[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / Scalar / GVNSink.cpp
blob054025755c69aaf38920b97d94a49bf2ef80fd15
1 //===- GVNSink.cpp - sink expressions into successors ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file GVNSink.cpp
10 /// This pass attempts to sink instructions into successors, reducing static
11 /// instruction count and enabling if-conversion.
12 ///
13 /// We use a variant of global value numbering to decide what can be sunk.
14 /// Consider:
15 ///
16 /// [ %a1 = add i32 %b, 1 ] [ %c1 = add i32 %d, 1 ]
17 /// [ %a2 = xor i32 %a1, 1 ] [ %c2 = xor i32 %c1, 1 ]
18 /// \ /
19 /// [ %e = phi i32 %a2, %c2 ]
20 /// [ add i32 %e, 4 ]
21 ///
22 ///
23 /// GVN would number %a1 and %c1 differently because they compute different
24 /// results - the VN of an instruction is a function of its opcode and the
25 /// transitive closure of its operands. This is the key property for hoisting
26 /// and CSE.
27 ///
28 /// What we want when sinking however is for a numbering that is a function of
29 /// the *uses* of an instruction, which allows us to answer the question "if I
30 /// replace %a1 with %c1, will it contribute in an equivalent way to all
31 /// successive instructions?". The PostValueTable class in GVN provides this
32 /// mapping.
34 //===----------------------------------------------------------------------===//
36 #include "llvm/ADT/ArrayRef.h"
37 #include "llvm/ADT/DenseMap.h"
38 #include "llvm/ADT/DenseMapInfo.h"
39 #include "llvm/ADT/DenseSet.h"
40 #include "llvm/ADT/Hashing.h"
41 #include "llvm/ADT/None.h"
42 #include "llvm/ADT/Optional.h"
43 #include "llvm/ADT/PostOrderIterator.h"
44 #include "llvm/ADT/STLExtras.h"
45 #include "llvm/ADT/SmallPtrSet.h"
46 #include "llvm/ADT/SmallVector.h"
47 #include "llvm/ADT/Statistic.h"
48 #include "llvm/ADT/StringExtras.h"
49 #include "llvm/Analysis/GlobalsModRef.h"
50 #include "llvm/Transforms/Utils/Local.h"
51 #include "llvm/IR/BasicBlock.h"
52 #include "llvm/IR/CFG.h"
53 #include "llvm/IR/Constants.h"
54 #include "llvm/IR/Function.h"
55 #include "llvm/IR/InstrTypes.h"
56 #include "llvm/IR/Instruction.h"
57 #include "llvm/IR/Instructions.h"
58 #include "llvm/IR/PassManager.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Allocator.h"
64 #include "llvm/Support/ArrayRecycler.h"
65 #include "llvm/Support/AtomicOrdering.h"
66 #include "llvm/Support/Casting.h"
67 #include "llvm/Support/Compiler.h"
68 #include "llvm/Support/Debug.h"
69 #include "llvm/Support/raw_ostream.h"
70 #include "llvm/Transforms/Scalar.h"
71 #include "llvm/Transforms/Scalar/GVN.h"
72 #include "llvm/Transforms/Scalar/GVNExpression.h"
73 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <iterator>
79 #include <utility>
81 using namespace llvm;
83 #define DEBUG_TYPE "gvn-sink"
85 STATISTIC(NumRemoved, "Number of instructions removed");
87 namespace llvm {
88 namespace GVNExpression {
90 LLVM_DUMP_METHOD void Expression::dump() const {
91 print(dbgs());
92 dbgs() << "\n";
95 } // end namespace GVNExpression
96 } // end namespace llvm
98 namespace {
100 static bool isMemoryInst(const Instruction *I) {
101 return isa<LoadInst>(I) || isa<StoreInst>(I) ||
102 (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) ||
103 (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory());
106 /// Iterates through instructions in a set of blocks in reverse order from the
107 /// first non-terminator. For example (assume all blocks have size n):
108 /// LockstepReverseIterator I([B1, B2, B3]);
109 /// *I-- = [B1[n], B2[n], B3[n]];
110 /// *I-- = [B1[n-1], B2[n-1], B3[n-1]];
111 /// *I-- = [B1[n-2], B2[n-2], B3[n-2]];
112 /// ...
114 /// It continues until all blocks have been exhausted. Use \c getActiveBlocks()
115 /// to
116 /// determine which blocks are still going and the order they appear in the
117 /// list returned by operator*.
118 class LockstepReverseIterator {
119 ArrayRef<BasicBlock *> Blocks;
120 SmallSetVector<BasicBlock *, 4> ActiveBlocks;
121 SmallVector<Instruction *, 4> Insts;
122 bool Fail;
124 public:
125 LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
126 reset();
129 void reset() {
130 Fail = false;
131 ActiveBlocks.clear();
132 for (BasicBlock *BB : Blocks)
133 ActiveBlocks.insert(BB);
134 Insts.clear();
135 for (BasicBlock *BB : Blocks) {
136 if (BB->size() <= 1) {
137 // Block wasn't big enough - only contained a terminator.
138 ActiveBlocks.remove(BB);
139 continue;
141 Insts.push_back(BB->getTerminator()->getPrevNode());
143 if (Insts.empty())
144 Fail = true;
147 bool isValid() const { return !Fail; }
148 ArrayRef<Instruction *> operator*() const { return Insts; }
150 // Note: This needs to return a SmallSetVector as the elements of
151 // ActiveBlocks will be later copied to Blocks using std::copy. The
152 // resultant order of elements in Blocks needs to be deterministic.
153 // Using SmallPtrSet instead causes non-deterministic order while
154 // copying. And we cannot simply sort Blocks as they need to match the
155 // corresponding Values.
156 SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; }
158 void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) {
159 for (auto II = Insts.begin(); II != Insts.end();) {
160 if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) ==
161 Blocks.end()) {
162 ActiveBlocks.remove((*II)->getParent());
163 II = Insts.erase(II);
164 } else {
165 ++II;
170 void operator--() {
171 if (Fail)
172 return;
173 SmallVector<Instruction *, 4> NewInsts;
174 for (auto *Inst : Insts) {
175 if (Inst == &Inst->getParent()->front())
176 ActiveBlocks.remove(Inst->getParent());
177 else
178 NewInsts.push_back(Inst->getPrevNode());
180 if (NewInsts.empty()) {
181 Fail = true;
182 return;
184 Insts = NewInsts;
188 //===----------------------------------------------------------------------===//
190 /// Candidate solution for sinking. There may be different ways to
191 /// sink instructions, differing in the number of instructions sunk,
192 /// the number of predecessors sunk from and the number of PHIs
193 /// required.
194 struct SinkingInstructionCandidate {
195 unsigned NumBlocks;
196 unsigned NumInstructions;
197 unsigned NumPHIs;
198 unsigned NumMemoryInsts;
199 int Cost = -1;
200 SmallVector<BasicBlock *, 4> Blocks;
202 void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) {
203 unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs;
204 unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0;
205 Cost = (NumInstructions * (NumBlocks - 1)) -
206 (NumExtraPHIs *
207 NumExtraPHIs) // PHIs are expensive, so make sure they're worth it.
208 - SplitEdgeCost;
211 bool operator>(const SinkingInstructionCandidate &Other) const {
212 return Cost > Other.Cost;
216 #ifndef NDEBUG
217 raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) {
218 OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks
219 << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">";
220 return OS;
222 #endif
224 //===----------------------------------------------------------------------===//
226 /// Describes a PHI node that may or may not exist. These track the PHIs
227 /// that must be created if we sunk a sequence of instructions. It provides
228 /// a hash function for efficient equality comparisons.
229 class ModelledPHI {
230 SmallVector<Value *, 4> Values;
231 SmallVector<BasicBlock *, 4> Blocks;
233 public:
234 ModelledPHI() = default;
236 ModelledPHI(const PHINode *PN) {
237 // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order.
238 SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops;
239 for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I)
240 Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)});
241 llvm::sort(Ops);
242 for (auto &P : Ops) {
243 Blocks.push_back(P.first);
244 Values.push_back(P.second);
248 /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI
249 /// without the same ID.
250 /// \note This is specifically for DenseMapInfo - do not use this!
251 static ModelledPHI createDummy(size_t ID) {
252 ModelledPHI M;
253 M.Values.push_back(reinterpret_cast<Value*>(ID));
254 return M;
257 /// Create a PHI from an array of incoming values and incoming blocks.
258 template <typename VArray, typename BArray>
259 ModelledPHI(const VArray &V, const BArray &B) {
260 llvm::copy(V, std::back_inserter(Values));
261 llvm::copy(B, std::back_inserter(Blocks));
264 /// Create a PHI from [I[OpNum] for I in Insts].
265 template <typename BArray>
266 ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) {
267 llvm::copy(B, std::back_inserter(Blocks));
268 for (auto *I : Insts)
269 Values.push_back(I->getOperand(OpNum));
272 /// Restrict the PHI's contents down to only \c NewBlocks.
273 /// \c NewBlocks must be a subset of \c this->Blocks.
274 void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) {
275 auto BI = Blocks.begin();
276 auto VI = Values.begin();
277 while (BI != Blocks.end()) {
278 assert(VI != Values.end());
279 if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) ==
280 NewBlocks.end()) {
281 BI = Blocks.erase(BI);
282 VI = Values.erase(VI);
283 } else {
284 ++BI;
285 ++VI;
288 assert(Blocks.size() == NewBlocks.size());
291 ArrayRef<Value *> getValues() const { return Values; }
293 bool areAllIncomingValuesSame() const {
294 return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; });
297 bool areAllIncomingValuesSameType() const {
298 return llvm::all_of(
299 Values, [&](Value *V) { return V->getType() == Values[0]->getType(); });
302 bool areAnyIncomingValuesConstant() const {
303 return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); });
306 // Hash functor
307 unsigned hash() const {
308 return (unsigned)hash_combine_range(Values.begin(), Values.end());
311 bool operator==(const ModelledPHI &Other) const {
312 return Values == Other.Values && Blocks == Other.Blocks;
316 template <typename ModelledPHI> struct DenseMapInfo {
317 static inline ModelledPHI &getEmptyKey() {
318 static ModelledPHI Dummy = ModelledPHI::createDummy(0);
319 return Dummy;
322 static inline ModelledPHI &getTombstoneKey() {
323 static ModelledPHI Dummy = ModelledPHI::createDummy(1);
324 return Dummy;
327 static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); }
329 static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) {
330 return LHS == RHS;
334 using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>;
336 //===----------------------------------------------------------------------===//
337 // ValueTable
338 //===----------------------------------------------------------------------===//
339 // This is a value number table where the value number is a function of the
340 // *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know
341 // that the program would be equivalent if we replaced A with PHI(A, B).
342 //===----------------------------------------------------------------------===//
344 /// A GVN expression describing how an instruction is used. The operands
345 /// field of BasicExpression is used to store uses, not operands.
347 /// This class also contains fields for discriminators used when determining
348 /// equivalence of instructions with sideeffects.
349 class InstructionUseExpr : public GVNExpression::BasicExpression {
350 unsigned MemoryUseOrder = -1;
351 bool Volatile = false;
353 public:
354 InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R,
355 BumpPtrAllocator &A)
356 : GVNExpression::BasicExpression(I->getNumUses()) {
357 allocateOperands(R, A);
358 setOpcode(I->getOpcode());
359 setType(I->getType());
361 for (auto &U : I->uses())
362 op_push_back(U.getUser());
363 llvm::sort(op_begin(), op_end());
366 void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; }
367 void setVolatile(bool V) { Volatile = V; }
369 hash_code getHashValue() const override {
370 return hash_combine(GVNExpression::BasicExpression::getHashValue(),
371 MemoryUseOrder, Volatile);
374 template <typename Function> hash_code getHashValue(Function MapFn) {
375 hash_code H =
376 hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile);
377 for (auto *V : operands())
378 H = hash_combine(H, MapFn(V));
379 return H;
383 class ValueTable {
384 DenseMap<Value *, uint32_t> ValueNumbering;
385 DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering;
386 DenseMap<size_t, uint32_t> HashNumbering;
387 BumpPtrAllocator Allocator;
388 ArrayRecycler<Value *> Recycler;
389 uint32_t nextValueNumber = 1;
391 /// Create an expression for I based on its opcode and its uses. If I
392 /// touches or reads memory, the expression is also based upon its memory
393 /// order - see \c getMemoryUseOrder().
394 InstructionUseExpr *createExpr(Instruction *I) {
395 InstructionUseExpr *E =
396 new (Allocator) InstructionUseExpr(I, Recycler, Allocator);
397 if (isMemoryInst(I))
398 E->setMemoryUseOrder(getMemoryUseOrder(I));
400 if (CmpInst *C = dyn_cast<CmpInst>(I)) {
401 CmpInst::Predicate Predicate = C->getPredicate();
402 E->setOpcode((C->getOpcode() << 8) | Predicate);
404 return E;
407 /// Helper to compute the value number for a memory instruction
408 /// (LoadInst/StoreInst), including checking the memory ordering and
409 /// volatility.
410 template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) {
411 if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic())
412 return nullptr;
413 InstructionUseExpr *E = createExpr(I);
414 E->setVolatile(I->isVolatile());
415 return E;
418 public:
419 ValueTable() = default;
421 /// Returns the value number for the specified value, assigning
422 /// it a new number if it did not have one before.
423 uint32_t lookupOrAdd(Value *V) {
424 auto VI = ValueNumbering.find(V);
425 if (VI != ValueNumbering.end())
426 return VI->second;
428 if (!isa<Instruction>(V)) {
429 ValueNumbering[V] = nextValueNumber;
430 return nextValueNumber++;
433 Instruction *I = cast<Instruction>(V);
434 InstructionUseExpr *exp = nullptr;
435 switch (I->getOpcode()) {
436 case Instruction::Load:
437 exp = createMemoryExpr(cast<LoadInst>(I));
438 break;
439 case Instruction::Store:
440 exp = createMemoryExpr(cast<StoreInst>(I));
441 break;
442 case Instruction::Call:
443 case Instruction::Invoke:
444 case Instruction::FNeg:
445 case Instruction::Add:
446 case Instruction::FAdd:
447 case Instruction::Sub:
448 case Instruction::FSub:
449 case Instruction::Mul:
450 case Instruction::FMul:
451 case Instruction::UDiv:
452 case Instruction::SDiv:
453 case Instruction::FDiv:
454 case Instruction::URem:
455 case Instruction::SRem:
456 case Instruction::FRem:
457 case Instruction::Shl:
458 case Instruction::LShr:
459 case Instruction::AShr:
460 case Instruction::And:
461 case Instruction::Or:
462 case Instruction::Xor:
463 case Instruction::ICmp:
464 case Instruction::FCmp:
465 case Instruction::Trunc:
466 case Instruction::ZExt:
467 case Instruction::SExt:
468 case Instruction::FPToUI:
469 case Instruction::FPToSI:
470 case Instruction::UIToFP:
471 case Instruction::SIToFP:
472 case Instruction::FPTrunc:
473 case Instruction::FPExt:
474 case Instruction::PtrToInt:
475 case Instruction::IntToPtr:
476 case Instruction::BitCast:
477 case Instruction::Select:
478 case Instruction::ExtractElement:
479 case Instruction::InsertElement:
480 case Instruction::ShuffleVector:
481 case Instruction::InsertValue:
482 case Instruction::GetElementPtr:
483 exp = createExpr(I);
484 break;
485 default:
486 break;
489 if (!exp) {
490 ValueNumbering[V] = nextValueNumber;
491 return nextValueNumber++;
494 uint32_t e = ExpressionNumbering[exp];
495 if (!e) {
496 hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); });
497 auto I = HashNumbering.find(H);
498 if (I != HashNumbering.end()) {
499 e = I->second;
500 } else {
501 e = nextValueNumber++;
502 HashNumbering[H] = e;
503 ExpressionNumbering[exp] = e;
506 ValueNumbering[V] = e;
507 return e;
510 /// Returns the value number of the specified value. Fails if the value has
511 /// not yet been numbered.
512 uint32_t lookup(Value *V) const {
513 auto VI = ValueNumbering.find(V);
514 assert(VI != ValueNumbering.end() && "Value not numbered?");
515 return VI->second;
518 /// Removes all value numberings and resets the value table.
519 void clear() {
520 ValueNumbering.clear();
521 ExpressionNumbering.clear();
522 HashNumbering.clear();
523 Recycler.clear(Allocator);
524 nextValueNumber = 1;
527 /// \c Inst uses or touches memory. Return an ID describing the memory state
528 /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2),
529 /// the exact same memory operations happen after I1 and I2.
531 /// This is a very hard problem in general, so we use domain-specific
532 /// knowledge that we only ever check for equivalence between blocks sharing a
533 /// single immediate successor that is common, and when determining if I1 ==
534 /// I2 we will have already determined that next(I1) == next(I2). This
535 /// inductive property allows us to simply return the value number of the next
536 /// instruction that defines memory.
537 uint32_t getMemoryUseOrder(Instruction *Inst) {
538 auto *BB = Inst->getParent();
539 for (auto I = std::next(Inst->getIterator()), E = BB->end();
540 I != E && !I->isTerminator(); ++I) {
541 if (!isMemoryInst(&*I))
542 continue;
543 if (isa<LoadInst>(&*I))
544 continue;
545 CallInst *CI = dyn_cast<CallInst>(&*I);
546 if (CI && CI->onlyReadsMemory())
547 continue;
548 InvokeInst *II = dyn_cast<InvokeInst>(&*I);
549 if (II && II->onlyReadsMemory())
550 continue;
551 return lookupOrAdd(&*I);
553 return 0;
557 //===----------------------------------------------------------------------===//
559 class GVNSink {
560 public:
561 GVNSink() = default;
563 bool run(Function &F) {
564 LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName()
565 << "\n");
567 unsigned NumSunk = 0;
568 ReversePostOrderTraversal<Function*> RPOT(&F);
569 for (auto *N : RPOT)
570 NumSunk += sinkBB(N);
572 return NumSunk > 0;
575 private:
576 ValueTable VN;
578 bool isInstructionBlacklisted(Instruction *I) {
579 // These instructions may change or break semantics if moved.
580 if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
581 I->getType()->isTokenTy())
582 return true;
583 return false;
586 /// The main heuristic function. Analyze the set of instructions pointed to by
587 /// LRI and return a candidate solution if these instructions can be sunk, or
588 /// None otherwise.
589 Optional<SinkingInstructionCandidate> analyzeInstructionForSinking(
590 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
591 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents);
593 /// Create a ModelledPHI for each PHI in BB, adding to PHIs.
594 void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs,
595 SmallPtrSetImpl<Value *> &PHIContents) {
596 for (PHINode &PN : BB->phis()) {
597 auto MPHI = ModelledPHI(&PN);
598 PHIs.insert(MPHI);
599 for (auto *V : MPHI.getValues())
600 PHIContents.insert(V);
604 /// The main instruction sinking driver. Set up state and try and sink
605 /// instructions into BBEnd from its predecessors.
606 unsigned sinkBB(BasicBlock *BBEnd);
608 /// Perform the actual mechanics of sinking an instruction from Blocks into
609 /// BBEnd, which is their only successor.
610 void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd);
612 /// Remove PHIs that all have the same incoming value.
613 void foldPointlessPHINodes(BasicBlock *BB) {
614 auto I = BB->begin();
615 while (PHINode *PN = dyn_cast<PHINode>(I++)) {
616 if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) {
617 return V == PN->getIncomingValue(0);
619 continue;
620 if (PN->getIncomingValue(0) != PN)
621 PN->replaceAllUsesWith(PN->getIncomingValue(0));
622 else
623 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
624 PN->eraseFromParent();
629 Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking(
630 LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
631 ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) {
632 auto Insts = *LRI;
633 LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I
634 : Insts) {
635 I->dump();
636 } dbgs() << " ]\n";);
638 DenseMap<uint32_t, unsigned> VNums;
639 for (auto *I : Insts) {
640 uint32_t N = VN.lookupOrAdd(I);
641 LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n");
642 if (N == ~0U)
643 return None;
644 VNums[N]++;
646 unsigned VNumToSink =
647 std::max_element(VNums.begin(), VNums.end(),
648 [](const std::pair<uint32_t, unsigned> &I,
649 const std::pair<uint32_t, unsigned> &J) {
650 return I.second < J.second;
652 ->first;
654 if (VNums[VNumToSink] == 1)
655 // Can't sink anything!
656 return None;
658 // Now restrict the number of incoming blocks down to only those with
659 // VNumToSink.
660 auto &ActivePreds = LRI.getActiveBlocks();
661 unsigned InitialActivePredSize = ActivePreds.size();
662 SmallVector<Instruction *, 4> NewInsts;
663 for (auto *I : Insts) {
664 if (VN.lookup(I) != VNumToSink)
665 ActivePreds.remove(I->getParent());
666 else
667 NewInsts.push_back(I);
669 for (auto *I : NewInsts)
670 if (isInstructionBlacklisted(I))
671 return None;
673 // If we've restricted the incoming blocks, restrict all needed PHIs also
674 // to that set.
675 bool RecomputePHIContents = false;
676 if (ActivePreds.size() != InitialActivePredSize) {
677 ModelledPHISet NewNeededPHIs;
678 for (auto P : NeededPHIs) {
679 P.restrictToBlocks(ActivePreds);
680 NewNeededPHIs.insert(P);
682 NeededPHIs = NewNeededPHIs;
683 LRI.restrictToBlocks(ActivePreds);
684 RecomputePHIContents = true;
687 // The sunk instruction's results.
688 ModelledPHI NewPHI(NewInsts, ActivePreds);
690 // Does sinking this instruction render previous PHIs redundant?
691 if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) {
692 NeededPHIs.erase(NewPHI);
693 RecomputePHIContents = true;
696 if (RecomputePHIContents) {
697 // The needed PHIs have changed, so recompute the set of all needed
698 // values.
699 PHIContents.clear();
700 for (auto &PHI : NeededPHIs)
701 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
704 // Is this instruction required by a later PHI that doesn't match this PHI?
705 // if so, we can't sink this instruction.
706 for (auto *V : NewPHI.getValues())
707 if (PHIContents.count(V))
708 // V exists in this PHI, but the whole PHI is different to NewPHI
709 // (else it would have been removed earlier). We cannot continue
710 // because this isn't representable.
711 return None;
713 // Which operands need PHIs?
714 // FIXME: If any of these fail, we should partition up the candidates to
715 // try and continue making progress.
716 Instruction *I0 = NewInsts[0];
718 // If all instructions that are going to participate don't have the same
719 // number of operands, we can't do any useful PHI analysis for all operands.
720 auto hasDifferentNumOperands = [&I0](Instruction *I) {
721 return I->getNumOperands() != I0->getNumOperands();
723 if (any_of(NewInsts, hasDifferentNumOperands))
724 return None;
726 for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) {
727 ModelledPHI PHI(NewInsts, OpNum, ActivePreds);
728 if (PHI.areAllIncomingValuesSame())
729 continue;
730 if (!canReplaceOperandWithVariable(I0, OpNum))
731 // We can 't create a PHI from this instruction!
732 return None;
733 if (NeededPHIs.count(PHI))
734 continue;
735 if (!PHI.areAllIncomingValuesSameType())
736 return None;
737 // Don't create indirect calls! The called value is the final operand.
738 if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 &&
739 PHI.areAnyIncomingValuesConstant())
740 return None;
742 NeededPHIs.reserve(NeededPHIs.size());
743 NeededPHIs.insert(PHI);
744 PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
747 if (isMemoryInst(NewInsts[0]))
748 ++MemoryInstNum;
750 SinkingInstructionCandidate Cand;
751 Cand.NumInstructions = ++InstNum;
752 Cand.NumMemoryInsts = MemoryInstNum;
753 Cand.NumBlocks = ActivePreds.size();
754 Cand.NumPHIs = NeededPHIs.size();
755 for (auto *C : ActivePreds)
756 Cand.Blocks.push_back(C);
758 return Cand;
761 unsigned GVNSink::sinkBB(BasicBlock *BBEnd) {
762 LLVM_DEBUG(dbgs() << "GVNSink: running on basic block ";
763 BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
764 SmallVector<BasicBlock *, 4> Preds;
765 for (auto *B : predecessors(BBEnd)) {
766 auto *T = B->getTerminator();
767 if (isa<BranchInst>(T) || isa<SwitchInst>(T))
768 Preds.push_back(B);
769 else
770 return 0;
772 if (Preds.size() < 2)
773 return 0;
774 llvm::sort(Preds);
776 unsigned NumOrigPreds = Preds.size();
777 // We can only sink instructions through unconditional branches.
778 for (auto I = Preds.begin(); I != Preds.end();) {
779 if ((*I)->getTerminator()->getNumSuccessors() != 1)
780 I = Preds.erase(I);
781 else
782 ++I;
785 LockstepReverseIterator LRI(Preds);
786 SmallVector<SinkingInstructionCandidate, 4> Candidates;
787 unsigned InstNum = 0, MemoryInstNum = 0;
788 ModelledPHISet NeededPHIs;
789 SmallPtrSet<Value *, 4> PHIContents;
790 analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents);
791 unsigned NumOrigPHIs = NeededPHIs.size();
793 while (LRI.isValid()) {
794 auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum,
795 NeededPHIs, PHIContents);
796 if (!Cand)
797 break;
798 Cand->calculateCost(NumOrigPHIs, Preds.size());
799 Candidates.emplace_back(*Cand);
800 --LRI;
803 llvm::stable_sort(Candidates, std::greater<SinkingInstructionCandidate>());
804 LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C
805 : Candidates) dbgs()
806 << " " << C << "\n";);
808 // Pick the top candidate, as long it is positive!
809 if (Candidates.empty() || Candidates.front().Cost <= 0)
810 return 0;
811 auto C = Candidates.front();
813 LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n");
814 BasicBlock *InsertBB = BBEnd;
815 if (C.Blocks.size() < NumOrigPreds) {
816 LLVM_DEBUG(dbgs() << " -- Splitting edge to ";
817 BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
818 InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split");
819 if (!InsertBB) {
820 LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n");
821 // Edge couldn't be split.
822 return 0;
826 for (unsigned I = 0; I < C.NumInstructions; ++I)
827 sinkLastInstruction(C.Blocks, InsertBB);
829 return C.NumInstructions;
832 void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
833 BasicBlock *BBEnd) {
834 SmallVector<Instruction *, 4> Insts;
835 for (BasicBlock *BB : Blocks)
836 Insts.push_back(BB->getTerminator()->getPrevNode());
837 Instruction *I0 = Insts.front();
839 SmallVector<Value *, 4> NewOperands;
840 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
841 bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) {
842 return I->getOperand(O) != I0->getOperand(O);
844 if (!NeedPHI) {
845 NewOperands.push_back(I0->getOperand(O));
846 continue;
849 // Create a new PHI in the successor block and populate it.
850 auto *Op = I0->getOperand(O);
851 assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
852 auto *PN = PHINode::Create(Op->getType(), Insts.size(),
853 Op->getName() + ".sink", &BBEnd->front());
854 for (auto *I : Insts)
855 PN->addIncoming(I->getOperand(O), I->getParent());
856 NewOperands.push_back(PN);
859 // Arbitrarily use I0 as the new "common" instruction; remap its operands
860 // and move it to the start of the successor block.
861 for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
862 I0->getOperandUse(O).set(NewOperands[O]);
863 I0->moveBefore(&*BBEnd->getFirstInsertionPt());
865 // Update metadata and IR flags.
866 for (auto *I : Insts)
867 if (I != I0) {
868 combineMetadataForCSE(I0, I, true);
869 I0->andIRFlags(I);
872 for (auto *I : Insts)
873 if (I != I0)
874 I->replaceAllUsesWith(I0);
875 foldPointlessPHINodes(BBEnd);
877 // Finally nuke all instructions apart from the common instruction.
878 for (auto *I : Insts)
879 if (I != I0)
880 I->eraseFromParent();
882 NumRemoved += Insts.size() - 1;
885 ////////////////////////////////////////////////////////////////////////////////
886 // Pass machinery / boilerplate
888 class GVNSinkLegacyPass : public FunctionPass {
889 public:
890 static char ID;
892 GVNSinkLegacyPass() : FunctionPass(ID) {
893 initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry());
896 bool runOnFunction(Function &F) override {
897 if (skipFunction(F))
898 return false;
899 GVNSink G;
900 return G.run(F);
903 void getAnalysisUsage(AnalysisUsage &AU) const override {
904 AU.addPreserved<GlobalsAAWrapperPass>();
908 } // end anonymous namespace
910 PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) {
911 GVNSink G;
912 if (!G.run(F))
913 return PreservedAnalyses::all();
915 PreservedAnalyses PA;
916 PA.preserve<GlobalsAA>();
917 return PA;
920 char GVNSinkLegacyPass::ID = 0;
922 INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink",
923 "Early GVN sinking of Expressions", false, false)
924 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
925 INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
926 INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink",
927 "Early GVN sinking of Expressions", false, false)
929 FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }