[Alignment] fix dubious min function alignment
[llvm-complete.git] / lib / Transforms / Scalar / LoopUnswitch.cpp
blob1ff5e969992b7f6138aa45eddd4a2e6db5c98168
1 //===- LoopUnswitch.cpp - Hoist loop-invariant conditionals in loop -------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass transforms loops that contain branches on loop-invariant conditions
10 // to multiple loops. For example, it turns the left into the right code:
12 // for (...) if (lic)
13 // A for (...)
14 // if (lic) A; B; C
15 // B else
16 // C for (...)
17 // A; C
19 // This can increase the size of the code exponentially (doubling it every time
20 // a loop is unswitched) so we only unswitch if the resultant code will be
21 // smaller than a threshold.
23 // This pass expects LICM to be run before it to hoist invariant conditions out
24 // of the loop, to make the unswitching opportunity obvious.
26 //===----------------------------------------------------------------------===//
28 #include "llvm/ADT/DenseMap.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/ADT/Statistic.h"
32 #include "llvm/Analysis/AssumptionCache.h"
33 #include "llvm/Analysis/CodeMetrics.h"
34 #include "llvm/Analysis/InstructionSimplify.h"
35 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
36 #include "llvm/Analysis/LoopInfo.h"
37 #include "llvm/Analysis/LoopIterator.h"
38 #include "llvm/Analysis/LoopPass.h"
39 #include "llvm/Analysis/MemorySSA.h"
40 #include "llvm/Analysis/MemorySSAUpdater.h"
41 #include "llvm/Analysis/ScalarEvolution.h"
42 #include "llvm/Analysis/TargetTransformInfo.h"
43 #include "llvm/IR/Attributes.h"
44 #include "llvm/IR/BasicBlock.h"
45 #include "llvm/IR/CallSite.h"
46 #include "llvm/IR/Constant.h"
47 #include "llvm/IR/Constants.h"
48 #include "llvm/IR/DerivedTypes.h"
49 #include "llvm/IR/Dominators.h"
50 #include "llvm/IR/Function.h"
51 #include "llvm/IR/IRBuilder.h"
52 #include "llvm/IR/InstrTypes.h"
53 #include "llvm/IR/Instruction.h"
54 #include "llvm/IR/Instructions.h"
55 #include "llvm/IR/IntrinsicInst.h"
56 #include "llvm/IR/Intrinsics.h"
57 #include "llvm/IR/Module.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueHandle.h"
62 #include "llvm/Pass.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Transforms/Scalar.h"
68 #include "llvm/Transforms/Scalar/LoopPassManager.h"
69 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
70 #include "llvm/Transforms/Utils/Cloning.h"
71 #include "llvm/Transforms/Utils/Local.h"
72 #include "llvm/Transforms/Utils/LoopUtils.h"
73 #include "llvm/Transforms/Utils/ValueMapper.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <map>
77 #include <set>
78 #include <tuple>
79 #include <utility>
80 #include <vector>
82 using namespace llvm;
84 #define DEBUG_TYPE "loop-unswitch"
86 STATISTIC(NumBranches, "Number of branches unswitched");
87 STATISTIC(NumSwitches, "Number of switches unswitched");
88 STATISTIC(NumGuards, "Number of guards unswitched");
89 STATISTIC(NumSelects , "Number of selects unswitched");
90 STATISTIC(NumTrivial , "Number of unswitches that are trivial");
91 STATISTIC(NumSimplify, "Number of simplifications of unswitched code");
92 STATISTIC(TotalInsts, "Total number of instructions analyzed");
94 // The specific value of 100 here was chosen based only on intuition and a
95 // few specific examples.
96 static cl::opt<unsigned>
97 Threshold("loop-unswitch-threshold", cl::desc("Max loop size to unswitch"),
98 cl::init(100), cl::Hidden);
100 namespace {
102 class LUAnalysisCache {
103 using UnswitchedValsMap =
104 DenseMap<const SwitchInst *, SmallPtrSet<const Value *, 8>>;
105 using UnswitchedValsIt = UnswitchedValsMap::iterator;
107 struct LoopProperties {
108 unsigned CanBeUnswitchedCount;
109 unsigned WasUnswitchedCount;
110 unsigned SizeEstimation;
111 UnswitchedValsMap UnswitchedVals;
114 // Here we use std::map instead of DenseMap, since we need to keep valid
115 // LoopProperties pointer for current loop for better performance.
116 using LoopPropsMap = std::map<const Loop *, LoopProperties>;
117 using LoopPropsMapIt = LoopPropsMap::iterator;
119 LoopPropsMap LoopsProperties;
120 UnswitchedValsMap *CurLoopInstructions = nullptr;
121 LoopProperties *CurrentLoopProperties = nullptr;
123 // A loop unswitching with an estimated cost above this threshold
124 // is not performed. MaxSize is turned into unswitching quota for
125 // the current loop, and reduced correspondingly, though note that
126 // the quota is returned by releaseMemory() when the loop has been
127 // processed, so that MaxSize will return to its previous
128 // value. So in most cases MaxSize will equal the Threshold flag
129 // when a new loop is processed. An exception to that is that
130 // MaxSize will have a smaller value while processing nested loops
131 // that were introduced due to loop unswitching of an outer loop.
133 // FIXME: The way that MaxSize works is subtle and depends on the
134 // pass manager processing loops and calling releaseMemory() in a
135 // specific order. It would be good to find a more straightforward
136 // way of doing what MaxSize does.
137 unsigned MaxSize;
139 public:
140 LUAnalysisCache() : MaxSize(Threshold) {}
142 // Analyze loop. Check its size, calculate is it possible to unswitch
143 // it. Returns true if we can unswitch this loop.
144 bool countLoop(const Loop *L, const TargetTransformInfo &TTI,
145 AssumptionCache *AC);
147 // Clean all data related to given loop.
148 void forgetLoop(const Loop *L);
150 // Mark case value as unswitched.
151 // Since SI instruction can be partly unswitched, in order to avoid
152 // extra unswitching in cloned loops keep track all unswitched values.
153 void setUnswitched(const SwitchInst *SI, const Value *V);
155 // Check was this case value unswitched before or not.
156 bool isUnswitched(const SwitchInst *SI, const Value *V);
158 // Returns true if another unswitching could be done within the cost
159 // threshold.
160 bool CostAllowsUnswitching();
162 // Clone all loop-unswitch related loop properties.
163 // Redistribute unswitching quotas.
164 // Note, that new loop data is stored inside the VMap.
165 void cloneData(const Loop *NewLoop, const Loop *OldLoop,
166 const ValueToValueMapTy &VMap);
169 class LoopUnswitch : public LoopPass {
170 LoopInfo *LI; // Loop information
171 LPPassManager *LPM;
172 AssumptionCache *AC;
174 // Used to check if second loop needs processing after
175 // RewriteLoopBodyWithConditionConstant rewrites first loop.
176 std::vector<Loop*> LoopProcessWorklist;
178 LUAnalysisCache BranchesInfo;
180 bool OptimizeForSize;
181 bool redoLoop = false;
183 Loop *currentLoop = nullptr;
184 DominatorTree *DT = nullptr;
185 MemorySSA *MSSA = nullptr;
186 std::unique_ptr<MemorySSAUpdater> MSSAU;
187 BasicBlock *loopHeader = nullptr;
188 BasicBlock *loopPreheader = nullptr;
190 bool SanitizeMemory;
191 SimpleLoopSafetyInfo SafetyInfo;
193 // LoopBlocks contains all of the basic blocks of the loop, including the
194 // preheader of the loop, the body of the loop, and the exit blocks of the
195 // loop, in that order.
196 std::vector<BasicBlock*> LoopBlocks;
197 // NewBlocks contained cloned copy of basic blocks from LoopBlocks.
198 std::vector<BasicBlock*> NewBlocks;
200 bool hasBranchDivergence;
202 public:
203 static char ID; // Pass ID, replacement for typeid
205 explicit LoopUnswitch(bool Os = false, bool hasBranchDivergence = false)
206 : LoopPass(ID), OptimizeForSize(Os),
207 hasBranchDivergence(hasBranchDivergence) {
208 initializeLoopUnswitchPass(*PassRegistry::getPassRegistry());
211 bool runOnLoop(Loop *L, LPPassManager &LPM) override;
212 bool processCurrentLoop();
213 bool isUnreachableDueToPreviousUnswitching(BasicBlock *);
215 /// This transformation requires natural loop information & requires that
216 /// loop preheaders be inserted into the CFG.
218 void getAnalysisUsage(AnalysisUsage &AU) const override {
219 AU.addRequired<AssumptionCacheTracker>();
220 AU.addRequired<TargetTransformInfoWrapperPass>();
221 if (EnableMSSALoopDependency) {
222 AU.addRequired<MemorySSAWrapperPass>();
223 AU.addPreserved<MemorySSAWrapperPass>();
225 if (hasBranchDivergence)
226 AU.addRequired<LegacyDivergenceAnalysis>();
227 getLoopAnalysisUsage(AU);
230 private:
231 void releaseMemory() override {
232 BranchesInfo.forgetLoop(currentLoop);
235 void initLoopData() {
236 loopHeader = currentLoop->getHeader();
237 loopPreheader = currentLoop->getLoopPreheader();
240 /// Split all of the edges from inside the loop to their exit blocks.
241 /// Update the appropriate Phi nodes as we do so.
242 void SplitExitEdges(Loop *L,
243 const SmallVectorImpl<BasicBlock *> &ExitBlocks);
245 bool TryTrivialLoopUnswitch(bool &Changed);
247 bool UnswitchIfProfitable(Value *LoopCond, Constant *Val,
248 Instruction *TI = nullptr);
249 void UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
250 BasicBlock *ExitBlock, Instruction *TI);
251 void UnswitchNontrivialCondition(Value *LIC, Constant *OnVal, Loop *L,
252 Instruction *TI);
254 void RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
255 Constant *Val, bool isEqual);
257 void EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
258 BasicBlock *TrueDest,
259 BasicBlock *FalseDest,
260 BranchInst *OldBranch, Instruction *TI);
262 void SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L);
264 /// Given that the Invariant is not equal to Val. Simplify instructions
265 /// in the loop.
266 Value *SimplifyInstructionWithNotEqual(Instruction *Inst, Value *Invariant,
267 Constant *Val);
270 } // end anonymous namespace
272 // Analyze loop. Check its size, calculate is it possible to unswitch
273 // it. Returns true if we can unswitch this loop.
274 bool LUAnalysisCache::countLoop(const Loop *L, const TargetTransformInfo &TTI,
275 AssumptionCache *AC) {
276 LoopPropsMapIt PropsIt;
277 bool Inserted;
278 std::tie(PropsIt, Inserted) =
279 LoopsProperties.insert(std::make_pair(L, LoopProperties()));
281 LoopProperties &Props = PropsIt->second;
283 if (Inserted) {
284 // New loop.
286 // Limit the number of instructions to avoid causing significant code
287 // expansion, and the number of basic blocks, to avoid loops with
288 // large numbers of branches which cause loop unswitching to go crazy.
289 // This is a very ad-hoc heuristic.
291 SmallPtrSet<const Value *, 32> EphValues;
292 CodeMetrics::collectEphemeralValues(L, AC, EphValues);
294 // FIXME: This is overly conservative because it does not take into
295 // consideration code simplification opportunities and code that can
296 // be shared by the resultant unswitched loops.
297 CodeMetrics Metrics;
298 for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); I != E;
299 ++I)
300 Metrics.analyzeBasicBlock(*I, TTI, EphValues);
302 Props.SizeEstimation = Metrics.NumInsts;
303 Props.CanBeUnswitchedCount = MaxSize / (Props.SizeEstimation);
304 Props.WasUnswitchedCount = 0;
305 MaxSize -= Props.SizeEstimation * Props.CanBeUnswitchedCount;
307 if (Metrics.notDuplicatable) {
308 LLVM_DEBUG(dbgs() << "NOT unswitching loop %" << L->getHeader()->getName()
309 << ", contents cannot be "
310 << "duplicated!\n");
311 return false;
315 // Be careful. This links are good only before new loop addition.
316 CurrentLoopProperties = &Props;
317 CurLoopInstructions = &Props.UnswitchedVals;
319 return true;
322 // Clean all data related to given loop.
323 void LUAnalysisCache::forgetLoop(const Loop *L) {
324 LoopPropsMapIt LIt = LoopsProperties.find(L);
326 if (LIt != LoopsProperties.end()) {
327 LoopProperties &Props = LIt->second;
328 MaxSize += (Props.CanBeUnswitchedCount + Props.WasUnswitchedCount) *
329 Props.SizeEstimation;
330 LoopsProperties.erase(LIt);
333 CurrentLoopProperties = nullptr;
334 CurLoopInstructions = nullptr;
337 // Mark case value as unswitched.
338 // Since SI instruction can be partly unswitched, in order to avoid
339 // extra unswitching in cloned loops keep track all unswitched values.
340 void LUAnalysisCache::setUnswitched(const SwitchInst *SI, const Value *V) {
341 (*CurLoopInstructions)[SI].insert(V);
344 // Check was this case value unswitched before or not.
345 bool LUAnalysisCache::isUnswitched(const SwitchInst *SI, const Value *V) {
346 return (*CurLoopInstructions)[SI].count(V);
349 bool LUAnalysisCache::CostAllowsUnswitching() {
350 return CurrentLoopProperties->CanBeUnswitchedCount > 0;
353 // Clone all loop-unswitch related loop properties.
354 // Redistribute unswitching quotas.
355 // Note, that new loop data is stored inside the VMap.
356 void LUAnalysisCache::cloneData(const Loop *NewLoop, const Loop *OldLoop,
357 const ValueToValueMapTy &VMap) {
358 LoopProperties &NewLoopProps = LoopsProperties[NewLoop];
359 LoopProperties &OldLoopProps = *CurrentLoopProperties;
360 UnswitchedValsMap &Insts = OldLoopProps.UnswitchedVals;
362 // Reallocate "can-be-unswitched quota"
364 --OldLoopProps.CanBeUnswitchedCount;
365 ++OldLoopProps.WasUnswitchedCount;
366 NewLoopProps.WasUnswitchedCount = 0;
367 unsigned Quota = OldLoopProps.CanBeUnswitchedCount;
368 NewLoopProps.CanBeUnswitchedCount = Quota / 2;
369 OldLoopProps.CanBeUnswitchedCount = Quota - Quota / 2;
371 NewLoopProps.SizeEstimation = OldLoopProps.SizeEstimation;
373 // Clone unswitched values info:
374 // for new loop switches we clone info about values that was
375 // already unswitched and has redundant successors.
376 for (UnswitchedValsIt I = Insts.begin(); I != Insts.end(); ++I) {
377 const SwitchInst *OldInst = I->first;
378 Value *NewI = VMap.lookup(OldInst);
379 const SwitchInst *NewInst = cast_or_null<SwitchInst>(NewI);
380 assert(NewInst && "All instructions that are in SrcBB must be in VMap.");
382 NewLoopProps.UnswitchedVals[NewInst] = OldLoopProps.UnswitchedVals[OldInst];
386 char LoopUnswitch::ID = 0;
388 INITIALIZE_PASS_BEGIN(LoopUnswitch, "loop-unswitch", "Unswitch loops",
389 false, false)
390 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
391 INITIALIZE_PASS_DEPENDENCY(LoopPass)
392 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
393 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
394 INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
395 INITIALIZE_PASS_END(LoopUnswitch, "loop-unswitch", "Unswitch loops",
396 false, false)
398 Pass *llvm::createLoopUnswitchPass(bool Os, bool hasBranchDivergence) {
399 return new LoopUnswitch(Os, hasBranchDivergence);
402 /// Operator chain lattice.
403 enum OperatorChain {
404 OC_OpChainNone, ///< There is no operator.
405 OC_OpChainOr, ///< There are only ORs.
406 OC_OpChainAnd, ///< There are only ANDs.
407 OC_OpChainMixed ///< There are ANDs and ORs.
410 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
411 /// an invariant piece, return the invariant. Otherwise, return null.
413 /// NOTE: FindLIVLoopCondition will not return a partial LIV by walking up a
414 /// mixed operator chain, as we can not reliably find a value which will simplify
415 /// the operator chain. If the chain is AND-only or OR-only, we can use 0 or ~0
416 /// to simplify the chain.
418 /// NOTE: In case a partial LIV and a mixed operator chain, we may be able to
419 /// simplify the condition itself to a loop variant condition, but at the
420 /// cost of creating an entirely new loop.
421 static Value *FindLIVLoopCondition(Value *Cond, Loop *L, bool &Changed,
422 OperatorChain &ParentChain,
423 DenseMap<Value *, Value *> &Cache) {
424 auto CacheIt = Cache.find(Cond);
425 if (CacheIt != Cache.end())
426 return CacheIt->second;
428 // We started analyze new instruction, increment scanned instructions counter.
429 ++TotalInsts;
431 // We can never unswitch on vector conditions.
432 if (Cond->getType()->isVectorTy())
433 return nullptr;
435 // Constants should be folded, not unswitched on!
436 if (isa<Constant>(Cond)) return nullptr;
438 // TODO: Handle: br (VARIANT|INVARIANT).
440 // Hoist simple values out.
441 if (L->makeLoopInvariant(Cond, Changed)) {
442 Cache[Cond] = Cond;
443 return Cond;
446 // Walk up the operator chain to find partial invariant conditions.
447 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Cond))
448 if (BO->getOpcode() == Instruction::And ||
449 BO->getOpcode() == Instruction::Or) {
450 // Given the previous operator, compute the current operator chain status.
451 OperatorChain NewChain;
452 switch (ParentChain) {
453 case OC_OpChainNone:
454 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
455 OC_OpChainOr;
456 break;
457 case OC_OpChainOr:
458 NewChain = BO->getOpcode() == Instruction::Or ? OC_OpChainOr :
459 OC_OpChainMixed;
460 break;
461 case OC_OpChainAnd:
462 NewChain = BO->getOpcode() == Instruction::And ? OC_OpChainAnd :
463 OC_OpChainMixed;
464 break;
465 case OC_OpChainMixed:
466 NewChain = OC_OpChainMixed;
467 break;
470 // If we reach a Mixed state, we do not want to keep walking up as we can not
471 // reliably find a value that will simplify the chain. With this check, we
472 // will return null on the first sight of mixed chain and the caller will
473 // either backtrack to find partial LIV in other operand or return null.
474 if (NewChain != OC_OpChainMixed) {
475 // Update the current operator chain type before we search up the chain.
476 ParentChain = NewChain;
477 // If either the left or right side is invariant, we can unswitch on this,
478 // which will cause the branch to go away in one loop and the condition to
479 // simplify in the other one.
480 if (Value *LHS = FindLIVLoopCondition(BO->getOperand(0), L, Changed,
481 ParentChain, Cache)) {
482 Cache[Cond] = LHS;
483 return LHS;
485 // We did not manage to find a partial LIV in operand(0). Backtrack and try
486 // operand(1).
487 ParentChain = NewChain;
488 if (Value *RHS = FindLIVLoopCondition(BO->getOperand(1), L, Changed,
489 ParentChain, Cache)) {
490 Cache[Cond] = RHS;
491 return RHS;
496 Cache[Cond] = nullptr;
497 return nullptr;
500 /// Cond is a condition that occurs in L. If it is invariant in the loop, or has
501 /// an invariant piece, return the invariant along with the operator chain type.
502 /// Otherwise, return null.
503 static std::pair<Value *, OperatorChain> FindLIVLoopCondition(Value *Cond,
504 Loop *L,
505 bool &Changed) {
506 DenseMap<Value *, Value *> Cache;
507 OperatorChain OpChain = OC_OpChainNone;
508 Value *FCond = FindLIVLoopCondition(Cond, L, Changed, OpChain, Cache);
510 // In case we do find a LIV, it can not be obtained by walking up a mixed
511 // operator chain.
512 assert((!FCond || OpChain != OC_OpChainMixed) &&
513 "Do not expect a partial LIV with mixed operator chain");
514 return {FCond, OpChain};
517 bool LoopUnswitch::runOnLoop(Loop *L, LPPassManager &LPM_Ref) {
518 if (skipLoop(L))
519 return false;
521 AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(
522 *L->getHeader()->getParent());
523 LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
524 LPM = &LPM_Ref;
525 DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
526 if (EnableMSSALoopDependency) {
527 MSSA = &getAnalysis<MemorySSAWrapperPass>().getMSSA();
528 MSSAU = std::make_unique<MemorySSAUpdater>(MSSA);
529 assert(DT && "Cannot update MemorySSA without a valid DomTree.");
531 currentLoop = L;
532 Function *F = currentLoop->getHeader()->getParent();
534 SanitizeMemory = F->hasFnAttribute(Attribute::SanitizeMemory);
535 if (SanitizeMemory)
536 SafetyInfo.computeLoopSafetyInfo(L);
538 if (MSSA && VerifyMemorySSA)
539 MSSA->verifyMemorySSA();
541 bool Changed = false;
542 do {
543 assert(currentLoop->isLCSSAForm(*DT));
544 if (MSSA && VerifyMemorySSA)
545 MSSA->verifyMemorySSA();
546 redoLoop = false;
547 Changed |= processCurrentLoop();
548 } while(redoLoop);
550 if (MSSA && VerifyMemorySSA)
551 MSSA->verifyMemorySSA();
553 return Changed;
556 // Return true if the BasicBlock BB is unreachable from the loop header.
557 // Return false, otherwise.
558 bool LoopUnswitch::isUnreachableDueToPreviousUnswitching(BasicBlock *BB) {
559 auto *Node = DT->getNode(BB)->getIDom();
560 BasicBlock *DomBB = Node->getBlock();
561 while (currentLoop->contains(DomBB)) {
562 BranchInst *BInst = dyn_cast<BranchInst>(DomBB->getTerminator());
564 Node = DT->getNode(DomBB)->getIDom();
565 DomBB = Node->getBlock();
567 if (!BInst || !BInst->isConditional())
568 continue;
570 Value *Cond = BInst->getCondition();
571 if (!isa<ConstantInt>(Cond))
572 continue;
574 BasicBlock *UnreachableSucc =
575 Cond == ConstantInt::getTrue(Cond->getContext())
576 ? BInst->getSuccessor(1)
577 : BInst->getSuccessor(0);
579 if (DT->dominates(UnreachableSucc, BB))
580 return true;
582 return false;
585 /// FIXME: Remove this workaround when freeze related patches are done.
586 /// LoopUnswitch and Equality propagation in GVN have discrepancy about
587 /// whether branch on undef/poison has undefine behavior. Here it is to
588 /// rule out some common cases that we found such discrepancy already
589 /// causing problems. Detail could be found in PR31652. Note if the
590 /// func returns true, it is unsafe. But if it is false, it doesn't mean
591 /// it is necessarily safe.
592 static bool EqualityPropUnSafe(Value &LoopCond) {
593 ICmpInst *CI = dyn_cast<ICmpInst>(&LoopCond);
594 if (!CI || !CI->isEquality())
595 return false;
597 Value *LHS = CI->getOperand(0);
598 Value *RHS = CI->getOperand(1);
599 if (isa<UndefValue>(LHS) || isa<UndefValue>(RHS))
600 return true;
602 auto hasUndefInPHI = [](PHINode &PN) {
603 for (Value *Opd : PN.incoming_values()) {
604 if (isa<UndefValue>(Opd))
605 return true;
607 return false;
609 PHINode *LPHI = dyn_cast<PHINode>(LHS);
610 PHINode *RPHI = dyn_cast<PHINode>(RHS);
611 if ((LPHI && hasUndefInPHI(*LPHI)) || (RPHI && hasUndefInPHI(*RPHI)))
612 return true;
614 auto hasUndefInSelect = [](SelectInst &SI) {
615 if (isa<UndefValue>(SI.getTrueValue()) ||
616 isa<UndefValue>(SI.getFalseValue()))
617 return true;
618 return false;
620 SelectInst *LSI = dyn_cast<SelectInst>(LHS);
621 SelectInst *RSI = dyn_cast<SelectInst>(RHS);
622 if ((LSI && hasUndefInSelect(*LSI)) || (RSI && hasUndefInSelect(*RSI)))
623 return true;
624 return false;
627 /// Do actual work and unswitch loop if possible and profitable.
628 bool LoopUnswitch::processCurrentLoop() {
629 bool Changed = false;
631 initLoopData();
633 // If LoopSimplify was unable to form a preheader, don't do any unswitching.
634 if (!loopPreheader)
635 return false;
637 // Loops with indirectbr cannot be cloned.
638 if (!currentLoop->isSafeToClone())
639 return false;
641 // Without dedicated exits, splitting the exit edge may fail.
642 if (!currentLoop->hasDedicatedExits())
643 return false;
645 LLVMContext &Context = loopHeader->getContext();
647 // Analyze loop cost, and stop unswitching if loop content can not be duplicated.
648 if (!BranchesInfo.countLoop(
649 currentLoop, getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
650 *currentLoop->getHeader()->getParent()),
651 AC))
652 return false;
654 // Try trivial unswitch first before loop over other basic blocks in the loop.
655 if (TryTrivialLoopUnswitch(Changed)) {
656 return true;
659 // Do not do non-trivial unswitch while optimizing for size.
660 // FIXME: Use Function::hasOptSize().
661 if (OptimizeForSize ||
662 loopHeader->getParent()->hasFnAttribute(Attribute::OptimizeForSize))
663 return false;
665 // Run through the instructions in the loop, keeping track of three things:
667 // - That we do not unswitch loops containing convergent operations, as we
668 // might be making them control dependent on the unswitch value when they
669 // were not before.
670 // FIXME: This could be refined to only bail if the convergent operation is
671 // not already control-dependent on the unswitch value.
673 // - That basic blocks in the loop contain invokes whose predecessor edges we
674 // cannot split.
676 // - The set of guard intrinsics encountered (these are non terminator
677 // instructions that are also profitable to be unswitched).
679 SmallVector<IntrinsicInst *, 4> Guards;
681 for (const auto BB : currentLoop->blocks()) {
682 for (auto &I : *BB) {
683 auto CS = CallSite(&I);
684 if (!CS) continue;
685 if (CS.hasFnAttr(Attribute::Convergent))
686 return false;
687 if (auto *II = dyn_cast<InvokeInst>(&I))
688 if (!II->getUnwindDest()->canSplitPredecessors())
689 return false;
690 if (auto *II = dyn_cast<IntrinsicInst>(&I))
691 if (II->getIntrinsicID() == Intrinsic::experimental_guard)
692 Guards.push_back(II);
696 for (IntrinsicInst *Guard : Guards) {
697 Value *LoopCond =
698 FindLIVLoopCondition(Guard->getOperand(0), currentLoop, Changed).first;
699 if (LoopCond &&
700 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context))) {
701 // NB! Unswitching (if successful) could have erased some of the
702 // instructions in Guards leaving dangling pointers there. This is fine
703 // because we're returning now, and won't look at Guards again.
704 ++NumGuards;
705 return true;
709 // Loop over all of the basic blocks in the loop. If we find an interior
710 // block that is branching on a loop-invariant condition, we can unswitch this
711 // loop.
712 for (Loop::block_iterator I = currentLoop->block_begin(),
713 E = currentLoop->block_end(); I != E; ++I) {
714 Instruction *TI = (*I)->getTerminator();
716 // Unswitching on a potentially uninitialized predicate is not
717 // MSan-friendly. Limit this to the cases when the original predicate is
718 // guaranteed to execute, to avoid creating a use-of-uninitialized-value
719 // in the code that did not have one.
720 // This is a workaround for the discrepancy between LLVM IR and MSan
721 // semantics. See PR28054 for more details.
722 if (SanitizeMemory &&
723 !SafetyInfo.isGuaranteedToExecute(*TI, DT, currentLoop))
724 continue;
726 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
727 // Some branches may be rendered unreachable because of previous
728 // unswitching.
729 // Unswitch only those branches that are reachable.
730 if (isUnreachableDueToPreviousUnswitching(*I))
731 continue;
733 // If this isn't branching on an invariant condition, we can't unswitch
734 // it.
735 if (BI->isConditional()) {
736 // See if this, or some part of it, is loop invariant. If so, we can
737 // unswitch on it if we desire.
738 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
739 currentLoop, Changed).first;
740 if (LoopCond && !EqualityPropUnSafe(*LoopCond) &&
741 UnswitchIfProfitable(LoopCond, ConstantInt::getTrue(Context), TI)) {
742 ++NumBranches;
743 return true;
746 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
747 Value *SC = SI->getCondition();
748 Value *LoopCond;
749 OperatorChain OpChain;
750 std::tie(LoopCond, OpChain) =
751 FindLIVLoopCondition(SC, currentLoop, Changed);
753 unsigned NumCases = SI->getNumCases();
754 if (LoopCond && NumCases) {
755 // Find a value to unswitch on:
756 // FIXME: this should chose the most expensive case!
757 // FIXME: scan for a case with a non-critical edge?
758 Constant *UnswitchVal = nullptr;
759 // Find a case value such that at least one case value is unswitched
760 // out.
761 if (OpChain == OC_OpChainAnd) {
762 // If the chain only has ANDs and the switch has a case value of 0.
763 // Dropping in a 0 to the chain will unswitch out the 0-casevalue.
764 auto *AllZero = cast<ConstantInt>(Constant::getNullValue(SC->getType()));
765 if (BranchesInfo.isUnswitched(SI, AllZero))
766 continue;
767 // We are unswitching 0 out.
768 UnswitchVal = AllZero;
769 } else if (OpChain == OC_OpChainOr) {
770 // If the chain only has ORs and the switch has a case value of ~0.
771 // Dropping in a ~0 to the chain will unswitch out the ~0-casevalue.
772 auto *AllOne = cast<ConstantInt>(Constant::getAllOnesValue(SC->getType()));
773 if (BranchesInfo.isUnswitched(SI, AllOne))
774 continue;
775 // We are unswitching ~0 out.
776 UnswitchVal = AllOne;
777 } else {
778 assert(OpChain == OC_OpChainNone &&
779 "Expect to unswitch on trivial chain");
780 // Do not process same value again and again.
781 // At this point we have some cases already unswitched and
782 // some not yet unswitched. Let's find the first not yet unswitched one.
783 for (auto Case : SI->cases()) {
784 Constant *UnswitchValCandidate = Case.getCaseValue();
785 if (!BranchesInfo.isUnswitched(SI, UnswitchValCandidate)) {
786 UnswitchVal = UnswitchValCandidate;
787 break;
792 if (!UnswitchVal)
793 continue;
795 if (UnswitchIfProfitable(LoopCond, UnswitchVal)) {
796 ++NumSwitches;
797 // In case of a full LIV, UnswitchVal is the value we unswitched out.
798 // In case of a partial LIV, we only unswitch when its an AND-chain
799 // or OR-chain. In both cases switch input value simplifies to
800 // UnswitchVal.
801 BranchesInfo.setUnswitched(SI, UnswitchVal);
802 return true;
807 // Scan the instructions to check for unswitchable values.
808 for (BasicBlock::iterator BBI = (*I)->begin(), E = (*I)->end();
809 BBI != E; ++BBI)
810 if (SelectInst *SI = dyn_cast<SelectInst>(BBI)) {
811 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
812 currentLoop, Changed).first;
813 if (LoopCond && UnswitchIfProfitable(LoopCond,
814 ConstantInt::getTrue(Context))) {
815 ++NumSelects;
816 return true;
820 return Changed;
823 /// Check to see if all paths from BB exit the loop with no side effects
824 /// (including infinite loops).
826 /// If true, we return true and set ExitBB to the block we
827 /// exit through.
829 static bool isTrivialLoopExitBlockHelper(Loop *L, BasicBlock *BB,
830 BasicBlock *&ExitBB,
831 std::set<BasicBlock*> &Visited) {
832 if (!Visited.insert(BB).second) {
833 // Already visited. Without more analysis, this could indicate an infinite
834 // loop.
835 return false;
837 if (!L->contains(BB)) {
838 // Otherwise, this is a loop exit, this is fine so long as this is the
839 // first exit.
840 if (ExitBB) return false;
841 ExitBB = BB;
842 return true;
845 // Otherwise, this is an unvisited intra-loop node. Check all successors.
846 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI) {
847 // Check to see if the successor is a trivial loop exit.
848 if (!isTrivialLoopExitBlockHelper(L, *SI, ExitBB, Visited))
849 return false;
852 // Okay, everything after this looks good, check to make sure that this block
853 // doesn't include any side effects.
854 for (Instruction &I : *BB)
855 if (I.mayHaveSideEffects())
856 return false;
858 return true;
861 /// Return true if the specified block unconditionally leads to an exit from
862 /// the specified loop, and has no side-effects in the process. If so, return
863 /// the block that is exited to, otherwise return null.
864 static BasicBlock *isTrivialLoopExitBlock(Loop *L, BasicBlock *BB) {
865 std::set<BasicBlock*> Visited;
866 Visited.insert(L->getHeader()); // Branches to header make infinite loops.
867 BasicBlock *ExitBB = nullptr;
868 if (isTrivialLoopExitBlockHelper(L, BB, ExitBB, Visited))
869 return ExitBB;
870 return nullptr;
873 /// We have found that we can unswitch currentLoop when LoopCond == Val to
874 /// simplify the loop. If we decide that this is profitable,
875 /// unswitch the loop, reprocess the pieces, then return true.
876 bool LoopUnswitch::UnswitchIfProfitable(Value *LoopCond, Constant *Val,
877 Instruction *TI) {
878 // Check to see if it would be profitable to unswitch current loop.
879 if (!BranchesInfo.CostAllowsUnswitching()) {
880 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
881 << currentLoop->getHeader()->getName()
882 << " at non-trivial condition '" << *Val
883 << "' == " << *LoopCond << "\n"
884 << ". Cost too high.\n");
885 return false;
887 if (hasBranchDivergence &&
888 getAnalysis<LegacyDivergenceAnalysis>().isDivergent(LoopCond)) {
889 LLVM_DEBUG(dbgs() << "NOT unswitching loop %"
890 << currentLoop->getHeader()->getName()
891 << " at non-trivial condition '" << *Val
892 << "' == " << *LoopCond << "\n"
893 << ". Condition is divergent.\n");
894 return false;
897 UnswitchNontrivialCondition(LoopCond, Val, currentLoop, TI);
898 return true;
901 /// Recursively clone the specified loop and all of its children,
902 /// mapping the blocks with the specified map.
903 static Loop *CloneLoop(Loop *L, Loop *PL, ValueToValueMapTy &VM,
904 LoopInfo *LI, LPPassManager *LPM) {
905 Loop &New = *LI->AllocateLoop();
906 if (PL)
907 PL->addChildLoop(&New);
908 else
909 LI->addTopLevelLoop(&New);
910 LPM->addLoop(New);
912 // Add all of the blocks in L to the new loop.
913 for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
914 I != E; ++I)
915 if (LI->getLoopFor(*I) == L)
916 New.addBasicBlockToLoop(cast<BasicBlock>(VM[*I]), *LI);
918 // Add all of the subloops to the new loop.
919 for (Loop *I : *L)
920 CloneLoop(I, &New, VM, LI, LPM);
922 return &New;
925 /// Emit a conditional branch on two values if LIC == Val, branch to TrueDst,
926 /// otherwise branch to FalseDest. Insert the code immediately before OldBranch
927 /// and remove (but not erase!) it from the function.
928 void LoopUnswitch::EmitPreheaderBranchOnCondition(Value *LIC, Constant *Val,
929 BasicBlock *TrueDest,
930 BasicBlock *FalseDest,
931 BranchInst *OldBranch,
932 Instruction *TI) {
933 assert(OldBranch->isUnconditional() && "Preheader is not split correctly");
934 assert(TrueDest != FalseDest && "Branch targets should be different");
935 // Insert a conditional branch on LIC to the two preheaders. The original
936 // code is the true version and the new code is the false version.
937 Value *BranchVal = LIC;
938 bool Swapped = false;
939 if (!isa<ConstantInt>(Val) ||
940 Val->getType() != Type::getInt1Ty(LIC->getContext()))
941 BranchVal = new ICmpInst(OldBranch, ICmpInst::ICMP_EQ, LIC, Val);
942 else if (Val != ConstantInt::getTrue(Val->getContext())) {
943 // We want to enter the new loop when the condition is true.
944 std::swap(TrueDest, FalseDest);
945 Swapped = true;
948 // Old branch will be removed, so save its parent and successor to update the
949 // DomTree.
950 auto *OldBranchSucc = OldBranch->getSuccessor(0);
951 auto *OldBranchParent = OldBranch->getParent();
953 // Insert the new branch.
954 BranchInst *BI =
955 IRBuilder<>(OldBranch).CreateCondBr(BranchVal, TrueDest, FalseDest, TI);
956 if (Swapped)
957 BI->swapProfMetadata();
959 // Remove the old branch so there is only one branch at the end. This is
960 // needed to perform DomTree's internal DFS walk on the function's CFG.
961 OldBranch->removeFromParent();
963 // Inform the DT about the new branch.
964 if (DT) {
965 // First, add both successors.
966 SmallVector<DominatorTree::UpdateType, 3> Updates;
967 if (TrueDest != OldBranchSucc)
968 Updates.push_back({DominatorTree::Insert, OldBranchParent, TrueDest});
969 if (FalseDest != OldBranchSucc)
970 Updates.push_back({DominatorTree::Insert, OldBranchParent, FalseDest});
971 // If both of the new successors are different from the old one, inform the
972 // DT that the edge was deleted.
973 if (OldBranchSucc != TrueDest && OldBranchSucc != FalseDest) {
974 Updates.push_back({DominatorTree::Delete, OldBranchParent, OldBranchSucc});
976 DT->applyUpdates(Updates);
978 if (MSSAU)
979 MSSAU->applyUpdates(Updates, *DT);
982 // If either edge is critical, split it. This helps preserve LoopSimplify
983 // form for enclosing loops.
984 auto Options =
985 CriticalEdgeSplittingOptions(DT, LI, MSSAU.get()).setPreserveLCSSA();
986 SplitCriticalEdge(BI, 0, Options);
987 SplitCriticalEdge(BI, 1, Options);
990 /// Given a loop that has a trivial unswitchable condition in it (a cond branch
991 /// from its header block to its latch block, where the path through the loop
992 /// that doesn't execute its body has no side-effects), unswitch it. This
993 /// doesn't involve any code duplication, just moving the conditional branch
994 /// outside of the loop and updating loop info.
995 void LoopUnswitch::UnswitchTrivialCondition(Loop *L, Value *Cond, Constant *Val,
996 BasicBlock *ExitBlock,
997 Instruction *TI) {
998 LLVM_DEBUG(dbgs() << "loop-unswitch: Trivial-Unswitch loop %"
999 << loopHeader->getName() << " [" << L->getBlocks().size()
1000 << " blocks] in Function "
1001 << L->getHeader()->getParent()->getName()
1002 << " on cond: " << *Val << " == " << *Cond << "\n");
1003 // We are going to make essential changes to CFG. This may invalidate cached
1004 // information for L or one of its parent loops in SCEV.
1005 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1006 SEWP->getSE().forgetTopmostLoop(L);
1008 // First step, split the preheader, so that we know that there is a safe place
1009 // to insert the conditional branch. We will change loopPreheader to have a
1010 // conditional branch on Cond.
1011 BasicBlock *NewPH = SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
1013 // Now that we have a place to insert the conditional branch, create a place
1014 // to branch to: this is the exit block out of the loop that we should
1015 // short-circuit to.
1017 // Split this block now, so that the loop maintains its exit block, and so
1018 // that the jump from the preheader can execute the contents of the exit block
1019 // without actually branching to it (the exit block should be dominated by the
1020 // loop header, not the preheader).
1021 assert(!L->contains(ExitBlock) && "Exit block is in the loop?");
1022 BasicBlock *NewExit =
1023 SplitBlock(ExitBlock, &ExitBlock->front(), DT, LI, MSSAU.get());
1025 // Okay, now we have a position to branch from and a position to branch to,
1026 // insert the new conditional branch.
1027 auto *OldBranch = dyn_cast<BranchInst>(loopPreheader->getTerminator());
1028 assert(OldBranch && "Failed to split the preheader");
1029 EmitPreheaderBranchOnCondition(Cond, Val, NewExit, NewPH, OldBranch, TI);
1030 LPM->deleteSimpleAnalysisValue(OldBranch, L);
1032 // EmitPreheaderBranchOnCondition removed the OldBranch from the function.
1033 // Delete it, as it is no longer needed.
1034 delete OldBranch;
1036 // We need to reprocess this loop, it could be unswitched again.
1037 redoLoop = true;
1039 // Now that we know that the loop is never entered when this condition is a
1040 // particular value, rewrite the loop with this info. We know that this will
1041 // at least eliminate the old branch.
1042 RewriteLoopBodyWithConditionConstant(L, Cond, Val, false);
1044 ++NumTrivial;
1047 /// Check if the first non-constant condition starting from the loop header is
1048 /// a trivial unswitch condition: that is, a condition controls whether or not
1049 /// the loop does anything at all. If it is a trivial condition, unswitching
1050 /// produces no code duplications (equivalently, it produces a simpler loop and
1051 /// a new empty loop, which gets deleted). Therefore always unswitch trivial
1052 /// condition.
1053 bool LoopUnswitch::TryTrivialLoopUnswitch(bool &Changed) {
1054 BasicBlock *CurrentBB = currentLoop->getHeader();
1055 Instruction *CurrentTerm = CurrentBB->getTerminator();
1056 LLVMContext &Context = CurrentBB->getContext();
1058 // If loop header has only one reachable successor (currently via an
1059 // unconditional branch or constant foldable conditional branch, but
1060 // should also consider adding constant foldable switch instruction in
1061 // future), we should keep looking for trivial condition candidates in
1062 // the successor as well. An alternative is to constant fold conditions
1063 // and merge successors into loop header (then we only need to check header's
1064 // terminator). The reason for not doing this in LoopUnswitch pass is that
1065 // it could potentially break LoopPassManager's invariants. Folding dead
1066 // branches could either eliminate the current loop or make other loops
1067 // unreachable. LCSSA form might also not be preserved after deleting
1068 // branches. The following code keeps traversing loop header's successors
1069 // until it finds the trivial condition candidate (condition that is not a
1070 // constant). Since unswitching generates branches with constant conditions,
1071 // this scenario could be very common in practice.
1072 SmallPtrSet<BasicBlock*, 8> Visited;
1074 while (true) {
1075 // If we exit loop or reach a previous visited block, then
1076 // we can not reach any trivial condition candidates (unfoldable
1077 // branch instructions or switch instructions) and no unswitch
1078 // can happen. Exit and return false.
1079 if (!currentLoop->contains(CurrentBB) || !Visited.insert(CurrentBB).second)
1080 return false;
1082 // Check if this loop will execute any side-effecting instructions (e.g.
1083 // stores, calls, volatile loads) in the part of the loop that the code
1084 // *would* execute. Check the header first.
1085 for (Instruction &I : *CurrentBB)
1086 if (I.mayHaveSideEffects())
1087 return false;
1089 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1090 if (BI->isUnconditional()) {
1091 CurrentBB = BI->getSuccessor(0);
1092 } else if (BI->getCondition() == ConstantInt::getTrue(Context)) {
1093 CurrentBB = BI->getSuccessor(0);
1094 } else if (BI->getCondition() == ConstantInt::getFalse(Context)) {
1095 CurrentBB = BI->getSuccessor(1);
1096 } else {
1097 // Found a trivial condition candidate: non-foldable conditional branch.
1098 break;
1100 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1101 // At this point, any constant-foldable instructions should have probably
1102 // been folded.
1103 ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition());
1104 if (!Cond)
1105 break;
1106 // Find the target block we are definitely going to.
1107 CurrentBB = SI->findCaseValue(Cond)->getCaseSuccessor();
1108 } else {
1109 // We do not understand these terminator instructions.
1110 break;
1113 CurrentTerm = CurrentBB->getTerminator();
1116 // CondVal is the condition that controls the trivial condition.
1117 // LoopExitBB is the BasicBlock that loop exits when meets trivial condition.
1118 Constant *CondVal = nullptr;
1119 BasicBlock *LoopExitBB = nullptr;
1121 if (BranchInst *BI = dyn_cast<BranchInst>(CurrentTerm)) {
1122 // If this isn't branching on an invariant condition, we can't unswitch it.
1123 if (!BI->isConditional())
1124 return false;
1126 Value *LoopCond = FindLIVLoopCondition(BI->getCondition(),
1127 currentLoop, Changed).first;
1129 // Unswitch only if the trivial condition itself is an LIV (not
1130 // partial LIV which could occur in and/or)
1131 if (!LoopCond || LoopCond != BI->getCondition())
1132 return false;
1134 // Check to see if a successor of the branch is guaranteed to
1135 // exit through a unique exit block without having any
1136 // side-effects. If so, determine the value of Cond that causes
1137 // it to do this.
1138 if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1139 BI->getSuccessor(0)))) {
1140 CondVal = ConstantInt::getTrue(Context);
1141 } else if ((LoopExitBB = isTrivialLoopExitBlock(currentLoop,
1142 BI->getSuccessor(1)))) {
1143 CondVal = ConstantInt::getFalse(Context);
1146 // If we didn't find a single unique LoopExit block, or if the loop exit
1147 // block contains phi nodes, this isn't trivial.
1148 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1149 return false; // Can't handle this.
1151 if (EqualityPropUnSafe(*LoopCond))
1152 return false;
1154 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1155 CurrentTerm);
1156 ++NumBranches;
1157 return true;
1158 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(CurrentTerm)) {
1159 // If this isn't switching on an invariant condition, we can't unswitch it.
1160 Value *LoopCond = FindLIVLoopCondition(SI->getCondition(),
1161 currentLoop, Changed).first;
1163 // Unswitch only if the trivial condition itself is an LIV (not
1164 // partial LIV which could occur in and/or)
1165 if (!LoopCond || LoopCond != SI->getCondition())
1166 return false;
1168 // Check to see if a successor of the switch is guaranteed to go to the
1169 // latch block or exit through a one exit block without having any
1170 // side-effects. If so, determine the value of Cond that causes it to do
1171 // this.
1172 // Note that we can't trivially unswitch on the default case or
1173 // on already unswitched cases.
1174 for (auto Case : SI->cases()) {
1175 BasicBlock *LoopExitCandidate;
1176 if ((LoopExitCandidate =
1177 isTrivialLoopExitBlock(currentLoop, Case.getCaseSuccessor()))) {
1178 // Okay, we found a trivial case, remember the value that is trivial.
1179 ConstantInt *CaseVal = Case.getCaseValue();
1181 // Check that it was not unswitched before, since already unswitched
1182 // trivial vals are looks trivial too.
1183 if (BranchesInfo.isUnswitched(SI, CaseVal))
1184 continue;
1185 LoopExitBB = LoopExitCandidate;
1186 CondVal = CaseVal;
1187 break;
1191 // If we didn't find a single unique LoopExit block, or if the loop exit
1192 // block contains phi nodes, this isn't trivial.
1193 if (!LoopExitBB || isa<PHINode>(LoopExitBB->begin()))
1194 return false; // Can't handle this.
1196 UnswitchTrivialCondition(currentLoop, LoopCond, CondVal, LoopExitBB,
1197 nullptr);
1199 // We are only unswitching full LIV.
1200 BranchesInfo.setUnswitched(SI, CondVal);
1201 ++NumSwitches;
1202 return true;
1204 return false;
1207 /// Split all of the edges from inside the loop to their exit blocks.
1208 /// Update the appropriate Phi nodes as we do so.
1209 void LoopUnswitch::SplitExitEdges(Loop *L,
1210 const SmallVectorImpl<BasicBlock *> &ExitBlocks){
1212 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1213 BasicBlock *ExitBlock = ExitBlocks[i];
1214 SmallVector<BasicBlock *, 4> Preds(pred_begin(ExitBlock),
1215 pred_end(ExitBlock));
1217 // Although SplitBlockPredecessors doesn't preserve loop-simplify in
1218 // general, if we call it on all predecessors of all exits then it does.
1219 SplitBlockPredecessors(ExitBlock, Preds, ".us-lcssa", DT, LI, MSSAU.get(),
1220 /*PreserveLCSSA*/ true);
1224 /// We determined that the loop is profitable to unswitch when LIC equal Val.
1225 /// Split it into loop versions and test the condition outside of either loop.
1226 /// Return the loops created as Out1/Out2.
1227 void LoopUnswitch::UnswitchNontrivialCondition(Value *LIC, Constant *Val,
1228 Loop *L, Instruction *TI) {
1229 Function *F = loopHeader->getParent();
1230 LLVM_DEBUG(dbgs() << "loop-unswitch: Unswitching loop %"
1231 << loopHeader->getName() << " [" << L->getBlocks().size()
1232 << " blocks] in Function " << F->getName() << " when '"
1233 << *Val << "' == " << *LIC << "\n");
1235 // We are going to make essential changes to CFG. This may invalidate cached
1236 // information for L or one of its parent loops in SCEV.
1237 if (auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>())
1238 SEWP->getSE().forgetTopmostLoop(L);
1240 LoopBlocks.clear();
1241 NewBlocks.clear();
1243 // First step, split the preheader and exit blocks, and add these blocks to
1244 // the LoopBlocks list.
1245 BasicBlock *NewPreheader =
1246 SplitEdge(loopPreheader, loopHeader, DT, LI, MSSAU.get());
1247 LoopBlocks.push_back(NewPreheader);
1249 // We want the loop to come after the preheader, but before the exit blocks.
1250 LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
1252 SmallVector<BasicBlock*, 8> ExitBlocks;
1253 L->getUniqueExitBlocks(ExitBlocks);
1255 // Split all of the edges from inside the loop to their exit blocks. Update
1256 // the appropriate Phi nodes as we do so.
1257 SplitExitEdges(L, ExitBlocks);
1259 // The exit blocks may have been changed due to edge splitting, recompute.
1260 ExitBlocks.clear();
1261 L->getUniqueExitBlocks(ExitBlocks);
1263 // Add exit blocks to the loop blocks.
1264 LoopBlocks.insert(LoopBlocks.end(), ExitBlocks.begin(), ExitBlocks.end());
1266 // Next step, clone all of the basic blocks that make up the loop (including
1267 // the loop preheader and exit blocks), keeping track of the mapping between
1268 // the instructions and blocks.
1269 NewBlocks.reserve(LoopBlocks.size());
1270 ValueToValueMapTy VMap;
1271 for (unsigned i = 0, e = LoopBlocks.size(); i != e; ++i) {
1272 BasicBlock *NewBB = CloneBasicBlock(LoopBlocks[i], VMap, ".us", F);
1274 NewBlocks.push_back(NewBB);
1275 VMap[LoopBlocks[i]] = NewBB; // Keep the BB mapping.
1276 LPM->cloneBasicBlockSimpleAnalysis(LoopBlocks[i], NewBB, L);
1279 // Splice the newly inserted blocks into the function right before the
1280 // original preheader.
1281 F->getBasicBlockList().splice(NewPreheader->getIterator(),
1282 F->getBasicBlockList(),
1283 NewBlocks[0]->getIterator(), F->end());
1285 // Now we create the new Loop object for the versioned loop.
1286 Loop *NewLoop = CloneLoop(L, L->getParentLoop(), VMap, LI, LPM);
1288 // Recalculate unswitching quota, inherit simplified switches info for NewBB,
1289 // Probably clone more loop-unswitch related loop properties.
1290 BranchesInfo.cloneData(NewLoop, L, VMap);
1292 Loop *ParentLoop = L->getParentLoop();
1293 if (ParentLoop) {
1294 // Make sure to add the cloned preheader and exit blocks to the parent loop
1295 // as well.
1296 ParentLoop->addBasicBlockToLoop(NewBlocks[0], *LI);
1299 for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) {
1300 BasicBlock *NewExit = cast<BasicBlock>(VMap[ExitBlocks[i]]);
1301 // The new exit block should be in the same loop as the old one.
1302 if (Loop *ExitBBLoop = LI->getLoopFor(ExitBlocks[i]))
1303 ExitBBLoop->addBasicBlockToLoop(NewExit, *LI);
1305 assert(NewExit->getTerminator()->getNumSuccessors() == 1 &&
1306 "Exit block should have been split to have one successor!");
1307 BasicBlock *ExitSucc = NewExit->getTerminator()->getSuccessor(0);
1309 // If the successor of the exit block had PHI nodes, add an entry for
1310 // NewExit.
1311 for (PHINode &PN : ExitSucc->phis()) {
1312 Value *V = PN.getIncomingValueForBlock(ExitBlocks[i]);
1313 ValueToValueMapTy::iterator It = VMap.find(V);
1314 if (It != VMap.end()) V = It->second;
1315 PN.addIncoming(V, NewExit);
1318 if (LandingPadInst *LPad = NewExit->getLandingPadInst()) {
1319 PHINode *PN = PHINode::Create(LPad->getType(), 0, "",
1320 &*ExitSucc->getFirstInsertionPt());
1322 for (pred_iterator I = pred_begin(ExitSucc), E = pred_end(ExitSucc);
1323 I != E; ++I) {
1324 BasicBlock *BB = *I;
1325 LandingPadInst *LPI = BB->getLandingPadInst();
1326 LPI->replaceAllUsesWith(PN);
1327 PN->addIncoming(LPI, BB);
1332 // Rewrite the code to refer to itself.
1333 for (unsigned i = 0, e = NewBlocks.size(); i != e; ++i) {
1334 for (Instruction &I : *NewBlocks[i]) {
1335 RemapInstruction(&I, VMap,
1336 RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
1337 if (auto *II = dyn_cast<IntrinsicInst>(&I))
1338 if (II->getIntrinsicID() == Intrinsic::assume)
1339 AC->registerAssumption(II);
1343 // Rewrite the original preheader to select between versions of the loop.
1344 BranchInst *OldBR = cast<BranchInst>(loopPreheader->getTerminator());
1345 assert(OldBR->isUnconditional() && OldBR->getSuccessor(0) == LoopBlocks[0] &&
1346 "Preheader splitting did not work correctly!");
1348 if (MSSAU) {
1349 // Update MemorySSA after cloning, and before splitting to unreachables,
1350 // since that invalidates the 1:1 mapping of clones in VMap.
1351 LoopBlocksRPO LBRPO(L);
1352 LBRPO.perform(LI);
1353 MSSAU->updateForClonedLoop(LBRPO, ExitBlocks, VMap);
1356 // Emit the new branch that selects between the two versions of this loop.
1357 EmitPreheaderBranchOnCondition(LIC, Val, NewBlocks[0], LoopBlocks[0], OldBR,
1358 TI);
1359 LPM->deleteSimpleAnalysisValue(OldBR, L);
1360 if (MSSAU) {
1361 // Update MemoryPhis in Exit blocks.
1362 MSSAU->updateExitBlocksForClonedLoop(ExitBlocks, VMap, *DT);
1363 if (VerifyMemorySSA)
1364 MSSA->verifyMemorySSA();
1367 // The OldBr was replaced by a new one and removed (but not erased) by
1368 // EmitPreheaderBranchOnCondition. It is no longer needed, so delete it.
1369 delete OldBR;
1371 LoopProcessWorklist.push_back(NewLoop);
1372 redoLoop = true;
1374 // Keep a WeakTrackingVH holding onto LIC. If the first call to
1375 // RewriteLoopBody
1376 // deletes the instruction (for example by simplifying a PHI that feeds into
1377 // the condition that we're unswitching on), we don't rewrite the second
1378 // iteration.
1379 WeakTrackingVH LICHandle(LIC);
1381 // Now we rewrite the original code to know that the condition is true and the
1382 // new code to know that the condition is false.
1383 RewriteLoopBodyWithConditionConstant(L, LIC, Val, false);
1385 // It's possible that simplifying one loop could cause the other to be
1386 // changed to another value or a constant. If its a constant, don't simplify
1387 // it.
1388 if (!LoopProcessWorklist.empty() && LoopProcessWorklist.back() == NewLoop &&
1389 LICHandle && !isa<Constant>(LICHandle))
1390 RewriteLoopBodyWithConditionConstant(NewLoop, LICHandle, Val, true);
1392 if (MSSA && VerifyMemorySSA)
1393 MSSA->verifyMemorySSA();
1396 /// Remove all instances of I from the worklist vector specified.
1397 static void RemoveFromWorklist(Instruction *I,
1398 std::vector<Instruction*> &Worklist) {
1400 Worklist.erase(std::remove(Worklist.begin(), Worklist.end(), I),
1401 Worklist.end());
1404 /// When we find that I really equals V, remove I from the
1405 /// program, replacing all uses with V and update the worklist.
1406 static void ReplaceUsesOfWith(Instruction *I, Value *V,
1407 std::vector<Instruction *> &Worklist, Loop *L,
1408 LPPassManager *LPM, MemorySSAUpdater *MSSAU) {
1409 LLVM_DEBUG(dbgs() << "Replace with '" << *V << "': " << *I << "\n");
1411 // Add uses to the worklist, which may be dead now.
1412 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1413 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1414 Worklist.push_back(Use);
1416 // Add users to the worklist which may be simplified now.
1417 for (User *U : I->users())
1418 Worklist.push_back(cast<Instruction>(U));
1419 LPM->deleteSimpleAnalysisValue(I, L);
1420 RemoveFromWorklist(I, Worklist);
1421 I->replaceAllUsesWith(V);
1422 if (!I->mayHaveSideEffects()) {
1423 if (MSSAU)
1424 MSSAU->removeMemoryAccess(I);
1425 I->eraseFromParent();
1427 ++NumSimplify;
1430 /// We know either that the value LIC has the value specified by Val in the
1431 /// specified loop, or we know it does NOT have that value.
1432 /// Rewrite any uses of LIC or of properties correlated to it.
1433 void LoopUnswitch::RewriteLoopBodyWithConditionConstant(Loop *L, Value *LIC,
1434 Constant *Val,
1435 bool IsEqual) {
1436 assert(!isa<Constant>(LIC) && "Why are we unswitching on a constant?");
1438 // FIXME: Support correlated properties, like:
1439 // for (...)
1440 // if (li1 < li2)
1441 // ...
1442 // if (li1 > li2)
1443 // ...
1445 // FOLD boolean conditions (X|LIC), (X&LIC). Fold conditional branches,
1446 // selects, switches.
1447 std::vector<Instruction*> Worklist;
1448 LLVMContext &Context = Val->getContext();
1450 // If we know that LIC == Val, or that LIC == NotVal, just replace uses of LIC
1451 // in the loop with the appropriate one directly.
1452 if (IsEqual || (isa<ConstantInt>(Val) &&
1453 Val->getType()->isIntegerTy(1))) {
1454 Value *Replacement;
1455 if (IsEqual)
1456 Replacement = Val;
1457 else
1458 Replacement = ConstantInt::get(Type::getInt1Ty(Val->getContext()),
1459 !cast<ConstantInt>(Val)->getZExtValue());
1461 for (User *U : LIC->users()) {
1462 Instruction *UI = dyn_cast<Instruction>(U);
1463 if (!UI || !L->contains(UI))
1464 continue;
1465 Worklist.push_back(UI);
1468 for (Instruction *UI : Worklist)
1469 UI->replaceUsesOfWith(LIC, Replacement);
1471 SimplifyCode(Worklist, L);
1472 return;
1475 // Otherwise, we don't know the precise value of LIC, but we do know that it
1476 // is certainly NOT "Val". As such, simplify any uses in the loop that we
1477 // can. This case occurs when we unswitch switch statements.
1478 for (User *U : LIC->users()) {
1479 Instruction *UI = dyn_cast<Instruction>(U);
1480 if (!UI || !L->contains(UI))
1481 continue;
1483 // At this point, we know LIC is definitely not Val. Try to use some simple
1484 // logic to simplify the user w.r.t. to the context.
1485 if (Value *Replacement = SimplifyInstructionWithNotEqual(UI, LIC, Val)) {
1486 if (LI->replacementPreservesLCSSAForm(UI, Replacement)) {
1487 // This in-loop instruction has been simplified w.r.t. its context,
1488 // i.e. LIC != Val, make sure we propagate its replacement value to
1489 // all its users.
1491 // We can not yet delete UI, the LIC user, yet, because that would invalidate
1492 // the LIC->users() iterator !. However, we can make this instruction
1493 // dead by replacing all its users and push it onto the worklist so that
1494 // it can be properly deleted and its operands simplified.
1495 UI->replaceAllUsesWith(Replacement);
1499 // This is a LIC user, push it into the worklist so that SimplifyCode can
1500 // attempt to simplify it.
1501 Worklist.push_back(UI);
1503 // If we know that LIC is not Val, use this info to simplify code.
1504 SwitchInst *SI = dyn_cast<SwitchInst>(UI);
1505 if (!SI || !isa<ConstantInt>(Val)) continue;
1507 // NOTE: if a case value for the switch is unswitched out, we record it
1508 // after the unswitch finishes. We can not record it here as the switch
1509 // is not a direct user of the partial LIV.
1510 SwitchInst::CaseHandle DeadCase =
1511 *SI->findCaseValue(cast<ConstantInt>(Val));
1512 // Default case is live for multiple values.
1513 if (DeadCase == *SI->case_default())
1514 continue;
1516 // Found a dead case value. Don't remove PHI nodes in the
1517 // successor if they become single-entry, those PHI nodes may
1518 // be in the Users list.
1520 BasicBlock *Switch = SI->getParent();
1521 BasicBlock *SISucc = DeadCase.getCaseSuccessor();
1522 BasicBlock *Latch = L->getLoopLatch();
1524 if (!SI->findCaseDest(SISucc)) continue; // Edge is critical.
1525 // If the DeadCase successor dominates the loop latch, then the
1526 // transformation isn't safe since it will delete the sole predecessor edge
1527 // to the latch.
1528 if (Latch && DT->dominates(SISucc, Latch))
1529 continue;
1531 // FIXME: This is a hack. We need to keep the successor around
1532 // and hooked up so as to preserve the loop structure, because
1533 // trying to update it is complicated. So instead we preserve the
1534 // loop structure and put the block on a dead code path.
1535 SplitEdge(Switch, SISucc, DT, LI, MSSAU.get());
1536 // Compute the successors instead of relying on the return value
1537 // of SplitEdge, since it may have split the switch successor
1538 // after PHI nodes.
1539 BasicBlock *NewSISucc = DeadCase.getCaseSuccessor();
1540 BasicBlock *OldSISucc = *succ_begin(NewSISucc);
1541 // Create an "unreachable" destination.
1542 BasicBlock *Abort = BasicBlock::Create(Context, "us-unreachable",
1543 Switch->getParent(),
1544 OldSISucc);
1545 new UnreachableInst(Context, Abort);
1546 // Force the new case destination to branch to the "unreachable"
1547 // block while maintaining a (dead) CFG edge to the old block.
1548 NewSISucc->getTerminator()->eraseFromParent();
1549 BranchInst::Create(Abort, OldSISucc,
1550 ConstantInt::getTrue(Context), NewSISucc);
1551 // Release the PHI operands for this edge.
1552 for (PHINode &PN : NewSISucc->phis())
1553 PN.setIncomingValueForBlock(Switch, UndefValue::get(PN.getType()));
1554 // Tell the domtree about the new block. We don't fully update the
1555 // domtree here -- instead we force it to do a full recomputation
1556 // after the pass is complete -- but we do need to inform it of
1557 // new blocks.
1558 DT->addNewBlock(Abort, NewSISucc);
1561 SimplifyCode(Worklist, L);
1564 /// Now that we have simplified some instructions in the loop, walk over it and
1565 /// constant prop, dce, and fold control flow where possible. Note that this is
1566 /// effectively a very simple loop-structure-aware optimizer. During processing
1567 /// of this loop, L could very well be deleted, so it must not be used.
1569 /// FIXME: When the loop optimizer is more mature, separate this out to a new
1570 /// pass.
1572 void LoopUnswitch::SimplifyCode(std::vector<Instruction*> &Worklist, Loop *L) {
1573 const DataLayout &DL = L->getHeader()->getModule()->getDataLayout();
1574 while (!Worklist.empty()) {
1575 Instruction *I = Worklist.back();
1576 Worklist.pop_back();
1578 // Simple DCE.
1579 if (isInstructionTriviallyDead(I)) {
1580 LLVM_DEBUG(dbgs() << "Remove dead instruction '" << *I << "\n");
1582 // Add uses to the worklist, which may be dead now.
1583 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1584 if (Instruction *Use = dyn_cast<Instruction>(I->getOperand(i)))
1585 Worklist.push_back(Use);
1586 LPM->deleteSimpleAnalysisValue(I, L);
1587 RemoveFromWorklist(I, Worklist);
1588 if (MSSAU)
1589 MSSAU->removeMemoryAccess(I);
1590 I->eraseFromParent();
1591 ++NumSimplify;
1592 continue;
1595 // See if instruction simplification can hack this up. This is common for
1596 // things like "select false, X, Y" after unswitching made the condition be
1597 // 'false'. TODO: update the domtree properly so we can pass it here.
1598 if (Value *V = SimplifyInstruction(I, DL))
1599 if (LI->replacementPreservesLCSSAForm(I, V)) {
1600 ReplaceUsesOfWith(I, V, Worklist, L, LPM, MSSAU.get());
1601 continue;
1604 // Special case hacks that appear commonly in unswitched code.
1605 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1606 if (BI->isUnconditional()) {
1607 // If BI's parent is the only pred of the successor, fold the two blocks
1608 // together.
1609 BasicBlock *Pred = BI->getParent();
1610 BasicBlock *Succ = BI->getSuccessor(0);
1611 BasicBlock *SinglePred = Succ->getSinglePredecessor();
1612 if (!SinglePred) continue; // Nothing to do.
1613 assert(SinglePred == Pred && "CFG broken");
1615 LLVM_DEBUG(dbgs() << "Merging blocks: " << Pred->getName() << " <- "
1616 << Succ->getName() << "\n");
1618 // Resolve any single entry PHI nodes in Succ.
1619 while (PHINode *PN = dyn_cast<PHINode>(Succ->begin()))
1620 ReplaceUsesOfWith(PN, PN->getIncomingValue(0), Worklist, L, LPM,
1621 MSSAU.get());
1623 // If Succ has any successors with PHI nodes, update them to have
1624 // entries coming from Pred instead of Succ.
1625 Succ->replaceAllUsesWith(Pred);
1627 // Move all of the successor contents from Succ to Pred.
1628 Pred->getInstList().splice(BI->getIterator(), Succ->getInstList(),
1629 Succ->begin(), Succ->end());
1630 if (MSSAU)
1631 MSSAU->moveAllAfterMergeBlocks(Succ, Pred, BI);
1632 LPM->deleteSimpleAnalysisValue(BI, L);
1633 RemoveFromWorklist(BI, Worklist);
1634 BI->eraseFromParent();
1636 // Remove Succ from the loop tree.
1637 LI->removeBlock(Succ);
1638 LPM->deleteSimpleAnalysisValue(Succ, L);
1639 Succ->eraseFromParent();
1640 ++NumSimplify;
1641 continue;
1644 continue;
1649 /// Simple simplifications we can do given the information that Cond is
1650 /// definitely not equal to Val.
1651 Value *LoopUnswitch::SimplifyInstructionWithNotEqual(Instruction *Inst,
1652 Value *Invariant,
1653 Constant *Val) {
1654 // icmp eq cond, val -> false
1655 ICmpInst *CI = dyn_cast<ICmpInst>(Inst);
1656 if (CI && CI->isEquality()) {
1657 Value *Op0 = CI->getOperand(0);
1658 Value *Op1 = CI->getOperand(1);
1659 if ((Op0 == Invariant && Op1 == Val) || (Op0 == Val && Op1 == Invariant)) {
1660 LLVMContext &Ctx = Inst->getContext();
1661 if (CI->getPredicate() == CmpInst::ICMP_EQ)
1662 return ConstantInt::getFalse(Ctx);
1663 else
1664 return ConstantInt::getTrue(Ctx);
1668 // FIXME: there may be other opportunities, e.g. comparison with floating
1669 // point, or Invariant - Val != 0, etc.
1670 return nullptr;