[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / Scalar / LoopInterchange.cpp
blob9a42365adc1bc8c5e5fc9f79d014daec1e2ac835
1 //===- LoopInterchange.cpp - Loop interchange pass-------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This Pass handles loop interchange transform.
10 // This pass interchanges loops to provide a more cache-friendly memory access
11 // patterns.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/Analysis/DependenceAnalysis.h"
20 #include "llvm/Analysis/LoopInfo.h"
21 #include "llvm/Analysis/LoopPass.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/Analysis/ScalarEvolution.h"
24 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DiagnosticInfo.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/InstrTypes.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/IR/User.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/Casting.h"
38 #include "llvm/Support/CommandLine.h"
39 #include "llvm/Support/Debug.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/Transforms/Scalar.h"
43 #include "llvm/Transforms/Utils.h"
44 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
45 #include "llvm/Transforms/Utils/LoopUtils.h"
46 #include <cassert>
47 #include <utility>
48 #include <vector>
50 using namespace llvm;
52 #define DEBUG_TYPE "loop-interchange"
54 STATISTIC(LoopsInterchanged, "Number of loops interchanged");
56 static cl::opt<int> LoopInterchangeCostThreshold(
57 "loop-interchange-threshold", cl::init(0), cl::Hidden,
58 cl::desc("Interchange if you gain more than this number"));
60 namespace {
62 using LoopVector = SmallVector<Loop *, 8>;
64 // TODO: Check if we can use a sparse matrix here.
65 using CharMatrix = std::vector<std::vector<char>>;
67 } // end anonymous namespace
69 // Maximum number of dependencies that can be handled in the dependency matrix.
70 static const unsigned MaxMemInstrCount = 100;
72 // Maximum loop depth supported.
73 static const unsigned MaxLoopNestDepth = 10;
75 #ifdef DUMP_DEP_MATRICIES
76 static void printDepMatrix(CharMatrix &DepMatrix) {
77 for (auto &Row : DepMatrix) {
78 for (auto D : Row)
79 LLVM_DEBUG(dbgs() << D << " ");
80 LLVM_DEBUG(dbgs() << "\n");
83 #endif
85 static bool populateDependencyMatrix(CharMatrix &DepMatrix, unsigned Level,
86 Loop *L, DependenceInfo *DI) {
87 using ValueVector = SmallVector<Value *, 16>;
89 ValueVector MemInstr;
91 // For each block.
92 for (BasicBlock *BB : L->blocks()) {
93 // Scan the BB and collect legal loads and stores.
94 for (Instruction &I : *BB) {
95 if (!isa<Instruction>(I))
96 return false;
97 if (auto *Ld = dyn_cast<LoadInst>(&I)) {
98 if (!Ld->isSimple())
99 return false;
100 MemInstr.push_back(&I);
101 } else if (auto *St = dyn_cast<StoreInst>(&I)) {
102 if (!St->isSimple())
103 return false;
104 MemInstr.push_back(&I);
109 LLVM_DEBUG(dbgs() << "Found " << MemInstr.size()
110 << " Loads and Stores to analyze\n");
112 ValueVector::iterator I, IE, J, JE;
114 for (I = MemInstr.begin(), IE = MemInstr.end(); I != IE; ++I) {
115 for (J = I, JE = MemInstr.end(); J != JE; ++J) {
116 std::vector<char> Dep;
117 Instruction *Src = cast<Instruction>(*I);
118 Instruction *Dst = cast<Instruction>(*J);
119 if (Src == Dst)
120 continue;
121 // Ignore Input dependencies.
122 if (isa<LoadInst>(Src) && isa<LoadInst>(Dst))
123 continue;
124 // Track Output, Flow, and Anti dependencies.
125 if (auto D = DI->depends(Src, Dst, true)) {
126 assert(D->isOrdered() && "Expected an output, flow or anti dep.");
127 LLVM_DEBUG(StringRef DepType =
128 D->isFlow() ? "flow" : D->isAnti() ? "anti" : "output";
129 dbgs() << "Found " << DepType
130 << " dependency between Src and Dst\n"
131 << " Src:" << *Src << "\n Dst:" << *Dst << '\n');
132 unsigned Levels = D->getLevels();
133 char Direction;
134 for (unsigned II = 1; II <= Levels; ++II) {
135 const SCEV *Distance = D->getDistance(II);
136 const SCEVConstant *SCEVConst =
137 dyn_cast_or_null<SCEVConstant>(Distance);
138 if (SCEVConst) {
139 const ConstantInt *CI = SCEVConst->getValue();
140 if (CI->isNegative())
141 Direction = '<';
142 else if (CI->isZero())
143 Direction = '=';
144 else
145 Direction = '>';
146 Dep.push_back(Direction);
147 } else if (D->isScalar(II)) {
148 Direction = 'S';
149 Dep.push_back(Direction);
150 } else {
151 unsigned Dir = D->getDirection(II);
152 if (Dir == Dependence::DVEntry::LT ||
153 Dir == Dependence::DVEntry::LE)
154 Direction = '<';
155 else if (Dir == Dependence::DVEntry::GT ||
156 Dir == Dependence::DVEntry::GE)
157 Direction = '>';
158 else if (Dir == Dependence::DVEntry::EQ)
159 Direction = '=';
160 else
161 Direction = '*';
162 Dep.push_back(Direction);
165 while (Dep.size() != Level) {
166 Dep.push_back('I');
169 DepMatrix.push_back(Dep);
170 if (DepMatrix.size() > MaxMemInstrCount) {
171 LLVM_DEBUG(dbgs() << "Cannot handle more than " << MaxMemInstrCount
172 << " dependencies inside loop\n");
173 return false;
179 return true;
182 // A loop is moved from index 'from' to an index 'to'. Update the Dependence
183 // matrix by exchanging the two columns.
184 static void interChangeDependencies(CharMatrix &DepMatrix, unsigned FromIndx,
185 unsigned ToIndx) {
186 unsigned numRows = DepMatrix.size();
187 for (unsigned i = 0; i < numRows; ++i) {
188 char TmpVal = DepMatrix[i][ToIndx];
189 DepMatrix[i][ToIndx] = DepMatrix[i][FromIndx];
190 DepMatrix[i][FromIndx] = TmpVal;
194 // Checks if outermost non '=','S'or'I' dependence in the dependence matrix is
195 // '>'
196 static bool isOuterMostDepPositive(CharMatrix &DepMatrix, unsigned Row,
197 unsigned Column) {
198 for (unsigned i = 0; i <= Column; ++i) {
199 if (DepMatrix[Row][i] == '<')
200 return false;
201 if (DepMatrix[Row][i] == '>')
202 return true;
204 // All dependencies were '=','S' or 'I'
205 return false;
208 // Checks if no dependence exist in the dependency matrix in Row before Column.
209 static bool containsNoDependence(CharMatrix &DepMatrix, unsigned Row,
210 unsigned Column) {
211 for (unsigned i = 0; i < Column; ++i) {
212 if (DepMatrix[Row][i] != '=' && DepMatrix[Row][i] != 'S' &&
213 DepMatrix[Row][i] != 'I')
214 return false;
216 return true;
219 static bool validDepInterchange(CharMatrix &DepMatrix, unsigned Row,
220 unsigned OuterLoopId, char InnerDep,
221 char OuterDep) {
222 if (isOuterMostDepPositive(DepMatrix, Row, OuterLoopId))
223 return false;
225 if (InnerDep == OuterDep)
226 return true;
228 // It is legal to interchange if and only if after interchange no row has a
229 // '>' direction as the leftmost non-'='.
231 if (InnerDep == '=' || InnerDep == 'S' || InnerDep == 'I')
232 return true;
234 if (InnerDep == '<')
235 return true;
237 if (InnerDep == '>') {
238 // If OuterLoopId represents outermost loop then interchanging will make the
239 // 1st dependency as '>'
240 if (OuterLoopId == 0)
241 return false;
243 // If all dependencies before OuterloopId are '=','S'or 'I'. Then
244 // interchanging will result in this row having an outermost non '='
245 // dependency of '>'
246 if (!containsNoDependence(DepMatrix, Row, OuterLoopId))
247 return true;
250 return false;
253 // Checks if it is legal to interchange 2 loops.
254 // [Theorem] A permutation of the loops in a perfect nest is legal if and only
255 // if the direction matrix, after the same permutation is applied to its
256 // columns, has no ">" direction as the leftmost non-"=" direction in any row.
257 static bool isLegalToInterChangeLoops(CharMatrix &DepMatrix,
258 unsigned InnerLoopId,
259 unsigned OuterLoopId) {
260 unsigned NumRows = DepMatrix.size();
261 // For each row check if it is valid to interchange.
262 for (unsigned Row = 0; Row < NumRows; ++Row) {
263 char InnerDep = DepMatrix[Row][InnerLoopId];
264 char OuterDep = DepMatrix[Row][OuterLoopId];
265 if (InnerDep == '*' || OuterDep == '*')
266 return false;
267 if (!validDepInterchange(DepMatrix, Row, OuterLoopId, InnerDep, OuterDep))
268 return false;
270 return true;
273 static LoopVector populateWorklist(Loop &L) {
274 LLVM_DEBUG(dbgs() << "Calling populateWorklist on Func: "
275 << L.getHeader()->getParent()->getName() << " Loop: %"
276 << L.getHeader()->getName() << '\n');
277 LoopVector LoopList;
278 Loop *CurrentLoop = &L;
279 const std::vector<Loop *> *Vec = &CurrentLoop->getSubLoops();
280 while (!Vec->empty()) {
281 // The current loop has multiple subloops in it hence it is not tightly
282 // nested.
283 // Discard all loops above it added into Worklist.
284 if (Vec->size() != 1)
285 return {};
287 LoopList.push_back(CurrentLoop);
288 CurrentLoop = Vec->front();
289 Vec = &CurrentLoop->getSubLoops();
291 LoopList.push_back(CurrentLoop);
292 return LoopList;
295 static PHINode *getInductionVariable(Loop *L, ScalarEvolution *SE) {
296 PHINode *InnerIndexVar = L->getCanonicalInductionVariable();
297 if (InnerIndexVar)
298 return InnerIndexVar;
299 if (L->getLoopLatch() == nullptr || L->getLoopPredecessor() == nullptr)
300 return nullptr;
301 for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
302 PHINode *PhiVar = cast<PHINode>(I);
303 Type *PhiTy = PhiVar->getType();
304 if (!PhiTy->isIntegerTy() && !PhiTy->isFloatingPointTy() &&
305 !PhiTy->isPointerTy())
306 return nullptr;
307 const SCEVAddRecExpr *AddRec =
308 dyn_cast<SCEVAddRecExpr>(SE->getSCEV(PhiVar));
309 if (!AddRec || !AddRec->isAffine())
310 continue;
311 const SCEV *Step = AddRec->getStepRecurrence(*SE);
312 if (!isa<SCEVConstant>(Step))
313 continue;
314 // Found the induction variable.
315 // FIXME: Handle loops with more than one induction variable. Note that,
316 // currently, legality makes sure we have only one induction variable.
317 return PhiVar;
319 return nullptr;
322 namespace {
324 /// LoopInterchangeLegality checks if it is legal to interchange the loop.
325 class LoopInterchangeLegality {
326 public:
327 LoopInterchangeLegality(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
328 OptimizationRemarkEmitter *ORE)
329 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
331 /// Check if the loops can be interchanged.
332 bool canInterchangeLoops(unsigned InnerLoopId, unsigned OuterLoopId,
333 CharMatrix &DepMatrix);
335 /// Check if the loop structure is understood. We do not handle triangular
336 /// loops for now.
337 bool isLoopStructureUnderstood(PHINode *InnerInductionVar);
339 bool currentLimitations();
341 const SmallPtrSetImpl<PHINode *> &getOuterInnerReductions() const {
342 return OuterInnerReductions;
345 private:
346 bool tightlyNested(Loop *Outer, Loop *Inner);
347 bool containsUnsafeInstructions(BasicBlock *BB);
349 /// Discover induction and reduction PHIs in the header of \p L. Induction
350 /// PHIs are added to \p Inductions, reductions are added to
351 /// OuterInnerReductions. When the outer loop is passed, the inner loop needs
352 /// to be passed as \p InnerLoop.
353 bool findInductionAndReductions(Loop *L,
354 SmallVector<PHINode *, 8> &Inductions,
355 Loop *InnerLoop);
357 Loop *OuterLoop;
358 Loop *InnerLoop;
360 ScalarEvolution *SE;
362 /// Interface to emit optimization remarks.
363 OptimizationRemarkEmitter *ORE;
365 /// Set of reduction PHIs taking part of a reduction across the inner and
366 /// outer loop.
367 SmallPtrSet<PHINode *, 4> OuterInnerReductions;
370 /// LoopInterchangeProfitability checks if it is profitable to interchange the
371 /// loop.
372 class LoopInterchangeProfitability {
373 public:
374 LoopInterchangeProfitability(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
375 OptimizationRemarkEmitter *ORE)
376 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), ORE(ORE) {}
378 /// Check if the loop interchange is profitable.
379 bool isProfitable(unsigned InnerLoopId, unsigned OuterLoopId,
380 CharMatrix &DepMatrix);
382 private:
383 int getInstrOrderCost();
385 Loop *OuterLoop;
386 Loop *InnerLoop;
388 /// Scev analysis.
389 ScalarEvolution *SE;
391 /// Interface to emit optimization remarks.
392 OptimizationRemarkEmitter *ORE;
395 /// LoopInterchangeTransform interchanges the loop.
396 class LoopInterchangeTransform {
397 public:
398 LoopInterchangeTransform(Loop *Outer, Loop *Inner, ScalarEvolution *SE,
399 LoopInfo *LI, DominatorTree *DT,
400 BasicBlock *LoopNestExit,
401 const LoopInterchangeLegality &LIL)
402 : OuterLoop(Outer), InnerLoop(Inner), SE(SE), LI(LI), DT(DT),
403 LoopExit(LoopNestExit), LIL(LIL) {}
405 /// Interchange OuterLoop and InnerLoop.
406 bool transform();
407 void restructureLoops(Loop *NewInner, Loop *NewOuter,
408 BasicBlock *OrigInnerPreHeader,
409 BasicBlock *OrigOuterPreHeader);
410 void removeChildLoop(Loop *OuterLoop, Loop *InnerLoop);
412 private:
413 void splitInnerLoopLatch(Instruction *);
414 void splitInnerLoopHeader();
415 bool adjustLoopLinks();
416 void adjustLoopPreheaders();
417 bool adjustLoopBranches();
419 Loop *OuterLoop;
420 Loop *InnerLoop;
422 /// Scev analysis.
423 ScalarEvolution *SE;
425 LoopInfo *LI;
426 DominatorTree *DT;
427 BasicBlock *LoopExit;
429 const LoopInterchangeLegality &LIL;
432 // Main LoopInterchange Pass.
433 struct LoopInterchange : public LoopPass {
434 static char ID;
435 ScalarEvolution *SE = nullptr;
436 LoopInfo *LI = nullptr;
437 DependenceInfo *DI = nullptr;
438 DominatorTree *DT = nullptr;
440 /// Interface to emit optimization remarks.
441 OptimizationRemarkEmitter *ORE;
443 LoopInterchange() : LoopPass(ID) {
444 initializeLoopInterchangePass(*PassRegistry::getPassRegistry());
447 void getAnalysisUsage(AnalysisUsage &AU) const override {
448 AU.addRequired<DependenceAnalysisWrapperPass>();
449 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
451 getLoopAnalysisUsage(AU);
454 bool runOnLoop(Loop *L, LPPassManager &LPM) override {
455 if (skipLoop(L) || L->getParentLoop())
456 return false;
458 SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
459 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
460 DI = &getAnalysis<DependenceAnalysisWrapperPass>().getDI();
461 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
462 ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
464 return processLoopList(populateWorklist(*L));
467 bool isComputableLoopNest(LoopVector LoopList) {
468 for (Loop *L : LoopList) {
469 const SCEV *ExitCountOuter = SE->getBackedgeTakenCount(L);
470 if (ExitCountOuter == SE->getCouldNotCompute()) {
471 LLVM_DEBUG(dbgs() << "Couldn't compute backedge count\n");
472 return false;
474 if (L->getNumBackEdges() != 1) {
475 LLVM_DEBUG(dbgs() << "NumBackEdges is not equal to 1\n");
476 return false;
478 if (!L->getExitingBlock()) {
479 LLVM_DEBUG(dbgs() << "Loop doesn't have unique exit block\n");
480 return false;
483 return true;
486 unsigned selectLoopForInterchange(const LoopVector &LoopList) {
487 // TODO: Add a better heuristic to select the loop to be interchanged based
488 // on the dependence matrix. Currently we select the innermost loop.
489 return LoopList.size() - 1;
492 bool processLoopList(LoopVector LoopList) {
493 bool Changed = false;
494 unsigned LoopNestDepth = LoopList.size();
495 if (LoopNestDepth < 2) {
496 LLVM_DEBUG(dbgs() << "Loop doesn't contain minimum nesting level.\n");
497 return false;
499 if (LoopNestDepth > MaxLoopNestDepth) {
500 LLVM_DEBUG(dbgs() << "Cannot handle loops of depth greater than "
501 << MaxLoopNestDepth << "\n");
502 return false;
504 if (!isComputableLoopNest(LoopList)) {
505 LLVM_DEBUG(dbgs() << "Not valid loop candidate for interchange\n");
506 return false;
509 LLVM_DEBUG(dbgs() << "Processing LoopList of size = " << LoopNestDepth
510 << "\n");
512 CharMatrix DependencyMatrix;
513 Loop *OuterMostLoop = *(LoopList.begin());
514 if (!populateDependencyMatrix(DependencyMatrix, LoopNestDepth,
515 OuterMostLoop, DI)) {
516 LLVM_DEBUG(dbgs() << "Populating dependency matrix failed\n");
517 return false;
519 #ifdef DUMP_DEP_MATRICIES
520 LLVM_DEBUG(dbgs() << "Dependence before interchange\n");
521 printDepMatrix(DependencyMatrix);
522 #endif
524 // Get the Outermost loop exit.
525 BasicBlock *LoopNestExit = OuterMostLoop->getExitBlock();
526 if (!LoopNestExit) {
527 LLVM_DEBUG(dbgs() << "OuterMostLoop needs an unique exit block");
528 return false;
531 unsigned SelecLoopId = selectLoopForInterchange(LoopList);
532 // Move the selected loop outwards to the best possible position.
533 for (unsigned i = SelecLoopId; i > 0; i--) {
534 bool Interchanged =
535 processLoop(LoopList, i, i - 1, LoopNestExit, DependencyMatrix);
536 if (!Interchanged)
537 return Changed;
538 // Loops interchanged reflect the same in LoopList
539 std::swap(LoopList[i - 1], LoopList[i]);
541 // Update the DependencyMatrix
542 interChangeDependencies(DependencyMatrix, i, i - 1);
543 #ifdef DUMP_DEP_MATRICIES
544 LLVM_DEBUG(dbgs() << "Dependence after interchange\n");
545 printDepMatrix(DependencyMatrix);
546 #endif
547 Changed |= Interchanged;
549 return Changed;
552 bool processLoop(LoopVector LoopList, unsigned InnerLoopId,
553 unsigned OuterLoopId, BasicBlock *LoopNestExit,
554 std::vector<std::vector<char>> &DependencyMatrix) {
555 LLVM_DEBUG(dbgs() << "Processing Inner Loop Id = " << InnerLoopId
556 << " and OuterLoopId = " << OuterLoopId << "\n");
557 Loop *InnerLoop = LoopList[InnerLoopId];
558 Loop *OuterLoop = LoopList[OuterLoopId];
560 LoopInterchangeLegality LIL(OuterLoop, InnerLoop, SE, ORE);
561 if (!LIL.canInterchangeLoops(InnerLoopId, OuterLoopId, DependencyMatrix)) {
562 LLVM_DEBUG(dbgs() << "Not interchanging loops. Cannot prove legality.\n");
563 return false;
565 LLVM_DEBUG(dbgs() << "Loops are legal to interchange\n");
566 LoopInterchangeProfitability LIP(OuterLoop, InnerLoop, SE, ORE);
567 if (!LIP.isProfitable(InnerLoopId, OuterLoopId, DependencyMatrix)) {
568 LLVM_DEBUG(dbgs() << "Interchanging loops not profitable.\n");
569 return false;
572 ORE->emit([&]() {
573 return OptimizationRemark(DEBUG_TYPE, "Interchanged",
574 InnerLoop->getStartLoc(),
575 InnerLoop->getHeader())
576 << "Loop interchanged with enclosing loop.";
579 LoopInterchangeTransform LIT(OuterLoop, InnerLoop, SE, LI, DT, LoopNestExit,
580 LIL);
581 LIT.transform();
582 LLVM_DEBUG(dbgs() << "Loops interchanged.\n");
583 LoopsInterchanged++;
584 return true;
588 } // end anonymous namespace
590 bool LoopInterchangeLegality::containsUnsafeInstructions(BasicBlock *BB) {
591 return any_of(*BB, [](const Instruction &I) {
592 return I.mayHaveSideEffects() || I.mayReadFromMemory();
596 bool LoopInterchangeLegality::tightlyNested(Loop *OuterLoop, Loop *InnerLoop) {
597 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
598 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
599 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
601 LLVM_DEBUG(dbgs() << "Checking if loops are tightly nested\n");
603 // A perfectly nested loop will not have any branch in between the outer and
604 // inner block i.e. outer header will branch to either inner preheader and
605 // outerloop latch.
606 BranchInst *OuterLoopHeaderBI =
607 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
608 if (!OuterLoopHeaderBI)
609 return false;
611 for (BasicBlock *Succ : successors(OuterLoopHeaderBI))
612 if (Succ != InnerLoopPreHeader && Succ != InnerLoop->getHeader() &&
613 Succ != OuterLoopLatch)
614 return false;
616 LLVM_DEBUG(dbgs() << "Checking instructions in Loop header and Loop latch\n");
617 // We do not have any basic block in between now make sure the outer header
618 // and outer loop latch doesn't contain any unsafe instructions.
619 if (containsUnsafeInstructions(OuterLoopHeader) ||
620 containsUnsafeInstructions(OuterLoopLatch))
621 return false;
623 LLVM_DEBUG(dbgs() << "Loops are perfectly nested\n");
624 // We have a perfect loop nest.
625 return true;
628 bool LoopInterchangeLegality::isLoopStructureUnderstood(
629 PHINode *InnerInduction) {
630 unsigned Num = InnerInduction->getNumOperands();
631 BasicBlock *InnerLoopPreheader = InnerLoop->getLoopPreheader();
632 for (unsigned i = 0; i < Num; ++i) {
633 Value *Val = InnerInduction->getOperand(i);
634 if (isa<Constant>(Val))
635 continue;
636 Instruction *I = dyn_cast<Instruction>(Val);
637 if (!I)
638 return false;
639 // TODO: Handle triangular loops.
640 // e.g. for(int i=0;i<N;i++)
641 // for(int j=i;j<N;j++)
642 unsigned IncomBlockIndx = PHINode::getIncomingValueNumForOperand(i);
643 if (InnerInduction->getIncomingBlock(IncomBlockIndx) ==
644 InnerLoopPreheader &&
645 !OuterLoop->isLoopInvariant(I)) {
646 return false;
649 return true;
652 // If SV is a LCSSA PHI node with a single incoming value, return the incoming
653 // value.
654 static Value *followLCSSA(Value *SV) {
655 PHINode *PHI = dyn_cast<PHINode>(SV);
656 if (!PHI)
657 return SV;
659 if (PHI->getNumIncomingValues() != 1)
660 return SV;
661 return followLCSSA(PHI->getIncomingValue(0));
664 // Check V's users to see if it is involved in a reduction in L.
665 static PHINode *findInnerReductionPhi(Loop *L, Value *V) {
666 for (Value *User : V->users()) {
667 if (PHINode *PHI = dyn_cast<PHINode>(User)) {
668 if (PHI->getNumIncomingValues() == 1)
669 continue;
670 RecurrenceDescriptor RD;
671 if (RecurrenceDescriptor::isReductionPHI(PHI, L, RD))
672 return PHI;
673 return nullptr;
677 return nullptr;
680 bool LoopInterchangeLegality::findInductionAndReductions(
681 Loop *L, SmallVector<PHINode *, 8> &Inductions, Loop *InnerLoop) {
682 if (!L->getLoopLatch() || !L->getLoopPredecessor())
683 return false;
684 for (PHINode &PHI : L->getHeader()->phis()) {
685 RecurrenceDescriptor RD;
686 InductionDescriptor ID;
687 if (InductionDescriptor::isInductionPHI(&PHI, L, SE, ID))
688 Inductions.push_back(&PHI);
689 else {
690 // PHIs in inner loops need to be part of a reduction in the outer loop,
691 // discovered when checking the PHIs of the outer loop earlier.
692 if (!InnerLoop) {
693 if (OuterInnerReductions.find(&PHI) == OuterInnerReductions.end()) {
694 LLVM_DEBUG(dbgs() << "Inner loop PHI is not part of reductions "
695 "across the outer loop.\n");
696 return false;
698 } else {
699 assert(PHI.getNumIncomingValues() == 2 &&
700 "Phis in loop header should have exactly 2 incoming values");
701 // Check if we have a PHI node in the outer loop that has a reduction
702 // result from the inner loop as an incoming value.
703 Value *V = followLCSSA(PHI.getIncomingValueForBlock(L->getLoopLatch()));
704 PHINode *InnerRedPhi = findInnerReductionPhi(InnerLoop, V);
705 if (!InnerRedPhi ||
706 !llvm::any_of(InnerRedPhi->incoming_values(),
707 [&PHI](Value *V) { return V == &PHI; })) {
708 LLVM_DEBUG(
709 dbgs()
710 << "Failed to recognize PHI as an induction or reduction.\n");
711 return false;
713 OuterInnerReductions.insert(&PHI);
714 OuterInnerReductions.insert(InnerRedPhi);
718 return true;
721 static bool containsSafePHI(BasicBlock *Block, bool isOuterLoopExitBlock) {
722 for (PHINode &PHI : Block->phis()) {
723 // Reduction lcssa phi will have only 1 incoming block that from loop latch.
724 if (PHI.getNumIncomingValues() > 1)
725 return false;
726 Instruction *Ins = dyn_cast<Instruction>(PHI.getIncomingValue(0));
727 if (!Ins)
728 return false;
729 // Incoming value for lcssa phi's in outer loop exit can only be inner loop
730 // exits lcssa phi else it would not be tightly nested.
731 if (!isa<PHINode>(Ins) && isOuterLoopExitBlock)
732 return false;
734 return true;
737 // This function indicates the current limitations in the transform as a result
738 // of which we do not proceed.
739 bool LoopInterchangeLegality::currentLimitations() {
740 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
741 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
743 // transform currently expects the loop latches to also be the exiting
744 // blocks.
745 if (InnerLoop->getExitingBlock() != InnerLoopLatch ||
746 OuterLoop->getExitingBlock() != OuterLoop->getLoopLatch() ||
747 !isa<BranchInst>(InnerLoopLatch->getTerminator()) ||
748 !isa<BranchInst>(OuterLoop->getLoopLatch()->getTerminator())) {
749 LLVM_DEBUG(
750 dbgs() << "Loops where the latch is not the exiting block are not"
751 << " supported currently.\n");
752 ORE->emit([&]() {
753 return OptimizationRemarkMissed(DEBUG_TYPE, "ExitingNotLatch",
754 OuterLoop->getStartLoc(),
755 OuterLoop->getHeader())
756 << "Loops where the latch is not the exiting block cannot be"
757 " interchange currently.";
759 return true;
762 PHINode *InnerInductionVar;
763 SmallVector<PHINode *, 8> Inductions;
764 if (!findInductionAndReductions(OuterLoop, Inductions, InnerLoop)) {
765 LLVM_DEBUG(
766 dbgs() << "Only outer loops with induction or reduction PHI nodes "
767 << "are supported currently.\n");
768 ORE->emit([&]() {
769 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIOuter",
770 OuterLoop->getStartLoc(),
771 OuterLoop->getHeader())
772 << "Only outer loops with induction or reduction PHI nodes can be"
773 " interchanged currently.";
775 return true;
778 // TODO: Currently we handle only loops with 1 induction variable.
779 if (Inductions.size() != 1) {
780 LLVM_DEBUG(dbgs() << "Loops with more than 1 induction variables are not "
781 << "supported currently.\n");
782 ORE->emit([&]() {
783 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiIndutionOuter",
784 OuterLoop->getStartLoc(),
785 OuterLoop->getHeader())
786 << "Only outer loops with 1 induction variable can be "
787 "interchanged currently.";
789 return true;
792 Inductions.clear();
793 if (!findInductionAndReductions(InnerLoop, Inductions, nullptr)) {
794 LLVM_DEBUG(
795 dbgs() << "Only inner loops with induction or reduction PHI nodes "
796 << "are supported currently.\n");
797 ORE->emit([&]() {
798 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedPHIInner",
799 InnerLoop->getStartLoc(),
800 InnerLoop->getHeader())
801 << "Only inner loops with induction or reduction PHI nodes can be"
802 " interchange currently.";
804 return true;
807 // TODO: Currently we handle only loops with 1 induction variable.
808 if (Inductions.size() != 1) {
809 LLVM_DEBUG(
810 dbgs() << "We currently only support loops with 1 induction variable."
811 << "Failed to interchange due to current limitation\n");
812 ORE->emit([&]() {
813 return OptimizationRemarkMissed(DEBUG_TYPE, "MultiInductionInner",
814 InnerLoop->getStartLoc(),
815 InnerLoop->getHeader())
816 << "Only inner loops with 1 induction variable can be "
817 "interchanged currently.";
819 return true;
821 InnerInductionVar = Inductions.pop_back_val();
823 // TODO: Triangular loops are not handled for now.
824 if (!isLoopStructureUnderstood(InnerInductionVar)) {
825 LLVM_DEBUG(dbgs() << "Loop structure not understood by pass\n");
826 ORE->emit([&]() {
827 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedStructureInner",
828 InnerLoop->getStartLoc(),
829 InnerLoop->getHeader())
830 << "Inner loop structure not understood currently.";
832 return true;
835 // TODO: We only handle LCSSA PHI's corresponding to reduction for now.
836 BasicBlock *InnerExit = InnerLoop->getExitBlock();
837 if (!containsSafePHI(InnerExit, false)) {
838 LLVM_DEBUG(
839 dbgs() << "Can only handle LCSSA PHIs in inner loops currently.\n");
840 ORE->emit([&]() {
841 return OptimizationRemarkMissed(DEBUG_TYPE, "NoLCSSAPHIOuterInner",
842 InnerLoop->getStartLoc(),
843 InnerLoop->getHeader())
844 << "Only inner loops with LCSSA PHIs can be interchange "
845 "currently.";
847 return true;
850 // TODO: Current limitation: Since we split the inner loop latch at the point
851 // were induction variable is incremented (induction.next); We cannot have
852 // more than 1 user of induction.next since it would result in broken code
853 // after split.
854 // e.g.
855 // for(i=0;i<N;i++) {
856 // for(j = 0;j<M;j++) {
857 // A[j+1][i+2] = A[j][i]+k;
858 // }
859 // }
860 Instruction *InnerIndexVarInc = nullptr;
861 if (InnerInductionVar->getIncomingBlock(0) == InnerLoopPreHeader)
862 InnerIndexVarInc =
863 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(1));
864 else
865 InnerIndexVarInc =
866 dyn_cast<Instruction>(InnerInductionVar->getIncomingValue(0));
868 if (!InnerIndexVarInc) {
869 LLVM_DEBUG(
870 dbgs() << "Did not find an instruction to increment the induction "
871 << "variable.\n");
872 ORE->emit([&]() {
873 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIncrementInInner",
874 InnerLoop->getStartLoc(),
875 InnerLoop->getHeader())
876 << "The inner loop does not increment the induction variable.";
878 return true;
881 // Since we split the inner loop latch on this induction variable. Make sure
882 // we do not have any instruction between the induction variable and branch
883 // instruction.
885 bool FoundInduction = false;
886 for (const Instruction &I :
887 llvm::reverse(InnerLoopLatch->instructionsWithoutDebug())) {
888 if (isa<BranchInst>(I) || isa<CmpInst>(I) || isa<TruncInst>(I) ||
889 isa<ZExtInst>(I))
890 continue;
892 // We found an instruction. If this is not induction variable then it is not
893 // safe to split this loop latch.
894 if (!I.isIdenticalTo(InnerIndexVarInc)) {
895 LLVM_DEBUG(dbgs() << "Found unsupported instructions between induction "
896 << "variable increment and branch.\n");
897 ORE->emit([&]() {
898 return OptimizationRemarkMissed(
899 DEBUG_TYPE, "UnsupportedInsBetweenInduction",
900 InnerLoop->getStartLoc(), InnerLoop->getHeader())
901 << "Found unsupported instruction between induction variable "
902 "increment and branch.";
904 return true;
907 FoundInduction = true;
908 break;
910 // The loop latch ended and we didn't find the induction variable return as
911 // current limitation.
912 if (!FoundInduction) {
913 LLVM_DEBUG(dbgs() << "Did not find the induction variable.\n");
914 ORE->emit([&]() {
915 return OptimizationRemarkMissed(DEBUG_TYPE, "NoIndutionVariable",
916 InnerLoop->getStartLoc(),
917 InnerLoop->getHeader())
918 << "Did not find the induction variable.";
920 return true;
922 return false;
925 // We currently support LCSSA PHI nodes in the outer loop exit, if their
926 // incoming values do not come from the outer loop latch or if the
927 // outer loop latch has a single predecessor. In that case, the value will
928 // be available if both the inner and outer loop conditions are true, which
929 // will still be true after interchanging. If we have multiple predecessor,
930 // that may not be the case, e.g. because the outer loop latch may be executed
931 // if the inner loop is not executed.
932 static bool areLoopExitPHIsSupported(Loop *OuterLoop, Loop *InnerLoop) {
933 BasicBlock *LoopNestExit = OuterLoop->getUniqueExitBlock();
934 for (PHINode &PHI : LoopNestExit->phis()) {
935 // FIXME: We currently are not able to detect floating point reductions
936 // and have to use floating point PHIs as a proxy to prevent
937 // interchanging in the presence of floating point reductions.
938 if (PHI.getType()->isFloatingPointTy())
939 return false;
940 for (unsigned i = 0; i < PHI.getNumIncomingValues(); i++) {
941 Instruction *IncomingI = dyn_cast<Instruction>(PHI.getIncomingValue(i));
942 if (!IncomingI || IncomingI->getParent() != OuterLoop->getLoopLatch())
943 continue;
945 // The incoming value is defined in the outer loop latch. Currently we
946 // only support that in case the outer loop latch has a single predecessor.
947 // This guarantees that the outer loop latch is executed if and only if
948 // the inner loop is executed (because tightlyNested() guarantees that the
949 // outer loop header only branches to the inner loop or the outer loop
950 // latch).
951 // FIXME: We could weaken this logic and allow multiple predecessors,
952 // if the values are produced outside the loop latch. We would need
953 // additional logic to update the PHI nodes in the exit block as
954 // well.
955 if (OuterLoop->getLoopLatch()->getUniquePredecessor() == nullptr)
956 return false;
959 return true;
962 bool LoopInterchangeLegality::canInterchangeLoops(unsigned InnerLoopId,
963 unsigned OuterLoopId,
964 CharMatrix &DepMatrix) {
965 if (!isLegalToInterChangeLoops(DepMatrix, InnerLoopId, OuterLoopId)) {
966 LLVM_DEBUG(dbgs() << "Failed interchange InnerLoopId = " << InnerLoopId
967 << " and OuterLoopId = " << OuterLoopId
968 << " due to dependence\n");
969 ORE->emit([&]() {
970 return OptimizationRemarkMissed(DEBUG_TYPE, "Dependence",
971 InnerLoop->getStartLoc(),
972 InnerLoop->getHeader())
973 << "Cannot interchange loops due to dependences.";
975 return false;
977 // Check if outer and inner loop contain legal instructions only.
978 for (auto *BB : OuterLoop->blocks())
979 for (Instruction &I : BB->instructionsWithoutDebug())
980 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
981 // readnone functions do not prevent interchanging.
982 if (CI->doesNotReadMemory())
983 continue;
984 LLVM_DEBUG(
985 dbgs() << "Loops with call instructions cannot be interchanged "
986 << "safely.");
987 ORE->emit([&]() {
988 return OptimizationRemarkMissed(DEBUG_TYPE, "CallInst",
989 CI->getDebugLoc(),
990 CI->getParent())
991 << "Cannot interchange loops due to call instruction.";
994 return false;
997 // TODO: The loops could not be interchanged due to current limitations in the
998 // transform module.
999 if (currentLimitations()) {
1000 LLVM_DEBUG(dbgs() << "Not legal because of current transform limitation\n");
1001 return false;
1004 // Check if the loops are tightly nested.
1005 if (!tightlyNested(OuterLoop, InnerLoop)) {
1006 LLVM_DEBUG(dbgs() << "Loops not tightly nested\n");
1007 ORE->emit([&]() {
1008 return OptimizationRemarkMissed(DEBUG_TYPE, "NotTightlyNested",
1009 InnerLoop->getStartLoc(),
1010 InnerLoop->getHeader())
1011 << "Cannot interchange loops because they are not tightly "
1012 "nested.";
1014 return false;
1017 if (!areLoopExitPHIsSupported(OuterLoop, InnerLoop)) {
1018 LLVM_DEBUG(dbgs() << "Found unsupported PHI nodes in outer loop exit.\n");
1019 ORE->emit([&]() {
1020 return OptimizationRemarkMissed(DEBUG_TYPE, "UnsupportedExitPHI",
1021 OuterLoop->getStartLoc(),
1022 OuterLoop->getHeader())
1023 << "Found unsupported PHI node in loop exit.";
1025 return false;
1028 return true;
1031 int LoopInterchangeProfitability::getInstrOrderCost() {
1032 unsigned GoodOrder, BadOrder;
1033 BadOrder = GoodOrder = 0;
1034 for (BasicBlock *BB : InnerLoop->blocks()) {
1035 for (Instruction &Ins : *BB) {
1036 if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&Ins)) {
1037 unsigned NumOp = GEP->getNumOperands();
1038 bool FoundInnerInduction = false;
1039 bool FoundOuterInduction = false;
1040 for (unsigned i = 0; i < NumOp; ++i) {
1041 const SCEV *OperandVal = SE->getSCEV(GEP->getOperand(i));
1042 const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(OperandVal);
1043 if (!AR)
1044 continue;
1046 // If we find the inner induction after an outer induction e.g.
1047 // for(int i=0;i<N;i++)
1048 // for(int j=0;j<N;j++)
1049 // A[i][j] = A[i-1][j-1]+k;
1050 // then it is a good order.
1051 if (AR->getLoop() == InnerLoop) {
1052 // We found an InnerLoop induction after OuterLoop induction. It is
1053 // a good order.
1054 FoundInnerInduction = true;
1055 if (FoundOuterInduction) {
1056 GoodOrder++;
1057 break;
1060 // If we find the outer induction after an inner induction e.g.
1061 // for(int i=0;i<N;i++)
1062 // for(int j=0;j<N;j++)
1063 // A[j][i] = A[j-1][i-1]+k;
1064 // then it is a bad order.
1065 if (AR->getLoop() == OuterLoop) {
1066 // We found an OuterLoop induction after InnerLoop induction. It is
1067 // a bad order.
1068 FoundOuterInduction = true;
1069 if (FoundInnerInduction) {
1070 BadOrder++;
1071 break;
1078 return GoodOrder - BadOrder;
1081 static bool isProfitableForVectorization(unsigned InnerLoopId,
1082 unsigned OuterLoopId,
1083 CharMatrix &DepMatrix) {
1084 // TODO: Improve this heuristic to catch more cases.
1085 // If the inner loop is loop independent or doesn't carry any dependency it is
1086 // profitable to move this to outer position.
1087 for (auto &Row : DepMatrix) {
1088 if (Row[InnerLoopId] != 'S' && Row[InnerLoopId] != 'I')
1089 return false;
1090 // TODO: We need to improve this heuristic.
1091 if (Row[OuterLoopId] != '=')
1092 return false;
1094 // If outer loop has dependence and inner loop is loop independent then it is
1095 // profitable to interchange to enable parallelism.
1096 // If there are no dependences, interchanging will not improve anything.
1097 return !DepMatrix.empty();
1100 bool LoopInterchangeProfitability::isProfitable(unsigned InnerLoopId,
1101 unsigned OuterLoopId,
1102 CharMatrix &DepMatrix) {
1103 // TODO: Add better profitability checks.
1104 // e.g
1105 // 1) Construct dependency matrix and move the one with no loop carried dep
1106 // inside to enable vectorization.
1108 // This is rough cost estimation algorithm. It counts the good and bad order
1109 // of induction variables in the instruction and allows reordering if number
1110 // of bad orders is more than good.
1111 int Cost = getInstrOrderCost();
1112 LLVM_DEBUG(dbgs() << "Cost = " << Cost << "\n");
1113 if (Cost < -LoopInterchangeCostThreshold)
1114 return true;
1116 // It is not profitable as per current cache profitability model. But check if
1117 // we can move this loop outside to improve parallelism.
1118 if (isProfitableForVectorization(InnerLoopId, OuterLoopId, DepMatrix))
1119 return true;
1121 ORE->emit([&]() {
1122 return OptimizationRemarkMissed(DEBUG_TYPE, "InterchangeNotProfitable",
1123 InnerLoop->getStartLoc(),
1124 InnerLoop->getHeader())
1125 << "Interchanging loops is too costly (cost="
1126 << ore::NV("Cost", Cost) << ", threshold="
1127 << ore::NV("Threshold", LoopInterchangeCostThreshold)
1128 << ") and it does not improve parallelism.";
1130 return false;
1133 void LoopInterchangeTransform::removeChildLoop(Loop *OuterLoop,
1134 Loop *InnerLoop) {
1135 for (Loop *L : *OuterLoop)
1136 if (L == InnerLoop) {
1137 OuterLoop->removeChildLoop(L);
1138 return;
1140 llvm_unreachable("Couldn't find loop");
1143 /// Update LoopInfo, after interchanging. NewInner and NewOuter refer to the
1144 /// new inner and outer loop after interchanging: NewInner is the original
1145 /// outer loop and NewOuter is the original inner loop.
1147 /// Before interchanging, we have the following structure
1148 /// Outer preheader
1149 // Outer header
1150 // Inner preheader
1151 // Inner header
1152 // Inner body
1153 // Inner latch
1154 // outer bbs
1155 // Outer latch
1157 // After interchanging:
1158 // Inner preheader
1159 // Inner header
1160 // Outer preheader
1161 // Outer header
1162 // Inner body
1163 // outer bbs
1164 // Outer latch
1165 // Inner latch
1166 void LoopInterchangeTransform::restructureLoops(
1167 Loop *NewInner, Loop *NewOuter, BasicBlock *OrigInnerPreHeader,
1168 BasicBlock *OrigOuterPreHeader) {
1169 Loop *OuterLoopParent = OuterLoop->getParentLoop();
1170 // The original inner loop preheader moves from the new inner loop to
1171 // the parent loop, if there is one.
1172 NewInner->removeBlockFromLoop(OrigInnerPreHeader);
1173 LI->changeLoopFor(OrigInnerPreHeader, OuterLoopParent);
1175 // Switch the loop levels.
1176 if (OuterLoopParent) {
1177 // Remove the loop from its parent loop.
1178 removeChildLoop(OuterLoopParent, NewInner);
1179 removeChildLoop(NewInner, NewOuter);
1180 OuterLoopParent->addChildLoop(NewOuter);
1181 } else {
1182 removeChildLoop(NewInner, NewOuter);
1183 LI->changeTopLevelLoop(NewInner, NewOuter);
1185 while (!NewOuter->empty())
1186 NewInner->addChildLoop(NewOuter->removeChildLoop(NewOuter->begin()));
1187 NewOuter->addChildLoop(NewInner);
1189 // BBs from the original inner loop.
1190 SmallVector<BasicBlock *, 8> OrigInnerBBs(NewOuter->blocks());
1192 // Add BBs from the original outer loop to the original inner loop (excluding
1193 // BBs already in inner loop)
1194 for (BasicBlock *BB : NewInner->blocks())
1195 if (LI->getLoopFor(BB) == NewInner)
1196 NewOuter->addBlockEntry(BB);
1198 // Now remove inner loop header and latch from the new inner loop and move
1199 // other BBs (the loop body) to the new inner loop.
1200 BasicBlock *OuterHeader = NewOuter->getHeader();
1201 BasicBlock *OuterLatch = NewOuter->getLoopLatch();
1202 for (BasicBlock *BB : OrigInnerBBs) {
1203 // Nothing will change for BBs in child loops.
1204 if (LI->getLoopFor(BB) != NewOuter)
1205 continue;
1206 // Remove the new outer loop header and latch from the new inner loop.
1207 if (BB == OuterHeader || BB == OuterLatch)
1208 NewInner->removeBlockFromLoop(BB);
1209 else
1210 LI->changeLoopFor(BB, NewInner);
1213 // The preheader of the original outer loop becomes part of the new
1214 // outer loop.
1215 NewOuter->addBlockEntry(OrigOuterPreHeader);
1216 LI->changeLoopFor(OrigOuterPreHeader, NewOuter);
1218 // Tell SE that we move the loops around.
1219 SE->forgetLoop(NewOuter);
1220 SE->forgetLoop(NewInner);
1223 bool LoopInterchangeTransform::transform() {
1224 bool Transformed = false;
1225 Instruction *InnerIndexVar;
1227 if (InnerLoop->getSubLoops().empty()) {
1228 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1229 LLVM_DEBUG(dbgs() << "Calling Split Inner Loop\n");
1230 PHINode *InductionPHI = getInductionVariable(InnerLoop, SE);
1231 if (!InductionPHI) {
1232 LLVM_DEBUG(dbgs() << "Failed to find the point to split loop latch \n");
1233 return false;
1236 if (InductionPHI->getIncomingBlock(0) == InnerLoopPreHeader)
1237 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(1));
1238 else
1239 InnerIndexVar = dyn_cast<Instruction>(InductionPHI->getIncomingValue(0));
1241 // Ensure that InductionPHI is the first Phi node.
1242 if (&InductionPHI->getParent()->front() != InductionPHI)
1243 InductionPHI->moveBefore(&InductionPHI->getParent()->front());
1245 // Split at the place were the induction variable is
1246 // incremented/decremented.
1247 // TODO: This splitting logic may not work always. Fix this.
1248 splitInnerLoopLatch(InnerIndexVar);
1249 LLVM_DEBUG(dbgs() << "splitInnerLoopLatch done\n");
1251 // Splits the inner loops phi nodes out into a separate basic block.
1252 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1253 SplitBlock(InnerLoopHeader, InnerLoopHeader->getFirstNonPHI(), DT, LI);
1254 LLVM_DEBUG(dbgs() << "splitting InnerLoopHeader done\n");
1257 Transformed |= adjustLoopLinks();
1258 if (!Transformed) {
1259 LLVM_DEBUG(dbgs() << "adjustLoopLinks failed\n");
1260 return false;
1263 return true;
1266 void LoopInterchangeTransform::splitInnerLoopLatch(Instruction *Inc) {
1267 SplitBlock(InnerLoop->getLoopLatch(), Inc, DT, LI);
1270 /// \brief Move all instructions except the terminator from FromBB right before
1271 /// InsertBefore
1272 static void moveBBContents(BasicBlock *FromBB, Instruction *InsertBefore) {
1273 auto &ToList = InsertBefore->getParent()->getInstList();
1274 auto &FromList = FromBB->getInstList();
1276 ToList.splice(InsertBefore->getIterator(), FromList, FromList.begin(),
1277 FromBB->getTerminator()->getIterator());
1280 /// Update BI to jump to NewBB instead of OldBB. Records updates to
1281 /// the dominator tree in DTUpdates, if DT should be preserved.
1282 static void updateSuccessor(BranchInst *BI, BasicBlock *OldBB,
1283 BasicBlock *NewBB,
1284 std::vector<DominatorTree::UpdateType> &DTUpdates) {
1285 assert(llvm::count_if(successors(BI),
1286 [OldBB](BasicBlock *BB) { return BB == OldBB; }) < 2 &&
1287 "BI must jump to OldBB at most once.");
1288 for (unsigned i = 0, e = BI->getNumSuccessors(); i < e; ++i) {
1289 if (BI->getSuccessor(i) == OldBB) {
1290 BI->setSuccessor(i, NewBB);
1292 DTUpdates.push_back(
1293 {DominatorTree::UpdateKind::Insert, BI->getParent(), NewBB});
1294 DTUpdates.push_back(
1295 {DominatorTree::UpdateKind::Delete, BI->getParent(), OldBB});
1296 break;
1301 // Move Lcssa PHIs to the right place.
1302 static void moveLCSSAPhis(BasicBlock *InnerExit, BasicBlock *InnerHeader,
1303 BasicBlock *InnerLatch, BasicBlock *OuterHeader,
1304 BasicBlock *OuterLatch, BasicBlock *OuterExit) {
1306 // Deal with LCSSA PHI nodes in the exit block of the inner loop, that are
1307 // defined either in the header or latch. Those blocks will become header and
1308 // latch of the new outer loop, and the only possible users can PHI nodes
1309 // in the exit block of the loop nest or the outer loop header (reduction
1310 // PHIs, in that case, the incoming value must be defined in the inner loop
1311 // header). We can just substitute the user with the incoming value and remove
1312 // the PHI.
1313 for (PHINode &P : make_early_inc_range(InnerExit->phis())) {
1314 assert(P.getNumIncomingValues() == 1 &&
1315 "Only loops with a single exit are supported!");
1317 // Incoming values are guaranteed be instructions currently.
1318 auto IncI = cast<Instruction>(P.getIncomingValueForBlock(InnerLatch));
1319 // Skip phis with incoming values from the inner loop body, excluding the
1320 // header and latch.
1321 if (IncI->getParent() != InnerLatch && IncI->getParent() != InnerHeader)
1322 continue;
1324 assert(all_of(P.users(),
1325 [OuterHeader, OuterExit, IncI, InnerHeader](User *U) {
1326 return (cast<PHINode>(U)->getParent() == OuterHeader &&
1327 IncI->getParent() == InnerHeader) ||
1328 cast<PHINode>(U)->getParent() == OuterExit;
1329 }) &&
1330 "Can only replace phis iff the uses are in the loop nest exit or "
1331 "the incoming value is defined in the inner header (it will "
1332 "dominate all loop blocks after interchanging)");
1333 P.replaceAllUsesWith(IncI);
1334 P.eraseFromParent();
1337 SmallVector<PHINode *, 8> LcssaInnerExit;
1338 for (PHINode &P : InnerExit->phis())
1339 LcssaInnerExit.push_back(&P);
1341 SmallVector<PHINode *, 8> LcssaInnerLatch;
1342 for (PHINode &P : InnerLatch->phis())
1343 LcssaInnerLatch.push_back(&P);
1345 // Lcssa PHIs for values used outside the inner loop are in InnerExit.
1346 // If a PHI node has users outside of InnerExit, it has a use outside the
1347 // interchanged loop and we have to preserve it. We move these to
1348 // InnerLatch, which will become the new exit block for the innermost
1349 // loop after interchanging.
1350 for (PHINode *P : LcssaInnerExit)
1351 P->moveBefore(InnerLatch->getFirstNonPHI());
1353 // If the inner loop latch contains LCSSA PHIs, those come from a child loop
1354 // and we have to move them to the new inner latch.
1355 for (PHINode *P : LcssaInnerLatch)
1356 P->moveBefore(InnerExit->getFirstNonPHI());
1358 // Deal with LCSSA PHI nodes in the loop nest exit block. For PHIs that have
1359 // incoming values from the outer latch or header, we have to add a new PHI
1360 // in the inner loop latch, which became the exit block of the outer loop,
1361 // after interchanging.
1362 if (OuterExit) {
1363 for (PHINode &P : OuterExit->phis()) {
1364 if (P.getNumIncomingValues() != 1)
1365 continue;
1366 // Skip Phis with incoming values not defined in the outer loop's header
1367 // and latch. Also skip incoming phis defined in the latch. Those should
1368 // already have been updated.
1369 auto I = dyn_cast<Instruction>(P.getIncomingValue(0));
1370 if (!I || ((I->getParent() != OuterLatch || isa<PHINode>(I)) &&
1371 I->getParent() != OuterHeader))
1372 continue;
1374 PHINode *NewPhi = dyn_cast<PHINode>(P.clone());
1375 NewPhi->setIncomingValue(0, P.getIncomingValue(0));
1376 NewPhi->setIncomingBlock(0, OuterLatch);
1377 NewPhi->insertBefore(InnerLatch->getFirstNonPHI());
1378 P.setIncomingValue(0, NewPhi);
1382 // Now adjust the incoming blocks for the LCSSA PHIs.
1383 // For PHIs moved from Inner's exit block, we need to replace Inner's latch
1384 // with the new latch.
1385 InnerLatch->replacePhiUsesWith(InnerLatch, OuterLatch);
1388 bool LoopInterchangeTransform::adjustLoopBranches() {
1389 LLVM_DEBUG(dbgs() << "adjustLoopBranches called\n");
1390 std::vector<DominatorTree::UpdateType> DTUpdates;
1392 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1393 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1395 assert(OuterLoopPreHeader != OuterLoop->getHeader() &&
1396 InnerLoopPreHeader != InnerLoop->getHeader() && OuterLoopPreHeader &&
1397 InnerLoopPreHeader && "Guaranteed by loop-simplify form");
1398 // Ensure that both preheaders do not contain PHI nodes and have single
1399 // predecessors. This allows us to move them easily. We use
1400 // InsertPreHeaderForLoop to create an 'extra' preheader, if the existing
1401 // preheaders do not satisfy those conditions.
1402 if (isa<PHINode>(OuterLoopPreHeader->begin()) ||
1403 !OuterLoopPreHeader->getUniquePredecessor())
1404 OuterLoopPreHeader =
1405 InsertPreheaderForLoop(OuterLoop, DT, LI, nullptr, true);
1406 if (InnerLoopPreHeader == OuterLoop->getHeader())
1407 InnerLoopPreHeader =
1408 InsertPreheaderForLoop(InnerLoop, DT, LI, nullptr, true);
1410 // Adjust the loop preheader
1411 BasicBlock *InnerLoopHeader = InnerLoop->getHeader();
1412 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1413 BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
1414 BasicBlock *OuterLoopLatch = OuterLoop->getLoopLatch();
1415 BasicBlock *OuterLoopPredecessor = OuterLoopPreHeader->getUniquePredecessor();
1416 BasicBlock *InnerLoopLatchPredecessor =
1417 InnerLoopLatch->getUniquePredecessor();
1418 BasicBlock *InnerLoopLatchSuccessor;
1419 BasicBlock *OuterLoopLatchSuccessor;
1421 BranchInst *OuterLoopLatchBI =
1422 dyn_cast<BranchInst>(OuterLoopLatch->getTerminator());
1423 BranchInst *InnerLoopLatchBI =
1424 dyn_cast<BranchInst>(InnerLoopLatch->getTerminator());
1425 BranchInst *OuterLoopHeaderBI =
1426 dyn_cast<BranchInst>(OuterLoopHeader->getTerminator());
1427 BranchInst *InnerLoopHeaderBI =
1428 dyn_cast<BranchInst>(InnerLoopHeader->getTerminator());
1430 if (!OuterLoopPredecessor || !InnerLoopLatchPredecessor ||
1431 !OuterLoopLatchBI || !InnerLoopLatchBI || !OuterLoopHeaderBI ||
1432 !InnerLoopHeaderBI)
1433 return false;
1435 BranchInst *InnerLoopLatchPredecessorBI =
1436 dyn_cast<BranchInst>(InnerLoopLatchPredecessor->getTerminator());
1437 BranchInst *OuterLoopPredecessorBI =
1438 dyn_cast<BranchInst>(OuterLoopPredecessor->getTerminator());
1440 if (!OuterLoopPredecessorBI || !InnerLoopLatchPredecessorBI)
1441 return false;
1442 BasicBlock *InnerLoopHeaderSuccessor = InnerLoopHeader->getUniqueSuccessor();
1443 if (!InnerLoopHeaderSuccessor)
1444 return false;
1446 // Adjust Loop Preheader and headers
1447 updateSuccessor(OuterLoopPredecessorBI, OuterLoopPreHeader,
1448 InnerLoopPreHeader, DTUpdates);
1449 updateSuccessor(OuterLoopHeaderBI, OuterLoopLatch, LoopExit, DTUpdates);
1450 updateSuccessor(OuterLoopHeaderBI, InnerLoopPreHeader,
1451 InnerLoopHeaderSuccessor, DTUpdates);
1453 // Adjust reduction PHI's now that the incoming block has changed.
1454 InnerLoopHeaderSuccessor->replacePhiUsesWith(InnerLoopHeader,
1455 OuterLoopHeader);
1457 updateSuccessor(InnerLoopHeaderBI, InnerLoopHeaderSuccessor,
1458 OuterLoopPreHeader, DTUpdates);
1460 // -------------Adjust loop latches-----------
1461 if (InnerLoopLatchBI->getSuccessor(0) == InnerLoopHeader)
1462 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(1);
1463 else
1464 InnerLoopLatchSuccessor = InnerLoopLatchBI->getSuccessor(0);
1466 updateSuccessor(InnerLoopLatchPredecessorBI, InnerLoopLatch,
1467 InnerLoopLatchSuccessor, DTUpdates);
1470 if (OuterLoopLatchBI->getSuccessor(0) == OuterLoopHeader)
1471 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(1);
1472 else
1473 OuterLoopLatchSuccessor = OuterLoopLatchBI->getSuccessor(0);
1475 updateSuccessor(InnerLoopLatchBI, InnerLoopLatchSuccessor,
1476 OuterLoopLatchSuccessor, DTUpdates);
1477 updateSuccessor(OuterLoopLatchBI, OuterLoopLatchSuccessor, InnerLoopLatch,
1478 DTUpdates);
1480 DT->applyUpdates(DTUpdates);
1481 restructureLoops(OuterLoop, InnerLoop, InnerLoopPreHeader,
1482 OuterLoopPreHeader);
1484 moveLCSSAPhis(InnerLoopLatchSuccessor, InnerLoopHeader, InnerLoopLatch,
1485 OuterLoopHeader, OuterLoopLatch, InnerLoop->getExitBlock());
1486 // For PHIs in the exit block of the outer loop, outer's latch has been
1487 // replaced by Inners'.
1488 OuterLoopLatchSuccessor->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1490 // Now update the reduction PHIs in the inner and outer loop headers.
1491 SmallVector<PHINode *, 4> InnerLoopPHIs, OuterLoopPHIs;
1492 for (PHINode &PHI : drop_begin(InnerLoopHeader->phis(), 1))
1493 InnerLoopPHIs.push_back(cast<PHINode>(&PHI));
1494 for (PHINode &PHI : drop_begin(OuterLoopHeader->phis(), 1))
1495 OuterLoopPHIs.push_back(cast<PHINode>(&PHI));
1497 auto &OuterInnerReductions = LIL.getOuterInnerReductions();
1498 (void)OuterInnerReductions;
1500 // Now move the remaining reduction PHIs from outer to inner loop header and
1501 // vice versa. The PHI nodes must be part of a reduction across the inner and
1502 // outer loop and all the remains to do is and updating the incoming blocks.
1503 for (PHINode *PHI : OuterLoopPHIs) {
1504 PHI->moveBefore(InnerLoopHeader->getFirstNonPHI());
1505 assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() &&
1506 "Expected a reduction PHI node");
1508 for (PHINode *PHI : InnerLoopPHIs) {
1509 PHI->moveBefore(OuterLoopHeader->getFirstNonPHI());
1510 assert(OuterInnerReductions.find(PHI) != OuterInnerReductions.end() &&
1511 "Expected a reduction PHI node");
1514 // Update the incoming blocks for moved PHI nodes.
1515 OuterLoopHeader->replacePhiUsesWith(InnerLoopPreHeader, OuterLoopPreHeader);
1516 OuterLoopHeader->replacePhiUsesWith(InnerLoopLatch, OuterLoopLatch);
1517 InnerLoopHeader->replacePhiUsesWith(OuterLoopPreHeader, InnerLoopPreHeader);
1518 InnerLoopHeader->replacePhiUsesWith(OuterLoopLatch, InnerLoopLatch);
1520 return true;
1523 void LoopInterchangeTransform::adjustLoopPreheaders() {
1524 // We have interchanged the preheaders so we need to interchange the data in
1525 // the preheader as well.
1526 // This is because the content of inner preheader was previously executed
1527 // inside the outer loop.
1528 BasicBlock *OuterLoopPreHeader = OuterLoop->getLoopPreheader();
1529 BasicBlock *InnerLoopPreHeader = InnerLoop->getLoopPreheader();
1530 BasicBlock *OuterLoopHeader = OuterLoop->getHeader();
1531 BranchInst *InnerTermBI =
1532 cast<BranchInst>(InnerLoopPreHeader->getTerminator());
1534 // These instructions should now be executed inside the loop.
1535 // Move instruction into a new block after outer header.
1536 moveBBContents(InnerLoopPreHeader, OuterLoopHeader->getTerminator());
1537 // These instructions were not executed previously in the loop so move them to
1538 // the older inner loop preheader.
1539 moveBBContents(OuterLoopPreHeader, InnerTermBI);
1542 bool LoopInterchangeTransform::adjustLoopLinks() {
1543 // Adjust all branches in the inner and outer loop.
1544 bool Changed = adjustLoopBranches();
1545 if (Changed)
1546 adjustLoopPreheaders();
1547 return Changed;
1550 char LoopInterchange::ID = 0;
1552 INITIALIZE_PASS_BEGIN(LoopInterchange, "loop-interchange",
1553 "Interchanges loops for cache reuse", false, false)
1554 INITIALIZE_PASS_DEPENDENCY(LoopPass)
1555 INITIALIZE_PASS_DEPENDENCY(DependenceAnalysisWrapperPass)
1556 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
1558 INITIALIZE_PASS_END(LoopInterchange, "loop-interchange",
1559 "Interchanges loops for cache reuse", false, false)
1561 Pass *llvm::createLoopInterchangePass() { return new LoopInterchange(); }