInst::ICMP_SLT;
95 case CmpInst::FCMP_OLE:
96 case CmpInst::FCMP_ULE:
97 return CmpInst::ICMP_SLE;
98 case CmpInst::FCMP_ONE:
99 case CmpInst::FCMP_UNE:
100 return CmpInst::ICMP_NE;
101 default:
102 return CmpInst::BAD_ICMP_PREDICATE;
106 // Given a floating point binary operator, return the matching
107 // integer version.
108 static Instruction::BinaryOps mapBinOpcode(unsigned Opcode) {
109 switch (Opcode) {
110 default: llvm_unreachable("Unhandled opcode!");
111 case Instruction::FAdd: return Instruction::Add;
112 case Instruction::FSub: return Instruction::Sub;
113 case Instruction::FMul: return Instruction::Mul;
117 // Find the roots - instructions that convert from the FP domain to
118 // integer domain.
119 void Float2IntPass::findRoots(Function &F, SmallPtrSet<Instruction*,8> &Roots) {
120 for (auto &I : instructions(F)) {
121 if (isa<VectorType>(I.getType()))
122 continue;
123 switch (I.getOpcode()) {
124 default: break;
125 case Instruction::FPToUI:
126 case Instruction::FPToSI:
127 Roots.insert(&I);
128 break;
129 case Instruction::FCmp:
130 if (mapFCmpPred(cast<CmpInst>(&I)->getPredicate()) !=
131 CmpInst::BAD_ICMP_PREDICATE)
132 Roots.insert(&I);
133 break;
138 // Helper - mark I as having been traversed, having range R.
139 void Float2IntPass::seen(Instruction *I, ConstantRange R) {
140 LLVM_DEBUG(dbgs() << "F2I: " << *I << ":" << R << "\n");
141 auto IT = SeenInsts.find(I);
142 if (IT != SeenInsts.end())
143 IT->second = std::move(R);
144 else
145 SeenInsts.insert(std::make_pair(I, std::move(R)));
148 // Helper - get a range representing a poison value.
149 ConstantRange Float2IntPass::badRange() {
150 return ConstantRange::getFull(MaxIntegerBW + 1);
152 ConstantRange Float2IntPass::unknownRange() {
153 return ConstantRange::getEmpty(MaxIntegerBW + 1);
155 ConstantRange Float2IntPass::validateRange(ConstantRange R) {
156 if (R.getBitWidth() > MaxIntegerBW + 1)
157 return badRange();
158 return R;
161 // The most obvious way to structure the search is a depth-first, eager
162 // search from each root. However, that require direct recursion and so
163 // can only handle small instruction sequences. Instead, we split the search
164 // up into two phases:
165 // - walkBackwards: A breadth-first walk of the use-def graph starting from
166 // the roots. Populate "SeenInsts" with interesting
167 // instructions and poison values if they're obvious and
168 // cheap to compute. Calculate the equivalance set structure
169 // while we're here too.
170 // - walkForwards: Iterate over SeenInsts in reverse order, so we visit
171 // defs before their uses. Calculate the real range info.
173 // Breadth-first walk of the use-def graph; determine the set of nodes
174 // we care about and eagerly determine if some of them are poisonous.
175 void Float2IntPass::walkBackwards(const SmallPtrSetImpl<Instruction*> &Roots) {
176 std::deque<Instruction*> Worklist(Roots.begin(), Roots.end());
177 while (!Worklist.empty()) {
178 Instruction *I = Worklist.back();
179 Worklist.pop_back();
181 if (SeenInsts.find(I) != SeenInsts.end())
182 // Seen already.
183 continue;
185 switch (I->getOpcode()) {
186 // FIXME: Handle select and phi nodes.
187 default:
188 // Path terminated uncleanly.
189 seen(I, badRange());
190 break;
192 case Instruction::UIToFP:
193 case Instruction::SIToFP: {
194 // Path terminated cleanly - use the type of the integer input to seed
195 // the analysis.
196 unsigned BW = I->getOperand(0)->getType()->getPrimitiveSizeInBits();
197 auto Input = ConstantRange::getFull(BW);
198 auto CastOp = (Instruction::CastOps)I->getOpcode();
199 seen(I, validateRange(Input.castOp(CastOp, MaxIntegerBW+1)));
200 continue;
203 case Instruction::FNeg:
204 case Instruction::FAdd:
205 case Instruction::FSub:
206 case Instruction::FMul:
207 case Instruction::FPToUI:
208 case Instruction::FPToSI:
209 case Instruction::FCmp:
210 seen(I, unknownRange());
211 break;
214 for (Value *O : I->operands()) {
215 if (Instruction *OI = dyn_cast<Instruction>(O)) {
216 // Unify def-use chains if they interfere.
217 ECs.unionSets(I, OI);
218 if (SeenInsts.find(I)->second != badRange())
219 Worklist.push_back(OI);
220 } else if (!isa<ConstantFP>(O)) {
221 // Not an instruction or ConstantFP? we can't do anything.
222 seen(I, badRange());
228 // Walk forwards down the list of seen instructions, so we visit defs before
229 // uses.
230 void Float2IntPass::walkForwards() {
231 for (auto &It : reverse(SeenInsts)) {
232 if (It.second != unknownRange())
233 continue;
235 Instruction *I = It.first;
236 std::function<ConstantRange(ArrayRef<ConstantRange>)> Op;
237 switch (I->getOpcode()) {
238 // FIXME: Handle select and phi nodes.
239 default:
240 case Instruction::UIToFP:
241 case Instruction::SIToFP:
242 llvm_unreachable("Should have been handled in walkForwards!");
244 case Instruction::FNeg:
245 Op = [](ArrayRef<ConstantRange> Ops) {
246 assert(Ops.size() == 1 && "FNeg is a unary operator!");
247 unsigned Size = Ops[0].getBitWidth();
248 auto Zero = ConstantRange(APInt::getNullValue(Size));
249 return Zero.sub(Ops[0]);
251 break;
253 case Instruction::FAdd:
254 case Instruction::FSub:
255 case Instruction::FMul:
256 Op = [I](ArrayRef<ConstantRange> Ops) {
257 assert(Ops.size() == 2 && "its a binary operator!");
258 auto BinOp = (Instruction::BinaryOps) I->getOpcode();
259 return Ops[0].binaryOp(BinOp, Ops[1]);
261 break;
264 // Root-only instructions - we'll only see these if they're the
265 // first node in a walk.
267 case Instruction::FPToUI:
268 case Instruction::FPToSI:
269 Op = [I](ArrayRef<ConstantRange> Ops) {
270 assert(Ops.size() == 1 && "FPTo[US]I is a unary operator!");
271 // Note: We're ignoring the casts output size here as that's what the
272 // caller expects.
273 auto CastOp = (Instruction::CastOps)I->getOpcode();
274 return Ops[0].castOp(CastOp, MaxIntegerBW+1);
276 break;
278 case Instruction::FCmp:
279 Op = [](ArrayRef<ConstantRange> Ops) {
280 assert(Ops.size() == 2 && "FCmp is a binary operator!");
281 return Ops[0].unionWith(Ops[1]);
283 break;
286 bool Abort = false;
287 SmallVector<ConstantRange,4> OpRanges;
288 for (Value *O : I->operands()) {
289 if (Instruction *OI = dyn_cast<Instruction>(O)) {
290 assert(SeenInsts.find(OI) != SeenInsts.end() &&
291 "def not seen before use!");
292 OpRanges.push_back(SeenInsts.find(OI)->second);
293 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(O)) {
294 // Work out if the floating point number can be losslessly represented
295 // as an integer.
296 // APFloat::convertToInteger(&Exact) purports to do what we want, but
297 // the exactness can be too precise. For example, negative zero can
298 // never be exactly converted to an integer.
300 // Instead, we ask APFloat to round itself to an integral value - this
301 // preserves sign-of-zero - then compare the result with the original.
303 const APFloat &F = CF->getValueAPF();
305 // First, weed out obviously incorrect values. Non-finite numbers
306 // can't be represented and neither can negative zero, unless
307 // we're in fast math mode.
308 if (!F.isFinite() ||
309 (F.isZero() && F.isNegative() && isa<FPMathOperator>(I) &&
310 !I->hasNoSignedZeros())) {
311 seen(I, badRange());
312 Abort = true;
313 break;
316 APFloat NewF = F;
317 auto Res = NewF.roundToIntegral(APFloat::rmNearestTiesToEven);
318 if (Res != APFloat::opOK || NewF.compare(F) != APFloat::cmpEqual) {
319 seen(I, badRange());
320 Abort = true;
321 break;
323 // OK, it's representable. Now get it.
324 APSInt Int(MaxIntegerBW+1, false);
325 bool Exact;
326 CF->getValueAPF().convertToInteger(Int,
327 APFloat::rmNearestTiesToEven,
328 &Exact);
329 OpRanges.push_back(ConstantRange(Int));
330 } else {
331 llvm_unreachable("Should have already marked this as badRange!");
335 // Reduce the operands' ranges to a single range and return.
336 if (!Abort)
337 seen(I, Op(OpRanges));
341 // If there is a valid transform to be done, do it.
342 bool Float2IntPass::validateAndTransform() {
343 bool MadeChange = false;
345 // Iterate over every disjoint partition of the def-use graph.
346 for (auto It = ECs.begin(), E = ECs.end(); It != E; ++It) {
347 ConstantRange R(MaxIntegerBW + 1, false);
348 bool Fail = false;
349 Type *ConvertedToTy = nullptr;
351 // For every member of the partition, union all the ranges together.
352 for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
353 MI != ME; ++MI) {
354 Instruction *I = *MI;
355 auto SeenI = SeenInsts.find(I);
356 if (SeenI == SeenInsts.end())
357 continue;
359 R = R.unionWith(SeenI->second);
360 // We need to ensure I has no users that have not been seen.
361 // If it does, transformation would be illegal.
363 // Don't count the roots, as they terminate the graphs.
364 if (Roots.count(I) == 0) {
365 // Set the type of the conversion while we're here.
366 if (!ConvertedToTy)
367 ConvertedToTy = I->getType();
368 for (User *U : I->users()) {
369 Instruction *UI = dyn_cast<Instruction>(U);
370 if (!UI || SeenInsts.find(UI) == SeenInsts.end()) {
371 LLVM_DEBUG(dbgs() << "F2I: Failing because of " << *U << "\n");
372 Fail = true;
373 break;
377 if (Fail)
378 break;
381 // If the set was empty, or we failed, or the range is poisonous,
382 // bail out.
383 if (ECs.member_begin(It) == ECs.member_end() || Fail ||
384 R.isFullSet() || R.isSignWrappedSet())
385 continue;
386 assert(ConvertedToTy && "Must have set the convertedtoty by this point!");
388 // The number of bits required is the maximum of the upper and
389 // lower limits, plus one so it can be signed.
390 unsigned MinBW = std::max(R.getLower().getMinSignedBits(),
391 R.getUpper().getMinSignedBits()) + 1;
392 LLVM_DEBUG(dbgs() << "F2I: MinBitwidth=" << MinBW << ", R: " << R << "\n");
394 // If we've run off the realms of the exactly representable integers,
395 // the floating point result will differ from an integer approximation.
397 // Do we need more bits than are in the mantissa of the type we converted
398 // to? semanticsPrecision returns the number of mantissa bits plus one
399 // for the sign bit.
400 unsigned MaxRepresentableBits
401 = APFloat::semanticsPrecision(ConvertedToTy->getFltSemantics()) - 1;
402 if (MinBW > MaxRepresentableBits) {
403 LLVM_DEBUG(dbgs() << "F2I: Value not guaranteed to be representable!\n");
404 continue;
406 if (MinBW > 64) {
407 LLVM_DEBUG(
408 dbgs() << "F2I: Value requires more than 64 bits to represent!\n");
409 continue;
412 // OK, R is known to be representable. Now pick a type for it.
413 // FIXME: Pick the smallest legal type that will fit.
414 Type *Ty = (MinBW > 32) ? Type::getInt64Ty(*Ctx) : Type::getInt32Ty(*Ctx);
416 for (auto MI = ECs.member_begin(It), ME = ECs.member_end();
417 MI != ME; ++MI)
418 convert(*MI, Ty);
419 MadeChange = true;
422 return MadeChange;
425 Value *Float2IntPass::convert(Instruction *I, Type *ToTy) {
426 if (ConvertedInsts.find(I) != ConvertedInsts.end())
427 // Already converted this instruction.
428 return ConvertedInsts[I];
430 SmallVector<Value*,4> NewOperands;
431 for (Value *V : I->operands()) {
432 // Don't recurse if we're an instruction that terminates the path.
433 if (I->getOpcode() == Instruction::UIToFP ||
434 I->getOpcode() == Instruction::SIToFP) {
435 NewOperands.push_back(V);
436 } else if (Instruction *VI = dyn_cast<Instruction>(V)) {
437 NewOperands.push_back(convert(VI, ToTy));
438 } else if (ConstantFP *CF = dyn_cast<ConstantFP>(V)) {
439 APSInt Val(ToTy->getPrimitiveSizeInBits(), /*isUnsigned=*/false);
440 bool Exact;
441 CF->getValueAPF().convertToInteger(Val,
442 APFloat::rmNearestTiesToEven,
443 &Exact);
444 NewOperands.push_back(ConstantInt::get(ToTy, Val));
445 } else {
446 llvm_unreachable("Unhandled operand type?");
450 // Now create a new instruction.
451 IRBuilder<> IRB(I);
452 Value *NewV = nullptr;
453 switch (I->getOpcode()) {
454 default: llvm_unreachable("Unhandled instruction!");
456 case Instruction::FPToUI:
457 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], I->getType());
458 break;
460 case Instruction::FPToSI:
461 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], I->getType());
462 break;
464 case Instruction::FCmp: {
465 CmpInst::Predicate P = mapFCmpPred(cast<CmpInst>(I)->getPredicate());
466 assert(P != CmpInst::BAD_ICMP_PREDICATE && "Unhandled predicate!");
467 NewV = IRB.CreateICmp(P, NewOperands[0], NewOperands[1], I->getName());
468 break;
471 case Instruction::UIToFP:
472 NewV = IRB.CreateZExtOrTrunc(NewOperands[0], ToTy);
473 break;
475 case Instruction::SIToFP:
476 NewV = IRB.CreateSExtOrTrunc(NewOperands[0], ToTy);
477 break;
479 case Instruction::FNeg:
480 NewV = IRB.CreateNeg(NewOperands[0], I->getName());
481 break;
483 case Instruction::FAdd:
484 case Instruction::FSub:
485 case Instruction::FMul:
486 NewV = IRB.CreateBinOp(mapBinOpcode(I->getOpcode()),
487 NewOperands[0], NewOperands[1],
488 I->getName());
489 break;
492 // If we're a root instruction, RAUW.
493 if (Roots.count(I))
494 I->replaceAllUsesWith(NewV);
496 ConvertedInsts[I] = NewV;
497 return NewV;
500 // Perform dead code elimination on the instructions we just modified.
501 void Float2IntPass::cleanup() {
502 for (auto &I : reverse(ConvertedInsts))
503 I.first->eraseFromParent();
506 bool Float2IntPass::runImpl(Function &F) {
507 LLVM_DEBUG(dbgs() << "F2I: Looking at function " << F.getName() << "\n");
508 // Clear out all state.
509 ECs = EquivalenceClasses<Instruction*>();
510 SeenInsts.clear();
511 ConvertedInsts.clear();
512 Roots.clear();
514 Ctx = &F.getParent()->getContext();
516 findRoots(F, Roots);
518 walkBackwards(Roots);
519 walkForwards();
521 bool Modified = validateAndTransform();
522 if (Modified)
523 cleanup();
524 return Modified;
527 namespace llvm {
528 FunctionPass *createFloat2IntPass() { return new Float2IntLegacyPass(); }
530 PreservedAnalyses Float2IntPass::run(Function &F, FunctionAnalysisManager &) {
531 if (!runImpl(F))
532 return PreservedAnalyses::all();
534 PreservedAnalyses PA;
535 PA.preserveSet<CFGAnalyses>();
536 PA.preserve<GlobalsAA>();
537 return PA;
539 } // End namespace llvm