1 //===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
7 //===----------------------------------------------------------------------===//
9 // This pass performs various transformations related to eliminating memcpy
10 // calls, or transforming sets of stores into memset's.
12 //===----------------------------------------------------------------------===//
14 #include "llvm/Transforms/Scalar/MemCpyOptimizer.h"
15 #include "llvm/ADT/DenseSet.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallVector.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/ADT/iterator_range.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/Analysis/AssumptionCache.h"
23 #include "llvm/Analysis/GlobalsModRef.h"
24 #include "llvm/Analysis/MemoryDependenceAnalysis.h"
25 #include "llvm/Analysis/MemoryLocation.h"
26 #include "llvm/Analysis/TargetLibraryInfo.h"
27 #include "llvm/Transforms/Utils/Local.h"
28 #include "llvm/Analysis/ValueTracking.h"
29 #include "llvm/IR/Argument.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallSite.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DataLayout.h"
34 #include "llvm/IR/DerivedTypes.h"
35 #include "llvm/IR/Dominators.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GetElementPtrTypeIterator.h"
38 #include "llvm/IR/GlobalVariable.h"
39 #include "llvm/IR/IRBuilder.h"
40 #include "llvm/IR/InstrTypes.h"
41 #include "llvm/IR/Instruction.h"
42 #include "llvm/IR/Instructions.h"
43 #include "llvm/IR/IntrinsicInst.h"
44 #include "llvm/IR/Intrinsics.h"
45 #include "llvm/IR/LLVMContext.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Operator.h"
48 #include "llvm/IR/PassManager.h"
49 #include "llvm/IR/Type.h"
50 #include "llvm/IR/User.h"
51 #include "llvm/IR/Value.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/Casting.h"
54 #include "llvm/Support/Debug.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Transforms/Scalar.h"
65 #define DEBUG_TYPE "memcpyopt"
67 STATISTIC(NumMemCpyInstr
, "Number of memcpy instructions deleted");
68 STATISTIC(NumMemSetInfer
, "Number of memsets inferred");
69 STATISTIC(NumMoveToCpy
, "Number of memmoves converted to memcpy");
70 STATISTIC(NumCpyToSet
, "Number of memcpys converted to memset");
74 /// Represents a range of memset'd bytes with the ByteVal value.
75 /// This allows us to analyze stores like:
80 /// which sometimes happens with stores to arrays of structs etc. When we see
81 /// the first store, we make a range [1, 2). The second store extends the range
82 /// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
83 /// two ranges into [0, 3) which is memset'able.
85 // Start/End - A semi range that describes the span that this range covers.
86 // The range is closed at the start and open at the end: [Start, End).
89 /// StartPtr - The getelementptr instruction that points to the start of the
93 /// Alignment - The known alignment of the first store.
96 /// TheStores - The actual stores that make up this range.
97 SmallVector
<Instruction
*, 16> TheStores
;
99 bool isProfitableToUseMemset(const DataLayout
&DL
) const;
102 } // end anonymous namespace
104 bool MemsetRange::isProfitableToUseMemset(const DataLayout
&DL
) const {
105 // If we found more than 4 stores to merge or 16 bytes, use memset.
106 if (TheStores
.size() >= 4 || End
-Start
>= 16) return true;
108 // If there is nothing to merge, don't do anything.
109 if (TheStores
.size() < 2) return false;
111 // If any of the stores are a memset, then it is always good to extend the
113 for (Instruction
*SI
: TheStores
)
114 if (!isa
<StoreInst
>(SI
))
117 // Assume that the code generator is capable of merging pairs of stores
118 // together if it wants to.
119 if (TheStores
.size() == 2) return false;
121 // If we have fewer than 8 stores, it can still be worthwhile to do this.
122 // For example, merging 4 i8 stores into an i32 store is useful almost always.
123 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
124 // memset will be split into 2 32-bit stores anyway) and doing so can
125 // pessimize the llvm optimizer.
127 // Since we don't have perfect knowledge here, make some assumptions: assume
128 // the maximum GPR width is the same size as the largest legal integer
129 // size. If so, check to see whether we will end up actually reducing the
130 // number of stores used.
131 unsigned Bytes
= unsigned(End
-Start
);
132 unsigned MaxIntSize
= DL
.getLargestLegalIntTypeSizeInBits() / 8;
135 unsigned NumPointerStores
= Bytes
/ MaxIntSize
;
137 // Assume the remaining bytes if any are done a byte at a time.
138 unsigned NumByteStores
= Bytes
% MaxIntSize
;
140 // If we will reduce the # stores (according to this heuristic), do the
141 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
143 return TheStores
.size() > NumPointerStores
+NumByteStores
;
149 using range_iterator
= SmallVectorImpl
<MemsetRange
>::iterator
;
151 /// A sorted list of the memset ranges.
152 SmallVector
<MemsetRange
, 8> Ranges
;
154 const DataLayout
&DL
;
157 MemsetRanges(const DataLayout
&DL
) : DL(DL
) {}
159 using const_iterator
= SmallVectorImpl
<MemsetRange
>::const_iterator
;
161 const_iterator
begin() const { return Ranges
.begin(); }
162 const_iterator
end() const { return Ranges
.end(); }
163 bool empty() const { return Ranges
.empty(); }
165 void addInst(int64_t OffsetFromFirst
, Instruction
*Inst
) {
166 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(Inst
))
167 addStore(OffsetFromFirst
, SI
);
169 addMemSet(OffsetFromFirst
, cast
<MemSetInst
>(Inst
));
172 void addStore(int64_t OffsetFromFirst
, StoreInst
*SI
) {
173 int64_t StoreSize
= DL
.getTypeStoreSize(SI
->getOperand(0)->getType());
175 addRange(OffsetFromFirst
, StoreSize
,
176 SI
->getPointerOperand(), SI
->getAlignment(), SI
);
179 void addMemSet(int64_t OffsetFromFirst
, MemSetInst
*MSI
) {
180 int64_t Size
= cast
<ConstantInt
>(MSI
->getLength())->getZExtValue();
181 addRange(OffsetFromFirst
, Size
, MSI
->getDest(), MSI
->getDestAlignment(), MSI
);
184 void addRange(int64_t Start
, int64_t Size
, Value
*Ptr
,
185 unsigned Alignment
, Instruction
*Inst
);
188 } // end anonymous namespace
190 /// Add a new store to the MemsetRanges data structure. This adds a
191 /// new range for the specified store at the specified offset, merging into
192 /// existing ranges as appropriate.
193 void MemsetRanges::addRange(int64_t Start
, int64_t Size
, Value
*Ptr
,
194 unsigned Alignment
, Instruction
*Inst
) {
195 int64_t End
= Start
+Size
;
197 range_iterator I
= partition_point(
198 Ranges
, [=](const MemsetRange
&O
) { return O
.End
< Start
; });
200 // We now know that I == E, in which case we didn't find anything to merge
201 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
202 // to insert a new range. Handle this now.
203 if (I
== Ranges
.end() || End
< I
->Start
) {
204 MemsetRange
&R
= *Ranges
.insert(I
, MemsetRange());
208 R
.Alignment
= Alignment
;
209 R
.TheStores
.push_back(Inst
);
213 // This store overlaps with I, add it.
214 I
->TheStores
.push_back(Inst
);
216 // At this point, we may have an interval that completely contains our store.
217 // If so, just add it to the interval and return.
218 if (I
->Start
<= Start
&& I
->End
>= End
)
221 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
222 // but is not entirely contained within the range.
224 // See if the range extends the start of the range. In this case, it couldn't
225 // possibly cause it to join the prior range, because otherwise we would have
227 if (Start
< I
->Start
) {
230 I
->Alignment
= Alignment
;
233 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
234 // is in or right at the end of I), and that End >= I->Start. Extend I out to
238 range_iterator NextI
= I
;
239 while (++NextI
!= Ranges
.end() && End
>= NextI
->Start
) {
240 // Merge the range in.
241 I
->TheStores
.append(NextI
->TheStores
.begin(), NextI
->TheStores
.end());
242 if (NextI
->End
> I
->End
)
250 //===----------------------------------------------------------------------===//
251 // MemCpyOptLegacyPass Pass
252 //===----------------------------------------------------------------------===//
256 class MemCpyOptLegacyPass
: public FunctionPass
{
260 static char ID
; // Pass identification, replacement for typeid
262 MemCpyOptLegacyPass() : FunctionPass(ID
) {
263 initializeMemCpyOptLegacyPassPass(*PassRegistry::getPassRegistry());
266 bool runOnFunction(Function
&F
) override
;
269 // This transformation requires dominator postdominator info
270 void getAnalysisUsage(AnalysisUsage
&AU
) const override
{
271 AU
.setPreservesCFG();
272 AU
.addRequired
<AssumptionCacheTracker
>();
273 AU
.addRequired
<DominatorTreeWrapperPass
>();
274 AU
.addRequired
<MemoryDependenceWrapperPass
>();
275 AU
.addRequired
<AAResultsWrapperPass
>();
276 AU
.addRequired
<TargetLibraryInfoWrapperPass
>();
277 AU
.addPreserved
<GlobalsAAWrapperPass
>();
278 AU
.addPreserved
<MemoryDependenceWrapperPass
>();
282 } // end anonymous namespace
284 char MemCpyOptLegacyPass::ID
= 0;
286 /// The public interface to this file...
287 FunctionPass
*llvm::createMemCpyOptPass() { return new MemCpyOptLegacyPass(); }
289 INITIALIZE_PASS_BEGIN(MemCpyOptLegacyPass
, "memcpyopt", "MemCpy Optimization",
291 INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker
)
292 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass
)
293 INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass
)
294 INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass
)
295 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass
)
296 INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass
)
297 INITIALIZE_PASS_END(MemCpyOptLegacyPass
, "memcpyopt", "MemCpy Optimization",
300 /// When scanning forward over instructions, we look for some other patterns to
301 /// fold away. In particular, this looks for stores to neighboring locations of
302 /// memory. If it sees enough consecutive ones, it attempts to merge them
303 /// together into a memcpy/memset.
304 Instruction
*MemCpyOptPass::tryMergingIntoMemset(Instruction
*StartInst
,
307 const DataLayout
&DL
= StartInst
->getModule()->getDataLayout();
309 // Okay, so we now have a single store that can be splatable. Scan to find
310 // all subsequent stores of the same value to offset from the same pointer.
311 // Join these together into ranges, so we can decide whether contiguous blocks
313 MemsetRanges
Ranges(DL
);
315 BasicBlock::iterator
BI(StartInst
);
316 for (++BI
; !BI
->isTerminator(); ++BI
) {
317 if (!isa
<StoreInst
>(BI
) && !isa
<MemSetInst
>(BI
)) {
318 // If the instruction is readnone, ignore it, otherwise bail out. We
319 // don't even allow readonly here because we don't want something like:
320 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
321 if (BI
->mayWriteToMemory() || BI
->mayReadFromMemory())
326 if (StoreInst
*NextStore
= dyn_cast
<StoreInst
>(BI
)) {
327 // If this is a store, see if we can merge it in.
328 if (!NextStore
->isSimple()) break;
330 // Check to see if this stored value is of the same byte-splattable value.
331 Value
*StoredByte
= isBytewiseValue(NextStore
->getOperand(0), DL
);
332 if (isa
<UndefValue
>(ByteVal
) && StoredByte
)
333 ByteVal
= StoredByte
;
334 if (ByteVal
!= StoredByte
)
337 // Check to see if this store is to a constant offset from the start ptr.
338 Optional
<int64_t> Offset
=
339 isPointerOffset(StartPtr
, NextStore
->getPointerOperand(), DL
);
343 Ranges
.addStore(*Offset
, NextStore
);
345 MemSetInst
*MSI
= cast
<MemSetInst
>(BI
);
347 if (MSI
->isVolatile() || ByteVal
!= MSI
->getValue() ||
348 !isa
<ConstantInt
>(MSI
->getLength()))
351 // Check to see if this store is to a constant offset from the start ptr.
352 Optional
<int64_t> Offset
= isPointerOffset(StartPtr
, MSI
->getDest(), DL
);
356 Ranges
.addMemSet(*Offset
, MSI
);
360 // If we have no ranges, then we just had a single store with nothing that
361 // could be merged in. This is a very common case of course.
365 // If we had at least one store that could be merged in, add the starting
366 // store as well. We try to avoid this unless there is at least something
367 // interesting as a small compile-time optimization.
368 Ranges
.addInst(0, StartInst
);
370 // If we create any memsets, we put it right before the first instruction that
371 // isn't part of the memset block. This ensure that the memset is dominated
372 // by any addressing instruction needed by the start of the block.
373 IRBuilder
<> Builder(&*BI
);
375 // Now that we have full information about ranges, loop over the ranges and
376 // emit memset's for anything big enough to be worthwhile.
377 Instruction
*AMemSet
= nullptr;
378 for (const MemsetRange
&Range
: Ranges
) {
379 if (Range
.TheStores
.size() == 1) continue;
381 // If it is profitable to lower this range to memset, do so now.
382 if (!Range
.isProfitableToUseMemset(DL
))
385 // Otherwise, we do want to transform this! Create a new memset.
386 // Get the starting pointer of the block.
387 StartPtr
= Range
.StartPtr
;
389 // Determine alignment
390 unsigned Alignment
= Range
.Alignment
;
391 if (Alignment
== 0) {
393 cast
<PointerType
>(StartPtr
->getType())->getElementType();
394 Alignment
= DL
.getABITypeAlignment(EltType
);
398 Builder
.CreateMemSet(StartPtr
, ByteVal
, Range
.End
-Range
.Start
, Alignment
);
400 LLVM_DEBUG(dbgs() << "Replace stores:\n"; for (Instruction
*SI
401 : Range
.TheStores
) dbgs()
403 dbgs() << "With: " << *AMemSet
<< '\n');
405 if (!Range
.TheStores
.empty())
406 AMemSet
->setDebugLoc(Range
.TheStores
[0]->getDebugLoc());
408 // Zap all the stores.
409 for (Instruction
*SI
: Range
.TheStores
) {
410 MD
->removeInstruction(SI
);
411 SI
->eraseFromParent();
419 static unsigned findStoreAlignment(const DataLayout
&DL
, const StoreInst
*SI
) {
420 unsigned StoreAlign
= SI
->getAlignment();
422 StoreAlign
= DL
.getABITypeAlignment(SI
->getOperand(0)->getType());
426 static unsigned findLoadAlignment(const DataLayout
&DL
, const LoadInst
*LI
) {
427 unsigned LoadAlign
= LI
->getAlignment();
429 LoadAlign
= DL
.getABITypeAlignment(LI
->getType());
433 static unsigned findCommonAlignment(const DataLayout
&DL
, const StoreInst
*SI
,
434 const LoadInst
*LI
) {
435 unsigned StoreAlign
= findStoreAlignment(DL
, SI
);
436 unsigned LoadAlign
= findLoadAlignment(DL
, LI
);
437 return MinAlign(StoreAlign
, LoadAlign
);
440 // This method try to lift a store instruction before position P.
441 // It will lift the store and its argument + that anything that
442 // may alias with these.
443 // The method returns true if it was successful.
444 static bool moveUp(AliasAnalysis
&AA
, StoreInst
*SI
, Instruction
*P
,
445 const LoadInst
*LI
) {
446 // If the store alias this position, early bail out.
447 MemoryLocation StoreLoc
= MemoryLocation::get(SI
);
448 if (isModOrRefSet(AA
.getModRefInfo(P
, StoreLoc
)))
451 // Keep track of the arguments of all instruction we plan to lift
452 // so we can make sure to lift them as well if appropriate.
453 DenseSet
<Instruction
*> Args
;
454 if (auto *Ptr
= dyn_cast
<Instruction
>(SI
->getPointerOperand()))
455 if (Ptr
->getParent() == SI
->getParent())
458 // Instruction to lift before P.
459 SmallVector
<Instruction
*, 8> ToLift
;
461 // Memory locations of lifted instructions.
462 SmallVector
<MemoryLocation
, 8> MemLocs
{StoreLoc
};
465 SmallVector
<const CallBase
*, 8> Calls
;
467 const MemoryLocation LoadLoc
= MemoryLocation::get(LI
);
469 for (auto I
= --SI
->getIterator(), E
= P
->getIterator(); I
!= E
; --I
) {
472 bool MayAlias
= isModOrRefSet(AA
.getModRefInfo(C
, None
));
474 bool NeedLift
= false;
478 NeedLift
= llvm::any_of(MemLocs
, [C
, &AA
](const MemoryLocation
&ML
) {
479 return isModOrRefSet(AA
.getModRefInfo(C
, ML
));
483 NeedLift
= llvm::any_of(Calls
, [C
, &AA
](const CallBase
*Call
) {
484 return isModOrRefSet(AA
.getModRefInfo(C
, Call
));
492 // Since LI is implicitly moved downwards past the lifted instructions,
493 // none of them may modify its source.
494 if (isModSet(AA
.getModRefInfo(C
, LoadLoc
)))
496 else if (const auto *Call
= dyn_cast
<CallBase
>(C
)) {
497 // If we can't lift this before P, it's game over.
498 if (isModOrRefSet(AA
.getModRefInfo(P
, Call
)))
501 Calls
.push_back(Call
);
502 } else if (isa
<LoadInst
>(C
) || isa
<StoreInst
>(C
) || isa
<VAArgInst
>(C
)) {
503 // If we can't lift this before P, it's game over.
504 auto ML
= MemoryLocation::get(C
);
505 if (isModOrRefSet(AA
.getModRefInfo(P
, ML
)))
508 MemLocs
.push_back(ML
);
510 // We don't know how to lift this instruction.
515 for (unsigned k
= 0, e
= C
->getNumOperands(); k
!= e
; ++k
)
516 if (auto *A
= dyn_cast
<Instruction
>(C
->getOperand(k
)))
517 if (A
->getParent() == SI
->getParent())
521 // We made it, we need to lift
522 for (auto *I
: llvm::reverse(ToLift
)) {
523 LLVM_DEBUG(dbgs() << "Lifting " << *I
<< " before " << *P
<< "\n");
530 bool MemCpyOptPass::processStore(StoreInst
*SI
, BasicBlock::iterator
&BBI
) {
531 if (!SI
->isSimple()) return false;
533 // Avoid merging nontemporal stores since the resulting
534 // memcpy/memset would not be able to preserve the nontemporal hint.
535 // In theory we could teach how to propagate the !nontemporal metadata to
536 // memset calls. However, that change would force the backend to
537 // conservatively expand !nontemporal memset calls back to sequences of
538 // store instructions (effectively undoing the merging).
539 if (SI
->getMetadata(LLVMContext::MD_nontemporal
))
542 const DataLayout
&DL
= SI
->getModule()->getDataLayout();
544 // Load to store forwarding can be interpreted as memcpy.
545 if (LoadInst
*LI
= dyn_cast
<LoadInst
>(SI
->getOperand(0))) {
546 if (LI
->isSimple() && LI
->hasOneUse() &&
547 LI
->getParent() == SI
->getParent()) {
549 auto *T
= LI
->getType();
550 if (T
->isAggregateType()) {
551 AliasAnalysis
&AA
= LookupAliasAnalysis();
552 MemoryLocation LoadLoc
= MemoryLocation::get(LI
);
554 // We use alias analysis to check if an instruction may store to
555 // the memory we load from in between the load and the store. If
556 // such an instruction is found, we try to promote there instead
557 // of at the store position.
559 for (auto &I
: make_range(++LI
->getIterator(), SI
->getIterator())) {
560 if (isModSet(AA
.getModRefInfo(&I
, LoadLoc
))) {
566 // We found an instruction that may write to the loaded memory.
567 // We can try to promote at this position instead of the store
568 // position if nothing alias the store memory after this and the store
569 // destination is not in the range.
571 if (!moveUp(AA
, SI
, P
, LI
))
575 // If a valid insertion position is found, then we can promote
576 // the load/store pair to a memcpy.
578 // If we load from memory that may alias the memory we store to,
579 // memmove must be used to preserve semantic. If not, memcpy can
581 bool UseMemMove
= false;
582 if (!AA
.isNoAlias(MemoryLocation::get(SI
), LoadLoc
))
585 uint64_t Size
= DL
.getTypeStoreSize(T
);
587 IRBuilder
<> Builder(P
);
590 M
= Builder
.CreateMemMove(
591 SI
->getPointerOperand(), findStoreAlignment(DL
, SI
),
592 LI
->getPointerOperand(), findLoadAlignment(DL
, LI
), Size
);
594 M
= Builder
.CreateMemCpy(
595 SI
->getPointerOperand(), findStoreAlignment(DL
, SI
),
596 LI
->getPointerOperand(), findLoadAlignment(DL
, LI
), Size
);
598 LLVM_DEBUG(dbgs() << "Promoting " << *LI
<< " to " << *SI
<< " => "
601 MD
->removeInstruction(SI
);
602 SI
->eraseFromParent();
603 MD
->removeInstruction(LI
);
604 LI
->eraseFromParent();
607 // Make sure we do not invalidate the iterator.
608 BBI
= M
->getIterator();
613 // Detect cases where we're performing call slot forwarding, but
614 // happen to be using a load-store pair to implement it, rather than
616 MemDepResult ldep
= MD
->getDependency(LI
);
617 CallInst
*C
= nullptr;
618 if (ldep
.isClobber() && !isa
<MemCpyInst
>(ldep
.getInst()))
619 C
= dyn_cast
<CallInst
>(ldep
.getInst());
622 // Check that nothing touches the dest of the "copy" between
623 // the call and the store.
624 Value
*CpyDest
= SI
->getPointerOperand()->stripPointerCasts();
625 bool CpyDestIsLocal
= isa
<AllocaInst
>(CpyDest
);
626 AliasAnalysis
&AA
= LookupAliasAnalysis();
627 MemoryLocation StoreLoc
= MemoryLocation::get(SI
);
628 for (BasicBlock::iterator I
= --SI
->getIterator(), E
= C
->getIterator();
630 if (isModOrRefSet(AA
.getModRefInfo(&*I
, StoreLoc
))) {
634 // The store to dest may never happen if an exception can be thrown
635 // between the load and the store.
636 if (I
->mayThrow() && !CpyDestIsLocal
) {
644 bool changed
= performCallSlotOptzn(
645 LI
, SI
->getPointerOperand()->stripPointerCasts(),
646 LI
->getPointerOperand()->stripPointerCasts(),
647 DL
.getTypeStoreSize(SI
->getOperand(0)->getType()),
648 findCommonAlignment(DL
, SI
, LI
), C
);
650 MD
->removeInstruction(SI
);
651 SI
->eraseFromParent();
652 MD
->removeInstruction(LI
);
653 LI
->eraseFromParent();
661 // There are two cases that are interesting for this code to handle: memcpy
662 // and memset. Right now we only handle memset.
664 // Ensure that the value being stored is something that can be memset'able a
665 // byte at a time like "0" or "-1" or any width, as well as things like
666 // 0xA0A0A0A0 and 0.0.
667 auto *V
= SI
->getOperand(0);
668 if (Value
*ByteVal
= isBytewiseValue(V
, DL
)) {
669 if (Instruction
*I
= tryMergingIntoMemset(SI
, SI
->getPointerOperand(),
671 BBI
= I
->getIterator(); // Don't invalidate iterator.
675 // If we have an aggregate, we try to promote it to memset regardless
676 // of opportunity for merging as it can expose optimization opportunities
677 // in subsequent passes.
678 auto *T
= V
->getType();
679 if (T
->isAggregateType()) {
680 uint64_t Size
= DL
.getTypeStoreSize(T
);
681 unsigned Align
= SI
->getAlignment();
683 Align
= DL
.getABITypeAlignment(T
);
684 IRBuilder
<> Builder(SI
);
686 Builder
.CreateMemSet(SI
->getPointerOperand(), ByteVal
, Size
, Align
);
688 LLVM_DEBUG(dbgs() << "Promoting " << *SI
<< " to " << *M
<< "\n");
690 MD
->removeInstruction(SI
);
691 SI
->eraseFromParent();
694 // Make sure we do not invalidate the iterator.
695 BBI
= M
->getIterator();
703 bool MemCpyOptPass::processMemSet(MemSetInst
*MSI
, BasicBlock::iterator
&BBI
) {
704 // See if there is another memset or store neighboring this memset which
705 // allows us to widen out the memset to do a single larger store.
706 if (isa
<ConstantInt
>(MSI
->getLength()) && !MSI
->isVolatile())
707 if (Instruction
*I
= tryMergingIntoMemset(MSI
, MSI
->getDest(),
709 BBI
= I
->getIterator(); // Don't invalidate iterator.
715 /// Takes a memcpy and a call that it depends on,
716 /// and checks for the possibility of a call slot optimization by having
717 /// the call write its result directly into the destination of the memcpy.
718 bool MemCpyOptPass::performCallSlotOptzn(Instruction
*cpy
, Value
*cpyDest
,
719 Value
*cpySrc
, uint64_t cpyLen
,
720 unsigned cpyAlign
, CallInst
*C
) {
721 // The general transformation to keep in mind is
723 // call @func(..., src, ...)
724 // memcpy(dest, src, ...)
728 // memcpy(dest, src, ...)
729 // call @func(..., dest, ...)
731 // Since moving the memcpy is technically awkward, we additionally check that
732 // src only holds uninitialized values at the moment of the call, meaning that
733 // the memcpy can be discarded rather than moved.
735 // Lifetime marks shouldn't be operated on.
736 if (Function
*F
= C
->getCalledFunction())
737 if (F
->isIntrinsic() && F
->getIntrinsicID() == Intrinsic::lifetime_start
)
740 // Deliberately get the source and destination with bitcasts stripped away,
741 // because we'll need to do type comparisons based on the underlying type.
744 // Require that src be an alloca. This simplifies the reasoning considerably.
745 AllocaInst
*srcAlloca
= dyn_cast
<AllocaInst
>(cpySrc
);
749 ConstantInt
*srcArraySize
= dyn_cast
<ConstantInt
>(srcAlloca
->getArraySize());
753 const DataLayout
&DL
= cpy
->getModule()->getDataLayout();
754 uint64_t srcSize
= DL
.getTypeAllocSize(srcAlloca
->getAllocatedType()) *
755 srcArraySize
->getZExtValue();
757 if (cpyLen
< srcSize
)
760 // Check that accessing the first srcSize bytes of dest will not cause a
761 // trap. Otherwise the transform is invalid since it might cause a trap
762 // to occur earlier than it otherwise would.
763 if (AllocaInst
*A
= dyn_cast
<AllocaInst
>(cpyDest
)) {
764 // The destination is an alloca. Check it is larger than srcSize.
765 ConstantInt
*destArraySize
= dyn_cast
<ConstantInt
>(A
->getArraySize());
769 uint64_t destSize
= DL
.getTypeAllocSize(A
->getAllocatedType()) *
770 destArraySize
->getZExtValue();
772 if (destSize
< srcSize
)
774 } else if (Argument
*A
= dyn_cast
<Argument
>(cpyDest
)) {
775 // The store to dest may never happen if the call can throw.
779 if (A
->getDereferenceableBytes() < srcSize
) {
780 // If the destination is an sret parameter then only accesses that are
781 // outside of the returned struct type can trap.
782 if (!A
->hasStructRetAttr())
785 Type
*StructTy
= cast
<PointerType
>(A
->getType())->getElementType();
786 if (!StructTy
->isSized()) {
787 // The call may never return and hence the copy-instruction may never
788 // be executed, and therefore it's not safe to say "the destination
789 // has at least <cpyLen> bytes, as implied by the copy-instruction",
793 uint64_t destSize
= DL
.getTypeAllocSize(StructTy
);
794 if (destSize
< srcSize
)
801 // Check that dest points to memory that is at least as aligned as src.
802 unsigned srcAlign
= srcAlloca
->getAlignment();
804 srcAlign
= DL
.getABITypeAlignment(srcAlloca
->getAllocatedType());
805 bool isDestSufficientlyAligned
= srcAlign
<= cpyAlign
;
806 // If dest is not aligned enough and we can't increase its alignment then
808 if (!isDestSufficientlyAligned
&& !isa
<AllocaInst
>(cpyDest
))
811 // Check that src is not accessed except via the call and the memcpy. This
812 // guarantees that it holds only undefined values when passed in (so the final
813 // memcpy can be dropped), that it is not read or written between the call and
814 // the memcpy, and that writing beyond the end of it is undefined.
815 SmallVector
<User
*, 8> srcUseList(srcAlloca
->user_begin(),
816 srcAlloca
->user_end());
817 while (!srcUseList
.empty()) {
818 User
*U
= srcUseList
.pop_back_val();
820 if (isa
<BitCastInst
>(U
) || isa
<AddrSpaceCastInst
>(U
)) {
821 for (User
*UU
: U
->users())
822 srcUseList
.push_back(UU
);
825 if (GetElementPtrInst
*G
= dyn_cast
<GetElementPtrInst
>(U
)) {
826 if (!G
->hasAllZeroIndices())
829 for (User
*UU
: U
->users())
830 srcUseList
.push_back(UU
);
833 if (const IntrinsicInst
*IT
= dyn_cast
<IntrinsicInst
>(U
))
834 if (IT
->isLifetimeStartOrEnd())
837 if (U
!= C
&& U
!= cpy
)
841 // Check that src isn't captured by the called function since the
842 // transformation can cause aliasing issues in that case.
843 for (unsigned i
= 0, e
= CS
.arg_size(); i
!= e
; ++i
)
844 if (CS
.getArgument(i
) == cpySrc
&& !CS
.doesNotCapture(i
))
847 // Since we're changing the parameter to the callsite, we need to make sure
848 // that what would be the new parameter dominates the callsite.
849 DominatorTree
&DT
= LookupDomTree();
850 if (Instruction
*cpyDestInst
= dyn_cast
<Instruction
>(cpyDest
))
851 if (!DT
.dominates(cpyDestInst
, C
))
854 // In addition to knowing that the call does not access src in some
855 // unexpected manner, for example via a global, which we deduce from
856 // the use analysis, we also need to know that it does not sneakily
857 // access dest. We rely on AA to figure this out for us.
858 AliasAnalysis
&AA
= LookupAliasAnalysis();
859 ModRefInfo MR
= AA
.getModRefInfo(C
, cpyDest
, LocationSize::precise(srcSize
));
860 // If necessary, perform additional analysis.
861 if (isModOrRefSet(MR
))
862 MR
= AA
.callCapturesBefore(C
, cpyDest
, LocationSize::precise(srcSize
), &DT
);
863 if (isModOrRefSet(MR
))
866 // We can't create address space casts here because we don't know if they're
867 // safe for the target.
868 if (cpySrc
->getType()->getPointerAddressSpace() !=
869 cpyDest
->getType()->getPointerAddressSpace())
871 for (unsigned i
= 0; i
< CS
.arg_size(); ++i
)
872 if (CS
.getArgument(i
)->stripPointerCasts() == cpySrc
&&
873 cpySrc
->getType()->getPointerAddressSpace() !=
874 CS
.getArgument(i
)->getType()->getPointerAddressSpace())
877 // All the checks have passed, so do the transformation.
878 bool changedArgument
= false;
879 for (unsigned i
= 0; i
< CS
.arg_size(); ++i
)
880 if (CS
.getArgument(i
)->stripPointerCasts() == cpySrc
) {
881 Value
*Dest
= cpySrc
->getType() == cpyDest
->getType() ? cpyDest
882 : CastInst::CreatePointerCast(cpyDest
, cpySrc
->getType(),
883 cpyDest
->getName(), C
);
884 changedArgument
= true;
885 if (CS
.getArgument(i
)->getType() == Dest
->getType())
886 CS
.setArgument(i
, Dest
);
888 CS
.setArgument(i
, CastInst::CreatePointerCast(Dest
,
889 CS
.getArgument(i
)->getType(), Dest
->getName(), C
));
892 if (!changedArgument
)
895 // If the destination wasn't sufficiently aligned then increase its alignment.
896 if (!isDestSufficientlyAligned
) {
897 assert(isa
<AllocaInst
>(cpyDest
) && "Can only increase alloca alignment!");
898 cast
<AllocaInst
>(cpyDest
)->setAlignment(srcAlign
);
901 // Drop any cached information about the call, because we may have changed
902 // its dependence information by changing its parameter.
903 MD
->removeInstruction(C
);
905 // Update AA metadata
906 // FIXME: MD_tbaa_struct and MD_mem_parallel_loop_access should also be
907 // handled here, but combineMetadata doesn't support them yet
908 unsigned KnownIDs
[] = {LLVMContext::MD_tbaa
, LLVMContext::MD_alias_scope
,
909 LLVMContext::MD_noalias
,
910 LLVMContext::MD_invariant_group
,
911 LLVMContext::MD_access_group
};
912 combineMetadata(C
, cpy
, KnownIDs
, true);
914 // Remove the memcpy.
915 MD
->removeInstruction(cpy
);
921 /// We've found that the (upward scanning) memory dependence of memcpy 'M' is
922 /// the memcpy 'MDep'. Try to simplify M to copy from MDep's input if we can.
923 bool MemCpyOptPass::processMemCpyMemCpyDependence(MemCpyInst
*M
,
925 // We can only transforms memcpy's where the dest of one is the source of the
927 if (M
->getSource() != MDep
->getDest() || MDep
->isVolatile())
930 // If dep instruction is reading from our current input, then it is a noop
931 // transfer and substituting the input won't change this instruction. Just
932 // ignore the input and let someone else zap MDep. This handles cases like:
935 if (M
->getSource() == MDep
->getSource())
938 // Second, the length of the memcpy's must be the same, or the preceding one
939 // must be larger than the following one.
940 ConstantInt
*MDepLen
= dyn_cast
<ConstantInt
>(MDep
->getLength());
941 ConstantInt
*MLen
= dyn_cast
<ConstantInt
>(M
->getLength());
942 if (!MDepLen
|| !MLen
|| MDepLen
->getZExtValue() < MLen
->getZExtValue())
945 AliasAnalysis
&AA
= LookupAliasAnalysis();
947 // Verify that the copied-from memory doesn't change in between the two
948 // transfers. For example, in:
952 // It would be invalid to transform the second memcpy into memcpy(c <- b).
954 // TODO: If the code between M and MDep is transparent to the destination "c",
955 // then we could still perform the xform by moving M up to the first memcpy.
957 // NOTE: This is conservative, it will stop on any read from the source loc,
958 // not just the defining memcpy.
959 MemDepResult SourceDep
=
960 MD
->getPointerDependencyFrom(MemoryLocation::getForSource(MDep
), false,
961 M
->getIterator(), M
->getParent());
962 if (!SourceDep
.isClobber() || SourceDep
.getInst() != MDep
)
965 // If the dest of the second might alias the source of the first, then the
966 // source and dest might overlap. We still want to eliminate the intermediate
967 // value, but we have to generate a memmove instead of memcpy.
968 bool UseMemMove
= false;
969 if (!AA
.isNoAlias(MemoryLocation::getForDest(M
),
970 MemoryLocation::getForSource(MDep
)))
973 // If all checks passed, then we can transform M.
974 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy->memcpy src:\n"
975 << *MDep
<< '\n' << *M
<< '\n');
977 // TODO: Is this worth it if we're creating a less aligned memcpy? For
978 // example we could be moving from movaps -> movq on x86.
979 IRBuilder
<> Builder(M
);
981 Builder
.CreateMemMove(M
->getRawDest(), M
->getDestAlignment(),
982 MDep
->getRawSource(), MDep
->getSourceAlignment(),
983 M
->getLength(), M
->isVolatile());
985 Builder
.CreateMemCpy(M
->getRawDest(), M
->getDestAlignment(),
986 MDep
->getRawSource(), MDep
->getSourceAlignment(),
987 M
->getLength(), M
->isVolatile());
989 // Remove the instruction we're replacing.
990 MD
->removeInstruction(M
);
991 M
->eraseFromParent();
996 /// We've found that the (upward scanning) memory dependence of \p MemCpy is
997 /// \p MemSet. Try to simplify \p MemSet to only set the trailing bytes that
998 /// weren't copied over by \p MemCpy.
1000 /// In other words, transform:
1002 /// memset(dst, c, dst_size);
1003 /// memcpy(dst, src, src_size);
1007 /// memcpy(dst, src, src_size);
1008 /// memset(dst + src_size, c, dst_size <= src_size ? 0 : dst_size - src_size);
1010 bool MemCpyOptPass::processMemSetMemCpyDependence(MemCpyInst
*MemCpy
,
1011 MemSetInst
*MemSet
) {
1012 // We can only transform memset/memcpy with the same destination.
1013 if (MemSet
->getDest() != MemCpy
->getDest())
1016 // Check that there are no other dependencies on the memset destination.
1017 MemDepResult DstDepInfo
=
1018 MD
->getPointerDependencyFrom(MemoryLocation::getForDest(MemSet
), false,
1019 MemCpy
->getIterator(), MemCpy
->getParent());
1020 if (DstDepInfo
.getInst() != MemSet
)
1023 // Use the same i8* dest as the memcpy, killing the memset dest if different.
1024 Value
*Dest
= MemCpy
->getRawDest();
1025 Value
*DestSize
= MemSet
->getLength();
1026 Value
*SrcSize
= MemCpy
->getLength();
1028 // By default, create an unaligned memset.
1030 // If Dest is aligned, and SrcSize is constant, use the minimum alignment
1032 const unsigned DestAlign
=
1033 std::max(MemSet
->getDestAlignment(), MemCpy
->getDestAlignment());
1035 if (ConstantInt
*SrcSizeC
= dyn_cast
<ConstantInt
>(SrcSize
))
1036 Align
= MinAlign(SrcSizeC
->getZExtValue(), DestAlign
);
1038 IRBuilder
<> Builder(MemCpy
);
1040 // If the sizes have different types, zext the smaller one.
1041 if (DestSize
->getType() != SrcSize
->getType()) {
1042 if (DestSize
->getType()->getIntegerBitWidth() >
1043 SrcSize
->getType()->getIntegerBitWidth())
1044 SrcSize
= Builder
.CreateZExt(SrcSize
, DestSize
->getType());
1046 DestSize
= Builder
.CreateZExt(DestSize
, SrcSize
->getType());
1049 Value
*Ule
= Builder
.CreateICmpULE(DestSize
, SrcSize
);
1050 Value
*SizeDiff
= Builder
.CreateSub(DestSize
, SrcSize
);
1051 Value
*MemsetLen
= Builder
.CreateSelect(
1052 Ule
, ConstantInt::getNullValue(DestSize
->getType()), SizeDiff
);
1053 Builder
.CreateMemSet(
1054 Builder
.CreateGEP(Dest
->getType()->getPointerElementType(), Dest
,
1056 MemSet
->getOperand(1), MemsetLen
, Align
);
1058 MD
->removeInstruction(MemSet
);
1059 MemSet
->eraseFromParent();
1063 /// Determine whether the instruction has undefined content for the given Size,
1064 /// either because it was freshly alloca'd or started its lifetime.
1065 static bool hasUndefContents(Instruction
*I
, ConstantInt
*Size
) {
1066 if (isa
<AllocaInst
>(I
))
1069 if (IntrinsicInst
*II
= dyn_cast
<IntrinsicInst
>(I
))
1070 if (II
->getIntrinsicID() == Intrinsic::lifetime_start
)
1071 if (ConstantInt
*LTSize
= dyn_cast
<ConstantInt
>(II
->getArgOperand(0)))
1072 if (LTSize
->getZExtValue() >= Size
->getZExtValue())
1078 /// Transform memcpy to memset when its source was just memset.
1079 /// In other words, turn:
1081 /// memset(dst1, c, dst1_size);
1082 /// memcpy(dst2, dst1, dst2_size);
1086 /// memset(dst1, c, dst1_size);
1087 /// memset(dst2, c, dst2_size);
1089 /// When dst2_size <= dst1_size.
1091 /// The \p MemCpy must have a Constant length.
1092 bool MemCpyOptPass::performMemCpyToMemSetOptzn(MemCpyInst
*MemCpy
,
1093 MemSetInst
*MemSet
) {
1094 AliasAnalysis
&AA
= LookupAliasAnalysis();
1096 // Make sure that memcpy(..., memset(...), ...), that is we are memsetting and
1097 // memcpying from the same address. Otherwise it is hard to reason about.
1098 if (!AA
.isMustAlias(MemSet
->getRawDest(), MemCpy
->getRawSource()))
1101 // A known memset size is required.
1102 ConstantInt
*MemSetSize
= dyn_cast
<ConstantInt
>(MemSet
->getLength());
1106 // Make sure the memcpy doesn't read any more than what the memset wrote.
1107 // Don't worry about sizes larger than i64.
1108 ConstantInt
*CopySize
= cast
<ConstantInt
>(MemCpy
->getLength());
1109 if (CopySize
->getZExtValue() > MemSetSize
->getZExtValue()) {
1110 // If the memcpy is larger than the memset, but the memory was undef prior
1111 // to the memset, we can just ignore the tail. Technically we're only
1112 // interested in the bytes from MemSetSize..CopySize here, but as we can't
1113 // easily represent this location, we use the full 0..CopySize range.
1114 MemoryLocation MemCpyLoc
= MemoryLocation::getForSource(MemCpy
);
1115 MemDepResult DepInfo
= MD
->getPointerDependencyFrom(
1116 MemCpyLoc
, true, MemSet
->getIterator(), MemSet
->getParent());
1117 if (DepInfo
.isDef() && hasUndefContents(DepInfo
.getInst(), CopySize
))
1118 CopySize
= MemSetSize
;
1123 IRBuilder
<> Builder(MemCpy
);
1124 Builder
.CreateMemSet(MemCpy
->getRawDest(), MemSet
->getOperand(1),
1125 CopySize
, MemCpy
->getDestAlignment());
1129 /// Perform simplification of memcpy's. If we have memcpy A
1130 /// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
1131 /// B to be a memcpy from X to Z (or potentially a memmove, depending on
1132 /// circumstances). This allows later passes to remove the first memcpy
1134 bool MemCpyOptPass::processMemCpy(MemCpyInst
*M
) {
1135 // We can only optimize non-volatile memcpy's.
1136 if (M
->isVolatile()) return false;
1138 // If the source and destination of the memcpy are the same, then zap it.
1139 if (M
->getSource() == M
->getDest()) {
1140 MD
->removeInstruction(M
);
1141 M
->eraseFromParent();
1145 // If copying from a constant, try to turn the memcpy into a memset.
1146 if (GlobalVariable
*GV
= dyn_cast
<GlobalVariable
>(M
->getSource()))
1147 if (GV
->isConstant() && GV
->hasDefinitiveInitializer())
1148 if (Value
*ByteVal
= isBytewiseValue(GV
->getInitializer(),
1149 M
->getModule()->getDataLayout())) {
1150 IRBuilder
<> Builder(M
);
1151 Builder
.CreateMemSet(M
->getRawDest(), ByteVal
, M
->getLength(),
1152 M
->getDestAlignment(), false);
1153 MD
->removeInstruction(M
);
1154 M
->eraseFromParent();
1159 MemDepResult DepInfo
= MD
->getDependency(M
);
1161 // Try to turn a partially redundant memset + memcpy into
1162 // memcpy + smaller memset. We don't need the memcpy size for this.
1163 if (DepInfo
.isClobber())
1164 if (MemSetInst
*MDep
= dyn_cast
<MemSetInst
>(DepInfo
.getInst()))
1165 if (processMemSetMemCpyDependence(M
, MDep
))
1168 // The optimizations after this point require the memcpy size.
1169 ConstantInt
*CopySize
= dyn_cast
<ConstantInt
>(M
->getLength());
1170 if (!CopySize
) return false;
1172 // There are four possible optimizations we can do for memcpy:
1173 // a) memcpy-memcpy xform which exposes redundance for DSE.
1174 // b) call-memcpy xform for return slot optimization.
1175 // c) memcpy from freshly alloca'd space or space that has just started its
1176 // lifetime copies undefined data, and we can therefore eliminate the
1177 // memcpy in favor of the data that was already at the destination.
1178 // d) memcpy from a just-memset'd source can be turned into memset.
1179 if (DepInfo
.isClobber()) {
1180 if (CallInst
*C
= dyn_cast
<CallInst
>(DepInfo
.getInst())) {
1181 // FIXME: Can we pass in either of dest/src alignment here instead
1182 // of conservatively taking the minimum?
1183 unsigned Align
= MinAlign(M
->getDestAlignment(), M
->getSourceAlignment());
1184 if (performCallSlotOptzn(M
, M
->getDest(), M
->getSource(),
1185 CopySize
->getZExtValue(), Align
,
1187 MD
->removeInstruction(M
);
1188 M
->eraseFromParent();
1194 MemoryLocation SrcLoc
= MemoryLocation::getForSource(M
);
1195 MemDepResult SrcDepInfo
= MD
->getPointerDependencyFrom(
1196 SrcLoc
, true, M
->getIterator(), M
->getParent());
1198 if (SrcDepInfo
.isClobber()) {
1199 if (MemCpyInst
*MDep
= dyn_cast
<MemCpyInst
>(SrcDepInfo
.getInst()))
1200 return processMemCpyMemCpyDependence(M
, MDep
);
1201 } else if (SrcDepInfo
.isDef()) {
1202 if (hasUndefContents(SrcDepInfo
.getInst(), CopySize
)) {
1203 MD
->removeInstruction(M
);
1204 M
->eraseFromParent();
1210 if (SrcDepInfo
.isClobber())
1211 if (MemSetInst
*MDep
= dyn_cast
<MemSetInst
>(SrcDepInfo
.getInst()))
1212 if (performMemCpyToMemSetOptzn(M
, MDep
)) {
1213 MD
->removeInstruction(M
);
1214 M
->eraseFromParent();
1222 /// Transforms memmove calls to memcpy calls when the src/dst are guaranteed
1224 bool MemCpyOptPass::processMemMove(MemMoveInst
*M
) {
1225 AliasAnalysis
&AA
= LookupAliasAnalysis();
1227 if (!TLI
->has(LibFunc_memmove
))
1230 // See if the pointers alias.
1231 if (!AA
.isNoAlias(MemoryLocation::getForDest(M
),
1232 MemoryLocation::getForSource(M
)))
1235 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Optimizing memmove -> memcpy: " << *M
1238 // If not, then we know we can transform this.
1239 Type
*ArgTys
[3] = { M
->getRawDest()->getType(),
1240 M
->getRawSource()->getType(),
1241 M
->getLength()->getType() };
1242 M
->setCalledFunction(Intrinsic::getDeclaration(M
->getModule(),
1243 Intrinsic::memcpy
, ArgTys
));
1245 // MemDep may have over conservative information about this instruction, just
1246 // conservatively flush it from the cache.
1247 MD
->removeInstruction(M
);
1253 /// This is called on every byval argument in call sites.
1254 bool MemCpyOptPass::processByValArgument(CallSite CS
, unsigned ArgNo
) {
1255 const DataLayout
&DL
= CS
.getCaller()->getParent()->getDataLayout();
1256 // Find out what feeds this byval argument.
1257 Value
*ByValArg
= CS
.getArgument(ArgNo
);
1258 Type
*ByValTy
= cast
<PointerType
>(ByValArg
->getType())->getElementType();
1259 uint64_t ByValSize
= DL
.getTypeAllocSize(ByValTy
);
1260 MemDepResult DepInfo
= MD
->getPointerDependencyFrom(
1261 MemoryLocation(ByValArg
, LocationSize::precise(ByValSize
)), true,
1262 CS
.getInstruction()->getIterator(), CS
.getInstruction()->getParent());
1263 if (!DepInfo
.isClobber())
1266 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
1267 // a memcpy, see if we can byval from the source of the memcpy instead of the
1269 MemCpyInst
*MDep
= dyn_cast
<MemCpyInst
>(DepInfo
.getInst());
1270 if (!MDep
|| MDep
->isVolatile() ||
1271 ByValArg
->stripPointerCasts() != MDep
->getDest())
1274 // The length of the memcpy must be larger or equal to the size of the byval.
1275 ConstantInt
*C1
= dyn_cast
<ConstantInt
>(MDep
->getLength());
1276 if (!C1
|| C1
->getValue().getZExtValue() < ByValSize
)
1279 // Get the alignment of the byval. If the call doesn't specify the alignment,
1280 // then it is some target specific value that we can't know.
1281 unsigned ByValAlign
= CS
.getParamAlignment(ArgNo
);
1282 if (ByValAlign
== 0) return false;
1284 // If it is greater than the memcpy, then we check to see if we can force the
1285 // source of the memcpy to the alignment we need. If we fail, we bail out.
1286 AssumptionCache
&AC
= LookupAssumptionCache();
1287 DominatorTree
&DT
= LookupDomTree();
1288 if (MDep
->getSourceAlignment() < ByValAlign
&&
1289 getOrEnforceKnownAlignment(MDep
->getSource(), ByValAlign
, DL
,
1290 CS
.getInstruction(), &AC
, &DT
) < ByValAlign
)
1293 // The address space of the memcpy source must match the byval argument
1294 if (MDep
->getSource()->getType()->getPointerAddressSpace() !=
1295 ByValArg
->getType()->getPointerAddressSpace())
1298 // Verify that the copied-from memory doesn't change in between the memcpy and
1303 // It would be invalid to transform the second memcpy into foo(*b).
1305 // NOTE: This is conservative, it will stop on any read from the source loc,
1306 // not just the defining memcpy.
1307 MemDepResult SourceDep
= MD
->getPointerDependencyFrom(
1308 MemoryLocation::getForSource(MDep
), false,
1309 CS
.getInstruction()->getIterator(), MDep
->getParent());
1310 if (!SourceDep
.isClobber() || SourceDep
.getInst() != MDep
)
1313 Value
*TmpCast
= MDep
->getSource();
1314 if (MDep
->getSource()->getType() != ByValArg
->getType())
1315 TmpCast
= new BitCastInst(MDep
->getSource(), ByValArg
->getType(),
1316 "tmpcast", CS
.getInstruction());
1318 LLVM_DEBUG(dbgs() << "MemCpyOptPass: Forwarding memcpy to byval:\n"
1319 << " " << *MDep
<< "\n"
1320 << " " << *CS
.getInstruction() << "\n");
1322 // Otherwise we're good! Update the byval argument.
1323 CS
.setArgument(ArgNo
, TmpCast
);
1328 /// Executes one iteration of MemCpyOptPass.
1329 bool MemCpyOptPass::iterateOnFunction(Function
&F
) {
1330 bool MadeChange
= false;
1332 DominatorTree
&DT
= LookupDomTree();
1334 // Walk all instruction in the function.
1335 for (BasicBlock
&BB
: F
) {
1336 // Skip unreachable blocks. For example processStore assumes that an
1337 // instruction in a BB can't be dominated by a later instruction in the
1338 // same BB (which is a scenario that can happen for an unreachable BB that
1339 // has itself as a predecessor).
1340 if (!DT
.isReachableFromEntry(&BB
))
1343 for (BasicBlock::iterator BI
= BB
.begin(), BE
= BB
.end(); BI
!= BE
;) {
1344 // Avoid invalidating the iterator.
1345 Instruction
*I
= &*BI
++;
1347 bool RepeatInstruction
= false;
1349 if (StoreInst
*SI
= dyn_cast
<StoreInst
>(I
))
1350 MadeChange
|= processStore(SI
, BI
);
1351 else if (MemSetInst
*M
= dyn_cast
<MemSetInst
>(I
))
1352 RepeatInstruction
= processMemSet(M
, BI
);
1353 else if (MemCpyInst
*M
= dyn_cast
<MemCpyInst
>(I
))
1354 RepeatInstruction
= processMemCpy(M
);
1355 else if (MemMoveInst
*M
= dyn_cast
<MemMoveInst
>(I
))
1356 RepeatInstruction
= processMemMove(M
);
1357 else if (auto CS
= CallSite(I
)) {
1358 for (unsigned i
= 0, e
= CS
.arg_size(); i
!= e
; ++i
)
1359 if (CS
.isByValArgument(i
))
1360 MadeChange
|= processByValArgument(CS
, i
);
1363 // Reprocess the instruction if desired.
1364 if (RepeatInstruction
) {
1365 if (BI
!= BB
.begin())
1375 PreservedAnalyses
MemCpyOptPass::run(Function
&F
, FunctionAnalysisManager
&AM
) {
1376 auto &MD
= AM
.getResult
<MemoryDependenceAnalysis
>(F
);
1377 auto &TLI
= AM
.getResult
<TargetLibraryAnalysis
>(F
);
1379 auto LookupAliasAnalysis
= [&]() -> AliasAnalysis
& {
1380 return AM
.getResult
<AAManager
>(F
);
1382 auto LookupAssumptionCache
= [&]() -> AssumptionCache
& {
1383 return AM
.getResult
<AssumptionAnalysis
>(F
);
1385 auto LookupDomTree
= [&]() -> DominatorTree
& {
1386 return AM
.getResult
<DominatorTreeAnalysis
>(F
);
1389 bool MadeChange
= runImpl(F
, &MD
, &TLI
, LookupAliasAnalysis
,
1390 LookupAssumptionCache
, LookupDomTree
);
1392 return PreservedAnalyses::all();
1394 PreservedAnalyses PA
;
1395 PA
.preserveSet
<CFGAnalyses
>();
1396 PA
.preserve
<GlobalsAA
>();
1397 PA
.preserve
<MemoryDependenceAnalysis
>();
1401 bool MemCpyOptPass::runImpl(
1402 Function
&F
, MemoryDependenceResults
*MD_
, TargetLibraryInfo
*TLI_
,
1403 std::function
<AliasAnalysis
&()> LookupAliasAnalysis_
,
1404 std::function
<AssumptionCache
&()> LookupAssumptionCache_
,
1405 std::function
<DominatorTree
&()> LookupDomTree_
) {
1406 bool MadeChange
= false;
1409 LookupAliasAnalysis
= std::move(LookupAliasAnalysis_
);
1410 LookupAssumptionCache
= std::move(LookupAssumptionCache_
);
1411 LookupDomTree
= std::move(LookupDomTree_
);
1413 // If we don't have at least memset and memcpy, there is little point of doing
1414 // anything here. These are required by a freestanding implementation, so if
1415 // even they are disabled, there is no point in trying hard.
1416 if (!TLI
->has(LibFunc_memset
) || !TLI
->has(LibFunc_memcpy
))
1420 if (!iterateOnFunction(F
))
1429 /// This is the main transformation entry point for a function.
1430 bool MemCpyOptLegacyPass::runOnFunction(Function
&F
) {
1431 if (skipFunction(F
))
1434 auto *MD
= &getAnalysis
<MemoryDependenceWrapperPass
>().getMemDep();
1435 auto *TLI
= &getAnalysis
<TargetLibraryInfoWrapperPass
>().getTLI();
1437 auto LookupAliasAnalysis
= [this]() -> AliasAnalysis
& {
1438 return getAnalysis
<AAResultsWrapperPass
>().getAAResults();
1440 auto LookupAssumptionCache
= [this, &F
]() -> AssumptionCache
& {
1441 return getAnalysis
<AssumptionCacheTracker
>().getAssumptionCache(F
);
1443 auto LookupDomTree
= [this]() -> DominatorTree
& {
1444 return getAnalysis
<DominatorTreeWrapperPass
>().getDomTree();
1447 return Impl
.runImpl(F
, MD
, TLI
, LookupAliasAnalysis
, LookupAssumptionCache
,