1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/DependenceAnalysis.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopUtils.h"
52 #define DEBUG_TYPE "loop-interchange"
54 STATISTIC(LoopsInterchanged
, "Number of loops interchanged");
56 static cl::opt
<int> LoopInterchangeCostThreshold(
57 "loop-interchange-threshold", cl::init(0), cl::Hidden
,
58 cl::desc("Interchange if you gain more than this number"));
62 using LoopVector
= SmallVector
<Loop
*, 8>;
64 // TODO: Check if we can use a sparse matrix here.
65 using CharMatrix
= std::vector
<std::vector
<char>>;
67 } // end anonymous namespace
69 // Maximum number of dependencies that can be handled in the dependency matrix.
70 static const unsigned MaxMemInstrCount
= 100;
72 // Maximum loop depth supported.
73 static const unsigned MaxLoopNestDepth
= 10;
75 #ifdef DUMP_DEP_MATRICIES
76 static void printDepMatrix(CharMatrix
&DepMatrix
) {
77 for (auto &Row
: DepMatrix
) {
79 LLVM_DEBUG(dbgs() << D
<< " ");
80 LLVM_DEBUG(dbgs() << "\n");
85 static bool populateDependencyMatrix(CharMatrix
&DepMatrix
, unsigned Level
,
86 Loop
*L
, DependenceInfo
*DI
) {
87 using ValueVector
= SmallVector
<Value
*, 16>;
92 for (BasicBlock
*BB
: L
->blocks()) {
93 // Scan the BB and collect legal loads and stores.
94 for (Instruction
&I
: *BB
) {
95 if (!isa
<Instruction
>(I
))
97 if (auto *Ld
= dyn_cast
<LoadInst
>(&I
)) {
100 MemInstr
.push_back(&I
);
101 } else if (auto *St
= dyn_cast
<StoreInst
>(&I
)) {
104 MemInstr
.push_back(&I
);
109 LLVM_DEBUG(dbgs() << "Found " << MemInstr
.size()
110 << " Loads and Stores to analyze\n");
112 ValueVector::iterator I
, IE
, J
, JE
;
114 for (I
= MemInstr
.begin(), IE
= MemInstr
.end(); I
!= IE
; ++I
) {
115 for (J
= I
, JE
= MemInstr
.end(); J
!= JE
; ++J
) {
116 std::vector
<char> Dep
;
117 Instruction
*Src
= cast
<Instruction
>(*I
);
118 Instruction
*Dst
= cast
<Instruction
>(*J
);
121 // Ignore Input dependencies.
122 if (isa
<LoadInst
>(Src
) && isa
<LoadInst
>(Dst
))
124 // Track Output, Flow, and Anti dependencies.
125 if (auto D
= DI
->depends(Src
, Dst
, true)) {
126 assert(D
->isOrdered() && "Expected an output, flow or anti dep.");
127 LLVM_DEBUG(StringRef DepType
=
128 D
->isFlow() ? "flow" : D
->isAnti() ? "anti" : "output";
129 dbgs() << "Found " << DepType
130 << " dependency between Src and Dst\n"
131 << " Src:" << *Src
<< "\n Dst:" << *Dst
<< '\n');
132 unsigned Levels
= D
->getLevels();
134 for (unsigned II
= 1; II
<= Levels
; ++II
) {
135 const SCEV
*Distance
= D
->getDistance(II
);
136 const SCEVConstant
*SCEVConst
=
137 dyn_cast_or_null
<SCEVConstant
>(Distance
);
139 const ConstantInt
*CI
= SCEVConst
->getValue();
140 if (CI
->isNegative())
142 else if (CI
->isZero())
146 Dep
.push_back(Direction
);
147 } else if (D
->isScalar(II
)) {
149 Dep
.push_back(Direction
);
151 unsigned Dir
= D
->getDirection(II
);
152 if (Dir
== Dependence::DVEntry::LT
||
153 Dir
== Dependence::DVEntry::LE
)
155 else if (Dir
== Dependence::DVEntry::GT
||
156 Dir
== Dependence::DVEntry::GE
)
158 else if (Dir
== Dependence::DVEntry::EQ
)
162 Dep
.push_back(Direction
);
165 while (Dep
.size() != Level
) {
169 DepMatrix
.push_back(Dep
);
170 if (DepMatrix
.size() > MaxMemInstrCount
) {
171 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
172 << " dependencies inside loop\n");
182 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
183 // matrix by exchanging the two columns.
184 static void interChangeDependencies(CharMatrix
&DepMatrix
, unsigned FromIndx
,
186 unsigned numRows
= DepMatrix
.size();
187 for (unsigned i
= 0; i
< numRows
; ++i
) {
188 char TmpVal
= DepMatrix
[i
][ToIndx
];
189 DepMatrix
[i
][ToIndx
] = DepMatrix
[i
][FromIndx
];
190 DepMatrix
[i
][FromIndx
] = TmpVal
;
194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
196 static bool isOuterMostDepPositive(CharMatrix
&DepMatrix
, unsigned Row
,
198 for (unsigned i
= 0; i
<= Column
; ++i
) {
199 if (DepMatrix
[Row
][i
] == '<')
201 if (DepMatrix
[Row
][i
] == '>')
204 // All dependencies were '=','S' or 'I'
208 // Checks if no dependence exist in the dependency matrix in Row before Column.
209 static bool containsNoDependence(CharMatrix
&DepMatrix
, unsigned Row
,
211 for (unsigned i
= 0; i
< Column
; ++i
) {
212 if (DepMatrix
[Row
][i
] != '=' && DepMatrix
[Row
][i
] != 'S' &&
213 DepMatrix
[Row
][i
] != 'I')
219 static bool validDepInterchange(CharMatrix
&DepMatrix
, unsigned Row
,
220 unsigned OuterLoopId
, char InnerDep
,
222 if (isOuterMostDepPositive(DepMatrix
, Row
, OuterLoopId
))
225 if (InnerDep
== OuterDep
)
228 // It is legal to interchange if and only if after interchange no row has a
229 // '>' direction as the leftmost non-'='.
231 if (InnerDep
== '=' || InnerDep
== 'S' || InnerDep
== 'I')
237 if (InnerDep
== '>') {
238 // If OuterLoopId represents outermost loop then interchanging will make the
239 // 1st dependency as '>'
240 if (OuterLoopId
== 0)
243 // If all dependencies before OuterloopId are '=','S'or 'I'. Then
244 // interchanging will result in this row having an outermost non '='
246 if (!containsNoDependence(DepMatrix
, Row
, OuterLoopId
))
253 // Checks if it is legal to interchange 2 loops.
254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
255 // if the direction matrix, after the same permutation is applied to its
256 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
257 static bool isLegalToInterChangeLoops(CharMatrix
&DepMatrix
,
258 unsigned InnerLoopId
,
259 unsigned OuterLoopId
) {
260 unsigned NumRows
= DepMatrix
.size();
261 // For each row check if it is valid to interchange.
262 for (unsigned Row
= 0; Row
< NumRows
; ++Row
) {
263 char InnerDep
= DepMatrix
[Row
][InnerLoopId
];
264 char OuterDep
= DepMatrix
[Row
][OuterLoopId
];
265 if (InnerDep
== '*' || OuterDep
== '*')
267 if (!validDepInterchange(DepMatrix
, Row
, OuterLoopId
, InnerDep
, OuterDep
))
273 static LoopVector
populateWorklist(Loop
&L
) {
274 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
275 << L
.getHeader()->getParent()->getName() << " Loop: %"
276 << L
.getHeader()->getName() << '\n');
278 Loop
*CurrentLoop
= &L
;
279 const std::vector
<Loop
*> *Vec
= &CurrentLoop
->getSubLoops();
280 while (!Vec
->empty()) {
281 // The current loop has multiple subloops in it hence it is not tightly
283 // Discard all loops above it added into Worklist.
284 if (Vec
->size() != 1)
287 LoopList
.push_back(CurrentLoop
);
288 CurrentLoop
= Vec
->front();
289 Vec
= &CurrentLoop
->getSubLoops();
291 LoopList
.push_back(CurrentLoop
);
295 static PHINode
*getInductionVariable(Loop
*L
, ScalarEvolution
*SE
) {
296 PHINode
*InnerIndexVar
= L
->getCanonicalInductionVariable();
298 return InnerIndexVar
;
299 if (L
->getLoopLatch() == nullptr || L
->getLoopPredecessor() == nullptr)
301 for (BasicBlock::iterator I
= L
->getHeader()->begin(); isa
<PHINode
>(I
); ++I
) {
302 PHINode
*PhiVar
= cast
<PHINode
>(I
);
303 Type
*PhiTy
= PhiVar
->getType();
304 if (!PhiTy
->isIntegerTy() && !PhiTy
->isFloatingPointTy() &&
305 !PhiTy
->isPointerTy())
307 const SCEVAddRecExpr
*AddRec
=
308 dyn_cast
<SCEVAddRecExpr
>(SE
->getSCEV(PhiVar
));
309 if (!AddRec
|| !AddRec
->isAffine())
311 const SCEV
*Step
= AddRec
->getStepRecurrence(*SE
);
312 if (!isa
<SCEVConstant
>(Step
))
314 // Found the induction variable.
315 // FIXME: Handle loops with more than one induction variable. Note that,
316 // currently, legality makes sure we have only one induction variable.
324 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
325 class LoopInterchangeLegality
{
327 LoopInterchangeLegality(Loop
*Outer
, Loop
*Inner
, ScalarEvolution
*SE
,
328 OptimizationRemarkEmitter
*ORE
)
329 : OuterLoop(Outer
), InnerLoop(Inner
), SE(SE
), ORE(ORE
) {}
331 /// Check if the loops can be interchanged.
332 bool canInterchangeLoops(unsigned InnerLoopId
, unsigned OuterLoopId
,
333 CharMatrix
&DepMatrix
);
335 /// Check if the loop structure is understood. We do not handle triangular
337 bool isLoopStructureUnderstood(PHINode
*InnerInductionVar
);
339 bool currentLimitations();
341 const SmallPtrSetImpl
<PHINode
*> &getOuterInnerReductions() const {
342 return OuterInnerReductions
;
346 bool tightlyNested(Loop
*Outer
, Loop
*Inner
);
347 bool containsUnsafeInstructions(BasicBlock
*BB
);
349 /// Discover induction and reduction PHIs in the header of \p L. Induction
350 /// PHIs are added to \p Inductions, reductions are added to
351 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
352 /// to be passed as \p InnerLoop.
353 bool findInductionAndReductions(Loop
*L
,
354 SmallVector
<PHINode
*, 8> &Inductions
,
362 /// Interface to emit optimization remarks.
363 OptimizationRemarkEmitter
*ORE
;
365 /// Set of reduction PHIs taking part of a reduction across the inner and
367 SmallPtrSet
<PHINode
*, 4> OuterInnerReductions
;
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
372 class LoopInterchangeProfitability
{
374 LoopInterchangeProfitability(Loop
*Outer
, Loop
*Inner
, ScalarEvolution
*SE
,
375 OptimizationRemarkEmitter
*ORE
)
376 : OuterLoop(Outer
), InnerLoop(Inner
), SE(SE
), ORE(ORE
) {}
378 /// Check if the loop interchange is profitable.
379 bool isProfitable(unsigned InnerLoopId
, unsigned OuterLoopId
,
380 CharMatrix
&DepMatrix
);
383 int getInstrOrderCost();
391 /// Interface to emit optimization remarks.
392 OptimizationRemarkEmitter
*ORE
;
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform
{
398 LoopInterchangeTransform(Loop
*Outer
, Loop
*Inner
, ScalarEvolution
*SE
,
399 LoopInfo
*LI
, DominatorTree
*DT
,
400 BasicBlock
*LoopNestExit
,
401 const LoopInterchangeLegality
&LIL
)
402 : OuterLoop(Outer
), InnerLoop(Inner
), SE(SE
), LI(LI
), DT(DT
),
403 LoopExit(LoopNestExit
), LIL(LIL
) {}
405 /// Interchange OuterLoop and InnerLoop.
407 void restructureLoops(Loop
*NewInner
, Loop
*NewOuter
,
408 BasicBlock
*OrigInnerPreHeader
,
409 BasicBlock
*OrigOuterPreHeader
);
410 void removeChildLoop(Loop
*OuterLoop
, Loop
*InnerLoop
);
413 void splitInnerLoopLatch(Instruction
*);
414 void splitInnerLoopHeader();
415 bool adjustLoopLinks();
416 void adjustLoopPreheaders();
417 bool adjustLoopBranches();
427 BasicBlock
*LoopExit
;
429 const LoopInterchangeLegality
&LIL
;
432 // Main LoopInterchange Pass.
433 struct LoopInterchange
: public LoopPass
{
435 ScalarEvolution
*SE
= nullptr;
436 LoopInfo
*LI
= nullptr;
437 DependenceInfo
*DI
= nullptr;
438 DominatorTree
*DT
= nullptr;
440 /// Interface to emit optimization remarks.
441 OptimizationRemarkEmitter
*ORE
;
443 LoopInterchange() : LoopPass(ID
) {
444 initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
447 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
448 AU
.addRequired
<DependenceAnalysisWrapperPass
>();
449 AU
.addRequired
<OptimizationRemarkEmitterWrapperPass
>();
451 getLoopAnalysisUsage(AU
);
454 bool runOnLoop(Loop
*L
, LPPassManager
&LPM
) override
{
455 if (skipLoop(L
) || L
->getParentLoop())
458 SE
= &getAnalysis
<ScalarEvolutionWrapperPass
>().getSE();
459 LI
= &getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
460 DI
= &getAnalysis
<DependenceAnalysisWrapperPass
>().getDI();
461 DT
= &getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
462 ORE
= &getAnalysis
<OptimizationRemarkEmitterWrapperPass
>().getORE();
464 return processLoopList(populateWorklist(*L
));
467 bool isComputableLoopNest(LoopVector LoopList
) {
468 for (Loop
*L
: LoopList
) {
469 const SCEV
*ExitCountOuter
= SE
->getBackedgeTakenCount(L
);
470 if (ExitCountOuter
== SE
->getCouldNotCompute()) {
471 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
474 if (L
->getNumBackEdges() != 1) {
475 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
478 if (!L
->getExitingBlock()) {
479 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
486 unsigned selectLoopForInterchange(const LoopVector
&LoopList
) {
487 // TODO: Add a better heuristic to select the loop to be interchanged based
488 // on the dependence matrix. Currently we select the innermost loop.
489 return LoopList
.size() - 1;
492 bool processLoopList(LoopVector LoopList
) {
493 bool Changed
= false;
494 unsigned LoopNestDepth
= LoopList
.size();
495 if (LoopNestDepth
< 2) {
496 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
499 if (LoopNestDepth
> MaxLoopNestDepth
) {
500 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
501 << MaxLoopNestDepth
<< "\n");
504 if (!isComputableLoopNest(LoopList
)) {
505 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
509 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
512 CharMatrix DependencyMatrix
;
513 Loop
*OuterMostLoop
= *(LoopList
.begin());
514 if (!populateDependencyMatrix(DependencyMatrix
, LoopNestDepth
,
515 OuterMostLoop
, DI
)) {
516 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
519 #ifdef DUMP_DEP_MATRICIES
520 LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
521 printDepMatrix(DependencyMatrix
);
524 // Get the Outermost loop exit.
525 BasicBlock
*LoopNestExit
= OuterMostLoop
->getExitBlock();
527 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
531 unsigned SelecLoopId
= selectLoopForInterchange(LoopList
);
532 // Move the selected loop outwards to the best possible position.
533 for (unsigned i
= SelecLoopId
; i
> 0; i
--) {
535 processLoop(LoopList
, i
, i
- 1, LoopNestExit
, DependencyMatrix
);
538 // Loops interchanged reflect the same in LoopList
539 std::swap(LoopList
[i
- 1], LoopList
[i
]);
541 // Update the DependencyMatrix
542 interChangeDependencies(DependencyMatrix
, i
, i
- 1);
543 #ifdef DUMP_DEP_MATRICIES
544 LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
545 printDepMatrix(DependencyMatrix
);
547 Changed
|= Interchanged
;
552 bool processLoop(LoopVector LoopList
, unsigned InnerLoopId
,
553 unsigned OuterLoopId
, BasicBlock
*LoopNestExit
,
554 std::vector
<std::vector
<char>> &DependencyMatrix
) {
555 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
556 << " and OuterLoopId = " << OuterLoopId
<< "\n");
557 Loop
*InnerLoop
= LoopList
[InnerLoopId
];
558 Loop
*OuterLoop
= LoopList
[OuterLoopId
];
560 LoopInterchangeLegality
LIL(OuterLoop
, InnerLoop
, SE
, ORE
);
561 if (!LIL
.canInterchangeLoops(InnerLoopId
, OuterLoopId
, DependencyMatrix
)) {
562 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
565 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
566 LoopInterchangeProfitability
LIP(OuterLoop
, InnerLoop
, SE
, ORE
);
567 if (!LIP
.isProfitable(InnerLoopId
, OuterLoopId
, DependencyMatrix
)) {
568 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
573 return OptimizationRemark(DEBUG_TYPE
, "Interchanged",
574 InnerLoop
->getStartLoc(),
575 InnerLoop
->getHeader())
576 << "Loop interchanged with enclosing loop.";
579 LoopInterchangeTransform
LIT(OuterLoop
, InnerLoop
, SE
, LI
, DT
, LoopNestExit
,
582 LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
588 } // end anonymous namespace
590 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock
*BB
) {
591 return any_of(*BB
, [](const Instruction
&I
) {
592 return I
.mayHaveSideEffects() || I
.mayReadFromMemory();
596 bool LoopInterchangeLegality::tightlyNested(Loop
*OuterLoop
, Loop
*InnerLoop
) {
597 BasicBlock
*OuterLoopHeader
= OuterLoop
->getHeader();
598 BasicBlock
*InnerLoopPreHeader
= InnerLoop
->getLoopPreheader();
599 BasicBlock
*OuterLoopLatch
= OuterLoop
->getLoopLatch();
601 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
603 // A perfectly nested loop will not have any branch in between the outer and
604 // inner block i.e. outer header will branch to either inner preheader and
606 BranchInst
*OuterLoopHeaderBI
=
607 dyn_cast
<BranchInst
>(OuterLoopHeader
->getTerminator());
608 if (!OuterLoopHeaderBI
)
611 for (BasicBlock
*Succ
: successors(OuterLoopHeaderBI
))
612 if (Succ
!= InnerLoopPreHeader
&& Succ
!= InnerLoop
->getHeader() &&
613 Succ
!= OuterLoopLatch
)
616 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
617 // We do not have any basic block in between now make sure the outer header
618 // and outer loop latch doesn't contain any unsafe instructions.
619 if (containsUnsafeInstructions(OuterLoopHeader
) ||
620 containsUnsafeInstructions(OuterLoopLatch
))
623 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
624 // We have a perfect loop nest.
628 bool LoopInterchangeLegality::isLoopStructureUnderstood(
629 PHINode
*InnerInduction
) {
630 unsigned Num
= InnerInduction
->getNumOperands();
631 BasicBlock
*InnerLoopPreheader
= InnerLoop
->getLoopPreheader();
632 for (unsigned i
= 0; i
< Num
; ++i
) {
633 Value
*Val
= InnerInduction
->getOperand(i
);
634 if (isa
<Constant
>(Val
))
636 Instruction
*I
= dyn_cast
<Instruction
>(Val
);
639 // TODO: Handle triangular loops.
640 // e.g. for(int i=0;i<N;i++)
641 // for(int j=i;j<N;j++)
642 unsigned IncomBlockIndx
= PHINode::getIncomingValueNumForOperand(i
);
643 if (InnerInduction
->getIncomingBlock(IncomBlockIndx
) ==
644 InnerLoopPreheader
&&
645 !OuterLoop
->isLoopInvariant(I
)) {
652 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
654 static Value
*followLCSSA(Value
*SV
) {
655 PHINode
*PHI
= dyn_cast
<PHINode
>(SV
);
659 if (PHI
->getNumIncomingValues() != 1)
661 return followLCSSA(PHI
->getIncomingValue(0));
664 // Check V's users to see if it is involved in a reduction in L.
665 static PHINode
*findInnerReductionPhi(Loop
*L
, Value
*V
) {
666 for (Value
*User
: V
->users()) {
667 if (PHINode
*PHI
= dyn_cast
<PHINode
>(User
)) {
668 if (PHI
->getNumIncomingValues() == 1)
670 RecurrenceDescriptor RD
;
671 if (RecurrenceDescriptor::isReductionPHI(PHI
, L
, RD
))
680 bool LoopInterchangeLegality::findInductionAndReductions(
681 Loop
*L
, SmallVector
<PHINode
*, 8> &Inductions
, Loop
*InnerLoop
) {
682 if (!L
->getLoopLatch() || !L
->getLoopPredecessor())
684 for (PHINode
&PHI
: L
->getHeader()->phis()) {
685 RecurrenceDescriptor RD
;
686 InductionDescriptor ID
;
687 if (InductionDescriptor::isInductionPHI(&PHI
, L
, SE
, ID
))
688 Inductions
.push_back(&PHI
);
690 // PHIs in inner loops need to be part of a reduction in the outer loop,
691 // discovered when checking the PHIs of the outer loop earlier.
693 if (OuterInnerReductions
.find(&PHI
) == OuterInnerReductions
.end()) {
694 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
695 "across the outer loop.\n");
699 assert(PHI
.getNumIncomingValues() == 2 &&
700 "Phis in loop header should have exactly 2 incoming values");
701 // Check if we have a PHI node in the outer loop that has a reduction
702 // result from the inner loop as an incoming value.
703 Value
*V
= followLCSSA(PHI
.getIncomingValueForBlock(L
->getLoopLatch()));
704 PHINode
*InnerRedPhi
= findInnerReductionPhi(InnerLoop
, V
);
706 !llvm::any_of(InnerRedPhi
->incoming_values(),
707 [&PHI
](Value
*V
) { return V
== &PHI
; })) {
710 << "Failed to recognize PHI as an induction or reduction.\n");
713 OuterInnerReductions
.insert(&PHI
);
714 OuterInnerReductions
.insert(InnerRedPhi
);
721 static bool containsSafePHI(BasicBlock
*Block
, bool isOuterLoopExitBlock
) {
722 for (PHINode
&PHI
: Block
->phis()) {
723 // Reduction lcssa phi will have only 1 incoming block that from loop latch.
724 if (PHI
.getNumIncomingValues() > 1)
726 Instruction
*Ins
= dyn_cast
<Instruction
>(PHI
.getIncomingValue(0));
729 // Incoming value for lcssa phi's in outer loop exit can only be inner loop
730 // exits lcssa phi else it would not be tightly nested.
731 if (!isa
<PHINode
>(Ins
) && isOuterLoopExitBlock
)
737 // This function indicates the current limitations in the transform as a result
738 // of which we do not proceed.
739 bool LoopInterchangeLegality::currentLimitations() {
740 BasicBlock
*InnerLoopPreHeader
= InnerLoop
->getLoopPreheader();
741 BasicBlock
*InnerLoopLatch
= InnerLoop
->getLoopLatch();
743 // transform currently expects the loop latches to also be the exiting
745 if (InnerLoop
->getExitingBlock() != InnerLoopLatch
||
746 OuterLoop
->getExitingBlock() != OuterLoop
->getLoopLatch() ||
747 !isa
<BranchInst
>(InnerLoopLatch
->getTerminator()) ||
748 !isa
<BranchInst
>(OuterLoop
->getLoopLatch()->getTerminator())) {
750 dbgs() << "Loops where the latch is not the exiting block are not"
751 << " supported currently.\n");
753 return OptimizationRemarkMissed(DEBUG_TYPE
, "ExitingNotLatch",
754 OuterLoop
->getStartLoc(),
755 OuterLoop
->getHeader())
756 << "Loops where the latch is not the exiting block cannot be"
757 " interchange currently.";
762 PHINode
*InnerInductionVar
;
763 SmallVector
<PHINode
*, 8> Inductions
;
764 if (!findInductionAndReductions(OuterLoop
, Inductions
, InnerLoop
)) {
766 dbgs() << "Only outer loops with induction or reduction PHI nodes "
767 << "are supported currently.\n");
769 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnsupportedPHIOuter",
770 OuterLoop
->getStartLoc(),
771 OuterLoop
->getHeader())
772 << "Only outer loops with induction or reduction PHI nodes can be"
773 " interchanged currently.";
778 // TODO: Currently we handle only loops with 1 induction variable.
779 if (Inductions
.size() != 1) {
780 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
781 << "supported currently.\n");
783 return OptimizationRemarkMissed(DEBUG_TYPE
, "MultiIndutionOuter",
784 OuterLoop
->getStartLoc(),
785 OuterLoop
->getHeader())
786 << "Only outer loops with 1 induction variable can be "
787 "interchanged currently.";
793 if (!findInductionAndReductions(InnerLoop
, Inductions
, nullptr)) {
795 dbgs() << "Only inner loops with induction or reduction PHI nodes "
796 << "are supported currently.\n");
798 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnsupportedPHIInner",
799 InnerLoop
->getStartLoc(),
800 InnerLoop
->getHeader())
801 << "Only inner loops with induction or reduction PHI nodes can be"
802 " interchange currently.";
807 // TODO: Currently we handle only loops with 1 induction variable.
808 if (Inductions
.size() != 1) {
810 dbgs() << "We currently only support loops with 1 induction variable."
811 << "Failed to interchange due to current limitation\n");
813 return OptimizationRemarkMissed(DEBUG_TYPE
, "MultiInductionInner",
814 InnerLoop
->getStartLoc(),
815 InnerLoop
->getHeader())
816 << "Only inner loops with 1 induction variable can be "
817 "interchanged currently.";
821 InnerInductionVar
= Inductions
.pop_back_val();
823 // TODO: Triangular loops are not handled for now.
824 if (!isLoopStructureUnderstood(InnerInductionVar
)) {
825 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
827 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnsupportedStructureInner",
828 InnerLoop
->getStartLoc(),
829 InnerLoop
->getHeader())
830 << "Inner loop structure not understood currently.";
835 // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
836 BasicBlock
*InnerExit
= InnerLoop
->getExitBlock();
837 if (!containsSafePHI(InnerExit
, false)) {
839 dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
841 return OptimizationRemarkMissed(DEBUG_TYPE
, "NoLCSSAPHIOuterInner",
842 InnerLoop
->getStartLoc(),
843 InnerLoop
->getHeader())
844 << "Only inner loops with LCSSA PHIs can be interchange "
850 // TODO: Current limitation: Since we split the inner loop latch at the point
851 // were induction variable is incremented (induction.next); We cannot have
852 // more than 1 user of induction.next since it would result in broken code
855 // for(i=0;i<N;i++) {
856 // for(j = 0;j<M;j++) {
857 // A[j+1][i+2] = A[j][i]+k;
860 Instruction
*InnerIndexVarInc
= nullptr;
861 if (InnerInductionVar
->getIncomingBlock(0) == InnerLoopPreHeader
)
863 dyn_cast
<Instruction
>(InnerInductionVar
->getIncomingValue(1));
866 dyn_cast
<Instruction
>(InnerInductionVar
->getIncomingValue(0));
868 if (!InnerIndexVarInc
) {
870 dbgs() << "Did not find an instruction to increment the induction "
873 return OptimizationRemarkMissed(DEBUG_TYPE
, "NoIncrementInInner",
874 InnerLoop
->getStartLoc(),
875 InnerLoop
->getHeader())
876 << "The inner loop does not increment the induction variable.";
881 // Since we split the inner loop latch on this induction variable. Make sure
882 // we do not have any instruction between the induction variable and branch
885 bool FoundInduction
= false;
886 for (const Instruction
&I
:
887 llvm::reverse(InnerLoopLatch
->instructionsWithoutDebug())) {
888 if (isa
<BranchInst
>(I
) || isa
<CmpInst
>(I
) || isa
<TruncInst
>(I
) ||
892 // We found an instruction. If this is not induction variable then it is not
893 // safe to split this loop latch.
894 if (!I
.isIdenticalTo(InnerIndexVarInc
)) {
895 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
896 << "variable increment and branch.\n");
898 return OptimizationRemarkMissed(
899 DEBUG_TYPE
, "UnsupportedInsBetweenInduction",
900 InnerLoop
->getStartLoc(), InnerLoop
->getHeader())
901 << "Found unsupported instruction between induction variable "
902 "increment and branch.";
907 FoundInduction
= true;
910 // The loop latch ended and we didn't find the induction variable return as
911 // current limitation.
912 if (!FoundInduction
) {
913 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
915 return OptimizationRemarkMissed(DEBUG_TYPE
, "NoIndutionVariable",
916 InnerLoop
->getStartLoc(),
917 InnerLoop
->getHeader())
918 << "Did not find the induction variable.";
925 // We currently support LCSSA PHI nodes in the outer loop exit, if their
926 // incoming values do not come from the outer loop latch or if the
927 // outer loop latch has a single predecessor. In that case, the value will
928 // be available if both the inner and outer loop conditions are true, which
929 // will still be true after interchanging. If we have multiple predecessor,
930 // that may not be the case, e.g. because the outer loop latch may be executed
931 // if the inner loop is not executed.
932 static bool areLoopExitPHIsSupported(Loop
*OuterLoop
, Loop
*InnerLoop
) {
933 BasicBlock
*LoopNestExit
= OuterLoop
->getUniqueExitBlock();
934 for (PHINode
&PHI
: LoopNestExit
->phis()) {
935 // FIXME: We currently are not able to detect floating point reductions
936 // and have to use floating point PHIs as a proxy to prevent
937 // interchanging in the presence of floating point reductions.
938 if (PHI
.getType()->isFloatingPointTy())
940 for (unsigned i
= 0; i
< PHI
.getNumIncomingValues(); i
++) {
941 Instruction
*IncomingI
= dyn_cast
<Instruction
>(PHI
.getIncomingValue(i
));
942 if (!IncomingI
|| IncomingI
->getParent() != OuterLoop
->getLoopLatch())
945 // The incoming value is defined in the outer loop latch. Currently we
946 // only support that in case the outer loop latch has a single predecessor.
947 // This guarantees that the outer loop latch is executed if and only if
948 // the inner loop is executed (because tightlyNested() guarantees that the
949 // outer loop header only branches to the inner loop or the outer loop
951 // FIXME: We could weaken this logic and allow multiple predecessors,
952 // if the values are produced outside the loop latch. We would need
953 // additional logic to update the PHI nodes in the exit block as
955 if (OuterLoop
->getLoopLatch()->getUniquePredecessor() == nullptr)
962 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId
,
963 unsigned OuterLoopId
,
964 CharMatrix
&DepMatrix
) {
965 if (!isLegalToInterChangeLoops(DepMatrix
, InnerLoopId
, OuterLoopId
)) {
966 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
967 << " and OuterLoopId = " << OuterLoopId
968 << " due to dependence\n");
970 return OptimizationRemarkMissed(DEBUG_TYPE
, "Dependence",
971 InnerLoop
->getStartLoc(),
972 InnerLoop
->getHeader())
973 << "Cannot interchange loops due to dependences.";
977 // Check if outer and inner loop contain legal instructions only.
978 for (auto *BB
: OuterLoop
->blocks())
979 for (Instruction
&I
: BB
->instructionsWithoutDebug())
980 if (CallInst
*CI
= dyn_cast
<CallInst
>(&I
)) {
981 // readnone functions do not prevent interchanging.
982 if (CI
->doesNotReadMemory())
985 dbgs() << "Loops with call instructions cannot be interchanged "
988 return OptimizationRemarkMissed(DEBUG_TYPE
, "CallInst",
991 << "Cannot interchange loops due to call instruction.";
997 // TODO: The loops could not be interchanged due to current limitations in the
999 if (currentLimitations()) {
1000 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1004 // Check if the loops are tightly nested.
1005 if (!tightlyNested(OuterLoop
, InnerLoop
)) {
1006 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1008 return OptimizationRemarkMissed(DEBUG_TYPE
, "NotTightlyNested",
1009 InnerLoop
->getStartLoc(),
1010 InnerLoop
->getHeader())
1011 << "Cannot interchange loops because they are not tightly "
1017 if (!areLoopExitPHIsSupported(OuterLoop
, InnerLoop
)) {
1018 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1020 return OptimizationRemarkMissed(DEBUG_TYPE
, "UnsupportedExitPHI",
1021 OuterLoop
->getStartLoc(),
1022 OuterLoop
->getHeader())
1023 << "Found unsupported PHI node in loop exit.";
1031 int LoopInterchangeProfitability::getInstrOrderCost() {
1032 unsigned GoodOrder
, BadOrder
;
1033 BadOrder
= GoodOrder
= 0;
1034 for (BasicBlock
*BB
: InnerLoop
->blocks()) {
1035 for (Instruction
&Ins
: *BB
) {
1036 if (const GetElementPtrInst
*GEP
= dyn_cast
<GetElementPtrInst
>(&Ins
)) {
1037 unsigned NumOp
= GEP
->getNumOperands();
1038 bool FoundInnerInduction
= false;
1039 bool FoundOuterInduction
= false;
1040 for (unsigned i
= 0; i
< NumOp
; ++i
) {
1041 const SCEV
*OperandVal
= SE
->getSCEV(GEP
->getOperand(i
));
1042 const SCEVAddRecExpr
*AR
= dyn_cast
<SCEVAddRecExpr
>(OperandVal
);
1046 // If we find the inner induction after an outer induction e.g.
1047 // for(int i=0;i<N;i++)
1048 // for(int j=0;j<N;j++)
1049 // A[i][j] = A[i-1][j-1]+k;
1050 // then it is a good order.
1051 if (AR
->getLoop() == InnerLoop
) {
1052 // We found an InnerLoop induction after OuterLoop induction. It is
1054 FoundInnerInduction
= true;
1055 if (FoundOuterInduction
) {
1060 // If we find the outer induction after an inner induction e.g.
1061 // for(int i=0;i<N;i++)
1062 // for(int j=0;j<N;j++)
1063 // A[j][i] = A[j-1][i-1]+k;
1064 // then it is a bad order.
1065 if (AR
->getLoop() == OuterLoop
) {
1066 // We found an OuterLoop induction after InnerLoop induction. It is
1068 FoundOuterInduction
= true;
1069 if (FoundInnerInduction
) {
1078 return GoodOrder
- BadOrder
;
1081 static bool isProfitableForVectorization(unsigned InnerLoopId
,
1082 unsigned OuterLoopId
,
1083 CharMatrix
&DepMatrix
) {
1084 // TODO: Improve this heuristic to catch more cases.
1085 // If the inner loop is loop independent or doesn't carry any dependency it is
1086 // profitable to move this to outer position.
1087 for (auto &Row
: DepMatrix
) {
1088 if (Row
[InnerLoopId
] != 'S' && Row
[InnerLoopId
] != 'I')
1090 // TODO: We need to improve this heuristic.
1091 if (Row
[OuterLoopId
] != '=')
1094 // If outer loop has dependence and inner loop is loop independent then it is
1095 // profitable to interchange to enable parallelism.
1096 // If there are no dependences, interchanging will not improve anything.
1097 return !DepMatrix
.empty();
1100 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId
,
1101 unsigned OuterLoopId
,
1102 CharMatrix
&DepMatrix
) {
1103 // TODO: Add better profitability checks.
1105 // 1) Construct dependency matrix and move the one with no loop carried dep
1106 // inside to enable vectorization.
1108 // This is rough cost estimation algorithm. It counts the good and bad order
1109 // of induction variables in the instruction and allows reordering if number
1110 // of bad orders is more than good.
1111 int Cost
= getInstrOrderCost();
1112 LLVM_DEBUG(dbgs() << "Cost = " << Cost
<< "\n");
1113 if (Cost
< -LoopInterchangeCostThreshold
)
1116 // It is not profitable as per current cache profitability model. But check if
1117 // we can move this loop outside to improve parallelism.
1118 if (isProfitableForVectorization(InnerLoopId
, OuterLoopId
, DepMatrix
))
1122 return OptimizationRemarkMissed(DEBUG_TYPE
, "InterchangeNotProfitable",
1123 InnerLoop
->getStartLoc(),
1124 InnerLoop
->getHeader())
1125 << "Interchanging loops is too costly (cost="
1126 << ore::NV("Cost", Cost
) << ", threshold="
1127 << ore::NV("Threshold", LoopInterchangeCostThreshold
)
1128 << ") and it does not improve parallelism.";
1133 void LoopInterchangeTransform::removeChildLoop(Loop
*OuterLoop
,
1135 for (Loop
*L
: *OuterLoop
)
1136 if (L
== InnerLoop
) {
1137 OuterLoop
->removeChildLoop(L
);
1140 llvm_unreachable("Couldn't find loop");
1143 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1144 /// new inner and outer loop after interchanging: NewInner is the original
1145 /// outer loop and NewOuter is the original inner loop.
1147 /// Before interchanging, we have the following structure
1157 // After interchanging:
1166 void LoopInterchangeTransform::restructureLoops(
1167 Loop
*NewInner
, Loop
*NewOuter
, BasicBlock
*OrigInnerPreHeader
,
1168 BasicBlock
*OrigOuterPreHeader
) {
1169 Loop
*OuterLoopParent
= OuterLoop
->getParentLoop();
1170 // The original inner loop preheader moves from the new inner loop to
1171 // the parent loop, if there is one.
1172 NewInner
->removeBlockFromLoop(OrigInnerPreHeader
);
1173 LI
->changeLoopFor(OrigInnerPreHeader
, OuterLoopParent
);
1175 // Switch the loop levels.
1176 if (OuterLoopParent
) {
1177 // Remove the loop from its parent loop.
1178 removeChildLoop(OuterLoopParent
, NewInner
);
1179 removeChildLoop(NewInner
, NewOuter
);
1180 OuterLoopParent
->addChildLoop(NewOuter
);
1182 removeChildLoop(NewInner
, NewOuter
);
1183 LI
->changeTopLevelLoop(NewInner
, NewOuter
);
1185 while (!NewOuter
->empty())
1186 NewInner
->addChildLoop(NewOuter
->removeChildLoop(NewOuter
->begin()));
1187 NewOuter
->addChildLoop(NewInner
);
1189 // BBs from the original inner loop.
1190 SmallVector
<BasicBlock
*, 8> OrigInnerBBs(NewOuter
->blocks());
1192 // Add BBs from the original outer loop to the original inner loop (excluding
1193 // BBs already in inner loop)
1194 for (BasicBlock
*BB
: NewInner
->blocks())
1195 if (LI
->getLoopFor(BB
) == NewInner
)
1196 NewOuter
->addBlockEntry(BB
);
1198 // Now remove inner loop header and latch from the new inner loop and move
1199 // other BBs (the loop body) to the new inner loop.
1200 BasicBlock
*OuterHeader
= NewOuter
->getHeader();
1201 BasicBlock
*OuterLatch
= NewOuter
->getLoopLatch();
1202 for (BasicBlock
*BB
: OrigInnerBBs
) {
1203 // Nothing will change for BBs in child loops.
1204 if (LI
->getLoopFor(BB
) != NewOuter
)
1206 // Remove the new outer loop header and latch from the new inner loop.
1207 if (BB
== OuterHeader
|| BB
== OuterLatch
)
1208 NewInner
->removeBlockFromLoop(BB
);
1210 LI
->changeLoopFor(BB
, NewInner
);
1213 // The preheader of the original outer loop becomes part of the new
1215 NewOuter
->addBlockEntry(OrigOuterPreHeader
);
1216 LI
->changeLoopFor(OrigOuterPreHeader
, NewOuter
);
1218 // Tell SE that we move the loops around.
1219 SE
->forgetLoop(NewOuter
);
1220 SE
->forgetLoop(NewInner
);
1223 bool LoopInterchangeTransform::transform() {
1224 bool Transformed
= false;
1225 Instruction
*InnerIndexVar
;
1227 if (InnerLoop
->getSubLoops().empty()) {
1228 BasicBlock
*InnerLoopPreHeader
= InnerLoop
->getLoopPreheader();
1229 LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n");
1230 PHINode
*InductionPHI
= getInductionVariable(InnerLoop
, SE
);
1231 if (!InductionPHI
) {
1232 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1236 if (InductionPHI
->getIncomingBlock(0) == InnerLoopPreHeader
)
1237 InnerIndexVar
= dyn_cast
<Instruction
>(InductionPHI
->getIncomingValue(1));
1239 InnerIndexVar
= dyn_cast
<Instruction
>(InductionPHI
->getIncomingValue(0));
1241 // Ensure that InductionPHI is the first Phi node.
1242 if (&InductionPHI
->getParent()->front() != InductionPHI
)
1243 InductionPHI
->moveBefore(&InductionPHI
->getParent()->front());
1245 // Split at the place were the induction variable is
1246 // incremented/decremented.
1247 // TODO: This splitting logic may not work always. Fix this.
1248 splitInnerLoopLatch(InnerIndexVar
);
1249 LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n");
1251 // Splits the inner loops phi nodes out into a separate basic block.
1252 BasicBlock
*InnerLoopHeader
= InnerLoop
->getHeader();
1253 SplitBlock(InnerLoopHeader
, InnerLoopHeader
->getFirstNonPHI(), DT
, LI
);
1254 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1257 Transformed
|= adjustLoopLinks();
1259 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1266 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction
*Inc
) {
1267 SplitBlock(InnerLoop
->getLoopLatch(), Inc
, DT
, LI
);
1270 /// \brief Move all instructions except the terminator from FromBB right before
1272 static void moveBBContents(BasicBlock
*FromBB
, Instruction
*InsertBefore
) {
1273 auto &ToList
= InsertBefore
->getParent()->getInstList();
1274 auto &FromList
= FromBB
->getInstList();
1276 ToList
.splice(InsertBefore
->getIterator(), FromList
, FromList
.begin(),
1277 FromBB
->getTerminator()->getIterator());
1280 /// Update BI to jump to NewBB instead of OldBB. Records updates to
1281 /// the dominator tree in DTUpdates, if DT should be preserved.
1282 static void updateSuccessor(BranchInst
*BI
, BasicBlock
*OldBB
,
1284 std::vector
<DominatorTree::UpdateType
> &DTUpdates
) {
1285 assert(llvm::count_if(successors(BI
),
1286 [OldBB
](BasicBlock
*BB
) { return BB
== OldBB
; }) < 2 &&
1287 "BI must jump to OldBB at most once.");
1288 for (unsigned i
= 0, e
= BI
->getNumSuccessors(); i
< e
; ++i
) {
1289 if (BI
->getSuccessor(i
) == OldBB
) {
1290 BI
->setSuccessor(i
, NewBB
);
1292 DTUpdates
.push_back(
1293 {DominatorTree::UpdateKind::Insert
, BI
->getParent(), NewBB
});
1294 DTUpdates
.push_back(
1295 {DominatorTree::UpdateKind::Delete
, BI
->getParent(), OldBB
});
1301 // Move Lcssa PHIs to the right place.
1302 static void moveLCSSAPhis(BasicBlock
*InnerExit
, BasicBlock
*InnerHeader
,
1303 BasicBlock
*InnerLatch
, BasicBlock
*OuterHeader
,
1304 BasicBlock
*OuterLatch
, BasicBlock
*OuterExit
) {
1306 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1307 // defined either in the header or latch. Those blocks will become header and
1308 // latch of the new outer loop, and the only possible users can PHI nodes
1309 // in the exit block of the loop nest or the outer loop header (reduction
1310 // PHIs, in that case, the incoming value must be defined in the inner loop
1311 // header). We can just substitute the user with the incoming value and remove
1313 for (PHINode
&P
: make_early_inc_range(InnerExit
->phis())) {
1314 assert(P
.getNumIncomingValues() == 1 &&
1315 "Only loops with a single exit are supported!");
1317 // Incoming values are guaranteed be instructions currently.
1318 auto IncI
= cast
<Instruction
>(P
.getIncomingValueForBlock(InnerLatch
));
1319 // Skip phis with incoming values from the inner loop body, excluding the
1320 // header and latch.
1321 if (IncI
->getParent() != InnerLatch
&& IncI
->getParent() != InnerHeader
)
1324 assert(all_of(P
.users(),
1325 [OuterHeader
, OuterExit
, IncI
, InnerHeader
](User
*U
) {
1326 return (cast
<PHINode
>(U
)->getParent() == OuterHeader
&&
1327 IncI
->getParent() == InnerHeader
) ||
1328 cast
<PHINode
>(U
)->getParent() == OuterExit
;
1330 "Can only replace phis iff the uses are in the loop nest exit or "
1331 "the incoming value is defined in the inner header (it will "
1332 "dominate all loop blocks after interchanging)");
1333 P
.replaceAllUsesWith(IncI
);
1334 P
.eraseFromParent();
1337 SmallVector
<PHINode
*, 8> LcssaInnerExit
;
1338 for (PHINode
&P
: InnerExit
->phis())
1339 LcssaInnerExit
.push_back(&P
);
1341 SmallVector
<PHINode
*, 8> LcssaInnerLatch
;
1342 for (PHINode
&P
: InnerLatch
->phis())
1343 LcssaInnerLatch
.push_back(&P
);
1345 // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1346 // If a PHI node has users outside of InnerExit, it has a use outside the
1347 // interchanged loop and we have to preserve it. We move these to
1348 // InnerLatch, which will become the new exit block for the innermost
1349 // loop after interchanging.
1350 for (PHINode
*P
: LcssaInnerExit
)
1351 P
->moveBefore(InnerLatch
->getFirstNonPHI());
1353 // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1354 // and we have to move them to the new inner latch.
1355 for (PHINode
*P
: LcssaInnerLatch
)
1356 P
->moveBefore(InnerExit
->getFirstNonPHI());
1358 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1359 // incoming values from the outer latch or header, we have to add a new PHI
1360 // in the inner loop latch, which became the exit block of the outer loop,
1361 // after interchanging.
1363 for (PHINode
&P
: OuterExit
->phis()) {
1364 if (P
.getNumIncomingValues() != 1)
1366 // Skip Phis with incoming values not defined in the outer loop's header
1367 // and latch. Also skip incoming phis defined in the latch. Those should
1368 // already have been updated.
1369 auto I
= dyn_cast
<Instruction
>(P
.getIncomingValue(0));
1370 if (!I
|| ((I
->getParent() != OuterLatch
|| isa
<PHINode
>(I
)) &&
1371 I
->getParent() != OuterHeader
))
1374 PHINode
*NewPhi
= dyn_cast
<PHINode
>(P
.clone());
1375 NewPhi
->setIncomingValue(0, P
.getIncomingValue(0));
1376 NewPhi
->setIncomingBlock(0, OuterLatch
);
1377 NewPhi
->insertBefore(InnerLatch
->getFirstNonPHI());
1378 P
.setIncomingValue(0, NewPhi
);
1382 // Now adjust the incoming blocks for the LCSSA PHIs.
1383 // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1384 // with the new latch.
1385 InnerLatch
->replacePhiUsesWith(InnerLatch
, OuterLatch
);
1388 bool LoopInterchangeTransform::adjustLoopBranches() {
1389 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1390 std::vector
<DominatorTree::UpdateType
> DTUpdates
;
1392 BasicBlock
*OuterLoopPreHeader
= OuterLoop
->getLoopPreheader();
1393 BasicBlock
*InnerLoopPreHeader
= InnerLoop
->getLoopPreheader();
1395 assert(OuterLoopPreHeader
!= OuterLoop
->getHeader() &&
1396 InnerLoopPreHeader
!= InnerLoop
->getHeader() && OuterLoopPreHeader
&&
1397 InnerLoopPreHeader
&& "Guaranteed by loop-simplify form");
1398 // Ensure that both preheaders do not contain PHI nodes and have single
1399 // predecessors. This allows us to move them easily. We use
1400 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1401 // preheaders do not satisfy those conditions.
1402 if (isa
<PHINode
>(OuterLoopPreHeader
->begin()) ||
1403 !OuterLoopPreHeader
->getUniquePredecessor())
1404 OuterLoopPreHeader
=
1405 InsertPreheaderForLoop(OuterLoop
, DT
, LI
, nullptr, true);
1406 if (InnerLoopPreHeader
== OuterLoop
->getHeader())
1407 InnerLoopPreHeader
=
1408 InsertPreheaderForLoop(InnerLoop
, DT
, LI
, nullptr, true);
1410 // Adjust the loop preheader
1411 BasicBlock
*InnerLoopHeader
= InnerLoop
->getHeader();
1412 BasicBlock
*OuterLoopHeader
= OuterLoop
->getHeader();
1413 BasicBlock
*InnerLoopLatch
= InnerLoop
->getLoopLatch();
1414 BasicBlock
*OuterLoopLatch
= OuterLoop
->getLoopLatch();
1415 BasicBlock
*OuterLoopPredecessor
= OuterLoopPreHeader
->getUniquePredecessor();
1416 BasicBlock
*InnerLoopLatchPredecessor
=
1417 InnerLoopLatch
->getUniquePredecessor();
1418 BasicBlock
*InnerLoopLatchSuccessor
;
1419 BasicBlock
*OuterLoopLatchSuccessor
;
1421 BranchInst
*OuterLoopLatchBI
=
1422 dyn_cast
<BranchInst
>(OuterLoopLatch
->getTerminator());
1423 BranchInst
*InnerLoopLatchBI
=
1424 dyn_cast
<BranchInst
>(InnerLoopLatch
->getTerminator());
1425 BranchInst
*OuterLoopHeaderBI
=
1426 dyn_cast
<BranchInst
>(OuterLoopHeader
->getTerminator());
1427 BranchInst
*InnerLoopHeaderBI
=
1428 dyn_cast
<BranchInst
>(InnerLoopHeader
->getTerminator());
1430 if (!OuterLoopPredecessor
|| !InnerLoopLatchPredecessor
||
1431 !OuterLoopLatchBI
|| !InnerLoopLatchBI
|| !OuterLoopHeaderBI
||
1435 BranchInst
*InnerLoopLatchPredecessorBI
=
1436 dyn_cast
<BranchInst
>(InnerLoopLatchPredecessor
->getTerminator());
1437 BranchInst
*OuterLoopPredecessorBI
=
1438 dyn_cast
<BranchInst
>(OuterLoopPredecessor
->getTerminator());
1440 if (!OuterLoopPredecessorBI
|| !InnerLoopLatchPredecessorBI
)
1442 BasicBlock
*InnerLoopHeaderSuccessor
= InnerLoopHeader
->getUniqueSuccessor();
1443 if (!InnerLoopHeaderSuccessor
)
1446 // Adjust Loop Preheader and headers
1447 updateSuccessor(OuterLoopPredecessorBI
, OuterLoopPreHeader
,
1448 InnerLoopPreHeader
, DTUpdates
);
1449 updateSuccessor(OuterLoopHeaderBI
, OuterLoopLatch
, LoopExit
, DTUpdates
);
1450 updateSuccessor(OuterLoopHeaderBI
, InnerLoopPreHeader
,
1451 InnerLoopHeaderSuccessor
, DTUpdates
);
1453 // Adjust reduction PHI's now that the incoming block has changed.
1454 InnerLoopHeaderSuccessor
->replacePhiUsesWith(InnerLoopHeader
,
1457 updateSuccessor(InnerLoopHeaderBI
, InnerLoopHeaderSuccessor
,
1458 OuterLoopPreHeader
, DTUpdates
);
1460 // -------------Adjust loop latches-----------
1461 if (InnerLoopLatchBI
->getSuccessor(0) == InnerLoopHeader
)
1462 InnerLoopLatchSuccessor
= InnerLoopLatchBI
->getSuccessor(1);
1464 InnerLoopLatchSuccessor
= InnerLoopLatchBI
->getSuccessor(0);
1466 updateSuccessor(InnerLoopLatchPredecessorBI
, InnerLoopLatch
,
1467 InnerLoopLatchSuccessor
, DTUpdates
);
1470 if (OuterLoopLatchBI
->getSuccessor(0) == OuterLoopHeader
)
1471 OuterLoopLatchSuccessor
= OuterLoopLatchBI
->getSuccessor(1);
1473 OuterLoopLatchSuccessor
= OuterLoopLatchBI
->getSuccessor(0);
1475 updateSuccessor(InnerLoopLatchBI
, InnerLoopLatchSuccessor
,
1476 OuterLoopLatchSuccessor
, DTUpdates
);
1477 updateSuccessor(OuterLoopLatchBI
, OuterLoopLatchSuccessor
, InnerLoopLatch
,
1480 DT
->applyUpdates(DTUpdates
);
1481 restructureLoops(OuterLoop
, InnerLoop
, InnerLoopPreHeader
,
1482 OuterLoopPreHeader
);
1484 moveLCSSAPhis(InnerLoopLatchSuccessor
, InnerLoopHeader
, InnerLoopLatch
,
1485 OuterLoopHeader
, OuterLoopLatch
, InnerLoop
->getExitBlock());
1486 // For PHIs in the exit block of the outer loop, outer's latch has been
1487 // replaced by Inners'.
1488 OuterLoopLatchSuccessor
->replacePhiUsesWith(OuterLoopLatch
, InnerLoopLatch
);
1490 // Now update the reduction PHIs in the inner and outer loop headers.
1491 SmallVector
<PHINode
*, 4> InnerLoopPHIs
, OuterLoopPHIs
;
1492 for (PHINode
&PHI
: drop_begin(InnerLoopHeader
->phis(), 1))
1493 InnerLoopPHIs
.push_back(cast
<PHINode
>(&PHI
));
1494 for (PHINode
&PHI
: drop_begin(OuterLoopHeader
->phis(), 1))
1495 OuterLoopPHIs
.push_back(cast
<PHINode
>(&PHI
));
1497 auto &OuterInnerReductions
= LIL
.getOuterInnerReductions();
1498 (void)OuterInnerReductions
;
1500 // Now move the remaining reduction PHIs from outer to inner loop header and
1501 // vice versa. The PHI nodes must be part of a reduction across the inner and
1502 // outer loop and all the remains to do is and updating the incoming blocks.
1503 for (PHINode
*PHI
: OuterLoopPHIs
) {
1504 PHI
->moveBefore(InnerLoopHeader
->getFirstNonPHI());
1505 assert(OuterInnerReductions
.find(PHI
) != OuterInnerReductions
.end() &&
1506 "Expected a reduction PHI node");
1508 for (PHINode
*PHI
: InnerLoopPHIs
) {
1509 PHI
->moveBefore(OuterLoopHeader
->getFirstNonPHI());
1510 assert(OuterInnerReductions
.find(PHI
) != OuterInnerReductions
.end() &&
1511 "Expected a reduction PHI node");
1514 // Update the incoming blocks for moved PHI nodes.
1515 OuterLoopHeader
->replacePhiUsesWith(InnerLoopPreHeader
, OuterLoopPreHeader
);
1516 OuterLoopHeader
->replacePhiUsesWith(InnerLoopLatch
, OuterLoopLatch
);
1517 InnerLoopHeader
->replacePhiUsesWith(OuterLoopPreHeader
, InnerLoopPreHeader
);
1518 InnerLoopHeader
->replacePhiUsesWith(OuterLoopLatch
, InnerLoopLatch
);
1523 void LoopInterchangeTransform::adjustLoopPreheaders() {
1524 // We have interchanged the preheaders so we need to interchange the data in
1525 // the preheader as well.
1526 // This is because the content of inner preheader was previously executed
1527 // inside the outer loop.
1528 BasicBlock
*OuterLoopPreHeader
= OuterLoop
->getLoopPreheader();
1529 BasicBlock
*InnerLoopPreHeader
= InnerLoop
->getLoopPreheader();
1530 BasicBlock
*OuterLoopHeader
= OuterLoop
->getHeader();
1531 BranchInst
*InnerTermBI
=
1532 cast
<BranchInst
>(InnerLoopPreHeader
->getTerminator());
1534 // These instructions should now be executed inside the loop.
1535 // Move instruction into a new block after outer header.
1536 moveBBContents(InnerLoopPreHeader
, OuterLoopHeader
->getTerminator());
1537 // These instructions were not executed previously in the loop so move them to
1538 // the older inner loop preheader.
1539 moveBBContents(OuterLoopPreHeader
, InnerTermBI
);
1542 bool LoopInterchangeTransform::adjustLoopLinks() {
1543 // Adjust all branches in the inner and outer loop.
1544 bool Changed
= adjustLoopBranches();
1546 adjustLoopPreheaders();
1550 char LoopInterchange::ID
= 0;
1552 INITIALIZE_PASS_BEGIN(LoopInterchange
, "loop-interchange",
1553 "Interchanges loops for cache reuse", false, false)
1554 INITIALIZE_PASS_DEPENDENCY(LoopPass
)
1555 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass
)
1556 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass
)
1558 INITIALIZE_PASS_END(LoopInterchange
, "loop-interchange",
1559 "Interchanges loops for cache reuse", false, false)
1561 Pass
*llvm::createLoopInterchangePass() { return new LoopInterchange(); }