1 //===- LoopLoadElimination.cpp - Loop Load Elimination Pass ---------------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This file implement a loop-aware load elimination pass.
11 // It uses LoopAccessAnalysis to identify loop-carried dependences with a
12 // distance of one between stores and loads. These form the candidates for the
13 // transformation. The source value of each store then propagated to the user
14 // of the corresponding load. This makes the load dead.
16 // The pass can also version the loop and add memchecks in order to prove that
17 // may-aliasing stores can't change the value in memory before it's read by the
20 //===----------------------------------------------------------------------===//
22 #include "llvm/Transforms/Scalar/LoopLoadElimination.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/DenseMap.h"
25 #include "llvm/ADT/DepthFirstIterator.h"
26 #include "llvm/ADT/STLExtras.h"
27 #include "llvm/ADT/SmallPtrSet.h"
28 #include "llvm/ADT/SmallVector.h"
29 #include "llvm/ADT/Statistic.h"
30 #include "llvm/Analysis/AliasAnalysis.h"
31 #include "llvm/Analysis/AssumptionCache.h"
32 #include "llvm/Analysis/BlockFrequencyInfo.h"
33 #include "llvm/Analysis/GlobalsModRef.h"
34 #include "llvm/Analysis/LazyBlockFrequencyInfo.h"
35 #include "llvm/Analysis/LoopAccessAnalysis.h"
36 #include "llvm/Analysis/LoopAnalysisManager.h"
37 #include "llvm/Analysis/LoopInfo.h"
38 #include "llvm/Analysis/MemorySSA.h"
39 #include "llvm/Analysis/ProfileSummaryInfo.h"
40 #include "llvm/Analysis/ScalarEvolution.h"
41 #include "llvm/Analysis/ScalarEvolutionExpander.h"
42 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
43 #include "llvm/Analysis/TargetLibraryInfo.h"
44 #include "llvm/Analysis/TargetTransformInfo.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/Dominators.h"
47 #include "llvm/IR/Instructions.h"
48 #include "llvm/IR/Module.h"
49 #include "llvm/IR/PassManager.h"
50 #include "llvm/IR/Type.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
58 #include "llvm/Transforms/Utils.h"
59 #include "llvm/Transforms/Utils/LoopVersioning.h"
60 #include "llvm/Transforms/Utils/SizeOpts.h"
63 #include <forward_list>
70 #define LLE_OPTION "loop-load-elim"
71 #define DEBUG_TYPE LLE_OPTION
73 static cl::opt
<unsigned> CheckPerElim(
74 "runtime-check-per-loop-load-elim", cl::Hidden
,
75 cl::desc("Max number of memchecks allowed per eliminated load on average"),
78 static cl::opt
<unsigned> LoadElimSCEVCheckThreshold(
79 "loop-load-elimination-scev-check-threshold", cl::init(8), cl::Hidden
,
80 cl::desc("The maximum number of SCEV checks allowed for Loop "
83 STATISTIC(NumLoopLoadEliminted
, "Number of loads eliminated by LLE");
87 /// Represent a store-to-forwarding candidate.
88 struct StoreToLoadForwardingCandidate
{
92 StoreToLoadForwardingCandidate(LoadInst
*Load
, StoreInst
*Store
)
93 : Load(Load
), Store(Store
) {}
95 /// Return true if the dependence from the store to the load has a
96 /// distance of one. E.g. A[i+1] = A[i]
97 bool isDependenceDistanceOfOne(PredicatedScalarEvolution
&PSE
,
99 Value
*LoadPtr
= Load
->getPointerOperand();
100 Value
*StorePtr
= Store
->getPointerOperand();
101 Type
*LoadPtrType
= LoadPtr
->getType();
102 Type
*LoadType
= LoadPtrType
->getPointerElementType();
104 assert(LoadPtrType
->getPointerAddressSpace() ==
105 StorePtr
->getType()->getPointerAddressSpace() &&
106 LoadType
== StorePtr
->getType()->getPointerElementType() &&
107 "Should be a known dependence");
109 // Currently we only support accesses with unit stride. FIXME: we should be
110 // able to handle non unit stirde as well as long as the stride is equal to
111 // the dependence distance.
112 if (getPtrStride(PSE
, LoadPtr
, L
) != 1 ||
113 getPtrStride(PSE
, StorePtr
, L
) != 1)
116 auto &DL
= Load
->getParent()->getModule()->getDataLayout();
117 unsigned TypeByteSize
= DL
.getTypeAllocSize(const_cast<Type
*>(LoadType
));
119 auto *LoadPtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(LoadPtr
));
120 auto *StorePtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(StorePtr
));
122 // We don't need to check non-wrapping here because forward/backward
123 // dependence wouldn't be valid if these weren't monotonic accesses.
124 auto *Dist
= cast
<SCEVConstant
>(
125 PSE
.getSE()->getMinusSCEV(StorePtrSCEV
, LoadPtrSCEV
));
126 const APInt
&Val
= Dist
->getAPInt();
127 return Val
== TypeByteSize
;
130 Value
*getLoadPtr() const { return Load
->getPointerOperand(); }
133 friend raw_ostream
&operator<<(raw_ostream
&OS
,
134 const StoreToLoadForwardingCandidate
&Cand
) {
135 OS
<< *Cand
.Store
<< " -->\n";
136 OS
.indent(2) << *Cand
.Load
<< "\n";
142 } // end anonymous namespace
144 /// Check if the store dominates all latches, so as long as there is no
145 /// intervening store this value will be loaded in the next iteration.
146 static bool doesStoreDominatesAllLatches(BasicBlock
*StoreBlock
, Loop
*L
,
148 SmallVector
<BasicBlock
*, 8> Latches
;
149 L
->getLoopLatches(Latches
);
150 return llvm::all_of(Latches
, [&](const BasicBlock
*Latch
) {
151 return DT
->dominates(StoreBlock
, Latch
);
155 /// Return true if the load is not executed on all paths in the loop.
156 static bool isLoadConditional(LoadInst
*Load
, Loop
*L
) {
157 return Load
->getParent() != L
->getHeader();
162 /// The per-loop class that does most of the work.
163 class LoadEliminationForLoop
{
165 LoadEliminationForLoop(Loop
*L
, LoopInfo
*LI
, const LoopAccessInfo
&LAI
,
166 DominatorTree
*DT
, BlockFrequencyInfo
*BFI
,
167 ProfileSummaryInfo
* PSI
)
168 : L(L
), LI(LI
), LAI(LAI
), DT(DT
), BFI(BFI
), PSI(PSI
), PSE(LAI
.getPSE()) {}
170 /// Look through the loop-carried and loop-independent dependences in
171 /// this loop and find store->load dependences.
173 /// Note that no candidate is returned if LAA has failed to analyze the loop
174 /// (e.g. if it's not bottom-tested, contains volatile memops, etc.)
175 std::forward_list
<StoreToLoadForwardingCandidate
>
176 findStoreToLoadDependences(const LoopAccessInfo
&LAI
) {
177 std::forward_list
<StoreToLoadForwardingCandidate
> Candidates
;
179 const auto *Deps
= LAI
.getDepChecker().getDependences();
183 // Find store->load dependences (consequently true dep). Both lexically
184 // forward and backward dependences qualify. Disqualify loads that have
185 // other unknown dependences.
187 SmallPtrSet
<Instruction
*, 4> LoadsWithUnknownDepedence
;
189 for (const auto &Dep
: *Deps
) {
190 Instruction
*Source
= Dep
.getSource(LAI
);
191 Instruction
*Destination
= Dep
.getDestination(LAI
);
193 if (Dep
.Type
== MemoryDepChecker::Dependence::Unknown
) {
194 if (isa
<LoadInst
>(Source
))
195 LoadsWithUnknownDepedence
.insert(Source
);
196 if (isa
<LoadInst
>(Destination
))
197 LoadsWithUnknownDepedence
.insert(Destination
);
201 if (Dep
.isBackward())
202 // Note that the designations source and destination follow the program
203 // order, i.e. source is always first. (The direction is given by the
205 std::swap(Source
, Destination
);
207 assert(Dep
.isForward() && "Needs to be a forward dependence");
209 auto *Store
= dyn_cast
<StoreInst
>(Source
);
212 auto *Load
= dyn_cast
<LoadInst
>(Destination
);
216 // Only progagate the value if they are of the same type.
217 if (Store
->getPointerOperandType() != Load
->getPointerOperandType())
220 Candidates
.emplace_front(Load
, Store
);
223 if (!LoadsWithUnknownDepedence
.empty())
224 Candidates
.remove_if([&](const StoreToLoadForwardingCandidate
&C
) {
225 return LoadsWithUnknownDepedence
.count(C
.Load
);
231 /// Return the index of the instruction according to program order.
232 unsigned getInstrIndex(Instruction
*Inst
) {
233 auto I
= InstOrder
.find(Inst
);
234 assert(I
!= InstOrder
.end() && "No index for instruction");
238 /// If a load has multiple candidates associated (i.e. different
239 /// stores), it means that it could be forwarding from multiple stores
240 /// depending on control flow. Remove these candidates.
242 /// Here, we rely on LAA to include the relevant loop-independent dependences.
243 /// LAA is known to omit these in the very simple case when the read and the
244 /// write within an alias set always takes place using the *same* pointer.
246 /// However, we know that this is not the case here, i.e. we can rely on LAA
247 /// to provide us with loop-independent dependences for the cases we're
248 /// interested. Consider the case for example where a loop-independent
249 /// dependece S1->S2 invalidates the forwarding S3->S2.
253 /// A[i+1] = ... (S3)
255 /// LAA will perform dependence analysis here because there are two
256 /// *different* pointers involved in the same alias set (&A[i] and &A[i+1]).
257 void removeDependencesFromMultipleStores(
258 std::forward_list
<StoreToLoadForwardingCandidate
> &Candidates
) {
259 // If Store is nullptr it means that we have multiple stores forwarding to
261 using LoadToSingleCandT
=
262 DenseMap
<LoadInst
*, const StoreToLoadForwardingCandidate
*>;
263 LoadToSingleCandT LoadToSingleCand
;
265 for (const auto &Cand
: Candidates
) {
267 LoadToSingleCandT::iterator Iter
;
269 std::tie(Iter
, NewElt
) =
270 LoadToSingleCand
.insert(std::make_pair(Cand
.Load
, &Cand
));
272 const StoreToLoadForwardingCandidate
*&OtherCand
= Iter
->second
;
273 // Already multiple stores forward to this load.
274 if (OtherCand
== nullptr)
277 // Handle the very basic case when the two stores are in the same block
278 // so deciding which one forwards is easy. The later one forwards as
279 // long as they both have a dependence distance of one to the load.
280 if (Cand
.Store
->getParent() == OtherCand
->Store
->getParent() &&
281 Cand
.isDependenceDistanceOfOne(PSE
, L
) &&
282 OtherCand
->isDependenceDistanceOfOne(PSE
, L
)) {
283 // They are in the same block, the later one will forward to the load.
284 if (getInstrIndex(OtherCand
->Store
) < getInstrIndex(Cand
.Store
))
291 Candidates
.remove_if([&](const StoreToLoadForwardingCandidate
&Cand
) {
292 if (LoadToSingleCand
[Cand
.Load
] != &Cand
) {
294 dbgs() << "Removing from candidates: \n"
296 << " The load may have multiple stores forwarding to "
304 /// Given two pointers operations by their RuntimePointerChecking
305 /// indices, return true if they require an alias check.
307 /// We need a check if one is a pointer for a candidate load and the other is
308 /// a pointer for a possibly intervening store.
309 bool needsChecking(unsigned PtrIdx1
, unsigned PtrIdx2
,
310 const SmallPtrSet
<Value
*, 4> &PtrsWrittenOnFwdingPath
,
311 const std::set
<Value
*> &CandLoadPtrs
) {
313 LAI
.getRuntimePointerChecking()->getPointerInfo(PtrIdx1
).PointerValue
;
315 LAI
.getRuntimePointerChecking()->getPointerInfo(PtrIdx2
).PointerValue
;
316 return ((PtrsWrittenOnFwdingPath
.count(Ptr1
) && CandLoadPtrs
.count(Ptr2
)) ||
317 (PtrsWrittenOnFwdingPath
.count(Ptr2
) && CandLoadPtrs
.count(Ptr1
)));
320 /// Return pointers that are possibly written to on the path from a
321 /// forwarding store to a load.
323 /// These pointers need to be alias-checked against the forwarding candidates.
324 SmallPtrSet
<Value
*, 4> findPointersWrittenOnForwardingPath(
325 const SmallVectorImpl
<StoreToLoadForwardingCandidate
> &Candidates
) {
326 // From FirstStore to LastLoad neither of the elimination candidate loads
327 // should overlap with any of the stores.
332 // ld1 B[i] <-------,
333 // ld0 A[i] <----, | * LastLoad
336 // st3 B[i+1] -- | -' * FirstStore
340 // st0 forwards to ld0 if the accesses in st4 and st1 don't overlap with
344 std::max_element(Candidates
.begin(), Candidates
.end(),
345 [&](const StoreToLoadForwardingCandidate
&A
,
346 const StoreToLoadForwardingCandidate
&B
) {
347 return getInstrIndex(A
.Load
) < getInstrIndex(B
.Load
);
350 StoreInst
*FirstStore
=
351 std::min_element(Candidates
.begin(), Candidates
.end(),
352 [&](const StoreToLoadForwardingCandidate
&A
,
353 const StoreToLoadForwardingCandidate
&B
) {
354 return getInstrIndex(A
.Store
) <
355 getInstrIndex(B
.Store
);
359 // We're looking for stores after the first forwarding store until the end
360 // of the loop, then from the beginning of the loop until the last
361 // forwarded-to load. Collect the pointer for the stores.
362 SmallPtrSet
<Value
*, 4> PtrsWrittenOnFwdingPath
;
364 auto InsertStorePtr
= [&](Instruction
*I
) {
365 if (auto *S
= dyn_cast
<StoreInst
>(I
))
366 PtrsWrittenOnFwdingPath
.insert(S
->getPointerOperand());
368 const auto &MemInstrs
= LAI
.getDepChecker().getMemoryInstructions();
369 std::for_each(MemInstrs
.begin() + getInstrIndex(FirstStore
) + 1,
370 MemInstrs
.end(), InsertStorePtr
);
371 std::for_each(MemInstrs
.begin(), &MemInstrs
[getInstrIndex(LastLoad
)],
374 return PtrsWrittenOnFwdingPath
;
377 /// Determine the pointer alias checks to prove that there are no
378 /// intervening stores.
379 SmallVector
<RuntimePointerChecking::PointerCheck
, 4> collectMemchecks(
380 const SmallVectorImpl
<StoreToLoadForwardingCandidate
> &Candidates
) {
382 SmallPtrSet
<Value
*, 4> PtrsWrittenOnFwdingPath
=
383 findPointersWrittenOnForwardingPath(Candidates
);
385 // Collect the pointers of the candidate loads.
386 // FIXME: SmallPtrSet does not work with std::inserter.
387 std::set
<Value
*> CandLoadPtrs
;
388 transform(Candidates
,
389 std::inserter(CandLoadPtrs
, CandLoadPtrs
.begin()),
390 std::mem_fn(&StoreToLoadForwardingCandidate::getLoadPtr
));
392 const auto &AllChecks
= LAI
.getRuntimePointerChecking()->getChecks();
393 SmallVector
<RuntimePointerChecking::PointerCheck
, 4> Checks
;
395 copy_if(AllChecks
, std::back_inserter(Checks
),
396 [&](const RuntimePointerChecking::PointerCheck
&Check
) {
397 for (auto PtrIdx1
: Check
.first
->Members
)
398 for (auto PtrIdx2
: Check
.second
->Members
)
399 if (needsChecking(PtrIdx1
, PtrIdx2
, PtrsWrittenOnFwdingPath
,
405 LLVM_DEBUG(dbgs() << "\nPointer Checks (count: " << Checks
.size()
407 LLVM_DEBUG(LAI
.getRuntimePointerChecking()->printChecks(dbgs(), Checks
));
412 /// Perform the transformation for a candidate.
414 propagateStoredValueToLoadUsers(const StoreToLoadForwardingCandidate
&Cand
,
419 // store %y, %gep_i_plus_1
424 // %x.initial = load %gep_0
426 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
427 // %x = load %gep_i <---- now dead
428 // = ... %x.storeforward
429 // store %y, %gep_i_plus_1
431 Value
*Ptr
= Cand
.Load
->getPointerOperand();
432 auto *PtrSCEV
= cast
<SCEVAddRecExpr
>(PSE
.getSCEV(Ptr
));
433 auto *PH
= L
->getLoopPreheader();
434 Value
*InitialPtr
= SEE
.expandCodeFor(PtrSCEV
->getStart(), Ptr
->getType(),
435 PH
->getTerminator());
436 Value
*Initial
= new LoadInst(
437 Cand
.Load
->getType(), InitialPtr
, "load_initial",
438 /* isVolatile */ false, Cand
.Load
->getAlignment(), PH
->getTerminator());
440 PHINode
*PHI
= PHINode::Create(Initial
->getType(), 2, "store_forwarded",
441 &L
->getHeader()->front());
442 PHI
->addIncoming(Initial
, PH
);
443 PHI
->addIncoming(Cand
.Store
->getOperand(0), L
->getLoopLatch());
445 Cand
.Load
->replaceAllUsesWith(PHI
);
448 /// Top-level driver for each loop: find store->load forwarding
449 /// candidates, add run-time checks and perform transformation.
451 LLVM_DEBUG(dbgs() << "\nIn \"" << L
->getHeader()->getParent()->getName()
452 << "\" checking " << *L
<< "\n");
454 // Look for store-to-load forwarding cases across the
460 // store %y, %gep_i_plus_1
465 // %x.initial = load %gep_0
467 // %x.storeforward = phi [%x.initial, %ph] [%y, %loop]
468 // %x = load %gep_i <---- now dead
469 // = ... %x.storeforward
470 // store %y, %gep_i_plus_1
472 // First start with store->load dependences.
473 auto StoreToLoadDependences
= findStoreToLoadDependences(LAI
);
474 if (StoreToLoadDependences
.empty())
477 // Generate an index for each load and store according to the original
478 // program order. This will be used later.
479 InstOrder
= LAI
.getDepChecker().generateInstructionOrderMap();
481 // To keep things simple for now, remove those where the load is potentially
482 // fed by multiple stores.
483 removeDependencesFromMultipleStores(StoreToLoadDependences
);
484 if (StoreToLoadDependences
.empty())
487 // Filter the candidates further.
488 SmallVector
<StoreToLoadForwardingCandidate
, 4> Candidates
;
489 unsigned NumForwarding
= 0;
490 for (const StoreToLoadForwardingCandidate Cand
: StoreToLoadDependences
) {
491 LLVM_DEBUG(dbgs() << "Candidate " << Cand
);
493 // Make sure that the stored values is available everywhere in the loop in
494 // the next iteration.
495 if (!doesStoreDominatesAllLatches(Cand
.Store
->getParent(), L
, DT
))
498 // If the load is conditional we can't hoist its 0-iteration instance to
499 // the preheader because that would make it unconditional. Thus we would
500 // access a memory location that the original loop did not access.
501 if (isLoadConditional(Cand
.Load
, L
))
504 // Check whether the SCEV difference is the same as the induction step,
505 // thus we load the value in the next iteration.
506 if (!Cand
.isDependenceDistanceOfOne(PSE
, L
))
513 << ". Valid store-to-load forwarding across the loop backedge\n");
514 Candidates
.push_back(Cand
);
516 if (Candidates
.empty())
519 // Check intervening may-alias stores. These need runtime checks for alias
521 SmallVector
<RuntimePointerChecking::PointerCheck
, 4> Checks
=
522 collectMemchecks(Candidates
);
524 // Too many checks are likely to outweigh the benefits of forwarding.
525 if (Checks
.size() > Candidates
.size() * CheckPerElim
) {
526 LLVM_DEBUG(dbgs() << "Too many run-time checks needed.\n");
530 if (LAI
.getPSE().getUnionPredicate().getComplexity() >
531 LoadElimSCEVCheckThreshold
) {
532 LLVM_DEBUG(dbgs() << "Too many SCEV run-time checks needed.\n");
536 if (!Checks
.empty() || !LAI
.getPSE().getUnionPredicate().isAlwaysTrue()) {
537 if (LAI
.hasConvergentOp()) {
538 LLVM_DEBUG(dbgs() << "Versioning is needed but not allowed with "
539 "convergent calls\n");
543 auto *HeaderBB
= L
->getHeader();
544 auto *F
= HeaderBB
->getParent();
545 bool OptForSize
= F
->hasOptSize() ||
546 llvm::shouldOptimizeForSize(HeaderBB
, PSI
, BFI
);
549 dbgs() << "Versioning is needed but not allowed when optimizing "
554 if (!L
->isLoopSimplifyForm()) {
555 LLVM_DEBUG(dbgs() << "Loop is not is loop-simplify form");
559 // Point of no-return, start the transformation. First, version the loop
562 LoopVersioning
LV(LAI
, L
, LI
, DT
, PSE
.getSE(), false);
563 LV
.setAliasChecks(std::move(Checks
));
564 LV
.setSCEVChecks(LAI
.getPSE().getUnionPredicate());
568 // Next, propagate the value stored by the store to the users of the load.
569 // Also for the first iteration, generate the initial value of the load.
570 SCEVExpander
SEE(*PSE
.getSE(), L
->getHeader()->getModule()->getDataLayout(),
572 for (const auto &Cand
: Candidates
)
573 propagateStoredValueToLoadUsers(Cand
, SEE
);
574 NumLoopLoadEliminted
+= NumForwarding
;
582 /// Maps the load/store instructions to their index according to
584 DenseMap
<Instruction
*, unsigned> InstOrder
;
588 const LoopAccessInfo
&LAI
;
590 BlockFrequencyInfo
*BFI
;
591 ProfileSummaryInfo
*PSI
;
592 PredicatedScalarEvolution PSE
;
595 } // end anonymous namespace
598 eliminateLoadsAcrossLoops(Function
&F
, LoopInfo
&LI
, DominatorTree
&DT
,
599 BlockFrequencyInfo
*BFI
, ProfileSummaryInfo
*PSI
,
600 function_ref
<const LoopAccessInfo
&(Loop
&)> GetLAI
) {
601 // Build up a worklist of inner-loops to transform to avoid iterator
603 // FIXME: This logic comes from other passes that actually change the loop
604 // nest structure. It isn't clear this is necessary (or useful) for a pass
605 // which merely optimizes the use of loads in a loop.
606 SmallVector
<Loop
*, 8> Worklist
;
608 for (Loop
*TopLevelLoop
: LI
)
609 for (Loop
*L
: depth_first(TopLevelLoop
))
610 // We only handle inner-most loops.
612 Worklist
.push_back(L
);
614 // Now walk the identified inner loops.
615 bool Changed
= false;
616 for (Loop
*L
: Worklist
) {
617 // The actual work is performed by LoadEliminationForLoop.
618 LoadEliminationForLoop
LEL(L
, &LI
, GetLAI(*L
), &DT
, BFI
, PSI
);
619 Changed
|= LEL
.processLoop();
626 /// The pass. Most of the work is delegated to the per-loop
627 /// LoadEliminationForLoop class.
628 class LoopLoadElimination
: public FunctionPass
{
632 LoopLoadElimination() : FunctionPass(ID
) {
633 initializeLoopLoadEliminationPass(*PassRegistry::getPassRegistry());
636 bool runOnFunction(Function
&F
) override
{
640 auto &LI
= getAnalysis
<LoopInfoWrapperPass
>().getLoopInfo();
641 auto &LAA
= getAnalysis
<LoopAccessLegacyAnalysis
>();
642 auto &DT
= getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
643 auto *PSI
= &getAnalysis
<ProfileSummaryInfoWrapperPass
>().getPSI();
644 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
645 &getAnalysis
<LazyBlockFrequencyInfoPass
>().getBFI() :
648 // Process each loop nest in the function.
649 return eliminateLoadsAcrossLoops(
651 [&LAA
](Loop
&L
) -> const LoopAccessInfo
& { return LAA
.getInfo(&L
); });
654 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
655 AU
.addRequiredID(LoopSimplifyID
);
656 AU
.addRequired
<LoopInfoWrapperPass
>();
657 AU
.addPreserved
<LoopInfoWrapperPass
>();
658 AU
.addRequired
<LoopAccessLegacyAnalysis
>();
659 AU
.addRequired
<ScalarEvolutionWrapperPass
>();
660 AU
.addRequired
<DominatorTreeWrapperPass
>();
661 AU
.addPreserved
<DominatorTreeWrapperPass
>();
662 AU
.addPreserved
<GlobalsAAWrapperPass
>();
663 AU
.addRequired
<ProfileSummaryInfoWrapperPass
>();
664 LazyBlockFrequencyInfoPass::getLazyBFIAnalysisUsage(AU
);
668 } // end anonymous namespace
670 char LoopLoadElimination::ID
;
672 static const char LLE_name
[] = "Loop Load Elimination";
674 INITIALIZE_PASS_BEGIN(LoopLoadElimination
, LLE_OPTION
, LLE_name
, false, false)
675 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass
)
676 INITIALIZE_PASS_DEPENDENCY(LoopAccessLegacyAnalysis
)
677 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
678 INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass
)
679 INITIALIZE_PASS_DEPENDENCY(LoopSimplify
)
680 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass
)
681 INITIALIZE_PASS_DEPENDENCY(LazyBlockFrequencyInfoPass
)
682 INITIALIZE_PASS_END(LoopLoadElimination
, LLE_OPTION
, LLE_name
, false, false)
684 FunctionPass
*llvm::createLoopLoadEliminationPass() {
685 return new LoopLoadElimination();
688 PreservedAnalyses
LoopLoadEliminationPass::run(Function
&F
,
689 FunctionAnalysisManager
&AM
) {
690 auto &SE
= AM
.getResult
<ScalarEvolutionAnalysis
>(F
);
691 auto &LI
= AM
.getResult
<LoopAnalysis
>(F
);
692 auto &TTI
= AM
.getResult
<TargetIRAnalysis
>(F
);
693 auto &DT
= AM
.getResult
<DominatorTreeAnalysis
>(F
);
694 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
695 auto &AA
= AM
.getResult
<AAManager
>(F
);
696 auto &AC
= AM
.getResult
<AssumptionAnalysis
>(F
);
697 auto &MAM
= AM
.getResult
<ModuleAnalysisManagerFunctionProxy
>(F
).getManager();
698 auto *PSI
= MAM
.getCachedResult
<ProfileSummaryAnalysis
>(*F
.getParent());
699 auto *BFI
= (PSI
&& PSI
->hasProfileSummary()) ?
700 &AM
.getResult
<BlockFrequencyAnalysis
>(F
) : nullptr;
701 MemorySSA
*MSSA
= EnableMSSALoopDependency
702 ? &AM
.getResult
<MemorySSAAnalysis
>(F
).getMSSA()
705 auto &LAM
= AM
.getResult
<LoopAnalysisManagerFunctionProxy
>(F
).getManager();
706 bool Changed
= eliminateLoadsAcrossLoops(
707 F
, LI
, DT
, BFI
, PSI
, [&](Loop
&L
) -> const LoopAccessInfo
& {
708 LoopStandardAnalysisResults AR
= {AA
, AC
, DT
, LI
, SE
, TLI
, TTI
, MSSA
};
709 return LAM
.getResult
<LoopAccessAnalysis
>(L
, AR
);
713 return PreservedAnalyses::all();
715 PreservedAnalyses PA
;